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Abstract

Problem Solving systems customarily use back-
trackingto deal with obstaclesthat they en-

counterinthe courseoftryingtosalvea problem.
This paper outlinesan approach inwhich the pos-

sibleobstaclesare investigatedpriortothe search
for a solution.This providesa solutionstrategy

thatavoidsbacktracking.

Introduction

Many weak methods ofproblem solvingarebaaed upon

the ides that s problem can be salved by ehoosin/; a
sequence of goalsand satkfying them in same order.
GPS (Newell and Simon 1972) was amongst the ftrst
to set out this approach. Since then the work of Ernst
and Goldstein(Ernstand Goldstein1982),Korf (Korf
1985),and Guvernir (Guvernir 1987) has builtupon
thisidea.The culminationofthiskind ofapproach is,
in some ways, the Soar system, which through the

creationof a largeproduction system with learning
capabilitiesisable to incorporatemany of the weak
problem solvingsystems intoa singlesystem.
Ifone compares Soar and Korf'ssystem they take

quite distinctapproaches to the problem of what
should be learned and when it should be learned.

Korf'ssystem isable to specifyin advance exactly
what macros itneeds to learn.This willyieldbene-
fitsin the system'sabilityto determine which macro

to use at a given point in the solution,at the price
ofrequiringlong searchesforsome ofthe more com-

plexmacros. Soar on the otherhand learnsonly the
solutionsto the di_cultiesthat actuallyarise.This

conservativeattitudetoward learningmeans that the
system can encounterproblems inmatching expensive
chunks thatdo not ariseinKorf'ssituation.

This paper looksfora halfway house between these
two strategies.We would liketo obtain the benefits

ofeasierpatternmatching ai_'ordedby Korf'ssystem
withouthaving to pay the priceofthe largeamount
ofsearch that his system needs. Our approach isto
show thatfora substantialnumber ofproblems one can

anticipatethe impasses that willbe encounteredby a
problem solver.These can then be modeled and salved

in small pieces of the larger problem, thus avoiding the
deep searches required in Korf.

Pr-,_lems, Strategies and Impasses
We rev i_riefly the definitions that we will need. A
consen_ . _s to the appropriate definitions seems to be
emerging _Banerji 1983), (Benjamin et al. 1989), and
(Niisuma and Kitahashi 1985). Our definitions follow
this trend. Some of them have appeared previously in
(Hodgsan 1989).

Problems and Subproblems

Our definition of a problem is baaed upon the idea of
an action.

Definition I A free problem P _ a triple(S, f_, a)
_#hev_a _ = partiaJmap

a : S x fl -..* $

The set S is called the state space of the problem
and the set t3 is the move set of the problem. The
map o represent• the effect of the moves on the state
space. The effect of a move to on the state s is to give
the state ¢1(m,_). The element a(s,w) fails to exist
precisely when (J,w) is not in the domain of a; that is
when w cannot be applied to the state s. A sequence
E = (wt, .... w_) of moves on P is called admi,sible at
• if the composition

=(o,= =(=(...(o,to ),to,)...,to,)...)
exists.

We need a notionofmaps between problems.

Definition 2 Give_ _wo problem: Pt = (51, nl,al)
and P= = (S,,t'h,a,), u_ a pair o/map, / : S1 -.
S= and g : f_t "* f], T/te pair (/,gO dej_neJ a strict
homomorphism F : Pt "* P, provided tl, at

I. Gius,* _,#o poia. "1 a,_d _,, .=eh O=at/(sl) =/(s_),
t/ten if _e mo_e to app//u to •1 it a/so appplies _o
8, aft_

2. The squaZion

f(=,(o,,,))= ,,,(/(s),o(,,))
i# ta|iaJ_ea ,n Ore ,ense Otat to/_eneuer Ore rig/at./=and
side es/atJ 80 doe, 0re left;hand side.
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A stmct homomorphism F is a monomorphism if
the =nderlying maps [ and g are one to one.

