
Van Baalen

The Role of Reformulation in the Automatic Design of
Satisfiability Procedures

Jeffrey Van Baalen

Computer Science Department

University of Wyoming

j vb©moran, uwyo. edu

Abstract

Recently there has been increasing interest in the prob-

lem of knowledge cornpzlation [Selman&Kautz91]. This

is the problem of identifying tractable techniques for

determining the consequences of a knowledge base. We

have developed and implemented a technique, called

DRAT, that given a theory, i.e., a collection of first-

order clauses, can often produce a type of decision pro-

cedure for that theory that can be used in the place of

a general-purpose first-order theorem prover for deter-

mining the many of the consequences of that theory.

Hence, DRAW does a type of knowledge compilation.

Central to the DRAW technique is a type of reformula-

tion in which a problem's clauses ate restated in terms

of different nonlogicai symbols. The reformulation is

.isomorphic in the sense that it does not change the
semantics of a problem.

INTRODUCTION

Recently there has been increasing interest in the prob-

lem of knowledge compilation [$elman&Kautz91]. This

is the problem of identifying tractable techniques for

determining the consequences of a knowledge base.

Most interesting knowledge bases are written in high-

ly expressive languages for which the general problem

of complete inference is intractable (e.g., at least NP-

hard, usually undecidable). Even though the general

inference problem in such a language is intractable,

given a particular knowledge base, it is often possi-

ble to identify a tractable inference procedure that is

complete for the inferences required in that knowledge
base.

We have developed and implemented a technique,

called DRAW, that given a theory, i.e., a collection of

first-order clauses, can often produce a type of deci-

sion procedure for that theory. This type of procedure

is called a literal satisfiability procedure. Such a satisfi-

ability procedure for a theory T decides whether or not

a conjunction of ground literals is satisfiable in T. A

literal satisfiability procedure for a theory can be used

in the place of a general-purpose first-order theorem

prover for determining the many of the consequences

of that theory. Hence, DRAW does a type of knowledge

compilation.

Obviously, we are better off using a satisfiability pro-

cedure for determining the consequences of a theory

than we are using a general-purpose theorem prover be-

cause the satisfiability procedure is guaranteed to halt.

However, under what circumstances should we consider

such a procedure tractable? A straightforward way to

define tractability is polynomial-time worst-case com-

plexity and for some theories DRAW can produce a sat-

isfiability procedure that has this property. For many

other theories, the satisfiability procedures produced

are exponential in the worst case. Note that DRAT

can determine whether a satisfiability procedure it pro-

duces has polynomial or exponential worst-case behav-

ior. In either case, the procedures are usually much

more efficient than a general theorem prover because

the complexity of the theorem prover proving that a

fact F follows from a theory T is a function of the

sum of the size of F U T, while the complexity of the

satisfiability procedure is a function of the size of F.

Even when DRAT cannot produce a literal satisfia-

bility procedure for an entire theory it is often an im-

provement to use a procedure for a subset of an input

theory because such a procedure can be interfaced with

a general-purpose theorem prover in such a way that

the procedure and the theorem prover work together
to determine the consequences of the theory.

In practice, so long as a procedure can be found for

a significant subset of the theory, the resulting infer-

ence systems ate much more efficient than the theorem

prover alone because many of the inferences that the

theorem prover would have to do are done more effi-

ciently by the satisfiability procedure.

Let @ be the set of axioms of a problem and let S

be the satisfiability procedure that DRAW designs for

_', some subset of @. The theorem prover restricts its

manipulation of the statements in @', using ,9 instead

whenever possible. This paper presents a formalization

of DRAW and proves that it is complete, i.e., that for any

first-order statement 4_, if • _ _b, S combined with the

theorem prover will prove _b. We show that DRAT's re-

formulation greatly increases its effectiveness and that

a solution to a reformulated version of a problem is

161

guaranteed to be a solution to the original problem.
We present only a brief description of the DRAT algo-

rithm here. A detailed description of an implementa-
tion can be found in [VanBaalen89] or [VanBaalen92].

DRAT was inspired by human problem solving per-
formance on analytical tasks of the type found on grad-
uate level standardized admissions tests. An example
problem is given in Figure 1.

Given: M, N, O, P, Q, R, and S are all members of the
same family. N is married to P. S is a grandchild of Q.
O is a niece of M. The mother of S is the only sister
of M. R is Q's only child. M has no brothers. N is a
grandfather of O.
Quer'g: Who are the siblings of S?

Figureh The FAMILIES AnalyticalReasoning Prob-
lem

We analyzed human problem-solving behavior on a
number of these problems and found the prevalent use
of diagrams to assist in problem solving. Figure 2 il.
lustrates the typical diagrams people use to solve the
problem in Figure 1.

"R isthe only childofQ_ "S isa grandchildofQ"

(Divided rectangles represent couples; circles represent sets
of children of the same couple: full circles are closed sets,
broken circles are sets all of whose members may not be
known; the directed arc represents the "children-off func-
tion between couples and their sets of children.)

Figure 2: Two statements in a representation common-
ly used by people.

These diagrams were found to contain a common
set of structures (across different people and differen-
t problems). The arcs in Figure 2 are an example of
such a structure. They represent the 1-1 function be-
tween a married couple and their set of children. Each
common structure was also found to have a startdard
set of procedures for manipulating it. For example,
one procedure associated with the arcs in Figure 2 en-
sures that they behave like s 1-t function. It reads
roughly as, "If two objects are equal and they appear
atthe same end oftwo separatei-I functionarcswith
thesame functionsymbol, the arcsand theobjectsat
theirotherend can be composed." This procedureisa-

mong thoseused tocompose thestructuresinFigure2
toyieldthe diagram inFigure 3.
People use these diagrams to.testthe satisfiability

ofa particularcollectionoffactsby creatingthe struc-

,s.:

Figure 3: Composition of the structures in Figure 3.

tures representing each fact and then composing them.
The conjunction is satisfiable just in case no contradic-
tion is signalled in the composition process.
DRAT has a library of procedures called schemes.

These schemes model people's diagrammatic struc-
tures and their manipulations. Schemes were found
to have a number of important properties which are
described in this paper. Perhaps the most i_',:-_rtant
of "_c_e properties is that each scheme turns :o be
a .- fiability procedure. Another important perry
of _ _emes is that they can be used as buildi_ lock-
s to _onstruct"larger"satisfiabilityproceduro- DRAT
uses this property to construct satisfiability procedures
for input problems.

The implementation of DRAT includes the schemes
found in analyzing the diagrams that people used on
thirty analytical tasks. It has been tested on twelve
of these problems stated in a sorted first-order logic.
The problems vary in size from thirty to sixty sorted
first-order statements. The performance of the theo-
rem prover/satisfiability procedure combinations that
DRAT produces for these problems was at least two or-
ders of magnitude better than the performance of the
theorem prover alone. For example, our general theo-
rem prover took 988,442 resolutions--- three hours and
five minutes--to solve the problem shown in Figure I.
The satisfiability procedure that DRAT produced was
abletosolvetheproblem entirelywithoutthe theorem

proverand did so inlessthan threeseconds.

PRELIMINARIES

Each scheme is a tractable literal satisfiability procedure
for a theory.

Definition 1 A tAeo_ isa setof statements infirst-

orderpredicatecalculuswith equality.

Definition 2 A literal satisJiability procedure for a
theory T is a procedure that decides for any conjunc-
tion of ground literais _ whether or not l_ U T is satis-
fiable.

