Gordon

Queries for Bias Testing -

Diana F. Gordon

Navy Center for Applied Research in Artificial Inteligence
Naval Research Laboratory, Code 5510
Washington, D.C. 20375

gordon@aic.nrl.navy.mil

Abstract

Selecting a good bias prior to concept learning
can be difficult. Therefore, dynamic bias adjustment is
becoming increasingly popular. Current dynamic bias
adjustment systems, however, are limited in their abil-
ity to identify erroneous assumptions about the rela-
tionship between the bias and the target concept.
Without proper diagnosis, it is difficult to identify and
then remedy faulty assumptions. We have developed
an approach that makes these assumptions explicit,
actively tests them with queries to an oracle, and
adjusts the bias based on the test results.

1 Introduction

Bias is a fundamental aspect of any supervised
concept learner. Numerous papers have noted this
importance (e.g., Mitchell 1980; Haussler 1988). The
type of bias that we discuss here is the choice of a
hypothesis language. The hypothesis language defines
the space of hypotheses. A strong bias defines a small
hypothesis space; a weak bias defines a large
hypothesis space; a correct bias defines a space that
includes the target concept. A strong correct bias, e.g.,
one with fewer features, is generally desirable because
it reduces the number of hypothesis choices and
thereby promotes rapid convergence to the target con-
cept.

The bias can be adjusted (shifted) dynamically
during incremental concept leaming by strengthening
the bias when possible and weakening it to regain
correciness. Recently, interest has grown in systems
that dynamically shift the bias (e.g., Utgoff 1986; Ren-
dell 1990; Spears & Gordon 1991). These systems,
however, are limited in their ability to identify errone-
ous assumptions about the relationship between the
bias and the target concept. Proper diagnosis aids in
the recovery from faulty assumptions. We have
developed an approach to bias adjustment that
addresses this need for proper diagnosis. Our method
consists of a bias tester and adjuster that can be added

53

to an incremental concept leamer to improve the
leamer’s performance.

Unlike previous approaches to bias testing, our
approach uses formal definitions of assumptions about
the bias, called biasing assumptions, to guide an
analysis of why the bias is inappropriate (e.g., too
weak, or incomrect) for leaming the target concept.
An example of a biasing assumption is the irrelevance
of a feature for leaming the target concept. The bias
tester performs this analysis (called a biasing assump-
tion test) by actively testing the bias with queries to an
oracle. Each query is a request to an instance genera-
tor for a new instance. For example, the irrelevance of
a feature might be tested by querying an oracle for the
class (positive/negative) of instances having different
values of that feature. The bias adjuster then records
the analysis results and adjusts the bias accordingly. If
a biasing assumption holds, the adjuster strengthens
the bias, e.g., by removing the irrelevant feature from
the hypothesis language. Otherwise, the adjuster
weakens the bias or allows the bias to stay the same if
no adjustments are needed.

Our approach has three primary advantages.
First, the bias tests are composed of queries. Queries
can accelerate leamning significantly (see Gordon
1990; 1992). Second, our approach is designed to be
incorporated into an existing concept learner. Third,
our approach diagnoses the bias to find and record
specific erroneous biasing assumptions. This enables
the bias to be minimally weakened as well as
corrected. Minimal weakening is most advantageous
when a stronger bias is desirable. In that case, bias
strengthening along with minimal bias weakening can
enable very rapid acquisition of the target concept (see
Gordon 1990; 1992),

In our framework, the bias is the set of features
and their values in the hypothesis language. These
values appear in value trees (e.g., see Figure 1), which
are input by a user or knowledge engineer who is
somewhat familiar with the domain. Value trees are

typically called generalization trees because parent
nodes are more general than their child nodes. Train-
ing instances are described in terms of leaf node
values. Throughout this paper, we assume the concept
learner begins with hypotheses described in terms of
the instance language and evolves its hypotheses
(perhaps using the value trees) in a specific-to-general
direction. Generalization increases the generality of
values within a particular hypothesis; abstraction
increases the generality of the hypothesis language.
The concept leamer can use value trees for generaliza-
tion. Our approach to bias testing and adjustment uses
value trees for abstraction. Bias strengthening implies
removal (i.e., abstraction) of a feature or feature value
distinction from the hypothesis language. This shrinks
the hypothesis space. Bias weakening implies the res-
toration of features or feature value distinctions. This
weakening undoes abstraction and enlarges the
hypothesis space. Bias weakening is defined to be
minimized when the features and feature value distinc-
tions that are restored to the language are restricted to
those that must be restored to correct the bias.

The drawback of our approach is that it requires
an oracle that can respond to queries during leaming.
The oracle can be either a human or the environment.
In either case, it is not always practical to require an
oracle. Humans may be too busy to answer questions.
Furthermore, the use of the environment as an oracle is
impractical if lives are at stake. For example, it is
unreasonable to query whether a new chemical
weapon is effective at killing people. On the other
hand, it is practical to query whether small doses of
Vitamin C cure the common cold.

Using Figure 1, we can see how a bias may be
strengthened, weakened, and minimally weakened.
Suppose the bias is all the trees in Figure 1, and the
target concept states that small bricks are positive and
instances of any other description arc ncgative. The
bias might be strengthened by removing all features
other than ‘‘size’* from the hypothesis language. This
bias is incorrect because ‘‘shape’’ information is also
needed to leam the target concept. One way to
weaken and correct the bias is to restore the original
language. Alternatively, we can minimally weaken
the bias by restoring parts of the ‘‘shape’” value tree
but none of the ‘‘material’’ tree. Within the ‘‘shape’’
tree, we restore the ‘‘cube’’/*‘brick” distinction and
above, and restore the ‘‘curved-solid’’ node, but do
not restore any child of the ‘‘curved-solid’’ node.
Removing a distinction strengthens the bias to create
an abstraction, whereas restoring it weakens the bias

54

to undo the abstraction.

Section 2 formally defines two important bias-
ing assumptions and then collapses them into one.
Section 3 presents and analyzes algorithms to test the
collapsed assumption. Section 4 summarizes and
explains empirical results. Finally, Sections 5 and 6
present related work and a summary of the paper.

2 Biasing Assumptions

When supervised concept leamers shift their
bias, they typically make an implicit biasing assump-
tion that the bias shift is correct for leamning the target
concept. Our approach makes each biasing assump-
tion explicit, and associates each assumption with an
abstraction operator. If the assumption holds, the
corresponding abstraction operator can fire.

