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Abstract

Selecting a good bias prior to concept learning

can be diff_ulL Therefore, dynamic bias adjustment is
becoming increasingly popular. Current dynamic bias

adjustment systems, however, arc limited in their abil-
ity to identify erroneous assumptions about the rela-

tionship between the bias and the target concept.
Without proper diagnosis, it is difficult to identify and

then remedy faulty assumptions. We have developed
an approach that makes these assumptions explicit,

actively tests them with queries to an oracle, and
adjusts the bias based on the test results.

1 Introduction

Bias is a fundamental aspect of any supervised

concept learner. Numerous papers have noted this
importaxw.¢ (e.g., Mitchell 1980; Haussler 1988). The

type of bias that we discuss here is the choice of a

hypothesis language. The hypothesis language defines
the space of hypotheses. A strong bias defines a small

hypothesis space; a weak bias defines a large
hypothesis space; a correct bias defines a space that

includes the target concepL A strong correct bias, e.g.,
one with fewer features" is generally desirable because

it reduces the number of hypothesis choices and
thereby promotes rapid convergence to the target con-

ccpt.

The bias can be adjusted (shifted) dynamically
during incremental concept learning by strengthening

the bias when possible and weakening it to regain
correcmess. Recently, inuacst has grown in systems

that dynamically shiR the bias (e.g., Utgoff 1986; Ren-
dell 1990; Spears & Gordon 1991). These systems,

however, arc limited in their ability to identify errone-
ous assumptions about the relationship between the

biasand the targetconcepL Properdiagnosisaids in

the recovery from faultyassumptions. We have

developed an approach to bias adjustment that
addresses this need for proper diagnosis. Our method

consists of a bias tester and adjust_r that can be added

to an incremental concept learner to improve the

learner's performance.

Unlike previous approaches to bias testing, our
approach uses formaldefinitions of assumptions about

the bias, called biasing assumptions, to guide an
analysis of why the bias is inappropria/¢ (e.g., too

weak, or incorrect) for learning the target concept.
An example of a biasing assumption is the irrelevance

of a feature for learning the target concept. The bias
tester performs this analysis (called a biasing assump-

tion test) by actively testing the bias with queries to an

oracle. Each query is a request to an instance genera-
tot for a new instance. For example, the irrelevance of

a feature might be tested by querying an oracle for the
class(positiveJncgative) of instances having different
values of that feature. The bias adjuster then records

the analysis results and adjusts the bias accordingly. If

a biasing assumption holds, the adjuster strengthens

the bias, e.g., by removing the irrelevant feature from
the hypothesis language. Otherwise, the adjuster
weakens the bias or allows the bias to stay the same if

no adjustments are needed.

Our approach has three primary advantages.

F'urst, the bias tests are composed of queries. Queries
can accele1"ate learning significantly (see Gordon

1990; 1992). Second, our approach is designed to be

incorporated into an existing concept learner. Third,
our approach diagnoses the bias to find and record

specific emmeous biasing assumptions. This enables

the bias to be minimally weakened as well as
corrected. Minimal weakening is most advantageous
when a stronger bias is desirable. In that case, bias

strengthening along with minimal bias weakening can

enable vexy rapid acquisition of the target concept (see
Gordm 1990; 1992).

In out framework, the bias is the set of features

and their valuea in the hypothesis language. These

values appear in value trees (e.g., see Figure 1), which

are input by a user or knowledge engineer who is
somewhat familiar with the domain. Value treesare
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typically called generalizationtrees because parent
nodes are mote general than their child nodes. Train-

ing instances are described in terms of leaf node
values. Throughout this paper, we assume the concept

learner begins with hypotheses described in terms of
the instance language and evolves its hypotheses

(perhaps using the value trees) in a specific-to-general

direction. Generalization increases the generality of

values within a particular hypothesis; abstraction
increases the generality of the hypothesis language.

The concept learner can use value trees for gmeraliza-

Lion. Our approach to bias testing and adjustment uses
value uee_ for abstraction. Bias strengthening implies
removal (i.e., abstraction) of a feature or feature value

distinction from the hypothesis language. This shrinks
the hypothesis space. Bias weakening implies the res-
toration of features or feature value distinctions. This

weakening undoes abstraction and enlarges the
hypothesis space. Bias weakening is defined to be
minimized when the features and feature value distinc-

tions that m'e restored to the language are restricted to
those that must be restored to correct the bias.

The drawback of our approach is that it requires

an oracle that can respond to queries during learning.
The oracle can be either a human or the environment.

In either case, it is not always practical to require an

oracle. Humans may be too busy to answer questions.
Furthermore, the use of the environment as an oracle is

impractical if lives arc at stake. For example,, it is

unreasonable to query whether a new chemical
weapon is effective at killing people. On the other

hand, it is practical to query whether small doses of
Vitamin C cure the common cold.

Using Figure 1, we can see how a bias may be

strengthened, weakened, and minimally weakened.
Suppme the bias is all the trees in Figure l, and the

target concept states that mall brkks are positive and

instances of any other description are negative. The
bias might be strangthened by removing all features

other than "size" flora the hypothesis language, This

bias is inconect because "shape" information is also
needed to learn the target concept. Oue way to

weaken and cormc, the bias is to restore the original

language. Alternatively, we can minimally weaken
the bias by restating perts of the "shape" value tree

but none of the "material" tree. Within the "shape"
tree,we restme the "cube"/"brick'" distinction and

above, and restore the "curved-solid" node, but do

not restore any child of the "curved-solid" node.

Removing a distinction strengthens the bias to create
an abstraction, whereas restoring it weakens the bias

to undo the abstraction.

Section 2 formally defines two important bias-
ing assumptio_ and then collapses them into one.

Section 3 presents and analyzes algorithms to test the

collapsed assumption. Section 4 summmzns and
explains empirical results. Finally, Sections 5 and 6

present related work and a summary of the paper.

