
Benner

Specification Reformulation During Specification
Validation

Kevin M. Benner

USC / Information Sciences Institute

4676 Admiralty Way

Marina del Rey, CA 90292

(310) 822-1511
Benner@isi.edu

Abstract

The goal of the ARIES Simulation Component
(ASC) is to uncover behavioral errors by "run-
ning" a specification at the ear!_.st possible points
during the specification develo_,ment process. The
problems to be overcome are r.he obvious ones -

the specification may be large, incomplete, un-
derconstrained, and/or uncompilable. This paper
describes how specification reformulation is used
to mitigate these problems. ASC begins by de-
composing validation into specific validation ques-
tions. Next, the specification is :eformulated to
abstract out all those features unrelated to the

identified validation question thus creating a new
specialized specification. ASC relies on a precise
statement of the validation question and a care-
ful application of transformations so as to pre-
serve the essential specification semantics in the
resulting specialized specification. This technique
is a win if the resulting specialized specification is
small enough so the user may easily handle any
remaining obstacles to execution. This paper will
(I)describewhat a validationquestionis,(2)out-
lineanalysistechniquesfor identlfyingwhat con-
ceptsare and are not relevanttoa validationques-
tion,and (3) identifyand apply transformations

which remove these les.srelevantconcepts while
preservingthose which are relevant.

Introduction

Validation at the requirements level is often character-
ized as validation with respect to the client's or stake-
holder's intent. The goM of specification validation is
to identify those aspects of the specification which do
not conform to the client's intent and then to make ap-
propriate changes. More practically, this boils down to

uncovering bugs in the specification and fixing them.
The goal of this work is to address a specific subclass
of specification errors that have not previously been
satisfactorily addressed. In particular, this work ad-
dresses identifying errors in the dynamic behavior of
a high-level specification. This work will distinguish

itself from related works by being able to handle large,
very-high-level specifications. This is done by making
exp_i_i_ specific validation questions which focus vali-
da_. xctivities sufficiently enough so r_hat traditional
va|i m techniques, like simulation and direct exe-
cutl,_ _re tractable.

The _roblem of identifying errors in the specifica-
tion and the cost of finding these later during the de-
velopment process is well documented [Boehm, 1981].
Among these errors, the most difficult to identify early
on are those which concern behavior. In general these
include: (I) inconsistency between specification com-
ponents, (2) incompleteness with regard to known sce-
narios, and (3) inconsistency between requirements
and their realization in the specification.

The work describe herein will uncover behavioral er-

rors by "running" a specification at the earliest pos-
sible points during the specification development pro-
cess. The problems to be addressed are the obvious
ones - the specification may be large, incomplete, un-
derconstrained, and uncompilable. These problems are
addressed via a four step process. First, the validation

activity is decomposed into specific validation ques-
tions. Second, the specification is reformulated to ab-
stract out all those features unrelated to the identi-
fied validation question thus creating a new specialized
specification. Third, the specialized specification is ex-
ecuted with the purpose of proving or disproving the
validation question. And finally fourth, since the spe-
cialized specification was constructed in a disciplined
manner, one may now infer the result of the validation
question about the original specification.

The general feel of the interaction is more like a
debugging sessions, particularly early in the develop-
ment. The goal is to get something running quickly
and easily so as to reveal behaviors implied by the
specification and make them accessible to end users

and stake holders for early validation (or more likely,
early error identification). During a typical validation
session, the specialized specification and its validation
question are executed. The simulation system using
the validation question will guide the execution toward
satisfaction of the validation question. When this is

28

notpossible the simulator will point out how the val-
idation question has been violated. The stake holder
and analyst will observe the execution. When a valida-

tion question is not satisfiable, the analyst will be able
to explore the behavior space to understand why this
is the case. Appropriate changes may then be made to
the specification and the specialized specification con-
struction process replayed. This is then followed by
re-execution of the specialized specification. Naturally
this process may be repeated.