We assume two abstraction operators: climb-
value-tree(f.a) and remove-feature(f). The climb-
value-trec(f,a) operator replaces values of feature f
that are lower in the value tree (e.g., ‘‘cube’” and
“brick’’ in Figure 1) with a value a (e.g., ‘‘prism’")
that is higher in the tree throughout the hypothesis
language. The remove-feature(f) operator eliminates
feature f from the hypothesis language. We associate a
cohesion assumption with climb-value-tree(f.a).
Cohesion implies that the values below a in the value
tree of f are unnecessary for predicting the target con-
cept membership of instances. We associate an
irrelevance assumption, which is equivalent to cohe-
sion at the root node of a value tree, with drop-
feature(f). Irrelevance implies that the feature to be
removed is unnecessary for predicting the target con-
cept membership of instances.

The following are the formal definitions of the
two biasing assumptions. These definitions are
tailored for an incremental concept leaming context.
We assume one new instance is accepted at a time and
all previous instances are saved. Furthermore, we
assume that the instances are not noisy and that the
instance features are sufficient to distinguish positive
from negative instances, though perhaps not ideal for
leaming the target concept. We abbreviate the set of
all known positive instances at time ¢ with POS(r), the
set of all known negative instances at time ¢ with
NEG(1), the set of all positive instances with POS, and
the set of all negative instances with NEG. We abbre-
viate the new instance at time ¢ with i (r), the target
concept with TC, the imrelevance biasing assumption
with IRR (f , TC,¢) for feature f, and the cohesion bias-
ing assumption with COH (a,TC,¢) for value a.

FIG. 1. Value trees.

For the following definitions, if i (¢) is positive,
we let L(t)}=(POS(s) \ (i (1)}) and L=POS or we let
L(1)=NEG(r) and L=NEG. Likewise, if i(¢) is nega-
tive, we let L{t)=(NEG(!) \ {i ()}) and L=NEG or we
let L(1)=POS(t) and L=POS.

Let {f1,....fa} be the set of features considered
relevant as of time (¢ - 1). Let 1<i<a, where i is the
subscript used in the following definitions. Finally, we
define fi(x,v;) to mean that the value of feature f; for
instance x is v;. Although the instance language con-
sists of value tree leaf nodes, a nonleaf node can also
be used to describe an instance, though not uniquely.
We allow v; to be either a leaf or nonleaf node in the
following definitions. The formal definition of the
irrelevance biasing assumption is:

IRR (f;,,TC.t) &

((Vv1,.., v X(@x € LOXSf1(xV1) &..& fo(x,v,)) -
((VW.)(VY)((fl (.V»\’l) &.& fl'(yrwl') &..& fn(y’vu))
> (el

In other words, f; is considered irrelevant to leaming
TC at time ¢ if changing the value of f; in any known
instance x always yields a (new or old) instance whose
classification (positive/negative) is the same as that of
x.

Next, we define the cohesion biasing assump-

tion. The cohesion of value a with respect to the tar-
get concept, COH (a,TC,t), means that the descendent

55

nodes {a,,...,a;) below value (node) a in the value
tree appear to behave equivalently with respect to tar-
get concept membership. Let A = {a,,...,a]). Let
1<isa and 15jk<]. The formal definition is:

COH (a,TC,t) &

(V1. vaXVa; € AN(@x € L)

(1091) &k fi(5,0)) &k fo(x92)) >

(Vay € AYYYN(1 V1) &k £i01) & £u(30%0))
> (e L))

In other words, cohesion holds for value g for leaming
TC at time ¢ if the replacement of one descendent
value of a with another descendent value in any
known instance x always yields a (new or old) instance
whose classification is the same as that of x. Note that
irelevance is a special case of cohesion that occurs
when a is the root node of a value tree. Therefore,
these two assumptions can be collapsed into one. Let
us call the collapsed assumption /RR ~COH (a,TC,¢).
The definition of this collapsed assumption is identical
to that of COH (a,TC,¢).

3 Queries for Testing the Biasing
Assumptions
The definition of JRR—COH (a,TC,t) presented
in the last section has been translated into algorithmic
biasing assumption tests. This section presents the
algorithms for these tests. There are two types of

biasing assumption tests, corresponding to the two
times at which tests are executed. Each type is associ-
ated with a separate algorithm. One type of test (in
Section 3.1) executes before bias shifting, and the
other type (in Section 3.2) executes after bias shifting.

Like the definition on which they are based, our
biasing assumption tests are tailored for incremental
concept leaming. If an assumption test is satisfied,
then the corresponding biasing assumption is con-
sidered valid, and therefore it is ‘*safe’’ to implement
the abstraction corresponding to this assumption. If
the test is not satisfied, corrective action may be
required.

We assume that our approach to bias testing and
shifting is added to an incremental concept learner that
maintains two Disjunctive Normal Form (DNF)
hypotheses: one that covers all previously seen posi-
tive instances and one that covers all previously seen
negative instances. The flow of control begins when a
query to the instance generator requests a new
instance. When the new instance is received by the
concept leamner, the leamer uses its hypotheses to
predict the class of this instance. The leamer then
consults an oracle to find out the true class of the
instance. If enough instances have been seen at this
time to complete an assumption test, the bias is shifted
according to the test results. Next, the leamer updates
its hypotheses to preserve completeness and con-
sistency. Completeness implies the positive
hypothesis covers all known positive instances and the
negative hypothesis covers all known negative
instances. Consistency implies the positive hypothesis
covers no known negative instances and the negative
hypothesis covers no known positive instances. These
steps are repeated until the user decides the target con-
cept has been leamed. For more details see (Gordon
1992).

We introduce four types of queries to facilitate
concept learning with bias shifts: bias strengthening
queries, bias weakening queries, counterexample
queries, and random instance queries. An assumption
test is a sequence of bias strengthening queries or a
sequence of bias weakening queries. Bias strengthen-
ing queries test abstractions before they are made; bias
weakening queries retest abstractions after they have
been made. The last two types of queries are not part
of assumption tests, but they are useful for other rea-
sons. The purpose of counterexample queries is to find
out whether the bias is incorrect. If an incorrectness is
found, the bias weakening queries then determine why
the bias is incorrect. The purpose of the random

56

instance queries is to generate instances for concept
learning when none of the other queries applies. All
queries except the bias weakening queries request
instances not previously seen. Bias weakening queries
try to use previously seen instances before generating
new ones because they retest previously held assump-
tions, and the necessary instances to do this are often
already present.