2 Biasing Assumptions

When supervised concept learners shift their
bias, they typically make an implicit biasing assump-

tion that the bias shift is correct for learning the target
concept. Our approach makes each biasing assump.

tion explicit, and associates each assumption with an
abstraction operat0f. If the assumption holds, the

co_g abstraction operator can fire.

We assume two abstraction operators: climb-

value-tree(f.a) and remove_feature_. The climb-
value-treeOe_) oper_or replaces values of feature f

thatare lower in the value tree(e.g.,"cube" and

"brick" in Figure l)with a value a (e.g.,"'prism")

that is higher in the tree throughout the hypothesis

language. The remove-feature(Doperator eliminates

feature f from the hypothesis language. We associate a
cohesion asmmpfion with climb-value-ueeOr_).

Cohesion impliesthatthevaluesbelow a inthevalue

tree off areunnecessaryforpredicting the target con-

cept membership of instances.We associatean

irrelevance mmmption, which is equival_t to cohe-
sion at the root node of a value tree, with drop-

feature(/). Irrelevance implies that the feature to be
removed is unnecessary for predicting the target con-

cept membership of instances.

The following are the formal definitions of the
two biasing assumptions. Thcsc definitions are

lailored for an incremontal concept learning context.
We assume one new instsnce is accepted at a time and

all previous instancesare saved. Furthermore, we
assume that the instances me not noisy and that the

instance features are sufficient to distinguish positive

from negative instances, though perhaps not ideal for
learning the target cotw, ept. We abbreviate the set of

all known lx_itive imtancesat time t with POS(O, the
set of all known negative instances at time t with

NEG(t), the set of all pes/tive instances with POS, and
the set of all negative instances with NEG. We abbre-

viate the new instance at time t with i (t), the target

conceptwith TC, the irrelevmcebia_tg assumption
withIRR (f,TC,t)forfeaturef,and thecohe_rt bias-

ingassumptionwithCOH (a,TC,t)forvaluea.
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FIG. I. Value trees.

For the following definitions, if i (t) is positive,

we let L(t)=(PO$(t) U (i(t)}) and L=POS or we let

L(t)=-NEG(t) and L=NEG. Likewise, if i (t) is nega-

five, we let L(t)=(NEG(t) U {i(t)J) and L=NEG or we
let L(t)=POS(t) and L=POS.

Let (ft .... J,} be the set of feaua'es considered

relevantas of time (t- I). Let l</._n,where i isthe

subscript used in the following definitions. Finally, we

define J_(x,vD to mean that the value of feature A for
instance x is vi. Although the instance language con-
sists of value tree leaf nodes, a nonleaf node can also

be used to describe an instance, though not uniquely.
We allow vi to be either a leaf or nonleaf node in the

following definitions. The formal definition of the
irrelevance biasing assumption is:

/RR (fi,TC, t) *-*
(CCv_..... v.)(((ax • C (t)Xfl (x, vl) ,t...,t A(z,v.))) --,
(CCw_)(Vy)((fl (y, vl) ,t...,t A(y,w_) ,t...,t f.(y,v.))
--, (y • c))))).

In other words, A is considered irrelevant to learning
TC at time t if changing the value of A in any known

instance x always yields a (new or old) insumce whose
classification (posifive/negative) is the same as that of

X,

Next, we define the cohesion biasing assump-
tion. The cohesion of value a with respect to the tar-

get concept, COH(a,TC, t), means that the descendent

nodes (al ..... at} below value (node) a in the value
tree appear to behave equivalently with respect to tar-

get concept membership. Let A = (al ..... ad. Let
l_._n and l_,k_/. The formal definition is:

COIl (a, TC, t)

(O/vl ..... v.)O/aj • A)(((-ax • I, (t))
(fl (x,v_) ,t...,t A(x,aj) ,t...,t A(x,v.))) --,
(_a_ • A)_y)((A (y,v_) &...,t A_,ak) ,t...,t A(y,v.))
---,(.v• L))))).

Inotherwords,cohesionholdsforvaluea forlearning

TC at time t ifthe rcplacmnentof one descendent

value of a with another descendent value in any

known instancex alwaysyieldsa (new orold)instance

whose classification is the same as that ofx. Note that

irrelevance is a special case of cohesion that occurs
when a is the root node of a value tree. Therefore,

these two assumptionscan be collapsedinto one. Let

us call the collapsed assumption IRR--COH(a,TC, t).

The definition of this collapsedassumption is identical
to that of COH(a,TC, t).

3 Queries for Testing the Biasing

Assumptions

The definition of IRR--COH(a,TC, t) presented

in the last section has been translated into algorithmic

biasing assumption tests. This section presents the
algorithms for these tests. There are two types of
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biasing assumption tests, corresponding to the two
times at which tests are executed. Each type is associ-

ated with a separate algorithm. One type of test (in

Section 3.1) executes before bias shifting, and the

other type (in Section 3.2) executes after bias shifting.

Like the definition on which they are based, our

biasing assumption tests are tailored for incremental
concept learning. If an assumption test is satisfied,

then the correspcmding biasing assumption is con-
sidered valid, and therefore it is "safe" to implement

the abslraction corresponding to this assumption. If
the test is not satisfied, corrective action may be

required.

We assume that our approach to bias testing and
shifting is added to an incremental concept learner that

maintains two Disjunctive Normal Form (DNF)
hypotheses: one that covers all previously seen posi-

tive instances and one that covers all previously seen
negative instances. The flow of control begins when a

query to the instance generator requests a new
instance. When the new instance is received by the

concept learner, the learner uses its hypotheses to
predict the class of this instance. The learner then
consults an oracle to find out the mac class of the

instance. If enough instances have been seen at this

time to complete an assumption test, the bias is shifted

according to the test results. Next, the learner updates
its h_ to preserve completeness and coa-

sisteney. Completeness implies the positive
hypothesis covers all known positive instances and the

negative hypothesis covers all known negative
instances. Consistency implies the positive hypothe_

covers no known negative instances and the negative

hypothesis covers no known positive inslance& These
steps are repeated until the user decides the target con-

cept has been learned. For more details see (Gordon
_992).