We now turn to the notion of (strict) isomorphism.

Definition 3 Two problenw PI and Pa are strictly

isomorphic if there ceistJ a pair of mutually inverse

strict homomorphismJ F : Pz ::_ P2 and H : P2 :_ Pz
between them.

We can use monomorphisrns in a natural way to de-
fine subproblems.

Definition 4 Let P = (S, n, a) be a problem. A prob-

lem Po = (So, f_o, no) /a a (strict) subproblem of P

if there ezists a problem monomorphizm (f,g) = F :
Po_ P.

It is worth noting that the requirement that the un-
derlying state map be a monomorphism has the ef-
fect that even the weaker definitions of homomorphism

such as the weak homomorphism of Ni_uma and Kite-

hashi (Niizuma and Kitahashi 1985) lead to the same
subproblems.

As an example of the concepts developed here we can

take the sliding tile pussies. In particular we might
take the fifteen pussle. The state space is then the
set of all legal arrangements of the fifteen thee and
the blank in the 4 x 4 array. The move set can be

given by the set _/ = {U, D, L, R} where the letter
indicates the direction in which a the is moved. A

typical subproblem can be obtained by restricting one's
attention to the tiles in the top half, (assuming that the
blank lies in the top half). Moves on this subproblem
are restricted to be those in which the blank remains

in the top half of the array.

Strategies

So far we have not recognized that problems are sup-

posed to represent things that are to be solved. To do

this we define a problem instance for a problem P

as a triple (P, or, G) where u is a state of P called the
start state, and G is a subset of the state space called
the goal set. A solution to the problem instance is a
sequence E of moves which is admissible at or and such

that a(_, E) E G.

Informally a strategy is a sequence of intermedhtte
subproblem instances between the initial state and the

goal. We can distinguish two classes of strategies.In

the firstthe successive state spaces overl&p; we call

theseample strategies.In the other the successivestate

spaces are disjoint;we callthese abutment strategies.

Definition 5 An ample strates_Y )eara problem in,-

stance (S, 12,a,or,G) is a seq,ence {P0, ...,P,} o/_sb-

problems of P = (S,f_,a) anck fASt fTte #lg_ _rpaces

of successire subproblems have nonofficial irtiereection,

that is S__INS_ _ 0 Vie 1,... ,k. _._Hhe_ore a ¢ So
and G C_ S,.

An abutment strategy for a problem instance is

a sequence {PO,...,Pk} olaubproblem_ ofP #sc]t Otat

I. aESo,

_.GC_Sk,

3. S(_,n&=OViE l,...k,

4. for each i E l,...k there ez/Jts at least one pair
(z,_l,_) of poinU ol S such that there is a move

_oE (_for whicha(__:,_) = z,.

A sol_tion is based upon a strategy ifit is obtained by
concatenating a sequence of solutions to the interme.

dints subproble_.

We illustrate the two kinds of strategies with exam-

pies. For our example of an ample strategy we con-

sider the cue of Fool's disk. This problem has been

discussed by Ernst and Goldstein (Ernst and Goldstein

1982). It consistsof four concentric ringseach of which

isfree to rotate about the common center. Each ring

has eight numbers on it,appearing at 45 degree inter-
vale around the ring. The goal of the problem is to

rotate the rings so that the sum of each radius is 12.

The standard strategy isas follows:

• By using only rotations through 45 degrees, make

the sum on each pair of perpendicular diameters 48.

P0 thus has the same state space ms P but a smaller
move set.

• By using only rotations through 90 degrees, make

the sum along each diameter 24. PI has as state

space a set of states in which the sum on each pair
of perpendicular diameters is 48. The move set is

again a subset of the original one.

• By using only rotations through 180 degrees make

the sum along each radius 12. P2 has as state space

a set of states in which the sum along each diameter
is 24 and once again the move set isa subset of the

original.