Each scheme is tractable in the sense that, given any
containing n literals, the scheme for a theory T decides
the satisflability of E U T in time polynomial in n.

Given a particular E, in addit!,'n to determining lit-
eral satisfia_iiity in some theor'" " each scheme corr',-
putes {u = v [u,v E CAr. = u = '_ whet"
C isthe setof constantsymboi_ Lppearing,_:E. A_
detailedinsection,theseequalihcsarecommunicated

between schemes ina way thatallowsthe combination

162

of schemes to determine satisfiability for the union of
their theories.

One important result of this research is the particu-

lar library of schemes we have developed from the ob-

servation of human problem solving of analytical tasks.

floweret, in the formal characterization that follows,

we abstract away from the detail of the current scheme

library, identifying the properties of schemes required

for the completeness of DRAT.

This paper first takes a simplified view of what DRAT
will accept as an input problem and also assumes that

DRAT is only successful if it can produce a satisfiability

procedure for an entire problem. [n this setting, we

prove that a combination of schemes is a satisfiability

procedure for the union of the theories of the individual
schemes. In section, the above restrictions are relaxed

and it is shown how, in the more general setting, the

procedures produced by DRAT are interfaced with a

theorem prover.

DRAT requires that the formulas of schemes and the

formulas of an input problem be converted to clauses,

i.e., disjunctions of first-order literals. The remainder

of the paper assumes that this has been done. However,

the presentation will often use more intuitive forms

for statements, when the conversion to clause form is

straightforward.

The restricted definition of a problem taken first is:

Definition 3 A problem is a triple < E,T¢,4 >,

where E and 4 are sets of ground literals and Tc is a set
of clauses each of which contains at least one variable.

Such a triple is interpreted as a question about whether

or not for all the ground literals ¢ E 4, _ U T¢ _ @.

Here is an example problem:

{ grandfather(O,N),married(N,P) }
El = grandchild(S, Q), niece(O, M),

M#N,N#O

mother(S, _) ¢_ sister(M,x), }

(sister(M,z) A sister(M,y)) _ x = y,

Tc, = child(Q, x) ¢_, x = R,

-_brother(M, z)

4t = {sibling(O, S), child(N, M))

In addition to those axiom_ shown, Et also contain-

s disequalities between all of the individual constants

mentioned. To, also contains definitions of concepts
such a grandchild and formulas defining general prop-

erties of the fatmly relation domain such as symmetry
of married.

Given a problem < _, To, 4 >, DRAT's objective is

to design a literal satisfiability procedure for Tc. This

procedure is used to solve the problem for the partic-

ular E and 4. To determine whether for some _b E 4,

E LJ Tc _ O, the satisfiability procedure for Tc is used

to decide whether or not E U Tc U -,_b is unsatisfiable.

For example, DRAT tries to design a satisfiability pro-

cedure for Tea. If successful, the procedure is used

to decide whether "0" is a sibling of "S" and "M is

a child of "N" follow from Et U Tc, by determining

the satisfiability of Et U Tc, U -,sibling(O, S) and of

Et U Tct U -,child(N, M).
Obviously, we are better off using a satisfiability pro-

cedure for Tc to solve a problem < E,Tc,4 > than

using a general theorem prover because the satisfiabil-

ity procedure is guaranteed to halt. Perhaps less obvi-

ous is the fact that these procedures are usually much

more efficient than a general theorem prover. The intu-

ition behind this is that the complexity of the theorem

prover solving the problem is a function of the size of

the entire problem, while the complexity of the satisfi-

ability procedure is a function of the size of ELI 4. As

pointed out in section , this intuition is substantiated

by the performance of the procedures that DRAT has

designed.

THE DRAT TECHNIQUE

We will call the relation, function and individual con-

slant symbols in a theory the nonlogical symbols of that

theory. The nonlogical symbols of each scheme's the-

ory are treated as parameters to be instantiated with

the nonlogical symbols of To. For example, the scheme

Tsvm,netric whose theory is {R(z, y) =_ R(y, z)} is pa-

rameterized by R.
DRAT tries to find a set of scheme instances that can

be combined to give a literal satisfiability procedure

for Tc. Consider a set of scheme instances. Call the

union of the theories of each scheme instance Tt. DrtAT

has succeeded in finding a satisfiability procedure when

it finds a Tt that is logically equivalent to To. The

following is an abstract description of this process:

instances *-- $

Tt '--$

Tb .- rc
UNTIL empty(_c) DO

instance *--- choose-instance(Tb)

IF null(instance) THEN EXIT-WITH failure

instances .- union(instance, instances)

Tt .--" union(theory(instance), Tt)

FOR EACH ¢ E T b

WHEN Tt _¢ DO T'c .--T b -$
END FOR

END UNTIL

A set of scheme instances is built up incrementally

and, simultaneously, the set of clauses in T_ is paired
down. Each time choose-iBttaace is invoked, it in-

spects T_ and chooses a scheme instance whose theory

is entailed by Tb. After the theory of instance is added

to TI, DRAT removes clauses from Tb that are entailed

by :Ft.

DRAT uses the following procedure for computing

satisfiability in TI to determine the ¢ E T_, that follow

from Tr. For each clause _, it creates ¢_ by substitut-

ing a new individual constant for each unique variable

in _b. If the satisfiability procedure for TI reports that

"_ U T! is unsatisfiable, TI _ ¢.

If the algorithm is exited with Tb empty, DaAT has

succeeded in finding a Tt that is equivalent to To. To

163

see this, note that T_ U Tt =- Tc is an invariant of the
lo_o. Adding theory(instance) to TI does not violate
tl , condition because Tb _ theory(instance). Re-
n_ ring from Tb clauses _bsuch that Tt _ 4_ also does
rest violate the condition.

If the algorithm is exited because choose-insl;anca
returns nil, it has failed to find a Tt that is equivalent
to Tc.

Note that this algorithm is nondeterministic be-
cause, in general, on a call to choose-insl:ancs, there
are several instances from which to choose. The DaAT

implementation searches for an appropriate collection
of scheme instances. This search is reduced consider-
ably by the fact that scheme instances in Tt may not
share nonlogical symbols. As discussed in section, this
restriction is required to allow schemes to be combined
by the method described below. More detail on how
the DRAT implementation ,'.-,ntrols this search can be
found in [VanBaalen92].

A PR.OCEDUttE FOR COMBINING
SCHEMES

Since Tt is the theory of a set of scheme instances, so
long as these instances do not share nonlogical symbol-
s, 0RAT has a satisfiability procedure for :Ft. This pro-
cedure is the combination of schemes used to create Tt.
OR^T'S combination technique is the same technique as
reported by Nelson'& Oppen in [Nelson&Oppen79] aad
a more detailed description than what follows can be
found there.

Let £(T) be the set of nonlogical symbols appearing
in the clauses of T. We will often refer to £(T) as the
language of T. Consider two scheme instances, Tt and
T_, where £(7'1) is disjoint from £(T_), and consider a
conjunction of literals E in £(Tl U Tz). The procedure
for deciding the satisfiability of E U 7"i LIT_ begins by
splitting E into two conjunctions of literals: El, with
literals in £(Tl) and Zz, with literals in £(T2) such that
the conjunction of literais in Z1 and Z_ is satisfiable
just in case E is.