We introda_ four types of queriesto facilitate
concept learning with bias shifts: b/as strengthening
queries, bias weakening queries, counterexan_le

queries, and random instance queries. An assumption
test is a sequence of bias strengthening queries or a

sequence of bias weakening queries. Bias strengthen-
ing queries test absu'actions before they are made; bias

weakening queries retestabswactionsafter they have
been made. The last two types of queries are not part
of assumption tests, but they are useful for other rea-

sons. The purpose of counterexample queries is to find
out whether the bins is inconect. If an incorrecmess is

found, the bias weakening queries then determine why

the bias is incon_t. The purpose of the random

instance queries is to generate instances for concept

learning when none of the other queries applies. All

queries except the bias weakening queries request
instances not previously seen. Bias weakening queries

try to use previously seen instances before generating
new ones because they retest previously held assump-

tions, and the necessary instances to do this are often
already presenL

Random instance and counterexample queries

axe simple, so we describe them first Random

instance queries are requests to the instance generator
for randomly generated (previously unseen) instances.

Counterexample queries can provide counterexamples
because they are requests for randomly generated

(unseen) instances that are covered by one of the
hypotheses. A negative instance covered by the posi-

tive hypothesis is a cotmterexample, and a positive
instance covered by the negative hypothesis is a coun-
terexample.

3.1 Bias Strengthening Queries

Bias slrengthening queries test whether the bias-

in8 assumption associated with a potential abstraction
holds. To do this, these queries test nodes of the value

tree below the potential abstraction. If these values do

not seem useful for distinguishing target concept
membership, the abstraction is made.

The assumption tests that use bins strengthening
queries and In executed prior to abstraction may be as

rigorous as desired. Tests that use more queries are
more rigorous. (Gcm_ 1990) describes a method for

varying the rigor of these tests. Increasing the rigor
can reduce the number of prediction errors, but it can

also significantly increase the cost of the tests. For

example, suppose we wish to test the cohesion of
value a of feature f. Let us consider how we may vary

the rigor of tests that are based on the formal definition
oflRR--COH(a,TC, I) in Section 2. We can increase

the rigor with which we test the cohesion assumption

by the following two methods: (1) Increase the

number of values at from A to substitute for the origi-

nal value aj before assuming _ holds; (2)
Increase the number of ins_ x whose f value is
varied before ramming _ holds. (Note that

each x _ to a unique choice of values for vl

through v,.) Eitl_r of these methods will increase the

number of queries.

Here, we describe an algorithm that does not

have very rigorous assumption tests and is therefore
not excessively costly. It is not very rigorous because

only one sibling of the original value is tested for each
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hypothesis disjunct before making an abstraction, and

because hypothesis disjuncts, rather than instances,

have their values varied. There are typically far fewer
disjuncts than instances. Our algorithm for generating

bias strengthening queries to test biasing assumptions
is the following:

Repeat the following until no more unseen, uncovered
instances i" can be generated:

For each instance featurefdo

Find the value a that is the parent node of the
value off in some (arbiwary) disjunct of one of

the two hypotheses. The value a is a potential
abstraction to be tested. If this value has been

tested previously, then select another value for
a from another disjunct.

For each (positive, negative) hypothesis h do
For each disjunct d/sj of h do

(1) Find f(x,v), a conjunct of disj. If
none exists, or if v is not a child of a, try
anotherdisjunct.

(2) SetSIBLINGS equaltothesetofall

siblings(whichsharea parentnode a)of

v inthe value treeoff. These siblings
atechildrenofa.

(3) Select s ¢ SIBLINGS.
(4) Replace "'f(x,v)" in d/sj with
"fix,s)" to form d'. Then form a poten-

tial instance i" that satisfies d ° by
translating d" to the language of the
instances, which consists of leaf values

in the value trees. When translating to
leaf values, the choice of a descendent

of a higher level value is random.
Check to see that i" is not already

covered by the hypothesesand has not

been seen yet. Ifi"is uncovered and

unseen,requesti"from theinstancegen-

erator and continue. Otherwise, try
other choices of leaf value descendents

until they have all been tried. If the des-
cendents have all been uied, then go to

step (3) to find another sibling.

(5) Accept i" from the instance genera-
tor and consult the oracle for the class of

/'.

Endfor

Endfor

(If the assumption test for abswaction a has
succeeded at this point, the bias adjuster makes

the abstraction.)
Endfor

This algorithm executes a sequence of biasing

assumption tests. Each biasing assumption test
corresponds to a test of an abstraction a. This test con-

sists of a sequence of queries that vary the values in
the hypothesisdisjuncts.To ensure that these queries

do not overlap with the other query types, bias
strengthening queries only request insU_nces that are

not covered by either of the hypothesesand have not

yet been seen. To form each bias slJ_tgthening query,

this algorithm selects one feature f of one disjunct of

one hypothesis h and alters the value of this feature.
This is a form of perturbation (Porter & K/bier 1986).

The value of f that is perturbed is a child, i.e., an
immediate descendent, of the abstraction a in the

value tree. The new value obtained through perturba-

tion is a sibling of the original value, i.e., both values
are children of a in the value tree. This new value is

substituted for the old value in the hypothesis disjunct'

and an instance that matches this description and has
random values for unspecified features is requested.

Let us assume the algorithm is testing abstrac-

tion a. For each hypothesis h, suppose perturbing the

value off in all disjuncts of h yields only instances
whose class is the same as that of h. Then nodes in the
value tree below a do not seem to be useful for distin-

guishing positive from negative instances (though this
assumption might later be proven wrong). Thus, the

abstraction to a is permissible and can therefore be
made by the bias adjuster. In other words, the biasing

assumption test for abslraction a is satisfied. On the
other hand, if an instance of a different class is gen-
erated, the abswactioncannot be made because the

biasing assumption test is not satisfied.

