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Abstract

The aim of changing represeauttion is the imtxovernmt
of problem-solvin8 eflicieacy. For the most widely
studied family of methods of change of repceseatation
it is shown that the value of • single parameter, called
the expansion factor, is critical in determining (1)
wheth_ the change of representauon will improve or
degr•de problem-solvin8 efllc/ency agl (2) whether
the solutions produced using the chanse of

representation will or will not be exponentially lonser

than the shortest solution. A method of e,cmputin8 the
expansion factor for • given change of rqxesemation is
skeu:hed in general and described in detail for
homomorphic changes of representation. The results
are illustrated with hommnorl_c decompositions of
the Towers of Hanoi l_oblem.

Definitions

The following definitions of the basic elements of
problem solving are used throughout the peper.
Only the definition of "solution" is non-standard.

A state is an atomic object.
An action, or operator, is a function mapping

states to states.

A plan, or path, is a sequence of actions.
A goal is a set of states.
A problem is a pair consistin 8 of an initial slate

and a goal.
A problem space is a pairconsisting of a set of

states and a set of action& n

A solution (of Problem <SO,G>) is a sequence
S0-A1-S I-A2-...-S(n- 1)-An-Sn

where Si is a state, Ai is an action

i This definitiea assumes all sea ct states me _owi

as goals, that all State-Goal pain m sBowsl_ as Pmblans,

that all sequences of canpma_ scsiom are _i u

_s, etc..This ,,s_ i. n_ _,s_h.s to Shy _

resultsthatf_w.

mapping S(i-1) to Si, and Sn is in the
goal G.

A solution pin (of Problem <SO,G>) is a
sequence of actions mapping SO to a
state in G.

Change of Representation

Problem space Pspace2 is a change of
representation of problem space Pspacel if there
exists a relation, R, between the two problem
spaces that "preserves" solutions in the following
sense. If R maps a problem, Problem l, in
Pspacel to Problem2 in Pspace2, and Solution2
is a solution of Problem2, and R maps Solution2
to Planl (a plan in Pspacel), then Planl is a
solution plan of Probleml. This definition is
depicted in the following diagram.

Probleml _ Problem2

Planl 4 Solution2

This is an extremely general definition,
presupposing nothing about the nature of the
indivudal mappings, nor anything about how
problem spaces or the mappings are
implemented.

The net effect of change of representation
is to "decompose" problem-solving in Pspacel
into a three step computation:

(1) translating a given problem into a problem
in Pspace2

(2) problem-solving in Pspace2, and
(3) translating the solution back into Pspucel.

Change of representation may be applied
recursively to any of these three steps. Most
commonly (for example in "hierarchical"
problem-solving (Knoblock,1991)), it is applied
repeatedly to step (2) until this step becomes

I00



trivial. Diagrammatically, this may depicted as:

Problem I -- -+ Problem2 -- --+ ... -- --+ ProblemT
$

Solutionl +----- Solution2 +----...+---- SolutionT

The rightmost problem space in this
diagram can always be assumed to be the trivial

space consisting of one state and one operator
(the identity). In this way the explicit problem-
solving step is entirely eliminated: a problem is
solved by being Izanslaled into the trivial
problem space and then translating the solution
back into the original problem space. The total
cost of problem-solving, then, is the sum of the
costs of the two translations.

Solution Refinement

Within the preceding general strategy for
problem-solving by change of representation
there are many possible variations. One of these
variations, called "solution refinement" is the

subject of this paper. Solution refinement is
defined by the two following properties. First,
the only complex computation is the translation
of a solution in Pspace(K) to a solution in
Pspace(K-1). This computation is called
refinemenL Second, refinement preserves the
structu_ of the solutions, in the following sense.
Suppose the solution in Pspace(K) is

S0-AI-S l-A2-...-An-Sn
A refinement of this solution must have the form

X0-I0-RS0-RAI -X 1-I 1-RS I-RA2-...-Xn-In-RSn
where

RSi is a state in Pspace(K-1) _ding to
state Si,

RAi is an action in PspaceCK-l)
corresponding to action Ai and defined on
RSi.

Xi is the result of applying action RAi to
slate RS(i-1) (X0 is the start state in the
problem to be solved in Pspace(K-l)),

and Xi-li.RSi is a solution to the problem of
getting from Xi to RSi (ff it happens that
Xi=RAi, then Ii is empty).

Every action in a solution has a counterpart in
the refinement of the solution, and usually there
will be new actions added (the non-empty 5).
Therefore, a refinement will usually be longer,
and can never be shorter, than the solution it is
based on. In other words, as the initial "trivial"

solution is translated back to become a solution

in Pspacel it grows longer and longer -- it
expands each time it is refined. The "expansion
factor" (pp.10-11, (Stefik & Conway,1982)) is
defined as the average ratio of the length of a
refinement to the length of the solution from
which it was derived. An equivalent definition,
which will be useful later, is that the expansion
factor is the average number of states m the
segments Xi-Ii-RSi.