The abstraction or reformulation process employed
during specialized specification construction is the
heart of the ARIES Simulation Component(ASC, pro-
nounced "ask"). It relies on a precise statement of
the validation question and a careful application of
transformations so as to preserve the essential speci-
fication semantics in the resulting specialized specifi-
cation. This technique is a win if the resulting spe-
cialized specification is small enough so that the user
may easily handle any remaining obstacles to execu-
tion. This paper will (1) describe what a validation
question is, (2) outline analysis techniques for iden-
tifying what concepts are and are not relevant to a
validation question, and (3) identify and apply trans-
formations which remove these less relevant concepts
while preserving those which are relevant.

The work described in this paper is a component of a
larger effort called ARIES [Johnson et al., 1991] which
is concerned with the overall task of requirements ac-
quisition and specification development and validation.
Requirements may be stated informally and then grad-
ually formalized and elaborated. Validation is facili-

tated via a variety of graphical and textual presenta-
tions. Elaboration and refinement are supported via
evolution transformations. Additionally, mechanisms
for reuse and concept encapsulation have been pro-
vided.

The example used throughout this paper is drawn
from the air traffic control domain, specifically behav-
iors concerning handolT-- passing control of an aircraft
from one air traffic controller to another. Some of the

concepts included in the full specification are: control,
physical location, sensors, tracks, maintaining tracks,
flight plans, aircraft movement, agents within the air
traffic control domain, etcetera.

Validation Questions

At the beginning of the requirements acquisition pro-
cess, many requirements are not easily expressed as ab-
stract, concise, declarative statements of stake-holder

needs. Rather at this point, requirements are often
more easily expressed informally as a mix of situations
and experiences which the stake-holder wishes to have
handled by the system to be specified.

Informally, a validation question is any question a
user or stake-holder may have about the specified sys-
tem. It could encompass anything he/she believes to
be pertinent. The goal of a validation question is to

provide a means to ask these questions. Fundamen-
tally, validation questions are statements of user's or
stake-holder's requirements. They are stated in a man-
ner as similar as possible to the way they are manifest
in the user's or stake-holder's real world. And they
hopefully have little dependence on how these require-
ments may be realized in the specification. This section
will show how these goals are attained by allowing the
stake-holder to express his/her requirements via the
following constructs: scenarios, to describe partial or-
derings of states and events using both abstract and
concrete concepts, and assumptions, to support the
implicit assumptions common in natural language and
often used when stake-holders describe their needs.

Consider the following natural language questions.
They are the intuitive basis from which we will evolve
formal validation questions.

• VQ-I: Does handoffoccur before the aircraft moves
from its current airspace to an adjacent airspace?

• VQ-2: Once in-route to a particular location, is con-
trol maintained throughout?

• VQ-3: Will the system recognize when an aircraft is
out of conformance with its flight plan?

Figure 1: Some Informal Validation Questions

The above questions illustrate several important
characteristics of validation questions. First, valida-
tion questions often implicitly rely on scenarios and
assumptions to provide a narrowed context. Second,
validation questions often use concrete and/or qualita-
tive instances to focus on specific, relevant attributes
of the specified system. And finally third, validation
questions often embody some expected interaction that
the analyst is trying to stress. The remainder of this
section will describe how validation questions are de-
scribed in terms of scenarios and assumptions.

Scenarios

Scenarios are a partial ordering of events and/or states.
They allow one to describe a complex sequence of activ-
ities at an arbitrary level of detail without necessarily
making commitments regarding their causal relation-
ships.

This section will define the semantics of a scenario
with respect to state transition diagrams 1. The spe-
cific semantics is determined by the scenario mode.
Alternatives include comparative, restrictive, or pre-
scriptive. The mode is selected by the analyst dur-
ing formulation of the validation question. Each mode
constrains the behavior space of the specification in a
progressively more restrictive manner.

IOther notations for scenarios xre also available and are
often used. They _re isomorphic with STDs.