Because we assume the hypotheses begin with

the language of the instances, which consists of leaf

valuesin the value trees, this algorithm tests abswac-
tions one value tree level at a time, beginning one

level up from the leaves. For example, when using the
"'material" flee of Figure 1, the language shiR to

"alloy" would be tested before the language shift to
the root node "any material".

We can now see how this algorithm corresponds
to the formal defh'fition of lRR--COH (a,TC,t) in Sec-

tion 2. For each disjunct d of hypothesis h, we let x
(f_m the assumption definition) be any instance

covered by d. We also let v l through v, be the feature

values present in d. To perturb the value of feautre 3_,
our algorithm selects an at for the sibling value. If the

substitution of at into d yields a new instance whose
classification differs from that of x, the assumption

being tested does not hold. On the other hand, if the
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substitution of at's into every disjunct of h yields only
instances of the same class as x, our assumption passes

the test and is considered to hold. The pertmbation
values at are children of node a in a value tree, where

a is the abstraction being tested. Ifa is the root node of
the value tree, our algorithm tests the irrelevance off.

Otherwise, our algorithm tests the cohesion of a.

An upper bound on the number of bias

strengthening queries generated by this algorithm is
O(F * D * d), where F is the number of instance
features, D is the maximum number of disjuncts in the

two hypotheses, and d is the maximum depth of a
value tree. The branching factor of the value tree is

not included in the cost of this algorithm because to
test each abstraction only one sibling value is

requested for each disjunct.

To illustrate bias strengthening queries, suppose
we are testing the feature "size", where the features

and trees of Figure 1 are used. Furthermore, suppose
feature "material" is consi_ irrelevant and has

been removed from the hypothesis language, and the

current hypotheses are:

POS HYP: (xl

((s_e(x_maU) & shape(x,_ck))
v

(size(xJarge) & shape(x_phere))) }

NEG BYP:. {xl
(size(x, medium) & shape(x,cylinder)) }.

Then a bias strengthening query to test the abstraction

to "any size" is formed by using the tim disjunct of

the positive hypothesis to request a medium brkk (or
large brick) that has a randomly chosen value for
"material". Then the second disjunct of the positive

hypothesis is used to request a smaU sphere (or

medium sphere), and the only disjunct of the negative

hypothesis is used to request a small cylinder (or
largecylinder),each withrandomly chosenvaluesfor

"material".Ifthe firsttwo instancesarepositiveand

the thirdinstanceis negative,then "size" is con-

sidered irrelevant and is removed from the hypothesis

language by the bias adjuster. An abstraction is
created when "size" disappem from the hypothesis

language. On the other hand, if any of the requested
instances has a different classification than the

hypothesis from it was derived (e.g., the first instance

is negative), then the abstraction is not created and
"size" remains in the hypothesis language.

3.2 Bias Weakening Queries

Because the algorithm of Section 3.1 does not

exhaustively test the biasing assumptions (e.g., only
one sibling value per disjunct is tested before creating

an abstraction), absuactions made after running this
algoritinn cannot be guaranteed to be correct. There-

fore, bias weakening queries are needed to retest the

abstractions after a prediction error in case the predic-
tion error is due to an incorrect abstraction rather than

a generalization ca'for. These queries perturb the
values of the description of the instance for which a

wrong prediction has been made to isolate erroneous
abstractions that might have caused the error.

Suppoee a wrong prediction is made on a new

instance i, and H is the hypothesis whose class differs
from that of i. Then the following is our algorithm for

generating bias weakening queries following a wrong

prediction:

Form the set A of all abstractions present in the

hypotlau_ language (and in H) that apply to i. These
are the abstractions to be tested. Elements of A are

feature-value
FOr each (f_) ¢ A that is not already known to be
faulty do

Let L be the set of all leaves in the value tree for f
that are below a.

F,or each v c L do

(1) Substitute v for the corresponding feature

value in the description of i tO form a new

descdpti_ of i'. If i" has not yet been seen,

ask the concept learner to predict then get the
actualclass (from the oracle) of i'. Otherwise,
use the known class of i ".

(2) If the class of i" is the same as that of i then

loop again to find another element of L. Other-
wise, record (f.a) as being faulty and abort this

loop through the values of L tOgetanotherele-
ment of A.

Endfor

Endfor

An abstraction applies to an instance if it has a value
of feature f that is mote general than the value off in
the instance. In other words, the abstraction must be a

value Uee ancestor of the value of fin the instance.

This algorithm ret_ts the biasing assumption
associated with each abstraction a. The values for per-
turbafion are leaf nodes in the value uee below the

abstraction a being tested. A fealme value of i is

varied by substituting a perturbation value into the
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description of i and requesting an instance of this new

description from the instance generater along with the

class of the requested instance. If perturbing any of
the values of i causes the generation of a new instance

of a different class than i, then the abstraction being
tested by perturhation is faulty. This abswaction is
faulty because it removes a distinction that is below it

in the value tree and that is necessary for predicting
target concept membership.

Although bias weakening queries do not retest

a/l biasing assumptions, they rigorously retest all bias-
ing assumptions associated with abslractions that

apply to i. Therefore, they identify all biasing assump-
tion errors that caused the error in predicting the class

of i. By doing so, these queries correct the bias in a
way that enables the concept learner to regain con-

sistency and completeness with respect to all previous
instances, including i. We consider this testing to be

rigorous because a/! descendent (leaf) values are
tested until a value is found that disallows the abstrac-

tion. If none is found, the concept learner regains con-
sistency and completeness without bias shifts.

Similarly to Section 3.1, we can see how this

algorithm corresponds to the formal definition of

IRR-COH(a, TC, t) in Section 2. This algorithm alters
the value off in the new instance i for which a wrong

prediction has been made to create queries that request
new instances. The algorithm then tests whether these
newly-created instances have the same classification

as i. The instance i plays the role of x in the

definitions, and the perturbation values axe the at's. If
the abstraction a being tested is a root node value of a

value tree, this algorithm tests the irrelevance of f.
Otherwise, the algorithm tests the cohesion of a.