Random instance and counterexample queries
are simple, so we describe them first. Random
instance queries are requests to the instance generator
for randomly generated (previously unseen) instances.
Counterexample queries can provide counterexamples
because they are requests for randomly generated
(unseen) instances that are covered by one of the
hypotheses. A negative instance covered by the posi-
tive hypothesis is a counterexample, and a positive
instance covered by the negative hypothesis is a coun-
terexample.

3.1 Bias Strengthening Queries

Bias strengthening queries test whether the bias-
ing assumption associated with a potential abstraction
holds. To do this, these queries test nodes of the value
tree below the potential abstraction. If these values do
not seem useful for distinguishing target concept
membership, the abstraction is made.

The assumption tests that use bias strengthening
queries and are executed prior to abstraction may be as
rigorous as desired. Tests that use more queries are
more rigorous. (Gordon 1990) describes a method for
varying the rigor of these tests. Increasing the rigor
can reduce the number of prediction errors, but it can
also significantly increase the cost of the tests. For
example, suppose we wish to test the cohesion of
value a of feature f. Let us consider how we may vary
the rigor of tests that are based on the formal definition
of IRR-COH (a,TC,¢t) in Section 2. We can increase
the rigor with which we test the cohesion assumption
by the following two methods: (1) Increase the
number of values a, from A to substitute for the origi-
nal value g; before assuming cohesion holds; (2)
Increase the number of instances x whose f value is
varied before assuming cohesion holds. (Note that
each x corresponds to a unique choice of values for v,
through v,.) Either of these methods will increase the
number of queries.

Here, we describe an algorithm that does not
have very rigorous assumption tests and is therefore
not excessively costly. It is not very rigorous because
only one sibling of the original value is tested for each

hypothesis disjunct before making an abstraction, and
because hypothesis disjuncts, rather than instances,
have their values varied. There are typically far fewer
disjuncts than instances. Our algorithm for generating
bias strengthening queries to test biasing assumptions
is the following:

Repeat the following until no more unseen, uncovered
instances i * can be generated:
For each instance feawre f do
Find the value a that is the parent node of the
value of f in some (arbitrary) disjunct of one of
the two hypotheses. The value a is a potential
abstraction to be tested. If this value has been
tested previously, then select another value for
a from another disjunct.
For each (positive, negative) hypothesis 4 do
For each disjunct disj of A do
(1) Find f{x,v), a conjunct of disj. If
none exists, or if v is not a child of g, try
another disjunct.
(2) Set SIBLINGS equal to the set of all
siblings (which share a parent node a) of
v in the value tree of f. These siblings
are children of a.
(3) Select s € SIBLINGS.
(4) Replace “‘“fixv)’’ in disj with
“fix.s)”’ to form d°. Then form a poten-
tial instance i° that satisfies d° by
translating d° to the language of the
instances, which consists of leaf values
in the value trees. When translating to
leaf values, the choice of a descendent
of a higher level value is random.
Check to see that i” is not already
covered by the hypotheses and has not
been seen yet. If i” is uncovered and
unseen, request i ” from the instance gen-
erator and continue. Otherwise, try
other choices of leaf value descendents
until they have all been tried. If the des-
cendents have all been tried, then go to
step (3) to find another sibling,
(5) Accept i’ from the instance genera-
tor and consult the oracle for the class of
i
Endfor
Endfor
(If the assumption test for abstraction a has
succeeded at this point, the bias adjuster makes
the abstraction.)
Endfor

57

This algorithm executes a sequence of biasing
assumption tests. Each biasing assumption test
corresponds to a test of an abstraction 4. This test con-
sists of a sequence of queries that vary the values in
the hypothesis disjuncts. To ensure that these queries
do not overlap with the other query types, bias
strengthening queries only request instances that are
not covered by either of the hypotheses and have not
yet been seen. To form each bias strengthening query,
this algorithm selects one feature f of one disjunct of
one hypothesis 4 and alters the value of this feature.
This is a form of perturbation (Porter & Kibler 1986).
The value of f that is perturbed is a child, i.e., an
immediate descendent, of the abstraction @ in the
value tree. The new value obtained through perturba-
tion is a sibling of the original value, i.e., both values
are children of g in the value tree. This new value is
substituted for the old value in the hypothesis disjunct,
and an instance that matches this description and has
random values for unspecified features is requested.

Let us assume the algorithm is testing abstrac-
tion a. For each hypothesis k, suppose perturbing the
value of f in all disjuncts of A yields only instances
whose class is the same as that of A. Then nodes in the
value tree below a do not seem to be useful for distin-
guishing positive from negative instances (though this
assumption might later be proven wrong). Thus, the
abstraction to a is permissible and can therefore be
made by the bias adjuster. In other words, the biasing
assumption test for abstraction a is satisfied. On the
other hand, if an instance of a different class is gen-
erated, the abstraction cannot be made because the
biasing assumption test is not satisfied.

Because we assume the hypotheses begin with
the language of the instances, which consists of leaf
values in the value trees, this algorithm tests abstrac-
tions one value tree level at a time, beginning one
level up from the leaves. For example, when using the
“‘material’’ tree of Figure 1, the language shift to
“‘alloy’* would be tested before the language shift to
the root node “‘any material®’,

We can now see how this algorithm corresponds
to the formal definition of /RR—COH (a,TC,¢) in Sec-
tion 2. For each disjunct d of hypothesis &, we let x
(from the assumption definition) be any instance
covered by d. We also let v, through v, be the feature
values present in d. To perturb the value of feature f;,
our algorithm selects an a, for the sibling value. If the
substitution of a; into d yields a new instance whose
classification differs from that of x, the assumption
being tested does not hold. On the other hand, if the

substitution of a,’s into every disjunct of A yields only
instances of the same class as x, our assumption passes
the test and is considered to hold. The perturbation
values a, are children of node g in a value tree, where
a is the abstraction being tested. If g is the root node of
the value tree, our algorithm tests the irrelevance of f.
Otherwise, our algorithm tests the cohesion of a.