This strategy, when successful (about which more

later),reduces the amount of search from 83 moves

(the center ring can be kept fixed) to 8 x 3 moves.

Our second example is an elegant solution of the

five pussle that has been presented by Banerji (Banerji
1990). He observes that there is a way to represent the

states of the five punle by points on the faces of a

dodecahedron. The sequence of moves that circulates
the blank around the the circumference of the the puz-

slemoves through all the states on one face. Passage

from one face to another is effected by the moves that

slide the blank up and down in the centre columm The

strategy in thiscase consists of choosing the sequence

of faces (each of which isa subproblem) through which

one must pass from the start to the goal.

There is an important differencebetween these two

examples. In the second example once the strategy is

chosen no backtracking over the solutions to the inter-

mediate problems is necessary but in the case of the

fool'sdisk itnmy be necessary to backtrack since itis

possible that the firstarrangement in which the sum

on all the diameters is 24 may not lead to a solution

and another arrangement is needed. Niizuma and Ki-
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tahashi (Niizurna and Kitahashi 1985) give a sufficient
condition for this not to occur.

Proposition 6 Suppose that/or each subproblem oc-

currin 9 in a strategy it ia the ease that any instance

of the subproblem cart be solved then no back tracking

will be needed to conJtruct a solution to the original

problem following the strategy.

It may seem that the restriction on the state spaces
of the intermediate problems is unduly restrictive. Yet

it is exactly this that is needed to avoid backtracking.

Thus one aim of our approach is to find strategies for
which this hypothesis is true.

Impasses

At any stage in the execution of the strategy one has

a subproblem instance (Pi, t"_, a/, _rl, G_) where in the

cue of an ample strategy Gi is S_NS_+I or in the case
of an abutment strategy Gi is the set of points of -qi
from which a move to _'_+1 is possible. We have seen
that the strategy proceeds smoothly Am long as these
intermediate problems can be solved.

Definition 7 An intermediate problem /or which

there is no solution is called an impasse .for the strat-

egy.

This terminology foltows one case of the use of the

term in the Soar system, in so doing we are also fol-

lowing the usage of Ruby in (Ruby and K_bler 1989).
It is important to note that our definition of an im-

passe in a problem is dependent upon the strategy cho-
sen to solve the problem. Thus in the Bsaerji solution
to the five puzzle there are no impmmes since e.ach in-
termediate goal is attainable. By contrast in the more

usual method in which the tiles are brought into posi-
tion in a prearranged order there are impasses.

Learning the Impasses

Our approach to finding impasselese strategies is to im-
prove an existing strategy by modifying the subprob-

lems so that they do not contain any impasses. As an
example we show that in the cram of Fool's dish we can

do this by enlarging the intermediate problems. This
need not always be the cue as we shall see in some of
the examples that we discuss.

For the Fools' disk cue we can consider the inter-

mediate problems defined as follows..

• By using only rotations through 45 degrees, make

the sum on each pair of perpendicular diameterl 48.
P0 thus has the same state space as .P but & smailer
move set.

• Let Pt have _ state space the set of all states in
which the sum on each pair of perpendicular diam-
eters is 48. The move set is again a subset of the

original one. It may contain some moves through 45
degrees.

• Let P2 have as state space the set of all states in

which the sum along each diameter is24. The move

set may contain moves through 90 or even 45 de-

grees.

It is clear that for these problems no backtracking
into earlier problems is necessary.