A is the set of all abstr_tions that apply to i. If
F is the number of instance features, then the max-

imum size of A is F. This is because, for each instance

feature f, only one ancestor (in the value uee) of the

value of f in i will be in the hypothesis language at a
particular time, and there are at most F features in the

hypothesis language. In other words, for each f, there
exists at most one (f,a) ¢ A. Furthermore, for each

(f,a) E A, this algorithm tests all leaf node descendents
of a. There am at most b a of these descendents, where

d is the maximum depth and b is the maximum branch-

ing factor of any value tree. Therefore, an upper

bound on the number of queries generated by this
algorithm is O(F * b_). This algorithm is executed for

each instance i for which the concept learner makes a
wrong prediction.

To illustrate bias weakening queries, we con-

tinue with the example in Section 3.1. Suppose the
bias sliengthening queries cause "size" to be con-

sidered irrelevant and removed from the hypothesis
language. The hypotheses are now:

pOS HYP: { x I((shape(x,brick)) v
(shape(x,sphere))) }

NEG HYP: { x I (shape(x, cytinder)) }.

If a large copper brick is not among the known

instances, and a counterexample query requests one,
and this instance is negative, then the concept learner
will incorrectly predict the class of this instance. Bias

weakening queries now perturb the description of this

instance to determine the source of the prediction

error. Perturbation to test the abstraction to "any
size" might result in a request for an instance that is a

small copper brick. If this example is positive, the
assumption that "size" is irrelevant for distinguishing
target concept membership is incorrect. If this

instance is negative, the next query might be a request
for a medium copper brick.

After bias weakening queries identify incorrect
biasing assumptions, the bias adjuster weakens the
bias to correct iL In the example just described,

"size" would have to be restored to the hypothesis

language to distinguish the small copper brick that is
positive from the large copper brick that is negative.

After the bias has been corrected, the concept learner

relearns the instances to reform the hypotheses with
the new language bias. The bias weakening queries

enable bias weakening to be minimized because they
identify the incorrect biasing assumptions. All

assumptions not proven incorrect (in the past or the
present) can be assumed to hold and can therefore be

preserved during relearning.

3.3 Order of the Queries

The order for selecting the queries is as follows.
The first query is a random instance query; the next

query is a bias strengthening query. Bias strengthen-
ing queries continue as the default unless one of the

followingholds: (1) complacency occurs; (2) the con-

cept learner makes a prediction error;, or (3) no bias
suengthening query can be formed.

Complacency is defined to occur when the con-

cept learner has made four consecutive, correct predic-
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tions) A string of correct predictions indicates either

that the concept has been learned or that counterexam-
ples to the cm'rent hypotheses should be soughL Since
it is not possible to know for certain whether the

correct concept has been learned, counterexample
queries occur in response to complacency. Bias weak-

ening queries are the response to prediction errors.

Once the diagnosis performed by these queries is com-
pleted, the bias strengthening queries resume until

complacency occurs. If none of the other queries can
be formed, random instance queries are generated.

Counterexample queries can be formed only if they

generate unseen instances that are covered by the
current hypotheses. Bias strengthening queries can be

formed only if they generate unseen instances that are
not covered by the current hypotheses.

4 Results and Cost/Benefit Analyses

In this section, we summarize previously pub-
lished empirical results. We then explain these results

from three perspectives: system bias appropriateness, a
query cost analysis, and a query benefit analysis.

Finally, we present an example that illustrates why our
approach is effective.

4.1 Empirical Results

We have added an implementation of our
approach to biastesting and shifting to an incremental

concept learner to form a system called PREDICTOR
(Gordon 1990; 1992). In the experiments of (Gordon
1992), PREDICTOR's performance is compared with

that of a baseline system called Iba's Algorithm Con-

cept Learner 0ACL), which is based on an algorithm
from 0ba 1979). PREDICTOR is built on top of IACL

by extending IACL's bias shifting capabilities. PRED-

ICTOR is identical to IACL in all ways except two:

the former system tests the bias Wior to bias shifting
whereas the latter does not, and the former system

prefers a stronger bias than the latter system. Both

systems consult an oracle to answer membership
queries. IACL's membership queries are requests for

randomly chosen instances. Also, both systems can

shift the bias. However, IACL, like ID3 (Quinlan
1986) and a number of other concept learners, int_-

leaves hylmthe_s selection and term (feature) selec-

tion. For IACL, bias shifting is not a deliberate, high-
priority task as it is for PREDICTOR.

' The numberof conect prediction, needed wu chm4mby
empirical tests.

The empirical experiments of (Gordon 1992)

demonstrate that when its method is appropriate,
PREDICTOR produces an order of magnitude

improvement in the rate of convergence to the target
concept and its negation over IACL. The empirical
experiments of (Gordon 1990) demonstrate that, when

appropriate, PREDICTOR has a better convergence
rate than all the other systems with which it has been

compared (]ACT.. a variant of [I)3. and a version of

AQ described in Michalski et al. 1986). If inappropri-
ate, however, PREDICTOR produces a performance

degradation with respect to IACL and the other sys-

tems. PREDICTOR's method is appropriate precisely
when one would expect it to be - when bias shifting is

the most expedient action to take to learn the target
concept, i.e., there is a large disparity between the

instance language and the language in which the target
conceptcan be expressedmost succinctly.

Itiseasy to see how thisdisparitywould be

likelytooccur inmany real-worldlearningsituations,

Most objects are described in terms of primitive

features. It is reasonable to expect that a knowledge
engineer, who is familiar with the domain in which

concept learning will occur, would be aware of a

number of potentially useful abstractions but would
not be certain which abstractions are relevant for

learning the concept. Tlwaefore, this engineer might
have the system begin with the known primitive

featm'es, butl_ovidethesystemwithpotential abstrac-
tions. When provided with a set of potentially useful

value flees. PREDICTOR's queries can isolate those
abstractions which am correct and thereby expedite

the learning process.

