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ABSTRACT

Theoretical and Numerical Investigation of

Radiative Extinction of Diffusion Flames

By

Anjan Ray

The influence of soot radiation on diffusion flames was investigated using both

analytical and numerical techniques. Soot generated in diffusion flames dominate

the flame radiation over gaseous combustion products and can significantly lower the

temperature of the flame. In low gravity situations there can be significant accunlu-

lation of soot and combustion products in the vicinity of the primary reaction zone

owing to the absence of any convective buoyant flow. Such situations may result

in substantial suppression of chemical activities in a flame and the possibility of a

radiative extinction may also be anticipated. The purpose of this work was to not

only investigate the possibility of radiative extinction of a diffusion flame but also to

qualitatively and quantitatively analyze the influence of soot radiation on a diffusion

flame.

In this study, first a hypothetical radiative loss profile of the form of a sech 2 was

assumed to influence a pure diffusion flame. It was observed that the reaction zone

can, under certain circumstances, move through the radiative loss zone and locate



itself on the fuel sideof the losszone.contrary to our initial postulate. Oil increasing

the iiltensitv and/or width of the loss zone it was possible to extinguish tile flame

and extinction plots were generated. Ill tile presence of a convective flow, however,

the movement of the temperature and reaction rate peaks indicated that the flame

behavior is more complicated compared to a pure diffusion flame.

A comprehensive model of soot formation, oxidation and radiation was used in a

more itlvolved analysis. Tile soot model of Syed. Stewart and Moss [1] was used for

soot nucleation and growth and the model of Nagle and Strickland-Constable [2] was

used for soot oxidation. The soot radiation was considered in the optically thin limit.

.-kn analysis of the flame structure revealed that tile radiative loss term is countered

both by the reaction term and tile diffusion term. Tile essential balance for the soot

volume fraction was found to be between the processes of soot convection and soot

growth. Such a balance yielded to analytical treatment and the soot volume fraction

could be expressed in the form of an integral. The integral was evaluated using two

approximate methods and the results agreed very well with the numerical solutions

for all cases examined.
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CHAPTER 1

Introduction

The influence of soot radiation on flames has received significant attention in recent

years [3].[4].[5],[6],[7],[81,[9]. Thermal radiation from combustion products and soot

lower tile temperature of tile flame and decelerate chemical activities. Tile purpose

of this study is to critically assess tile effect of soot radiation on diffusion flames and

investigate whether under certain circutnstances radiative energy losses can result in

an extinction of a diffusion flame.

Soot radiation has considerable influence on flames established in low gravity

situations. In normal gravity the combustion products and the flame-generated soot

get convected away from the primary reaction zone due to buoyancy induced flows.

However, in microgravity, there is no buoyant flow and tile combustion products and

soot reside in the vicinity of the primary reaction zone. In addition, the absence

of convective flow results in longer residence time and more soot is produced in a

low gravity situation. Thus, the formation of greater amount of soot and its vicinity

to the primary reaction zone suggest stronger soot radiation effects in microgravity.

There is thus a possibility that tile drainage of energy from the flame by means of

soot radiation may be so great in microgravity that tile flame may no longer be able



.)

to sustain itself. Thus a radiative extinction of the flame is anticipated under such

situations [10].

Thernlal radiation from a flame can be due to (1) radiation from the combustion

gases at high temperature and (2) radiation fl'om combustion generated particulates,

i.e.. soot. According to the calculations of Grosshandler and .klodak [11] for soot

volume fractions > 10 -r soot radiation is dominant. In the present work, gas radia-

tion has been neglected and soot radiation was modeled assuming the optically thin

limit. I'(ennedv el al. [1:2] have observed that for small flames and for moderate soot

loadings the optically thin limit is appropriate for soot radiation. The purpose of our

investigation was to qualitatively and quantitatively study the effect of soot radia-

tion on flames. In particular, the possibility of a radiative extinction was examined

thoroughly.

The soot radiation from a flame depends on the soot volume fraction distribution

in the flame, which is difficult to predict. There are considerable uncertainties in

determining the soot formation and oxidation rates. In particular, the soot distri-

bution in a flame del)ends on the fuel structure, the temperature distribution, the

influence of inerts, the pressure of the system, etc. Since soot radiation is intimately

COul)led with the soot volume fraction distribution, it becomes difficult to predict the

radiation from a flame.

A review of the existing literature in the research area is l)resented in chapter "2.

The t)rimarv focus is on soot evolution, soot modeling and soot radiation.

In chapter 3 the influence of a hypothetical heat loss term of the form of a .sech 2

on a pure diffusion flame established between two diffusing walls of fuel and oxidizer

was investigated. The thickness of the loss zone and its separation distance from the

ideal, infinite reaction rate flame location were parametrically varied. The influence

of increasing the intensity of the loss zone was also investigated.

The effect of a similar heat loss profile on a diffusion flame with convective fuel



blowing from tile wall wasalsoexamined. Chapter 4 elucidatesinteresting resultsof"

tile effectof fuel blowingon tile flame in the presenceof radiative losses.

An analytical model was developedfor the soot laver profile and thickness on

the assuinl)tionof infinite reaction rate profiles t'o1"temperature and speciesmass

fractions. Chapter .5outlines the basic assumptionsof the model, its derivation and

comparisonwith numerical results. Then, a prescribedsoot volunmfraction profile

wasusedto formulate a radiative loss term and its influenceon the flamestructure

wasexamined.

In chapter 6 the comprehensivept'oblem of soot radiation for a diffusion flame

establishedbetweenan oxidizer and a fuel wall wasexamined. Similar to chat)ter-1.

a convectivefuel flow from the fuel wall wasassumed. A heat lossprofile was not

assumed in this case. Instead, the soot model of._loss and co-workers [1] was used and

a soot volume fraction equation was solved in conjunction with the coupled energy

and species mass fraction equations. Results indicate extremely interesting flame

behavior due to radiative losses.

Chapter 7 briefly states the conclusions of the current work. IRecommendations

for future work are also outlined.



CHAPTER 2

Literature Review

2.1 Introduction

In this chapter a review of the existing literature pertaining to the research problem

is presented. As discussed in chapter 1, the influence of soot radiation on a diffusion

flame depends strongly on the soot formation and oxidation chemistry. In the follow-

ing sections the soot evolution and burnout processes are reviewed, the soot radiation

effect is discussed and the effect of various 1)arameters on soot radiation is analyzed

in the light of the existing literature.

2.2 Background

Most practical combustion ss"stems burn in the diffusion flame Iriode. In a diffusion

flame the process of phy'sical mixing of the reactants is generally intended to be much

slower than tile chemical reaction between tile fuel and tile oxidizer'. Consequently, the

flame is (generally) kinetically controlled. Bv contrast, the constituents are already

mixed before they enter the combustor in a premixed flame. In our research problem

we shall focus on diffusion flames only; hence the following review pertains to diffusion

flames.

4



2.3 Soot

, [(ar)onaceous particles generated during gas phase combustion reactions are called

soot. Soot is formed because of incomplete combustion of fossil fuels and other organic

matter. Principal sources of soot emissions are coal burning furnaces, refuse burning.

coke production processes, wood burning in home fireplaces, the open burning of

waste, and gasoline and diesel powered engines.

Under ideal conditions the combustion of hydrocarbons leads to mainly carbon

dioxide and water. Ideal conditions may be specified by stoichiometric composition

of the combustible mixture, i.e., the oxygen content of the mixture everywhere is

sufficient to convert the fuel completely according to the formal chemical equation

C;Hy + (a'+V/4)O2--+.rCO,+ (g/2)H20. Under these conditions a maximum of heat

is released and a maximum of chemical energy is available for mechanical work.

In practical combustion devices such as industt'ial furnaces, gas turbines, or com-

bustion engines conditions locally deviate from idealitv. \Vhen the locally available

oxygen is not sufficient to convert the fuel according to the formal chemical equation

mentioned above, other products of incomplete combustion such as carbon monox-

ide. hydrogen, hydrocarbons and soot are produced in addition to cart)on dioxide and

water.

2.3.1 How Does Soot Affect Us?

Emission of soot to the atmosphere from various industrial combustion processes is

undesirable for various reasons. Soot particles contribute to reduced atmospheric

visibility and increased particulate fallout. Also, emission of soot is often associ-

ated with carcinogenic polycyclic aromatic hydrocarbons. Consequently, the adverse

health effect is an ilnportant issue regarding soot particle emission: the emission of

soot in the atmosphere is unquestionably hazardous and undesirable. However, the
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next questionis. shouldsoot ['ot'mationbeavoidedaltogether? This questionhasvat'-

ious answers depending on the combustion process being considered. Soot emission

froln a practical combustion appliance such as an internal combustion engine reflects

poor combustion conditions and a loss of efficiency. It has deleterious consequences

for tile maintenance of tile device. For such devices, tile designer would like to avoid

soot formation altogether. The same objective also applies in case of fires, whose

mechanism of propagation often involves radiant transfer from [lot soot particles.

However, for flames in furnaces and boilers the generation of soot is necessary

as a radiation source for' efficient heat transfer. For such flames, the principle is to

generate as much soot as necessary in such a way that it can be burnt up again in

tile available time. The carbon [)lack industry is in sharp contrast to the above and

the objective is to produce as much soot as possible bv fuel pyrolysis.

2.3.2 Appearance

Soot generated in combustion processes is not a uniquely defined substance [13].[i41.

It is normally black. The first soot particles result from condensation reactions in the

gas phase. These particles, as well as the individual primary particles that compose

soot aggregates can be reasonably ai)proximated as spherical [15]. The elementary

particles adhere to each other to form straight or branched chains. These chains

agglomerate and form the visible soot flocculates, generally as a fluffy substance.

2.3.3 Morphology and Chemical Structure

Research has been conducted ill laminar and turbulent, (rich and lean) premixed and

nonpremixed flames, momentum and buoyancy driven flames, stirred reactors, spray

flames, shock tubes, and common combustor devices such as engines and furnaces.

There are many similarities in the morphological characteristics [16] for the soot



produced from such different configurations. The similarities in soot morphology

suggestthat a common developmentalhistory governstile formation process,even

in very different combustionconfigurations[15]. Besidescarbon, soot particles also

contain hydrogen(10 to 2.5c7_,),oxygen(O(1%)) and nitrogenatoms (O(0.1%)) [15].

Electron diffraction indicatesthe presenceof C-C bondsin soot [17].

2.3.4 Characterization of the Soot Distribution

Characterization of the soot distribution is done using three important parameters.

The soot volume fraction, fv, is the volume of soot present in a unit volume of gas

and is expressed in units of a a,_ _oot/m a'_*. The soot particle size is characterized by a

length scale d which equals the diameter for a spherical particle. The particle number

density is denoted by r_ and is defined as the number of soot particles per unit volume

of gas. The three parameters ./'_., d and n are related and for spherical monodisperse

soot particles ft" _" '= nTrd'/6. Ill general, soot particulates are neither spherical nor

monodisperse. The preceding relation, therefore, may be considered as vet another

generic measure of soot.

2.3.5 Soot Evolution

There are two important stages of soot particle formation, viz.. particle inception

and particle growth. The following discussion provides a brief description of the two

stages. However, it has to be kept in mind that the above classification is some-

what mechanistic and in an actual combustion process such distinctions are not very

clear [15].

(1) Particle Inception The first condensed phase material is generated from tile fuel

molecules via their oxidation and/or pyrolysis products [14]. Such products include

acetvlene and its higher analogues and polycyclic aromatic hydrocarbons. These two



typesof unsaturatedhydrocarbonsareoften consideredthe most likely precursorsof

soot in flames [14]. Becausesoot is formed in the intermediate stagesof chenfical

decomposition the oxidation and pyrolysis products alluded to are reaction inter-

mediates like aldehydes,various radical COlnpounds.alcoholsand other such trace

materials.

The condensationreactionsof such speciesoften lead to the first recognizable

soot particles knownas nuclei. The first particlesare very small (d < :2nm); for this

reason,evena large number density results in negligiblesoot loading in the region

of their formation, which is generallyconfined to the vicinity of the primary reaction

zone(i.e.. wheremost of the heat releaseoccurs).

(:2) Particle Growth Particle growth takes place by means of both surface growth

and coagulation. Surface growth means gas species become attached to the soot

particle surface and incorporated in the particulate phase. Haynes and \\'agner [14}

have remarked that for soot formation to occur the species with the correct hydrogen

content have to condense followed by subsequent dehydtogenation. Surface growth

reactions lead to an increase in the amount of soot but the numI)er density remains

the same. Ill the process of coagulation particles grow by colliding and coalescing.

thereby decreasing the number density. Here the volume fraction remains the same.

Particle growth is therefore generally considered to be the result of simultaneous

surface growth and coagulation.

Ahnost all of the soot mass is provided by surface growth reactions. However,

the inception process is calculated to be the rate limiting step in the formation of

soot. This has been explained from different perspectives in the literature. Fuel

pyrolysis leads to particle inception; some researchers believe that this may be the

most important factor [18]. [19], [20], [21]. Also iml)ortant is the forination of initial

surface area delivered from the inception region and available for growth [22], [23].

However there is at least one exception to the widely held belief that particle
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inception controls soot production. Basedupon modeling considerations. I(ennedv

el al. [12] disagree that particle inception controls soot production. Instead, they

propose that surface growth is tile most important factor. Tile relative importance

of surface growth and particle inception is a key issue in quantitative models of soot

format ion.

2.3.6 Soot Oxidation

The link between soot production within the flame and the smoke yield from the flame

is the oxidation of soot particles. Soot is oxidized in the high temperature combustion

zone leading to decreased soot mass. As observed t)3' [15] a great many experimental

measurements have been conducted in tile last twenty years on the soot formation

process in different flame configurations. Yet, only a handful of studies have been

performed on soot oxidation processes, and most of these only quite recently.

The particle destruction rate depends on the flame structure, the temperature

field and the concentration distribution of oxidizing species, principally OH, 02 and

O atoms. Nagle and Strick[and-Constable [:2] derived a semi-empirical formula for

pyrolytic graphite oxidation by 02 for a temperature range la00 - 2300 A'. In their

analysis they assumed that oxidation by other species was negligible.

In many combustion conditions it is clear that OH is also an important oxidizer

of soot particles [24]. For soot to escape from a nonpremixed flame, it must pass

through a relatively hot reaction zone where the concentration of OH is relatively

large.

Purl and Santoro [24] have examined the question of how much C'O is produced

from the oxidation of soot by OH and O2 in laminar hydrocarbon flames. They

derived an expression for the soot oxidation rate (or the CO production rate) bv

applying a fundamental kinetic theory approach.



10

2.3.7 The Influence of Fuel Structure

It has been observed that smaller the hydrocarbon molecule, the greater tile resistance

to smoke emission.

An increase of the fuel flow rate increases the height of a diffusion flame, say a

Bunsen-type flame for definiteness. The character of the flame also changes. Initially

the flame is ahnost completely blue. As the flow rate increases the flame height grows

and the flame tip becomes yellow. Further increases in fuel flow rate result in the

appearance of an orange zone. A subsequent increase in fuel flow rate leads to a

critical value when soot escapes the luminous zone. The sooting tendencv is tyl)ically

quantified by measuring this critical smoke point height.

The measurement of smoke points of various fuels has been utilized to rank dif-

ferent fuels in order of increasing sooting tendencies; thus polyaromatics > aromatics

> alkvnes > alkenes > alkanes > alcohols [15]. Fuels with a greater tendency to soot

emit smoke at lower fuel mass flow rates.

2.3.8 Effect of Pressure

The effect of l)ressure on soot formation in diffusion flames has been investigated

over a wide range of conditions. Generally" speaking, low pressures reduce carbon

formation while high pressures promote it [14].

2.3.9 Influence of Additives

Dilution of fuel flow by addition of inert gases such as At-. He and 2V2 generally

decreases the tendency to sooting [25]. If sufficient diluent is added, carbon luminosity

can be suppressed altogether [26]..The possible reason for this is the substantial

temperature reductions in flames in such situations.

When C02 or H20 is added to the fuel, there is a considerable reduction in
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soot-forming tendency [2.5]and a concentrationof 4.5c_C'0.2 completely suppresses

luminosity in methane/air diffusion flames [26]. McLintock [2.5] has suggested that

tile influence of C02 and H,.O is exerted primarily in tile soot oxidation zone where

these species t)resun_ably promote soot burnout.

Some additives promote soot formation. Foremost among these are the halo-

gens, particularly bromine [18]. [27]. It has been suggested that these species act by

catalyzing radical recombination, thus neutralizing excess OH radicals which could

otherwise oxidize soot or soot precursors [14].

2.3.10 Influence of Oxygen Addition

The effect of oxygen addition to the fuel is complex [14]. In ethylene flames, small

additions result in pronounced increased soot emissions [18]. [28]. The effect of the

increasing yield is not purely thermal as it is fat" greater than that obtained at the

same maximum flame temperature produced by oxygen enrichment of the air [14].

In the case of other fuels, both soot promotion and inhibition have been observed

as the result of oxygen addition. Jones and Rosenfeld [29] concluded that ethylene is

the exception and that, for fuels such as propane, butane, and eveu propylene, oxygen

suppresses soot emissions.

2.4 Soot Models

A large number of experimental studies of soot formation and burnout in diffusion

flames have been carried out in the last two decades or so. However the effort at

developing suitable models for describing the soot processes in a flame has been

relatively less [1.5]. In what follows we take a look at some of the important modeling

efforts that have been undertaken.

Kennedy and coworkers [12] have proposed a soot formation model for laminar
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diffusion flames based on a correlation between soot surface growth rates and tile

mixture fraction. Detailed chemistry was not used, instead the mixture fraction was

calculated. The temperature, density and the gas composition were determined as

functions of" the mixture fraction. Axisvmmetric. boundary layer forms of the mo-

nmntum equation were numerically integrated along with the soot volume fraction

equation. An energy equation was lzot solved. Oxidation by both molecular oxygen

and OH were included in the model. The thermochemistrv of tile flame was de-

termined from the resuhs of a detailed laminar counterflow diffusion flame code. A

constant soot number density was assumed. The calculations were carried out for the

axisymmetric, laminar ethylene diffusion flame of [30]. Good agreement was obtained

with the measurements for two different experimental conditions. However it was

found that the decrease in temperature that occurs with radiative energy loss has a

significant impact on the soot [oadings in these flames. Therefore. a more thorough

approach to tile problem of accounting for radiation in a diffusion flame was deemed

necessary.

In a sul)sequent work [31] the energy equation was solved along with the continuhv.

momentum and mixture fraction equations. A radiative loss term was included in the

energy equation based on the assumption of tile optically thin limit. Calculations were

carried out for the axisvmmetric laminar jet diffusion flame [30] and a \\:olfllard-

Parker two-dimensional flame [:}2]. The temperature, density, and viscosity were

determined as functions of the mixture fl'action and the enthalpy bv using a type

of constrained equilibrium chemistry model. Further work includes the prediction

of sooting heights of laminar diffusion flames of Santoro el al. [30]. The agreement

was good in all cases. Their results indicated that OH was tile dominant oxidizer of

soot low in the co-flow axisymmetric flames but as the flame tip was approached the

oxidation by 02 became more important.

Moss and coworkers have developed a two-equation model for soot processes in
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laminar diffusion flames [t]. [33]. They useda \Volfl_ard-Parkerburner in both two-

and three-slot configurationspi'oducing a substantially two-dimensional thin flame

suitable for laserextinction measurementsof soot volume fraction. The model pa-

rameterscontrolling the proposedrate processesfor nucleation,surfacegrowth and

agglomerationweredetermined 175"a comparisonbetweendetailed model prediction

and experimentalmeasurement.Both prediction and experiment indicated that soot

formation is restricted to a comparativelynarrow rangeof mixture fractions (between

0.06and 0.2). The modelparametersincorporatedin their analysismust beadjusted

for each fuel. Predictionsof the soot field were comparedto experimental data ob-

tained for laminar ethylene/air and methane/air diffusion flames. For methane/air

diffusion flamesit wasobservedthat in contrastwith ethylene/air diffusion flamesthe

growth of soot volumefraction with height (and henceresidencetime) is non-linear.

Leung el al. [3-I] outlined a simplified reaction mechanism for the formation.

growth and combustion of soot particles in laminar nonpremixed flames. The model

was combined with detailed gas phase chemistry. The soot nucleation and growth

reactions were linked to the gas phase t35 presuming that pyrolysis products, acetylene

in their case. and not the fuel itself, are of primary importance in the soot formation

process. The model involves the solution of two additional conservation equations

for soot mass fraction and soot number density. They assumed that the number of

active sites present locally in the flame is proportional to the square root of the total

surface area available locally in the flame. The radiative heat loss is modeled in a

simple manner bv adjusting the adiabatic flame temperature by means of a heat loss

factor..Model predictions were compared with tile experimental data of Vandsburger

et al. [3.5] for counterflow diffusion flames. The agreement was quite good.
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2.5 Soot Radiation

Soot emits in a continuous spectrum in tile visible and infrared regions and can

often double or triple tile heat radiated by the gaseous products alone [:}6]. For

soot radiation scattering can be neglected compared to absorption [:}6]. Since soot

particles are very small, they are generally at the same temperature as the flame [37].

An analysis of transient radiative cooling of a strongly radiating turbulent diffusion

flame was carried out by Gore and 3ang [8]. They mention that for strongly radiating

flames, where up to 60 percent of the heat of reaction may be lost by radiation,

a detailed treatment of the radiation heat transfer is needed. Tile radiative source

term was expressed as the energy absorbed minus tile energy enlitted by a small

local participating volume. The energy absorbed was calculated from the large-scale

radiation field by integrating the flux over the surface of the small volume. The energy

emitted depends on the temperature and absorption coefficient of the material in the

small volume. (',as phase radiation was neglected and soot radiation was included

using the Rayleigh approximation for soot particles. Two representative distributions

of soot volulne fractions were used. A unique tlame structure involving an inflection

point in tile temperature profile near the soot laver was observed for strongly radiating

flames. This is caused bv the transfer of energy to the soot laver by diffusion froth

both sides balancing the high radiative loss.

In a latex" study Gore et al'. [38] studied the structure of turbulent, non-premixed,

strongly radiating acetylene/air flanles. The analysis extended the laminar flamelet

concept to include the effects of local radiative heat loss/gain. Measurements of mean

and fluctuating emission temperatures and radiation intensities and data concerning

flame structure were used to evaluate the predictions. Resuhs showed good agreement

between measurements and predictions of flame structure. In a related study [3.9]

specific absorption coefficients of soot particles were reported in the infrared region
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for threedifferent fuelswith varying C/H ratios.

A coupled radiation and soot kinetics calculation was carried out by Sivathanu

and (;ore [9] fox' laminar acetylene/air and acetylene-methane/air diffusion flames.

Tile simplified soot model of Fairweather el al. [-I0] was used fox' the soot kinetics.

The predicted soot volume fractions were found to be in reasonable agreement with

measurements. It was found that the use of a constant radiative fraction in strongly

radiating flames is not effective for predicting the observed trends in axial and radial

distributions of soot volume fractions. The predicted temperature profiles support

the structure of strongly radiating flames discovered earlier [8].

2.6 Diffusion Flames in Microgravity

In low gravity, or microgravity (ttg), many combustion phenomena can be studied

to yield more insight into the fundamental processes. Combustion in normal gravity

creates buoyancy-induced flows through the production of hot gases, which are less

dense than air. Suppressing such flows in microgravity helps researchers in several

ways. First, the microgravityenvironment makes ext)erinlents easier to model, thus

making it a better environment for testing theories. Second. the virtual elimination

of buoyant flows permits the study of phenomena which are obscured by gravity.

An interesting case of microgravity diffusion flames I)ertains to the investigation

of candle flames [41]. The ignition and behavior of candle flames was observed pho-

tographically in free-fall (drop tower) tests under 19c7_ -2.5c2_ 0.2 concentrations in

a nitrogen-diluted, 1-atm environment. In normal gravity a candle flame assumes a

tear-drop shape. However, in microgravity there is no "'ut)" or "'down" and the flame

tends toward sphericity'. In normal gravity, the buoyant flow removes combustion

products from the primary reaction zone and supplies fresh oxidizer. For a micro-

gravity candle flame this transport does not take place and consequently the supply of
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fuelandoxidizerarediminished, tlence the flametemperature is loweredand the can-

die in microgravity pt'oducesa flameof much lower power. Due to diminished flame

temperature,little or no soot forms. The soot in microgravity is coufinedwithin tile

fuel-rich regiondefinedby the blue zone. In normal gravity, soot convectsacrossthe

blue reactive zonewhich producesa_much larger visible flame. It wasalsoobserved

that the main reactionzone,as indicated by the visible blue region, is illl_lchfarther

away from tile wick. This distance, referred to hereas the flame standoff distance.

givesan indication of the magnitudeof the heat flux fl'om tile flame to the liquid fuel

in the wick. In normalgravity, this distanceis about 1mm at ttle baseof the flame:

in microgravity it is about .3ram.

Howeverit will be presumptuousto concludefrom theseexperimentsthat micro-

gravity flamesare in generallesssooty than their normal gravity counterparts. As

noted in [42] the observedmicrogravity diffusion flamesare longer, wider and often

sootier than their normal gravity counterparts. They ate dimmer and more reddish.

which indicatesa lower flame temI)erature. It was also remarkedin [42] that tlle

thermal radiation from a microgravity flameand its surroundingscan bean order of

magnitude greater ill microgravity than in normal gravity. However,at low oxygen

concentrations,blue, soot-free flamesappear in microgravity, whereasthe identical

normal gravity flamesdo not showany significant reduction ill soot formation at low

oxygenconcentrations.

An excellent review of microgravity combt,stion researchhasbeen published re-

cently [43]. It has been pointed out in the review that under atmospheric conditions.

diffusion flames are buoyant and an increase in velocity is observed on moving away

from the burner exit. However, for a weakly buoyant condition the velocity rapidly

decays near the burner exit. The streamwise velocities are roughly inversely propor-

tional to the distance from the burner exit for nonbuovant flames. This tends to

increase the effectiveness of soot oxidation processes relative to soot growth processes
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for nonbuovant flamesin comparisonwith buoyant flames. Also. residencetimes in

nonbuovantflamesaresignificantly higher than for buoyantflamesof comparablesize.

providing longer absolutetimes for soot nucleation, growth and oxidation. Thus. it

is remarkedin [4a] that "'any resemblance between soot l)vocesses within nonl)uovant

and buoyant laminar diffusion flames clearly is fortuitous".

The differences in soot processes of microgravity and normal gravity diffusion

flames have been found to be very important in a recent work [44]. Experiments

were conducted to investigate the behavior of soot particles in diffusion flames under

microgravity conditions using a 490 m drop shaft (10 second microgravity duration)

in Hokkaido, .Japan. Butane jet diffusion flames and flames arising from the com-

bustion of paper were observed in microgravity. The oxygen concentration of the

surroundings, the butane flow rate, and the burner diameter were varied as experi-

mental parameters. From the observation of transmission electron microscope (TE._[)

images it was found that a large number of luminous spots apI)ear in diffusion flames

in microgravity. The diameters of tile agglomerated particles are approximately 0.1

ram, 200 to .'300 times as large as those generated under normal gravity. These parti-

cles are the resultant agglomeration of a large number of primary particles. Local flow

velocity, residence time of generated particles in the generation region, and oxygen

concentration of the surrounding ambient dominate the agglomeration and growth

of the soot particles. Therefore, these particles are formed in the limited areas of

diffusion flames where the aforementioned conditions are satisfied. The investigation

of [44] also verifies that microgravity diffusion flames have a much larger volume than

those under normal gravity.

Interesting recent work on methane and ethylene flames has been done by Atreva

et al. I4.5]. A small porous sphere made from a low density and a low heat capac-

ity insulating material was used to uniformly supply fuel at a constant rate to the

expanding diffusion flame. A theoretical model was formulated on the assumption
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of infinite reaction rate and unity Lewisnumber. Both experimental and theoretical

results showthat asthe flameradius increases,the flameexpansionprocess1)ecomes

diffusion controlled and the flameradius growsasthe squareroot of time.