29

• Comparative has no effecton the behavior space
of the simulated specification,but actsas a watch

dog informingthe user as to the satisfactionor par-
tialsatisfactions of a scenarioduringsimulation.In
thiscase satisfactionof a node determines the cur-

rentnode. The currentnode isneithernecessarynor
suffcientto advance to the next node.

• Restrictive means that nondeterminism withinthe

behaviorspace ispruned so that ifthe scenariomay
be satisfied it will be. Basically, satisfaction of each
node is necessary but not suffcient to advance to
a following node. Informally this mode is best de-
scribed as a procedural invariant.

• Prescriptive means that the simulator advances
the scenario from one node to the next irrespective of
the state of the simulation. More formally, the sim-
ulator treats the satisfaction of a node as necessary
and sufficientfor advancing to the next node. Op-

erationally,advancing to a transitionnode implies
that the correspondingevent isinvoked. When the

event iscompleted the followingstatenode ismade
true.

Main validation question The validationquestion

labeledas VQ-I in figureI isformalizedas the state
transition diagram shown in figure 2. States within.sl
and within-s2 are the qualitative values for the aircraft
being in sectors sl and. s_ respectively. Transitions
handoff and alert.controller represent the events of the
same name and the following states represent comple-
tion of these same events. Transitions m-I and m-_
represent any event that would result in the final state
within-s_. During simulation, ASC will drive this state
transition diagram to reflect the state of the simula-
tion. If an illegal transition occurs the analyst will be
informed.

The goal here has been to express typical, critical
situations that the user wants to be sure are handled

ina specificway. This could have been done interms

of concept at any levelof abstraction.Typically as
the specificationmoves closerto completion,the val-

idationquestion may become more complex and may
be expressedinterms of lower-levelconcepts.

Driving scenarios Driving scenarios are prescrip-
tive scenarios, typically used to model actions outside
the scope of the current specialized specification. Fig-
ure 3 shows two driving scenarios that are used within
this example. The driving scenario commits to manage
specific concepts. In this case those concepts are track.
position and the qualitative values derived from track-
position (e.g., top-of-block-altitude and within-accept-

2Satisfaction of a state means the predicate associated
with the state is true. Satisfaction of a transition means the
event associated with the transition has been invoked. Sat-
isfaction of a scenario means that the states and transitions
of the scenario have been satisfied in the order specified by
the scenario.

mm r

kas,sm _ _

Figure 2: Validation Question - VQ-Hando_

hando_-computed-point-distance). When a driving see-
nario manages a concept it supersedes all other speci-
fication concepts which attempt to influence the same
concept. This information will be used later during
specification reformulation.

procedure DS-LEVEL-3 0

:-_ step_
insert within-01 acl;

insert top-of-b[ock-Lltitude tcl;

delay();
irt_rt entee-new-sieapa,'e a_1)

procedure DS-LEVEL-4 0

:= step_

insert within-el act;
inmert top-of-block-afltitude _:1;

delay();
insert within-accept-h_ndoff-computed-point-distance act;

inl_rt within-a2 act)

Figure 3: Driving Scenarios for VQ-Hando_

The level of abstraction at which driving scenarios
operate is one of the primary influences on the level
at which simulation will be done. Instead of driving
track-position,the analystcoulddecidetodrivesensor-
reports.This would resultin a larger,more detailed

specializedspecificationwhich would includeprocess-

ing of sensor-reports into tracks.

Scenarios to constrain nondeterminism Specifi-
cations are highly underconstrained, particularly early
in their development. ASC allows one to execute a
specification in spite of this by providing various mech-
anism to constrain the nondeterminism within the con-
text of a validation question. One of these mechanisms
is s restrictive scenario which acts as procedural con-
straint on the behavior space.