From an expm_ental study described in (Gor-
don 1992), we have learned that PREDICTOR has a

synergistic effect between its bias shifting method and

its bias tests. The system's bias shifting method pro-
motes this synergy because few bias strengthening

queries are requin_ before an abstraction occurs.

(Recall from Section 3.1 that the number is propor-
tional to the number of hylxahe_ disjuncts.) Further-

more, the system minimally weakem the bias after a

set of bias weakening queries (see Gordon 1992). In
both cases, PREDICTOR is able to capitalize on the

query results to gain and maintain a strong bias.

4.2 System Bias Appropriateness

In this paper, we use the term "bias"
synonymously with "hypothesis language bias". This

is the bias that PREDICTOR adjusts. In this section,

we will discuss a meta-levei bias, namely, the system
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b/as. To avoid confusion with the hypothesis language
bias, hereafter, we refer to the system bias as the

system policy or simply the policy as in (Provost &

Buchanan 1992). At some level, all concept learning
systems have some form of fixed system poficy. For

example, even the most adjustable system cannot
implement all possible bias adjustment methods. The

choice of bias adjustment methods is a fixed system

poficy. No one policy can be best for learning every
target concept. Therefore, we need to develop an
understanding of the appropriateness of system poli-

cies for learning different classes of concepts.

PREDICTOR's policy is its implicit assumption

that abstraction is appropriate to try (by strengthening
the language bias) and to retain (by minimally weak-

erring the language bias) as much as possible.
Strengthening and minimally weakening the bias are
appropriate when they are the correct actions to take

in the context of the current instance language and tar-

get concept.

PREDICTOR's bias strengthening and weaken-

ing queries, which form the majority of the system's

queries, are geared entirely toward gathering informa-
tion for bias shifting. This system uses its queries to

reorder the instances to increase its information gain
about the hypothesis language bias early in the learn-

ing process. Bias shifting is its priority. If this priority
matches the task, PREDICTOR usually outperforms
all other systems with which it is compared. This is

because once PREDICTOR's queries have achieved
their goal of a strong correct bias, the number of

instances required to converge on the target concept is
often significantly reduced by this bias shift (see Sec-
tion 4.4).

Although IACL can adjust the hypothesis
language, PREDICTOR generally far outperforms
IACL when bias shifting is important. This is because

IACL's policy places a higher priority on finding less

general hypotheses and also on maintaining hypothesis
consistency and completeness with previous training

instances than it does on bias shifting (see Gordon
1992). This system only shifts the bias when it

decides this is the best way to achieve its other priori-

ties. IACL's queries are requests for randondy-
generated instances. Therefore, this system does not

favorably order the instances for gathering informa-
tion about the bias. The other systems with which

PREDICTOR has been compared have problems that
are similar to IACL's.

In the next two sections, we present cost/benefit

analyses that further explain the empirical results.

4.3 Query Costs

The upper hounds on PREDICTOR's queries,
presented in Sections 3.1 and 3.2, seem somewhat

high. Why does this system generate fewer queries

(converge earlier) than IACL when bias shifting is
appropriate for learning the target concept? Why does

it generate more queries than IACL when it is inap-
propriate? In this section, we present a rough cost

comparison between the number of queries generated
by PREDICTOR and the number generated by IACL.
To simplify our analysis and avoid a confusion

between the effects of generalization and those of
abstraction, let us suppose that no generalization is

needed for learning the target concept. 2

In Section 3.1, we show that an upper bound on

the number of bias strengthening queries is
O(F * D * d), where F is the number of instance

features, D is the maximum number of hypothesis dis-
juncts, and d is the maximum depth of any value tree.

According to Section 3.2, an upper bound on the

number of bias weakening queries generated in
response to each wrong prediction on a new instance is

O(F * b'a), where b is the maximum branching factor
of any value Uee.

Suppose W wrong predictions are made prior to

convergence. 3 Then an upper bound on the number of

bias weakening queries generated to resolve W wrong
predictions is O(W * F * bd). Therefore, an upper

bound on the total number of bias strengthening and

weakening queries prior to convergence to the target
concept and its negation is O((F * D * d) + (W *
F * bd)).

The total number of PREDICTOR's queries also
includes random instance and counterexample queries.

However, in this analysis we ignore the cost of these
two types of queries because at most four random

instance queries occur before the counterexample
queries activate (see Section 3.3), and the counterex-

ample queries typically do not take long to find a

counterexample. Once a counterexample is found, the
bias weakening and then strengthening queries
resume,.

"_ simplificationdoesnot signiflcamtlyae_:t ouranalyst,.

3 PREDICTORalso ex_mteA bias weakening queries at

another time besides wbm it makes • wrong pred/cfion.
Neverheless. this does net sign/ficantly alter our cost e.sfmates.
Wetheseforeomil adiscmsim o(th/s topic. Sue (ConJm 1992) for
details.

61



IACL'sbiasshiftsaretriggeredbytheorderof
thetraininginstances(seeGordon1992).Aserendipi-
tousorderwillenable thesystem tomake thecorrect

abstractionsearly.However, sincethisorder isran-

dom, itcannot be guaranteedto be helpful.Further-
more, as mentioned inSection4.2,IACL's biasshifts

occur when IACL decidesthisis the best way to

achieveitsothergoals.The main problem with this

approach isthatitdoes notoffermuch helptoa system
that needs to recover from incorrectabstractions.

Often, what is really an abstraction problem is treated
as a generalization problem by the system. As a result,

incorrect abslractions often linger, thereby preventing
correct abstractions from being made. In the worst

case,thiswould cause thenumber ofqueriesrequired

forconvergencetothe targetconceptand itsnegation

to equal the totalnumber of instances,which is

O(b d_ P), where b d is the maxunum number of leaf

nodes in any value tree.