When a literal in E contains nonlogical symbols from
£(T1 U T_), remove each subterm who6e function sym-
bol is not in the language of the head symbol of the
term. A subterm is removed by substituting a new
constant symbol for that subterm in the literal and
conjoining an equality between the term and the new
symbol with the proper Ei. For example, suppose R
is in £(T1), f is in £(7"2) and _ contains the literal
R(f(a)). The embedded term is in the wrong language,
so it is removed. This is done by substituting a new
constant, say b, for f(a) in R(f(a)) to obtain R(b) and
conjoining b =/(a) with Ez.

For each literal in r., this technique is applied repeat-
edly to the right most function symbol in the wrong
language until the literal no longer contains symbols
in the wrong language. Then the literal is conjoined
with the appropriate _i- For instance, R(b) from the

example above contain., no symbols in the wrong lan-
guage so it is conjoined with Et.

Next the scheme for T_ is used to determine tb_ satis-

fiabitity of Et UTI. Recall that in so doing, this _cheme
also computes the set of equalities between constants
in E1 that follow from E1 U T1. Call this set El. The
scheme for T2 is used to determine the satisfiability of
E2 U T_ O El. If it is satisfiable, E2, the set of equalities
that follow from E2 U T2 LIEl, is propagated back to
Tl, i.e., TI is used to compute E1 U Tt t9 E2.

This propagation of equalities continues until one of
the schemes reports "unsatisfiable" or until no new e-
qualities are computed. Note that since there are at
most n - 1 nonredundant equalities between n con-
stant symbols, this process will terminate. Unless the
scheme for Tt or T_ reports "unsatisfiable," the proce-
dure for the combination returns "satisfiable."

A complication to this equality propagation pro-
cedure is that given a set of ground literais, many
tractable schemes imply disjunctions of equalities be-
tween constants without implying any of the dis-
juncts alone, a property called nonconvezzty in
[Nelson&Oppen79]. An example of a convex scheme
is one that determines satlafiability for the theory of
equality with uninterpreted function symbols. An ex-
ample of a nonconvex scheme is one for the theory
of sets. To see this, note that {a, b} = {c, d} implies
a =cVa = d, but does not imply either equality alone.

A scheme associated with a nonconvex theory must
compute disjunctions of equalities between constants
that follow from a given conjunction of ground liter-
als. The equality propagation procedure is extend-
ed to handle such schemes by case splitting when a
nonconvex scheme produces a disjunction. When one
of the component schemes produces the disjunction
cl = dl Y ... V ca = dn, the combined satisfiabili-
ty procedure is applied recursively to the conjunct_, ns
_1UE2U{cl = dr} ,EtLI_zU {_:,_= dn}. Ifa_,: 9f
these is satisfiable, "satisfiable" is r_:turned, otherwise
"unsatisfiable" is returned.

As a simple example of this procedure, consider two
schemes: £ for the theory of equality with uninterpret-
ed function symbols and _ for the theory of finite sets.
Now gonsider whether

l f(a)--{b,g}Af(e)--{d,e}Aa--cA]
E-- [9_dAg_eAb_dAb_e J
is satisfiable. First _ is split into

El= [a=cAg_kdAg_eAb_dAb_ eA]f(a) = el A f(C) = C_

]C_ = [el = {b,9) A c_ = {d,e}].
o¢ is run on Et and determines that ct = c_. S is
run on _ t9 {ct - c_} which produces the disjunction
b = d V b = e. The procedure is now invoked recursive-
ly for Fq tJ_tg{b -- d} and Et t.J_2t.l{b = e}. In both
calls, E_ produces the disjunction 9 = d Y g = e which
is unsatisfiable. Therefore, both calls return "unsatis-
liable," hence ELI £ LIS is unsatisfiable.

We place one additional requirement on schemes

164

to make the equality propagation procedure practi-
cal. Schemes must be incremental. This means that a

scheme must be able to save its "state" when a con-

junction of literals is satisfiable and it must be able

to use the saved state to determine the satisfiability of

larger conjunctions at incremental cost.

REFORMULATION

The DRAT technique as described in section is severe-

ly limited by the way in which a problem is stated.

Often, it is much more successful with an equivalent

formulation of the problem stated in terms of a dif-

ferent collection of nonlogical symbols. For instance,

recall the problem about family relations given in sec-
tion . It was stated in terms of the binary relation

child. It turns out that, given the current scheme li-

brary, the DRAT implementation is much more success-

ful when the problem is stated in terms of parents, a

function from an individual to his or her set of par-

ents. One reason this formulation is better is that the

library contains a scheme for a theory of fixed sized
sets. DRAT discovers an instance of this scheme that

allows it to remove several general clauses from the

problem including one that limits the size of parent

sets to two.

In an effort to circumvent this sensitivity to a prob-

lem's formulation, DRAq _ is able to reformulate a prob-

lem in terms of new nonlogicai symbols without chang-

ing the "meaning" of the problem. Choose-£ns_ace
is often able to find scheme instances in reformulated

problems where it was unable to do so in the initial

formulations. DP.AT'S reformulation technique is mod-

eled after the reformulation that people do in solving

analytical tasks. For an example of this refer again to

the problem and diagrams given in section. In the dia-

grams appear concepts such as "married couples" and
"sets of children of the same couple." These concepts
are not present in the initial problem formulation --

the problem has been reformulated.

DRAT does a particular kind of reformulation called
Zsomorphic reformulation in [KorfS0]. We formalize

isomorphic reformulation as a relation between theo-
ries.

Definition 4 A reformulation map 7B*ct,_.' between t-

wo languages Et and £2 is a function from clauses in

£1 to sets of clauses in £_.

Definition 5 A theory T_ is an isomorphic reformu-

lation of a theory Tl just in case there exists a refor-

nmlation map Ti_(T,)C(T2) such that

Tt _ d_ oz. T_. _ R'c(v,),C(T2)(ia), for every clause ¢ in

C(T_).

If 7"2 is an isomorphic reformulation of Tl, any ques-

tion we have about what clauses are entailed by Tl can

be answered by theorem proving in T2. Given the ques-

tion, "does TI _ 4}?" we use T4" to translate _ into

E(T2) and then attempt to prove that T2 _ T_'(_).

As a simple example of isomorphic reformulation,

consider the following two theories:

7"1= R(z, _) _ R(u, _:),
R(x, y) ^ R(u, :) _ R(x, :)

T2 = x E R-class(y) ::* Y E R-class(x),
x E R-cMss(y) A y E R-class(z) _

x E R-class(z)

T2 is an isomorphic reformulation of Tl. To show

this, we exhibit an appropriate _:(T,)._(T2)" First,

we introduce the function 3' with "t(R(x,y)) = z E

R-class(y) and 7('-R(x, y)) = x !i_ R-class(y).

The function 3' is also defined in the obvious way

for literals that are instances of the patterns R(x, y)

and -.R(x,y), i.e., given the constants a and b,

"r(R(a, fib))) = a e R-class(/(b)).
Given the literals ¢bl, ..., Ca, n > 1

T_(Tt),£(r,)(_t V'.,V_n) = {7(¢t)Y'"VT(On)}.

Now T_ _- 7_(T,),c(V_)(TI), using the obvious exten-
sion of T_" to sets of clauses. Therefore,

T 1 _ _b ¢0 T 2 _ _l_.(Ta),r(T2)(¢). To see this, note that

we can take any resolution proof of TI I- _b and uni-

formly apply _*_(T,),f.(T2) to the clauses in each step

of the proof to obtain a proof of T_-(T,),_(T:)(Tt) I-

__(TO,C(T2)(¢). We can also define _;'_*£(Ta)r(rt) sim-

ilarly to T_*E(T,),E(T_) and use it to transform any

proof T_.(T,),_(r2)(T1) l- _'(Tt),_(T_)(¢) into a proof

of T_ I- _.

