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Abstract

We aim to help build programs that do large-scale,
expressive non-monotonic reasoning (NMR): es-
pecially, "learning agents" that store, and revise,
a body of conclusions while continually acquiring
new, possibly defensible, premise beliefs. Cur-
rently available procedures for forward inference
and belief revision are ezhaustive, and thus im-
practical: they compute the entire non-monotonic
theory, then re-compute from scratch upon updat-
ing with new axioms. These methods are thus
badly intractable, in most theories of interest,
even backward reasoning is combinatoric (at least
NP-hard). Here, we give theoretical results for
prioritized circumscription that show how to refor-
mulate default theories so as to make forward in-
ference be selective, as well as concurrent; and to
restrict belief revision to a part of the theory. We
elaborate a detailed divide-and-conquer strategy.
We develop concepts of structure in NM theories,
by showing how to reformulate them in a partic-
ular fashion: to be conjunctively decomposed into
a collection of smaller "part" theories. We iden-
tify two well-behaved special cases that are easily
recognized in terms of syntactic properties: dis-
joint appearances of predicates, and disjoint ap-
pearances of individuals (terms). As part of this,
we also definitionally reformulate the global ax-
ioms, one by one, in addition to applying decom-
position. We identify a broad clam of prioritiz_l
default theories, generalizing default inheritance,
for which our results especially bear fruit. For this
asocially monadic clam, decomposition permits
reasoning to be Iocafi_ed to individuals (ground
terms), and reduced to propositional. Our refor-
mulation methods are implementable in polyno-
mial time, and apply to several other NM for-
mMisms beyond circumscription.

Introduction

Large-Scale, Expressively Rich, Learning

Agents: We aim in this work 1 to help build agents
that do large scale, expressive non-monotonic reason-
ing (NMR). We are interestedespeciallyin what we
calllearningagents: automatic programs that store,

and revise,a body ofconclusionswhilecontinuallyac-
quiringnew, possiblydefeasible,premise beliefs.

In many applications,informationabout which de-

faults take precedence over others (have greater pri-
oritization) is important and available. _ Many ap-
plications need the ability to express fairly arbitrary
first-order forms of default beliefs (e.g., induction, law,
natural language, communication), as well as fairly ar-
bitrary (finite) partial orders of precedence (e.g., speci-
ficity, reliability, and authority are not "layered" (a.k.a.
"stratified"))). [Grosof, 1991]'defines and discusses the
importance of non-layered priority. Non-layered pri-
ority is needed, for example, to adequately represent
default inheritance.

In these applications, we regard as desirable for
many reasons, especially validation (both intuitive and
rigorous), that a NM formalism be "expressively rich"
not only in the above senses, but also that it be
equipped with a relatively strong model-theoretic se-
mantics (e.z., cf. Default Logic [Reiter, 1980], circum-
scription [McCarthy, 1986] [Lifschitz, 1984], and Au-
toepistemic Logic [Moore, 1985]). In this connection,
we also are interested in skeptical or cautious, rather
than credulous or brave, entailment.

Current Incapabilitles: Currently, expressively
rich NMR a has found virtually no application on a

large scale (more than order of ten defaults), except for
the rather special cases of Prolog-style logic programs
and simple inheritance cf. AI frame-based systems.

Part of the problem is that there do not yet ex-

2part of forthcoming PhD dissertation [Grosof, 1992b]
2Note, however, that most of the discussion and results,

e.g., about disjoint describability and definitional reformu-
lation and asocially monadic theories, in this paper also
apply to the basic case where there ate only two "priority
levds": for-sure and defensible.

Sin [Grosof, 1992b], we make this more precise; here, let
us just consider circumscription, Default Logic, and Au-
toepistemic Logic.
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istpracticalinferencemechanisms to support storing

and revisinga limitedbody of conclusionsas a work-

ing theory. Currently,forexpressivelyrichNMR 4,
the only procedures for forward s inference are exhaus-
tive: they compute the entire non-monotonic theory
(or, even worse, all credulous extensions). Also, cur-
rently, there are no procedures for performing belief
revision on a body of conclusions, upon receiving new,
asserted axioms (an update), beyond the exhaustive
method of re-computing everything from scratch. (By
"axiom", we mean a premise belief.) s By belief re-
vision, we mean modifying the stored conclusions to
retract those that are no longer entailed by the newly
augmented axiom set. z By updating, we mean belief
revision plus possibly the inference and storing of some
additional conclusions.

Strategy and Summary: In this work, we attack
these problems at the level of logical understanding
(rather than, say, domain-dependent control of reason-
ing). Our analytic perspective is that a prime underly-
ing difficulty in the tasks of inference and updating, as
well as in specification, is the logical globality of NMR:
in general, conclusions depend on the whole of the ax-
iom set. The exhaustiveness of current methods is, in
effect, a manifestation of their caution in dealing with
(conflicting) interaction.

We define the concept of a prioritized database, us-
ing circumscription, as the logical representation of a
learning agent that performs sound, but incomplete,
expressively rich NMR. By database, we mean a sub-
set of a (NM) theory. Prioritized circumscription meets
our prime expressive concerns, offers mathematical
convenience, and has inference procedures currently
available.

We elaborate a detailed "divide and conquer" strat-
egy. We develop concepts of, and results about, struc-
ture in prioritized circumscriptive theories, by show-
ing how to reformulate them in a particular fashion:
tobe conjunctively"decomposed" hierarchicallyintoa

collectionof smaller"part"theories,i.e.,sub-theories
which we callslices.We show that itispossible,and

useful,to slicewithin slices.In this way, we map
groups of axioms to groups of conclusions.We use

the decompositionsto analyzethe interactionbetween

defaults/ partsin a NM theory.Much technicaldiffi-
cultyand trickiness arises from the expressive need to
consider non-layered prioritization.

We give theorems that localize entailment and thus
show how to make forward inference be selective, as

'including even the propositional special case and the
special case of stratified logic programs with negation [Lif-
schitz, 1987] [Przymusiaski, 1988]

Sbottom-up. By "backward j, we mean totally goal-
directed cf. query-answering.

SNM formalisms, e.g., JTMS's [Doyle, 1979], having
such procedures lack our desired expressive properties.

TFor simplicity, we assume that these are the only ones
removed from storage.

well as concurrent. Exhaustive inference on a slice
generates only a part of the global theory. Inferences

within each slice (sub-theory) can be performed in par-
allel with inference within every other slice. All non-

monotonic inference can be localized to the slices; only
monotonic inference is required between the slices. We
give theorems that localize retraction and thus show
how to make belief revision be partial in the sense that,
for a given update, the arena of potential retraction is
known to be restricted to a particular part of the pre-
vious database.

Our results enable the exploitation of other results
on inference and belief revision that are limited to ex-

pressive special cases, say to do exhaustive forward
inference in polynomial time (e.g., the "sympathetic-
solitary" case in [Grosof, 1992b] that generalizes pred-
icate completion [Clark, 1978] and the Closed World
Assumption). These special case results can be ap-
plied to one, or several, slices, even when they do not
apply to the global theory.

Our results areabout well-behavedspecialcasesthat
are easilyrecognizedinterms ofsyntacticproperties.

The first "cleanly slice.able" property is disjointness of
mentioned predicates. We show that if the for-sure and
default axioms can be partitioned into groups which
are disjoint in terms of the predicate symbols they men-
tion, then non-monotonic inference based on each par-
tition can proceed without considering the axioms in
the other partitions: those other axioms are irrelevant
in an important sense, as far as that partition is con-
cerned. We show this implies that updating with new
for-sure and default axioms that span only some of the
previous partitions does not require retracting previous
conclusions based purely on the remaining partitions:
they are safe.

Most large practical applications, however, do not
display such perfect partitionability of mentioned pred-
icates. The real power from our result about disjoint-
ness of predicates comes when it is combined with an-
other kind of reformulation: of the axioms in a given
global axiom set, not just of the global axiom set into
decomposed constituent axiom sets. We define a con-
cept of disjoint describability: syntactic partitionabil-
ity after definitional reformulation of the axioms. As
part of this, we give a logical definition of a particular
kind of definitional (i.e., equivalence-preserving) refor-
mulation with respect to a background theory, modi-
fying the standard logical idea of a conservative exten-
sion. We also discuss, and use, another kind of refor-
mulation: to break up open defaults (i.e., schema-type,
as opposed to closed, i.e., propositional) into cases.
An important difference from definitionally reformu-
lating monotonic theories is that two default axioms
D1 and D2 cannot, in general, be equivalently replaced
by the default axiom corresponding to the conjunction
D1 A D2 the way that two for-sure axioms can always
be equivalently replaced by their conjunction B1 A B2.
This is why we need to consider reformulation of the
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axioms one-by-one.
Using these definitional and default-cases reformu-

lations, we arrive at our second cleanly slice-able, yet
syntactically recognizable, property: disjointness of
mentioned individuals. We show that a fairly broad
class ("asocially monadic') of prioritized default cir-
cumscriptions is cleanly slice-able into one slice the-

ory per named individual (ground term in the lan-
guage) plus a remainder-case slice. Each of these
individual-wise slices is propositional, and is, essen-
tially, much simpler than the global, in several ways:
number of axiom instances (especially, potential primi-
tive default conclusions), availability of inference meth-
ods, and availability of known computational complex-
ity results. (Unfortunately, we do not have space to
discuss NM inference methods and complexity results
in detail. But see the final section.) The asociaily
monadic class includes, as a special case, default
inheritance networks of the kind studied by [Touret-
zky, 1986] and used in many AI frame-based systems.
The asocially monadic class is more general, however:
it permits more than one antecedent in default rules,
free use of negation, and freer use of disjunction.