In a relatedwork Pickett et al. [46] studied the characteristics of methane, ethy-

lene and acetylene flames. For the same flow rate of fuel the ethylene and acetylene

flames were found to be much sootier and smaller. For all the fuels the flame is ini-

tially blue (non-sooty) but becomes bright yellow (sooty) under tzg conditions. Later,

as the tzg time progresses, the flame grows in size and becomes orange and less lu-

minous and the soot seems to disappear. An explanation of the above phenomenon

was offered on the basis of some theoretical calculations. The soot volume fraction

first quickly increases and later decreases as the local concentration of combustion

products increases. Essentially, further soot formation is inhibited by the increase in

the local concentration of the combustion products and soot oxidation is enhanced.

Thus, at the onset of tzg conditions, initially a lot of soot is formed in the vicinity of

the flame front (the outer faint blue envelope) resulting in bright yellow emission. As

the flame grows, several events reduce the flame luminosity: (i) the soot is pushed

toward cooler regions by thermophoresis. In fact, for sootier fuels this leads to the

formation of a soot shell, (ii) the high concentration of combustion products left be-

hind by the flame front inhibits soot formation and promotes soot oxidation, (iii)

the dilution and radiative heat losses caused by the increase in the concentration of

combustion products reduces the flame temperature which in turn reduces the soot

formation rate and flame luminosity.



CHAPTER 3

Influence of a Simple Heat Loss

Profile on a Pure Diffusion Flame

3.1 Introduction

The interaction between the structure of a diffusion flame (DF) and the flame ra-

diation is quite complex. As discussed in chapter :2. soot is formed and oxidized in

a diffusion flame as a consequence of a variety of physical and chemical processes.

There are considerable uncertainties in the description of soot processes in a flame

and the soot evolution mechanisms are not completely tmderstood, tlence, the so-

lution of the complex problem of diffusion flame - soot radiation interaction is very

involved. The energy, species and soot volume fraction equations are all coupled and

contain nonlinear source terms. We chose not to solve the colnplex problem at the

very outset. Instead, we investigated the effect of a simple and contrived heat loss

profile on a pure diffusion flame established between two diffusing walls of fuel and

oxidizer. This chapter is essentially the next logical step in the generalization of the

model outlined in Appendix A.

A review of pure diffusion flames without heat losses is presented first. In the

following sections we define the problem geometry, describe the particular form of

19
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the heat lossprofile used,formulate the conservation equations, briefly indicate tlle

uumerical method used and discuss the results.

3.2 Review of Pure Diffusion Flame Results

In a diffusion flame the characteristic flow time is much greater than tile character-

istic chemical reaction time. This implies that tile chemical reaction is much faster

than the transport of species to the flame unless the flame is near or approaching the

extinction stage. A pure diffusion flame is established when both oxidizer and fuel

are transported to the flame by means of diffusion only..No convective flow is present.

Some important characteristics of pure diffusiou flames have been discussed in [-t7].

Using the activation energy asymptotic (AEA) method [47] provides an analysis of

the detailed nature of the temperature and reaction rate profiles. It was observed

that the maximum of the reaction rate profile usually will not coincide with the tem-

perature profile maximum. They may lye close, and the maximum of the temperature

will be in the vicinity of the maximum of reaction rate, but they will almost never

coincide. The only exception is the symmetric flame for which the overall stoichio-

metric coet:fi.cient, o(= u})F/}oo), equals unity. This study also shows for a fuel-rich

flame that Z/<_Z_<_Z_, i.e.. the peak of the reaction rate profile (Z_) lies between the

Burke-Schumann flame location (Z/) and the peak of the temperature profile (Z,)

for fuel rich conditions. For oxidizer-rich conditions Z_<_Z_<_Z/. It may lye argued

that in the thin-flame limit all diffusion flames Are "'pure" diffusion flames because

the mixture fraction transformation discussed in Williams [48] produces an equation

resembling Tzz.xlVZ[-"w: where IVZI is the magnitude of the mixture fraction gra-

client 1)erl)endicular to the flame. However. ]X-rZ[ depends strongly on the heat flow

conditions and in effect introduces a new parameter that must lye accounted for in

a complete analysis. Hence, though the value of [VZ/[ i.e., [VZ] evaluated At the
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flamesheet)may be -buried" into a suitably redefinedDamkShlerntunber it must of

coursebe "'resurrected"whenlater conductinga full exanlination of"the problem.

3.3 Problem Geometry

Radiation
Zone

v

Yo =0 I,_

YF = YFF

T=To --,_1

DF_

m."
x=O x=L
{z = 1) (z -- o)

Diffusive flux of fuel Diffusive flux of oxidizer

Yo -- Yoo

YF=O

T=T 0

Figure :3.1. The t)roblem geometry.

Figure 3.1 schematically depicts the problem geometry. The physical coordinate for

our one dimensional problem is designated by ,r. The fuel wall and the oxidizer wall

are located at .r = 0 and , = L respectively. Both the walls issue diffusive fluxes of

the respective constituents. A diffusion flame is established between the two walls. A
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soot laver is assumed to exist on the fuel-side of the DF, consistent with experimental

observations [30]. The walls hax;e the ambient teml)erature To. There is no fuel oil the

oxidizer wall and no oxidizer on the fuel wall. Tile fuel and oxidizer mass fractions at

the respective walls are sl)ecified to have values I'FF and }oo as shown in Figure 3.1.

3.4 Choice of Parameter values

The combustion reaction under consideration is assumed to be a global, one-ste I)

chemical reaction of the form F + uO-+(1 + z,')P, where F denotes the fuel and O

denotes the oxidizer.._lethane is nominally the fuel under consideration and oxygen

is the oxidizing specie, although we must recall that real methane-oxygen reactions

require of the order of 100 reaction steps and individual property choices for the

separate species. The fuel-oxidizer mass ratio, l/, is four for the methane-oxygen

combustion reaction. The combustion products are denoted by P. A suitable set of

parameter values must be used to generate a reasonable range Of DamkShler number

and flame temperature values. The adiabatic flame temperature is given by T I =

7'0 + QF}"FF/[Cp(1 + 0)]. where QF is the }mat release per unit mass of fuel from

the combustion reaction and Cp is the specific heat of the mixture. The overall

stoichiometric coef-ficient is denoted by o and is given by V,}FF/}OO. I-Iowever. the

use of the above formula produces unrealistically high adiabatic flame temperature

values. Thus. the above equation for T I was modified to produce a practical range of

adiabatic flame temperatures.

A set of realistic hydrocarbon combustion flame temperatures was used from the

work of \Vichman [49] for the analysis of flame spread over thermoplastics. Tile

idea there was that the fuel mass fraction can not reasonably be determined at the

surface but a more-or-less generic flame temperature can still be evaluated. This

flame temperature varies only with the free-stream oxidizer mass fraction }oo. The
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valueof }}'F, i.e., the fuelmassfraction in the hypothetical fuel streamfor our present

calculationswasassumedto be0.8.3.The oxidizermassfractions (}oo) and the flame

teml)eratures(Tf) are tabulated in Table 3.1.

Table 3.1. Flame Temperatureversus}oo data

}bo 0.211 0.2:33 0.247 0.276 0.329 0.-I:]2 0.533 0.727 1.0
IF: 2137 2230 2295 2:385 2515 2684 2789 2919 3026

A fourth order polynomial was fitted to the above data to obtain

Tf = 486.66 + 12230.85Yoo - 25728.64Yoo 2 + 25360.02Yoo 3 - 9323.0}00 4 (3.1)

Using the above expression, we generate more points for a (}oo.T:) plot.

We calculate QF by using the relation QF = (Y: -T0)C',(1 + O)/Y'yF for Tf =

21:37 N. }oo = 0.211. };_-F = 0.85 and To = 298 K. The calculated value of QF is

11959.43 K.J/kgK. \Ve now introduce a modified formula for calculation of the flame

teml)erature and write

QFi"F,..f( }bo )
= 7o + (:3.2)

C (l+ o)

Next we calculate the values of the modification factor, .f(}oo), by using the above

expression. The calculated value of QF and the (I'oo, T:) data obtained using equa-

tion 3.1 were utilized for this purl)ose. On obtaining .f(}oo) data, we use an expo-

nential fit of the following form to arrive at a functional relationship between f and

}bo:

f = 1.25exp(-2..99}oo) + 0.33 (3.a)

Finally, we use the above expression for f(}'oo) to calculate T I for any set of }oo

and YFF values in equation 3.2. A plot of T: versus }oo is shown in Figure 3.2. The
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Figure 3.2. Flame Temperature as a function of 1"oo for different values of }}'F.
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_}_- values corresponding to the different curves in the plot range fi'om 0.25 to 1.0.

The lowest curve is for }}F = 0.25. The curves above are for ]'_-F = 0.30. 0.35. 0.40

etc. It has to be noted that for YFF = 0.25 and 0.:30 the peak flame temperature does

not occur at }oo = 1 because of the slight local maximum in the range 0 < _oo < 1.

For this reason we shall not use these curves, tIowever, lot higher values of l"]_V we

do obtain temperature profiles whose maxima occur at }oo = 1. These profiles will

be used. Also, we note that since we are interested in the effect of soot radiation on

diffusion flames, we are not concerned with low values of YFF which do not l)roduce

significant amounts of soot. Hence, in our analysis, }_/: values of 0.30 and lower are

not used.

The parameter values in the work of Tzeng et al. [.50] were used in this disser-

tation. The important values are shown in Table :3.2. These values were used in all

Table 3.2. Parameter values

Specific heat C'p
Thermal diffusivitv a0

Fuel-oxidant mass ratio u

Pre-exponential factor ,4

Activation energy E

Heat release

./�;,oK
1.2-1× 10 -4 m-'/.s

4.0

-5× 10 r 1/.s

121. 841.7 A'.l/l,',nol

QF 119.59.-13 I A'.I/ICgA

the chapters of this dissertatibn except for the pre-exponential factor in chapter 6. as

noted in section 6.2.
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3.5 Formulation

Here we write tile equations and boundary conditions for conservation of energy and

species. The energy conservation equation is

pCp[Tt + t,7-'_-]= (,\T_)_ + QF_',,. _ - --
dqn

. "

(3.4)

with boundary conditions T(w = O) = To and T(a: = L) = 7o, where To is the

temperature at tile fuel and oxidizer walls, assumed to be 298 I(. Here T is the

temperature, p is the density, ("p is lhe specific heat of the mixture. ,\ is the thermal

conductivity and u is the velocity. The volumetric radiative heat loss term is -dqn/d,z"

with units llTm 3. The heat release due to combustion is OF and ti'F is the reaction

rate term. An Arrhenius type expression was assumed tot" the one-step irreversible

reaction, so the reaction rate is the = p,-i}o}"FexI)-E/l{T. The quantity ,-i denotes

the [)re-exponential factor. The thermal conductivity is ,\. The oxidizer mass fraction

equation is

p[}b, + _,kb_] = (pl-)okb, L- -,,5'F. (3.5)

with boundary conditions }o(.r = 0) = 0 and }o(,r = L) = }'oo. Here Do is the

mass diffusivitv of the oxidizer. Similarly the fuel t'nass fraction equation is

p[}}, + U}'F,] = (pDF}"F,),. --d'F, (3.6)

with boundary conditions }}-(,r = 0) = }_F and }}--(,r = L) = 0: DF is the mass

diffusivitv of the fuel.

The above equations are now transformed to a mass coordinate system. Tile

transformed coordinate is Z = 1 -.s/s0 where .s = fo pd,r and -_0 = J0L pda'. Vv'e note

that Z = 1 when ,r = 0 and Z = 0 when,r = 1. The coordinate Z hapl)ens to be
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identical to the mixture fraction coordinate for our simple problem. Tile following

expressionshold for the abovetransforination:

o !((p,,)o - (p,,)..)+ 4((a,,)o -(p,,)L)] o o
o-_I== [-.-_o -% o-gI' + _lz (:].7)

aild

=la _ P -_1 (a.s)0._." SoO: '

Since we are considering a pure diffusion flame, (pu)x=o = (pu)_=L = 0, i.e.. there are

1lo convective flows from the walls. Application of these operators to the energy and

species equations gives

L=-- p'\ Tzz+_tL, r+ 1 dqn (:].9)C'pso Cp.so dZ'

assuming pA to be a constant.

_o,- P°"D°° }bzz- uti'_._f<
•So- p

(3.10)

assuming p2Do to t)e a constant, and

}Ft = P°" DF_°}"FZZ -- ti'___FF (3.1 1)
.%2 p

assuming p2D F to be a constant. In ectuations (3.9)-(3.11), we have also assumed

the Lewis number to be unity and we have considered equal species diffusivities. The

quantities with subscript 0 correspond to the reference condition.

\Ve now introduce the nondimensional variables r = (T- To)/(Tf - To), _.,'o =

}b /} bo. .,iF : _) /YFF , ._ = .ff (poL ). Consequently, .;0 = .So/ (poL ) = f_ Dd2 where

fi = P/Po and ._' = .r/[.. After some rearrangement, our nondimensional ectuations
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simplify to
1

r [ _- --_ T Z Z -Jr- O F "D I" 4-
86 -_o

1
Yo_ = _-r;yozz - o'Dr,

.VR &tR

dZ"
(3.12)

(3.13)

1
UF_ = wY_zz -- "Dr. (:3.14)

s5

where r is the nondimensional reaction rate and .VR is a radiation nmnber evalu-

ated as the ratio of tile reference radiative and conductive fluxes, given by .VR =

qR,_.f/(,\o(Yf- To)/L). The thermal conductivity at the reference condition is de-

noted by ,\0. The quantity Z) is the DamkShler number given by t_ef/lche,n, where

the reference diffusion time t_.j = L'-/ao and the characteristic chemical time toh_,,_ =

1/[A}ooexp(- E/RTI)]. The nondimensional quantity OR [s given by (tR/qR.__/, where

qR._.f is a reference radiative heat flux. The nondimensional heat release, (_v, is given

by Qt:}"FF/[C'v(T f - 7"o)] and equals (I 4- o) since the adiabatic flame temperature is

defined as 7) = To 4- QFYFF/[Cp(1 4- 0)]. \\'e note that in the prefactor multiplying

the reaction term of equation 3.12 we do not utilize the temperature correction dis-

cussed in section 3.4. In addition, we have defined t = t/t_j. The nondimensional

reaction term. ,'. is written in the form r = yoyuexp[-3(1 - r)/(1-a(1-T))], where

a = 1-To/Tf and 3 = Ec_/(R,,7)): E is tile activation energy and R,, is the universal

gas constant. The quantity 3 is known as the Zeldovich number.

3.5.1 Infinite Reaction Rate (IRR) Solutions as Initial Con-

ditions

Equations 3.12-3.14 are the governing conservation equations for 7. Yo and YF for

the case of finite rate chemistry. The equations become much simpler when the

reaction rate is infinite. In this case, all fuel reaching the flame surface is consumed

instantaneously, and similarh for the oxidizer. Thus no fuel exists on the oxidizer
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side and no oxidizer exists on the fuel side, i.e.. YoYF = 0 on t)oth sides of t}le

flame. Tile energy equation call now be solved in two adjacent domains, tile oxidizer

side (O<Z<ZI) and the fuel side (Zf_<Z_<I) of the flame. The flame location is

designated by Zf. For our simple problem tile mass coordinate Z coincides with the

mixture fraction, a conserved scalar. In the absence of radiative losses tile steady

state energy equation becomes rzz = 0. Since at the flame r = 1. tile solution of tile

steady state energy equation (rzz = 0, since zYR = 0 anti the reaction term can be

excluded) for the infinite reaction rate (IR1R) situation gives r = Z/Zf for O<Z<Z I

and r = (1 - Z)/(1- Zf) for Zf<Z<I. Similarly, !;o and }IF can be solved for tile

infinite reaction rate situation and we get yo = {1 - Z) - (I - ZI)T for 0<Z<Z.f and

yF = Z - ZIT for ZI<Z<I.

Next. we inust evaluate Z I, the coordinate location of tile (IRR) flame. As men-

tioned, Z is the mixture fraction coordinate, defined as Z = (O.qF + 1 --YO)/(O + 1).

.At the flame, !lo and yF are both zero so that Zf = 1/(0 + 1). \Vith tile knowledge

of Zf the nondimensional temperature and species equations can all be determined

exactly. Tile profiles so ol)tained are used as initial profiles for the numerical solution

of the transient conservation equations (3.12)-(3.1-t).

3.5.2 Simple Heat Loss Profile

As shown in Appendix A the-simplest model heat loss profile is the "top hat" profile

used therein. Because of the discontinuous derivatives at the edges of tlle top hat

profile, it is not as convenient for numerical reasons as a smooth and continuous heat

loss profile. For primarily this reason, the profile that we shall use here is of the form

of a .sech 2 ill mixture fraction space, viz.,

don - aech2(B(Z - Z,_)). (3.15)
dZ
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Tile location where the maximum of-d(TR/dZ occurs is denoted by ZR.

1.0
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Z ZR;

A
sech-{ B[Z-ZR] }

i I r

°0 r

0.0 0.2 0.4 0.6 0.8 1.0

Z

Figure :3.3. The chosen heat loss profile of the form of a .sech 2.

Figure 3.:3 illustrates the nature of variation of the heat loss profile in tile mixture

fraction space. \Ve note that the maximum value of the profile is unity. \\'e define

the Z locations where the value of the function is 1_, of its peak value as the two

tails of the function, located respectively at ZR- and at ZR+, with ZR- < ZR+. The

maximum of the -dgtR/dZ profile occurs at ZR = (ZR- -+-ZR+)/2. The width of the

loss zone is defined to be _Z,_ = ZR+-- ZR-. The separation distance of the loss zone

fi'om the location of the ideal Burke-Schumann flame Z I is given by .._k= ZR- -- Zf.

In the subsequent analysis, we shall vary the thickness .-XZR, as well as the separation
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distance_Xin order to study the influenceof tile losszoneon the flamestructure. The

thicknessof the losszonecan })e/ chosen by selecting different values of the parameter

B in equation 3.1.5.

From equation :}.12 we note that the radiative loss term is given by

(A'R/.so)dftR/dZ. and hence another important way to inodify the loss term is to

ext)eriment with the value of its amplitude, "YR/.-%. We can choose different values of

-YR, the radiation number. The quantity .-_0,being given by .so/(PoL) is a consequence

of the solution obtained and for this reason is evaluated at each time step.

\Ve recall that for the top hat profile the integrated heat loss is

f_('YR/._o)(U(ZR-) - L'(Zt_+))dZ = NR-XZR. In this case the integrated heat loss

is give,, Z )] IZ = - For

large /3 this simplifies to 2,\'R/B + O(13 -2) showing that the top-hat loss zone thick-

hess .-SZR corresponds to 2//3. or 13 = 2/._SZR. Consequently, in analytical formulae

for the top-hat profile (see Appendix A. equation A.40) we can substitute for _ZR

the value 9.//3 in order to test their correspondence to the .sech 2 profile.

3.6 Numerical Solution

Equations 3.12, 3.13 and 3.14 were numerically solved using the finite difference

method. The nonlinear source terms were linearized using Newton's method. For

each time step iterations were used until the sum of normalized residuals became

smaller than 1 x 10 -6 . The transient conservation equations were integrated to steady

state.
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3.7 Relation Between Temperature and Density

\Ve utilize the ideal gas law to derive a relation between the temperature and density

of the system. We can write pV = (m/|I')R,,T where p is the pressure, V is the

volume. R,, is the universal gas constant and |]'" is tile average molecular weight of

the mixture. The quantity m is the mass of the mixture. Hence the pressure can be

expressed as p = pRT where p is the density and /_ is the characteristic gas constant

for the mixture, given bv/_ = f_,/II.'. If we assume poRTo to be the constant l)ressure

of the system then introduction of a = t - To�T: and r = (7'- To)/(Tf - To) results

in the following important relation:

(1 -a)
= (3.16)

(1 -a(t-T))

\Ve observe that when the temi)erature is that of the ambient, i.e., T = To = 298 K

then r = 0, /5 = i. i.e.. p = p0. At the flame temperature (Tf) the nondimensional

density fi = (1 -a) and consequently p = (1 - a)p0. Equation 3.16 is used extensively

in all the chapters of this dissertation.

3.8 Evaluation of

Equations 3.12-3.14 indicate that in order to solve the T, gO and YF equations in time.

we need to evaluate .-_0at every time step. \Ve recall that _0 is given by the expression

flo rid2. The quantity .s0 enters the analysis by virtue of the coordinate transformation

Z = 1 -.s/.So. By differentiating both sides of this transformation relation, we obtain

dZ/d2 = -3/'-%-since .__= fofid._' and 2 = .r/L. \Ve recall that Z = 1 when 2 = 0

and Z = 0 when .i' = 1. as noted previously in section 3..5. [:sing the transformation

relation betweea Z and 2 subject to the above mentioned boundary conditions, we
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get

1

and the relation between the 2 and Z coordinates can be written as

(3.17)

._= I_ (1//5)_z (3.1s)
fo_(1//5)_tz

On obtaining tile solutions for r. 9o and ZJF equation 3.18 is used to transfornl the

solutions back to the physical coordinate 2. Thus. go can be evaluated once the /5

distribution is known. The normalized density/5 can be related to tile r distribution

by virtue of equation 3.16. ttence, the expression for go can alternatively be written

as

1
go (:3.10)

Io (/z + (o/(1 - o))fo__dz

tlence on obtaining the r l)rofile we can determine the quantity .s0- When the tern-

1)erature throughout the domain is the same as the ambient temperature To. then

r = 0 everywhere and using equation :3.19. we obtain .s0 -- i. If we next assume

that the temperature everywhere in the domain is the same as the adiabatic flame

temperature 7"/ then r = 1 and .-_0 = (1-o). Since the minimum and maximum

values of temperature are 7o and TI respectively, the quantity .go must obey the limits

( 1 - a)<.%_< t.

3.9 Results and Discussion

Figure 3.4 depicts the nondimensional temperature, r. plotted as a function of the

mixture fraction coordinate. Z. for different values of the radiation number, -\R.

for particular parameter values shown in the title of the figure. The oxidizer and

fuel mass fractions at the respective walls are )oo = 0.6 and }_'F = 0.S. In our
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subsequentanalysiswekeepthe sameset of (}0o, }):F) and vary tile location, width

and intensity of the radiative losszone. It hasto bementionedherethat the aboveset

of (}0o. }}'F) representsa typical caseand is employedextensively in the following

chapters. The qualitative trends for other }oo and YVF values are similar. The

t.-a
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0.0

Yoo=0.6 YFF=0.8 AZR=0.04 A=0
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.... N a = 240

:'------= N R = 320

..... N R = 383
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Figure :1.4. Effect of Radiation Number NR on Temt)erature Profile.

thickness of the radiative loss zone is 0.04 for all values of -\R and the separation

distance of the loss zone from the stoichiometric flame location is zero. \\e observe

that the flame temperature profile is uniformly lowered as the value of _\',_ increases.

Also, the flame temperature peak keeps moving toward the fuel wall as the value of

-\:R is increased. The dro t) in flame temperature, as well as the shift of the peak.
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becomemore prominent tot"higher valuesof XR. Fo,' a value of :\:R greater than

:38:3. we do not obtain a steady state tenlperatu/e profile, indicating tile occurrence

of a radiative extinction. This nlaximunl or Ul)t)er bound for :\'R is then defined as

-\'R,_._:ti_:t_o,_. i.e., ;VR,e,rtinction = 3S3 for this case. We also note fl'om Figure a.4 that

there is a change of slope of the temperature profile in tile radiative loss zone for

higher values of .Y,_, i.e.. between ZR- and Zr_+.

2000

Yoo=0.6 YFF=0.8 AZR=0.04 a=0

1500

500

ZR. ZR+
i

i

\

0.4

NR=0

N R = 80

o----+ NR = 160

.... N R = 240

E------_ N R = 320

..... N R = 383

Figure 3.5. Effect of Radiation Number-\R Oll Reaction Rate.

Figure 3.5 shows the nondimensional reaction rate term ((1 + 0)_r) for the same

situation. \Ve observe that the reaction rate profile collapses for increasing .\'R values.
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The reaction rate peak also movestowards the fuel side; this movement t)ecomes

more conspicuousfor higher valuesof :VR. \Ve notice that the reaction rate profile

has managed to ahnost move beyond tile rightmost side of the radiation loss zone

(indicated by the dashed lines at ZR- and ZR+) for tile big[lest value of .Vn.

\\'e now focus on the temperature and species profiles for tlle situation when

.VR = 3S3 for the above case. i.e., at the brink of extinction. Figure 3.6 also shows

Yoo=0.6 YFF=0.8 NR=383 AZR=0.04 A=0

/ i

/

Filled symbols

for IRR case

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Z

Figure 3.6. r, go. pF' profiles for finite and infinite reaction rates. Also shown is tile

reaction rate profile.

the temperature and species profiles for the same flame (}'oo = 0.6. }'_'F = 0.8,

,\'R = 0) for the infinite reaction rate (IRR). \Ve notice that when .VR = 3S3 the

z
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slope of the Fo profile is quite different from its [RR counterpart. 011 the other hand,

the slope of the 9F profile follows the IRR _F profile closely until a Z-value of about

0.3, when its slope starts decreasing. This plot therefore demonstrates explicitly the

contrast between the IRR situation and the finite chemistry situation with appreciable

radiative losses. The migration of the peaks of temperature and reactivity profiles is

particularly striking. Also, an abrupt change of the temperature profile seems to take

place in the zone of radiative losses, i.e., between ZR_ and ZR+. \\'e add for emphasis

that from the strictly physical viewpoint the finite-rate solution has attained a rather

extreme form. since the reaction zone has almost completely propagated through the

loss zone. In Figure 3.6 we see that the loss zone is now on the oxidizer side of the

reaction rate profile. As we shall see, extreme cases like this are not tile norm. They

are also physically unrealistic but mathematically permissible in our simplified model

with a prescribed heat loss function.

\Ve illustrate tile details of the flame structure in Figure 3.7, where we plot the

contributions of the different terms in the energy equation when the steady state

solution has been achieved. Tile loss term is given by (.Vr_/._o).sech2(B(Z - Z_)) and

the diffusion term. as in equation :_{.12, is (1/._)rzz. \Ve have already noted fi'om

figure 3..5 that for .\:R = 383 the reaction rate profile has penetrated through the

radiative loss zone. Figure 3.7 indicates that the diffusion term recovers the radiative

losses ahnost entirely and the reaction terln doesn't contribute to the diffusion term

in such a recovery process. This represents a completely different physical problem.

when the radiative loss term exists on the oxidizer side of the primary reaction zone

(flame). This result is, as already mentioned, clearly in conflict with our hypothesis

that the heat losses take place on the fuel side of the t:tame due to flame-generated

1)articulates. This occurs because our hypothetical radiative loss profile is simply a

i)rescribed function in Z. and as such. it does not contain any mechanism for loss-
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Figure 3.7. The flame structure when -\'R = :383.
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zone movement as the temperature and species profiles change, as a real soot zone

invariably must.

In order to observe the effect of a thicker loss zone, we now increase .5Za to a

value of 0.1. \Ve notice that the drop in the temperature profile is more significant

Yoo=0.6 Y_=0.8 AZR=0.1 A=0

_ I'/ 70.2 /,:/
vr:, _,

,,'st/

oU
0.0 

NR=0

............ NR=4 0

.... N R = 80

..... N R = 120

_---_ N R = 132

0.0 0.2 0.4 0.6 0.8 1.0

z

Figure :3.8. Effect of :\'R on r profile for thicker loss zone.

in this case and the flame extinguishes at a lower vahte of the radiation numl)er, viz..

for -\:R = 132..