Solution refinement, in various forms, is
the oldest and most widely studied method of
change of representation. It is most often
associated with the use of "abstractions", as in
ABSTRIPS (Sacerdoti,1974), NOAH
(Sacerdoti,1977), ALPINE (Knoblock,1991), and
ABTWEAK (Yang & Tenenberg,1990). But
solution refinement, as a strategy for problem-
solving, is equally applicable to many ways of
decomposing a problem space, not only to
abstraction. For example, in our research
(Zimmer et a1.,1991), Pspace2 may be any
refinable homomorphic image of Pspaceh that is,
the mapping between Pspacel and Pspece2 may
be any many-to-one mapping of states to states

and operators to operators 2 such that: (1) the
behaviour of operators is preserved, and (2) there
exists a refinement of every solution in Pspece2.
Examples of solution refinement and
homomorphic decompositions are given in the
next section.

The Towers of Hanoi Problem

Although there are several different ways to
define the Towers of Hanoi problem space, in
this paper we will follow the standard definition.
A state is defined by naming the peg on which
each of the disks sits. There are 3 pegs, and any
disk may be on any peg, so ff there are D disks

there are 3D states. An operator is defined by
naming a disk and a direction (clockwise or
anticlockwise): thus there are 2D operators, given
D disks. The effect of an operator is to move the
specified disk f_om its current peg to the next
peg in the specified direction. An operator is
defined on a state only ff all the disks smaller
than the disk to be moved are on the peg that is

2 We In currently expiorin| the use of many-m-many

mappinp _ opmlmn, called "d_tn]=umt repn:sematims" in
(Ho_t9SS).
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not affected by the operator.

In the 2Misk Towers of Hanoi problem
there are 9 states. { <SJ_> I S, L ¢ {1,23}}.
where S indicates the peg of the smaller disk and
L the peg of the larger disk. The 4 operators are
SC, SA, LC, LA, where S (L) indicates the
smaller (larger) disk, and C (A) indicates
clockwise (anticlockwise).

In the 1-disk Towers of Hanoi problem,
there are 3 states {<1>,<2>,<3>}, indicating the
position of the lone disk, and two operators, C
and its inverse A.

The Standard Decomposition

There are exactly four homomorphisms of the 2-
disk space, as defined above, onto the I-disk
space. The standard one can be summarized in
Engfish as: "ignore the position of the smallest
disk". Formally, in this decomposition state
<S,L> is mapped to state <L>, operatcqrs LC and
LA are mapped to C and A, respectively, and
operatorsSC and SA are mapped to the identity.

To illustrate the use of this degomposition
in problem-solving, consider the problem in
which the start state is <I,I> and the goal is
<32>. This 2-disk problem is mapped into the
1Misk space. The translated problem has <1> as
a start state and <3> as a goal. The 1-disk
solution is <I>-A-<3>. This solutionimplicitly
has identity operators acting on states <1> and
<3>. Refinement must now map this solution
into a solution to the original problem. Operator
A maps back uniquely to the operator LA, but
the states do not map back uniquely, nor do the
implicit identity operators. For example, the
identity operators on state <1> map back to any
sequence of operators which, when applied to a
state in which the larger disk is on peg I, lead to
a state in which the larger disk is on peg 1.

Our refinement algorithm works by
translating a solution in Psimce(K), SolutionK,
into a sequence of subpmblems to be solved in
Pspace(K-1). Each State-Ow, ra_ fragment in
SolutionK is translated into a goal to be solved
starting at the final state of the previously solved
subproblem (or, in the case of the first goal of
this form, starting at the given start state of
Pspace(K-1)). In the present example, SolutionK
is <l>-A-<3>: this is translated into the goal
"<I>-A", whose meaning is "reach a state in
which operator LA is appficable and the larger
disk is on peg 1% Problem-solving commences

flom the start state in Pspace(K-1), <1,1>, and

proceeds, as usual, until this goal is satisfied. In
this case the solution is <1,1>-SC-<2,1>. This
solution is the refinement of the <1>- segment of
SohitionK. Note that the one state in SolutionK

has been expanded into 2 states in this
refinement: this expansion factor is the key in
determining whether this decomposition will
improve or degrade the efficiency of problem-
solving.