Finding the Impasses

Problem solvers such as Soar (Laird et al. 1986) and

the stepping stone method (Ruby 1989) find the im-
passes in the course of attempting to satisfy the cur-

rent goal. A search procedure is then invoked to resolve
the impasse and the resolution of the impasse become

part of the problem solver's knowledge about the prob-

lem. This is an accurate representation of much human

pr. _ -:m solving, but it does not tell the whole story.
O _ faced with a problem a human will actively con-

st, =e difficulties that may arise in the course of the

re ;on of the problem to see if they can be solved.
0 _vantage of such an approach offers is that it

al. _ one to take advantage of efficientstorage tech-

niques once one has determined that a small group of
chunlm willbe adequate to solve the problem. This

addresses in some measure the problem of expensive

chunks (Tarnbe et sl. 1990).
We give here a recognition criterion that forms the

basis for an algorithm that can be used to produce

impmmes in problems. The criterion will be stated for

the c_es where the strategy is based upon the idea

of reducing a set of features to their goal values. We

begin by formalising this notion.

Given a problem P a feature on P is a map

f: ..q "', T(.f)

between the state space of P and some finite set T(f)
called he target of of the feature. A set 3r of features

is c_lled discriminating if given any two state so and

sx of P there is some feature .f E _r such that f(s0

f(sl). The set is called adequate for a goal G if given

any state s which is not a goal state there is some

feature f such that f(s) is not a member of f(G).

The strategy mmociated to an ordering {.fl,...,fk}

of a set of adequate features isthe sequence of subprob-

lena Pi = ($_,f/,a_,_, S_+z) where S_ is the set of all

statesfor which the features .fl,...,.f_-1have goal val-

ues, a_ isthe restrictionof a to a-ISi N (S_ x _). For

these strategieswe can give a recognition criterionfor

impeams.

Proposition 8 [,et P_ = (S_,fi, a_,a_,S_+l) be an in-

termediabe problem for a strategy b_ed upon an ade-

quate set o.f .fsetuves, then Pi iJ an impasse instance if
either

• No move changing the value of .f_ applies to a_, or

• Any sequence o.f moves on P _at reduces fi from ai

mu_rt change the value o/at leastone o/f:, ...f__ _.
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From this point forward the argument goes as fol-
lows. First, find an impasse. Second, produce a
"smaller" example of the same impasse. Thirdly, ex-
pand the example to a subproblem in which the im-

passe can be resolved. Finally, show that the problem
has a strategy based upon the new set of subproblerm.

Examples of Impasses

To obtain an impasse of the first kind we can turn to
Sussman's anomaly in the blocks world. The impasse
can be succinctly described by the following figure.

Sussrnan's Anomaly

Although one can get "closer" to the goal by putting
B on top of C in the position on the leR hand side it
will be necessary to undo this since the goal of putting
A on B requires that the top of A be clear. Thus no
move that will achieve the desired position for A k
available.

To get an example of the second kind we con-

sider the fifteen pussle with the initial strategy
of moving the tiles into position in the order
i, 2, 3, 4, 5, 6, 7, 8, 9, 13, I0, 14, II, 12, 15 (the ordering
at the end is chosen to be a good one, we do not need
to.go this far though).

1 2 3 5

15 6 4

9 10 12 11

13 14 8 7

A Fifteen Pussle Position

In the diagram above we find an impasse when we
come to try and locate tile 4. The smallest subprob-
lem in which this impasse appears is the 2 x 2 up-
per right hand corner in the diagrmn where which
we place 3, 5, 4, blank reading clockwise from the top
right. (The choice of 5 is not significant.) This
be solved in the five pussle that is obtained when we
restrict attention to the top two rows and rightmost
threecolumns of the pussle. Furthermore we wan cover
the state space of the fiReen punle with copies of the
five puzzle in the way that will be detailed in the next
sectionand obtainan impassefreestrategy.

In fact the recognition criterion given in proposition
8 permits one to write a simple program that will gen-
erate impasses in both these cases. Furthermore the

expansion of the subproblem described in the example
of the sliding tile pussle will provide the means for re-
solving the impasses. This is the subject of the next
section.