While definitional reformulation is hard in general,
we have a polynomial-time algorithan (omitted in
this draft to save space and preserve focus) to pe-
form the recognition and exploitation of this asocial-
monadic reformulation and decomposition. More pre-
cisely, the algorithm is O(na), where n is the size of the
Cglobal) axiom set (which is, moreover, typically much
smaller than the whole theory, of course).

We show that our conjunctive decomposition results
imply safeties in belief revision. We illustrate the prob-
lems of scale in learning agents with an extended exam-
ple of a prioritized database and show that our safety
theorems capture much of the preponderant stability
(i.e., most beliefs are preserved after each update) that
this database displays through its sequence of updates.
We show, using the example, that decompositions on
these two bases combine synen2istically, as well as hi-
erarchically: it is useful to slice within slices.

Finally, we observe that our formal reformulation
methods are implementable at reasonable cost, and
apply to several other NM formalisms. We have

polynomial-time algorithms (again, omitted here
due to space and focus) for disjoint predicates, as well
as for asocially rnonadic, also in O(nS), where n is the
size of the (global) axiom set.

A Motivating Example

Next, we give an extended example of a learning agent,
in the domain of common-sense default reasoning, that
illustrates issues of selective forward inference and par-
tial belief revision on a large scale. We present it first
at an intuitive level, and formalize it later.

We adopt the following notation. A .> prefix indi-
cates that the sentence that follows is a base axiom, i.e.,
has for-sure (non-defensible) belief status. A :> pre-

fix indicates that the formula that follows is a default
axiom (roughly, a normal default without pre-requisite
in Default Logic). Its label, e.g. (dl), serves as a tag
for defining prioritization-type precedence between de-

faults via :P_$_'_'_ (prioritization) a2doms. These de-
fine a strict partial order of precedence, via transitive
closure. _£_'£g(dl,d2), for example, means that
the default axiom with label (dl) has strictly greater
precedence (priority) than the default axiom with label
(32).

We make the Uniqueness of Names Assumption
(consider it included as a for-sure axiom). As a short-
hand for conjunctions of for-sure a_ertions of posi-
tive or negative literals, we list the satisfying objects,
or, more generally, tuples. Often, in this context, we
use "..." to indicate that there are additional satisfy-
ing tuples not shown explicitly; for simplicity's sake,
we assume these objects are distinct from all other
explicitly-shown objects.

In this example, the agent starts with no beliefs, then
accumulates axioms by receiving updates. After each
update, the agent draws a bunch of conclusions (say,
ground first-order sentences), both monotonically and
non-monotonically, and retracts some of its previous
conclusions. Each l/i indicates an update, consisting
of one or more axioms. Axioms are numbered. In

addition, we show explicitly with _ and _ a few of
the more interesting NM conclusions and retractions,
respectively, about which discussion will revolve. Note
that, by "conclusion", we always mean in the skeptical
sense.

The first update consists of a default axiom, that
bats have two legs, together with some for-sure ax-

ioms. Non-monotonic (default) conclusions include
that known bats are two-legged. The second update
consists of another, default axiom, that mammals have
four i_gs, together with the precedence axiom, that this
new i._fault has lower priority than the previous, more
spec_n¢ one. The third update consists of two default
axioms about emergency disaster situations, plus some
associated for-sure information. Intuitively, since the
axioms in this new update are about a totally differ-
ent topic than the previous axioms, they should not
result in having to retract any of the previous conclu-
sions. Moreover, intuitively, the agent should be able
to draw the conclusions from these new axioms without
even having to consider the previous ones in detail.

The fourth update consists of some for-sure informa-
tion about two named individuals, Joe and Spot, that
violates some previous default conclusions. Intuitively,
since there is no information that "connects" any other
named individuals to Joe and Spot, these new axioms

should not result in having to retract any of the pre-
vious conclusions that are sot about those named in-

dividuals: e.g., that are about some other named indi-
viduals. For example, the previous default conclusion
2legs(Betsy) should not have to be retracted.

Later, we will show how to capture these intuitions
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EXAMPLE'S AXIOMS AND SAMPLE CONCLUSIONS

Mammals Taxonomy plus: Bats are Two-Legged

•> Vx. bat(z) D mammal(x)

• > Vx. dog(x) D mammal(x)

• > +bat : Betsy, Joe, June, Jackie,...

• > +dog : Fido, Spot, Siccem, Jumper,...

•> Vx.-,(21egs(x)A 4legs(x))

(dl) :> bat(x) D 21egs(x)

2legs(Betsy) A 2legs(Joe) A ...

Lower-Priority Default about Legged-ness
(d2) :> mammal(x) D 4legs(x)
T'T_£.T'£T_(dl, d2)

41egs(Fido) A 4legs(Spot) A ...

Emergencies (cf. [Grosof, 1991])

(d3) :> fire(place, day) ^ person(x) _ leave(x, place, day)
(d4) :> earthquake(place, day) A person(x) D leave(x,place,day)

e> +person : Sue, Andy, Ed, Peg, Maggie, Eileen, Chang,...

• > +fire: (Baltimore,2/4/O3),(Watts,8/2/67),...
• > +earthquake: (SF, 4/8/O6},(MexicoCity, 5/3/87),...

e> Vx, place, day. leave(x, place, day) D -,attend_work(x, place, day)

leave(Sue, SF, 41S/06) A leave(Andy, Watts, S/2/67) A ...

Legged-ness: Selective Defeat For Individuals

e> -,2legs(Joe) A --,41egs(Joe) A --,21egs(Spot) A -,4legs(Spot)
2legs(Joe) ; _ 4legs(Spot)

Work Attendance (of. [Grosof, 1991])

(d6) :> weekday(d) A reg_employ(person, place) D attend_work(person,place, d)

(d7) :> flu(person, day) D -,attend_work(person, place, day)

P_E.r_'7C.(d7, d6)
79RZY_T_(d3, dT) & T'T_E_'ET_(d4, dT) & PT_ESrET_(d5, dT)

Ed is Ill; Conflict Resolved by Prioritization (eL [Grosof, 1991])

,P> +weekday : Today, Ill12/91,...

e> +reg_employ : (Ed, BldgA),...

e> +flu : (Ed, Today),...

-,attend_wor k( E d, Today)

Miscellany: Meetings and Attendance (cf. [Grosof, 1991])

• > +Tuesday :Today, 11/12/91,...

e> +in_group(p,4321) : Ed, Peg, Maggie,...

e> Vperson. in_group(person, 4321) D reg_employ(person, BldgA )

e> -,vacation( Boss( 4321), d) : Today,...

e> Vp, d. group_meeting(p, d) A in_group(p, 4321) D attend_work(p, BldgA, d)

Group Meetings; Non-Layered Conflict (eL [Grosof, 1991])

(d9) :> in_group(p,4321)A Tuesday(d) D group_meeting(p, BldgA, d)

(dl0) :> in_group(p,4321) A vacation(Boss(4321), d) D -,group_meeting(p, BldgA, d)

P_£ _'£7_ (dl O, d9 )

P_EJ:'ER(d3,dlO) & 79R£_'gR(d4,dlO) & 7_R£_'£7_(d5,dlO)

-_attend_work(Ed, Today) ; _ attend_work(Ed, Today)
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as formal guarantees.

Formal Definitions: Prioritized

Circumscription

We define our notation for axioms from section 2 as a

meta-language (the Circumscriptive Language of De-
faults, or CLD for short) that, at any point in the
update sequence, specifies a prioritized "default" cir-
cumscription of the form:

def

PDC(B; D; R; fiz W; Z) =
B[Z] A --,3Z'. B[Z'] A Z-.<(D;R)Z' A W = W'

Here, B is the conjunction of the sentence parts of all
of the for-sure axioms. D is the tuple of the default
axioms' formula parts. R is a strict partial order of
precedence (priority). It is the transitive closure of
the precedence relation specified by the pairwise com-
parisons in the PT?.g._g_ axioms. Its domain, accord-
ingly, is the set of default axiom labels. Z is the tuple of
all mentioned predicate symbols; e.g., in the example,
(bat, dog, mammal, 2legs, 4legs, fire .... ). W C Z is
the tuple of predicates that are fized. Fixing is a stan-
dard notion in the circumscription and non-monotonic
reasoning literature. Fixing is part of the specifica-
tion of non-monotonic reasoning. Intuitively, fixing
some symbols implies that any formula that mentions
only those symbols is immune to the circumscription
operation in the sense that it can be concluded non-

monotonically, i.e., from the circumscription, only if it
can be concluded "monotonically", i.e., from the for-

sure axioms B alone. For simplicity, we also fiz (do
not vary and second-order quantify over) all function
symbols. This assumption can easily be relaxed. This
assumption is typical in the circumscription literature.
Uniqueness of Names, plus Domain Closure, implies
that functions are effectively fixed, for example. For
the sake of simplicity, in this paper, we for the most
part do not consider fixing of predicates, only of func-
tions: W is empty. We omit further details about fix-
ing to save space and to preserve focus; see [Grosof,
1992b] for more.