Continuing with the example, operatorLA
is added to the solution, along with the state
(<2,3>) to which it leads from <2,1>. The state
<2,3> will be the start state for the next

subproblem in the refinement process. Because
we have finished with all the operators in
SolutionK, only the final refinement subproblem
remains: the goal is to reach <3,3>, the goal state
in Pspace(K-1). Problem-solving commences
from the state <23> and finds the solution

<2,3>-SC-<3,3>. This is the expansion of the
-<3> segment of SolutionK: as before, there is an
expansion factor of 2. The final solution to the
original problem is created by linking together all
the solutions to the refinement subproblems,

giving < 1,1>-SC-<2,1 >-LA-<2,3>-SC-<3,3>.

Non-Standard Decompositions

In the first non-standard decomposition, state
<S,L> is mapped to state <P> if S and L are both
equal to P or if both are different than P. Thus,
states <I,I>, <2,3>, and <3,2> map to state <I>,
states <2,2>, <1,3>, <3,1> map to state <2>, and
states <3,3>, <1,2>, <2,1> map to state <3>.

Operators SA and LC both map to operator A,
and SC and LA both map to C.

In the second non-standard decomposition,
state <S,L> is mapped to state <S>: that is, the
position of the larger disk is ignored. Thus,
states<I,I>, <1,2>, and <1,3> map to state<I>,
states <2,1>, <2,2>, <2,3> map to state <2>, and
states <3,1>, <3,2>, <3,3> map to state <3>.
Operators LA and LC map to A and C,
respectively, and SA and SC both map to the
identity.

In the final decomposition, state <S£,> is
mapped to state <S-L+I>, where the subtraction
is done modulo 3. In other words, the mapping
is based on the relative positions of the two
di_¢. States in which the two _ are on the

same peg -- <1,1>, <2,2>, and <3,3> -- are
mapped to state <1>. States in which the smaller
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disk is one peg "ahead" of the larger disk --
<2,1>, <3,2>, and <1,3> -- are mapped to state
<2>. And states in which the smaller disk is one

peg "behind" the larger disk -- <1,2>, <2,3>, and
<3.1> -- are mapped to state <3>. Operators LC
and SC both map to operator C, and operators
LA and SA both map to operator A.

When any of these decompositions is
applied to the N-disk Towers of Hanoi problem
space the resulting space is isomorphic to the
(N-1)-disk space. Hence the same decomposition
can be applied repeatedly to produce a sequence
of successively smaller problem spaces ending
with the trivial problem space.

Problem-solving Efficiency

The aim of all kinds of change of representation,
including solution refinement, is to improve the
efficiency of problem-solving. Consequently. it
would be useful to be able to predict the change
in problem-solving efficiency that would result
by making a particular change of representation.
This ability would enable a system to select the
most efficient among a set of possible changes of
representation -- for example, to select the best
of the four decompositions of the 2-disk Towers

of Hanoi problem. And. accompanied by an
estimate of the problem-solving efficiency of the
original problem representation, this ability
would enable a system to determine whether any
of the changes of rei_esentation is actually an
improvement.

It is not difficult to analyze the efficiency
of solution refinement methods under the

assumption that the expansion factor at every
level is the same. Let A be the number of

nontrivial problem spaces, and X be the
expansion factor. Then the length of the final
solution is X ^. If W[X] denotes the amount of

"work" required to refine a single state-operator
solution fragment, then the total amount of work
required to create the final solution is

W[X]*(XA-1)/(X-I).

In his thesis (Knoblock,1991), Craig
Knoblock observes that if X is a constant and A

is proportional to the logarithm of the optimal
solution length, then the work required by
solution refinement is exponentially less than the
work required by a brute force problem-solver in
the original (undecomposed) problem space.
These circmnstances hold when the slandard

decomposition is used to solve Towers of Hanoi

problems in which all disks are initially on the
same peg.

This formula for "work" provides a direct
way to evaluate the efficiency of different
decompositions of a problem space, providing
that one can compute W[X] and measure the
values of X and A for a given decomposition. In
fact, the only real difficulty is the calculation of
X. The number of non-trivial problem spaces is
normally self-evident, and the term W[X] is

almost always negligible compared to X ^. Note
that with the values of X and A we can calculate

the expected length of a solution as well as the
expected amount of work required to create it.

To see how to calculate X, recall that X,
the expansion factor, is (by definition) equal to
the average number of states in the segments
"Xi-li-RSi" that are inserted during refinement.
If the method used to change representation
imposes conswaints on the possible values of Xi
and RSi, then these constraints may provide
enough information to compute an expected
value, or at least an upper bound, on X. For
example, in homomorphic decompositions it must
be the case that Xi and RSi are "equivalent", i.e.
that they are mapped to the same state by the
homomorphism. Given this fact, the expected
value of X is simply the "average" length of the
shortest path (operator sequence) between each
possible pair of equivalent states. "Average" is in
quotes because the actual probability of
encountering each of the <Xi,RSi> _ in
practice is normally unknown.