One example of this is the Hando2_ transition in fig-
ure 2. Hando_ r is not actually an event but rather a
restrictive scenario which is constraining the simula-
tion to only consider handoffs consisting of an initiate
and accept phase (see figure 4). This scenario pre-
cludes handofl's from being canceled or rejected. More

3O

complex scenarios would deal with this after first per-
forming validation on this simpler case.

scenario handoff(ac:track)

:= stepl[

automat ic-init-handoff(ac);

accept-handof_ac, any controller, any controller)]

Figure4: RestrictiveScenario

Assumptions

Assumptions allow the analyst to codify what are often
implicit assumptions made by developers as they build
rapid prototypes. The advantage of this approach is
that it documents said assumptions. Once recorded,
the analyst can now separately validated the assump-
tions with stake-holders within the context of the cur-

rent validation question. This way the analyst can be
sure that assumptions do not trivialize the basic intent
of the validation question. A later section of this paper
will show how assumptions are used during specifica-
tion reformulation.

invariant FIXED-SET-OF-TRACKS

for-all (tl:track)element-of(tl, (acl, ac2})

Figure 5: Assumption for VQ-Haado_

Assumptions are expressed as invariants. Figure 5
contains one of the assumptions used in the current
example. Since we are not validating track-processing,
we can relax some of the constraints on tracks and for
now constrain the number of tracks in the simulation
model. Acl and ac$ are defined as tracks in an un-
shown initialization scenario.

Influence Analysis

The previous section described how a validation ques-
tion is formalized. This section will show how the
validation question is used to reformulate the current
specification into a specialized specification which is
simulatable. We begin with influence analysis.

Brooks in [Brooks,1986] warns that descriptionsof

software that abstractaway itscomplexity often ab-

stractaway itsessence.Influenceanalysisisa means

of allowingthe analysttosee through thiscomplexity
to distinguishbetween concepts which are most rele-
vant tothe validationquestionand thosewhich arenot.

Once identified,ASC providesreformulationtransfor-

mations which remove those concepts which are not
relevant.

In general, formally showing whether or not one con-
cept effects another is undecidable. Even at an infor-

mal level, causality is a vary hard problem. Influences
finesse this issue by relying on rules which are easily
computable and which generate all potential influences
rather than making claims about actual influences. As
such, the resulting influence graph should be consid-
ered a conservative representation of concept influences
- that is they may indicate influences which are not ac-
tually possible, but are safe, in that they will not fail
to indicate the presence of an influence that does exist.

Once the initial influence graph is generated, more
knowledge intensive approaches are applied to remove
many of those potential influences which are not actual
influences.

Another problem in extracting the influence graph
is that influence paths could be through arbitrarily
many intermediaries and in an incomplete specifica-
tion would be inherently suspect. Rather than deal
with this problem, ASC allows the analyst to limit the
path length it will look at during analysis. Granted
this has the horizon effect, but this can be minimized.

(see section Horizon Effect Addressed)

Influence Definition

An influence identifies the conduits through which one
concept effects another during execution. ASC divides
these conduits up into three classes: information, con-
trol, and miscellaneous. This section will informally
characterize each of these classes and then illustrate

them via an example. ASC has operationally formal-
ized these concepts based on the specification language
Reusable Gist [Johnson and Feather, 1991].

* Information influences are concerned with the

flow of information between concepts. Stated an-
other way, when information changes, how does it
percolate through the system? Some examples of
these types of influences are: database updates, as-
signment statements, and definitional use of data
declarations (i.e., relations, types, and instances) by
other data declarations.

* Control influences are concerned with//and when
behaviors may occur. Some examples of this class of
influences are preconditions on an event, invocation
of an event, invariants, and conditional statements
(Note, granularity of influences is at the level of dec-
larations. Thus influences on or by statements are
reflected as influences on or by the event which con-
tains the statement).

s Miscellaneous influences are concerned with in-

fluences on and by the the validation question. Most
influences are onto validation questions with driving
scenarios being the exception.

31

Figure 6 is the Reusable Gist definition of the event
accept-handoff. Figure 7 shows a paraphrase of this
event. The resulting primitive influence graph is shown
in figure 8.