Next we consider the situation when the leftmost side of the loss zone is sufficiently

removed from Z: for a flame with }oo = 0.6 and })_- = 0.S. The thickness of the

loss zone is .-XZR = 0.06 and the separation distance. A. is 0.1 in this case. Figure 3.9



40

Yoo = 0.6 YFF = 0.8 zXZ R = 0.06 A = 0.1

ba

N R = 200

NR=213

0.0 0.2 0.4 0.6 0.8 1.0

Z

Figure :3.9. Effect of -\R on r profile for __k= 0.I.
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indicates that tile flame temperature decreases with increasing value of Nn. In this

case, however, the movement of the peak nondilnensional flame temperature doesn't

seem very pronounced, though it does move towards the fuel side. Correspondingly,

Figure 3.10 shows the variation of the reaction term, (1 + O)Dr for increasing values

of Nn. As mentioned for the preceding cases, therefore, the reaction zone does not

always l)ropagate through the loss zone. A sufficient separation and magnitude of the

loss term appear sufficient to prevent the through-transit.

2000.0

Yoo=0.6 Yvv=0.8 AZR=0.06 A=0.1

1500.0
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0.0
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Figure :3.10. Effect of .VR on (1 + o)'Dr profile for .5 = 0.1.

We see that the movement of the reaction rate profile is not very pronounced



-12

either. \\'e note that the reactionrate peak is alwaysto the left of the temperature

peak, i.e.. Z t" < Zr < Z_. This is in accordance with the results obtained for pure

diffusion flames without radiative losses [47], as discussed before.

Figure 3.11 is an extinction plot for the case when -SZR = 0.06 and .5 = 0.

Extinction values of \'R are plotted as a function of Zf, the theoretical flame location

in the mixture fraction coordinate. We recall here that Z./. is related to the overall

,.,,..

Z
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Figure 3.11. Extinction Plot for _Zn = 0.06 and .5 = 0.

stoichiometric coefficient d (= UYFF/YOO) bv the expression Zf = 1/(1 + o). \Ve

notice that for a given value of the oxidizer mass fraction at the wall. (:\'R)eztinctior_
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increases as Z I is decreased. A decrease in Z I implies an increase in o. which, for a

given l"oo. indicates an increase in }}v. As }'}F increases, the reaction rate becomes

more vigorous and it becomes more difl:icult to extinguish the flame through tile

application of radiative losses. This explains the nature of the curves that we obtain

on the extinction plot. Also, for the same value of Zf, i.e., for the same value of o. a

lower value of 1_'bo indicates a correspondingly smaller value of }_F, and hence, the

reaction rate also becomes smaller in magnitude. It then becomes easier to extinguish

the flame. This explains why the curves in Figure :3.lI all shift towards the left for

decreasing values of I"oo.

Our focus is next shifted to some quantities of practical interest. \Ve evaluate

the heat transfer to the wall from flames with the same stoichiometrv (}'oo = 0.6

and }_F = 0.8) but with different thicknesses of the radiative loss zones and for

different separation distances (A) from Z I. Let Qw, o denote the heat transferred to

the oxidizer wall by thc flame per unit surface area of the wall. _,\'e reckon that the

oxidizer wall will have a stronger effect on the flame than the fuel wall owing to the

proximity of the flame to the oxidizer wall. The flame transfers heat to the oxidizer

wall by means of both conduction and radiation, and hence, Qw, o = Qw, o,_o,_,t +

Qw.o.,=4. where the conduction flux is Qw.o._o,_,i = -,\(dT/d,r)]_=L and the radiative

flux is Qw.o._d = 0.SXfoL(d(ln/d,r)d.r. \Ve assume that half of the radiative losses

travel to each wall: this assumption is reasonable in the thermally-thin limit we

consider here. \Ve call transform the expressions for Qw.o.co,_ and Qw, o,_=_ to the Z

coordinate and normalize Qw.o bv the reference conductive flux ,\o(Tf -To)/L. The

normalised 0w, o = (1/.go)(dr/dZ)lz=o + 0.5×(1/g0)-VRf0 _ (1/.go)(dOR/dZ)dZ. The

quantity Qw.o._V0 is plotted in Figure 3.12.

From Figure 3.1:2 it is apparent ihat the heat transfer characteristics do not de-

pend strongly on the separation distance _3. and consequently, we see four reasonab[v
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Figure :3.12. Heat Transfer t,o t,he oxidizer wall as a Function of A'n.
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distinct groups of curves corresponding to loss zones of four different thicknesses.

However. as is evident from tim plot, the separation distance ,.X does become im-

portant for higher values of .Vn. close to extinction. \\'e will notice that nearing

extinction, tile flame attempts to reduce the heat losses to the wall as much as pos-

sible. Also. the value of -VR required for extinction is higher when the heat loss zone

is very thin. as intuitively ol)vious.
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Figure 3.13. Heat Transfer to the oxidizer wall as a Function of .Vn(2/B).

\Ve also plotted Qw, o.so as a funci, ion of the quantity ,\'n(2/B). Figure :1.1:3 clearly

shows that the quantity .V,_(2/B), which is approximately the value of the integral
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f_.\'l_secl_2[B(Z- Zr_)]dZ, is able to collapse tile wall heat transfer data except very

near exthlction. Thus, when plotted against .VR(2//3'), (_w.O.__0 does not reveal any

appreciable dependance oil either the separation distance ..X of even the thickness of

the loss zone .AZR.

Another quantity of practical interest is the radiative fraction \. given by the

ratio qR_,i/qTot_l. The quantity qR_,t is the integral of the radiative loss term

(f_.VR.secl_"[B(Z - ZR)]dZ) and qro,,_ is the integrated value of the reaction rate

in mixture fraction space, i.e., fo (1 + O)OrdZ. From Figure 3.1-1 we notice that qro,,_t

decreases with increasing values of .\'R. This happens t)ecause with increased inten-

sity of the radiative loss zone, reaction rate values decrease, as observed in Figures 3..5

and a.10. For thicket" loss zones, the drop in qrot_ with increasing values of -\'R is

more rapid.

\Ve have already noted in section 3.5.2 that the integral of the radiative loss term

profile is approximately (.\'R/._o)('2/B). Hence. it is of interest to plot the total heat

release qT,,:,t,,.las a function of the quantity ,\'R(2/B). The result is shown in the

Figure 3.13. Figure 3.i._ indicates that tile quantity A,,_(2/B) characterizes the total

heat release rate very well and the curves for different loss zone thicknesses virtualh"

collapse on one another except for large values of -\r¢ close to extinction.

Figure 3.16 illustrates the variation of \ as a function of :\'R for different thick-

nesses of the loss zones and for _X = 0. \Ve observe that \ increases with increasing

-\R for a flame with a given loss zone thickness. The integrated quantity qR_d increases

with "VR and. since correspondingly the (l'rot,_t values decrease. \, which is a ratio of

the above quantities, increases. In order to produce a given value of \. a higher value

of -\a is required for a flame with a thinner loss zone. Similar to the study of qTot,_, we

plot \ as a function of .VR(2/B) in Figure 3.17. It is clear from the figure that the use

of .VR(2//3) collapses the data very well except close to extinction. So. the quantity
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Figure 3.16. \ as a function of -\n
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.\'R(2/B) can be used to correlate the radiative fraction quite effectively. Figure 3.1S

0.40
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Yoo=0.6 YFF--0.8 _--0

_ AZ R 0 08

v--v AZR=0.10

0.00 0.10 0.20 0.30

Z

0.40

Figure 3.18. _S.r.t- as a function of the radiative fl'action

shows the variation of tile drop in flame peak temperature. _Xrl, as a function of

the radiative fl'action \. If we denote the maximum temperature by D'. then ._kD- is

defined as 1 - rf. \Ve recall that the temperature has been normalized in such a way

that the peak nondimensional temperature, r, for the infinite reaction rate situation

always has the value of unity, regardless of the oxidizer and fuel mass fractions. Thus.

_-kr.t- represents the drop in peak temperature for finite rate chemistry and radiative

loss situation, in comparison to lhe IRR situation. The increase in &rf with \ was
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ahnost linear for smaller valuesof k. Howeverthe curvesfor the different losszone

thicknessesdivergedfrom oneanother for higher valuesof the radiative loss fraction

_°

3.9.1 Comparison with the top-hat profile

It has been previously mentioned (section 3.5.2) that the results for the ,,_ech" heat

loss profile can be compared with the results in Appendix A for the top-hat profile.

However. the thickness --kZn of the top-hat l)rofile must be chosen to be 2/B, where

the value of f_' is determined from the choice of the thickness of the .scch '2 profile. For

example, when (.-XZR)_.¢h2 is chosen to be 0.06, the constant /3' = 99.7 and conse-

quently (_ZR)top_h,_t = 2/99.7__0.02. As illustrated in Appendix A both analytical

and numerical methods were used to determine the extinction value of .VR for the

top-hat profile. Here, we compare analytical and numerical results for the tot)-hat

profile with the numerical solutions for the *ech e i)rofile. Figure 3.19 depicts the

extinction .\r,: values l)lotted as a function of Z I when }oo = 0.7, (-SZR)___h: = 0.0(i.

(--XZR)to,,_h,_t = 0.02 and ._X = 0.1. The direction of increasing }}.-,_- has also been

indicated on the plot. The mtmerical solutions reveal that the .sech 'e and the top-hat

profiles produce very similar-\R,e.rti,_cti.an values. This indicates that the integt'ated

value of the radiative loss term is the quantity which determines the extinction .\n

value. The extinction :\:n values obtained by analytical method are quite different

from the numerical solution. However. on close inspection of the curves depicted in

Figure 3.19 we notice that the ratio of the analytically obtained values to the numeri-

cal sohttion is about 4 for all the ZI values plotted in Figure 3.19. This indicates thai

a modification of the analytical formula based on the inclusion of a correction factor

should yield close correspondence between the analytical and numerical results.
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Figure :3.19. Comparison of-\n,¢;ti_.ti.or, values for .scch 2 and top-hat profiles.
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3.10 Conclusions

The influence of a simple and hypothetical heat loss zone on a pure diffusion flame

was investigated in detail in this chapter. The loss profile was of tile form of a sech 2

and we varied tlle intensity and the width of the loss zone to study the behavior of a

pure diffusion flame. The loss zone was always postulated to lie on the fuel side of the

ideal Burke-Schumann flame. Tile location of the [oss zotm on tile fuel side relative

to tlle ideal flame location Zf was also varied. In all situations the increase of the

radiation number -YR resulted in a movement of the flame toward the fuel side. \Ve

found that for thin loss zones located close to ZI the reaction zone may even migrate

to the fuel side of loss zone for significantly high val,tes of -\'R. In such a situation

tile loss zone exists on the oxidizer side of the flame, contrary to our initial postulate.

This happens because our hypothetical loss zone is static and does not contain any

mechanism for movement. The reaction rate profile, on the other hand, is free to

move and hence locates itself on the fuel side of the loss zone in certain cases.

Extinction plots were generated for dilferent flames for given loss zone thicknesses

(-kZR) and given separation distances (.A). The plots indicated that for a given }oo-

an increase in }FF results in higher values of extinction radiation number (.V_).

Nondimensional heat transfer rates to the oxidizer wall were also investigated. The

results indicated that the separation distance _X did not have a significant influence

on the wall heat transfer characteristics.

The total heat release in the combustion process, qrot_t, was found to decrease

with increasing values of -\R and the rate of decrease was quite rapid for thicker loss

zones. It was found that the quantity -\'n(2//3) characterizes qT.at_l very well and the

curves for the different loss zone thicknesses and separation distances all collapse onto

one another except near extinction.

Investigation of tile radiative fraction (\) showed that \ increases with increashlg



valuesof -\:Rand tile rate of increaseis steeperfor thicker losszones. Tile flame.

however,extinguishesat a larger value of \ for losszoneswhich are relatively thin.

The quantity NR(2/B) collapsesthe qT,at,_t and radiative fraction values very well

except near flame extinction.



CHAPTER 4

Influence of a Simple Heat Loss

Profile on a Diffusion Flame with

Fuel Blowing

4.1 Introduction

Ill this chal)ter the influence of a simple .sech 2 heat loss profile oil a diffusion flame

is investigated when there is a convective fuel flow through tile fuel wall. Thus, the

l)roblem treated in this chapter differs from the one ill chal)ter 3 only in the fuel wall

boundarv condit iota.

In the following section, we present the problem definition. The folmulation of the

conservation equations is quite similar to that in tile previous chapter and is discussed

only briefly. A discussion of the impot'tant results follows.

4.2 Problem Definition

Figure -l.1 shows the geometry of the problem under consideration. A diffusion flame

is established between the oxidizer and fuel walls. A diffusive flux of oxidizer is

56
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supplied by the oxidizer wall. Fuel is released from the fuel wall through tile combined

influences of diffusion and con(ection. :\ mass flux i_ = (pu)lx=o issues from tile

fuel wal[. The oxidizer wall allows the mass ttux flowing from the fuel side to pass

through the oxidizer wall, therel)y l)reventing the transient accumulation of matter

in the region between,r = 0 and ,r = L. Both walls are maintained at temperature

7o. The species boundary conditions have been illustrated in Figure 4.1.

T= TO

YO = 0

Soot Layer

\
t/_= (P'OI_=o \ r/_

[::>

x=L
(Z =O)

Convective flux of fuel Diffusive flux of oxidizer

dy F _ -(pit)[.r
.,=o (oD) =O(YFF-Yrl,=o)

Figure 4.1. The problem geometry and definition.

r=r 0

YO = YO0

YF=O
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4.3 Formulation

Tile equations we shall solve are the energy and species equations for oxidizer and

fuel. File energy equation is given by

pC,[7i + ,T_] = (.\Tx)_+ (2S_i'F-- --
dqn

d3. "
(4.t)

with boundary conditions T(.r = 0) = 7o and T{.r = L) = 7o. where 7o is tile ambient

temperature, assumed to t)e 298 1,2. The oxidizer equation is

P[}o, + u}o,] = (pDo_;o_)_ -,,d'F, (4.2)

with boundary conditions }o(,r = 0) = 0 and }o(.r = L) = I'OO. As in the previous

chapter, a one-step, irreversible chemical reaction of the form F + uO--,(1 + u)P is

assumed. Finally, the fuel equation is given t)v

p[]).-,+ .};-.] = (pDFE_.). - _z.,, (4.3)

with boundary conditions dYF/d,z'l_= o = --{,h/pDF)(YFF--}Fl_:=o)and }):(.r= L) =

0. The quantity ;i; is the mass flux from the fuel wall, equal to pu.

Using the coordinate transformation Z = 1 -.s/s0 where .s = fopdx and .So =

foLpd,r and proper normaliz£tions {as outlined in the previous chapter), the above

equations transform to

1 D o
r/- = 7rZ + __)rZZ + _)FDP + :'VIi dc]R

.So t;oL.s 6 So dZ" (4.4)

1 Q0

._o_ = 7.qoz + _Jozz - ¢D,'.
.So Uo/._,5 0

(4.5)

1 QO

YF_ = ----._FZ + ----7-_2YFZZ - D;" (4.6)
.50 U 0 L ,50



where "D is tile DamkShler ntunber, given by Zo = tr<r/tch:,, and r is tile nondi-

mensional reaction tet'm given By ,'= gOtJFexp(--3(i --r)/(1 --a(l. --r))) where a =

l-7o/Tf and 3 = Ea/RTf is the Zeldovich number. The reference time scale is lr_f =

L/uo and tile characteristic chemical time scale is tea,,, = 1/[A}Ooexp(-E/RT/)].

The nondimensional quantity OF is given by O,_- = QF)FrF/C'p(Tf -- "Io) and _a0 =

So/So,_f where -_0._.f = poL. The velocity tt0 is the magnitude of u at .r = 0, i.e.. at

Z = 1. Note that tile first terms on tile right hand side of each of tile above equa-

tions originate due to tile convective fuel flow and were not present in the governing

equations toE a pure diffusion flame, as illustrated in section 3..5 of chapter 3.

The above equations are solved numerically to obtain nondimensional temperature

and species mass fraction profiles for different radiation loss profiles. The radiation

number" .Vn in the above is a ratio of the reference radiative and convective fluxes.

given by Y/,_ = (t,2,_.//(po_loC'p--kT). This is in contrast to the definition of .VR for a

pure diffusion flame, where :\R was defined to be a ratio of reference radiative and

conductive fluxes.

4.4 Boundary Condition for the Fuel Equation

In contrast to chapter 3. the fuel mass fraction at the fuel wall is not prescribed in

this case. Instead. it is assumed that fuel issues from the fuel wall by both diffusion

and convection. A balance between the rate of depletion of the fuel ip, the reservoir

and tile rate of fuel issue gives the necessary equation for the boundary condition. In

fact. the fuel mass fraction in the reservoir is held constant.

The amount of reservoir fluid lost through a unit surface area per unit time is

P0¢t0, where p0 is the densilav at the reservoir wall temperature, i.e.. To. and u0 is

the velocity at the fuel wall. Correspondingly, the reservoir is deprived of p0_I0}FF

amount of the fuel species. The fuel leaving the reservoir surface and entering tile
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free stream doesso under tlle combined influenceof diffusion and convection. The

diffusion rate, by virtue of Fick's law. is --pDF(d}v/d.r)t_.=o, whereDF is the diffusion

coefficient of fuel in fuel/air mixture. The convective fuel flow rate is (pou0)}F[z=t.

\\'riting the balance equation yields

d}_ -(P°U°) (I'}'F -- _F[x:o). (4.7)
dx ,_=o - pDF

In the Z coordinate the fuel wall boundary condition assumes the following form:

dgs - u°L-V°(l - yF]_.=0). (4.8)
dZ It= 1 Dt'o

where YF = }"F/}'_F, as before, and DFo is the value of the diffusion coefficient of the

fuel at the reference condition.

4.5 Solution for Infinite Reaction Rate

The temperature and species profiles for the infinite reaction rate (IR R) situation are

used as initial profiles. Hence, our first task is to ol)tain such solutions. In the limit

of infinite reaction rate the flame sheet is infinitesimally thin. Fuel and oxidizer are

depleted in the flame in the stoichiometric proportion. No fuel exists on the oxidizer

side of the flame and no oxidizer exists on the fuel side. i.e.. there is no leakage through

this diffusion flame.

Under such conditions, we can solve for the r, !Jo and !JF profiles in two adjacent

domains without requiring the reaction term. \Ve solve the following energy equation

in the oxidizer side of the interval subject to the boundary conditions r(Z = O) = 0

and r(Z = Z/) = 1. where Zf is the flame location:

1. _0

7rz ÷ ----7-___rzz = 0. (4.9)
.So U0L.S 6
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The aboveequationmust alsobesolvedin tile adjacentfuel-sidedomain, i.e., between

Z = Zf and Z = 1. with r(Z =l) = 0. A similar procedure must be followed for the

species equations, although yo = 0 on the fuel side and yF = 0 Oll the oxidizer side

account for the zero leakage parts of the !./o, yv' sohttions. However, Zf is vet to be

deternfined. For that purpose, a mixture fraction variab[e is first defined as follows:

0yr + 1 - yo
g = (4.10)

0+1

\Ve note here that unlike chapter 4 the variable Z does not correspond to the inixture

fraction. \Ve observe that q satisfies all equation of the same form as the r and species

profiles for the IIRR situation, i.e..

1 Ct 0

-Ca + ---r-=,izz = o (4.11)
So UoL,.q _

The solution for ( is

i = [1 - e._p(-z/_)] (4. P_')

where c = ao/(uoL._o). At the flame, Yo and gr are both zero, which, by virtue

of equation 4.10 indicates that ¢'/ = 1/(o + 1). Correspondingly. Z has tile value

Z I = cln((1 + 0)/o). The equations for r, Yo and !JF profiles Call now be solved for.

The solutions for r are

l_e_Z/c

r = 1-_-zF7 O<Z<Z/,

e-l/e_e-Z/e

e_11__e_Zl/_ Z/<Z<I.

(4.1a)

The solutions ['or Yo are

i

e-Z/c_p-Zl/c

I]0 = l-e-Z//c

0
{4.14)
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Finally. the solutions for YF are

(

= _ 0 O<Z<Zf.91:

{ t - e-(Z-Zl )It Z/<Z<I.

(4.15)

A plot of tile temperature and species profiles is shown in Figu,e 4.2 for L = 0.01

Yoo=0.6 YFF=0.8 %=0.08 rrgs L=0.01 m

,0 _' I,,

t ",

/ x
x x ..... d_

/ ',
/ _ 0 ............. 0 YO

0.8 ; ',
o----o YF ,:I x

f x I

, , _
• i "_ L

0.6 _, -,

i_ x x _

0.4 / "'.

0.2

°° L _ '---.. i
o.o o._ 0.4 o._ o._ ,.o

Z

Figure 4.2. IRR profiles for T. gO and flF

m. u0 = 0.0S m/.s. }oo = 0.6 and }}'F = 0.8. \\:e note here that equations 4.13.4.14

and 4.15 have to be solved iteratively because the quantity c depends on .-_o, which

depends on the solution and can not be ascertained apriori. The procedure is to guess

a value for c. i.e.. for .-_0and then use equations 4.13-4.t.5 to determine T, gO and gf-

profiles. On obtaining the r profile the density (fi) profile can also be determined
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using the relation_ = (l -c_)/(1 -ct(l - r)).where o= i -T0/T/. Then.._% can be

evahtated using tileprocedu,'eOutlined in section:1.8.Using thisfreshvalue of .-_0the

quantity c can be calculatedagain. The new valueofcis then used to determine r.

90 and !iF I)rofiles. 'Tile new r profile is then used to calculate the value of c again.

This procedure is repeated unti[ convergence is obtahled and we find the r, go and

_JF profiles ['or the infinite reaction rate case.

4.6 Parameter Values

The parameter values used in this chapter are tile same as those used in chapter 3.

The length of tile domain is L = 1.05 cm unless otherwise mentioned. The velocity

of fuel flow at the wall, i.e., u0 is a new parameter in this chapter. The value of u0

was varied from 0.02. m/.s through 0.1-1 m/,,_.

4.7 Results and Discussion

The method ofanahsis in this case is the same as in chapter 3. tIowever, the addi-

tional variable u0 must be taken into account in the examination.

Figute 4.::{ illustrates tile variation of the temperature profile for different values

of uo for a given flame in the absence of radiative losses (.VR = 0). The values of uo

range from 0.06 m/.s to 0.14 r}_/.s. \Ve define a nondimensional parameter uoL/ao for

characterising the fuel blowing rate and tabulate is in Table-I.1.

Table 4.1. uoL/c_o for different values of u0.

u0 m/.s 0.06 0.08 0.10 0.1:2 0.1-1

uoL/ao 5.08 6.77 8.46 10.1.5 1.1.8-1
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1.0

Yoo=0.7 Yvv=0.5 NR=0
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u o = 0.06 m/s

u o = 0.08 m/s
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Z

Figure 4.:3. Effect Uo on r profile for a given flame.
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As _10 is increased, tile flame moves closer to tile oxidizer wall. \Ve recall that

tile rate of depletion of fuel from tile fuel wail is given t)v (potlo)}FF. For higher

values of ,0. more fuel issues from the reservoir. The oxidizer mass fraction at the

oxidizer wall being unchanged, the flame has to move toward tile oxidizer wall since

the rate of supply of fuel is now greater. As u0 is increased from 0.06 m/a to 0.10 m/.s

through 0.08 m/.s, the peak temperature also increases, as evidenced by Figure 4.3.

However, on further increase of ltO, the peak temperature decreases. The reasonable

explanation for this is the proximity of the oxidizer wall. For _10 -- 0.14 m/,q. tile flame

is quite close to the oxidizer wall and loses much heat to the wall. On closer scrutiny

of Figure-I.:L it can be observed that for higher values of _z0. a fixed increment in the

value of _0 results in a smaller shift, of rim temperature profile toward tile oxidizer

wall. The flame seems to "'feel" the presence of the wall as rio is increased and resists

the attempt of the convective flow to force it against the wall.

The slope of the temperature profile at the wall is a measure of the extent of the

heat transfer to the wall. Figure 4.4 shows the slope, rz. at the walls. Z = 0 and

Z = 1. plotted as a function of u0 fox' the flame under consideration (_oo = 0.7.

}_-F = 0.5..\'a = 0). The plot clearly exhibits that the heat transfer to the oxidizer

wall (at Z = 0) is much higher than that to the fuel wall. Because it is closer to

the flame, the oxidizer wall exercises a significant influence on it. The influence of

wall heat transfer is an important issue for deciding the location and strength of the

flame.

The reaction rate term, (1 + O)'Dr, is plotted as a functioi1 of Z ill Figure 4.5.

The increase in t/o clearly results in the movement of the reaction rate profile toward

the oxidizer wall. The value of the peak reaction rate also increases as uo increases.

However, as observed for the r profile, the proximity of the wall results in a drop in

the peak value of (1 + o)Z3r for higher values of _10. \Ve also notice that for tl0 = 0.06

m/.s the reaction rate profile is quite broad. However, as _0 is increased, the reaction
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Figure 4.-[. Effect Uo on rz for a given flame.
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Figure 4.5. Effect of _10oil (1 + 6)_r for a given flame.
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rate profile becomes narrower. Since the peak of the reaction rate profile increases

as u0 increases (for sufficientlylarge distance from the wall) and it simultalmouslv

becomes narrower, the total heat release in the process of combustion, qTot,t, which.

is the integrated value of (1 +o)'D,'. is also calculated. Irigure 4.5 shows as inset a

plot of qgot,¢ as a function of u0. It is clear that qrot,_t decreases as u0 is increased for

this flame. The rate of decrease is significantly enhanced for higher values of u0. i.e.,

when the flame is in the close proximity of the oxidizer wall.

t.-*

Yoo = 0.6 YFF = 0.8 AZR=0.04 A = 0

u0L/% = 8.47

Z

Figure 4.6. Effect of XR on the temperature profile.

Next, the effect of increasing the intensity of the radiative loss zone. 2\"R. Oil

a cliffusion flame with prescribed fuel and oxidizer mass fractions in the respective

reservoirs and a given u0 through the fuel wall is investigated. The thickness of the loss
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zone..._kZ/_, is assumed to be 0.04 and the separation distance _X is zero. As is evident

from Figure 4.6, the temperattfre profile is unifornllv and monotonically lowered as

.\'R is increased. Tile peak of the temperature profile moves toward tile fuel wall with

increased radiative losses. For N._ values greater than 28.6. the temperature profile

crashes to zero: here we can not obtain a steady state profile. \Ve also observe that for

higher values of :VR, a given incremental increase in .\'_ results in a relatively greater

degree of collapse of the temperature profile, i.e.. the collapse of the temperature

profile is accelerated. Simultaneously, the rate of movement of the temperature peak

toward the fuel wall is also enhanced for higher values of .YR.

Yoo = 0.6 YVF = 0.8 AZR=0.04 A = 0

uoL/ct o = 8.47

Z

Figure 4.7. Effect of 5n on !Jo and yF profiles.
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Figure 4.7 shows the species profiles. 9o and yv. as a function of the Z coordinate.

\Ve recall once again that Z is ndt the mixture fraction, see equation 4.12. Tile change

in the oxidizer profile is not very pronounced. However, the YF profile significantly

changes for increasing values of .VR. For .V,_ = 28.6. 9F everywhere is conspicuously

greater than for the no-loss case. The reaction rate decreases with increasing :\'n and,

consequently, the flame consumes less fuel and oxidizer. Hence. both the oxidizer and

fuel mass fractions are greater everywhere for higher values of -\R.

-O-
+

300

200

100

ZR: ZaR+
i

.t / !'

i' t ',I

0
0.0

Yoo = 0.6 YFF = 0.8 AZR=0.04 A = 0

uoL/Ct o = 8.47

NR=0

.............. NR=10

.... NR=20

..... NR=25

N R = 28.6

J

0.2 0.4 0.6 0.8 1.0

Z

Figure 4.8. Effect of .\R on reaction rate profiles.

The reaction rate profiles are illustrated in Figure-1.8. \Vith increased radiative

losses, the reaction rates decrease significantly. Also. consistent with the migration
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of the temperaturepeak,the reactionrate peakalsomovestoward the fuel side. The

rate of decreasein tile reaction rate peak seemsto increasefor higher valuesof-\R.