To illustrate this computation, consider the
standard decomposition of the 2-disk Towers of
Hanoi problem space. 9 different <XiJ_Si> pairs
can he conmucted from the 3 states that map to
<I>. Of these 9 pairs, 3 are of the form <S,S>,
3 are of the form <S,SC(S)>, and 3 are of the
form <S,SA(S)>. The shortest path connec_g S
to S has a length (number of states) of 1, and the
shortest path connecting S to SC(S) or SA(S) has
a length of 2. The same analysis holds for the
the states that are mapped to <2>, and for those
that ate mapped to <3>. Therefore the expected
value of X, assuming all pairs of equivalent
states are equiprobable, is (3"I + 6*2)/9, or 5/3.
This turns out to be impossibly low -- in the N-

Towers of Hanoi problem X must be larger
than twice the Nth root of 2/3 -- an indication
that all pairs are not actually equiprobable.
Nevertheless, this value may still be useful to
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compare with the value of X computed in the
same manner for the other decompositions.

The three other decompositions all have the

same expected value of X, namely 2.56. This is
considerably larger than the value for the

standard decomposition. Thus we expect that the
standard decomposition will produce shorter
solutions with less work than the other

decompositions. To test this prediction, the
standard decomposition and the second non-
standard decomposition were used to solve all
N-disk problems in which all disks are initially
on peg 1. Work is measured as the number of
arcs _'aversed by a breadth-first problem-solver

before finding a solution 3. The results of this
experiment are:

# of Disks WORK

(N) Standard Non-Standard #2
2 8.7 12.8
3 25.4 47.1
4 63.0 133.0
5 142.0 328.0

# of Disks SOLUTION LENGTH
(N) Standard Non-Standard #2
2 3.0 3.2
3 5.7 6.7
4 11.0 14.3
5 21.7 29.9

The ratio of successive solution lengths
gives a true indication of the actual expansion
factors of the two decompositions: X is optimal
(slightly less than 2.0) for the standard
decomposition and 2.1 for the non-slandard

decomposition. The difference in expansion
factors is much smaller than predicted, but still
results in a significant difference in solution
lengths and the work required.

If a formula is available to compute the
expected amount of work required for pr_lem-
solving in the original (undecomposed) Ixoblem
space, then this can be compan_ to the work
formula for solution refinements to determine

whether a given decomposition will improve or
degrade efficiency. In the N-disk Towers of
Hanoi problem space the expected amount of
work is half the number of arcs in the entire

3Unlike the problaa-mlverin Kaebto_'s mslysis, this
problem-solvernever travene,thesamearc_ Thissin"-
pie boekkeepinl usustlyresultsin an expoamfisl reduaiea in
the work_luin_d.

space (assuming that the problem-solver never

traverses the same arc twice), which is given by
the formula 3"(3rL1)/2. Because this formula has
the same form as the work formula for solution

refinement, it follows immediately that a
decomposition will degrade performance on the
N-disk Towers of Hanoi if and only if its
expansion factor is 3 or greater.

In the same way that the work required
with and without a change of representation can
be compared, so too can solution length be
compared. A breadth first problem-solver always
finds a minimal length solution. In the N-disk
Towers of Hanoi problem space, the minimum
solution length, for the average problem in which

all disks are initially on peg 1, is (2t_+1)+1)/3.
Comparing this to the expected solution length
for solution refinement, it follows that a
decomposition will produce exponentially longer
solutions whenever its expansion factor is greater
than 2.

The fact that the critical value of the

expansion factor is different for solution length
and work-required leads to the apparent paradox
that some decompositions will construct
exponentially longer solutions and yet do
exponentially less work. In fact, the second
non-standard decomposition exhibits this
phenomenon, as the following data shows (the
experimental conditions are the same before).

# of Disks WORK

(N) Original Spece Non-Standard #2
2 10.8 12.8
3 37.8 47.1
4 118.8 133.0
5 361.9 328.0

# of Disks SOLUTION LENGTH

(N) Original Space Non-Standard 02
2 3.0 3.2
3 5.7 6.7
4 I 1.0 14.3
5 21.7 29.9
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Conclusion

The aim of changing representationis the

improvement of problem-solvingefficiency.For
the most widely studiedfamilyof methods of

change of representationithas been shown that

the value of a stogie parameter, called the
expansion factor, is critical in determining (1)
whether the change of representationwill

improve or degrade problem-solvingefficiency,

and (2)whetherthesolutionsproducedusingthe
change of representationwill or will not be

exponentiallylongerthan the shortestsolution.

A method of computing theexpansionfactorfor

a given change of representationhas been
sketchedin generaland describedin detailfor

homomorphic changes of relxesentation.The

resultshave been illustratedwith homomorphic
decompositionsoftheTowers ofHanoi problem.
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