Comparing the upper bounds for the two sys-
tems, we note that as F increases, IACL's performance

should degrade much more rapidly than that of PRED-
ICTOR. Furt_rmore, theupper bound costforIACL

depends on the data structm_sbut not on the target
concept. On the other hand, W and D in the formula

for PREDICTOR's upper bound cost depend, at least
in part, on the target concept.

D depends almost entirely on the target concept.

W, on tha other hand, depends both on Ihe tml,,et con-
cept and the bias al_teuess. If we assume the

data strncun_ and target concept are fixed, and we
wish to analyze the effectiveness of bias shifting, then

we need to focus on the W component of the cost for-
mula. In particular, as W approaches zero,

PREDICTOR's cost upper bound approaches a poly-

nomial. W tends toward zero as a greater proportion

of the biasing assumptions made by PREDICTOR are
correct, e.g., most features are irrelevant and therefore

the irrelevance assumptkm holds frequently. This is
precisely the situation in which empirical experiments

have shown PREDICTOR OUtl_rforms IACL.

Likewise, when most of the biasing assumptions
are incom_ W can become vev/large. In the worst
case, we would have the same situation as we have

with IACL, where all instances would have to be seen

to learn the target concept. Again, empirical experi-

ments confirm this analysis.

Our analysis of IACL's upper bound cost is

much likethatoftheothersystemswithwhich PRED-

ICTOR has been compared because these systems are

also not designed for bias testing and shifting. Their

system policiesfavor other tasks.

4.4 Query Benefits

One of the goals of our method for bias testing
and shifting is to reduce the number of features in the

hypothesis language. Relevant results from computa-
tional learning theory can provide a rough estimate of

the benefits of strengthening the bias in this way. 4 The

sample complexity is the number of instances required
to converge to the target concept. (Hanssler 1988) has

shown that sample complexity relates directly to the

Vapnik-Cbervonenkis (VC) dimension of a hypothesis
space, which is a measure of the expressiveness of the
hypothesis language. A less expressive language
impfies a stronger bias and a lower VC-dimension.

Haussler measures convergence in the Probably

Approximately Correct (PAC) framework of leamabil-
ity, which assumes the error £ > 0 and the confidence

(I - 8) < I. In this framework, a concept is expected to

be learned approximately with high probability.

According to (Hanssler 1988), given a fixed e
and 8 the minimum sample complexity is direcily IXO-

portional to the VC-dimension. Furthermore, if the
concept hypothesis is in k-DNF (which is true for

many concept learners), then

re-dim Ios(4 

where H is the hypothesisspace, a is the number of

features in the instance language, s is a bound on the

number of tams (disjuncts), k < n, and s < [_1.

We can now apply this theoretical estimate of
sample complexity to partially explain the empirical
resultssununarized in Section 4.1. In our framework,

empirical perfommnce is measured in terms of abso-
lute conver&ence to the target concept, rather than

PAC convergence. Absolute convergence impfies the
ener e is 0 and the confidence (1 - 8) is 1. In other

words, we requue that _e target concept be learned

precisely. We also requke that the negation of the tar-
get concept be learned precisely for absolute conver-

gence to hold. (The_ requirements are meaningful for

applications where the cost of making an error is
high.)

In our framewod_ the maximum number of

literals per te_n, k, is equal to the number of (relevant)

' Oaly • "mqh" mimm _ be l_vided be_ue the
_ _ms em_, m_ _mm_ims, mch u inm_
telec:ioa from • fixed distd_tica, that are net met in our
framework.
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features in the hypothesis language. Also, we use a
different bound on s for our framework because when

there are irrelevant features, n no longer affects the
number of disjuncts. If we assume there is a maximum

of v values for any of the k relevant features, s < v t.
When PREDICTOR discovers irrelevant features and

strengthens the bias (by reducing k), Haussler's ine-
quality (with the new upper bound on s) predicts that
the system will reduce the VC-dimension and thus

reduce the sample complexity. With the new bound on
s, Haussler's inequality also predicts a reduction in

sample complexity when v is reduced by abstractions

that are made based on cohesion assumptions. Furth-

ermore, PREDICTOR's ability to minimally weaken
the bias enables it to retain a hypothesis space with a
low VC-dimension.

In summary, when bias strengthening is desir-
able, the cost of using queries to gather information

about the bias can be offset by the benefit of a reduc-

tion in the sample complexity gained by having a
stronger bias. In Section 4.3, we showed how in this

situation the costs are also reduced. So, when

appropriate, PREDICTOR's method can yield lower

costs and increased benefits and a better performance
in comparison with IACL and other systems. When
inappropriate, the costs increase and the benefits are

reduced and system performance degrades with
respect to the performance of IACL and other systems.

4.5 Illustrative Example

Let us examine a very simple illustration of how

the queries and bias shifts together can result in a syn-

ergy that reduces the convergence rate. We will focus

primarily on the value of the bias weakening queries
and minimal bias weakening. Assume we have two

concept learners, CL-Q and CL. They differ only in
that CL-Q uses the bias weakening queries and l_-

forms minimal bias weakening, whereas CL does not.
CL's method for bias weakening is to make the

hypothesis language equal to the instance language.
CL's motivation for bias weakening is the same as that

of CL-Q, namely, to resolve prediction errors. Other
than the bias weakening queries of CL-Q, we assume

both systems request random instances from an oracle.

For simplicity, let us further suppose that both

systems are given a strong bias beforehand by the sys-
tem implementor and their only bias shifting task is to

weaken the bias if they discover (by a wrong predic-
tion) that the bias is incorrect. Also, for simplicity, we

assume neither system generalizes. They only learn
concepts using bias adjustments.

The data structures given to both systems are the
value trees of Figure 1, except that feature "size" is
now restricted to having the values "small" and
"large", and the value "curved-solid" has no child

values. The target concept, as in Section 1, states that

small bricks are positive and instances of any other

description are negative. Finally, both systems begin
with a hypothesis language bias which states that
"shape" is the only relevant feature.