Prioritized default circumscription is a slight gen-
eralization of prioritized predicate circumscription cf.
[Grosof, 1991]. We employ it and CLD to clarify the
definitions of axiom sets and of updating, and the in-
tuitive relationship to other formalisms for default rea-
soning. [Grosof, 1992b] shows as a theorem the equiv-
alence of any prioritized default circumscription to a
corresponding, abnormality-style, prioritized predicate
circumscription, generalizing a previous result that ap-
peared in [Lifschitz, 1984]. Note that our definition can

express minimizing predicates as a special case: e.g.,
:> abi(z), where abl is an abnormality predicate.

We let N stand for the index tuple of D: it is just
(isomorphic to) the tuple of the labels of the default
axioms. I.e., in the example, after the second update,
the elements of D[Z] are:

)_z. bat(z) D legs2(z) ,

Az. mammal(z) D 4legs(z)
and N = (dl, d2). R(j, i) means that the default with
label j has strictly higher priority than the default
with label i. "K(D;R) is defined as the strict version

(_ID;R) A "_'(D-a)) of the prioritized "formula" pre-
oraer ----.(D;R_: '

def

Z-_(D;R)Z' _-

Vi • N. _/j • N. R(j, i) D
(Vz. Dj[Z, z] = Dj[Z', z])]

D (Vz. Di[Z, z] D mi[z', z])
Here Dj and Di refer to the jtn and i t_ members,
respectively, of the tuple D. s We define the corre-
sponding circumscriptive prioritized default theory as
the set of all conclusions entailed (model-theoretically,
in second-order logic) by the prioritized default cir-
cumscription. 9 lo We define a prioritized database

PDB) to be a pair, consisting of x CLD axiom set .4
:a the example, the current coli__ :ion of the updates
"/i's)); and an associated priort:::ed database theory
O8, which is some subset of the F.':-ritized default cir-
cumscriptive theory /?(,4) specifi,.d by ,4. Here, C is
the non-monotonic theory operator for the CLD for-
malism.

Decomposition: Concepts

As part of our strategy, we need to develop a strong
idea of a part of a non-monotonic theory. This is im-
portant for several reasons: 1) to define safe versus
unsafe zones for belief revision; 2) to define relevant
versus irrelevant context for inference (and for specifi-
cation); and 3) to define the structure and organization
of an overall ("global") prioritized database. In clas-
sical logic, we take for granted such an idea of a part
of theory. However, the dependence of entailment on,
in general, the entire global axiom set means that we
have to "work for it" in NM logical systems.

Our general concept of decomposition is applicable
to many NM logical systems. A global theory T can
be obtained either directly by applying the NM the-
ory operator C to the global axiom set .4, or indirectly
(but equivalently) via decomposition. In decomposi-
tion, the global axiom set A is decomposed into an
associated set of "constituent" axiom sets (the ,.qA_'s).
The global theory T is then equivalent to the combi.
nation of the corresponding sub-theories (the ST_'s),
where each sub-theory is the result of applying C to a

constituent axiom set: 8Ti d,_j C($Ai).

SFor notational simplicity, we ignore the potentially dif-
ferent axities of the various open formulas Di.

°See [Grosof, 1991] and [Grosof, 1992b] for more discus-
sion of how prioritised circumscriptions axe defined. Note
that the prioritization p.o. R is not necessarily layered
stratified) (indeed, in our example, it is not) as it was in
Lifschitz, 1985].

1°In section 5, we generalize the definition above to in-
clude the explicit "fixing" of a set of formulas, e.g., a subset
of the predicates. [Grosof, 1992b] gives details.
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Figure 1: Conjunctive Decomposition: a conceptual flow diagram. A global theory 7" can be obtained either directly
by applying the NM theory operator C to the global axiom set ,4, or indirectly (but equivalently) via decomposition.
In decomposition, the global axiom set A is decomposed into an associated set of constituent axiom sets (the 8Ai's).
The global theory 7" is then equivalent to the conjunctive combination of the corresponding sub-theories (the ST"i's),

where each sub-theory is the result of applying C to a constituent axiom set: ST"i d=ef C(,9.Ai).

In CLD, we define 7" to be the resultof conjunc-

livecombination when 7"isCn([.Ji=l...... $7-_);where

Cn isthe monotonic consequence (theory)operatorin

classicallogic.When the correspondingaxiom setsare

understood,we willsay that the globaltheoryiscon-
junctivelydecomposable intothese slicesub-theories.
11

In terms of the circumscriptions,we have:

7,z)c(,4)- A rvc(s.4,)
i=l,...,n

Again, when the corresponding axiom sets are un-
derstood, we will also speak of a circumscription be-
ing conjunctively decomposable into slice circumscrip-
tions, e.g., for n = 2:

P DC( B; D; R; Z) -
PDC(SB1; SD1; SR1; Z) A

PDC(SB2; SD2; SR2; Z)
Figure 1 illustrates conjunctive decomposition with

a flow diagram.
Conjunctive decomposition is thus a kind of refor-

mulation or representation change. The global axiom

tlSerial combination hu the flavor of a cascade: there
is a series of phases of adding axioms and drawing conclu-
sions, where the previous stage's conclusions axe treated
a.s for-sure. Many NM inference procedures can be de-
scribed in this manner. Details about serial decompceition
are omitted due to considerations of space and focus. See
[Gzosof, 1992b] for more.

set and theory (A,T) are transformed into a collec-
tion of constituentaxiom setsand slicesub-theories:

sT"d,..., (s.4., sT". )).
Most Subsets Do Not Qualify As Con-

stituents for Decomposition: Note that, in gen-
eral, in non-monotonic reasoning, one cannot blithely
partition a global axiom set into a bunch of (distinct,
or, more generally, overlapping) subsets (whose union
is the global axiom set) any old way and get a conjunc-
tive decomposition. This is because the axioms in one
subset may conflict with those in another.

E.g., consider the classic Quaker-Republican exam-
ple of conflict in default reasoning: there are two de-
fault axioms, one saying that Quakers are typically
Pacifists, and another saying that Republicans are typ-
ically non-Pacifists. In addition, there are two for-sure
axioms: that Nixon is a Quaker, and that he is a Re-
publican. Suppose we consider two subsets: one con-
talning the Quaker axioms, and another containing the
Republican axioms. Treating a subset as a constituent
axiom set means drawing non-monotonic conclusions
from it as if there were no other axioms around. Doing
so, from the first (with Quaker) one gets the default
conclusion that Nixon is a Pacifist; from the second,
one gets the default conclusion that Nixon is a non-
Pacifist. Taking the conjunction of these two "sub-
theories" thus results in garbage: inconsistency. Yet
the actual global theory is consistent: neither conclu-
sion about Pacifism is sanctioned. Figure 2 illustrates.
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*> Republican(Nixon)

:> Republican(z) D -,Pacifist(x)

*> Quaker(Nixon)

:> Quaker(x) D Pacifist(z)

-, P aci fist( N ixon ) Paci fist( N izon )

I

Figure 2: Non-modularity: Quakers and Republicans. (Default axiom labels not shown.)

Our per-
spective is that, in general, non-monotonicity means
a kind of logical non-modularity: when attempting
to draw conclusions from a subset of the global axiom
set, one must keep in mind the context of the remainder
of the global axiom set. If one considers that remain-
der as an "internal" update, then that update may be
non-monotonic. Another way to view this situation
is that non-monotonicity means logical globality: in
general, a non-monotonic conclusion cannot be drawn
until the entirety of the global axiom set is considered.

Locality:
Suppose we can find a conjunctive decomposition in
which for some i, the slice's axiom set is a subset of the
global, i.e., SAi C_ ,4. In this case, we say that the slice
is a clean slice. Then we know that all the remaining
axioms (A-SAi) in the global axiom set are irrelevant
contez_, in an important sense, relative to the alice's
axiom set SAi. In this case, one can soundly, and in
an important sense completely, perform inference lo-
cally: considering only the axioms in SA_, and using
whatever standard procedures are available generally
for the NM formalism. This is sound, because C(SAi)
is then a subset of the global theory. This is com-
plete, in a sense, because the contribution of S.gi to
the global consequences requires only monotonic infer-

ence beyond its own local (NM) consequences C(SAi).
By "irrelevant" above, then, we mean that one does
not need to consider the remainder of the global ax-
ioms in order to do the essential non-monotonic aspect
of the reasoning from 8Ai.