Demon ACCEPT-HANDOFF(track,

current-controller:controller,

receiving-controller:controller)
precondition contro||ed(tr_ck, current-controller) and

h andoff-in* progreu(t rack,

current-controller,

receiving-cont roller)

poQtcondition ¢ontrolled(trsck, receiving-controller)
:= steps(trsck,controlled -- receiving-controller,

remove h emdoff- in-progreu(t rack,

¢urrent-cont roller,

receiving-controller),

track.track-status _- 'normS)

Figure 6: Reusable Gist definition of the event Accept-
Handoff

[] ZNFO_TION _
Pr_m _ FCCISwT_

gCI_DT_ t* m oct|on 04r the _. Ito INrticllNw_t
• tr4ck, • c_¢.roUm" CIJRRENT-OONTNX.L_m'd • _._r_llm"

2. 1_ evet_ de|eeJe t_ FLit tlwt the tW_FF-IIt-PROClI_
rtlottm mmctatm TIIII_, _-C_I_{I.L£1I 4ml
gB[:EIVIN;_.

3. 1_ _ mst_ the tr_k-mr,_am d TIt_X to natal.

nm'e

r_tlatten_ amncte_ue 1_o CLUI_-_ eml
IIEI_IVlIE-C_NTgl]A.B, Thin,* ts • Im_._ndittnn that _ _ be
letod I the {_TEII.LE] r_lottm to I_I_I¥1N_O_NT_U._,

_tt t_rk Edit

Figure 7: Paraphrase of the event Accept-Hando_

The influence graph of figure 8 is most similar to
de Kleer's mechanism graph from his work in qualita-
tive reasoning [de Kleer, 1986; de Kleer and Brown,
1986]. The mechanism graph shows the causal influ-
ences between concepts. A vertex contains an infor-
mation value which represents a specific circuit com-
ponent attribute (e.g. the voltage or current at a given
component). Edges represent how a change in a vertex
value is propagated to adjacent vertices. Edges are de-
rived from either component models or domain specific
heuristics. In influence graphs, a vertex represents a
specification concept declaration (or fragment). Edges
represent how a concept influences either the behavior
or value of another concept.

The influence graph (figure 8) shows most of
the immediate influences on and by accept-hando_.
Receiving-controller, current-controller, and track are
parameters of the event. Enabling-pred-of-accept-

handoff is a composite node representing the precon-
dition of the event. Controlled, and, and handoff-in.
progress are relation referenced by the event. Edges
within the graph represent the direction in which in-
fluences are propagated. Note that how each influ-
ence effects a given node is not represented. This is
in fact outside the capability of influence analysis in
ASC. None the less, this still provides a great deal of
information to the analyst when creating a specialized
specification as we will see later.

• i

-_
Figure 8: Primitive Influence Graph of the event
accept-hando_

Automated Graph Abstraction

Though the graph in figure 8 could be used as is, it
shows many influences which really do not drive the
dynamic behavior of the specification. This section will
describe some of the influence abstraction rules which

are applied automatically by ASC. Figure 9 shows the
resulting influence graph. It is this graph, not the pre-
vious one, which the analyst is first shown after influ-
ence analysis.

m

m

m

Z

m

smml

U

Ilmm

M

Figure 9: Influence Graph of the event accept-handoff

Below are some of the abstractions which are auto-

matically applied during influence analysis.

32

• Remove influences on self.

• Remove influences from concepts in the Predefined
folder (i.e., commonly used relations, e.g., and).

• Remove static concepts which have no influences on
them 3.