Atlases: Solving the problem

In this section we will describe a modified version of
the notion of a strategy. In some sense it is a rneta-
strategy in that it is designed to produce an impasse
free strategy for a problem by choosing the sequence
of subproblerns from a set ofsubproblems whose image
cover the whole of the state space. The basic idea is
that one determines what impasses may arise in the
problem and then expands them to subproblems that
resolve the impasses. These impasse resolving prob-
lerm are then used to cover the state space of the prob-
lem giving rise to a new strategy.

Charts

It is convenient to introduce two auxiliary notions.
These are chartand atlas.The ideaisthat chartare

piecesofa problem thatare allmodeled on some com-

mon subproblem. The important chartswillbe the
ones thatcontainthe resolutionsofimpasses.

Definition 9 Let P be a problem and s a state in P.

Thez_ a chart for P b_ed upon a problem Po is a prob-
lem morwmorphiam Po "-_P 1#hose image corttains s.

An atlas for a problem P is a finite collection A of
charts such that every point in the state space of P is
in the image of some chart of .4.

We define the images of two charts fl : P1 _ P and
fz : P2 -" P to be incident if either

1. fI(PI)N f_(P2)containsat leastone move common
toboth subproblems,or

2. thereexistsa stateslef1(P1)and a states2e/2(P_)
such thatthereisa reversiblemove w with a(sl,_) =
@Z.

The oh#tractionofa problem associatedtoan atlasis
the graph whose verticescorrespondto the embedded

chartsofthe atlaswith an edge between each pairof
incidentcharts.A sequenceofpairwiseadjacentcharts
is called a chain_

We will want to distinguish between two types of
abstraction.An abstractioninwhich the chartsover-

lap willbe calledan ample atlas.One inwhich allthe

chartsareincidentbut do not overlapwillbe calledan
ab#tmsztt _las.

We give two examples of abstractionsassociatedto

an atlas.The firstisbased upon the earliersolutionof

thefivepussle.Here the chartsconsistofthe imagesof
the sub-problem ofthe fivepussleconsistingofthose
statesthatare obtainableby moving the blank around
the circumferenceof the pussle. As Banerjiremarks
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(Banerji 1990) this represents the accessible states of
the five puzzle on the faces of a dodecahedron. The
faces of this are the points of the abstraction and the
edges (which correspond to the move of the blank up or
down in the middle column) correspond to the edges.

We can obtain an abstraction of the blocks world
by "welding together" adjacent blocks so that we have
only three big blocks to consider. Each big block is
itself a blocks world and the three block world already
contains the generating example of the impasse.

These two examples suggest that the correct choice
of an atlas will allow one to give an impasse free strat-
egy.

The Atlas Meta-strategy
Atlases serve as abstractions of a problem. Given a
problem instance and an atlas on a problem we can
define a problem instance on the atlas. -he problem
is to find a chain joining a chart contaL_.ng the start
position to a chart whose image intersects the goal.

Definition 10

Giver_ an impasse I = (P0, f/o,a, o0, G0) on a prob-
lem, a chart f : Pz -" P is said to resolve the impasse
if there is a mor_omoepkism of Po into Pz and if Me
instance I can be sol_ed in PI.

The main ideas of this paper can be summed up in
the following.

Proposition 11 Let {Po, ...P_} be a stratelry for a
problem P and let • der, ote tKe set of impasses for OLIS
strategy. Let { Q:, . . . , Q_,} be a set of cl_art# of P rack
that each impasse is resolved in at lea4rl one of O_e Qi.
There is an atlas .4 ba_edupon the chartm Q_ wAoss as-
sociated meta-strategll gives impasseleu strategies for
P.

The next section outlines a proof of this result and to
a result on the length of the solutions that it produces.

Solutions and Their Length

The ideas required to construct the impasselese strat-
egy are outlined below. The details have been worked
out for the sliding tile pussies, the Tower of Hanoi and
the blocks world but in a manner that is somewhat
problem dependent. Future work involves unifying the
implementation so that it applies in a more problem
independent way.