In the rest of this paper, we will be only consider-
ing decompositions that are clean. ([Grosof, 1992b],
however, discusses the usefulness of decompositions
that are not clean, e.g., decompositions on the basis
of higher versus lower priority.)

Observe that in clean slicing, the constituent ax-
ioms sets are each smaller, and thus simpler, than the
global axiom set. In prioritized default circumscrip-
tion, and in other expressively rich NM formalisms, the
computational complexity of non-monotonic reasoning
(including, full forward inference and belief revision)
is worse than monotonic reasoning. Non-monotonic
reasoning (full forward inference and belief revision)
in each slice, and via monotonic conjunctive combi-
nation, is thus eomputationally less complex than
non-monotonic reasoning in the global theory.

Partitioning Axioms As Kind of Reformulation:
Our perspective, therefore, is that, in non-monotonic
reasoning, decomposing, e.g., partitioning (see Theo-
rems 1 and 12), a global axiom set into constituent
axiom sets is a quite non-trivial kind of reformulation.
This is very different from the situation in classical
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monotonicreasoning.

Safeties of Updating:
Suppose, in a conjunctive decomposition, that
{,-qA1,...,,.q.Ak}are presentboth beforeand afteran

update/2. I.e.,suppose that some of the constituent

axiom setsin a decomposition afteran update/4 are

unchanged from (i.e.,are the same as) in a decom-
positonbeforethat update. Then we know that allof

theconclusionsinthe conjunctivecombinationoftheir

associated slices are safe under the update.

Hierarchy:
We can view the conjunctive combination of a set of
slice sub-theories as being, in turn, a sub-theory. When
those slices are clean, then this sub-theory is itself well-

defined as a clean slice: its axiom set is simply the
union of those slices'. Thus we can often choose grain
size hierarchically during conjunctive decomposition.

Sequencing of Inference: See section 1 about con-
currency.

Disjoint Predicates

Our resultswillallmake use of the followingidea of

decomposing the specifiedprioritization.

Composing Prioritization:

The conceptofprioritizctionovergroups of defaultsis
naturalin the specificationprocessfor many applica-

tions:oftena group ofdefaultscorrespondsto a topic.
[Grosof,1991]introduced,and [Grosof,1992b]elabo-

rates,thisideaof _composing_ prioritization,in which
an overallprioritizationp.o.R over the domain of in-

dividualdefaultsisequivalentto the resultofcompoo-

ing an ezternalprioritizationp.o. RE, definedover

groups, with a tuple RI of prioritizationp.o.'s,one
(Rli) per group,that each representthe prioritization

internalto that group: R - RE*RI. Groups may,

inturn,be composed ofgroups. Thus we may define
prioritizationsof prioritizations,in hierarchicalor re-

cursivefashion.Our example displaysthisstructure.
Our firstresultisabout decomposition on the basis

of syntacticdisjointnessof predicates.It captures a

basiccase of the intuitionthat syntactically"having
nothing to do with each other" should imply strong
irrelevanceofthe kind we discussedinthe lastsection.

Theorem 1

(Clean Decomposition, given Disjoint Predi-

cates)

Let PDC(B; D; R; Z) be a global PDC.

Let {BI[ZI],...,Bk[Zk]} be a partitionof the base

axiomsB[Z],and let{DI[ZI],...,Dt[Zk]} be a par-
titionofthe defaultformulasD[Z], where the predicate

tuplesZI,...,Zk are a (disjoint)partitionof Z. I.e.,
in terms of CLD, letthere be a partition,of the base

and defaultaxioms,where the predicatesmentioned in
each element of the partitionare disjoint.Ifa certain

condition(0) (seebelow)on the prioritizationR issat-
isfied,then

P DC( B; D; R; Z) -

A_=I P DC( Bj; Dj; RIj; Z)
(Note that the Z on the right-hand side can be equiv-
alently replaced by Zj.) Condition (0) is defined as:
either, R is the composition of some prioritization RE
with the tuple RI of the internal prioritizations of each
partition; or, R is layered (stratified). The composition
condition for non-layered R corresponds, intuitively, to
a kind of a partitionability of the prioritization. Note
the special case of empty R satisfies (0).

Proof Overview: Surprisingly non-trivial. The
essence is to use the ability to separate existential
quantifiers in the right-hand-side part of the circum-
scription formula (cf. section 3). Non-layered prioriti-
zation makes this tricky: hence the prioritization con-
ditions in the theorem, c]

In terms of CLD, Theorem 1 tells us that syntac-
tic disjointness implies irrelevaace in the sense that

we discussed in the last section; the decomposition by
syntactic partition is a clean slicing.

Theorem 1 immediately yields a powerful result
about inference.

Theorem 2

(Locality of Inference, given Disjoint Predi-
cates)

In Theorem 1, each slice j is sound and complete,
relative to the global theory, for inference over its
corresponding sub-language (partition of the predi-
cates). That sub-language consists of the formulas that
mention only the predicates Zj. This locality holds
both for forward inference, and for backward inference

(query-answering). Note that to perform inference us-
ing any subset Y of the predicates Z, one need only
work in the conjunctive combination of those slices
whose predicates cover that subset Y.

Theorem 1 also immediately yields a powerful result
about belief revision.

Theorem 3

(Safety of Updating, given Disjoint Sub-
Languages)
In CLD, let the previous axiom set be partitionable
according to Theorem 1. Let an update/4 consist of
base, default, and prioritization axioms, such that the
formula parts of the base and default axioms mention

only predicates from a (possibly empty) subset of the
previous partitions, and such that the global prioritiza-
tion condition (0) is still met. Then all of the previous
conclusions derived solely from the rest of the parti-
tions' slices do not require retraction.

Application to Main Example:
The above theorems capture the first intuition that we
discussed in section 2. At each point in the sequence of
updates, Theorem 2 implies that inference can be lo-
calized: inferences about legged-ness can he performed
in the slice that contains only the axioms about legged-
ness, and likewise for meetings. Figure 3 illustrates the
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original representation

global

_ disjoint predicates
conjunctive decomposition

legged-ness

I U1. U2, U4]

meetings

Figure 3: Conjunctive Decomposition using Disjoint Predicates: In o,,, main motivating example (section 2), we
conjunctively decompose the global axiom set (after the last update _'_ ) into two slices by employing the disjoint
predicates result (Theorem 1): one slice about legged-hess, and the oth.r slice about meetings. In the bottom half,
each inner box stands for a constituent axiom set.

conjunctive decomposition cf. Theorem 1 after the last
update. Theorem 3 guarantees that after each meet-
ings update, all of the previous conclusions drawn from
the legged-ness slice are safe, and vice versa.

General_ations:

Theorems 1, 2, and 3 generalize in several directions.
Firstly, predicate (and function) symbols may overlap
between the constituent axiom sets as long as they
are fixed in the circumscription (see earlier discussion
about fixing in section 3). Intuitively, it is OK to spec-
ify some predicate (and function) symbols as fixed if
it is OK not to infer any default conclusions express-
ible purely in terms of those symbols. Secondly, the
prioritization condition can be relaxed somewhat.

Definitional R_fformulation of Axioms:

Thirdly, and mos,_ :nterestingly (see discussion toward
end of section 1 about source of power), one can de-
compose with irrelevance (slice cleanly) as long as one
can definitionally reformulate the global axiom set to
meet the partitionability condition. (See Theorem 12.)
One interesting such ease iB reasoning about one indi-
vidual object, e.g., Joe in our example, at a time. (See
Theorem 16.) Often (e.g., for the legged-neu s.v.ioms
in our example), such re-formulability is easily (time
polynomial in the number of axioms) detectable syn-
tactically. We pursue all this in the next two sections.

Basic Definitional Reformulation of

Axioms, One-by-One
Next, we define a particular kind of definitional refor-
mulation. This kind of reformulation maps each for-
mula in one formulation into a correspondent formula
in another formulation, while preserving equivalence,
i.e., without loss of information. Our motivation for

considering this limited kind of reformulation is our
intended application: to disjoint describability and its
asoeial-monadic special case. Why do we do the re-
formulation "one axiom at a time", i.e., one-by-one?
Much of the reason is that there is an important dif-
ference between default / NM reasoning and monotonic
reasoning.

We take for granted in monotonic logics that a col-
lection of for-sure (base) axioms B1,..., Bm can be
equivalently replaced by the axiom B1 A ... ^ Bin.
In prioritised default circumscription and most other
expressively rich NM formalisms, however, one ca._-
not, in general, equivalently replace the pair of def:_:.i:
axioms (whose default formulas are) D1 and D':
the default axiom (whose default formula is the
junction) D1 A D2 (even in the case without prior." -
i.e., when the prioritization is empty). Informati,'nal
"grain size" of the defaults is important: having the
two separate defaults means that, for example, D2
may "succeed" (i.e., be concluded non-monotonically
from the defaults) even if D1 is "defeated" (e.g., is vi-
olated by the for-sure information), unlike if the only
default present is D1 A D2. We will need equivalence-
preserving (and information-preserving) reformulation
in order to apply the decomposition on the reformu-
lated representation back onto the original representa-
tion.