An upper bound on the number of bias
strengthening queries generated by this algorithm is
O(F * D * d), where F is the number of instance
features, D is the maximum number of disjuncts in the
two hypotheses, and d is the maximum depth of a
value tree. The branching factor of the value tree is
not included in the cost of this algorithm because to
test each abstraction only one sibling value is
requested for each disjunct.

To illustrate bias strengthening queries, suppose
we are testing the feature ‘‘size’’, where the features
and trees of Figure 1 are used. Furthermore, suppose
feature ‘‘material’’ is considered irrelevant and has
been removed from the hypothesis language, and the
current hypotheses are:

POS HYP: { x| '
((size(x,small) & shape(x,brick))

v
(size(x,Jarge) & shape(x,sphere))))

NEG HYP: (x|
(size(x,medium) & shape(x,cylinder)) }.

Then a bias strengthening query to test the abstraction
to “‘any size'’ is formed by using the first disjunct of
the positive hypothesis to request a medium brick (or
large brick) that has a randomly chosen value for
‘‘material’’. Then the second disjunct of the positive
hypothesis is used to request a small sphere (or
medium sphere), and the only disjunct of the negative
hypothesis is used to request a small cylinder (or
large cylinder), each with randomly chosen values for
‘‘material’’. If the first two instances are positive and
the third instance is negative, then ‘‘size’’ is con-
sidered irrelevant and is removed from the hypothesis
language by the bias adjuster. An abstraction is
created when *‘size’’ disappears from the hypothesis
language. On the other hand, if any of the requested
instances has a different classification than the
hypothesis from it was derived (e.g., the first instance
is negative), then the abstraction is not created and
‘‘size’’ remains in the hypothesis language.

58

3.2 Bias Weakening Queries

Because the algorithm of Section 3.1 does not
exhaustively test the biasing assumptions (e.g., only
one sibling value per disjunct is tested before creating
an abstraction), abstractions made after running this
algorithm cannot be guaranteed to be correct. There-
fore, bias weakening queries are needed to retest the
abstractions after a prediction error in case the predic-
tion error is due to an incorrect abstraction rather than
a generalization error. These queries perturb the
values of the description of the instance for which a
wrong prediction has been made to isolate erroneous
abstractions that might have caused the error.

Suppose a wrong prediction is made on a new
instance i, and H is the hypothesis whose class differs
from that of i. Then the following is our algorithm for
generating bias weakening queries following a wrong
prediction:

Form the set A of all abstractions present in the
hypothesis language (and in /) that apply to i. These
are the abstractions to be tested. Elements of A are
feature-value pairs.
For each (fa) € A that is not already known to be
faulty do
Let L be the set of all leaves in the value tree for f
that are below a.
Foreachve L do
(1) Substitute v for the corresponding feature
value in the description of i to form a new
description of i°. If i” has not yet been seen,
ask the concept leamer to predict then get the
actual class (from the oracle) of i*. Otherwise,
use the known class of i *.
(2) If the class of i” is the same as that of i then
loop again to find another element of L. Other-
wise, record (f.a) as being faulty and abort this
loop through the values of L to get another ele-
ment of A,
Endfor
Endfor

An abstraction applies to an instance if it has a value
of feature f that is more general than the value of f in
the instance. In other words, the abstraction must be a
value tree ancestor of the value of fin the instance.

This algorithm retests the biasing assumption
associated with each abstraction a. The values for per-
turbation are leaf nodes in the value tree below the
abstraction @ being tested. A feature value of i is
varied by substituting a perturbation value into the

description of i and requesting an instance of this new
description from the instance generator along with the
class of the requested instance. If perturbing any of
the values of i causes the generation of a new instance
of a different class than i, then the abstraction being
tested by perturbation is faulty. This abstraction is
faulty because it removes a distinction that is below it
in the value tree and that is necessary for predicting
target concept membership.

Although bias weakening queries do not retest
all biasing assumptions, they rigorously retest all bias-
ing assumptions associated with abstractions that
apply to i. Therefore, they identify all biasing assump-
tion errors that caused the error in predicting the class
of i. By doing so, these queries correct the bias in a
way that enables the concept leamer to regain con-
sistency and completeness with respect to all previous
instances, including i. We consider this testing to be
rigorous because all descendent (leaf) values are
tested until a value is found that disallows the abstrac-
tion. If none is found, the concept leamer regains con-
sistency and completeness without bias shifts.

Similarly to Section 3.1, we can see how this
algorithm corresponds to the formal definition of
IRR-COH (a,TC,t) in Section 2. This algorithm alters
the value of f in the new instance i for which a wrong
prediction has been made to create queries that request
new instances. The algorithm then tests whether these
newly-created instances have the same classification
as i. The instance i plays the role of x in the
definitions, and the perturbation values are the a,’s. If
the abstraction a being tested is a root node value of a
value tree, this algorithm tests the irrelevance of f.
Otherwise, the algorithm tests the cohesion of a.

A is the set of all abstractions that apply to i. If
F is the number of instance features, then the max-
imum size of A is F. This is because, for each instance
feawre £, only one ancestor (in the value tree) of the
value of fin i will be in the hypothesis language at a
particular time, and there are at most F features in the
hypothesis language. In other words, for each f, there
exists at most one (fa) € A. Furthermore, for each
(f.a) € A, this algorithm tests all leaf node descendents
of a. There are at most b of these descendents, where
d is the maximum depth and b is the maximum branch-
ing factor of any value tree. Therefore, an upper
bound on the number of queries generated by this
algorithm is O(F *). This algorithm is executed for
each instance i for which the concept leamer makes a
wrong prediction. '

To illustrate bias weakening queries, we con-
tinue with the example in Section 3.1. Suppose the
bias strengthening queries cause ‘‘size’’ to be con-
sidered irrelevant and removed from the hypothesis
language. The hypotheses are now:

POS HYP: { x | ((shape(x,brick)) v
(shape(x,sphere))) }

NEG HYP: { x| (shape(x,cylinder))).

If a large copper brick is not among the known
instances, and a counterexample query requests one,
and this instance is negative, then the concept leamer
will incorrectly predict the class of this instance. Bias
weakening queries now perturb the description of this
instance to determine the source of the prediction
error. Perturbation to test the abstraction to ‘‘any
size’’ might result in a request for an instance that is a
small copper brick. If this example is positive, the
assumption that *‘size’’ is irrelevant for distinguishing
target concept membership is incorrect. If this
instance is negative, the next query might be a request
for a medium copper brick.