ADDING REFORMULATION TO

DRAT

One strategy for finding a satisfiability procedure for a

theory 7"1 is to identify a theory T_ with the following

properties: (1) a satisfiability procedure is known for

7'2, (2) we can find a reformulation map _:(rt),_(r_)

demonstrating that 7'2 is an isomorphic reformulation

of T_ and (3) T_(7.t),_(T_) is a computable function.

The actual DR.AT technique is an extension of the al-

gorithm discussed in section to apply the above strat-

egy. This extension enables DRAT to generate theories

that are isomorphic reformulations of Tc while search-

ing for a set of scheme instances that is a satisfiability

procedure for Tc. DRAT has a library of reformulation
rules, each of which is a reformulation map. These

rules are applied to an input theory Tc to construc-

t theories that are isomorphic reformulations of Tc.

The extended algorithm searches for scheme instances

in these isomorphic reformulations as well as in the

original Tc.

Roughly, each reformulation rule is viewed as an ax-
iom schema that can be instantiated with nonlogical

symbols and used as a rewrite rule to reformulate a

theory. To understand this view, consider the follow-

ing axiom schema in which R is a parameter:

165

R(x, y) _ z _ rR(y).
This states that for any binary relation, there is a pro-
jection function FR that is a mapping from individuals
to sets of individuals such that FR(y) = {x [R(z, y)}.

DRAT can apply the above reformulation rule to bi-
nary relations in Tc. When the rule is applied to
R in To, the new function symbol FR is introduced
and Tc is reformulated in terms of FR. For instance,
if this rule is applied to child in the family relation-
s problem given earlier, it will introduce a function
that we will call parents, from an individual to his
or her set of parents. DRAT uses the formula intro-

ducing parents, i.e., child(x, y) ¢:_ z E parents(y), to
reformulate the problem, rewriting all occurrences of
child(x, y) to z E parents(y).

This example reformulation rule can be applied to
any binary relation in any theory. More generally,
DRAT'S reformulation rules are conditional on proper-
ties of nonlogical symbols in a theory. A property of
a nonlogical symbol is simply a first-order statemen-
t mentioning that symbol. Before giving the general
form of reformulation rules, we introduce the function
r f-symbols(T), the set of relation and function sym-
bols of T. The r f-symbols(T) does not contain the
symbols = or E, even if they are mentioned in T. These
are treated as special (logical) symbols in the reformu-
lation process.

The general form of reformulation rules is given in
the following definition.

Definition 6 A triple < P, Q, O ¢_ • > is a refor-
mulation rule when it meets the following restriction-
s: (1) P and Q are conjunctions of clauses (both of
which may be empty). (2) O and _ are conjunctions
of literals. (3) r f-symbols(P) C_ r f-symbols(O) and
r f-symbols(Q) C rf-symbols(k_). (4) r f-symbols(O)
is disjoint from rf-symbols(gl). (5) 0 and _ have the
same variables.

Rules are symmetric in the sense that ir bicondi-
tionals can be used to introduce new symL in "either
direction." When the parameters in O at< mstantiat-
ed with symbols in a theory T, the rule is used to
reformulate T in terms of the new symbols in _. The
conjunction of clauses P is the condition that must be
true of a theory for the reformulation rule to be used
to rewrite O as @. When the parameters in @ are in-
stantiated with the symbols in T, the rule is used to
reformulate T in terms of the new symbols in O. In
this case, Q is the condition that must be true for the
rule to be used.

Here is an example of a conditional reformulation
rule:

< [z e F(y) =_ F(y) = {z}],,
[ze F(y) ¢_ z # .L^ z = F'(v)] >.1

This rule can be applied to any theory T containing
a function F whose range elements are sets of size one,

_The symbol .L is used in specifying axioms about par-
tial functions, F(a) = I means that F(a) is undefined.

i.e., P : [z E F(y) => F(y) = {z}]. When applied,
the rule reformulates T in terms of a function F' ,uch
that F'(y) = z just in case z E F(y). Q isemp,v in
this rule because the rule can always be applied ta the
other direction.

The following is an abstract description of the De.AT
algorithm extended to do reformulation:

instances -- 0
TI --_

Tb-- Tc
T£" .-- A(t).t
UNTIL empty(T_) DO

EITHER

re f-pairs .- choose-ref-pairs(T_)
IF null(re f-pairs) THEN EXIT-WITH failure
symbols, rule *-- choose(re f-pairs)
instant iated-rule .-- instantiate(rule, symbols)
-'. -- R(instantiated.rule, Tb)
"" -- A(t)._(instantiated-rule, T_" (t))

_tance ,-- choo6e-instance(Tb)
i.' null(instance) THEN EXIT-WITH failure
instances *..- union(instance, instances)
T! ,--- union(theory(instance), Tt)
FOR EACH _be T b

WHEN Tt bob DO _c --Tb - ¢
END FOR

END UNTIL

DRAT nondeterminiAtically either chooses a reformu-
lation rule and reformulates Tc or adds the theory of
the new instance to :It. Choose-instance identifies

an instance by identifying properties of the nonlogi-
cal symbols in T_. It looks for properties that appear
in the theories of schemes. For example, when the
scheme library contains a scheme one of whose axiom-
s is R':.y) =_ R(y,e!. DRAT attempts to choose in-
stan,.._f that schem,, by looking for binary relations
in T at have the : ;::_metry property.

C_-.,;e-ref-rale .ses the identified properties
of n,..,_togical symbois in T b to identify reformu-
lation rules that can be applied to those symbol-
s. Rules introduce new symbols as explained above.
Chooso-ref-rttles returns a list of < symbols, rule >
pairs, where symbols is an ordered list of nonlogical
symbols. Each pair in the list can be applied to Tc by
instantiating the parameters of the rule with symbols.
For a rule of the form

< P,Q,O ¢_ • >,

symbols can either be used to instantiate the param-
eters in 0 or in _, but not both. Conditional rules

are returned only when T_ entails their condition.
Choose-ref-rule guarantees that if symbols instanti-
ates _ then P follows from T_; If symbols instantiates
9, it ,.trantees that Q follows.

As '.)re, if DRAT exits with T_ empty, it has suc-
ceeds,: _ finding a T[equivalent to T¢; Otherwise, it
has fa,. i.

166

Again we have suppressed the issues of search by

giving a nondeterministic procedure. The search con-

ducted by the extended algorithm is over a much larg-

er space than the search conducted by the simple al-

gorithm described in section . The ORAT implemen-

tation with reformulation must compare alternative

problem formulations. Fortunately, we have found

some effective heuristics for controlling the search. See

[VanBaalen89] or [VanBaalen91] for details.
The procedure £asza2ttiaze, instantiates a rule

with respect to the nonlogical symbols in symbols to

produce an instantiated-rule. T¢ isthe reformulation

procedure. We describe this procedure for the case
where a rule of the form

< P,Q,Ot A...AO,_ ¢_ e_ >

is used to rewrite occurrences of 0t A... A 0n, the from

conjunct, to occurrences of _, the to conjunct. The

procedure for applying the rule in the other direction

is obtained by reversing the biconditional and replac-

ing references to P by references to Q.