• Remove variables and parameters which are not ex-
plicitly influenced. 4

Interactive Graph Abstraction

Not all abstractions can be done in an automatic fash-

ion. Typically, the presence of certain influences indi-
cate either an error in the specification or an opportu-
nity to apply an abstraction. The analyst must make
these decisions. ASC identifies these cases during au-
tomatic influence abstraction and then posts notifica-
tions via an agenda mechanism. When the analyst is
ready, he/she may view the agenda and the alterna-
tive actions recommended by ASC. Recommendations
typically include suggested transformations which can
cause the desired effect in either the evolving special-
ized specification or the underlying specification. Some
of these interactive suggestions are:

• When there are no influences on a type or relation
declaration, suggest that the concept should be de-
clared static.

• When there is an influence on a tyPe or relation dec-
laration, suggest that the concept should be changed
tb dynamic (e.g., explicit or derived relation).

• When an influence node has only a single input in-
formation influence and only a single output infor-
mation influence, suggest that the intermediate node
be abstracted out and the input and output nodes
be modified to be a direct influence.

For validation question VQ-Haadoffof figure 2, in-
fluence analysis results in 224 influence nodes. After
automatic abstraction this count is reduced to 97 influ-

ence nodes with 51 posted suggestions (most of which
concern suggestions on declaring concepts as dynamic
or static). After the analyst handles the most obvious
suggestions, the influence node count is reduced to 77.
Though an improvement over the starting point of 224
concepts, there are still a lot of concepts to compile for
simulation.

Specification Reformulation

The previous section's analysis and reformulation were
basically independent of the validation question. This
section will suggest more drastic reformulations which

all there is an influence on a static concept post it as an
error.

4Explicit information influence are various forms of as-
signment. Event parameters are almost always removed
since the dominating influence is the control influence on
the event (e.g., who the caller is).

take advantage of the knowledge implicit in the vali-
dation question.

Modification, whether motivated by errors discov-
ered in the specification or by simplifying assumptions,
are accomplished via the application of transforma-
tions. Since ASC is a component of ARIES, it is able
to take advantage of an extensive library of evolution
transformations [Johnson and Feather, 1990]. These

transformations formally evolve a specification based
on specific desired effects.

An important feature of the reformulation process is
that not all the effort to build the specialized specifica-
tion need be thrown away after doing validation. Many
of the applied transformations are equally valid in both
the specialized specification and the original specifica-
tion. ASC allows the analyst to declare during refor-
mulation if a transformation should be recorded and

later applied to the original specification. This selec-
tive record of transformations provides an opportunity
for these transformations to be replayed on the original
specification. (This selective replay capability has not
yet been implemented in ASC.)

Reformulations Motivated by the

Validation Question

Reformulation based on a validation question is anal-
ogous to how partial evaluation (mixed computation)
[Ershov, 1985]is able to generate an efficient resid-
ual program based on a more general program and a
subset of its input parameters. This technique is po-
tentially more powerful because a validation question
is a richer source of knowledge than just a list of input
parameters.

Reformulation based on assumptions We begin
with VQ.Handoffs assumption (see figure 5) that there
will be a fixed number of tracks which already ex-

ist. Figure 10 shows the influence graph of fized-set-
of.tracks and all of the concepts in the specification
it directly influences, i.e., track, initiate-tracking, and
eztract-track.info.

The analyst begins with the event initiate-tracking.
Influence analysis shows there are no other influences
on it. Visual inspection reveals to the analyst that it
creates tracks. Since the assumption says there will
be no new tracks, this event is superfluous and thus
should be abstracted out)

The analyst next handles the type track. The impli-
cation of the assumption is obvious. The type should
be declared static. Note that this is not generally true
within the air traffic control domain, but illustrates a
common result of validation question assumptions.

The third influenced node is the event ez4ract-track-

in[o. The analyst attempts to handle it as he/she

_A theorem prover would be very useful here. Given the
narrowed context, it might be tractable to prove the above
conclusion automatically. This is outside the scope of ASC.

33

m • m.