After bias weakening queries identify incorrect
biasing assumptions, the bias adjuster weakens the
bias to cormrect it. In the example just described,
*‘size’” would have to be restored to the hypothesis
language to distinguish the small copper brick that is
positive from the large copper brick that is negative.
After the bias has been corrected, the concept learner
relearns the instances to reform the hypotheses with
the new language bias. The bias weakening queries
enable bias weakening to be minimized because they
identify the incorrect biasing assumptions. All
assumptions not proven incorrect (in the past or the
present) can be assumed to hold and can therefore be
preserved during relearning.

33 Order of the Queries

The order for selecting the queries is as follows.
The first query is a random instance query; the next
query is a bias strengthening query. Bias strengthen-
ing queries continue as the default unless one of the
following holds: (1) complacency occurs; (2) the con-
cept leamer makes a prediction error; or (3) no bias
strengthening query can be formed.

Complacency is defined to occur when the con-
cept leamer has made four consecutive, correct predic-

59

tions.! A string of correct predictions indicates either
that the concept has been leamed or that counterexam -
ples to the current hypotheses should be sought. Since
it is not possible to know for certain whether the
comrect concept has been leamed, counterexample
queries occur in response to complacency. Bias weak-
ening queries are the response to prediction errors.
Once the diagnosis performed by these queries is com-
pleted, the bias strengthening queries resume until
complacency occurs. If none of the other queries can
be formed, random instance queries are generated.
Counterexample queries can be formed only if they
generate unseen instances that are covered by the
current hypotheses. Bias strengthening queries can be
formed only if they generate unseen instances that are
not covered by the current hypotheses.

4 Results and Cost/Benefit Analyses

In this section, we summarize previously pub-
lished empirical results. We then explain these resuits
from three perspectives: system bias appropriateness, a
query cost analysis, and a query benefit analysis.
Finally, we present an example that illustrates why our
approach is effective.

4.1 Empirical Results

We have added an implementation of our
approach to bias testing and shifting to an incremental
concept leamer to form a system called PREDICTOR
(Gordon 1990; 1992). In the experiments of (Gordon
1992), PREDICTOR’s performance is compared with
that of a baseline system called Iba’s Algorithm Con-
cept Leamner (IACL), which is based on an algorithm
from (Tba 1979). PREDICTOR is built on top of IACL
by extending IACL’s bias shifting capabilities. PRED-
ICTOR is identical to IACL in all ways except two:
the former system tests the bias prior to bias shifting
whereas the latter does not, and the former system
prefers a stronger bias than the latter system. Both
systems consult an oracle to answer membership
queries. IACL’s membership queries are requests for
randomly chosen instances. Also, both systems can
shift the bias. However, IACL, like ID3 (Quinlan
1986) and a number of other concept leamers, inter-
leaves hypothesis selection and term (feature) selec-
tion. For IACL, bias shifting is not a deliberate, high-
priority task as it is for PREDICTOR.

! The number of correct predictions needed was chosen by
empirical tests.

60

The empirical experiments of (Gordon 1992)
demonstrate that when its method is appropriate,
PREDICTOR produces an order of magnitude
improvement in the rate of convergence to the target
concept and its negation over IACL. The empirical
experiments of (Gordon 1990) demonstrate that, when
appropriate, PREDICTOR has a better convergence
rate than all the other systems with which it has been
compared (IACL, a variant of ID3, and a version of
AQ described in Michalski et al. 1986). If inappropri-
ate, however, PREDICTOR produces a performance
degradation with respect to IACL and the other sys-
tems. PREDICTOR’s method is appropriate precisely
when one would expect it to be - when bias shifting is
the most expedient action to take to leam the target
concept, i.c., there is a large disparity between the
instance language and the language in which the target
concept can be expressed most succinctly.

It is easy to see how this disparity would be
likely to occur in many real-world leaming situations.
Most objects are described in terms of primitive
features. It is reasonable to expect that a knowledge
engineer, who is familiar with the domain in which
concept leaming will occur, would be aware of a
number of potentially useful abstractions but would
not be certain which abstractions are relevant for
leamning the concept. Therefore, this engineer might
have the system begin with the known primitive
features, but provide the system with potential abstrac-
tions. When provided with a set of potentially useful
value trees, PREDICTOR’s queries can isolate those
abstractions which are correct and thereby expedite
the learning process.

From an experimental study described in (Gor-
don 1992), we have leamed that PREDICTOR has a
synergistic effect between its bias shifting method and
its bias tests. The system’s bias shifting method pro-
motes this synergy because few bias strengthening
queries are required before an abstraction occurs.
(Recall from Section 3.1 that the number is propor-
tional to the number of hypothesis disjuncts.) Further-
more, the system minimally weakens the bias after a
set of bias weakening queries (see Gordon 1992). In
both cases, PREDICTOR is able to capitalize on the
query results to gain and maintain a strong bias.

4.2 System Bias Appropriateness

In this paper, we use the term ‘‘bias”
synonymously with *‘hypothesis language bias’’. This
is the bias that PREDICTOR adjusts. In this section,
we will discuss a meta-level bias, namely, the system

bias. To avoid confusion with the hypothesis language
bias, hereafter, we refer to the system bias as the
system policy or simply the policy as in (Provost &
Buchanan 1992). At some level, all concept leaming
systems have some form of fixed system policy. For
example, even the most adjustable system cannot
implement all possible bias adjustment methods. The
choice of bias adjustment methods is a fixed system
policy. No one policy can be best for leaming every
target concept. Therefore, we need to develop an
understanding of the appropriateness of system poli-
cies for leaming different classes of concepts.

PREDICTOR’s policy is its implicit assumption
that abstraction is appropriate to try (by strengthening
the language bias) and to retain (by minimally weak-
ening the language bias) as much as possible.
Strengthening and minimally weakening the bias are
appropriate when they are the correct actions to take
in the context of the current instance language and tar-
get concept.

PREDICTOR’s bias strengthening and weaken-
ing queries, which form the majority of the system’s
queries, are geared entirely toward gathering informa-
tion for bias shifting. This system uses its queries to
reorder the instances to increase its information gain
about the hypothesis language bias early in the leam-
ing process. Bias shifting is its priority. If this priority
matches the task, PREDICTOR usually outperforms
all other systems with which it is compared. This is
because once PREDICTOR's queries have achieved
their goal of a strong correct bias, the number of
instances required to converge on the target concept is
often significantly reduced by this bias shift (see Sec-
tion 4.4).