It is cleat'froth a comparison of Figure 4.6 and Figure 4.8 that tile temperature peak

at Z_ is further to the oxidizer side than the reactivity peak Zr lot- each and every

value of the radiation number .\n.

The influence of increasing the loss zone thickness is investigated next (Figure 4.9):

_Z,_ is now increased to 0.1. The peak of the temperature profile indicates a migra-

t--*

1.0

0.8

0.6

0.4

0.2

Yoo=0.6 YFF----0.8 AZn=0.1 A=0.

uoL/Czo=8.47
, i

ZR ZR'+ i
4

NR=O !

................. NR= 5 [

i" " Q("X, .... NR = 7.5 i

'/'",,"'_.,X ..... N R = 9.9 l

• , "\" \'"'"

, . .._-_.....

0.2 0.4 0.6 0.8 1.0

Z

Figure 4.9. r profiles when ._kZR = 0.1 and _ = O.

tion toward the fuel wall. The movement is not very conspicuous, though, possibly

because for the entire flame history the reaction zone is squarely inside the loss zone.

Substantial movement to either side seems to be completely restricted. Similarly. the
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reaction rate profile, shownin Figure 4.10. also exhibits a correspondingmovelnent

of tile peak toward the fuel wail. although this movement is also very insignificant.

We now turn our attention to tile structure of the flame when -\R = 9.9, 5ZR = 0.1

k...

-o-
+

300.0

200.0

100.0

o.o A! ....
0.0

ZR. ZR;
i

t/,!

\
0.2

Yoo=0.6 YFF=0.8 AZR=0.1 A=0

uoL/Oto=8.47

NR=0

.................NR= 5

N a = 7.5

..... NR = 9.9

0.4 0.6 0.8 1.0

Z

Figure 4.10. (1 -+-O)'Dr profiles when _XZR = 0.1 and ..X = 0.

and A = 0. For such a situation the flame is at the brink of extinction and any

further increase of AR results in the temperature profile crashing to zero everywhere.

Figure 4.11 illustrates the profiles of the different terms in the energy equation. The

convection ((1/go)rz) and the diffusion ((o0/(uoLg 0))fez) terms balance one another

very near the oxidizer wall and the reaction term is extremely small in that region.

The primary balance in the vicinity of the flame, however, is between the reaction

term and the diffusion term, i.e.. the heat released by virtue of the combustion reac-
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tion is diffusedawayfrom tile primary reaction zone.The radiation loss is principally

recovered by the reaction term.

200.0

Yoo=0.6 Yvv=0.8 NR=9.9 ZXZR=0.1 A=0

uoL/C%=8.47

100.0

0.0

-100.0

Convection

_----_ Diffusion

: _ ( 1+d_)Dr

..... Radiative Loss

I' ,\2

6

-200.0
0.0 0.2 0.4 0.6 0.8 1.0

Z

Figure 4.11. Flame structure when -\'R = 9.9. &Zn = 0.1 and .5 = 0.

We now investigate the effect of shifting the loss zone from the IRR flame location,

Z]'. \\'e consider the same flame as before, except we now introduce a separation dis-

tance of A = 0.1. The nondimensional temperature profiles are plotted in Figure 4.12

for different values of :\'R. Interestingly, in this case the inaximum of the temperature

profile shifts toward the oxidizer side. The reaction rate profiles also indicate a slight

movement of the peak toward the oxidizer wall in Figure 4.1:3. This result is a rather
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Figure 4.12. Loss zone is nou: separated from flame location. Observe the movement

of the peak toward the oxidizer wall.
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interesting contrast to the case of the pure diffusion flame, where the reaction zone

always moved toward the loss zone. Here we must observe that there are the three

silnultaneous influences of convection, diffusion and reaction: each carl respond to

the heat loss zone. In the pure diffusion flame we allowed only diffusion and reaction

to counter the loss zone. and the response was predictable: the reaction zone always

shifted toward the loss zone, even in those cases where it could never penetrate it (see

Figures a.9 and :3.10) of chapter 3. Here, convection from ttle file[ wall can force the

reaction zone toward tile oxidizer side, away from tile loss zone.
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Figure 4.14. Flame structure when :VR = 25. -SZR = 0.04 and ._X= 0.1.

Figure 4.14 shows the structure of the flame when :YR = 2.5, AZR = 0.04 and

._k = 0. For such asituation, the flame is at the brink of extinction. The convection.
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diffusion, reactionand radiative losstermsof the energyequation areplotted to show

the relative importance of eachterm. The prinlary balanceis betweenthe reaction

and diffusionterms. It isalsoobservedthat the radiative lossterm is recoveredalmost

entirely 1)vthe diffusion tm'mand that the two curvesare virtually indistinguishable

in the radiative losszone. Interestingly, the reaction term doesnot contribute sig-

nificantly toward recoveringthe radiative losses.This is becausethe heat losszone

is placedat a significant distancefrom the IRR flame location, Zj. so the primary

balance is between reaction and diffusion.

It is interesting to compare Figure 4.11 with Figure -I.14. In the former case

the heat loss profile was placed right next to the ideal flame location Zf. Hence.

the reaction term had to battle the radiative loss term, unlike in the latter case

when _ = 0.1 and the loss term was placed some distance away from the ideal

flame location. Thus. the two flames have significantly different structures. So the

separation distance ,._hbetween Z I and ZR- plays an important role and decides how

the loss term will be recovered. A significantly high value of._X results in heat diffusion

into the radiative loss zone by meat> of conduction, ttowever when _S = 0 the reaction

term has to counteract the effect of the imposed heat loss profile.

For the same separation distance of _ = 0.1 the loss zone thickness _Zf_ is

now increased to 0.08. As expected the flame extinguishes for a lower value of :\R

(Figure 4.1.5). For :\e > 13.1 we do not obtain a steady flame. The location of the

maximum flame temperature moves toward the oxidizer wall for increasing values

of .\',_. An investigation of the reaction rate profile also indicates similar behavior

(Figure 4.16).

Let us investigate the effect of changing the velocity "0 on the teml)erature and

reaction rate profiles. The value of u0 is decreased from 0.10 _7_/.s to 0.05 m/.s. The

nondimensional parameter _zoL/ao decreases from 8.-17 to 4.24. Intetestingly, it is

more diflicult to extinguish the flame in this case. On decreasing the velocity ,0 the
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flanle moves away from tile oxidizer wall and Z/ increases from 0.08 to 0.2. The flame

loses less heat to the oxidizer wall when u0 is smaller and consequently call survive for

higher values of.\'R. In this case also the location of tile peak flame temperature. Z,.

moves toward the oxidizer wall. Similar behavior was also observed for the reaction

rate profile.
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Figure 4.18. r profiles when uoL/ao = 4.24 and ._XZR = 0.04.

The loss zone thickness &ZR is then halved for the same value of u0 = 0.0.5

m/s. Predictably. it becomes harder to extinguish the flanle and the extinction vahle

of -\:R is 29..5, beyond which we do not obtain a steady state temperature profile.

Consistent with previous observations we find that Z_ moves toward the oxidizer wall

with increasing values of-\R.
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As explained in chapter 3 the heat transfer to the wall is important to exam-

ine. In the present situation, Qw.o, i.e., the heat transfer to the oxidizer wall. is

nornlalized with the reference convective heat flux, i.e.. P0U0Cp(7) - To) to yield

Qw, o = (ao/(uoLgo))(dr/dZ)lz=o + 0..5×(1/g0).Vnf0 t (1/go)d?l,_/dZ. Ttle quantity

Qw, ogo is plotted as a function of NR in Figure 4.19.
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0.0 10.0 20.0 30.0

N R

Figure 4.19. Heat transfer to the oxidizer wall as a function of -\'R for the fuel blowing

situation.

A comparison of Figure 4.19 with Figure 3.12 of chapter 3 reveals that unlike for

a pure diffusion flame, the wall heat transfer characteristic curves are not grouped

according to different loss zone thicknesses. The separation distance .5 seems to

have significant impact in this case. In order to study this in greater detail we plot
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Ou'.o_%asa function of tile quantity A'R(2/B) in Figure4.20. \Verecall here that this

quantity was very useful in coliapsing tile wall heat transfer, the total heat re/ease

and tile radiative fraction data for a pure diffusion flame, as discussed in chapter 3.

Figure 4.20 shows that for this situation we get two distinct sets of curves for the

1.6

Yoo = 0.6 YFF = 0.8

u{}L/o¢o = 8.47

AZ R = 0.04 ' i

]

1.4

J,,_ 1.3

1.2 1

Filled Symbols: A = 0.1

I
1.1

0.0 0.1 0.2 0.3 0.4

NR(2/B)

Figure 4.20. Heat transfer to the oxidizer wall as a function of An(2/B) for the fuel

blowing situation.

two different separation distances used. Hence, the sel)aration distance of the loss

zone from the flame turns out to be a very imt)ortant l)arameter for a diffusion flame

with fue[ blowing. For a pure diffusion flame the separatiou distance _X was not very

imt)ortant for the heat transfer to the wall since the data collapsed to one single curve.

We now focus on the radiative fraction, \, given bv the ratio qR,_/qrot,l. First.
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the quantity qTot_l is plotted as a function of the radiation number :YR in Figure 4.21.

For thinner loss zones the rate Of decrease of qrot_d with -\'R is less pronounced. For

Yoo=0.6 YFF=0.8 u0L/cz0=8.47 A=0

=.
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Figure 4.21. The total heat release in the coml)ustion process plotted as a function

of the radiation number .\)_.

__XZR= 0.10. for example, qwot_ steeply" decreases with increasing values of .VR. In

Figure 4.22 we plot qTot_t values as a function of-VR(2/B). As expected, the total heat

release values correlate very well with .Yn(2/B) with a nearly straight-line dependence

for -\;R(2/B) values less than approximately 0.2.5.

Figure 4.23 illustrates the variation of the radiative fraction \ with the radiation

number NR. The magnitude of \ increases with increasing :\'R until extinction occurs.

It is observed here that the values of \ are significantly lower than for a pure diffusion
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flame (see Figure 3.16).
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Figure 4.24. The total radiative fraction \ versus .\n(2/B).

Next. in Figure 4.24 we plotted the radiative fraction \ as a function of NR(2//3),

and, as expected, tile curves for the different loss zone thicknesses collapsed onto

one another'. Thus. the quantity :\'R(2/B) is of great importance when analyzing

important quantities of practical interest.

Figure 4.25 shows the variation of the drop in peak flame temperature as a function

of the radiative fraction \. As mentioned in chapter 3, _kr/is defined as 1 - r/. The

quantity ._kr/ wa_ found to increase almost linearly with the increase of the radiative

fraction \. It is also observed that the &r/curves diverge fi'om one another for high

values of -\:R for' the different loss zone thicknesses shown in the figure.
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4.8 Conclusions

In this chapter the influence of a sech 2 heat loss profile on a diffusion flame with

fuel blowing from the fuel wall was investigated. The analysis in this chapter is quite

similar to that ill chapter 3. However. the influence of convection gives rise to more

complexities in the flame behavior compared to a pure diffusion flame.

An important parameter in this chapter is the fuel blowing velocity at the fuel

wall, i.e., u0. An increase in uo resulted in a flame movemellt toward the oxidizer wall.

The peak flame temperature also increased. The reaction rate profile became taller

and narrower as the flame moved closer to the oxidizer wall. The integrated value of

the reaction rate, qTot,_l, however, decreased with increasing u0. The l)roximity of the

oxidizer wall is the primary reason for such a decrease in q:rot_t. \Vhen the flame is

close to the oxidizer wall it loses much heat to the wall and hence there is a resultant

decrease in the q'rot,_t values. It was also observed that the rate of movement of the

flame toward the oxidizer wall slowed down at higher values of the fuel blowing rate.

.Next, the intensity, the width and the location of the .sech 2 heat loss zone were

varied systematically to examine the influence of each of the variables on the flame. An

increase in the width of the radiation loss zone resulted in a smaller value of extinction

radiation number i.e.. :VtLe..rti,,,.ctio n. It was observed that for loss zones placed right

next to the infinite reaction rate (IRR) flame location. Zy, the reaction term recovers

the radiation loss term and l.he diffusion term does not contribute significantly to

such a recovery process. If. however, the loss term is placed at a significant distance

from Zf, the reaction term does not recover the loss term. Rather, the diffusion term

has to counter the loss term and conduct heat to the region of loss. Thus. the flame

structure depends significantly on where the loss zone is placed.

The migration of the temperature and reactivity peaks was also investigated for

each situation. It was observed that for loss zones placed at a sufficient distance
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from Z/ the flame may move slightly toward the oxidizer wall in certain cases. Such

behavior is in sharp contrast with pure diffusion flames studied in chapter 3. For pure

diffusion flames, the reaction zone always moved toward the fuel wall for increased

heat losses. For diffusion flames with fuel blowing, however, the presence of convection

complicates matters significantly, and the flame may move in the opposite direction.

For a loss zone of a given thickness and separation distance, it was observed that

decreasing the fuel blowing velocity, tl0, resulted in a higher extinction radiation

number. \Vhen _z0 is decreased the flame moves more toward the fuel wall and away

from the oxidizer wall. Hence it loses less heat to the oxidizer wall and it then becomes

more difficult to extinguish the flame.

An analysis of the heat transfer to the wall revealed that the separation distance

.5 has significant influence on the characteristics of the curves. However. a similar

examination of the heat transfer characteristics for pure diffusion flames in chapter :}

indicated that the separation distance A was not important at all. Hence. the analysis

in the current chapter suggests that the introduction of fuel blowing can give rise to a

variety of interesting behaviors. The quantity NR(2//3') was found to be quite useful.

as in chapter :_ in correlating the wall heat transfer rate. the total heat release and

the radiative fraction.



CHAPTER 5

Estimation of Soot Layer Profile

and Thickness

5.1 Introduction

In this chapter approximate methods for estimating the soot layer profile and thick-

hess are discussed. A soot volume fraction equation was developed based on the

model of $yed, Stewart and Moss [1]. The equation was then numerically solved

subject to the assuml)tion of infinite reaction rate (IRR) profiles for temperature and

species. A thorough analysis of the results revealed that the essential balance for the

soot volume fraction equation is between the convection and the soot growth rate

terms. Such a balance yield@ to analytical treatment and resulted in an expression

for the soot volume fraction profile in integral form. The integral was evaluated by

two api)roximate methods. A coml)arison of the resuhs using the analytical formulw

with the numerical solution indicated good agreement. A soot radiation term was

then formulated using the soot volume fraction profile thus obtained. The effect of

soot radiation on the temperature profile was investigated using the radiation term

in the energy equation.

In the following sections, we discuss the Syed, Stewart and ._Ioss [1] model, develop

91



.'-)2

thesootvohuuefraction equation,investigatethe numericalsolution, deriveanalytical

expressionsfor thesootvolumefraction profileand comparethe analytical resultswith

the nmnericalsolution. The influenceof a prescribedsoot volumefraction profile on

the radiation characteristicsof a diffusion flame is alsodescribed.

5.2 Soot Model

The soot model used here is based on the work by Syeel, Stewart and .XIoss [1]. Their

two-equation model consists of a number density equation and a volume fraction

equation

_(3(0 : _ - '_(_ )'' (.5.1)

rift" 2
dt - + (5.2)

The quantity n is the soot particle number density (number of particles per m 3) and

ft, is the soot: volume fraction in m3_oot/m33_,. The density of soot, p,, is assumed to

be 1800 l,'g/m :3. The quantity-V0 is the Avogadro number. 6.0× 10.'6 . In equation .5.1

the term & corresponds to the process of soot nucleation. The second term on the

right hand side accounts for the decrease in particle number density due to coagula-

tion. Soot nucleation results in inception of new particles and hence, a corresponding

increase in the number density. The process of coagulation results in a decrease in

number density and hence the -re sign before .}. As |toted in [14], theoretically

the decrease in particle number density can be expected to occur according to the

Smoluchowski equation d,V/dt = -/CX-' where the rate constant /C depends on the

particle diameter. The coagulation term in equation .5.1 bears close resemblance to

the Smoluchowski equation. The coefficients &, .,_. ,, and _ are given by the following
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ext)ressions [1]:

* 9- .1 .

6, = Csp-7 _-._Fexp(-Ts/T)

"}'= C._pT½ XFexp(-T_/T)

= 144x&

(N u cleat ion )

(Coagula t ion )

(Surface Growth)

(Nucleation)

(5.:3)

In tile above, -_('F is the mole fraction of the l)arent fuel, i.e., methane in our case.

It can be shown that -VF = }FII;/I'I'F, where }'F is the fuel mass fraction. II." is the

average molecular weight of the mixture and I'VF is the molecular weight of the fuel.

The quantities Ta and T_ are activation temperatures and have the values -I6.1 x 103

K and 12.6× 10a K resl)ectively. The quantities 6 and 5 are related to soot particle

nucleation and ;) and "} are related to the processes of coagulation and surface growth

respectively. The values of the constants Cc,, C a and C,'_ are [I]

('._ = 6.54 × 104

C'5 = 1.3× 10 r

C:, = 0.1

[ma/ I,'g" /_-1/2,]

O .I

[n,a/@'/aA _.s]

(.5.4)

5.3 Examination of the Soot Model

In this section, an asymptoti.c mathematical examination of the Syed, Stewart and

Moss [1] model is carried out to enhance our understanding of the model. Writing

_l = n/.\o, q = _1/71o, { = t/to, "F = T/T_, fi = pip, and using the expressions for 6.

.), "} and 5 from .5.3 we can simplify equation .5.1 to get:
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1 -, 1 2 ,
where a = (XF=\'otoCap.2To_-e-L)/no and b = ((_3T. / noto)/.\o. The quantities a

and b are related to soot nucleation and particle coagulation, respectively. The quan-

tity no is a reference nunlber density. Similarly, writing .1_. = fv/Jk'o, equation 5.2

can be recast in the following form:

z z's _ --'- 1 1 _--Tad fr_ _ c_f _e_( T_r,,) fd O:. + dfi., _v e_ (. )
dt

(5.6)

where c = XFnot/3toC._,p.T.1/2e-gs/p,fvo Ua and d = 144Catop.2T.l/2XFe-Ta/p, ft.o .

The quantities c and d are respectively related to the processes of surface growth

and nucleation. \\'e now choose *0 such that c = l, which results in to =

1 I . I * I

(p_.fvoV_eT'.)/(.\l_no_C--,p_T.V-). This is done because we expect that tile increase

of ft, is mostly through surface growth, aim the balance (dfr/dt),,,surface growth

reflects the overall soot creation time scale. The quantities a. b and d are then evalu-

ated using the above value of t0. Next, the reference quantities p. and T,_ are chosen

in such a way that fi]" = 1. Equations (5.5) and (5.6) can now be written (after

dropping the bat's on various quantities) as

(b I 3 r. .1 ,
-- = aT-_¢-(z-_ -T'_) - bJ _-_l" (.5.7)
(It

subject to q(0) = 0 and

df_, _ T__e_t_.r_,_,,fv_l_ + dT-} (5.8)
dt

subject to fv(O) = O. Particle number density and volume fraction are both zero at

the initial time (_ = 0). Next, it is assumed that the system is isothermal, and the

nondimensional T = 1, i.e.. T, is tile constant temperature of the system. Two distinct

cases are studied in the following subsection depending on the level of saturation of

q.
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5.3.1 Rapid equilibration of q

Let us assume that the particle concentration 11ral)idly equilibrates to its asymptotic

value. This assmnption is of practical relevance and is supported in tile literature [1],

[12]. In that limit, dq/dt = 0 and by virtue of ecluation 5.7. '/ = x/'-(-@b) • If for

convenience we define the maximum value of 1/ as 1. then a = b. The equality of a

and b can be exploited to yield an expression for the characteristic number density

--:\'0170--__ 4_p .2XFc(__.),3

With 7"= 1 equation 5.7 becomes

"°" = .(1 -,i"), (.5.9)
dt

with q(0) = 0. The solution for equation 5.9 yields q = (e z_t-1)/(e2"+l). Examining

tile Iitnit [im,__x q, we conclude that a rapid equilibration of q to unity occurs when

a >2> O(1). The equilibration time is t__a -l. Similarly, equation 5.8 reduces to the

following when T = 1'

dfv " 1/3
dt - fr_q + d. (5.10)

with the initial condition fr(O) = O.

tion .5.10 becomes dfv/dt = fv } + d.

( = t/3v/d, this equation becolnes

When q rai)idly equilibrates to unity equa-

In terms of new variables 6 = ft'}/v_l and

82 d6 82"
(.5.11)



96

subject to _(0) = O.

Consequently. _ = tan0 - 0 and. in t ern_s of original variables, we have

The substitution (_ = tan0 gives tan2OdO = d_, with 0(0) = 0.

1 1

t= 3v_[ - tan-'(--_l ) ]. (.5.1:2)

Solution of the above transcendental equation constitutes the first prot)lem under

consideration. \\:e note that in the limit when d << O(1) the second term in the

above equation is negligible and we obtain the well-known result ft" "" (*/a) a. In the

more general situation, a rapid equilibration of _/ is ,tot assumed and equation .5.10

is solved using the result _/ = ( e2=t - 1)/(e'-" + 1). In the following, we carry out a

discussion and comparison of the results for the two problems.

The numerical solution of equation .5.10 was obtained using the .VAG fortran

library routine DO2PCF. This routine uses the Runge-I(utta method.

Figure .5.1 shows two sets of results for the soot volume fraction profiles. In the

first case. d was set equal to 0..5, since d is the only' i)arameter value which needs

to be prescribed for the solution of equation .5.10. For d = 0..5 the saturated '/

assumption (equation .5.12) gives an fv I)rofile which is quite similar to the more

general unsaturated case. For large times, however, the two curves tend to diverge,

albeit at a rather slow rate.

\\'hen d = 0.00.5 the curves for saturated and unsaturated cases are virtually

indistinguishable. It can be recalled at this point that d is the nucleation term in the

soot volume fraction equation .5.10 and for a small value of d. the soot profile saturates

fairly quickly. Hence, in this case, the assumption of,/rapidly saturating to the value

of unity is quite good. Also. when d = 0..5 the amount of soot generated is nluch more

compared to the d = 0.00.5 case. This is because a much stronger nucleation term

results in a higher soot volume fractions. Also plotted in both figures is the function

(t/a) 3. As mentioned before, when d << O(1), it is expected that ft, ,-- (t/3) 3.
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When d = 0.00.5 we see that tile numerical solutions are indeed comparable to the

(t/a) a curve. However, for d = 0..5, the (t/a) a curve is significantly different from the

numerical solutions.

5.4 Formulation of the Full Problem

The problem geometry and boundary conditions are the same as described in Chap-

ter 4 and illustrated in Figure 4.1. The soot volume fraction equation has the following

for IYl:

P(.ft't + (u + ur)ft'_) = (pD_ft.'_)_ + ti'_ + (% - d,o_. (5.13)

lea equation 5.13 _b_, d.,3 and d,o¢ are, respectively, the soot nucleation, growth and

oxidation rates in units of I_g/mas, uz is a thermophoretic velocity terln, which is

neglected in the present analysis. Equation .5.13 contains a soot diffusivity, D,, which

is taken to be 1_ of the gas diffusivity [12]. The physical coordinate of our problem

is x with 0<x<L. The boundary conditions are fv(.r = 0) = 0 and fv(.r = L) = 0.

First we transform the equations to a (Z,t) system of coordinates, where Z =

.r L
1 -.s/.So with s = fopd.r and .So = fopd.r. As a result the soot volume fraction

equation takes the following form:

(poUo + puT) PaDs 1
J\', - fvz - free + -(tb,_ + tL'j - tbo_). (.5.1-1)

So So2 p

,Xow, we define [ = t/t_l and fv = fv/fvo, where ft'0 is a suitably chosen reference

value. Consequently, the volume fraction equation becomes

0.]:v (1 + li_r) ofv D,o 02fv

0t7 go OZ . uoLg_ OZ"
+ (A/_ +/_=j - ('/=o_). (.5.1.5)

Here.._ = }')F_ref/fVo_r," [_ = }')F_rel/fVot9 and (7' = }bo_,_j/fvoeo,> The
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quantities tn, tg and toe are characteristic time scales for the processes of soot nu-

cleation, growth and oxidation respectively and are given by t,, = po]"vF/ti',.r_l.

t:j = po]"FF/ti.'9.re f and to._ = PokoO/&o_,r¢:. The quantity tr_/ is the characteristic

flow time. given by tr_/= L/_to, and _i'n,re/, _-i'j,re/ and 6'o_.,_/ are reference values for

normalizing nucleation, growth and oxidation terms, respectively. \Ve have also used

-<o = So/(poL). The nondimensional thermophoretic term is denoted by rhT = fiuT/_o.

The soot diffusivity at the reference condition is D_0. The rate terms _,_, /_ and /:o_.

are resl)ectively for soot nucleation, growth and oxidation and F,_ = tt,,_//_, where

t_,,_ = _i'_,/t'c,,:_i. The growth rate term Fj and the oxidation rate term/:o_ are defined

similarly. Next, we assume that the temperature and species t)rofiles are for the in-

finite reaction rate (IRR) case. which implies that no fuel exists on the oxidizer side

and no oxidizer exists on the fuel side. In the absence of oxidizer on the fuel side,

the source term for oxidation in the soot volume fraction equation can be discarded.

Further. on neglecting tile thermophoretic effect, the soot volume fraction equation

reduces to

Ofv 10fv D_ o 02fi .
- -+-(:]/_ +/_j) (.5.16)

O{ .<-oOZ _10L.% OZ'-

At this stage, the expressions for ,51 and /} are stilt to be determined. The quan-

tities ,_ and /3 depend on the time scales In and ta respectively, which, in turn.

depend on the choices of d,n._: and tt:V.re/. By comparing equation 5.13 with the

volume fraction equation (eciuation .5.1) of the Syed. Stewart and .Moss model [i],

we can write ti,,_ = p6/p_ and ti:g = (p/p,),5.(p_fv)2/an_/a. On substituting the

expression for _ using equation .5.3 we get t/:,, = 144CapaTl/2XFe-Ta/r. Hence

tL',,._i = 144Cc_poaTfaXFoe-T_/T: can be chosen as a reference for the soot nucle-

ation term. A reference value of the soot growth rate term can now be written as
7"a

d'3.,_ / = (po/p,)%,_ol/a(p_fvo) ''/a, with % = C_,poT:_/'-XFo e -r:. Tile quantities with

suffixes 0 are at the reference condition. On obtaining _t',_,,_I an expression can now
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be written for l= and consequently .4 can be expressed conveniently as

144po2Cc_T/' - -__.\ Foe rS.4 = (i__)
Uo (PJvo)

Similarly, since we have obtained the expression for tL'g,r_/, we can now write an

expression for tu and hence for 1_.

Ta,
i . l

= (L)C_poTfV-.k, Foe rs no. S
1

"o

\Ve now focus our attention on the nondimensional rate terms in equation 5.16, viz.. fi_

and fla" As mentioned before, fi_ = w,_/fi and t_,= = ti,_/ti.',_.,_f. Using the expressions

for 5.,,_ and d,,_,_l we can obtain the following expression for fi_"

(1 -- a) 2 -._(i-_t
_ = _ !JFe_-_'-'_. (5.19)

(1-o(1 - r))-_

The quantity ,3a = Ta(Ts -To)ITs "2 and o, as before, is given by o = 1 - TolT i. In

tile above we have also utilized the relation between tenlperature and density, i.e..

fi = (1 - o)/(1 - o(1 - r)), by virtue of equation a.1o.