M

W -gt - mmm-aa4m-m_u.-:

!r9

mmlm_

amm_

Itml

m

Figure 10: Influence Graph of the assumption]ized-
set-of-tracks

handled initiate.tracking. In this case, visual inspec-
tion of the event shows that this event both creates

tracks and assigns them a track-position. At this point
the analyst needs to determine if he/she will special-
ize ertract-track-info into a new event which only deals
with track.position or if the event may be abstracted
away completely. The analyst then displays a new in-
fluence graph as shown in figure 11. This influence
graph shows that eztract-track-info influences both
track and track-position. Additionally, track.position
is influenced by the driving scenario ds-level-3. At this
point, remembering that driving scenarios have taken
responsibility to be the sole maintainer of the concepts
they influence, the analyst now removes eztract-track.
info from the specialized specification.

m "'

mm

Figure 11: Influence Graph of the event eztract-track-
info

Reformulation based on driving Scenarios In
the current example, influence analysis shows that the
nezt-controller relation used by antomatic-init-handoff
relies on paired and flight-plan neither of which is fully
defined. Additional analysis shows that flight.plan in-
fluences only a few other concepts including confor.

mance. The analyst decides to abstract out flight.plan
and paired and then model nezt-controller and confor-
mance without them.

Two approaches are possible. One is to redefine
neziocontroller such that it can be derived from con-
cepts already within the specialize specification or to
directly maintain the relation. In the spirit of pick-
ing the approach which is quick (and hopefully not too
dirty), the latter is chosen. This is easy to do within
the context of the validation question. The analyst
simply includes an assertion as part of the driving sce-
nario that nezt-controller(ac-1, cl).

More reformulation based on assumptions
Conformance is handled slightly differently. Since VQ-
HandoH deals with handoffs which are initiated auto-
matically, the analyst can take advantage of this spe-
cialized case knowledge and assume conformance is al-
ways true. To assume otherwise would imply one is
not in an automatic handoff situation and thus would

be outside the scope of VQ-Hando_.
Note that it might be tempting to abstract away

conformance by assuming inhibited-handoJy is false, but
this would fail because inhibited-handoffalso influences
other events which are directly involved in the valida-
tion question (see figure 12). Such assumptions which
influence system behavior with respect to the valida-
tion question are not acceptable.

Figure 12: Influence Graph of the relation Inhibited-
HandoM

Another use for assumptions is to decompose vali-
dation questions into smaller more manageable pieces
similar to how assumptions are used in proofs to break
them up into multiple, hopefully more manageable,
pieces. In the case of automatic verses manual initi-
ation of handoff, a well chosen assumption creates two
distinct scenarios which are then handled separately.

Reformulation to introduce qualitative abstrac-
tions An earlier version of the validation question
VQ-Handoff was expressed in terms of track-position.
Likewise, many event preconditions were expressed in
terms of track-position. Rather than describe scenar-

34

losin terms of track-positions,the analystdecided to
reformulatethe specificationto introducequalitative

abstractions.ASC facilitatedthis by showing what
concepts where influencedby tract-positions.The an-
alystwas then able to use ARIES transformationsto

replacecomplex predicatesabout track-positionwith

new predicatesexpressedinterms ofnewly definedre-

lations.These new relationswere top-of-block-altitude,
within-handoff-computed-point, within-accept-handoff.
computed-point-distance, and within-accept.handoff-
computed-point.time. Each is a specializations of tract-
position. This now allowed the analyst to easily de-
scribe validation questions and scenarios in terms of
these, qualitative states rather than in terms of tract-

position which has many more states but which fall
into one of these five qualitative states.

Reformulating scenarios as run-time con-
straints Not all optimizations are realizable during
specialized specification construction. This problem is
pointed out by Meyer in [Meyer, 1991] when applying
partial evaluation to imperative languages. The prob-
lem is that compile time execution can result in side-

effects which are not noticed at the appropriate time.
This is because the side-effect could happen during spe-
cialized specification construction and not during sim-
ulation. The problem with this is that other parts of
the specification which trigger on the side-effects of the
partially evaluated scenario will now not have those

side-effects to react to at run-time. As a result par-
tial evaluation at specialized specification construction
time must be constrained not do anything that causes
triggering states to disappear.