Although TACL can adjust the hypothesis
language, PREDICTOR generally far outperforms
IACL when bias shifting is important. This is because
IACL’s policy places a higher priority on finding less
general hypotheses and also on maintaining hypothesis
consistency and completeness with previous training
instances than it does on bias shifting (see Gordon
1992). This system only shifts the bias when it
decides this is the best way to achieve its other priori-
ties. IACL’s queries are requests for randomly-
generated instances. Therefore, this system does not
favorably order the instances for gathering informa-
tion about the bias. The other systems with which
PREDICTOR has been compared have problems that
are similar to IACL’s,

In the next two sections, we present cost/benefit
analyses that further explain the empirical results.

61

4.3 Query Costs

The upper bounds on PREDICTOR'’s queries,
presented in Sections 3.1 and 3.2, seem somewhat
high. Why does this system generate fewer queries
(converge earlier) than IACL when bias shifting is
appropriate for leaming the target concept? Why does
it generate more queries than IACL when it is inap-
propriate? In this section, we present a rough cost
comparison between the number of queries generated
by PREDICTOR and the number generated by IACL.
To simplify our analysis and avoid a confusion
between the effects of generalization and those of
abstraction, let us suppose that no generalization is

needed for leaming the target concept.?

In Section 3.1, we show that an upper bound on
the number of bias strengthening queries is
O(F * D * d), where F is the number of instance
features, D is the maximum number of hypothesis dis-
juncts, and d is the maximum depth of any value tree.
According to Section 3.2, an upper bound on the
number of bias weakening queries generated in
response to each wrong prediction on a new instance is
O(F * b?), where b is the maximum branching factor
of any value tree.

Suppose W wrong predictions are made prior to
convergence.} Then an upper bound on the number of
bias weakening queries generated to resolve W wrong
predictions is O(W * F * b%). Therefore, an upper
bound on the total number of bias strengthening and
weakening queries prior to convergence to the target
concept and its negation is O((F * D *d) + (W *
F * b)),

The total number of PREDICTOR's queries also
includes random instance and counterexample queries.
However, in this analysis we ignore the cost of these
two types of queries because at most four random
instance queries occur before the counterexample
queries activate (see Section 3.3), and the counterex-
ample queries typically do not take long to find a
counterexample. Once a counterexample is found, the
bias weakening and then strengthening queries
resume.

2 This simplification does not significantly affect our analysis.

? PREDICTOR also executes bias weakening queries at
another time besides when it makes a wrong prediction.
Nevertheless, this does not significantly alter our cost estimates.
We therefore omit a discussion of this topic. See (Gordan 1992) for
details.

IACL'’s bias shifts are triggered by the order of
the training instances (see Gordon 1992). A serendipi-
tous order will enable the system to make the correct
abstractions carly. However, since this order is ran-
dom, it cannot be guaranteed to be helpful. Further-
more, as mentioned in Section 4.2, IACL'’s bias shifts
occur when IACL decides this is the best way to
achieve its other goals. The main problem with this
approach is that it does not offer much help to a system
that needs to recover from incorrect abstractions.
Often, what is really an abstraction problem is treated
as a generalization problem by the system. As a result,
incorrect abstractions often linger, thereby preventing
correct abstractions from being made. In the worst
case, this would cause the number of queries required
for convergence to the target concept and its negation
to equal the total number of instances, which is
O(b*¢*F), where b? is the maximum number of leaf
nodes in any value tree.

Comparing the upper bounds for the two sys-
tems, we note that as F increases, IACL’s performance
should degrade much more rapidly than that of PRED-
ICTOR. Furthemmore, the upper bound cost for IACL
depends on the data structures but not on the target
concept. On the other hand, W and D in the formula
for PREDICTOR’s upper bound cost depend, at least
in part, on the target concept.

D depends almost entirely on the target concept.
W, on the other hand, depends both on the target con-
cept and the bias appropriateness. If we assume the
data structures and target concept are fixed, and we
wish to analyze the effectiveness of bias shifting, then
we need to focus on the W component of the cost for-
mula. In particular, as W approaches zero,
PREDICTOR’s cost upper bound approaches a poly-
nomial. W tends toward zero as a greater proportion
of the biasing assumptions made by PREDICTOR are
correct, ¢.g., most features are irrelevant and therefore
the irrelevance assumption holds frequently. This is
precisely the situation in which empirical experiments
have shown PREDICTOR outperforms IACL.

Likewise, when most of the biasing assumptions
are incorrect, W can become very large. In the worst
case, we would have the same situation as we have
with IACL, where all instances would have to be seen
1o leamn the target concept. Again, empirical experi-
ments confirm this analysis.

Our analysis of IACL's upper bound cost is
much like that of the other systems with which PRED-
ICTOR has been compared because these systems are
also not designed for bias testing and shifting. Their

62

system policies favor other tasks.

4.4 Query Benefits

One of the goals of our method for bias testing
and shifting is to reduce the number of features in the
hypothesis language. Relevant results from computa-
tional learning theory can provide a rough estimate of
the benefits of strengthening the bias in this way.* The
sample complexity is the number of instances required
to converge to the target concept. (Haussler 1988) has
shown that sample complexity relates directly to the
Vapnik-Chervonenkis (VC) dimension of a hypothesis
space, which is a measure of the expressiveness of the
hypothesis language. A less expressive language
implies a stronger bias and a lower VC-dimension.
Haussler measures convergence in the Probably
Approximately Comect (PAC) framework of learmnabil -
ity, which assumes the emror € > 0 and the confidence
(1 - 8) < 1. In this framework, a concept is expected to
be leamed approximately with high probability.

According to (Haussler 1988), given a fixed e
and 8 the minimum sample complexity is directly pro-
portional to the VC-dimension. Furthermore, if the
concept hypothesis is in k-DNF (which is true for
many concept leamers), then

VC—dim(H) < 4ks log(dksVn),

where H is the hypothesis space, n is the number of
features in the instance language, s is a bound on the

number of terms (disjuncts), k <n,and s < [2] .