Each set of unit clauses in T_. of the form

{(01)a,... ,(0n)a}, where _r is a substitution for the

variables in the Oi, is rewritten as the set of unit

clauses (_/)a. Each clause containing the literals

(-_01)a ,(0,,)or is rewritten to contain (-_)a. Af-

ter all possible occurrences are rewritten, the clauses

in Q are added to the rewritten theory.

We call a rewriting produced by "_ complete when it

removes all of the nonlogical symbols appearing in the

from conjunct. 7?. may or may not produce a complete

rewriting. For example, given a right hand side of the

form R(f(z)), rewriting will only be complete when R

and f appear in a theory only in patterns of this form.

If the rewriting process is not complete, 7?. adds the

instantiated e ¢_ @ to the rewritten theory.

As an example of applying _, consider again the rule

< [x E F(y) _ F(y) = {x}],,

[x E F(y) ¢:_ x # 2. A x = F'(y)] >.

As noted, the condition P must follow from a theory to

reformulate F as F' in that theory. Since the condition

Q is empty, there are no clauses to add to the resulting

theory. If the rewriting is not complete, [z ¢ .L A

x = F'(y) ¢_ z E F(y)] is added to the rewritten

theory. Since there is no condition Q, this rule can
always be used, in the other direction, to reformulate

F' as F. In this case, P is added to the rewritten

theory. Again, the biconditional may need to be added

to the rewritten theory.

To ensure that the extended DRAT algorithm gen-

erates only isomorphic reformulations, each reformula-

tion rule must be shown to generate only isomorphic

reformulations. To guarantee this, we require that,

when instantiated, each reformulation rule be an ex-

tending definition.

Definition 7 A reformulation rule < P, Q,(9 ¢_ @ >

is an extending definition if for all theories T the fol-

lowing conditions hold:

1. Whenever the r f-symbols(e) C_ r f-symbols(T),

rf-symbols(@) is disjoint from r f-symbols(T) and

T _ P, then every model of T can be expanded to

a model of Tu {O ¢:_ @}.

2. Whenever the rf-symbols(@) C r f-symbols(T),

r f-symbols(O) is disjoint from r f-symbols(T) and

T _ Q, then every model of T can be extended to a

model of TU {O ¢_ @}.

Section shows that for any reformulation rule rule,

A(t).Td(rule,t} is a computable function and so long as

rule is an extending definition, that whenever a theory

T entails the appropriate condition of rule, T_(rule, T)
is an isomorphic reformulation of T.

The 7?.* produced by DRAW on the problem <

_, Tc, _ > is the composition of reformulation maps

used by the algorithm to reformulate Tc. Since each

reformulation map generates an isomorphic reformula,

tion, T_'(Tc) is an isomorphic reformulation of Tc. S-

ince each step is computable, 7_ ° is a computable func-
tion.

Finally we point out that, since _ and O in the re-

formulation rule < P, Q, 0 ¢:_ • > are required to have

the same variables, 7Z'(Z) and 7Z'(ff) will always be

ground. However, even though E and ¢ are conjunc-

tions of ground literals, 7Z'(E) and ?Z'(@) may not

be. To see this, suppose that _ contains the literal -_¢

and _'(¢) is a conjunction. Then "-7?.'(¢) will be a

disjunction.
Section shows that when DRAT uses reformulation

in designing a satisfiability procedure for a problem

< E,Tc,@ > and _'(E) is a conjunction of literals,

the problem can be solved by solving

< 7Z'(E),TZ'(Tc),_'(_) >. The fact that a satisfia-

bility procedure for a reformulation of a problem re-

quires A'(E) to be a conjunction of literals is not a

significant difficulty in the more general setting dis-

cussed in section in which satisfiability procedures are

used in conjunction with a theorem prover.

AN EXAMPLE

In practice, we have found that adding reformulation

to DRAT increases itseffectivenessconsiderably. We il-

lustratethiswith a relativelysimple example excerpted

from the DRAT implementation design of a satisfiability

procedure for the example problem given in section .

We illustratethe implementation's behavior on the set
T of clauses:

-_married(z, x),

married(x, y) :_ married(y, z)

married(x, y) A married(y, z) ::e, _married(x, z)

married(y,z) A married(z, x) =:_ y = z

There are three schemes in DRAT'S library that are

relevant to the example. The scheme _ for the the-

ory of partial I-1 functions with parameters F and

F _, which are inverse functions, and theory(_)= {z =

F(y) A x _k 2- ¢0 y = F'(x) A y _k 2-}; The scheme $._

for the theory of sets of size two w.ith S as a parameter

and theory(S_)= {zt E S^ x_ E SA xl ¢ z_ _ S =

167

{xl, x2}}; And, the scheme £ for the theory of equality
with uninterpretedfunctionsymbols.
The relevantreformulationrulesare:

rl =<,, R(x,y) ¢_ y 6 FR(z) >
_2 =< _:e F(y) :_ f(y) = {z},,

ice Y(y) c:_ x # 2. A x = Y'(y) l>
r3=<(z¢ ±Ay_:±)z_z=F(y)_y=F(z),,

[_ = r(y) ^ z # ± ¢_ F'(y) = {z, y} ^ z # y] >
As is typical in the implementation, these rules are

normally used only in one direction. As noted in sec-
tion, rl reformulates a binary relation in a theory as a
function Fa onto sets: Fa(x) = {y[R(x, y)}. Also as
noted in section , when applied to a theory containing
a function F whose range elements are sets of size one,
r2 introduces a function F' such that F'(y) = z just in
case x E F(y). The rule rs reformulates an F that is
its own inverse as a function F', mapping an individual
into sets of size ,wo such that F'(z) = {z, F(z)}.

Given the sc: =les above, DRAT is unable to design
a satisfiability : :" :edure for T without reformulation.
In an effort to a,:st_n a satisfiability procedure for all of
T, the DRAT implementation repeatedly reformulates
the problem, finally producing a formulation in terms
of a function that we will call couple, mapping an in-
dividual to the married couple of which he or she is a
member.

DRAT uses rule rl to reformulateT in terms of a
functionthat we willcallspouses,a mapping from an

individualto the setofhisor her spouses._(rl,T) is

z _ _pouses(z),
x q spouses(y) :_ y fi spouses(z)
z fi spouses(y) h y E spouses(z) _ z _ spouses(z)
y E spouses(x) ^ z E spouses(z) =_ y = z

DRAT uses rule r2 to reformulate R(rt,T) in terms
of a partial function that we will call spouse, a
mapping from an individual to his or her spouse.
TC(r2, Ti(rl, T)) is
z # spouse(x) v z = ±,
x = spouse(y) A x # ± =_ y = spouse(z) A y # ±
Z = spouse(y) A x # ± A y = spouse(z) A y # ±

:=, z # spouse(z) v z = ±
y = spouse(x) A y # ± A z = spouse(z) A z # ±

:_ y--z
Note that the second and fourth clauses in this set

follow from instances of _ and £ respectively. Hence, if

DR,T were to terminate at this point, T_. would include
only the first and third clauses.

DRAT uses ruler3 to reformulatethe above theory

interms of the functioncouple.The resultis
couple(z) # {z, z} v z = z,
couple(x) = {z, y} A z # y =_

couple(y) = {y, z}^ y # z,
couple(x)= {z,y} A z # yA

couple(y) = {y, z} ^ y # z
couple(x) # {z, z} V z = z,

couple(y) = {z, y} ^ y # z^
couple(z) = {z, x} ^ z # z _ y = z

All of the clauses in this set follow from the corn-

bination of S2 and an instance of £ containing the
uninterpreted function symbol couple. Thus, through
the use of reformulation, DRAT succeeds in designing a
satisfiability procedure for the theory T. Without re-
formulation it is unable to design a procedure for any
subset of T.