In VQ-Hando_, the handoff scenario includes only
automatic-init-handoff and accept-handoff. It excludes
several other events that could be a part of a typi-
cal handoff scenario (e.g., manuai-init-handoff, reject.
handoff, and cancel-handon). ASC translates these sce-
narios into a procedural invariant which ensures the
appropriate behavior at run-time. The advantage of
such a constraint is that one is not forced to deal with

control issues regard the full set of events until the pair-
wise (in this case automatic-init.handoff and accept-
handoff) interaction has first been resolved.

Horizon Effect Addressed

ASC mitigates the horizon effect by trying to create a
specialized specification which defines a closed simula-
tion model. In such a model there are no outside influ-
ences and all influence paths within the closed model
are known, thus there is no horizon effect.

With respect to the current example, reformulation
continues until a closed model is achieved. The final
specialized specification contains 44 influence nodes.

Summary

The success of the ARIES Simulation Component may
be measured with respect to the following criteria.

* ability to execute a specification where previously it
could not be done.

• ability to execute a specification with less effort than
was required before.

• ability to document requirements satisfaction.

* ability to make validation comprehensible to stake-
holders.

• ability to provide a flexible approach for system val-
idation.

At this point its too early to address most of these
issues. I have only applied ASC to a few validation
questions, all within the domain of ATC handoffs. The
most quantifiable results to date concern the number of

concepts involved in the specification of VQ-Handoff,
figure 13.

ATC Knowledge Base
Primitive Influence Graph
Initial Influence Graph
Final Specialized Specification

number of concepts [[

1,400
224
97
44

Figure 13: Number of Concept Declarations for Vali-
dation Question vq-hando_

This illustrates that only a fraction of the total
number of possible concepts were actually needed to
achieve executability. Additionally, the focus provided
by the validation question provided direction on which
concepts to flesh out next in order to achieve closure
and executability. Granted these techniques could and
have to some degree been applied by hand when one
builds a rapid prototype. The difference is that ASC
generates both a rapid prototype and a formal charac-
terization of how it relates to the original specification.

As a sidebar, in the process of constructing the spe-
cialized specification I discovered several errors. Many
of these were in fact errors in the specification which
I believed was essentially correct. This seems good,
in that error discovery is an important precursor to
validation.

References

Boehm, B. 1981. Software Engineering Economics.
Prentice Hall.

Johnson, W.L.; Feather, M.S.; and Harris, D.R.
1991. The KBSA requirements/specifications facet:
ARIES. In Proceedings of the 6th Knowledge-Based
Software Engineering Conference. to appear in IEEE
Ez_pert.

Brooks, F. P. 1988. No silver bullet: Essence and

accidents of software engineering. Computer20(4):lO-
19.

35

Johnson, W.L. and Feather, M.S. 1991. Reusable gist
language description.Availablefrom USC / [SI.

Kleer,J.de 1986. How circuitswork. In Qualitative

Reasoning About Physical Systems. MIT Press. 205-
280.

Kleer, J.de and Brown, J. S. 1986. Qualitative physics
based on confluences. In Qualitative Reasoning About
Physical Systems. MIT Press. 7-83.

Johnson, W.L. and Feather, M.S. 1990. Using evo-
lution transformations to construct specifications. In
Automating Software Design. AAAI Press.

Ershov, A. P. 1985. On mixed computation: Infor-
mal eu:count of the strict and polyvarimat computation
shemes. In NATO ASI Series, Vol. Fld - Control
Flow and Data Flow: Concepts of Distributed Pro-
gramming. Springer-Verlag. 107-120.

Meyer, U. 1991. Techniques for partial evaluation of
imperative languages. In Proceedings of Sympsium
on Partial Evaluation and Semantic.Based Program
Manipulation, Yale Univ., New Haven, CT. 94-105.

36