Circumscription is defined in terms of second-order
logic. We thus find it convenient and natural to define
the kind of definitional reformulation we will need in
terms of second-order logic, as well. We build on ,_:._
standard idea of a conservative extension, drawn f:_-
the classical logical literature. In this and the next
tion, we then develop several, increasingly complex
tions of definitional reformulations, in order to hat.ale
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the grouping structure in various stages of our refor-
mulations: groups of predicates, groups of individuals,
groups of formulas.

In this paper, we mainly address reformulations ori-

ented around disjointness of mentioned (predicate and
function) symbols. It is thus convenient to define our

changes of representation in terms of changes in the
symbols mentioned.

First Cut at Definitional Reformulation:

What does it mean to definitionally reformulate the-
ories (or formulas) while preserving equivalence? At
first glance, it simply means to introduce some defini-

tions (of new symbols) which logically imply (entail)
the equivalence of a theory expressed in an original set
of symbols (i.e., an original representation) to a new
theory expressed in those new symbols (i.e., a new rep-
resentation). E.g., let AI[P] be the original theory, let
U[P, Q] be some definitions of new symbols Q in terms
of the old symbols P, e.g., a conjunction of explicit
definitions:

def
v[P,Q] =_

(QI- El[e])̂ ...A (Q,,,_=Era[e])
(wherem isthelengthofthetupleQ), and letA2[Q] be

a new theorythatisequivalenttoAl[P] givenU[P, Q]:
U[P, Q] _ AI[P] - A2[Q]

More generally, we .can permit the new representa-
tion to use some of the old symbols; let W be the
overlap symbols between the old and the new. Sup-
pose AI[W, Y] is the original theory, A2[W, Y, Z] is the
new theory, and U[W, Y, Z] is the (conjunction of) def-
initions of new symbols Z in terms of W and Y, e.g.,

def

g[w, v, z] -
(Z1 - El[W, Y]) A ... A (Zm -- Era[W, Y])

(where m is the length of the tuple Z); and suppose
U[W, Y, Z] _ AI[W, Y] - A2[W, Z]

Then we call U a "putative" definitional reformulator.

Observation 4

(Subtlety: Uninformativeness and Consistency)
However, there is a subtlety. To us, part of the intu-
ition behind the idea of an definitional reformulation

is that the equivalence is non-spurious, i.e., that the
definitions themselves are not introducing information.
Unfortunately, merely requiring U to be a conjunction
of explicit definitions allows spuriosity and informa-
tiveness.

Consider the following example. Let W be empty.

Let Y d__.ef(Y1,Y2), where Y1 and Y2 are 0-ary
predicates, t2 Let AI[W,Y] be defined as Y1 A -_YI.
Let the definitions U be (Z1 =-Y1) A (Z2 _=--,Y1),
where Z1 and Z2 are 0-ary predicates. Let

Z d___ef(Z1, Z2), and let A2[W,Z] be defined as

12We do not use Y2 immediately, but we will use it later
when we continue this example in the discussion after Def-
inition 7.

Z1 A Z2. Then U implies that A1 is equivalent to
A2. Yet this contravenes our intuition of a reasonable
definitional reformulation. A1 is inconsistent, i.e., is
equivalent to False. A2, by contrast, is consistent.

Viewing the direction of reformulation from A2

to A1, in effect U is introducing some information,
namely that Z1 = -Z2. The source of this problem is
that, even though U is a conjunction of explicit defini-
tions, U is itself not always consistent when it is viewed

in this "return direction" of the reformulation (i.e.,
from A2 to A1). Yet, to us, any notion of equivalence-
preserving definitional reformulation ought to be sym-
metric, i.e., kosher in both directions: from A1 to A2
and from A2 to A1. We would, therefore, like to im-

pose some kind of additional constraint on U to guar-
antee intuitive uninformativeness and non-spuriosity of
the equivalence between the two representations. Be-
low, we do this by formalizing U's consistency and its
relationship to directionality more precisely.

The idea of a conservative extension, standard in
the classical logical literature, provides a nice notion
of uninformativeness in terms of mentioned symbols.

Definition 5 (Conservative Extension)
Let AI[P] be a formula t3 mentioning only (the tuple
of symbols) P. Let Q be (a tuple of symbols) distinct
from P. Let A2[P, Q] be a formula mentioning only
P O Q. Then we say that A2[P, Q] is a conservative
eztension of AI[P] when:

VP. [(3Q. A2[P, Q]) -- AI[P]]
or, equivalently, when both:

VP, Q. A2[P, Q] D AI[P]

VP. [AI[P] D (3Q. A2[P, Q])]

Another way to view the idea of conservatism in this
definition is that A2 "says" exactly as much about P
as A1 does. A2 in addition says stuff about Q. I.e., for
any formula G[P] mentioning only P:

A2[P, Q] _ G[P] _ ALIBI _ e[P]
Suppose that

A2[P, Q] def-- AI[P] A U[P,Q]

Then we say that U[P, Q] is a conservatively extending
update to AI[P].

Intuitively, we can thus view a conservatively ex-
tending update U[P, Q] as uninformative in a precise
sense, namely about the old symbols P.

Notation:

Let D < E stand for the universally quantified im-
plication Vz. D(z) :::)E(z), where D and E are open
formulas with the same arity of free variables (i.e.,
are similar), and z stands for a tuple of free indi-
vidual (object) variables. Let D=E then be defined
analogously as the universally quantified equivalence
¥x. D(z) =_ E(z). We also apply this notation to tu-
plea D = (Dr,..., D,,_) and E = (Ex .... , E,,): e.g.,

lain (higher-order) classical logic
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D=E stands for
DI=EI A ... A Dm=E,n •

Fact 6

(Explicit Definitions Are Conservative)
(Conjunctions of) explicit definitions of new symbols
(e.g., predicates) are always conservatively extending
updates. I.e., in Definition 5, suppose U[P, Q] is a
conjunction of explicit definitions of each symbol in Q:

Q = E[P]
(Here, we are using the tuple = notation introduced

above, and applying it also to functions and terms.)
Then U[P, Q] is a conservatively extending update, for
any AI[P].

Conservative Extension, Uninformativeness,
and Directionality:
Equipped with the idea of a conservative extension,
we are now ready to return to the question of refin-
ing the basic ides of definitional reformulation. In our
"first cut" above, we found a need to formalize the con-
straint that the putative definitional reformulator U be
uninformative, in both directions of the reformulation.
In Definition 5, we observed that the property that a
"definitional" reformulator U[P, Q] is a conservatively
extending update precisely expresseses U's uninforma-
tivene_, in the direction of A1 to A2, i.e., about P.
There, however, U is not really quite a reformulator
in the sense we discussed in the '_irst cut", since A2
mentions not just the new symbols Q, but also the old
symbols P. However, we can eztract the notion of un-
informativeness present there, i.e., the "conservatism"
in the idea of a conservative extension.

The property that U is a conservatively extending
update is: AI[P] _ 3Q. U[P,Q]
which we can also write as:

(VP. AI[P] D 3Q. U[P,Q])
One can view the right-hand-side as a satisfiability
(i.e., consistency) property. This satifiability / con-
sistency is conditional on A1.

We take this conservativeness property as the basis
for uninformativeness of a (putative) definitional refor-
mulator U. However, we need the "return direction"
uninformativeness as well:

A2[Q] _ 3P.U[P,Q]
which we can also write as:

(VQ. A2[Q] :3 3P. U[P, Q])

Definition 7

(Definitional Reformulator -- Basic Case)
We say that U[W,Y, g] is a definitional rvforrnula-
for (basic case) between two formulas AI[W,Y] and
A2[W,Z] (where W, Y, and Z are distinct tuples of
symbols) when:

1. U implies the equivalence of A1 and A2:
U[W, Y, Z] D (AI[W, Y] -- A2[W, Z])

2. U is uninformative, i.e., conservative, in both direc-
tions of the reformulation, i.e., with respect to A1

and with respect to A2:

(¥W,Y. AI[W,Y] D 3Z.U[W,Y,Z])
(vw, z. A2[W, Z] _ 3r. U[W, r, Z])

Discussion; Directionality:
Having the second direction, in addition to the first
direction, of the conservativeness property in Defini-
tion 7 rules out the nastily-behaved example that we
discussed in Observation 4. However, the conservative-
ness property in Definition 7 reassuringly does permit,
for example, the following, more intuitively reason-
able basic-case definitional reformulator:

U[W, Y, Z] def- (Z1 - Y1) A (Z2- -_Y2)
(where the symbols are as in the example discussed in
Observation 4) for any A1, A2.

The property that U consists exclusively of (a con-
junction of) explicit definitions ensures, in general,
only one direction of conservativeness.

Conditionality Versus Unconditionality of Con-
servativeness:

Definition 7 is perhaps too "custom" in one regard,
however. The conservativeness property is conditional:
it depends on the particular A1 and A2. This is per-
haps unsatisfactory intuitively, at least for some pur-
poses, as a notion of "definitional" in "definitional re-
formulator".