Both systems begin by requesting the same two

instances: a small aluminum brick, which is posi-

five, and a large steel curved-solid, which is negative.
The current hypothesis now held by both systems is:

lOS _ { x _(shape(x,h-ick)) ]

NEG HYP: { x l (shape(x,curved-solid)) }.

If the next instance requested by both systems is a

large bronze brick, and it is negative, both systems
will make a prediction error, which triggers bias weak-
ening.

CL-Q responds to the prediction error by using
its bias weakening queries. It requests one instance to

retest the abstraction to "any size" - a small bronze
brick, which is positive. Since the class is different

than that of the large bronze brick, CL-Q decides the

abstraction to "any size" is faulty and removes it

CL-Q then requests a large aluminum brick, a large
copper brick, a large brass brick, and a large steel
brick to retest the abstraction to "any material".

Since these instances have the same class as the large

bronze brick, this abstraction is considered permissi-
ble. CL-Q now minimally weakens the bias to obtain
the hypotheses:

POS HYP: {xl

(size(x,smaU) & shape(x,laick))}

NEG HYP: {xl

((size(x,targe) & shape(x,brick))
v

(size(x,large) & shape(x,curved-solid))) ).

The system now needs one more instance, a small

curved.solid of any material, to converge on the tar-

get concept and its negation precisely. The odds are
high that a random choice will request this instance
before all instances have been seen. (Note that if the

bias strengthening queries were used, this would be
the next instance requested.)
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After making a prediction error on the large

bronze brkk, CL behaves differently. It does not
make the extra five queries that CL-Q made. Neither

does it have the extra information CL-Q obtained.

Rather than nuMmai/y weakening the bias, CL weak-
ens the bias to the instance language. CL, therefore,

requires all remaining 27 instances to precisely learn
the target concept and its negation. In this case, it is

clear that the information gained by CL-Q from the
queries have offset their COSL

5 Related work

Our approach is related to theoretical research
on irrelevance (e.g., Subramanian 1989) and relevance
(Grosof & Russell 1989). Subramanian's definition of
irrelevance is similar to ours. However, her definition

is tailored for reformulating a _roblem solver's

language to increase the problem ,olver's efficiency.
Our definition, on the other hand, is tailored for incre-

mental concept learning. Grosof and Russell have
created a theory of shifting bias as nonmonotonic rea-

soning. They use the notion of relevance to motivate

bias shifts. Prior to learning, biases are ordered from
stronger (i.e., having fewer relevant components) to

weaker (i.e., having more relevant components).
Learning begins with a strong bias and shifts to
weaker biases as needed. Unlike the bias shifts

described here, Grceof and RumeH's bias shLqs are not

motivated by an analysis of biasing exmrs and there-
fore they are unable to guarantee that the bias can be

minimally weakened.

Our approach is also related to approaches that
form abstractions based on equivalence classes. If

cohesion holds for a value a of feature f, then a forms

an equivalence class in terms of the target concept
membership of instances having this value of fenture f.

Kokar's COPER is an example of another system that

uses equivalence classes for concept learning (Kokar
1990). COPER uses the concept of invariance and an

expectation of equivalence classes to indicate when
constructive induction is needed. Constructive induc-

tion is the dynamic generation of new features.

PREDICTOR could use a similar approach to
COPER's to decide when to invent new abstractions.

For example, if cohesion does not hold for some
abstraction a in a value uee, tl_ could be cmsidered

an indication of the need to split a into two separate
abstractions for which cohesion does hold.

The use of active learning in our approach is

related to literature on queries for concept learning,
both theoretical (e.g., Anglnin 1988) and experimental

(e.g., Sammut & Banerji 1986; Muggleton 1987). Our

approach is most similar to that of the few syslems that

query an oracle and shift the bias. Notable examples
include the MARVIN system of Sammut & Banerji
(1986), Groas's CAT (Gross 1991), Muggleton's Duce

(1987), and the CLINT system described in De Raedt

& Bruynooghe (1990). MARVIN shifts the bias by
learning the definitions of new user-selected terms and

then uses these new tezm_s for further learning. This

system also queries an oracle to test generalizations
within the term definitions. These queries involve a

form of pemnbation similar to that used here.

Nevertheless, MARVIN's queries are not for the put-
pose of deciding how to shift the bias.

CAT, Duce, and CLINT are all systems that

query an oracle to make bias shifting decisions. Of all
theseapproaches,our approach ismost similartothat

of CLINT, which uses irrelevancequeriesfor bias

strengthening. Nevertheless, the latter system does not
use irrelevance queries to select a weaker bias. Furth-

eamore, our approach is unlike that of CLINT and all
other systems because our choice of a wenker bias is

determined by bias tests that diagnose errors in such a

way as to guarantee that the bias can be minimally
weakened.

6 Summary

This paper presents a unique approach to bias

shifting. Rather than peffom_g unjustified bias
shifts, as most concept learning systems do, we first

test assumptions about the relationship between the
bias and the concept being learned. We also re-test

theseassumptionsinlightof new, possibly contradic-

toryevidence, i.e., a prediction errs. These tests are

performed with queries to an oracle. By using this

approach, a system can both strengthen and minimally
weaken the bias.

In addition to presenting our method for bias

testing,this_ alsosummarizes empirical results.

The empirical results are then explained by a
cost/benefit analysiL Both the empirical and analyti-

cal results indicate that when bias slxengthening is
desirable, the query ccem are lower and the benefits of

a stronger bias. namely, a reduced sample complexity,
are increased. Likewise, when bias su_rtgtbening is

not _, the query costs are increased and the
benefits ale reduced. The low costs and increased

benefits have produced a large performmr_ gain over
other systems when bias strengthening is appropriate,

and the high costs and decreased benefits have pro-

duced a performance loss w!th respect to other systems
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when bias suengthening is inappropriate.
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