An exl)ression can also be found for the rate quantity/_3 using the expressions for

d,j and t'Va,re/. The expression for _a takes the following form:

2
4 7 -_

(i - a) ,aF fc,
fi3 = (1 - o(1 - "r))} e

At tills stage we notice that the expression for/_ in equation .5.18 invoh'es an unknown

reference number density, no. In order to evaluate that. the soot particle number

density equation has to be examined

p(rh + (u + ur)q,:) = (pD_q_)_. + _.'n"- d,'_, (5.21)
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where q = n/.\o. The _."s in the above are the rates of production of particle ntunber

density in a cubic meter multiplied by the density p and hence have the units of

/,.g/( ms.s ). By writing 0 = q/'lo, { = t/t,_/ and transforlning the equation to the

mass-based Z coordinate, we can write the normalized number density equation in

the following form:

( i + rhr) _ D_0 _.'=&.,...: _.'._'....:

q_ 5_o _lz - , _.,Ozz + t,_l t,_.I. (.5.22)U0L.S6 fi Poqo fi Poqo

We notice that poqo/tb,_._i has the unit of time and thus qualifies as a characteristic

nucleation time scale. Hence (Po,lo/ti',_,,_/)/t,_/ is a ratio of a characteristic nucleation

time scale and the characteristic flow time. Let us call the above ratio g. \Ve then

multiply equation 5.22 by g to obtain

e(O_ .so Oz) = _---7__,qzz + (.5.2:])

When nucleation is rapid g---+0 and the quantities muhiplied by g become negligible

and equation .5.23 essentially reduces to a balance of the nucleation and coagulation

terms, and the number density reaches a steady or saturated value, exactly as the

simplified model in section ,5.:3.1. \\'e get ,_'n/fi - _,'_/fi£' ....//£' ..../ and hence £', =

L'¢. At this stage we compare (5.21) with equation .5.2 of the Syed. Stewart and

Moss model [1] and write d:;, = p& = capaT'/2Xve -To/r and 5,'_ = p,3(n/.\o) 2 =

pCaT_/'-(,_/3o) 2. The equality 5,'_ = ,2'¢ is then utilized to obtain an expression for

the reference number density, no = po._o(C's/ca)l/"XFot/"e-rj2T_. The reference

fuel mole fraction XFo equals }'Fr({"/ll'V. Using the above no. the quantity /} can

be readih" determined.
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5.5 Numerical Solution

Equation 5.16 is numerically solved for a range of parameter values to obtain a so-

lution for the soot volume fraction. The equation is discretized by finite difference

method and tile source terms are linearized using Newton's method. Tile steady

state solution is reached when the sum of normalized residuals between successive

time steps becomes smaller than 1 x l0 -6. The initial soot volume fraction value was

assumed to be zero everywhere in the domain. A typical solution is shown in Fig-

ure 5.2. In order to further investigate the importance of various terms in the soot
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Figure .5.2. Soot Volume Fraction Profile
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volumefraction equation, the convection,diffusion, soot nucleationandgrowth terms

are all plotted in Figure .5.:3.The abscissaof the plot is (Z - Zf), where Zf is the
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Figure 5.:3. The structure of the soot volume fraction profile

location of the Burke-Schumann flame. We note that close to Z.r, there is a balance

between the convection ((1/.io)clfc/dZ) and diffusion ((D_o/ -, 2-u0L.s 6)d fv/clZ 2 ) terms.

However, the diffusion term is quite small at an incremental distance from ZI, and for

the most part of the soot layer, the essential balance is between the convection term

and the growth (/_/;s) term. The nucleation term (,517,_) is very small in comparison

to the other terms.
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The above insight about the fundamental structure of ttle soot laver is utilized in

the development of an analytical expression for tile soot voltune fraction profile.

5.6 Analytical Approximation

As noted in the previous section, tile primary balance for the soot volume fraction is

between the convection and the growth terms, except very near Zf. Hence. we assert

that equation 5.16 can be further reduced to

1 d.f_- _ BG- (.5.24)
,_o dZ

in the steady state limit. The quantity _' is a constant, and i:s is the nondimensional

soot growth term. derived froth the Sved. Stewart and .Moss model, is given by equa-

tion .5.20. Next, we relate dZ to dr in order to determinea solution for fv(r). The

fuel side (ZI<_Z<_I) Burke-Schumann temperature distribution is used for tile above

purpose

e-1/c __ c-Z/c

T = (.5.2.5)
e-1/c _ e-Zl/c'

where c = o0/(u0Ld0) and ZI, the ideal flame location, is given by Z/ =

cln((1 + o)/o). A detailed analysis of tile infinite reaction rate situation is included

in section 4.5 of chapter 4. The fuel mass fraction profile is

gF = 1 - e-(z-z_)/_ (.5.26)

In terms of r. ffF can be written as

Uu= a(1 - r), (.5.2T)
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where a = l - e -(1-zj)/c. After a little algebraic manil)ulation, dZ can be written in

terms of dr as dZ = -[(ac)/(l - a(1 - r))]dr. By substituting the expression for .gF

in terms of r and dZ in terms of dr. equation .5.24 is transformed into

- _a)( ,-,
1 (1-r)v/6e -(&+ _ 1.... -,-_,

[t)._M1 &. (.5.2s)(1 - a(1 - T))5/6(i -- a(1 - r))

At this stage we observe that in order to integrate the soot volume fraction profile, we

need to impose suitable boundary conditions. Before we made any approximations,

the boundary conditions fo, the soot volume fraction were fv = 0 at Z = 0 and at

Z = 1. }Iowever. the soot diffusion term has been dropt)ed, which was the only second

orde," ternl in equation .5.16. The resulting al)proximate equation is first order, and

only one boundary condition can be used. \\'e use the condition that the soot volume

fi'action is zero at the fuel wall, i.e., at Z = 1. \Ve expect to obtain a soot volume

fraction profile which is located preferentially on the fuel side of the diffusion flame.

It has to be kept in mind also that in order to substitute for dZ in terms of dr, the

temperature profile on the fuel side was used, and hence, any soot volume fraction

which we may see on the oxidizer side is actually non-existent.

\Ve now iiReg,'ate equation .5.28 subject to the boundary condition that ft" = 0

when r = 0. From equation .5.28 we find that tile important integral to evaluate is

_" (l r)rl6e -(j'+_)¢ I--

_0 -- 6 _ 1 -"*_i 1 --r) '/' = i -o(1- (.5.29)

expression fox" I1:

1 tZ7/66( l-a,,i11 = (1 -- au)s/6(1 -- au) du (.5.30)

The integral in equation 5.30 could not be analytically evaluated. [n order to simplify

matters, the exponents 7/6 and .5/6 on u and (I - au) respectively were replaced by

Bv substituting , = 1 - r and writing 3-,,_ = -3+ + _ we arrive at the following
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1. Let the modified integral be called 1.2. Then. 1.2 happens to be integrable ana-

lytically. All analytical result was obtained using the commercial code ,I/.4PLE. and

the result so obtained was verified using another comnlercial code..ll,4 THE.IIA TI('.4.

The following expression is obtained for 1.2:

I., = (,_+ s+c + D)/(.o(_ - _,)), (5.31)

where

,s-,__ 3-, ,_( _ - 1 )

A = -aeo-,Ei(1,(__t)(___l)

B = (a- a)e--g-Ei(1, _)-_""

_-,a -3-,a

C = -(a- a)e--a-Ei(1, (_(__,.)__>)

_-"_ - 3-, ,_

D = aeo--Ei(1, (_(_--7y-1)o),

(5.32)

where Ei(1,,r) is a notation for the exponential integral. The indexed family of

exponential integrals. Ei(n,z) where n is a non-negative integer, is defined as

Ei(t,,,r) = f':_'e-_'t/t"dt for real, positive ,r.

Integral 1_, thus calculated, is compared with the numerical solution. Also.

Laplace's method was used as an alternative method to approximately evaluate the

integral It. The following section briefly describes the analysis.

5.7 Integral Evaluation Using Laplace's Method

The integral in equation 5.30 can be approximately evaluated using Laplace's method

and can be written as It = fl_,g(u)el(_)du where 9(u) = (1 - au)-5/6(1 - au) -I and

f(u) = -&ou/(1 - au) + lnu 7/6.

Let us next consider the integral I(.r) = fb,_e"h(Of(t)dt, where h(t) is real and

.r is positive and large. Assume that the integral exists, i.e., it has a finite value.
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According to Laplace, only the immediate neighborhood of tile t)oint corresponding

to the maximum value of h(t) in [a, b] contributes to the asymptotic expansion of I(,r).

Similarly. for expansion of the integral Ii the value of u for which f(u) is a maxin-mm

is sought first. Let us denote the value as u'. Equating clJ'/d_l to 0 and evaluating

de,f/du '- to ascertain that f attains a maximum at ,'_, we find that ," = 7/(63._).

Next the integral 11 is expanded in the following form:

I1 = [9(.') + (. - .')o'(.') + ...]#:='l+:_-='>:'t"'l+_:":=l+d.
l-r

(5.:33)

By using the result J"(u*) = 0 and evaluating the different derivatives of .f(.) and

g(u) at u" and assuming a large .3-,o the above integral can be easily evaluated. After

some algebraic manipulation and neglecting higher order terms in the expansion of

the integral, we obtain the following simplified result for the integral I1:

0.71:36 .. /3-
(.-3.:_4)

where T" is the value of nondimensional temperature corresponding to the value u'.

i.e.. r" = 1 - u'. Hence. using equation .-3.28 and equation 5.34 we can write the

following expression for' the soot volume fraction:

, 0.2379
f] = [/_.-_o(i -- a)4/3ala/6c]-7---TA-3erfc[_/_-3.,o(7" -- r)].

J.,o0 v,
(5.35)

5.8 Comparison of Results

Figure 5.-1 shows a comparison of the numerical solution and the analytical solutions

for the soot volume fraction profiles. In Figure 5.4 "'Method 1"" refers to the solution

using exponential integrals and "Method 2" refers to the solution using Laplace's

method. It is seen that both the methods result in soot profiles which have substan-
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tiallv different maxinmm values compared to tile numerical solution. This happens

because the soot profile maximun_ is close to the flame location, Z.t'. where tile effect

of soot diffusion is prominent, as observed in the section 5.5. Since the diffusion term

was neglected for the analytical sohttion, the disagreement between the numerical and

analytical solutions is quite COl_spicuous near Zf. However, consistent with the dis-

cussion in the previous section, a much better agreement is obtained near the trailing

edge of tile soot laver, i.e., further from Z I. The agreement between the analytical

and numerical solutions is excellent in that region. Consequently, the thickness of tile

soot laver can now be analytically predicted fairly accurately.

5.9 Influence of soot radiation

In this section, we shift our attention to the effect of radiation on a diffusion flame

established between a fuel and an oxidizer wall, with a convective fuel flow from

tile fuel wa,ll. This configuration is the same as in Chal)ter 4. However. the radiation

term used here is different. A soot volume fraction profile, generated using tile method

described in section 5.5 was used to formulate a radiative loss term.

5.9.1 Background

Understanding of soot radiation and its proper incorporation in the model are ex-

tremely important for the current research. The radiation from a flame depends on

the soot profile, which depends on the particular fuel used, the temperature profile

and the species profiles. In this section we will assume a soot volume fraction based on

the numerical solution of the soot volume fraction equation described in section .5.5.

A radiation term is formulated based on the "optically thin" assumption for the soot

radiation. ,-\ review of the existing literature pertaining to soot radiation is included

in section 2..5 of chapter 2.
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5.9.2 Formulation of the Radiation term

For a sooty flame the major part of the radiation is a continuunl radiation that is

simpler to model than the radiation due to water and carbon dioxide, lot' soot volume

fractions > 10 -r, soot radiation should be dominant judging by the calculations of

Grosshandler and Modak [11]. For small flames and moderate soot loadings with

which we are dealing, the optically thin limit is appropriate. In this limit

dq.___RR= 4apcr(T4 _ To4) (5.36)
d.F

where, ap is the Planck ._[ean absorption coefficient and a is the Stefan-Bohzmann

constant which has a value of 5.6696x 10 -8 IV�re"-/( 4. The quantity ap is given by

fO:_ ,_(,\, A" )e_(,\ )d,\

at' = fo_ eb(,\ )d,\
(5.37)

Kennedy et al. [31] used _ = 7ft'/,\, where ,v is the absorption coefficient and ,\ is

the wavelength of radiation. For a blackbody the spectral distribution of hemispher-

ical einissive l)ower in a vacuum is given as a function of absolute temi)erature and

wavelength by the following expression:

2:Cl

_('\)- ,\_[_:_- 1] (._:3s)

This is known as Planck's spectral distribution of emi.,:sice power. The constant ('l

has the value 0.59544× l0 -16 IIm -_and C2 = 1.4388× 10-" inK. [Tsing the expression

for eb in equation 5.37 and substituting y = C2/(,\T), the following expression is

obtained for ap:

t4r, JUC..',T [_ ,a_dv (._.39)
% - _rC2" Jo e-7 -- ]"
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The integral fo":'y4dg/(e .v - 1) is the fourth order Riemann zeta function and whose

value is 24.8862. Hence. a e = l$64.32f_.T.

By transforming equation 5.36 to tile Z coordinate and using (i,_ =

qnlPouoC'p(Tf - To), r = (T- T0)/(T z - To)./5 =PlPo and .go = sol(poL) we obtain

1 dglR 4a/rLTf a

go dZ pCp(Tf - To)uo
[(1 - _(1 - T))_'- (1 - _)_]. (_.4o)

By using equation 3.16 for the relationship between temt)erature and density we can

further reduce the exi)ression for (1/go)(d_tR/dZ) and write

t dqR _ -rRfv(1 - _(1 - T))2((1 - a(1 - T))" - (1 - a):).
_o dZ

(_.41)

where FR is given t)y

4378.21Ct L fvoTI 6

FR = poCpTo(T I - To)uoC.2 s' (5.42)

The energy equation for this situation is the same as equation -1.1 of chapter 4. In

tile Z coordinate the energy equation becomes

1 ao 1 dc_R

7"[= --7 Z + "-------77__TZZ+ OFDF r + "SOdZ•So uoL.s 6 ----. (5.43)

where we have used OR = qn/qn,,_.f and QF = QFYFF/C'p(TI -- To) = (1 + o). The

reference quantity qR,__f was _:hosen to be PouoCp(Tf - To). Hence, the radiative loss

term is given by 1/go(dgtR/dZ). \Ve note that we have already derived an expression

for the loss term in equation 5.41. The energy equation can now be solved numeri-

cally using a prescribed soot volume fraction profile in conjunction with the coupled

oxidizer and fuel mass fraction equations. The species equations are tile same as

equations 4.5 and 4.6 of chapter 4.
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5.9.3 Results

Figure 5.5 shows'a plot of the temperature and species profiles of a flame with a

radiative energy loss modeled as in the previous section. The prescribed soot vohune

fraction profile is also shown on the same plot. Next, tile structure of tile flame is

1.0

Yoo=0.6 YFF=0.8 u0L/%=6.45
Prescribed fv profile

0.2

0.2 0.4 0.6 0.8 1.0

Z

Figure 5..5. r, go and y_- profiles for" prescribed soot volume fraction.

shown in Figure 5.6. The convection, diffusion and reaction terms of the nondimen-

sional energy equation are plotted along with the radiative loss term. This figure can

be compared with the structure of a similar flame with a .sech _- type radiative loss
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term. as illustrated in Figure4.11 of Chapter 4. The similarity in tile structure of

the two flames is quite striking and suggests that the simple .secf['- type radiative loss

profile is a fairly good at)i)roximation which is capable of revealing interesting aspects

of the diffusion flame behavior when subject to radiative heat loss.

Yoo=0.6 Y_F=0.8 uoL/%=6.45
Prescribed fv profile
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Figure 5.6. Structure of the flame. Note the radiative loss term.
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5.10 Conclusions

A simplified analysis of the soot profile was carried out in this chapter using the Syed,

Stewart and .Moss [1] model. Burke-Schunlann temt)erature and species profiles were

assumed and the soot volume fraction equation was solved numerically for a diffusion

flame established between an oxidizer and a fuel wall. Oxygen diffused out of the

oxidizer wall and fuel was released from the fuel wall by means of both diffusion and

convection. It was observed that for the soot volume fraction equation the primary

ba[ance was 1)etween the processes of soot convection and soot growth. Equating the

expressions for these two quantities resulted in an analytical exl)ression for the soot

vo[ume fraction in integral form. The integral was evaluated iising two methods: the

first one involving exponential integrals and the other using Lap[ace's method. The

analytical profiles matched well with the numerical solution except very near the flame

location Zf. (-_'lose to the Burke-Schumann flame location, the soot diffusion term is

strong and there the essential balance is between the soot convection and the soot

diffusion, the soot growth term being relatively much smaller, l-|owever, the thin zone

may be an artifice of the IRR al)proximation itself. The analytical expressions, which

were derived on the basis of the soot conreelion ,,, .soot growth balance, do not predict

the soot volume fraction values accurately near the infinite reaction rate (IRR) flame

location. However. for most part of the soot laver the soot volume fraction profile is

predicted well by the analytical formulae. Consequently, the soot laver thickness carl

also be accurately predicted using analytical methods.

A soot radiation term was also developed on the assumption of the optically thin

limit for' the radiation. A soot volume fraction profile obtained from the numerical

solution was used in the expression for the soot radiation term. Tile radiation term

was then includecl ill all energy equation as a sink term and the ecluation was solved

simultaimouslv with the coupled fuel and oxidizer species equations. The results
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revealedthat the flamestructure closelyresemblesthe structure of the flamesstudied

in chai)ter { for .seth2heat lossprofiles. Sucha resemblanceindicatesthat the simple

._ech2 heat lossptofile examinedin chaI)ters:3and -I is capableof revealinginteresting

details of tile flamestructure.



CHAPTER 6

Investigation of the Comprehensive

Soot Radiation Problem

In the previous chapters we have analyzed with simplified models of soot profile

and radiation loss effects. In the current chapter we deal with the comt)lex i)roblem

of soot radiation and diffusion flame interaction using a soot model chosen fiom

the available literature. Here we use the two equation model of Syed. Stewart and

Nloss [1] for the soot volume fraction and the soot number density. Their model

has been develoi)ed based on exl)eriments with different fuels and for a range of

flow conditions: we have examined this model analytically in chapter 5. A two-

dimensional \Volfllard-Parker burner was used for their experiments in order to fix

various undetermined constants. This model has been used by Syed el al. [1] for

both laminar and turbulent flalnepredictions. Recently, Ku el al. [.51] have used this

model for the simulation of microgravity turbulent diffusion flames and the agreement

of the model with experiments was very good. In the following sections, we first

describe the conservation equations and then formulate the final, non-dimensional

equations including the Syed, Stewart and Moss [i] soot model. Then. we discuss

some interesting results ol)tained from the numerical solutions of the conservation

equations. Although our results indicate a variety of interesting behaviors, a radiative
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extinction was not observed, suggesting to us that a steady state extinction is tmlikelv.

6.1 Formulation

There are six conservation equations of importance in our problen_, viz.. the mass. the

enet'gy, the oxidizer and fuel species, the soot volume fraction and tile soot ntunber

density equations. At this stage we also note that oil an overall basis, we can account

for three principal chemical reactions, as noted below

fuel + air ---+ p,'oduct._

fuel ---+ .soot

_oot + oxggen ---+ products

It has to be kept in mind, however, that each of the above overall reactions is very

complex in reality" and consists of hundreds, and may be even thousands of steps and

intermediate products.

The continuity equation is

t)p 8p,

8-7+ 8,--7.= o (G.1)

At steady state. ?)p_/?).z" = 0 and hence, pu = potzo, since tile mass flow rate is

lJ_ = potz O. Hence.

= .o/,a (6.2)

The energy equation has three source terms accounting for the heat generation dale

to the primary chemical reaction, the radiative heat loss and the heat generation due

to soot oxidation. The energy equation is

dq_
flCp(7"t + t/7",r) = (,,\T.r).r Jr- QFti'F -- (13----7 -Jr- Qo.rt'co.r. (6.:})
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1
\Ve assume that the reaction (' + jO_ = CO + Q_ takes place for soot oxidation.

with Qo_. being the heat release. The heat re[ease in the above oxidation process is

5:3 kCal/mole of 02 [52]. [53]. Hence, Qo= = 9246.29 kJ/kg of C.

Tile oxidizer equation has a depletiou term due to tile primary reaction and an-

other one accounting for soot oxidation, viz..

4

6
(6.4)

\Ve also note that ['or every kg of C' 4/:] kg of 02 is required due to the oxidation

reaction for soot i)articles, hence the coefficient 4/3 for the oxidation rate tZ'o_,in the

above equation.

The fuel lnass fraction equation includes depletion terms due to the I)rimarv chem-

ical reaction as well as the conversion to soot particles,

-1.

pCp(}zt + = --  L'F-- 3. (6..5)

For the conversion of fuel to soot. we asstlll!e a very silni)le overall reaction of the forlll

C'H4_C + 2H2. If the soot growth rate is tL'_ kg of C/m3,_, then the depletion rate

of the fuel due to soot growth is (4/3)_/,j k9 of fuel/m3.s, since 1 k 9 of C is produced

from 4/3 kg of fuel, according to the above chemical reaction.

Finally, we have two conservation equations ['or the soot volume fraction and the

soot [)article number density, viz.,

P(fvt + (_l + UT)./'t'_) = (pD_fv_:)_: + _'c,_+ ti:3 - tt'o._.. (6.6)

aFl(l

(6.;)
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In the above, d,,_. tL,g and d'o_. are respectively the soot nucleation, growth and ox-

idation rates in units of kg/mas. The quantities Z,'_ and d.'_ are the nucleation and

coagulation rates in units of (kg/,ns)(nu,nber/mas). The soot volume fraction in

units of m3_oot/,n33,_, is J\. and ,! is the number density of soot particles normalized

bv Avogadro's number (i\o = 6.0×1026), i.e., '/= n/:\o. The thermophoretic velocity

term is denoted by ur. A discussion of thermophoresis is included in section 6.1.1.

The soot diffusivity, D_. is usually quite small and was assumed to be 1% of the gas

diffusivity [12].

As in the preceding chapters we transform the equations to a (Z,I) svstem of

g.

coordinates, where Z = 1-S/So with s = foad.r and So = faopd.r. As a result, our

conservation equations take the following form"

energy:

1 p dqn7; P°_'°l'z - (p'\) Tzz + (CgF_,_:+ ---- + Oo__'o_),
.So C'p.s02 _ .So dZ

6.8)

Oxidizer mass fraction:

p"-DoPoUo 1
_b, _oz - _bzz - -:(_,d,F + ¼d,o_-). (6.9)

•so .So2 p .)

Fuel mass fraction:

_ p2DFv.}'Ft -- P°U-----E°YFz .-5-7 "FZZ -- 1-(d'F + ti'j). (6.10)
•So So p

Soot volume fraction:

't -- (PoUo + pu_) fvz._ p2Ds
'-q0 802

1(fv zz + d,,_ + tL'j - ti,o.,.). (6.11 )
P
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Soot number density:

(pOt/0 q- pUT) p2Ds 1
qt qz qzz + -(,5",_ "' •- - , - _) (6.12)

_qo _o" /9

In the above, we have assumed the quantities p,\, p2D o. p2D F and p'-D_ to be con-

stant. Next. we nondimensionalize the above equations. \Ve use T = (T - To)/(T/-

To), _o = }o/}oo, YF = }7/}'_'S and /v = fv/J'vo, where fv0 is a suitably chosen

reference vahle. Also. we define a set of characteristic tilnes for the different chem-

ical processes. The characteristic chemical time for the I)rimary reaction is denoted

by lch__,_ = Po}Fr/tbF._el. The quantities tn = pO}:FF/d',_se / and ts = p0}'FF/d,,sse/

are. respectively, tile characteristic times for the processes of soot nucleation and

soot growth. The characteristic time scale for soot oxidation is to,: = po}oo/d'or._/.

Tile quantity ,,5 is the nondimensional density and tile following terius are also used:

FF = [;'F/fi, F,_= t'_'_/D, /:a = t_'j//5 aim Fo,: = d'o,:/D. Consequei_tly, the energy

equat ion becomes

Or t ()r O0 O2"r 1 CICtR

.goOZ- uoL.so20Z 2 + 0_-OF/:_-+ % d-_- + Oo/Do_.Fo,. (6.1:3)

where qn is given by qn/poUod'pAT. The radiation term (1/go)(dc]R/dZ)is modeled

exaeth as in section .5.9.2 of chapter .5 and is given by ecluation .5.-tl. The quantity g0

equals .s/(poL) and _o_ is a rertio of the characteristic flow time aim the characteristic

oxidation time. i.e., l_//lo,:, where lreI = L/uo. The oxidizer mass fraction equation

becomes

Oyo 1 ?)go ao 0290 4_D ,
0[- .% OZ - u.oLg_ OZ 2 (ODFFF + 7.3 o._%_) (6.14)

('orrespondingly the fuel equation takes tile following shape:

g)[ .% OZ - uoL._ OZ 2 _FFF + 7.3 _ F3 (6.15)
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The volume fraction equation looks like the following:

of,. (1 + ,_,:v)a.t,. &0 0:j\.

O[ _o OZ - .oLd% OZ2
- C,.o_.) (6.16)

In the above, we have assunled o0 = Doo = Dfo and ,4 = }kFt'r_f/ft.ot,_, {3 =

}"Fvt,_f/ft'ot3 and C' = }Oot,_f/.l'Voto,:. The quantity '_T is given by fiur/Uo. For

the soot number density, following the analysis in section 5.4 of chapter 5 we can

write £'_ = 5,,_,, i.e.. the soot nun]ber density equation rapidly saturates and at steady

state the soot nucleation and coagulation rates are equal.

We will now focus our attention on the different rate expressions. The quantity

t'CF is the rate of primary chemical reaction, and has tile form p.-t)o}}:exp(-E/RY),

where A is the pre-exponential exponent and E is the activation energy.

,-ks mentioned before, for the processes of soot nucleation, growth and coagulation

we have used the Syed, Stewart and ._loss [1] model. A detailed description of the

model can be found in section 5. 9 of chapter 5 and the expressions tot Fn. /_,aare as

formulated in section .5.4 and are respectively given by equations .5.19 and .5.20. The

soot oxidation rate term, Fo_. was tnodeled using the semi-empirical formula of .Nagle

and Strickland-Constable [2].

6.1.1 The Influence of Thermophoresis

Thermol>}loresis is the phenomenon wherein small particles, when suspended in a gas

in which there exists a temperature gradient VT. experience a force in the direction

opposite to that of VT [54]. A common example of thermophoresis is the blackening

of the glass globe of a kerosene lantern: tile temperature gradient established between

the flame and the globe drives the carbon particles produced in the coinbustion process

towarcls the globe, where they deposit. Thermophoresis is of practical importance in

many industrial applications, such as thermal precipitators.
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The temperaturegradientsin our flamesarequite steet) andhence,anexamination

of the effectof thern_ophoresisis duly warranted. Santoro et al. [30] observes that

soot particles can usually be treated as being in the free molecular limit for flame

conditions, i. e., the particle diameter is much smaller than the mean free path of

the gas. Under such conditions, the thermophoretic velocity, ur can be written as

tZf = -(3/[-I(1 + _A/S)I)(_,/T)VT, where _, is the kinematic viscosity of the gas

and A is the accommodation coefficient which usually is taken to be 0.9 or 1.0 [30].

Assuming ,4 = 0.9 we obtain the following expression for the thermophoretic velocity

1/

ur = -0.55_VT

of the gas:

(6.17)

The - ve sign in the above indicates that the therinol)horetic velocity is in the di-

rection of decreasing temperature. The thermophoretic velocity component is simply

added to the convective flow velocity, as in equations 6.6 and 6.7.

Next, we carry out the necessary coordinate transformation and express the quan-

tity rT_T= DUT/uO as in e(tuation 6.16.

0.551d 1 - o) 2 dr

= [t - o(1 -

A discussion of the influence of thermophoresis pertaining to this research problem is

included in section 6.4.

6.2 Parameter Values

The paramete," values assumed here are the same as in chapters :} and 4. However_ the

value of the pre-exponential factor, ,4, was taken from the work of Chell et al. [55].