Alternative Definition of Conservativeness: Un-
conditional Version:
As an alternative definition of the basic case of deft-
nitional reformulstor, we observe that one can use a

stronger (i.e., more strongly constrained, special case)
notion of conservativeness instead:

vw, r. 3z. u[w, r, z]
vw, z. _v. u[w, Y, Z]

to replace the conservativeness property (2.) in Defi-
nition 7. This "unconditional" version of the conser-

vativness property does not depend on A1 and A2:
i.e., it implies that the "conditional" conservativeness
property (2.) in Definition 7 holds for any A1 and A2.

Alternative Definition of Conservativeness:
Backgrounded Version:
As an intermediate position between the conditional
and unconditional versions of the conservativeness
property, we observe that one can formulate condi-
tionality in a somewhat abstracted fashion: in terms
of the symbols W that are in common between the two
representations. We will find it convenient for our later

definitions to employ a notion of a background G[W]
to the reformulation. One can view G[W] as, in effect,
included in both AI[W,Y] and A2[W, Z]. We then de-
fine the _backgrounded _ version ,,f the conservativeness
property as:

vz. _Y. u[w, :. z]
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In the remainder of this paper, we will use this last,
"backgrounded" version of the conservativeness prop-
erty. We do so in order to formally simplify our later
definitions of more complex kinds of definitional re-
formulators and reformulations, which are oriented to-
wards particular uses. However, the "conditional" ver-
sion of the conservativeness property is more funda-
mental and general, we believe, and is interesting to
explore: we plan to do so in the future.

No Requirement of ExpHcltness:
Note that in Definition 7, we did not require U to he
in the form of a conjunction of explicit definitions of
new symbols in terms of old symbols. We formalized
/ summarized the "definitional" flavor of the reforrau-
lator as, simply, its conservativeness. Our definition
of definitional reformulator thus allows U to consist of

implicit definitions (e.g., with reeursion) and partial
definitions (i.e., necessary and sufficient conditions).
(Later, in our result about the asocial monadic special
case of disjoint deseribability (Theorem 16), the refor-
mulator will consist exclusively of explicit definitions,
however.)

Next, we define a definitional reformulation of a
group of formulas, using a single common reformula-
tor: one-by-one, into a new group of formulas. For this
purpose, it is convenient to be able to abstract away
from conditionalizing conservativeness on each of those
formulas: we thus use the backgrounded version of con-
ser_cativeness.

Definition 8 (Group l_formulator)
Let ETI[W,Y] and ET2[W,Z] each be a similar TM

tuple of formulas; these formulas may be open
or closed. We call each tuple a group. Let
U[W, Y, Z] and G[W] be closed formulas. We say that
U[W, Y, Z] is a group reformulator between ETI[W, Y]
and ET2[W, Z], given the background G[W] when:

1. U is conservative (given the background) with re-
spect to Y and also with respect to Z:

a[w] _ vY. 3z. u[w, Y, z]
a[w] _ vz. 3Y. g[w, Y, z]

2. U reformulates each formula in either group into the
corresponding formula in the other group. I.e., U im-
plies the equivalence of corresponding member for-
mulas (subscripted by j) in the two groups:

V[W, Y, Z] ^ a[w]
Yj. ETl j[W, Y] = ET2j[W, Z]

Disjoint Describability and Disjoint
Individuals

Next, we show how to use definitional reformulation
to generalize the disjoint predicate special case: to the
more general case of disjoint deseribability. More pre-
cisely, we use definitional reformulation to transform

14Terminology: By _similar', we mean of same length,
and with same arities for their members.

a disjointly describable global axiom set into a rep-
resentation that has disjoint predicates, and then to
transform back again after decomposition. Figure 4
illustrates. We show that the disjoint describability
case, like disjoint predicate case, has a clean, parti-
tioning conjunctive decomposition, which, moreover,
implies interesting localities of inference and safeties
of updating. We then identify an interesting special
case of disjoint describability (asocial-monadic) that,
like the disjoint predicate case, is easily recognizable
in terms of the syntax of the starting global axiom set.

We begin with some preliminaries.

Definition 9 (Syndicate Reformulator)
We define a syndicate reformulator as a tuple of group
reformulators that obeys an extra syndication prop-
erty: their conjunction is also conservative.

More precisely: Let ETTI[W,Y] and ETT2[W, Z]
each be a similar tuple of tuples of formulas; these for-
mulas may be open or closed. Each element of the top
level of tupling is itself a tuple of formulas cf. Defini-
tion 8. The top level tuple is thus a syndicate whose
elements are groups of formulas.

Let UT[W, Y, Z] be a tuple of closed formulas, of the
same length as the top level tuples above. I.e., let it
consist of one formula per group. Let G[W] be a closed
(background) formula, as in Definition 8.

Below, we use i to subscript groups, and j to sub-
script formulas within groups.

We say that UT[W, Y, Z] is a syndicate reformula-
tor between ETTI[W, Y] and ETT2[W, Z], given the
background G[W] when:

1. For each group i, UTi is a group reformulator be-
tween ETTi and ETT2i (given the background):

Vi. UTi[W, Y, Z] ^ G[W]
Yj. ETTlij[W, Y] = ETT2ij[W, Z]

def

2. the conjunction UC = Ai UTi is conservative
(given the background) with respect to Y and also
with respect to Z:

a[w] _ w. 3z. vc[w, v, z]
a[w] _ vz. 3Y. uc[w, Y, z]

The reason we call the above a syndicate reformulation
is the linkage between the different groups imposed by
the conjunction's (UC's) conservative extension prop-
erty. This implies, but is not implied by, the conjunc-
tion of the conservative extension properties for each
group's reformulator UTi.

Definition 10

(Partitioning Syndicate Reformulator)
We say that a syndicate reformulator cf. Definition 9
is Z-partitioning when:

¥i. UTi[W, Y, Z] dd- Lri[w,Y, zi]

¥i,j. ETT2ij[W,Z] d,f= ETT2ij[W, Zi]
where Vj _ k. ZjNZk = O, i.e., the appearances of the
symbols Z are partitioned by group.
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Figure 4: Disjoint Describability: a :i._w diagram of the reformulation steps involved.

Definition 11 (Disjoint Deseribability)
Suppose that UT is a Z-partitioning syndicate retor-
mulator as in Definition 10, where for each group i,
ETTli is defined as the concatenation of a (closed,
base) formula Bli with a tuple of (open, default) for-
mulas Dli, and similarly, ETT2i is the concatenation
of B2i and D2i.

Let B1 stand for the conjunction of the Bli's; and
D1 stand for the concatenation of the Dli's. Let B2

and D2 be defined similarly.
Suppose also that P DC( B2; D2; R; fiz W; W, Z)

fulfills the conditions in Theorem 1 (disjoint predi-
cates), where the grouping, and the partition there on
Z, is the same as in UT.

Then we say that PDC(B1; D1; R; fiz W; W, Y)
is 4_iointly describable under (definitional) reformu-
lat. : by UT[W, Y, Z], given G[W].

Theorem 12

(Clean Decomposition, given Disjoint Deserib-
ability)
If a PDC is disjointly describable, then it is cleanly
conjunctively decomposable into slices corresponding
to the partitioning grouping employed in the reformu-
lation. I.e., then the grouping employed in the refor-
mulation forms the basis for a clean slicing.

More precisely: Suppose
PDC(B1; D1; R; fiz W; W, Y) is disjointly describ-
able under (definitional) reformulation by UT[W, Y, Z],
given G[W], as in Definition 11. Then

PDC(B1; D1; R; Iiz W; W, Y) --
I_ P DC( Bli; Dli; Ri; fiz W; W, Zi)

def RN iwhere Ri = is the internal prioritization of the
group of defaults Dli, whose index set (tuple) is Ni.
(Equivalently, the Zi on the right hand side could be
replaced by Z.)

Proof Overview: Theorem 1 plus some lemmas
about definitional reformulation of circumscriptions.

Figure 4 illustrates the logical flow of the proof, t::]

Theorem 12 immediately yields results about local-
ity of inference, using Theorem 2, and about safety
of updating, using Theorem 3.

Next, we consider a special case of disjoint describ-
ability: asocial-monadic.

Theorem 13

(Fixed Cases Reformulation of Defaults)
In PDC, defaults can be reformulated by relativizing
them to fixed (-formula) cases.

More precisely: In a PDC(B; DN; R; fix W;Z),
suppose that

mi

¥i E N. B[Z] _ Vzi. Vj=I Fij[Z, xi]
where zi is a (possibly empty) tuple of individual (ob-
ject) variables, and where, for each i, j, the (possibly)
open (elementary) formula Fij[Z, xi] is fixed relative
to the circumscription (e.g., it mentions only function
symbols; remember all functions are fixed). For each
default index i, we call each Fij a fixed case. Suppose
also that

B[Z]
Vi, j. Yzi. Eij[Z, zi] = (Fij[Z, zi] D Di[Z, xi])

I.e., suppose that each Eij is equivalent to the default
Di relativised to the fixed case Fij. Then

PDC(B; D; R; fiz W; Z) =
PDC(B; E; RR; fiz W; Z)

where the tuple E stands for the concatenation of all
the Eij's, and where RR is defined as the composi-
tion of R (as external prioritization) with a tuple 0T
of empty prioritization p.o.'s. Each of 0T's elements
is an empty prioritization p.o. OTi that is of size m
and corresponds to (i.e., has as domain) the index se
of the (sub-) tuple Ei.