STEPS TOWARDS THE

COMPLETENESS OF DRAT

This section proves two results towards the complete-
ness of DRAT. First, we show that DRAT designs sat-
isfiability procedures. If DRAT successfully designs a
procedure for some set of axioms Tc, then that proce-
dure can be used to decide the problem < E, Tc, • >
for any conjunctions of ground literals E and _. Sec-
ond, we consider the addition of reformulation to BRAT
and show that a satisfiability procedure for TO"(Tc) can
be used as a sat±affability procedure for Tc so long as
TC*(E) is a conjunction of literals. These results are
necessary preliminaries for the proof of completeness
in section .

DRAT DESIGNS SATISFIABILITY
PROCEDURES

Before proceeding to prove that DRAT designs satisfi-
ability procedures, we recall properties of schemes p-
resented thus far and discuss some additional required
properties.

Recall that a scheme for a theory T is a procedure
that decides the satisfiability of E U T, where E is a
conjunction of ground literals. Given a particular E,
each scheme also computes the set of equalities between
constants in E that follow from E O T. If T is noncon-
vex, its scheme also computes disjunctions of equalities
between constants in E that follow from Z U T.

We call a first-order theory whose formulas contain
no existential quantifiers a quantifier-free, theory. An
additional requirement on _chemes is that their theo-
ries be quantifier-free. As a practical matter, this is
not a serious restriction beyond restricting schemes to
be tractable. See [OppenS0] for further discussion of
this point.

The theories of schemes are also required to have
infinite models. The equality propagation technique
may not work if a theory has only finite models be-
cause, given a set of constant symbols larger than the
set of individuals in the model's domain, such a theo-
ry implies the disjunction of equalities between those
constant symbols. Theories with infinite models do
not imply disjunctions of equalities between variables.
Therefore, given a theory T with infinite models, such
disjunctions can only follow from T U E, for some E
whose satisfiability is being decided. Any disjunctions
of equalities between constants that follow must in-
volve only constants mentioned in E. This restriction
to theories with infinite models does not appear to be

significant. To date, we have not found any schemes
that we could not include because they violated this
restriction.

168

The theorem proved below is similar to the the-

orem given in [Nelson&Oppen79]. It differs in the

addition of the requirement that each scheme's the-

ory have infinite models. The theorem appearing in

[Nelson&Oppen79] is incorrectly stated. The reason a

different proof is included here is that the proof giv-

en in [Netson&Oppen79] is incorrectfl We also include

our proof because the technique is much more direct

and serves as a foundation for research in progress to
extend our results.

Theorem 1 Let Tt and T_ be theories with no com-

mon nonlogzcal symbols. If there are schemes for Tt
and T2, there is a scheme for 7"1 U T_.

Proof: We prove that the procedure described in

section for combining two schemes is a scheme for 7"1U

T2. If the scheme for TI or T2 reports "unsatisfiability,"

clearly Ex t.JE2 UTt UT_ is unsatisfiable and, since ExCI

E_ and E are cosatisfiable, E U 7"1 U 7"2 is unsatisfiable.

We must show that if the procedure of section reports

"satisfiable," E U 7"1 U T_ is satisfiable. This is done by

showing how to construct a model of E12T1 tJT_ when

the procedure reports "satisfiable."

Let C = {co,..., c,,} be the set of constant symbols

appearing in E1 or E_. Let E be the set of equalities

propagated by the procedure of section. As we will see,

when the procedure halts, E contains all the el = e_

such that ct, c2 E CAEtUE2UTtUT2 _ el = c2. E will

also contain any equalities chosen when case splitting
Occurs.

Let E = {cl =c2 Icl,c2 ECAcl =c_ _E}. Since

the schemes for Tt and T_ reported "satisfiable," there

are models of E112 Tt U E and E_ UT2 O E. Let .M 1 and

M2 be models of E1UT1UE and E_UT_UE respeetivel__'
that agree on the interpretation of the equalities in E.

We show how to construct a model ,M[= E U Tt O T_
from.Mx and Jvt_.

Before giving this construction, we show that it is

possible to pick an .M1 and .M_ that agree on E.

First note that if E" is empty, all A.4t and .M_ agree.

Now suppose that E is not empty. In this case, there

exists an ,%4tand an _%4_ that do not satisfy any e-

quality in E. For suppose to the contrary. In par-

ticul....ar, sup_pose that every .Mtsatisfies some equality

in E. If E contains exactly one equality, el = c_,
EIUTtUE_ct =c2 andct =e_ EE, notE. If:_

contains more than one equality, Et UTt UE entails the

disjunction of equalities in E. But then v.t U T1 U E

is nonconvex which is impossible because, instead of

returning satisfiable, the algorithm in section would

have case split in this situation. This same argument

can be made for eki2 and, hence, there exists an A/I_

that does not satisfy any of the equalities in E. Thus,

we can choose an 3,t 1 and/vl2,_that agree on the inter-
pretation of the equalities in E.

2A correct version of the theorem appears in [Nelson84],
however, the proof given there is still incorrect.

Note that since ,'%41 and ,___ agree on the interpre-

tation of the equalities in E and in _, they agree on
the interpretation of every equality between constants
in C.

Let..Mt=< Dt,Rt,Ft,Ca >, where Dt is the do-

main of ..t4t, Rt is the interpretation of relation sym-
bols of ,kit in Dr, Ft is the interpretation of the

functions symbols of Jkit and C1 is the interpretation

of individual constant symbols in ,kit. Similarly, let
;_1_=< D2, R2, F_, C2 >.

We now construct ,M hy merging A, tl and ,ki2 as

follows. The domain of A.4 is Dt U D_, where D_ is
the domain of .M_ _, a modified version of M-...ki2'

is obtained by replacing individuals in D2 by individ-

uals in D1 when they are designated by the same con-

stant symbol. For all constant symbols c E C, re-

place every occurrence of C_(c) in D_ by Cl(c), i.e.,

C_(c) = CI(c) when e is a shared constant symbol

and C_(c) = C2(c) otherwise. For all R in the do-

main of R2, let R_(R) be the set R2(R) modified by

the above replacement procedure. Similarly, let F_ be

the new interpretation of the function symbols of .M_.

Jki _' =< D_, R_, F_, C_ >.

,M_ and .M_ _ _re isomorphic structures because _M_

and .M_ agree on the interpretation of every equality

between constants in C. If.Mr and ._-4z did not agree,

then ._ and .h/[_ _ would not be isomorphic. For sup-

pose, that A.41_ cl = c_ but .£4._ ci = c2. Then the

two constant symbols designate the same individual in

D_ and different individuals in D2 and, hence, ,ki2' is

not isomorphic to .M_.

To finish the construction of _, we take A_ =< Dt U

D'_,R1U R'_,F_ UF_,C_ UC_ >. Since A.4tl=: Et UT_

and Ms' N _UT_, M_= ExUE_UT_t.JT._. Since

E_ 12 Eu and _ are cosatisfiable, ,%4_ E !2 7"1 Ll T_ and

the proof of the theorem is complete. 13.

The fact that DRAT designs satisfiability procedures

is a direct consequence of theorem 1. Since the result of

combining two schemes is again a scheme, any number

of schemes can be combined by this method.