We can now apply this theoretical estimate of
sample complexity to partially explain the empirical
results summarized in Section 4.1. In our framework,
empirical performance is measured in terms of abso-
lute convergence 10 the target concept, rather than
PAC convergence. Absolute convergence implies the
error £ is O and the confidence (1 - §) is 1. In other
words, we require that the target concept be leamed
precisely. We also require that the negation of the tar-
get concept be leamed precisely for absolute conver-
gence to hold. (These requirements are meaningful for
applications where the cost of making an ermor is
high.)

In our framework, the maximum number of
literals per term, £, is equal 10 the number of (relevant)

computational leaming theory makes assumptions, such as instance
selection from a fixed distribution, that are nt met in our
framework.

features in the hypothesis language. Also, we use a
different bound on s for our framework because when
there are imrelevant features, n no longer affects the
number of disjuncts. If we assume there is a maximum
of v values for any of the k relevant feawres, s < v*.
When PREDICTOR discovers irrelevant features and
strengthens the bias (by reducing k), Haussler’s ine-
quality (with the new upper bound on s) predicts that
the system will reduce the VC-dimension and thus
reduce the sample complexity. With the new bound on
s, Haussler’s inequality also predicts a reduction in
sample complexity when v is reduced by abstractions
that are made based on cohesion assumptions. Furth-
ermore, PREDICTOR’s ability to minimally weaken
the bias enables it to retain a hypothesis space with a
low VC-dimension.

In summary, when bias strengthening is desir-
able, the cost of using queries to gather information
about the bias can be offset by the benefit of a reduc-
tion in the sample complexity gained by having a
stronger bias. In Section 4.3, we showed how in this
situation the costs are also reduced. So, when
appropriate, PREDICTOR's method can yield lower
costs and increased benefits and a better performance
in comparison with IACL and other systems. When
inappropriate, the costs increase and the benefits are
reduced and system performance degrades with
respect to the performance of IACL and other systems.

4.5 Illustrative Example

Let us examine a very simple illustration of how
the queries and bias shifts together can result in a syn-
ergy that reduces the convergence rate. We will focus
primarily on the value of the bias weakening queries
and minimal bias weakening, Assume we have two
concept leamers, CL-Q and CL. They differ only in
that CL-Q uses the bias weakening queries and per-
forms minimal bias weakening, whereas CL does not.
CL’s method for bias weakening is to make the
hypothesis language equal to the instance language.
CL’s motivation for bias weakening is the same as that
of CL-Q, namely, to resolve prediction errors. Other
than the bias weakening queries of CL-Q, we assume
both systems request random instances from an oracle.

For simplicity, let us further suppose that both
systems are given a strong bias beforehand by the sys-
tem implementor and their only bias shifting task is to
weaken the bias if they discover (by a wrong predic-
tion) that the bias is incorrect. Also, for simplicity, we
assume neither system generalizes. They only leam
concepts using bias adjustments.

63

The data structures given to both systems are the
value trees of Figure 1, except that feature *‘size’’ is
now restricted to having the values ‘‘small’’ and
“large’’, and the value ‘“‘curved-solid’’ has no child
values. The target concept, as in Section 1, states that
small bricks are positive and instances of any other
description are negative. Finally, both systems begin
with a hypothesis language bias which states that
‘‘shape’’ is the only relevant feature.

Both systems begin by requesting the same two
instances: a small aluminum brick, which is posi-
tive, and a large steel curved-solid, which is negative.
The current hypothesis now held by both systems is:

POS HYP: { x | (shape(x,brick)))
NEG HYP: { x| (shape(x,curved-solid)) }.

If the next instance requested by both systems is a
large bronze brick, and it is negative, both systems
will make a prediction error, which triggers bias weak-
ening.

CL-Q responds to the prediction emror by using
its bias weakening queries. It requests one instance to
retest the abstraction to “‘any size’” - a small bronze
brick, which is positive. Since the class is different
than that of the large bronze brick, CL-Q decides the
abstraction to ‘‘any size’’ is faulty and removes it.
CL-Q then requests a large aluminum brick, a large
copper brick, a large brass brick, and a large steel
brick to retest the abstraction to ‘‘any material’".
Since these instances have the same class as the large
bronze brick, this abstraction is considered permissi-
ble. CL-Q now minimally weakens the bias to obtain
the hypotheses:

POS HYP: (x|
(size(x,small) & shape(x,brick)) }

NEG HYP: (x|
((size(x,large) & shape(x,brick))
v

(size(x,large) & shape(x,curved-solid))) }.

The system now needs one more instance, a small
curved-solid of any material, to converge on the tar-
get concept and its negation precisely. The odds are
high that a random choice will request this instance
before all instances have been seen. (Note that if the
bias strengthening queries were used, this would be
the next instance requested.)

After making a prediction error on the large
bronze brick, CL behaves differently. It does not
make the extra five queries that CL-Q made. Neither
does it have the extra information CL-Q obtained.
Rather than minimally weakening the bias, CL weak-
ens the bias to the instance language. CL, therefore,
requires all remaining 27 instances to precisely leam
the target concept and its negation. In this case, it is
clear that the information gained by CL-Q from the
queries have offset their cost.

5§ Related work

Our approach is related to theoretical research
on irrelevance (e.g., Subramanian 1989) and relevance
(Grosof & Russell 1989). Subramanian’s definition of
irrelevance is similar to ours. However, her definition
is tailored for reformulating a oroblem solver’s
language to increase the problem .olver’s efficiency.
Our definition, on the other hand, is tailored for incre-
mental concept leaming. Grosof and Russell have
created a theory of shifting bias as nonmonotonic rea-
soning. They use the notion of relevance to motivate
bias shifts. Prior to leaming, biases are ordered from
stronger (i.e., having fewer relevant components) to
weaker (i.e., having more relevant components).
Learning begins with a strong bias and shifts to
weaker biases as needed. Unlike the bias shifts
described here, Grosof and Russell’s bias shifts are not
motivated by an analysis of biasing errors and there-
fore they are unable to guarantee that the bias can be
minimally weakened.

Our approach is also related to approaches that
form abstractions based on equivalence classes. If
cohesion holds for a value a of feature f, then g forms
an equivalence class in terms of the target concept
membership of instances having this value of feature f.
Kokar’s COPER is an example of another system that
uses equivalence classes for concept leaming (Kokar
1990). COPER uses the concept of invariance and an
expectation of equivalence classes to indicate when
constructive induction is needed. Constructive induc-
tion is the dynamic generation of new features.
PREDICTOR could use a similar approach to
COPER'’s to decide when to invent new abstractions.
For example, if cohesion does not hold for some
abstraction g in a value tree, this could be considered
an indication of the need to split a into two separate
abstractions for which cohesion does hold.