Proof Overview: The key is that each origina,
default pre-order is equivalently reformulated, in the
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context of the circumscription's "augmentation" (i.e.,
second-order-quantified part in its definition cf. section

3), into a parallel default pre-order corresponding to
Ei. f_

Definition 14 (Asocially Monadie)
We say that a prioritized default circumscription
PDC(B; D; R; fix W; Z), or a corresponding CLD ax-
iom set, is asocially monadic when:

1. All predicates in Z are monadic, i.e., 1-ary (a.k.a.,
unary).

2. The base sentence B has the form of a conjunction
of universaP s formulas. We will refer to these as the
base formulas (axioms).

3. Every default formula (axiom) in D is quantifier-free.

4. No base sentence (axiom) in B, and no default for-
mula (axiom) in D, "mixes" individuals. I.e., in their
clausal forms, no clause contains two literals with
different arguments. Intuition: different individu-
als "don't want to have anything to do with each
other", i.e., they are "asocial".

5. All terms appearing in the base and default formulas
are ground, except for primitive variables.

6. The prioritization R is either layered (e.g., parallel),
or it is point-modular (see definition below).

7. All (explicit) fixtures are of predicate symbols (W),
rather than of arbitrary formulas. (In addition, as
usual, all function symbols are fixed.)

8. Uniqueness of Names Axioms (UNA): The base B in-
cludes axioms enforcing the distinctness of all terms
that appear in the base and default axioms.

9. Besides in the UNA, equality does not appear in
the base or default formulas. (Remember, equality,
when viewed as a predicate, is binary, not monadic.)

Definition 15

(Point-Modular Prioritization)
Point-modular prioritization generalizes (i.e., the class
includes) the prioritization that is typical in default
inheritance networks. By "point" here, we mean an
individual in the logical language, either named (a
ground term, e.g. Eel) or unnamed (e.g., referred to
by a first-order variable, e.g., x in bat(x) D 2legs(z)).
(This idea of a point can be straightforwardly gener-
alized to a tuple of individuals (e.g., (Boss(4321),d))
to handle predicates / formulas with arity more than
one; but we are only considering here the unary case in
the context of the asocially monadic case.) By point-
modular, we mean that the overall prioritization is
equivalent to the composition of some external priori-
tization (over the points) composed with a tuple of in-
ternal prioritizations, one per point. Point-modularity
results when the prioritization is only specified be-
tween the same instantiations of different defaults.

l_Termlnology: By universal, we mean without exis-
tential quantifiers.

E.g., when the bat default has higher priority than
the mammal default at each point: (the default axiom
whose default formula is) bat(Betsy) D 2legs(Betsy)
takes precedence over (the default axiom whose
default formula is) mammal(Betsy) D 4legs(Betsy),
bat(Joe) D 2legs(Joe)
takes precedence over mammal(Joe) D 4legs(Joe),
bat( Fido) D 21egs( Fido) takes prece-
dence over mammal(Betsy) D 4legs(Betsy), etc., but
there is no precedence between the defaults at differ-

ent points, e.g., between bat(Betsy)D 2legs(Betsy)
and mammal(Joe) D 4legs(Joe). Unfortunately, we
do not have space to define point-modularity in further
detail here; it requires discussing "pointwise" prioriti-
zation somewhat similar to that in [Lifschitz, 1988],
and generalizing CLD to increase its expressivity with
respect to prioritization. Note, however, that many
point-modular prioritizations can be expressed in CLD.
See [Grosof, 1992a] for more.

Theorem 16

(Decomposition by Reformulation, Individual-
Wise)

Suppose the PDC(BO; DO; R0; .fix W; Z) is asocially
monadic cf. Definition 14. Then the circumscription
can be cleanly sliced, i.e., conjunctively decomposed,
into its individual-wise reformulation:

PDC(BO; DO; R0;.fix W; Z) =

A_ +1.=PDC(BIj; Dlj; Rj;.fix W; Z)
This individual-wise reformulation is defined as fol-

lows.
The basic idea of the reformulation is to divide the

base and default axioms into groups: one group per
named individual, plus a catch-all "remainder" group
for all other, unnamed individuals. Some reformula-
tion, of a relatively simple kind that is different from
decomposition and one-by-one definitional reformula-
tion, is involved in order to break up the quantified
base axioms and the open defaults into these cases.
Figure 5 illustrates this logical flow. The details of the
overall reformulation are, however, a bit involved to
define; bear with us.

To begin with, we partition the base and default for-
mulas according to which arguments appear in them.

Let J de.=f {1 ..... rn} index the set of all ground
terms aj that appear in the base or default formulas.

Let BOj stand for the tuple of base formulas that
mention aj. Each of its members we write as BOjk[Z].

Let BOV stand for the tuple of base formulas, other
than the UNA, that mention a free variable (all of these
are universally quantified). Each of its members we
write as Yx. BOVk[Z, x]. Here x is a single (free) indi-
vidual variable.

We treat the default formulas similarly to the base.
Let DOj stand for the tuple of default formulas that
mention aj. Each of its members we write as DOjk[Z].

Let DOV stand for the tuple of default formulas that
mention a free variable (i.e., that are open; all of these
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Figure 5: Asocially Monadic: a flow diagram of the reformulation steps involved. See also Figure 4.

are quantifier-free). Each of its members we write as
DOVk[Z, z]. Here z is a single (free) individual vari-
able.

Next, we reformulate the base and default formulas
that mention a variable.

For each j E J, let BIVj stand for the instantia-
tiou of the quantified base formulas BOV to aj. Each
of its members B1Vjk[Z] is defined as the formula
BOVk[Z,aj].

Let UNNAMED[z] stand for the formula
Aj j z oj.

Let B2V stand for the tuple of quantified base for-
mulas after relativization to the unnamed case. Each
of its members B2Vk[Z] is defined as:

Vz. UNNAMED[z] D BOVk[Z, z]
For each j E J, let D1Vj stand for the instantiation

of open default formulas DOV to aj. Each of its mem-
bers D1Vjk[Z] is defined as the formula DOVk[Z, aj].

Let D2V stand for the tuple of open default formulas
after relativization to the unnamed case. Each of its

members D2Vk[Z] is defined as:
UNNAMED[z] D DOVk[Z, z]

For each j E J, Let Blj stand for the conjunction
of (all members of) the tuples BOj and BIVj.

For j = m + 1 (i.e., the unnamed case), let Blm + 1
stand for the conjunction of (all members of) the tuple
B2V plus the UNA.

For each j E J, Let Dlj stand for the concatenation

of the tuples DOj and D1Vj.

For j = m + 1 (i.e., the unnamed case), let Dlm+ 1
stand for the tuple D2V.

Let Rj be defined as the prioritization internal to
Dlj, i.e., as R _rj, where, for each j = 1,..., m+ 1, Nj
is the index tuple of Dlj.

Proof Overview: We use a first stage of refor-
mulation employing Theorem 13. This stage involves
_vhat we called above an "extra" kind of reformula-

tion: e.g., to reformulate each open default axiom and
each quantified base axiom into a collection of "point"-
case (individual-case) axioms, plus a remainder-case
(unnamed case) axiom. Then we use a second stage
partitioning syndicate reformulation into disjoint de-
scribability, employing Theorem 12. In that second
stage of reformulation, we treat the UNA as back-
ground. There, the newly introduced predicates are
all INary, except for those corresponding to the catch-
all case. The definitional reformulator consists

of the explicit definitions of these newly intro-
duced predicates. There is one new predicate
for each ground atom in the original represen-
tation. Note that the second stage itself combines
two kinds of reformulation: definitional reformulation,
to transform into a representation with disjoint predi-
cates, and conjunctive decomposition. 13

Figure 5 illustrates the logical flow of the reformula-
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Figure 6: Conjunctive Decomposition using Asocially Monadic and Disjoint Predicates: In our main motivating
• example (section 2), we can conjunctively decompose the global axiom set (after the last update Us) into two

slices by employing the disjoint predicates result (Theorem 1): one slice about legged-ness, and the other slice
about meetings. This first-stage decomposition is the same as in Figure 3. We can conjunctively decompose the
legged-ness slice, individual-wise, by employing the asociaily monadie result (Theorem 16). That is, in a second
stage, we slice (more finely) within a slice that arose from the first stage. The second stage thus yields a second,
finer-grain decomposition of the global axiom set, containing the meetings slice (unchanged from the first stage)
plus each of the individual-case legged-heSS slices. Together, the two stages exemplify the ability to decompose
hierarchically / recursively. Each of the named-individual / "point" slices in the second stage contains a set of
axioms that correspond to the instantiation / particularization of the original legged-ness axioms (//1, H_, and//4)
to (the case of) one named individual, e.g., Joe. Each outer box stands for a decomposition. Each inner box stands
for a constituent axiom set.

tion steps involved; it builds upon Figure 4.