DRAT DOES ISOMORPHIC
REFORMULATION

This section includes the proofs of two properties of

DR.AT's reformulation procedure "R. These results are

sufficient to show how a satisfiability procedure gen-

erated by DRAT for some reformulated theory can be

used to solve the original problem.

Lemma 1 If a reformulation rule (rule) is an extend-
ing definition in T of the form < P, Q, 6) ¢_ _1 > and

T _ P, then T_(rule, 7") is an isomorphic reformula-

tion of T.

Proof: The condition that must be met is that if

T _ P, T _ ¢ _ _(rule, T) _ n(rule,¢),

for any clause _ _ _(T). We prove the equivalent fact

that ifT_P,

169

SAT(T U (-_}) _:_ SAT(R(rule,T) U --R(rule,¢)),
where SAT(T) means that T is satisfiable.

[=] If SAT(TU {-_¢}), SAT(Tu {O ¢_ 9} U {-_})
because, by the definition of extending definition, every
model of T can be extended to a model of TU {O ¢_ q }.
Therefore, there exists a model of TU{O ¢_ *}U{-,0}.
But

TU {O ¢_ $} u {-,} _R(rule, T) U-R(rule,¢).
Hence every model of T U {O ¢* k_} U {'-$} is a model
of R(rule, T) U -_TZ(rule, 0). Since there exists a mod-
el of T U {O ¢:_ *} U {_e}, there exists a model of
"Pv(rule, T) U -_R(rule, 8) and hence, it is satisfiable.

[_=] The proof in this direction is similar, with the
added step of showing that every model of:_(rule, T)U
-,TO(rule, c_) can be extended to a model ofTZ(rule, T)U
{0 ¢=_ _} U-,Tl(rule, ¢). Since rule is an extending
definition, every model of a theory 7"1 that entails Q
can be extended to a model of T1 O {O ¢_ _}. By
the definition of T¢, the clauses of Q will appear in
R(rule, T) and hence T¢(rule, T) _ Q. Therefore, ev-
ery model of T¢(rule, T) can be extended to a model of
(rule,T) U {O ¢ _}. Thus, ifTL(rule, T)U-_T¢(_#) is
satisfiable, so is T U {-,$}. O

It follows directly from this lemma and the fact that
extending definitions can be used in either direction,
that a reformulation rule (P A Q) ::$. [O ¢_ q] with
the r f-symbols(q) instantiated in term of a theory T
can be used to reformulate T in terms of O so long as
T_Q.

Lemma 2 For any reformulation r'ale (rule), the
function A(t).R(rule, t) is computable.

Proof: Suppose the biconditional of rule is 0 ¢:_
and 7?. applies rule to rewrite occurrences of ql to
occurrences of O in T, as described in section . S-
ince r f-symbols(O) are disjoint from r f-symbols(T),
a rewrite step can never introduce a pattern of liter-
als to which rule can be applied a second time. The
rewrite is applied repeatedly until one of the following
events occurs: (1) all of the symbols in rf-symbols(_t)
are removed from T or (2) no new occurrences of
can be found, even though symbols in rf-symbols(_l)
are still present. In either case, repeated application
of the rewrite rule terminates. Hence, A(t).R(rule, t)
is computable, t2

The two preceding lemmas are sufficient to show
that a satisfiability procedure for 7Z°(T¢) can be
used to solve the problem < _,Tc,O >, so long
as 7_'(2E) is a conjunction of ground literals. As-
suming that TZ'(E) is a conjunction, the satisfiabili-
ty procedure is used to solve the problem by solving
< R" (E), TZ"(Tc), T¢*(O) > as follows. For each $ E _,
if -,T¢'(¢) is a conjunction of literals, we use the pro-
cedure to determine if R'(Z;)U _'(Tc)O-,R'(¢) is
unsatisfiable. Th - is the case if and only if _UTc U-,¢
is unsatisfiable. : -g'(_b) is a disjunction of literals,
the procedure is , ,:d to determine the satisfiability of
g'(E) U R'(Tc) ,_ i, for each literal I E -,R'($). If

any of these is satisfiable, g'(r) U T4"(Tc) U --R'(O
is satisfiable; otherwise it is unsatisfiable.

THE COMPLETENESS OF DRAT

Two simplifying assumptions were made in the previ-
ous sections. First, in definition 3, it was assumed that
a problem for DRAT was of a restricted form. Second,
it was assumed that DRAT'S success depended on de-
signing a satisfiability procedure for all of To. Both of
these assumptions are now relaxed and we show how a
literal satisfiability procedure is interfaced with a res-
olution theorem prover in such a way that the proce-
dure/theorem prover combination is complete.

A problem for DRAT is now taken to be a pair <
F, _ >, where r is a set of first-order formulas and ¢
is a first-order formula. A pair < F, ¢ > is interpreted
as the question, "r _ _b?"

As a typical preprocessing step for resolution theo-
rem prc, _g, I" _nd "_¢ are converted to sets of clauses

which _v:: be c_.lled F' and -,_b' respectively. Let Tc
be the se_ ,f nonground clauses in F'. As before, BRAT
is used t_ design a literal satisfiability procedure for
To. However, instead of exiting with failure if it is
unable to design a procedure for all of To, it returns
the satisfiability procedure and T_, those clauses not
incorporated into the satisfiability procedure. Also, as
before, DRAT returns the reformulation map _'.

The algorithm given in section refers to the set of
clauses for which a literal satisfiabitity procedure has
been designed as TI. Here that procedure is referred
to as ,.grt. We show how ,gr_ is used along with a
resolution theorem prover to demonstrate the unsat-
isfiability of Cl = R'(F') u _'(-,0'). The nonground
clauses of CI are manipulated by the theorem prover in
the usual way, except that clauses in T_ are prohibited
from resolving with ground clauses. These resolutions
are unnecessary because ,-grr is a "compression" of any
resolution steps that can result from such a resolvant.

$'rr is used in the manipulation of ground clauses ia
CI and ground clauses derived from CI during theo-
rem proving. It is interfaced to the theorem prover via
theory resolution[Sticke185]. One type of theory reso-
lution, called total narrow theory resolution, requires
a decision procedure for a theory T, given a set of lit-
erals L, to compute subsets L' of L such that L' U T
is unsatisfiable. Such a procedure is used to compute
T.resolvants of a set of clauses as follows. Consider the
decomposition of the clauses into Ki V L,, where each
/t" i is a single literal in _:(T) and L_ is disjunction of lit-
erals (possibly empty). For each subset of the Ki, say
{K_, , Ki,}, that is unsatisfiable in T, the clause
L I V ... V Ln is a T-resolvant.

The theorem prover constructs T_-resolvants from
ground clauses, using $'r_ to compute sets of ground
literals that are unsatisfiable in :/'I. Let GrL be the set
of ground unit clauses in CI and let GrCI be the set of
ground nonunit clauses in CI. First, the ground clauses
are separated into clauses that are in £(T_) and clauses

170

that are not. This is accomplished for the clauses in

GrL using the procedure described in section ; It is

accomplished for clauses in GrCl in a similar fashion.