Resolving the Impasses

Let Pi = (S_,t"li, a.i, oi, Si+l) be an impasse arising
from the strategybased upon the set {A,.-.,fJ,} of
features on a problem P. The following sequence of
steps is used to resolve the impasse.
SHRINK

The goal of this step is to remove from com,ideration
thosefeaturesthat are not requgredto constructthe
impasse. In generalgivena setoffeatureson a prob-
lem we can restrictto the moves that affectonlythese

features. The required shrinking takes place by elim-
inating the features which are both fixed and whose
value does not figure in the creation of the impasse.
ENLARGE

Moves that effectthe remaining featuresare now
added to produce a zubproblem in which the impasse
can be solved.At each step the move added should
affectthe smallestpossiblenumber of additionalfea-
tures.

An Example

We can illustrate this process with the example of the
fifteen puszle. We saw that an impasse can be reached
when the first three tiles have been placed. The
SHRINK process reduces this to an example equiva-
lent to a three puzzle in which the tiles appear in the
order 3, x, 4, blank, when read clockwise from the top
left hand corner, (x denotes one of the possible tile
valuesother than those alreadyused.) We can then
EXPAND to a fivepuzzle,which can be eitherhori-
zontalor verticalinwhich the impasseisresolvable.

The next step isto determine whether there isan

atlasfor the problem whose chartsare isomorphicto
the setof subproblernsobtainedby resolvingthe im-

passes.Ifthisisthe casewe then replacethe original
strategyby the followingone. We suppose as before
thatwe have a problem P with an adequate setoffea-

tures{fl,...,f_}. In additionwe assume that there
isan atlas,4whose chartsare isomorphicto the im-

passe resolvingsubprobhms obtained by the process
outlinedabove.

Using the same ordering of features that was used
for the original strategy that produced the impasses.

1. Set as the current subgoal the reduction of the next
feature to its goal value.

2. As each feature comes up for reduction find a chain
of minimal length joining the current state to a state
in the current subgoal.

3. Extract the move sequence joining the current point
to one in which the feature has been reduced.

Since the atlas contains a resolution of all impasses
this method will solve the problem whenever there is
in fact a solution.

The Length of a Solution

We can now give an estimate for the length of a solution
found using this method. We need some preliminary
definitions.

/) will stand for the maximum chain length required to
perform the reduction of a feature.

D will stand for the maximum distance between two

states in a chart. When a particular chart C is r _
ferred to we will use D(6') for the distance on tk
chart. Note that this number can be infinite if t_
chart is an impasse chart.
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N willbe the number of features on the problem.

n will be the number of chains required to reduce all
the features.

The firstresultisthe following

Theorem 12 Let P be a problem with an ample aLlaJ

and feature$ with values of L, D, n _ above. Then the

algorithm given above findJ a sol=Zion of lenfth aZ mosf
LxDxn.

Proof. For each feature the length of chain required to

reduce it does not exceed L, furthermore one each com-
ponent of the chain the length of the move sequence
required is less than D.D

The corresponding resultfor abutment atlasesisthe

following. The proof is similar.

Theorem 13 Let P be a problem with 6n =buZmenL

arms and featurea with valuea of L, D, n u above. The

algorithm above supplies a solution of length ¢Z most

_× (L x D+ L-1).

Although these results are quite simple they give
quite good estimates. For example in the cue of the

fifteen puzzle if we use the estimate of 22 as the maxi-

mum distance on the five punic (Baaerji 1990) we get

an estimate of (22 x 3 x 15) + 3 for the length of a

solution.A more perspicuous version of the argument

yields(19 x 22) + 3.

Summary and Conclusions

This paper has presented a method for solving prob-
lems that constructs the impasses a_ociated to an ini-

tialstrategy in order to be able to find s new strategy

in which impasses willnot arms.

The method can be applied to produce short solu-

tionsto the sliding tilepuzsles as well u to the blocks

world. Though the implementation isat thiJstage still

very problem dependent. Future work willproduce a

version that ismore general.
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