For the quantity ,4/p they used a value of 5.2x1013 cma/9 m - s. We assumed a

reference value of p = 0.0012 gm/cm 3 and hence our A = 1.9.5 × 10 9 1/.s. The adiabatic
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flame temperature correlation used in chapter 3 was also used in this chapter. Tile

length of the domain, /, = 0.02 m and as before, the thermal diffusivitv at the

reference condition, a0 = 1.74×10 -4 m2/.s [.50]. The kinematic viscosity of the gas

phase is assumed to be u = 8.68x 10 -'_ m2/.s.

6.3 Numerical Solution

The nondimensional temperatnre, species and soot volume fraction equations were

numerically integrated using the finite difference method. The non linear source terms

were linearized using Newton's method. The Burke-Schumann profiles for tempera-

ture and species were used as initial profiles. The soot volume fraction was assumed

to be zero everywhere at the initial time. The transient conservation equations were

integrated to steady state.

6.4 Results and Discussion

Figure 6. i illustrates the teml)erature, species and soot volume fraction profiles in the

Z coordinate when Iroo = 0.6, }}'F = 0.7 and uoL/ao = 3.23. which corresponds to

u0 = 0.02 m/s. The nondimensional temperature profile indicates a substantial effect

of radiative losses. An examination of the species profiles reveals that there is no

significant diffusion of oxidizer and fuel to the opposite sides of the flame. The soot

volume fraction profile resides primarily on the fuel side of the flame, in accordance

with experimeiltal observations [30]. Note that there is a slight change of slope of the

temperature profile in the radiative loss zone.

The nondimensional temperature profile indicates a significant effect of radiative

losses. The species profiles indicate that there is no significant diffusion of oxidizer

and fuel to the opposite sides of the flame. The soot volume fraction profile resides
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Figure 6.1. Temperature, species and soot volume fraction profiles.
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primarily on the fuel side of the flame, in accordance with ext)et'imental observa-

tions [:10].

The profiles are depicted again in the physical coordinate in Figure 6.2 in order to

provide an idea of the magnitudes of various quantities. The fuel wall is at .r = 0 mm

and the oxidizer wall is at z = 20 ram. The maximum temperature is about 174,5 K

which occurs at ,r = 15.5.5 ram. The soot volume fraction peak is at 14.31 ram. \Ve

also observe that soot exists between apl)roximately ,r = 10 mm and ,r = 16 ram.

1.25

Yoo=0.6 Yvv=0.7 u0L/ct,0=3.23

1.00

0.75

0.50

0.25

0.00
0.0

T(K)/2000 _

.... Yo

..... YF

.... i

/ I

4.0 8.0 12.0 16.0 20.0

x(mm)

Figure 6.2. TemI)erature, species and soot volume fraction profiles in the physical
coordinate..r.

\\,e examine the temperature profile more closely in Figure 6.:1. The teml)erature

profiles for the infinite reaction rate (IRR) situation and the profile for finite rate

chemistry in the absence of radiation are also plotted in the same figure. It is clear
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that the effect of radiative Lossis quite pronouncedand the peak nondimensional

temperature drops from about 0.8 to 0..59. The decreaseis approxin_ately510 N.

Another interesting aspect to be noticed is tile slope of the oxidizer side tempera-

ture profile is nearly the same for all the three cases. Tile fuel side slope decreases

considerably oil the inclusion of radiative losses.

1.0

Yoo=0.6 Yvv=0.7 uoL/%=3.23

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Z

Figure 6.3. r profiles for three different situations.

The profiles of the different terms in the energy equation are plotted in Figure 6.4.

Oil close inspection of Figure 6.4 we note that the oxidation term. Qo;'Do_ro_ is very

smallevervwhere compared to the other terms. The convection and diffusion terms

roughly balance one another near the oxidizer wall (Z = 0). The reaction term

((1 + o)Dr) is balanced for the most part by the diffusion term. ao/(UoL.;_)rzz. The
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l"igure 6.-1. The Contribution of various terms in the - ,,o.-_ncIo3 equation.
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diffusion tm'm is positive near the right edge of the reaction term profile and it recovers

tile radiative loss terln ill that area. Thus tile radiative loss term is countered by both

the reaction term and tile diffusion term. The peak of tile temperature profile is at

Z = 0.19 and tile radiative loss term maximum is at Z = 0.916. Interestingly, the soot

volume fraction maximum occurs at Z = 0.'2"24, indicating that the radiation term

profile maximum is between the maxima of temperature and soot volume fraction

profiles.
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Figure 6..5. The contribution of various terms in the soot volume fraction equation.

Figure 6..5 shows the profiles of the different terms in the soot volume fraction

equation. It is seen that the soot growth and oxidatioi_ regions do not overlap very

significantly. This is expected in a diffusion flame. For most part soot growth (/7//_j)
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is balanced by soot convection term ((Dso/UoLgo)(d"-fv/dZ2)). However, when oxi-

dation (('ro_.) is present the sum of convection and soot growth terms comt)ete with

the oxidation tetm.

Yoo=0.6 YFF--0.8

0.8

uoL/ot o = 3.23 P

. _ uoL/O{ o = 4.85 "

0.6 l ":!'i:'),_ _ u0L/CZo = 6.45
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0.2 I ''t -. --.. --.. --,_--,,,. _ -
II /
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Figure 6.6. -]['he effect of Uo Oil temperature 1)rofile for a given stoichiometrv.

\\:e next focus on the effec't of fuel blowing velocity. Uo, on the temperature profile

when the fuel and oxidizer mass fractions in the reservoir are assumed to be fixed.

For }'oo = 0.6 and }}--F = 0.8 the temperature profiles for different values of u0 are

plotted in Figure 6.6. As mentioned before. L = 0.02 m and ao = 1.24× 10 -4 m'-'/.s.

The fuel flow velocity Uo is increased fi'om 0.02 m/.s to 0.08 m/.s with increments

of 0.01 m/.s. With increasing uoL/ao, i.e.. with increasing Uo the maximum flame

temperature is found to increase. Also, the increased fuel SUl)ply l)ushes the flame
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closer to tile oxidizer wall. It is also to be noted that tile movelnentof tile flame

toward the oxidizerwall with ii{creasingfuel flow rates is quite rapid lot lowervalues

of u0. However, tile rate of migration is mitigated for higher values of u0. Tile slower

rate of movement can presumably be attributed to tile proxilnity of tile flame to the

oxidizer wall for high values of u0. It is important to mention here that we have

already noted similar flame behavior in tile absence of radiative losses (.\'/_ = 0) in

section -1.7 of chapter 4.

We now focus on tile drop in the maximum flame temt)erature compared to tile

adiabatic flame temperature. As discussed in chapter 3. the quantity of interest is

__kr/ and is defined as 1 - r/ where rI is the maximum flame temperature. Figure 6.7

is a plot showing the variation of .Xr/ as a function of the nondimensional fuel flow

rate at the fuel wall, i.e., uoL/ao.
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Figure 6.7. The effect of u0 on the reaction term for a given stoichiometry.
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Evidently, Figure 6.7 indicates that there is a drop in the quantity ._kr/. i.e.. an

increase in r/with increasing Uo. This is a direct consequence of the results illustrated

in Figure 6.6.
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Figure 6.8. The effect of u0 on reaction term for a given stoichiometrv.

The reaction term((1 + O)Z)r) also exhibits interesting behavior for increasing Uo.

Figure 6.8 indicates that for low fuel flow rates the reaction term is far awav from

the oxidizer wall (Z = 0) and it is quite broad in Z space. With increased fuel

flow rates the reaction rate profile becomes narrower and exhibits higher maximum

values. (:lose to the oxidizer wall a very sharp reaction term profile is observed, e.g..

for uoL/ao = 12.90. Since the profiles become narrower and talker with increasing



132

u0 values, the integrated value of tile reaction term. i.e., qr_,t,_l = ft_(1 + o)DrdZ was

also examined. The resuh is shown as inset to Figure 6.8.

Ill order to understand tile behavior of the reaction rate profile better tile species

mass fraction profiles were also investigated.
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Figure 6.9. The influence of u0 on the species mass fraction profiles for a given
stoichiometrv.

It was found that with increased fuel blowing there is a substantial change in the

fuel mass fraction profile. The fuel mass fl'action at the wall increases considerably

with increased fuel blowing and saturates to a value of about unity for u0L/ao = 12.90.

This tremendous increase in fuel mass fraction on the fuel side of the flame pushes
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the reaction zone closet" to the wall and compresses the reaction zone. The oxidizer

mass fraction for different cases are also shown on the same plot. The direction of

movement of the Yo profile with increasing uoL/ao is indicated t)4" al_ arrow on the

plot.

A study of figures 6.6 and 6.9 in conjunction was found to be quite illuminating.

From Figure 6.6 we note that for high values of uoL/ao close to the fuel wall the

nondimensional temperature is close to zero. Figure 6.9, on the other hand, indicates

that the normalized fuel mass fraction values are close to unity neat' the fuel wall. For

example, when uoL/ao = 12.90, r__0 and gF__I for Z_>0.6. This clearly suggests that

in this case. for Z_>0.6 the conditions in the domain are approximately the same as in

the fuel reservoir, viz., r = 0, go = 0 and Vs = 1. Hence, the fuel wall has virtually

moved in closer to the flame, and has thereby pushed the flame close to the oxidizer

wall and compressed the region of heat release. Thus, the intense heat release takes

place over a very narrow zone and hence, the peak temperature becomes higher, even

though the temperature in most part of the domain decreases, as shown in Figure 6.6.

It is also interesting to scrutinize the soot volume fraction profile for increasing

values of u0. Consistent with the movement of the temperature and reaction rate

profiles the soot volume fraction profile also moves toward the oxidizer wall with

increased fuel flow, as shown in Figure 6.10. For lower flow rates the soot volume

fraction profile is broad but i.t becomes narrower and taller for increased Uo, similar

to the behavior of the reaction zone. Also. the soot vohtme fraction at the oxidizer

wall is zero for low values of u0 and all the soot produced get oxidized on the oxidizer

side of the flame. However the same is not true for enhanced fuel blowing and for

uoL/ao = 12.90, for example, the soot volume fraction at the wall is 1.39×10 -s.

indicating that a significant amount of soot remains on the oxidizer side without

being oxidized.

Having analyzed the effect of u0 on r and ,fv profiles we now focus our attention
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Figure 6.10. Tile effect of u0 on the soot volume fraction profile for a given stoichiom-
etrv.
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on the radiation term, rRfv(1- a(1- r))2((1- a(1- r))"- (1- a)2). \Ve note that

the radiation loss term is explicitly dependent oll the temperature and soot volume

fraction profiles. \\'e hence expect the radiation loss profile to also migrate toward the

oxidizer wall with increasing values of uo. Figure 6.11 reflects the expected behavior

in the radiative loss term profile. The integrated value of the radiative loss term in

Z space is also found to decrease with increasing uoL/ao.
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Figure 6.11. The effect of Uo on the radiative loss term profile for a given stoichiometrv.

The maximum of the radiative loss profile was always found to be between the

maxima of the r profile and the fv profile, i.e., Z_ < ZR,_ < ZA., with Zi denoting the

location of the maximum of the quantity i. The maxima of the reaction rate profile
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wasfoundt.oexist,alwaysto the left.of tile of Z,- for the fuel rich

consielered ill the present work.
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Figure 6.12. Theetfect of u0 on the radiative loss term I)rofile for a given stoichiometrv.

Next. a radiative heat loss fraction, \. is calculated. As described in chal)ter 3,

\ is defined as the ratio of tile heat lost due to radiation and the heat generated in

the combustion process, i.e., \ = qRad/qrot_t. Figure 6.12 indicates that the radiative

fraction changes very little with increasing value of ,0. The mean value of \ is

about 0.3. This agrees quite well with the commonly used value of \ in combustion

literature [4].

In order to understand the effect of radiative losses better we studied the teml)er-

ature and species profiles when no soot is generated and there are no radiative losses.
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This necessitates tile solution of nondimensional temperature and species equations

with the only source terms resulting [t'om the primary combustion reaction. This is

the same as the treatment in chapter 4 and we would focus on the solutions when

:VR = O.

Yoo=0.6 YFF=0.8
No loss situation
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Figure 6.13. The effect of u0 on the r profile for a given stoichiometrv on the assump-
tion of no radiative losses.

The temperature profile shown in Figure 6.1:3 indicates that similar to the radiative

loss situation the profiles move toward the oxidizer wall on increased fuel blowing. The

maximum of the nondimensional temperature profile also increases with increasing u0.

Interestingly the reaction rate profile also indicates a consistent direction of movement

(Figure 6.14). The integrated value of the reaction term. qrot,_l, also decreases with
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Figure 6.14. The effect of u0 on the (1 + O)Dr profile for a given stoichiometrv on

the assumption of no radiative losses.
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increasinguoL/ao, indicating that the radiative losses are not primarily responsible

for this attenuation of the value of cffot,_t. The proximity of the oxidizer wall is of

crucial importance in this issue. It is also interesting to note that qTot,,_t increases as

uoL/ao increases from the low value of 3.23 to 4.8.5. However in the higher range of

values of uoL/ao the flame is extremely close to the oxidizer wall and increases in

uoL/ao necessarily result in a drop in the value of Clro_,,t. Thus our simple analysis

indicates that heat losses to the wall and radiative losses are both important to the

flame in a significant way.

\Ve also examined the effect of changing the oxidizer mass fraction when both the

fuel mass fraction at the wall (YFF) and the fuel flow rate (uo) are kept constant.
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Figure 6.15. The effect of }'oo on tile r profile for a given }},w and a given uoL/oo.
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On increasing )oo the temperature profile nlaxinlun_ moves more toward the

fuel wall. However the magnitude of the maximunl keeps on decreasing as }oo is

increased. The species profiles are also studied in detail ['or a better understanding

of the flame. Figure 6.16 illustrates the normalized oxidizer and fuel mass fraction

profiles. \\e observe that the oxidizer mass fractions (.¢/o) are everywhere higher when

YFv = 0.8 uoL/o: o = 3.23

1.0

0.8

0.6

0.4

0.2

• Yoo ,,. = 0.4
g

",,, .................Yoo = 0.5 1

..... Yoo = 0.6
_utl I

..... - .... _oo = u./__

Z

Figure 6.16. The influence of.}oo on tile species profiles for a given }FF and a given

_,oL/ao.

}oo is increased. In sharp contrast, the normalised fuel mass fraction (fir) values are

lower everywhere for increased Yoo values. Also. the normalised fuel mass fraction

values at the wall decrease on increasing }oo values. The significant decrease in 9F

values result in decreased reaction rates, as illustrated in Figure 6.17. The reaction

rate profile also moves toward the fuel wall on increasing the value of }oo. The
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Figure 6.17. The influence of }oo on the reaction rate for a given }_-F and a given

uoL/ao.
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integrated reaction rate, qTotal, decreases with increasing }oo.

The soot volume fraction profile is investigated next. As anticipated from tile

movement of the temperature and reactivity profiles, the soot vohune fraction profile

moves toward tile fuel wall. \Vith increasing }Oo, the temperature values decrease

and consequently, less soot is produced. It has to be mentioned here that for lower

values of }oo the sgot volume fi'action profile is located close to tile oxidizer wall and

there is a residual soot vohlme fraction near the wall, which is not oxidized. For higher

values of }oo there is no residual soot volume fraction near the wall. The radiation

YFF = 0.8 uoL/Ct o = 3.23
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Figure 6.18. The influence of }oo oil the soot volume fraction profile for a given }_-f-

and a given ,oL/ao.

term profile (see Figure 6.19) also moves toward the fuel wall and the maxinlurn of the

profile also decreases in magnitude as }oo is increased. Investigation of the integrated
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valueof the radiation term profile wasalsocarriedout and the result is shownasinset

to Figure 6.I9. The integratedk:aluedecreasesas a function of increasing1"oo.Tile

Yn:=0.8 u0L/%=3.23
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Figure 6.10. The effect of 1"oo on the radiation term profile for a given ]"FF and a

given uoL/ao.

radiative fraction values were also investigated and are plotted in Figure 6.20. The \

values increase with increasing I49o and are in the vicinity of 0.3.

The effect of increasing ICkF for a given u0 and a given }oo is investigated next.

The temperature profile is observed to move toward the oxidizer wall, as expected

(see Figure 6.21). However, there is also a drop in the temperature profile maximum.

A plot of the drop in peak flame temperature as a function of the fuel wall mass
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Figure 6.21. The effect of }_- on the temi)erature profile for a given }oo and a given

,,oL/ ao.
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fraction is shown ill Figure 6.22.
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Figure 6.22. Tile drop in peak flame temperature as a function of }FF.

Tile reaction rate profile also moves toward tile oxidizer wall on increasing }}F

as shown in Figure 6.23. Interestingly. the reaction rate profile maximum increases

with increasing }Ft:. The integrated value of the reaction rate. (trot_l. increases with

increasing }FF, unlike in a previous situation when u0 was increased for a fixed set

of }OO and }FF.

The species mass fraction profiles are shown in Figure 6.2-I.

It is clear from a comparison of Figure 6.9 and Figure 6.24 that increasing fuel

blowing rate has a much stronger effect on the fuel nlass fraction profile than increas-

ing the fuel re.ass fraction at the fuel reservoir.
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Correst>ondingly tile soot volume fraction profiles are also plotted in Figure 6.2.5.

Soot volume fraction increases as }'):.F is increased and the profile moves closer to the

..v.
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Figure 6.2.5. The effect of })=F on the soot volume fraction profile for a given }oo

and a given uoL/oo.

oxidizer wall in accordance with the movement of the teml)erature and reaction rate

profiles. Figure 6.26 shows the radiation term profile. The integrated value of the

radiative loss profile is found to increase with increasing }'FF values.

The radiative fraction \ indicates an increasing trend with }_ (See Figure 6.26.

It should also be noted that the value of the radiative fraction is close to 0.3 in all

cases.

It is also of interest to examine the velocity profile, u, for a typical flame. As

discussed before, the velocity u is given by equation 6.2. and hence is dependent
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on the density distribution /5. Tile /5 distribution is obtained using equation :1.16

of chapter 3 aim a typical case is plotted in Figure 6.28. Tile normalised density

is tile highest at the close to the walls and it attains a nlininmnl at the maximum

temperature location.

IQ-

Yoo = 0.6 Yvv = 0.8 UoL/O_o = 3.23

/I
/

/
/

/
/

/
/

/
/

Z

Figure 6.28. The fi distribution plotted in the Z coordinate.

The velocity distribution is plotted for two different mass flow rates in Figure 6.29.

Figure 6.29 depicts the profiles for uoL/ao = 3.23 and uoL/ao = 12.90. The velocity

u is quite high near the flame location and decreases to its nominal value Uo at either

wall. The magnitude of u is much higher when uoL/ao = 12.90, as expected. The

maximum velocity is ---12 cm/.s when uoL/ao = 3.23 and it increases to --,12 cm/.s

when uoL/c,o = 12.90.
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The influenceof thermophoresiswasexaminedby plotting t_T as a function of Z.

As noted in section 6.1.1 thj- is given by equation 6.18. Figure 6.30 shows tile variation

of tftT for a low velocity (uoL/ao --- 3.23) and for a higher velocity (u0/,/a0 = 12.90).

It is apparent from the figure that tile value of t_T is not significant tot' most part
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Figure 6.:30. The cluantity lh T plotted as a function of Z.

of the domain and it increases near the cold walls. For uoL/ao = 3.23 the influence

of thermophoresis is significantly more important compared to the high velocity case

(tloL/oo = 12.90).

.Next, the thermophoretic velocity tlT and the ratio of the thermophoretic velocity

and the convective flow velocity, i.e.. uj-/t/ are plotted in the physical coordinate a:.

\\e recall that the fuel wall is located at ,r = 0 m and the oxidizer wall is located
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at ,r = 0.0:2 m. Figure 6.31 indicates that uT is small ill both low and high velocity
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Figure 6.31. The quantities UT and ltT/tl plotted as a function of the physical cool
d in at e .r.

CASES. However. the ratio u:r/u is quite important over a significant region near either

wall. For uoL/oo = 12.90, however, ur/u seems significant only near the oxidizer

wall.

6.5 Estimation of the Soot Volume Fraction Pro-

file

In section 5.6 of chal)ter 5 we estimated the soot volume fraction profile assum-

ing Burke-Schumann, or, IRR profiles for the ten-q)erature and species. However.
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Burke-Schunmnnprofilesarenot accurateenoughin a finite chen_istrvsituation with

radiative losses.The temperature valuesare too high for tlxe IRR caseand conse-

quently, tile soot volumefraction valuesareunrealistically high in somecases.Hence.

the adiabatic flame temperature wasarbitrarily chosento producea realistic range

of soot volumefraction values.A more involved treatment is necessarywhen the in-

fluencesof finite chemistryand radiative lossare included. In this section wepurport

to introduce the effectof radiative lossesin a very simpleway and derive a modified

expressionfor the temperature, speciesand soot vohtme fraction.

Let us first assume that the peak value of the nondimensional temperature, r. is

a fraction {. Then, equation 4.13 can be modified to write

( t-_--zl_ 0<Z<ZI

l_e-Zl/c
T

e-ll_--e -z/_ ZI<Z<I_e_l/e_e-allc

(6.19)

We note that when _ = t we get the Burke-Schumann profiles. \Ve will still use

equation 5.24. which is an expression for tile balance of soot convection and growth

terms..-\[so, similar to the treatment in section .5.6 of chapter .5 we try to express the

normalised fuel mass fraction ._JF in terrns of the fuel side temperature distl'ibulion.

7-. \Ve obtain 9F = a([ - r/(). Also, dZ call be written as dZ = -ac/[ar -(a - 1)_c].

Using the expressions for YF and dZ in equation .5.24 we get

o

1 (1 - r/_)r/6e -{&+ _ "_-o<'-_'

fi,_.ladk, = [#go(t - c_)413a_31°c] dr. (6.20)- (l - - _ (<,_

Again we note that setting { = 1 iri equation 6.20 recovers equation .5.28 of section .5.6.

On integrating equation 6.20 subject to the boundary condition fv = 0 at Z = 1 we

get the soot vohune fraction profile. However, integrating equation 6.20 involves
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evahtating the integral

- 3,,- 1-r

(1 _
/, =/o (1--_f-7-i)_---_:i)_) dr (6.2:)

Substituting u = 1- r and writing 3-,_ = 3_ + _ we arrive at the following expression

for [1 :

I, = (i - ;7):/-6_ +a(l- u -,5))
(6.2e)

This integral could not be evaluated by analytical means. To simplify tile integrand.

the exponents 7/6 on (u - (1 - _)) and 5/6 on (1 - o,) were both replaced by unity.

Tile simplified integral, say 12, was evaluated using the commercial code MAPLE. The

result was in terms of exponential integrals, similar to equation .5.:}2 of chapter .5.

\Ve note here that the maximum flame temperature is not known and has to be

approximately determined in order to evaluate tile soot volume fraction profile using

equation 6.20. In the present work, we use the value of,_ directly from the numerically

obtained solution of the temperature profile. Figure 6.32 shows the numerical solu-

tions for the temperature, species and soot volume fraction profiles when }oo = 0..5,

}'FF = 0.4 and tzoL/Oo = 4.8.5. Using the value of _ from tile numerical solution in

equation 6.19 we determine a nondimensional temperature profile, r. The normalised

species mass fraction profiles are then determined iterativelv, similar to the procedure

described in section 4..5 of chapter 4. Based on these analytically obtained tempera-

ture and species profiles we numerically solve the soot volume fraction equation. The

solution is plotted in Figure 6.32. The analytical solution of the soot volume fraction

equation involving exponential integrals is also plotted in Figure 6.:32. It is clear that

the analytical sohltions for r, !Jo and YF are in very close agreement with the numeri-

cal solutions. Also, the soot volume fraction profile obtained on tile assumption of the

analytical r, yo and yr profiles approximates the numerical solution reasonably well.
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Figure 6.32. Comparison of ft" profiles when }oo = 0.5, })F = 0.4 and uoL/ao =

4.$5..Vumerical Solution. 1 refers to the simultaneous solution of coupled equations

of r, t.jo, !Jr and fv. ,Yumerical Solution, _ refers to the sohttion of the soot volulne

fraction equation on the assumption of analytical profiles for r. Uo and 9F. The

analytical solution of the soot volume fraction equation involves the evaluation of the

integral I2 in terms of exponential integrals.
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The soot vohunefraction valuesare in goodagreementand the numericalsolution of

the soot volumefraction equationisalsocapableof predicting the sootzonethickness

fairly well.

6.6 Conclusions

The comprehensive soot radiation problem was analyzed ill this chapter assuming

soot radiation in the optically thin lilnit. For soot formation, the model of Syed,

Stewart and .Moss [1] was used. The semi-empirical formula of Nagle and Strickland-

Constable [2] was used for soot oxidation. The conservation equations were numeri-

cally solved for a range of parameter values and the results were analyzed to study the

influences of the various parameters on the flame structure and the flame radiation.

The soot volume fraction profile was always found to exist on the fuel side of

the flame with the location of the peak soot volume fraction being 1 - 2 mm to the

fuel side of the location of the maximum temperature. This is in accordance with

experimental observations [30]. The peak of the radiation term was always located

between the peak temperature and peak soot volume fraction locations.

The influence of increasing the fuel blowing velocity, u0. was investigated first. 011

increasing u,0 the temt)erature and reaction rate profiles migrated toward the oxidizer

wall. The maximum flame temperature increased as u0 was increased. The integrated

value of the reaction term, i.e., qro,,_t, decreased as uo was increased. A higher fuel

blowing rate managed to push the flame against the oxidizer wall. and consequently.

the heat losses to the wall also increased. This resulted in a reduction in the value of

q:rot,_l. It was also found that the rate of movement of the flame toward the oxidizer

wall decreased with higher vahtes of u0 and the reaction rate profile became taller

and narrower. A similar trend was also observed for the soot votume fraction profile

and the radiative loss profile. The integrated value of the radiation term, i.e.. qRa4.
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decreased with increasing u0. The value of the radiative fraction was around 0.3.

Oll increasing }oo for a gi,,en }FF and uoL/oo the flame migrated toward the

fuel wall and the temperature, as well as the reaction rate values decreased. The soot

volume fractions, as well as tile q,%a values decreased in such a situation.

Finally, }oo and uoL/cto va[ues were kept fixed and }_F values were increased

to study the flame behavior. The flame moved toward the oxidizer wall and the

peak flame temperature decreased with increasing }FF. Itowever, the qTot_l values

increased. The soot volume fraction values also increased. The radiation term profile

also moved toward the oxidizer wall and the qR=_ values increased with increases of

}}v. The radiative loss fraction was found to be around 0.3.

On including a correction factor for the peak temperature it was possible to modify

the analytical expressions for the Burke-Schumann temperature and species profiles to

agree with the numerica[ solution. Such an agreement was possible primarily because

there was very little leakage of fuel and oxidizer across the flame. Using the modified

expressions for the temperature and species profiles it was possible to develop an

analytical expression for the soot volume fraction profile based on the method already

described in chapter .5. The analytically obtained soot volume fraction profile agreed

very well with the nulnerical solution.

A radiative extinction was not observed in any of the cases tested. This indicates

that a steady state extinction is not quite likely. As mentioned before, the radiative

fl'action value was about 0.3 in all the cases and a decrease (increase) in the qTot_t

values resulted in a decrease (increase) of qR=_. This phenomenon seems to indicate

that the radiative losses from a flame bears a direct relationshi t) with the heat re-

lease and an excessive increase of radiative losses is not likely when the heat release

decreases.



CHAPTER 7

Conclusions and Recommendations

for Future Work

The work presented in this dissertation has revealed interesting features of the struc-

ture of a radiating diffusion flame. A qualitative analysis of a diffusion flame with a

hypothetical .scch 2 radiative loss profile indicated that for a [oss term fixed in space.

the flame can break through the loss zone on increasing the radiative loss term suf-

ficiently. It was also shown that such a "break through" is only possible for thin

radiative loss zones placed immediately next to the ideal flame location. Zj.