If a ground clause cl contains a literal that is not

in £(Tt) and a ground clause c2 contains the negation

of that literal, the theorem prover computes the re-

solvant of c_ and c2 in the normal way. Tl-resolvants

are computed using 8Tr to compute sets of ground [it-

erals that are unsatisfiable in Tt as follows. Let GrLT_

be the set of literals in GrL that are in £(TI). Let

GrCITt be the set of literals in £(TI) appearing in

clauses of GrCl. We input progressively larger subsets

of GrLits = GrLT_ U GrCIrr to 8Tt as long as those

sets are satisfiable in 7"i. Once a set is unsatisfiable in

Tt, all supersets of it will also be unsatisfiable. When

the theorem prover deduces a new ground literal in

GrLTt, it is added to GrLits. The smallest subsets

of GrLits found to be unsatisfiable in 7"I are used to

compute Tt-resolvants of ground clauses.

Theorem 2 Given the problem < F,4_ >, let ST_ be

a literal satzsfiability procedure for Tt C_ _*(F). ff

[' _ O, _'_Tt combined wdh the theorem prover wall

demonstrate the unsatisfiability of CI.

Proof: In [Sticke185], Stickel shows that, given a set

of clauses I(, V Li, if a decision procedure for a theory

T computes all subsets K, that are minimally unsatis-

fiable in T, total narrow theory resolution is complete.

We must show that the above procedure for computing

Tl-resolvants computes all subsets of GrLits that are

minimally unsatisfiable in 7"/. Clearly, so long as ,-qTt is

a literal satisfiability procedure, the above procedure

computes all these subsets. Thus, the completeness

result follows directly from the results of section . r3

The procedure described above can be made much

more efficient. There are several refinements used by

the DRAT implementation to consider far fewer subset-

s for unsatisfiability in Tt. We discuss two of these

here. One refinement is to distinguish between literals

in GrLT_ and GrCIT_. First, we consider the satisfi-

ability of GrLTt. If this is unsatisfiable, we are done.

Otherwise, we consider progressively larger sets of lit-

erals appearing in clauses in GrCITI. For each such set

s, ST, is used to determine whether or not GrLT_ t3 s

is unsatisfiable in 7"i.
Note that the subsets identified with this refinement

are not always minimal: it is possible for a subset of

GrCIT, union a subset of GrLI', to be unsatisfiable in

Tt. However, it turns out that completeness of theory

resolution is retained in this case, since the extraneous

literals are in GrLT_ and, therefore, are unit clauses.
A second simpler refinement only considers subsets

of GrCITx each of whose elements appears in a different
clause in GrCl.

As a final point about the efficiency of the procedure

for computing subsets that are minimally unsatisfiable

in Tt, recall that schemes are required to be incremen-

tal. Because of this, STt is used very efficiently to

consider progressively larger sets of literals.

It is often most effective to leverage the use of Srt
by doing as much of the theorem proving as possible

at the "ground level." The DRAT implementation uses

"set of support" strategy which is very effective in ac-

complishing this when -_¢' is ground because it tends

to produce ground reso[vants.

Summary and Ongoing Work

We have presented a formalization of DRAT: a tech-

nique for automatic design of satisfiability procedures.

We have shown how these procedures are interfaced to

a theorem prover so that it can, in many cases, prove

theorems more efficiently. Given fit the set of axioms

of a problem, and $_,,, a literal satisfiability procedure

designed for @_ C q/, we have proven that for any first-

order statement ¢, if • _ ¢, the theorem prover/S_,

combination will prove ¢.

The major steps of our argument were as follows:

1. We showed that a combination of satisfiability proce-

dures with certain properties is again a satisfiability

procedure.

2. We showed that the reformulation that is essential

to DRAT'S effectiveness is isomorphic reformulation

and, therefore, a satisfiability procedure of a refor-

mulated theory can be used to solve problems in the

original theory.

3. We proved the completeness of our technique for

combining literal satisfiability procedures with a the-

orem prover. In this combination, S_, is used to

compute @*-resolvants from ground clauses and the

theorem prover is restricted so that it does not re-

solve ground clauses on literals in £(_').

In our ongoing work, we are attempting to extend

DR.AT'S scheme combination technique. As much as

possible, we would like to remove the restriction on

the sharing of nonlogica] symbols between componen-

t scheme instances in combinations. We are exploring

the conditions under which limited types of overlap be-

tween nonlogical symbols is allowed. When overlap is

allowed, component schemes must propagate more in-

formation than just equalities between constant sym-

bols. In most cases where overlap is allowed and in

which the schemes propagate at least the set of equal-

ities between constants, it is not difficult to show the

completeness of a propagation technique. The major

issue that arises is proving that the propagation termi-
nates.

As an example, consider allowing two schemes to
share function symbols. The schemes must propagate

allequalities between ground terms involving shared

function symbols. The proof technique used in section

can be extended to prove that such schemes combined

by an appropriately extended propagation technique

will produce semi-decision procedures for the combi-

nations of their theories. However, in general, it is not

possible to prove that the propagation will terminate.

171

One situation in which overlap is allowed occurs
when the theories of schemes are sets of clauses in a

sorted first-order logic. In this case, a function symbol
F whose range is disjoint from its domain can be shared
between schemes because terms of the form F(F(z))
are not well formed and, hence, it is easy to show that
propagation of terms involving F will terminate.

Acknowledgements Richard Fikes, Bob Nado,
Mike Lowry, and David McAllester provided helpful
comments on drafts. Dave McAllester pointed out the
error in Nelson & Oppen's proof of the combination of
satisfiability procedures and suggested the technique
we used in our proof. Bob Nado participated in nu-
merous discussions on many aspects of the paper.

References
Brachman, R.J., Fikes, R.E.
and Levesque, H.J., "KRYPTON: A Functional Ap-
proach to Knowledge Representation,"in Brachman,
R.J and Levesque,H.J.(editors),Readings in Knowl-

edge Representation,pp. 411-429,Morgan Kaufman-
n, 1985.

Cohn, A.G., "Many Many Sorted Logics,"Workshop
on Principlesof Hybrid Reasoning,pp.63-78,1988.

Korf, R.E., "Toward a Model of Representation
Changes," Artificial Intelligence, 14, pp.41-78, 1980.

Loveland,
D.W., Automated Theorem Proving: a logical basis,
North Holland, 1978.

Selman,B. and Kautz, H., "Knowledge compilation
using horn approximations," AAAIgl, pp. 904-909,
1991.
Nelson, G. and Oppen, D.C., "Simplification by Co-
operating Decision Procedures," ACM Transactions
on Programming Languages and Systems, 1, pp.245-
257, 1979.

Nelson, G. and Oppen, D.C., "Fast Decision Proce-
dures Based on Congruence Closure," Journal of the
ACM, 27, pp.356-364, 1980.

Nelson, G., "Combining Satisfiability Procedures by
Equality-Sharing," in Bledsoe, W.W. and Loveland,
D.W., Automated Theorem Proving: After 25 Years,
American Mathematical Society, 1984.
Oppen, D.C., "Complexity, Convexity and Combina-
tions of Theories," Theoretical Computer Science, 12,
pp.291-302, 1980.

Stickel, M.E., "Automated Deduction by Theory Res-
olution," Automated Reasoning, 1, pp.333-355, Reidel
Publishing Co., 1985.

Van Baalen, J., "Toward a Theory of Representa-
tion Design," MIT Artificial Intelligence Laboratory,
Technical Report 1128, 1989.

Van Baalen, J., "The Completeness of DRAW, a Tech-
nique for the Automatic Design of Satisfiability Pro-
cedures," KRgl, pp. 514-525, 1991.

Van Baalen, J., "Automated Design of Specialized
Representations," to appear in Artificial Intelligence.

172