The use of active leaming in our approach is
related to literature on queries for concept leaming,
both theoretical (e.g., Angluin 1988) and experimental

64

(e.g., Sammut & Banerji 1986; Muggleton 1987). Our
approach is most similar to that of the few sysiems that
query an oracle and shift the bias. Notable examples
include the MARVIN system of Sammut & Banerji
(1986), Gross’s CAT (Gross 1991), Muggleton’s Duce
(1987), and the CLINT system described in De Raedt
& Bruynooghe (1990). MARVIN shifts the bias by
leaming the definitions of new user-selected terms and
then uses these new terms for further leaming. This
system also queries an oracle to test generalizations
within the term definitions. These queries involve a
form of perturbation similar to that used here.
Nevertheless, MARVIN'S queries are not for the pur-
pose of deciding how to shift the bias.

CAT, Duce, and CLINT are all systems that
query an oracle to make bias shifting decisions. Of all
these approaches, our approach is most similar to that
of CLINT, which uses irmrelevance queries for bias
strengthening. Nevertheless, the latter system does not
use irrelevance queries to select a weaker bias, Furth-
ermore, our approach is unlike that of CLINT and all
other systems because our choice of a weaker bias is
determined by bias tests that diagnose errors in such a
way as to guarantee that the bias can be minimally
weakened.

6 Summary

This paper presents a unique approach to bias
shifting. Rather than performing unjustified bias
shifts, as most concept leaming systems do, we first
test assumptions about the relationship between the
bias and the concept being leamed. We also re-test
these assumptions in light of new, possibly contradic-
tory evidence, i.c., a prediction error. These tests are
performed with queries to an oracle. By using this
approach, a system can both strengthen and minimally
weaken the bias.

In addition to presenting our method for bias
testing, this paper also summarizes empirical results.
The empirical results are then explained by a
cost/benefit analysis. Both the empirical and analyti-
cal results indicate that when bias strengthening is
desirable, the query costs are lower and the benefits of
a stronger bias, namely, a reduced sample complexity,
are increased. Likewise, when bias strengthening is
not appropriate, the query costs are increased and the
benefits are reduced. The low costs and increased
benefits have produced a large performance gain over
other systems when bias strengthening is appropriate,
and the high costs and decreased benefits have pro-
duced a performance loss with respect to other systems

when bias strengthening is inappropriate.

Acknowledgements

I thank Bill Spears for his constant help,
encouragement, and insightful suggestions throughout
this entire project. Also, thanks to Jaime Carbonell,
Don Perlis, and Chinoo Srinivasan for their guidance,
and to Alan Schultz for his helpful comments on pre-
vious drafts,

References

Angluin, D. (1988). Queries and concept leaming.
Machine Learning, 2, 319-342,

De Raedt, L. & Bruynooghe, M. (1990). Indirect
relevance and bias in inductive concept leam-
ing. Knowledge Acquisition, 2, 365-390.

Gordon, D. (1990). Active bias selection for incre-
mental, supervised concept learning. Ph.D.
thesis, University of Maryland, College Park.
Also (Technical Report UMIACS-TR-90-60
CS-TR-2464) University of Maryland,
Department of Computer Science.

Gordon, D. (1992). Actively testing and minimally
weakening the inductive bias. (NCARAI
Technical Report AIC-91-011). Also, submit-
ted to Machine Learning.

Grosof, B. & Russell, S. (1989). Skift of bias as non-
monotonic reasoning. (Technical Report
14620) IBM, Yorktown Heights.

Gross, K. (1991). Concept acquisition through attri-
bute evolution and experiment selection.
Ph.D. thesis, Carnegie-Mellon University,
Piusburgh.

Haussler, D. (1988). Quantifying inductive bias: Al
leamning algorithms and Valiant’s leaming
framework. Ardficial Intelligence, 36, 177-
221.

Iba, G. (1979). Learning disjunctive concepts from
examples. (Al Lab Memo 548). Mas-
sachusetts Institute of Technology.

Kokar, M. (1990). Semantic equivalence in concept
discovery. In D. Benjamin (Ed.), Change of
Representation and Inductive Bias. Boston:
Kluwer.

Michalski, R., Mozetic, 1., Hong, J. & Lavrac, N.
(1986). The AQ1S inductive learning system:
An overview and experiments. (Technical
Report UTUCDCS-R-86-1260). University of

65

Illinois, Department of Computer Science.

Mitchell, T. (1980). The need for biases in learning
generalizations. (Technical Report TR
CBM-TR-117). Rutgers University, Depart-
ment of Computer Science.

Muggleton, S. (1987). Duce, an oracle based approach
to constructive induction. In Proceedings of
the Temth International Conference on
Artificial Intelligence. Milan, Italy: Morgan
Kaufmann.

Porter, B. & Kibler, D. (1986). Experimental goal
regression: A method for leaming problem-
solving heuristics. Machine Learning, I,
249-286.

Provost, F. & Buchanan, B. (1992). Inductive policy.
In Proceedings of the Tenth National Confer-
ence on Artificial Intelligence. San Jose: Mor-
gan Kaufmann.

Quinlan, J. (1986). Induction of decision trees.
Machine Learning, 1, 81-106.

Rendell, L. (1990). Feature construction for concept
leaming. In D. Benjamin (Ed.) Change of
Representation and Inductive Bias. Boston:
Kluwer,

Sammut, C. & Banerji, R. (1986). Leaming concepts
by asking questions. In R. Michalski, J. Car-
bonell, & T. Mitchell (Eds.), Machine learn-
ing: An artificial intelligence approach (Vol.
2). Los Altos, CA: Morgan Kaufmann,

Spears, W. & Gordon, D. (1991). Adaptive strategy
selection for concept leaming. Proceedings
of the First International Workshop on Mul-
tistrategy Learning. Harpers Ferry: George
Mason University.

Subramanian, D. (1989). A theory of justified reformu-
lations. Ph.D. thesis, Stanford University,
Stanford.

Utgoff, P. (1986). Shift of bias for inductive concept
leaming. In R. Michalski, J. Carbonell, & T.
Miwchell (Eds.), Machine learning: An
artificial intelligence approach (Vol. 2). Los
Altos: Morgan Kaufmann.,