For pure diffusion flames the increase in radiative losses always resulted in the

flame moving toward the oxidizer side. For a diffusion flame with convective fuel

flow from the fuel wall even the opposite was observed. Evidently, the interaction of

convection, diffusion, reaction and radiative losses is harder to predict compared to a

pure diffusion flame situation, when the effect of convection is not present.

An analytical model of soot profile was determined which accurately predicts the

soot zone thickness when Burke-Schumann profiles were assumed for the temperature

and the species mass fractions. Such a model was based on the observation that the

primary balance for the flames studied in our configuration revealed a balance between

the processes of soot growth and soot convection.

161
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Sucha balancewas also evident from an analysisof tile results of tile compre-

hensivesoot radiation problem (chapter 6). We also discoveredthat in accordance

with experimentalresults for sooting diffusion flamesthe soot growth and oxidation

regionsdonot significantly overlal), as expected in a diffnsion flame. Tile soot volume

fraction illaximniI1 was found to occur on the fuel side of the flame and was typically

at a distance of 1 -:2 mm from the temperature n-mximum. The radiation loss profile

peak was always situated in between the flame temperature peak and the soot vol-

ume fraction peak. We note that the radiative fraction was around 0.3 for tile flames

studied. The consequence of increasing tile fuel flow velocity at tile wall. tz0, was to

push tile flame closet' to the oxidizer wall. Correspondingly, the reaction rate profile

became narrower and taller, and its integrated value qrot,,l decreased with increasing

_10. The integrated value of the radiative loss term also decreased with increasing Uo.

In another study, the oxidizer reservoir mass fraction, }oo, was kept fixed along

with the fuel blowing velocity _Lo. The fuel reservoir mass fraction was increased from

0.6 to 1.0 in steps of 0.1. It was observed that the flame moved closer to the oxidizer

wall and the peak flame temperature decreased with increasing }_-v values. -lhe

telnl)erature maxilnum decreased even though the integrated value of the reaction

rate. ct>_t,_,,, increased. The integrated value of the radiative loss term. qR_,a also

increased and the radiative loss fraction value was about 0.3 in all cases. Thus. it was

found that the radiative losses depend directly on the amount of heat released and in

the cases studied, the radiative losses adjusted to tile heat release in such a way that

the radiative fraction values were about 0.3.

A radiative extinction was not observed in any of the cases studied, indicating

that a steady state extinction is unlikely. Also, since the radiative fraction values

were close to 0.3 in all cases, it seemed that the flame tried to limit the heat losses

with any decrease of heat release.

The analytical model developed in chapter .-3for the soot volume fraction profile
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usedthe assumptionof Burke-Schunaannteml)eratureand speciesmassfraction l)ro-

files. However,for a diffusionflamewith radiative lossesthe temperatureand species

profilesaresignificantly different from the infinite reactionrate profiles. Hence,a cor-

rection factor _ wasusedfor the peak flame temperature. The analytical expressions

for the Burke-Schumannprofile weremodified to include the factor_. The resultant

profilesmatched very well with the numericalsolution of the comprehensivesoot ra-

diation problemdiscussedin chapter 6. Basedon the methoddescribedin chal_ter5

utilizing the balancebetweensoot growth and convectionan analytical expression

wasthen developedfor the soot volumefraction profile including the effectof _. The

analytically obtained soot volume fl'action profile matchedfairly well the nulnerical

solution of the comprehensiveproblem.

The soot modelusedin the presentwork has receivedsignificant attention in the

literature. However,the physico-chemicalprocesseswhich lead to the evolution and

burn-out of soot particles are still not well understood. It is anticipated that more

accurateandversatilesootmodelswill appearasthe investigationonsootprocessesin

flamesintensifieswith the helpof better diagnosticand modelingcapabilities. Thus.

future work has to utilise moreaccuratedescriptionsof soot processes.

It will also be important to investigate the effect of soot radiation in the opti-

cally thick limit. A more comprehensiveradiation-soot interaction modelhas to be

envisagedfor that purpose.Tile soot volumefraction in our flamesanalyzedin chap-

ter 6 was in the range 10-r - 10-s. For soot volumefractions in the vicinity of the

upper limit, it will be worthwhile to examinethe influenceof a morecomprehensive

radiation model.

The radiation from the combustiongaseswas neglectedin our analyses. This

effect canalso be includedfor a moreaccuratedescriptionof the flamebehavior.

In our problem the heat lossesfrom the flame occurredbecauseof the radiating

sootparticlesand alsodue to the presenceof cold reservoirwalls. It will be interesting
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to study the effectof other configurationson this flame, specially when conductive

lossesto cold boundariesaresignificantly reduced.For example,it will be interesting

to study the effecto["radiation from a fuel strip burning in an ambient oxidizer field

wherethe boundariesof the domain are fat'apart. The influenceof strain in sucha

field on the flamestructure and the radiative lossprofile will bequite worthwhile to

study.

._lethanewaschosenasthe fuel in thecurrent work becausethe important parame-

ter values['orone-stepmethanecombustionreactionareavailable. However, methane

is not a heavily sooting fuel and in future, it will be interesting to investigate the

problem with more readily sooting fuels, such as ethylene, acetylene, etc.
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APPENDIX A

Asymptotic Calculations for a

Simplified Model of the Interaction

of a Diffusion Flame with a

Heat-Loss Zone

A.1 Abstract

In this .-\pl)cndi× we examine a highly simplified model prol)len) for the interaction

of a diffusion flame (DE) with a heat-loss zone (the "'soot" layer). Explanations are

provided for DF migration ¢observed in chapter 3) and ultimate quenching when

.VR..SZn is made large enough (chapters 3.4).

A.2 Introduction

[he purpose of this study is to theoretically analyze the influences of a heat loss zone

on a (liffusioz_ flame (DF).

Although fundamental soot formation chemistry has been examined in detail for
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manyyears,the ntunberof studiesexploring its relation to actual physicalprocesses

in ttamesis few. In the sootyregion of a DF there are intenseheat lossesto the

surroundings, t)erhapsstrong enough to retard chemicalactivity or. under proper

conditions, to causeextinction. The model consideredhereexaminesthis question

bv paring the physics to a minilnum and focusingonly on the skeletal featuresof

the flame/radiation interaction, tIere weeliminate convection (natural and forced),

thermophoresis,and particulateoxidation, all of which are important in actual soot,,"

flames. Forexample,whenconvectionis eliminated (not simply bv transformation to

a coordinatesystem in which the convectionand diffusion terms are combinedinto

one overall "convective-diffusive"term. but actually and entirely eliminated), the

standard forinulations of the soot conservationequation becomeuntenable because

there is no meansfor balancing the creation/destruction terms with a convection

ternl: a different interpretation of the soot zoneis required.

Tile approachfollowedhere will be to examinea simple inodel thoroughly. The

emphasiswill be placedon making mathematically definite statementsthat can be

turned into physicallyusefulcriteria, giventhe limitations of the model. \Venote that

our goal is to descril)e- not simulate - the influenceon DFs of radiant heat losses

from particulates.

Finally, we observethat a study very similar to this one was published in the

literature [56] but an error in one of the calculations preventedcorrect conclusions

from beingdrawn. In this studv the error is corrected.Revisedresultsare presented

and interpreted.
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A.3.1 Physical Discussion

Tile following simplifications are employed in this study geometrically, we consider

the one-din_ensional "stagnant film" diffusion flame (DF). The porous fuel wall. at

temperature To, is located at a' = 0. l)arallel to the oxidizer wall which also has 7" = To

and is located at x = L. The mass fractions of fuel and oxidizer at these walls are

}}-f and }oo respectively (see Figure 3.1).

Dynamically, we limit ourselves to the case of zero mean flow; the movement

of species occurs strictly by difl'usion. Ill addition, we neglect the thermophoretic

flow that is known to occur with l)articulates in regions of high thermal gradients,

l)ecause we wish to examine only tile thermal and chemical influences of heat losses.

In stunnlary, we have a one-dimensional stagnant-film 1)F with no mean flow (tt = 0)

and no thermophoretic flow (tzr = 0). \Ve also iml)ose the steady-state condition

(?)(.)/Ol = 0). For the combustion chcmi.slry we assume that the reaction at the

I)F occurs through a single irreversible step. F + uO--+(l + u)P (on a mass basis).

with high activation energy. The "soot-formation mechailism, which we hypothesize

occurs on the fuel side of tlle DF, is assumed not to consume fuel. That is, only

"'trace" amounts of fuel are required to make "'soot" particulates. Also. since tile "'soot

distribution" will be si)ecifie(.l, we do not require a separate soot species equation.

Not" is it necessary to consider a number-density equation, since we assume that our

"'soot" particulates are simi)ly a collection of inlmobile radiating masses located in a

preassigned region on the fuel side of the DF. Strictly speaking, there is no need even

to discuss "_particulates" like "'soot" because hope of tile explicit features commonly

associated with l)articulates appear in our analysis. The relevant features of our "'soot

particulate laver" are exclusiveh thermal: the laver produces only a region of enthalpy

loss that may alter the DF structure and cause extinction.
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Even if extinction doesnot occur the heat lossesmay weakenthe DE. The re-

lationship betweenDF-weakenlngand heat-lossenhanceluentis all interesting one

that may. within tile limits of this analysis,be quantified. \Ve assumethat tile fuel

and oxidizer wa[ls are perfectly transmitting so the heat lost from the "'soot" [aver

is permanentlylost. Finally, weobservethat tile "'soot" laver is presumedto remain

alwayson the fuel sideof the DF. therebyeliminating discussionsof "'sootoxidation".

etc.

A.3.2 The Mathematical Problem

The boundary-value problems governing the distributions of temperature, fuel mass

fraction and oxidizer mass fractions are. respectively,

(i)

(ii)

(iii)

4(,\4T

4YF _ =_(pDF a_. ' w,

,i:." } _-- b'tL',

T(O) = T(L)= To,

}F(O) = Y'_e,Yr(L) = O.

}'o(0) = O,_b(L) = }0o.

(A.t)

where tL"= pA}o)*"Fexp(-E/RT) is the chemical reaction term. with units mass/vof

sec, OF is the chemical heat release, with units energy/mass, and dqn/d.r is the

radiant heat-loss term, with units energy/vol-s. The quantity qn is the radiant energy

flux. \Ve nondimensionalize these equations by defining r = (7"- T0)/(T.t" - To).

w = }k/}"F_-, uo = }b/kbo_ ( = .s/.s0. where s = fopd.v is a mass-based coordinate

and so = foLpdx is its maximum value. \\:e observe that 0_<(_<1 and that the "flame

temperature" TI is presently undefined. \Ve consider the case p,\ = constant, p2D i =

constant and Leo = LeF = 1. \Ve define (Tn = qn/qR._I as tile nondimensional

radiant flux. \\"e shall return to this quantity after our discussion of tile chemical and
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heat-transfer features of our problem. Our nondimensionaI equations are

T

_F

}/o

l "D,'+ 0

0 0

,, d0,_

subject to

iT01(0){T1]/0/:;F(o) = 1 , yr(t) = o • (A.:?,)

_o(O) o yo(;) t

Here (OF = QFYFF/Cp(T/-7_) is the nondimensional heat release, which equals (1 +

0), "D = ( A.so'-C' ff Oo,\o )}ooexp(- E / RTf ) is the Damkfhler number, c, = _ }"FF / }oo

is the stoichiometric index and A'R = qR,_ff[,\o(T I -- To)/(_o/Po)] is a nondimensional

measure of the radiant heat flux. \\e note that quantities with subscripts "'0" are

at ambient conditions attained at either wall. The reaction term is given by r =

VOVFexp[--3(1- r)/[l--a(l- r)]]. where ,3 = Ea/RT'/ and a = i-To/T I. Let

us now form the combination H=T + b!JF + c!Jo + d. which satisfies the equation

d"H/d,5'- = (-QF+b+co)Dt'+ .\,_dgm/d_. \Ve can choose b and c so that 0F- = b+co

thereby elin_inating the reaction term.

In the absence of radiative heat losses we put -\R = 0 and denote H = tto,

giving d2Ho/d_ 2 = 0, which .integrates to H0 = A + t3_. At the fuel wall Ho = 0.

r = 0. and flo = 0 whereas at the oxidizer wall tto = 0 and r = /,'f = 0, giving

tfo = r-d(!/o+._F- 1) = 0. At the flameflo = _JF = 0 and r = 1 givingd= -1

and b = c = 1. Hence. the quantity H = r + !,/o + }/F -- 1 is a convenient measure of

the excess (or defect) of local enthalpy.

In our case the heat losses by radiation produce an "'enthalpy sink" that is de-
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scribed by

'_2H,t42 -- .\'R_. If(O) = H(1) = 0. (A,4)

where H = r + !/o + gF - 1. \Ve observe that this definition of H [earls to OF =

(1 + o) (since b = c = 1) giving Tf = To + Q,,:}_-f-/Cp(1 + o) for the adiabatic

flame temperature. We also observe that with heat losses the flame temperature

will not rise to its theoretical maxilnum even when 3---+_. Hence, we may expect a

slight redefinition later of the Damkghler number 'P in tel'ms of a flalne temperatttre

somewhat lower than 7).

V_,e note that the derivation of an excess-enthaIpy function may be achieved "'phys-

icallv". The conservation equation for the enthalpy takes the form of equation A.-t

when convective transport and body force effects and t)reh.'rential species trailsport

(Lei#l) are neglected. Since h = _i=lhi}} and hi = h ° + ('p(T - 7/o). it is easy to

recover our nondimensional H.

Finally. we observe that even in the most difficult aim general case. such as when

the radiation let'm depends on tile spatial coordinate and the ternperature and the fuel

mass fraction, as long as no fuel-to-soot depletion terms enter the species equations

(equations A.l.(ii) and A.l.(iii)) we can still define the mixture fraction variable

Z = (O!/F + 1 - !1o)/(0 + 1) that satisfies Zo: = 0 with Z = 0 at ( = 1 and Z = 1

at ( = 0. This provides an important simplification of the governing equations. The

solution for Z is Z =- 1 - (, _,hereby

(i) '.,'o = (t - Z) - (t - Z;)(T - ft), 1
(A..5)

/(ii) !/F Z Zf(r - tt),

where Zf = ( 1 + o) -1 is the DF flame location in the flame coordinate system. Then

the equal[on for r (the first of equations A.2) and the ertuation for H (equation A.4)
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beCOille

(i) rzz = --(1 + O)_Dr(H. T, Z) + .V_(-dcTR/dZ),

(ii) Hzz = .\'R(-_l(bldZ),

"1

_(o)= _(_)=o [

JH(0) = H(_) = 0.
(A.0)

Hence. tile solution for r. gO and gF is reduced to the solution of two coupled nonlinear

equations, equations A.6.(i) and A.6.(ii). Equations A.5 and A.6 suggest defining

S= r- Hgiving

i) ,5'zz = -(l + 0)'Dr,

ii) Hzz = .\'R(-d_l_/dZ),

s(o) = _,;'(_)= o.

H(O) = H(t) = O.} (a.T)

where r(H, 5',Z)= [1- Z-(t- Zf)S][Z - Z.fS']exp[-3(l-S- II)/[1 -o(1- S-

H)]]. It is clear that some rather interesting behaviors may be expected, especially

in the general case when the radiation term is a complicated function of Z._-, and

i)erhaI)s other variables. However, we shall examine only the simple case when (tR is

a i)rescribed function of Z. \\'e shall see that even tc)r this case many complexities

arise.

A.3.3 The Form of H(Z)

The enthalpy defect H(Z) is obtained by integrating equation A.4 or equation A.T.(ii)

twice. We consider the simple case when the radiant heat transfer term is a known.

specified function of position. Then the integrations may be carried out explicitly.

Because of the eventual double integration, we do not need to be particular in our

choice for the radiant heat flux, d_tR/dZ. Hence. we let

'_(Z) = L'o(ZR-)- _o(ZR+)
dZ

(A.S)

as shown in Figure A.1. The quantities ZR- and Z,_+ are the boundaries of the heat
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Eigure A.I. The "'top-hat'" profile for -dqR/dZ.
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loss zone. kVe note that ZR_>_Zf and that there are t_o Pe.,:h'ictio_s on ZR+ other

than ZR+ < 1. i.e.. ZR+ does not have to be "'close" to ZR-. From equation A.8 we

see that dglR/dZ is a "'well'" function, and that -dglR/dZ is a "'top-hat'" profile. Tile

solution for H(Z) (see Figure A.2)is

N

22

0.00

-0.01

-0.02

I

-0.03
0.0 0.2 0.4 0.6 0.8 1.0

Z

Figure A.2. The function If(Z).

i) 0_<Z < ZR- :

ii) ZR_ < Z < ZR+"

iii) ZR+ < Z<_I"

H = -.\R.AZ_[1 - O/9]Z.

H = --'\'R '_Z'4-g_°2[1 ÷ _4 -- _]_
- .1

H = --.VR "-XZR0( 1 -- Z
2

(A.9)
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It is not difficult to demonstrate thai H is less than or equal to zero on the entire

interval. \Ve observe that the Values and gradients of H(Z) are continuous across

ZR- and Zt_+, although the second derivative of H(Z) - see equations A.7.(ii) and

A.8 - is ot)vioush discontinuous. \\:e note that at Zft- and ZR+ we have

(i) H(ZR_) = --.\'R-XZR(1 -- O/')-)le-_J RI. [

](ii) u(z_+)= -xR_z_,°(1- ,_++o),
(A.IO)

which we now use to evaluate the influence of soot zone width changes on H(Z). \Ve

note first that

,-_t[(ZR_) ,VRZR-(1 -- ZR+ ), [(i) ,_,zR+ - (.a,.ll)

/(i_) :'"(_-)-o__'\'_ [(_*-_7_R-:)_+ z__(1- z__)-(z_+- z,,_)].

The first of equations A.11 indicates that tl(ZR_) decreases as ZR+ increases for fixed

ZR-. The right-hand side of equation :\.11 (ii)is generally positive so an increasing

ZR- (shrinking loss zone) increases tt(Zn_). \\:e conclude that fI(ZR_) decreases as

ZR+ increases and that it increases as ZR- increases. \Ve can also show for H(ZR+)

that

(;) ':"'(_'< - _[2ZR+(I- ZR+)-(Z/,+
OZR+ -- -- -

Ofl(ZR+..J __ ._-RZR_ ( 1 -- ZR+ ).( ii) ;,z,__ -

(>,.12)

so that when the RHS of equations A.12.(i) is negative an increase of ZR+ decreases

tf(ZR+), and from equation A.12.(ii) that an increase of ZR- increases H(Zt_+).

In general, therefore, a larger or wider heat-loss zone decreases H(Z) everywhere,

whereas a smaller loss zone increases H(Z) everywhere on the interval. This is con-

sistent with our l)hysical intuition. \Ve note from equations A.9 that H(Z) is directh"

l)roportional to =VR.
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We note from equations A.9.(i) and A.10.(i) and A.T.(iii) and A.10.(ii) that we

Call write

(i) O<Z_ < ZR- : H- HIZR_lZzR_' [

((ii) ZR+ < Z<I • H HIZR+)I_-Zl-- -- (1-Zn+)

\Ve shall use these convenient formulas extensively.

A.3.4 Tile Radiation Term

\Ve wish to deduce a realistically calculable form of the "radiation number" given

presently as .VR = (tR,r_y/[,\o(Tr - To)/(.so/Po)], ill terms of the undefined qR.re]. For

optically thin media we know that dqz_/dx = 4ap_r('l 'l - To4), by virtue of equa-

tion 5.36 of chapter 5, where ap is the Planck mean absorption coefficient. Now,

ap = fo'_(,\,fv)e_(A)d,\/f_ "_'es(A)d,\ and, for soot. /," = C'.f,./A where f,-is the

soot volume fraction and (.;' is a constant, which has the vahte of T for methane-

oxy'gen diffusion flames [31]. 17sing tile above value of ,_. a,, can be determined as

ap = 1864.32j't-T. following tile treatment in .5.9.2. Using the expression for ap and

transforming to the Z coordinate we obtain

fiqR.,,f doR

L._o dZ
- -1x 186-1.32ft. To(T _ - To")

\Ve now assume the following: (i) The factor T(T 4 - To 4) can be replaced by

Tn(TR 4 - To 4) where Tn is tile characteristic "radiation-zone'" temperature. (ii) Col

respondingly, the average value of the gas phase density in the "radiation-zone" can

be assumed to PR- (iii) The variation in the "soot" volume fraction dictates the

variation of -&il_/dZ. Since -dr]R/dZ = Uo( ZR-) - Uo( ZR+ ) we therefore define

J'_" = f_'R(/-o(ZR- ) - U0(ZR+ )). This gives the .fv distribution like that in Figure A.1.

Recalling that YR = qR.,.r(L.;:o)/,\o(Tj - To). we can now write the following expres-
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sion for .XR:

-\fi' =
,-1o, ._>c_Tn(7)_4 7o4).l'_.R(L.s0)-

_,\o(7) - 70)

The quantity fi is given by p,_/p0, where, as mentioned before, the gas phase density

was assumed to be fiR. Assuming tlle pressure to be constant, we can write p0RT_3 =

,oRti'TR. and consequently. ,a = 7o/TR.

In order to get an idea of the magnitude of .\'R we now assttme some practical

values for the dif['erent quantities on tile RHS of .-\.[-l. The flame temperature was

chosen to be 7) = 1700 /(. the characteristic radiation zone temperature, T_ = 1.500

/( and the peak value of the soot volume fraction in the radiation zone was assumed

to be fiR 1 x 10-5. On using A.I-I we get :Vn : -"= = .\R.s 6 = :37.0g 0. It has to be noted

here that the value of.__0 is of the order of O(10-2). In the numerical solution different

values of :\R were arbitrarily chosen to study the influeilce on the temperature and

species profiles. The values of-Yn were of the order of" 0(102).

A.4 Results

A.4.1 Influence of H on Oxidizer, Fuel and Temperature Pro-

files

The general solutions for yo and YF are given by equations A.5. The approach we shall

use here will be to impose restrictions on I./o and YF then to calculate the resultant r

profiles with the intention of quantifying the influences of H(Z).

Before doing this. however, we shall consider a slightly more general case than

the ones we shall analyze in detail This will serve as a constant reminder of the

simplistic nature of' our formulation and of the restricted validity of our results. \Ve

consider first equation A.5.(i). into which we substitute r - H = 1 - e when yo = 0
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in order to obtain the modified flame location

z}= & + - &). (A.14)

suggesting a rightward shift of the flame since c > 0. \Ve consider now equa-

tion A.5.(ii), into which we also substitute r - H = i - e and suppose that y_- : 0 to

obtain

2}=Zf-eZf,

suggesting a leftward shift of the flame since e > 0. Since a silnultaneous rightward

and leftward shift of the flame is not possible, we suspect that equations A.14 and

A.15 suggest that r-H = 1-e produces a broadening of the DF, and that neither yo

nor yr are zero there due to reactant leakage through both sides of the DF. Another

possibility, which should lead to the "premixed-flame stage" of DF burning [57]. is

obtained by imposing flame shift through either of equations A.14 or A.I5 aim sup-

posing that the opposite reactant leaks t[lrough the DF: in the case of equation A.14

it is the fuel that leaks, in the case of it is oxidizer.

\Ve shall return [aler to these coml)licated considerations of DF shift in the pres-

ence of heat losses and reactant leakage. Presently we discuss the case of zero leakage,

which is much simpler.

The region 0_<Z < Z I is the oxidizer side. \\"hen there is i1o fuel leakage to this

side we put e = 0 in A.15 to find Z} = ZI so there is no flame shift. \\hen yv = 0

we find from equation A.5.(ii) that r - H = Z/ZI which reduces equation A.5.(i)

to yo = 1 - Z/Zf. These results are of course identical to the zero-heat-loss Burke-

Schumann flame results. On the oxidizer side of the flame we combine the result
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r = tf + Z/Zf with equation A.13.(i) to obtain

H{ZR-)Z + z [(i) _- - zR_ _"

I( ii) ,t, uIzR_I l

(A.16)

indicating that dr/dZ oil the oxidizer side is smaller than its ordinary value without

heat bosses, 1/Zf..Note that we have implicitly assumed Zf smaller than Z_{_ (see

Figure A.3). \Ve now consider the region Za+ < Z < I between the rightmost

Z= O Z I, ZR_ ZR+ Z = 1

(a)

Z = O Zf: Z R_ ZR+ Z = 1

(b)

Z = O ZR- Zf ZR+ Z = l

(c)

Figure A.3. The location of tile soot laver relative to the flalne location Z/. In (a)

Zf < ZR-. in (b) Z/ = Z R_ and in (c) Zf > ZR-.

edge of the soot zone and tile fuel wall. Here we require negligible oxidizer leakage,
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so that equation A.5.(i) with fie = 0 gives r - H = (1 - Z)/(1 - Z.r) whereby

!/F = (Z - Zy)/(1 - Zy). The solution fort . using equation A.13.(ii). is

.... [.-

T= H(ZR+) I-ZR+ 1-Zj
(A.17)

so that we obtain for the fuel-side telni)erature gradient

dr H(ZR+) l

dZ 1 - ZR+ 1 - Zf
(A.18)

Since H(/f_+) is negative we see that dr/dZ is smaller (in magnitiMe) than with no

heat losses. In other words, dr/dZ is less negative than it is without heat losses.

The region between the flame at Z I and the leftmost edge of the soot zone ZR-

must also be examined. \Vhen we postulate a zero-leakage flame with go = 0 we

obtain r - II = (1 - Z)/(1 - ZI) and !Jr = (Z - Zf)/(1 - Z/), the same results as

immediateh'above for the region between Z = ZR+ and Z = l. Here. however, we

are still situated to the left of the soot zone. where ff(Z) is given by equation A.9.

whellCe

H(ZR-)Z { _I-7..-(i) ,
(A.19)

(ii) ,t_ ,lz__l
,iZ -- ZR- I-Z! "

Since H(ZR_) is negative, d'r/dZ is more negative than the zero-loss profile. The

slope of r(Z) is therefore steeper here.

The only region remaining to be anahzed is the soot laver itself, where ZR- <

Z < Zn+. Here we use equation A.9.(ii) for H(Z). which we rewrite for convenience

as

If(Z) = H(Z') + _(Z - Z') 2 (A.20)

where
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z" = zR+ - (z_+ - z__)/2 : ( ',zR + 0)/2 - ',zRo/)_,

H(Z') = -.\b (zk+-zk-I i + (z_+-4z-_-)- Zz+2

= -:\'R '-_zR_ 1 - _ +
"2 2 "

\Vhen .go = 0 in the soot laver we obtain, as for equations A.I?, A.18 and A.19

I-Z

(i) 7-= H(z) + ,-z,,

(ii) rt_ _ =\"R(Z - Z') - --_tZ -- 1 -Z I "

(A.21)

Unlike equations A.18 and A.19.(ii) for the gradients oil either side of the soot

layer we see from equation A.21.(ii) that dr/dZ is not constant. It is easih" shown

that dr/dZ given by equation A.21.(ii) matches to equations A.18 and A.19.(ii) on

opposite sides of the soot layer. Hence. both the temperature r and the temperature

gradient dr/dZ are continuous through and across the soot layer.

\Ve can now use equations A.16.(ii), (16.ii). A.19.(ii) and A.19.(ii) for dr/dZ in

the four zones considered to [)lot the characteristic temperature and It profiles in

the domain 0<Z<I. These profiles are drawn in Figure A.-I. where we note that

r - It = Z/Z I on the oxidizer shle. that r - H = (I - Z)/(1 - ZI) on the fuel side.

and that r is non-analytic only at Z = Zj-.

\Ve note briefly that as ZR- approaches Z I from the right (see Figure A.3) subject

to the continued constraint !/o = 0 for Z > Z.f we can use either equation A.19 or

equation A.21 for dr/dZ by letting ZR_--+ZI therein, viz.,

drH(ZI) 1 _ [ (ZR++ZI)] 1d--Z - 2[.[ 1 - Z f -¥R(ZR+ -- Z f) t -- 2 1 - Z f"

In this case. tile heat-loss laver touches the flame on the fuel side.