Applieation to Main Example: (Continued from
the discussion in section 5:) Consider our main mo-
tivating example (about legged-ness and meetings,
from section 2). There, after the final update //s
(and, indeed, at any earlier point in the sequence
of updates), the legged-ness slice, i.e., the set of ax-
ioms about legged-ness (//1,//2, and//4) is asocially
monadic. It can thus be conjunctively decomposed
cleanly, individual-wise. Figure 6 illustrates and ex-
plains this decomposition. As we discussed earlier, the
definitional reformulation involved in the individual-
wise decomposition cf. Theorem 16 introduces a new

0-ary predicate for each ground atom in the original
representation; in this example, two such new predi-
cates are:

nbatJoe -- bat(Joe)
n21egsJoe =_ 2legs(Joe)

Theorem 17

(Individual-wlse Locality of Inference, when
Asoclally Monadlc)
In Theorem 16, each slice j, where j is the (index of) a
named individual (of. statement of that Theorem), is
sound and complete, relative to the global theory, for
inference over its corresponding sub-language. That
sub-language consists of the ground formulas (sen-
tences) in which the only individual mentioned is j
(e.g., Betsy). This locality holds both for forward in-

ference, and for backward inference (query-answering).
Note that to perform inference using any subset SJ of
the named individuals J, one need only work in the
conjunctive combination of those slices corresponding
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toSJ.
For query-answering about a new named individual

b (named in the query), just introduce the new term
b into the set of terms that are indexed by J in the
theorem. The only additional requirement is that the
UNA ensure its distinctness from the other named in-
dividuals.

Application to Main Example: Thus after each
update, inferences about any named individual's (e.g.,
Joe's) legged-ness can be made by working in a slice
axiom set that has been instantiated / particularized
to that individual (Joe). One advantage of this is
that simpler inference algorithms are available for such
an expressively simpler axiom set. In this case, there

is a decidable, polynomial-time procedure (see "total-
propositional case results in [Grosof, 1992b]). By con-
trast, there is no general inference procedure, even
for query-answering, yet available for the full exam-
ple (i.e., including the meetings aspect). (See next
section for discussion of inference procedures available
for prioritized circumscription.) This illustrates that
decomposition-type reformulation is useful to exploit
available / known tractable special cases to do part of
the inference in a NM theory, even when the overall
theory is intractable or undecidable (see next section
for more discussion of this point.)

Theorem 16 also immediately yields a powerful re-
sult about belief revision.

Theorem 18

• (Safety of Updating, when Asoclally Monadic)
In CLD, let the previous axiom set be asocislly

monadic. Let an update/.4consistof base, default,
and prioritizationaxioms,such that the formulaparts
ofthe base and defaultaxioms are ground and men-
tiononly a setof named individualsIU. Then allof
the previousconclusionsderivedsolelyfrom the restof

the named individuals' _s(i.e.,the slicesaccording

toTheorem 16)are sal, .der the update.

Application to Main Example:

E.g.,afterupdate H4 (mentioningonly Joe and Spot),
thistheorem tellsus thatwe do not have tore-consider

whether the previousconclusion21egs(Betsy)isstill
sanctioned:itmust be preserved.Thus we can know,

with relativelylittlecomputational work (seediscus-
sionof complexityin next section),that most of the
previousNM conclusionsaresafe.

Disjoint Groups of Individuals:
Definition 14 and Theorems 16, 17, and 18 also gener-
alize straightforwardly to considering disjoint 9roups of
individuals, where any syntactic mixing in the axioms
involves only individuals within the same group.

Discussion, Conclusions, and Future

Work

Proof Procedures: Prioritized default circumscrip-
tion is expressively reducible to prioritized predicate

circumscription (see section 3). There exist several
backward proof procedures for fairly expressive classes
of prioritized predicate circumscription, including for
layered (stratified) prioritization [Przymusinski, 1989]
[Ginsberg, 1989] [Baker and Ginsberg, 1989] [lnoue and
Helft, 1990] [Inoue et al., 1991]. More interestingly,
[Geffner, 1989] contains a proof theory and proof pro-
cedures which promise to be easily adaptable (using
an equivalence theorem reported in [Grosof, 1991], de-
tailed in [Grosof, 1992b]) to circumscription with non-
layered prioritization.

Related Work: Note that we emphasize updating
with new defaults, not just new for-sure axioms, un-
like the conditional approaches to NMR (e.g., [Kraus
et al., 1990]). The ideas and results here apply to other
NM formalisms, e.g.: Default Logic and Poole's [1988]
and Brewka's [1989] systems, via the equivalence re-
sult in [Lifschitz, 1990]; as well as Geffner's [1989] sys-
tem. The closest idea to conjunctive decomposition
in the previous NMR literature is [Rathmann, 1990],
who focussed, however, on conjunctively integrating
heterogeneously-specified circumscriptive theories. He
considered, moreover, only layered-priority predicate
circumscriptions. Rathmann's and our work was de-
veloped independently. We are unaware of any other
applications of reformulation to non-monotonic reason-
ing.

More Decompositions and Safeties: We did not
have space here to report a number of additional results
[Grosof, 1992b] about decompositions and their impli-
cations for safeties of updating, including about higher
prioritization, hypotheticais, syntactic positivity, "sc-
riM" decompositions, weaker forms of irrelevance; and
about the relationship of decompositions to specifica-
tion and backward inference.

AI,.-_rithms and Automation of Our Results:

In fi: . work, we plan to automate recognition of de-
corer, ons and safeties of updating cf. our theorems,
and : tctual performance of the according reformn-
latio,_ _"or the disjoint-predicates and asocial-monadic
cases, #e have polynomial-tlme algorithms to per-
form this: O(n 3) time, where n is the size of the CLD
axiom set.

Exploiting Truth Maintenance: Such recogni-
tion establishes "monotonicity" (i.e., implication) rela-
tionships between theories and sub-theories (e.g., the-
ory after update versus theory before update; or theory
versus slice). We plan also to automate a generalized
ATMS-style [de Kleer, 1986] high-level architectural
book-keeping scheme to exploit such stored monotoni-
city relationships to support inference and belief revi-
sion in a prioritized database. [Grosof, 1992b] gives
details.

More General Cases of Disjoint Describabil-
ity: In future work, we aim to find cases of dis-
joint describability that are ::lore general than asocial-
monadic, but are still easily recognizable syntactically
(in terms of the syntax of the global axiom set). E.g., in
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ourmainexample,it wouldbeniceto beabletopar-
ticularizetheMeetingssliceto theindividualEd,in
thesamewaythattheasocialmonadicresultguaran-
teesonecanparticularizetheLegged-hess slice to the
individual Joe. Right now, we can show this particu-
larization about Ed is legitimate, but our proof method
is by hand. We would like to be able to formalize and

automate a class of decompositions for which this (Ed
etc.) is an instance.

Conclusions I: See Strategy and Summary in
section 1.

Conclusions II: Analyzing Computational
Advantages of Reformulation: In future work, we
also plan to analyze in detail the computational ad-
vantages and trade-offs involved in our decompositions
and definitional reformulations. You may be wonder-
ing why we did not give any such computational com-
plexity analysis in this paper. The main reason is that
the picture is quite complicated for non-monotonic rea-
soning.

Even for query-answering in propositional default
theories without priorities, current results show worst-
case is exponential (NP-hard) [Seiman and Kautz,
1989] [Kautz and Selman, 1989] [Selman and Levesque,
1989]. Thus: Divide-to-conquer, i.e., seeking locality,
is clearly desirable.

But the basic complexity results for any kind of for-
ward reasoning with priorities, for any kind of belief
revision, and even for most kinds of backward (query-
answering) reasoning are not available for circumscrip-
tion, or other NM formalisms. Known tractable cases

are highly restricted. ([Selman and Kautz, 1989]
[Kautz and Selman, 1989| give polynomial-time back-

ward procedures for special cases, including restric-
tions of Horn, of propositional default reasoning in
their model-preference logic and in Default Logic. Del-
grande [1991] gives a polynomial-time backward pro-
cedure for a Horn propositional case of his conditional
logic.)

However, we believe that as these results become

available, we will be able to show that decomposition
and reformulation are advantageous. Our aim has been
to develop methods that will be broadly applicable,
and to break off a piece of the overall hard problems
of non-monotonic reasoning. In current work, we are
addressing how to relate our results to currently known
tractable and intractable cases.

One clear advantage is that for many cases with
uantification, for which worst-case is undecidable
Reiter, 1980] [Kolaitis and Papadimitriou, 1988]):

We are able to reformulate some of the reasoning to
become propositional, hence decidable. E.g., when rea-
soning about individuals, for the asocially monadic
class of theories (see Theorem 16).
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