\Ve examine the changes of slope dr/dZ caused by the heat-loss zone. From

equation .-\.19 we see that the slope decrement at, Z = ZR- to the undisturbed slope



1S1

1.0

0.8

0.6

0.4

0.2

0.0

Z._?',, 7. ;Z;Z; ' . . . .
;t/ -,,T,,_-,,; R: "I:, infinite chemistry

// -,.-_ : •................z, finite chemistry

0.0 0.2 0.4 0.6 0.8 1.0

Z

Figure A.4. r and h profiles.



18"2

-1/(1 - Z f) is [I(ZR-)/ZR_, whereas the slope increment at Z = ZR- given by

equation A.I.S is -H(Zt_+)/(I - Zr¢+). The decrement at Z,__ makes an already-

negative slope more negative whereas the increment at ZR+ makes tile final slope

between the soot laver and tile wall at Z -- 1 less negative. The ratio of the absolute

values of tile decrement and increment are

(dec remel/_t) -H( Zt__ )/ZR- "2

(increment) -H(ZR_)/(1 - ZR+) 0

(!onsequently. when 0 > 1 the ratio is smaller than one and the increment is larger

than the decrement. \\"hen 0 < 1 the opposite is true. see Figure A.5 and Figure A.6.

"C

O

I

I

-nen

ZR+

Z

Figure A..5. The case 0 > 1.
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T

decrement

increment

1

O Zf Z R_ ZR+ 0.5 1

Z

Figure A.6. The case 0 < 1.

Fina[lv. we shall examine the influence of tile loss zone on the temperature pro-

files on either side of the DF. It is through these altered temperature gradients that

the loss zone changes the rate of flame chemistry, this weakening and perhaps even

extinguishing the flame. \Ve shall examine only the "'outer" problem, not the detailed

inner reaction zone. which is studied in section A.4.3. From equations A.16.(ii) and

A.19.(ii) we write

0_<Z < Z: •

Z: < Z < ZR- "

4- IH(ZR_)[ + l
dZ -- ZR- Z! -7-

4.- IH(ZR-)I l

dZ -- ZR_ 1 - Z I -_

----E+_.

I_Z t

where E-=IH(ZR_)I/ZR_ = NR._kZt_(I -0/2) is the slope change produced by the
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radiative losszone. It is easih shownthat OE/OZR+ is ahvavs greater than or equal

to zero. with ?)E/OZ,¢+ = 0 at ZR+ = 1. Hence, for fixed ,VR tile maximtun value of

__,is v'w_l.\. = .\'R(I - ZR_)2/2. From above, we see immediateh that the maximunl

possible value of E regardless of whether Z,_+---+I or not is x_2= 1/Zf; at this E- value

the temperature gradient on the oxidizer side vanishes. In other words, as E--+l/Zf

the T- profile on the oxidizer side crashes. From the clefinition of _,_ we find that

E = 1/Zj gives, for fixed Z.f, ZR+, ZR-, the constraint

1 1 1
d\'[_ ) '_l 21.\" (a.22)

AZ_ Z; (1 - 0/2)"

which we shall compare with other estimates of (-\;_)M.4.\'. \Ve shall see later that

when the (.V_)M.4 x estimate is refined the dependence on ..XZn. Zf and (1 -0/2)

remains unchanged.

As the oxidizer-side r profile is crashing, the fuel-side temperature gradient ap-

proaches the value -(l/Zf + 1/(i - Zf)) from above, tlence, the heat losses from

the fuel side approach a maximum as the heat losses from the oxidizer side approach

zero. The combined heat losses are given by

Z_ + - , (A,23)
dZ fuel side dZ oxidizer sMe ZI(1 - Zf )

which are fixed when Z I is" fixed, ttence, the decrease of oxidizer-side losses by

conduction is exacth' balanced by increased fuel-size losses.

We conclude by observing that OE/?)ZR+ = .\'R(1 - ZR+) is positive while

OE/OZn_ = -NR(1 - Zn_) is negative, indicating that as ZR+ increases (decreases),

E increases (decreases) because the loss-zone is thicker (thinner): also as Z_,__ increases

(decreases), E decreases (increases) because the loss zone is thinner (thicker). Conse-

quently, the two most immediate means for independently changing the magnitude of
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the heat lossterm are to change:\'t_or '--.NZR. This suggests rewriting equation A.22

as

1 1

(.\rzAZjz)._. = Zf (1 - 0/2)' (A.24)

because tile LHS is llOW a combined heat-loss ainl)litude. The quantity 0/2 = (Zf?+ +

ZR- )/9 contaillS the loss-zone thickness implicitly, since we can write 0 = _ZR+2ZR_.

but it is clear that --SZR can be changed without changing 0: hence we expect the

heat-loss aml)litude to be relatively insensitive to changes in 0 except in the extreme

(and unrealistic) case 0--+2.

A.4.2 Influence of Negative H on Flame Shift

\Ve have determined from our numerical work. see especially chapters 3, -1. that for

certain initially-specified parameters of combustion and heat loss. including stoichio-

metric parameters 0 or Zj-. loss-zone width (ZR-, ZR+) and loss-zone intensity (:\'R).

the reaction zone can sltift from its original location uear Zf to values quite dif[erei_t

from Zf. Interestingly. the shift is usually toward the loss ZOlle rather than away from

it.

In this subsection we shall attempt to explain this l)I'eferential flame shift by

examining two model problems. In the first model, we examine a Burke-Schumann

infinite reaction rate (IRR) flame for three distinct cases.

i) finite separation between Z I and ZR- with ZR- > Zf.

ii) zero separation between Z I and ZR-, i.e., ZR- = Z I.

iii) finite separation between Z I and ZR- with ZR- < Z;-.

These cases are illustrated in figure A.a.(a), (b), (c). One might say from these figures

that it is not the flame that has shifted but the toss zone. For ottr simple analysis,

which is steady, this is not important because it is the relative influence that we are
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interestedin. [11 the second model, various extensions are made of the discussion at

the beginning of section A.4.1 on partially premixed DFs.

\Ve proceed with our examination of the first model' case (i)" 0 < Z I < ZR- <

ZR+ < I (see Figure A.3.(a)). \Ve see from equations A.16.(i) and A.19.(ii) that the r

values are identical at Z = Zf. that is. the heat-loss zone has not produced an explicit

flame shift. Consequently, in order to make deductions about flame shift we must

examine other quantities. \Ve observe first that as H(ZR_) becomes more negative.

through increased :\'R. say, the temperature r monotonicalh" decreases on the entire

interval. ['his decrease, however, is subject to the constraint that the minimum r-

value is zero. On the oxidizer side, where r is given by equation A.16, tile minimurn

possible vah, e of the loss term occurs when Z = ZS, i.e., [tI(ZR_)Zf/ZR_],,,,,_ = --1.

Substitution for H(ZR_) from equation A.10 leads to

1
.\'R--_ZR < (A.2.5)

- Zs(i - o/2)'

which is identical to equation .-\.24. On the fuel side we can develop two conditions.

one at ZR_ and one at Zr_+. both invoh'ing the conslraint _>0. At Z = ZR-.

equation A.19 subjected to the constraint r>_0 yields

- z:(l - Ol2) 2--/_ 17-27:

Since Zs/ZR_ < 1 and (1-ZR_)/(1-Z s < 1 the factor _n square brackets is

smaller than unity so that the upper bound for A'_AZ_ is smaller than for the previous

result. ('Ol_sequently, the upper bound for NRAZR is smaller at Z = ZR- than it is at

Z = Z:. Finalh'. at Z = ZR+, equation A.17 subjected to r_>0 with equation A.10.(ii)
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usedfor H(ZR+) leads directh to

-\'_ A ZR S
z:(t - 0/2) o12i- z: j (:x.26)

Since ZI/(O/2)and (1- 0/2)/(i- Zl)are both smaller than unity, this restriction

on XR--kZR is also tighter than equation A.24. Between tile latter two inequalities for

Am-kZR it is relativeh" easily shown that

Zf [ -- 0/2 ZI [ -- Z R_
< (A.27)

0/2 l-Z: ZR- t-Z:

Hence. for our case (i) we have determined that the most stringent Ui)l)er bound on

:VR-kZR is given 1)v equation A.26 since it produces the smallest allowed .\'R-SZR

value. For values larger than the upper bound of equation A.26 this case (i flame

will extinguish.

\Vhat we shall do in the following analysis is to similarly derive the most strtngent

restrictions on .\'R-SZ_ froln cases (ii) and (iii). then to compare them to equa-

tion A.26. Then elementary deductions for the DF and heat-loss-zone interaction are

made. Case (ii): 0 < Z: = ZR- < ZR+ < 1 (see Figure A.3.(b)). \\'e impose the con-

straiut r>0 at Z = Z: = ZR- and at Z = ZR+. At Z: = ZR_ we use equation A.16.(i)

to find H(ZR_ ) + 1>0 whereby we obtain equation A.2-1 with 0 = Zf + Za+. This,

except for the fact that ZR- "=--Z:, is identical to the first constraint of case (i). At

Z = ZR+. we use equation A.17 which once again leads to equation A.26, although

we must recall that ZR- = Z: in 0. This constraint on :\'RAZR, as in case (i). is more

severe than the one evaluated at Z: = Zt{-.

\Ve now ask whether the most rigorous constraint derived here in case (ii) is more

or less severe than the most rigorous constraint derived in case (i). \\e sui)pose that

ZR+ and ZR- are unchanged between cases (i) and (ii), so that onh" Z: has changed,
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seeFiguresA.3.(a), (b). In other words..AZR and 0 are unchanged, so tlle ratio

(X   ZR)case (ii)

('\'RAZR)case (i)

, [z, t{ J}case/ii/

t-z; J }case (i)

([ - Z.f)cas e (i)

(1 - Z/)case (i)
> l(i._ )

Therefore, the tightest constraint for case (ii) is larger than the tightest constraint

for case (i). In other words, larger values of :\'RSZn can be attained before extinc-

tion when the flame moves as shown fl'om its position in Figure A.3.(a) to that of

Figure A.:?,.(b) at the leftmost edge of tile loss zone.

Strictly speaking, the It{R flame in this simple model cannot relocate itself in

response to heat losses the way it can in finite-rate chelnistrv numerical simulations.

In order to move this flame we must alter the stoichiometrv o. thereby changing

Z I. In the It:{R limit, however, this change of Z I has no influence on the flame

vigor because the reaction still occurs with infinite rapidity. The constancy of flame

vigor allows us to make the following statement: all other things being equal, the

constraints or upper bounds on .\'n_Z_{ become less severe as the flame approaches

the loss zone. These results suggest that as A'n..SZn increases, it becomes easier to

extinguish the flame for which there is separation between the flame and soot zones.

and that as this separation decreases the .\'R_ZR value can be pushed to higher values

before extinction occurs. For a transient flame we at'e led to expect that as .\'_XZR

increases the flame should move toward the loss zone to prolong its survival.

Case (iii): 0 < ZR- < Z I < ZR+ < 1. Here the DF is fully within the loss zone.

\Ve impose tile requirement r>_0 at Z = ZR_ and Z = ZR+ to once again obtain

equation A.2-t at ZR- and equation A.26 at ZR+. The latter constraint is the more

severe, as in cases (i) and (ii). \Ve now observe that there are two subcases depending

on whether tile flame at Z I lies between the left end and tile midpoint (Z = 0/2) or

whether it lies between the midpoint and the right end (ZR+). For these cases we
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obtain

[ l -0/2
(,\'n--kZf_)i < Z:(1 - 0/2) [a/1 - aiO/2

,i = 1.2

where

i= 1 • ZR- < Z: < 0/2" Z:/(O/2) =al < 1

i='2" O/9_< Z: < ZR+. Z:/(0/2) =.2 < i

It is easily demonst_rated that (,V,_'__NZR)I < (.\'R--XZR)2, so that by moving fl'om ZR-

toward ZR+ the extinction constraint is loosened. Once again, tile DF may move

rightward through the loss zone ill order to prolong its existence.

\Ve conclude from our analysis of cases (i), (ii). (iii) that as the numerical value of

.\'R--kZR increases, the DF call survive by moving first toward the loss zone and then

through toward the fuel side. :\t each increased Zf value in its rightward migration in

mixture-fraction space, tile extinction value of ,\'R-SZR becomes still larger, suggesting

that the DF is now slightly inore difficult to extinguish, see Figure A.7.

\\'e ask. why this should be so'? \\:hv should the .\',__kZ:_ value for extinction

increase as the DI r moves toward and through tile loss zone? The logical explana-

tion in this IRR ['orlnulation is that when the DF is in or very near the loss zone

its temperature on average is higher. Hence. larger :\R-XZfi values are required to

extinguish it. \\:e now examine the second model, which amounts to an extension of

the discussion at the beginning of section A.4.1. In our numerical results we nearly

always observe a rightward shift of the flame location. Since go = 0 is iinposed at

the DE there must be leakage of fuel; as the radiative losses are increased through

increased .VR.kZR, we anticipate that the value of r - H = 1 - c will further decrease

(i.e.. e will continue to increase), so that from equation A.14 the flame will continue

to shift rightward. V_:ithout a more detailed analysis, however, of tile type outlined ill
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Figure A.7. Tile direction of increase of :\'R.-_ZR with flame movement.
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Lifl_n [57]. and a rational explanation for why it should be Uo that vanishes at the DE

and not gF- this explanation is little more than a plausibility argument. Support for

the condition go = 0 at tile l)F is produced in chapter 6. Tile fuel. not the oxidizer.

leaks through the DF probably because all of the cases we have studied are overall

fuel rich (o > 1).

A.4.3 Reaction-Zone Analysis using Activation-Energy

Asymptotics

Here we shall solve equations A.7.(i) and A.7.(ii) across the reaction zone in oMer

to deduce an extinction criterion that is more realistic than those produced in sec-

tion A.4.2. Before l)roceeding we note that the mass coordinate .so may be rewritten

as

/0" J00l.so = pd,r = Po L rid2 =_po L.so,

where

_o 1•_o = fid.f'. (A.29)

and that the Damkohler number may be rewritten as

_. ,-
O 0

(A.30)

in order to illustrate the dependence of D on .a0- which can change depending on the

integrated value of fi on the interval. \Ve note that in equation A.30 the quantity D

is a fixed numerical value, and that a0 = ,\o/poC v.

\Ve require only one hypothesis to carry through our analysis, namely the reaction

zone (flame) and loss zone (soot layer) are physically separated each from the other.

When this is true. the enthalpy defect in the entire region 0 < Z < Zn_ bounding
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the flamenear Z I is given by equation A.9.(i) or equivalently equation A.13.(i). The

teml)erature gradients on eithe}' side of the DF are given by equation A.16.(ii) for

0<_Z < Z d and equation A.t9.(ii) for Z/ < g < ZR-. The corresponding conditions

on the variable 3' in equation A.7 become, respectively.

(i) ,_s , 0<Z < Z I
4Z -- Z I "

,t.," t Z] < Z < ZR-.(ii) ,tz- t-z," -

(A.31 )

We observe that the ,5' gradients on either side of the DE are identical to the ;--

gradients when there are no heat losses, i.e., when H = 0. The only difference in the

boundary vahte problem of equations A.7.(i) with gradient conditions A.31 on the

flame-zot_e part of the solution is the presence of H in the Arrhenius exi)onent.

\\e now perform an activation-energy-asymptotic (.-\EA) analysis of the reaction

zone by defining

.5'= t - (o + arl)/b.3.,I = (Z - Z])3c,

along with

311 = .3H(ZR_)Z _ 3H(ZR_)Z I + ( H(ZR_)),].
ZR- ZR- cZR_

which when substituted into "the Arrhenius exponent give

-3(_ -(5'+ H))

t - a(t - (,5'+ H))

-(<l, + a,1)/b + ,,3H(ZR_ )Z]/ZR_ + H( ZR_ ),l/cZR_

(l + aH(ZR-)Z]/ZR-) -- (o/.1)[(@ + a,l)/b -- H(ZR-),#cZR-]"
(A.32)

This obvio, tsh reduces to the standard zero-heat-loss result when we put fl = O.

Froth eqttation A.33 we have two cases to consider:
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Case (i)' H(ZR-)_-O(1). This reduces equation A.33 to

,3(1 - ,_¢+ H)

I-o(i - (s+ H))

3H(ZR_ )Z//ZR_
= (A.33)

I + aH(ZR_)ZI/ZR_

in the first apl)roximation. The temperature residue _ has been entirely eliminated

and the Arrhenius exponent is entireh controlled by tile heat-loss term..-ks 3--+2c

tile DF is extinguished subject to the constraint that the denominator be positive.

viz., 1 + oH(Zn_)Z//ZR- > 0, which gives H(ZR_)[ < ZR_/aZI or

"\'R--_ ZR <

oz:(_ - 0/2)

This estimate for (.\'n_Zn).w..Lv compares well with the previous estimates of sec-

tion A.4.2 since it is of the same order of magnitude, ttowever, this case (i) is

unrealistic because tile DF should long ago have been extinguished. Tile following

case is much more realistic.

Case (ii): I[f(ZR_)I=h/.3. i.e., ]ff(Z__)],,_O(3-'). lhe substitution of this ex-

pression along with (I) = _o + .3-1:Pl + .... h = ko + 3-1hi ÷ ... into equation A.33

_iVeS

-3(1 - (,5'÷ H)) -(:P + _"1) koZl

l-a(1 -(.5'+ H)) b Z,¢_

With this expression along with the choices

+ 0(5 '-_ ) (A.3-1)

"1

(i) a = 2Zf - 1, ]

J(ii) b/c = 2Z/(1 - Z/)

(iii) 5a 4v°z/:(_-z/)aexp[hoZ//Zn_]

(A.35)

and the expansion 29 = T_0 + 3-I'D1 + .... we obtain the following boundary-value
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(I) _ rl = (+_ -,i-')exp[-(_' + ("1)/_], (A.36)

(A.:37)

Tile only difference t)etween our result and previous studies [.57] of tile zero-heat-

loss DF lies in the factor exp[hoZj/ZR_] which appears in the reduced Damk6hler

number. \\'e note that hoZI/ZR_ means that h-,-O(1) since ZI/ZR_-,,O(1 ). And

h'--,O(1) means [tt(ZR_)[",O(.3 -l): small heat losses can produce D F quenching.

\Ve now make a comparison of the zero and finite-heat-loss cases. \\qthout hea.t

losses (h = 0) equation A.33.(iii) becomes

4Z%Z_(1 - Zl) 3 ,/3b" = Ra ,

which differs from the value of b in equation ,\.33.(iii) only by the a})sence

of the exponential term. At extinction the approximate correlation [.57] bE =

[_(t - I(,l)- (1 - l(,I)-'+ 0.26(t - l(,I):;+ 0.0._._(1- I(,I)-'1'/_ _.e,_de,.s&and &"identical.

ttence, for the same ZI and 3 we must have

DgE = DOzehoZI/ZR -, (A.38)

where D_E is the value of 'Do at extinction with no heat losses (h = 0) and DOE is

the value of 'Do at extinction with heat losses From equation A.as ,,'e see that the

value of the 1)amk6hler number is higher at extinction when there are heat losses.

That is. with D = t/t.o_./t_h_ and tyro,,, fixed, the characteristic reaction time must be

smaller - a faster reaction. Or conversely, without heat losses the chemical reaction

can afford to be slower.
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From equation A.3Swecan write, sinceh is negative,

"PoE= _oE[e-':pI/_o11",,_-- ZZ/ZR- < t. (A.39)

As ZR- decreases towaM Z I or as Z I increases toward ZR- the exponent n. in-

creases toward unity. For a fixed "DOE, we see that the flame with heat losses is

relatively easier to extinguish t)ecause its extinction DamkShler number is larger.

The largest value of "Dog occurs when n = 1, i.e., when the loss zone touches the DF

on the fuel side.

We note particularly that ]hoZz/ZR_ I = ,3:\'R.._ZRZf(]. --0/2) so that for fixed

ZR+, ZR- the quantity O[hoZf/ZR_]/OZ I is positive. As Z I increases the DamkShler

number of extinction increases and the DF is easier to extinguish. This deduction in

all respects api)ears to contradict the deductions of section .-\.4.2 and the numerical

results. \Ve shall discuss it later in section A.5.

\Ve proceed presently to derive an upper bound for the quantity This, of course, is

the extinction limit. \\e rearrange equation A.33. after recalling that Iho[Zf/ZR_ =

3XR.-XZR(1 - O/9)Zf to obtain the extinction criterion

A'RAZR =
1 1

zj(1 - o/2)3
In 4"D°Z/2(1 - ZI)3]

bE333 ]
(A.4o)

where

b_ = _[(t -lal)- (Z -I.I) _+ 0.26(t -I.I) _+ O.O.5._(t-I.I)_] '/_

a = 2Zf-t

"Do = '/)._: D = (.4L_/oo)kooexp(-E/RT.f).

(A.41)

Comparison of equation A.40 to the NRAZR upper bounds obtained in section A.4.2

shows that the basic dependencies on Zf and 1- 0/2 are the same. but the maximum
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valueis reducedby tile factor 3 -1 . The dependence on _o is logarithmic and therefore

fairly weak.

COml)arisons with numerically-calculated extinction results were made for some

cases. These are shown ill Figure A.8. We observe that the extinction radiation

300.0

200.0

>.

E

Z 100.0

0.0
0.10

Yoo = 0.5 zXZa = 0.06 A = 0.1

o-----o Numerical Solution

• _ Analytical Result

0.14 0.18 0.22 0.26

Zf

Figure A.8. Comparison of.numerical and analytical solutions fox the extinction

radiation number.

number value increases as Z/ decreases for a given Yoo. i.e., for increasing values of

}_-_-. The direction of increasing })F has been indicated in Figure A.S by an arrow.

The difference between the analytical and numerical solutions is quite prominent

and indicates poor agreement between the two. However, a closet" scrutiny of the

curves indicates that the analytically obtained extinction values are rol@lly 4 times
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those obtained from the nulnerical solution. Hence, the results indicate that we

may introduce a correction factor in A.40 to correlate the analytical results with the

numerical solut ion.

A.4.4 Influence of Heat-Loss Zone on Flame Displacement

Where there is a telnl)erature decrement, as shown in Figure A.5 and Figure A.6. the

density increases. This produces a displacement of the flame toward the fuel side.

We demonstrate this by writing the flame location as

1 .s/ fo: pd.r
Z:-(l+o)-t---=l (A.42)•so fro"pd.r

This can be rearranged to yield

':: pd,r = o fo L pd.r. (A.-13)

which we examine for the cases with and without heat losses. If the flame zone is

laegligil)l 5" thin we can write p = po - (po - p/)(L -,r)/(L - .r/) on the oxidizer side

between .r/and L, giving p(.r/) = p/and p(L) = po and yielding o(L -,r/)(p0 +p/)/2

for the RI-[S of equation A.43. For the LtIS (the fuel side) we shall for delnonstration

purposes can use two different p distributions, the linear profile without heat losses.

p(_) = p0 - (p0 -p/)(.r/.r/), and a nonlinear profile with losses: p(-') = p0 - (p0 -

p/)(a'/.r/)-': we see that p I_-)is always larger than p(t). Substitution into the LHS above

yields ,r/(po+py)/2 and ,r:(po+2(po+p:)/2)/3, respectively, from which we find, after

equating to the RHS, (a,//L) (_) = 0/(1 + o) and (.r//L)(') = fio/(po/3 +fi(0+2/3)),

where fi = (p0 + p/)/2.



19S

We then t'onn the difference

OMI+/= t,+01c,+o+.,,/

M = 5 tpo--7_7_-pu/> 0

Hence, case 2 with heat losses has a smaller value of zy/L indicating that the flame

is displaced to the fuel side.

Although our demonstration has employed simple p distributions, it is generally

valid whenever/) oil the oxidizer side is unchanged by the heat losses and when the

nondimensional reaction laver thickness. ,X.ri/[,, is small.

Because our analysis in the sections preceding this one is performed in terms of

the mixture-fraction Z,the influences of heat losses on Z i must be examined before

making definite conclusions. In any case. the flame movement caused by density

changes does not alter the flame location in the Z coordinate, since Z I = (1 + o) -l

is unchanged.

A.5 Discussion and Conclusions

In this study we have constructed a simplified model of the heat-loss zone interaction

with a DF. Tile model involves the solution of two coupled equations for tile tem-

perature and the heat-loss distril)utiori. The fuel and oxidizer mass fractions do not

enter the calculations since the ":soot" is formed from trace amounts of the fuel. \Ve

demonstrated that a feasibility argument could be made to describe the movement

of the flame toward and even through the heat-loss zone. which behavior is observed

for the numerical simulation, see chapters 3,blotex of this thesis. The essence of the

argument is that the tipper bound for the extinction value of .\RAZ,_ is increased as

the flame moves toward (and through) the loss zone. We demonstrated later that the

.\',_.-XZR values calculated in section A.4.2 were unrealistically large: that. coupled
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with the completeabsenceof finite-rate chenfistrv, renderedtile analysissuggestive

onlv. Nevertheless.it doessquarewith tile availableevidence,which indicates that

the DF responseto increased heat losses is to 1)urrow through the loss zone. if possible.

In some cases it emerges from the other side weakened (and ready to be extinguished

with further increases of :\n) but nevertheless existing, llence, tile plausibility argu-

ments advanced in section A.4.2 are consistent with the actual sequences of events as

obtained froth numerical simulations.

The finite-chemistry calculations, however, seem to contradict the section A.4.2

calculations because they say" that as the DE moves closer to the loss zone the extinc-

tion Damkgler number becomes larger, making the flames easier to extinguish.

This apparent contradiction between the two results, however, is resolved when

one analyzes the problem in terms of competing mechanisms. One mechanism is the

section ,-\.4.2 in, pulse for DF translation through the loss zone_ the second mechanisln

is the section A.-t.3 tendency of the extinction "D to rise malting actual extinction

easier. Tile two mechanisms are made comt)atible and COlni)lementa,y by considering

the following two cases. In the first case the value of D is so large that traversal of the

loss zone doesn't allow DE to exceed D: this DF therefore survives the full trave,'sal

event and is ,lltimatelv extinguished only when .\,_--kZr_ becomes much larger. In the

second case. D is of borderline magnitude: as the DF al)proaches the loss zone the

condition D_<'DE ensues somewhat later. Here the DF can therefore be extinguished

before it traverses the loss zone. The deciding quantity for both of these scenarios is

the initial D value. \Vhen it is ';large". complete loss-zone traversal _s possible_ when

it is ;'small". only partial traversal is possible before extinction.

The I)rospect of a DF traversing the soot zone raises the interesting possibility of a

soot- zone-induced flame flicker. The soot zone weakens the DF which then collapses

toward the soot laver. At a certain limiting value, soot begins to leak through the

DF where it is immediately oxidized. The added heat release of soot oxidation then
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strengthensthe DE which retreats to its previousposition. The sequencestarts fiom

the beginningwhen the soot zoneweakensthe DE which then collapsestoward the

soot layer, etc.

Pet'haps tile most important tesult of our analysis is tile loss-zone extinction for-

mula. equa, tion A.A0. This formula was found to produce good qualitative agreement

with numerically-calculated values of the extinction (.\:,_.._XZ,_{). although a multi-

plicative correction factor was needed to bring the theoretical and numerical results

to agreement. A principal ingredient in obtaining tile agreement was the retention of

the factor "-_0which may be as small as O(10--') and therefore may alter calculated

.\',___XZ/_ values by up to 30_. As shown in chapter 4, we can generalize equation A.40

to account for non-top-hat loss-zone profiles by properly redefining .._SZ_.

\Ve note finally that many of the l)hysical subtleties of our simplified model prob-

lem are discussed ill detail in [.56]. Despite the error in the calculation of H(Z) and

tile faulty deductions obtained therefrom, tile discussions about tile thermophovetic

effect, tile limits of this model, etc. are correct.
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