User's Manual for FOMOCO Utilities – Force and Moment Computation Tools for Overset Grids

William M. Chan and Pieter G. Buning

July 1996

National Aeronautics and Space Administration

. , ,

User's Manual for FOMOCO Utilities – Force and Moment Computation Tools for Overset Grids

William M. Chan, MCAT, Inc., San Jose, California Pieter G. Buning, Ames Research Center, Moffett Field, California

July 1996

National Aeronautics and Space Administration

Ames Research Center Moffett Field, California 94035-1000 ,

TABLE OF CONTENTS

	1	ag
Sı	ummary	. 1
1	Introduction and Overview	2
2	The Input Parameters File	. 4
	2.1 Specification of Flow and Reference Conditions2.2 Specification of Surface Domain	4 7
3	The MIXSUR Module	. 8
	3.1 Input and Output Files3.2 Grid Visualization	. 8 10
	3.3 Examples	10 14
4	The OVERINT Module	16
	 4.1 Input and Output Files 4.2 Input Data 4.3 Output Data 4.4 Special Notes on Using OVERINT 	16 17 18 20
5	Concluding Remarks	21
A	ppendix A	23
A	ppendix B	27
R	eferences	29

Page

.

,

USER'S MANUAL FOR FOMOCO UTILITIES — FORCE AND MOMENT COMPUTATION TOOLS FOR OVERSET GRIDS

William M. Chan * and Pieter G. Buning Ames Research Center

Summary

In the numerical computations of flows around complex configurations, accurate calculations of force and moment coefficients for aerodynamic surfaces are required. When overset grid methods are used, the surfaces on which force and moment coefficients are sought typically consist of a collection of overlapping surface grids. Direct integration of flow quantities on the overlapping grids would result in the overlapped regions being counted more than once. The FOMOCO Utilities is a software package for computing flow coefficients (force, moment, and mass flow rate) on a collection of overset surfaces with accurate accounting of the overlapped zones.

FOMOCO Utilities can be used in stand-alone mode or in conjunction with the Chimera overset grid compressible Navier-Stokes flow solver OVERFLOW. The software package consists of two modules corresponding to a two-step procedure: (1) hybrid surface grid generation (MIXSUR module), and (2) flow quantities integration (OVERINT module). Instructions on how to use this software package are described in this user's manual. Equations used in the flow coefficients calculation are given in Appendix A.

The authors would like to thank the following for comments and discussions on the development of FOMOCO Utilities and for suggestions on the contents of this manuscript: Ray Gomez and Jim Greathouse from NASA Johnson Space Center, Steve Krist from NASA Langley, John Wai from Boeing, Lie-Mine Gea and Jeff Slotnick from McDonnell Douglas, Karen Gundy-Burlet, Earl Duque and our other colleagues at NASA Ames Research Center.

^{*} MCAT, Inc., San Jose, California

1 Introduction and Overview

The numerical computations of flows around complex configurations require accurate calculations of force and moment coefficients for aerodynamic surfaces. When overset grid methods (ref. 1) are used, the surfaces on which force and moment coefficients are sought typically consist of a collection of overlapping surface grids (see figure 1 for example). Direct integration of flow quantities such as pressure and viscous stress on the overlapping grids would result in the overlapping regions being counted more than once. The FOMOCO Utilities is a software package for computing flow coefficients (force, moment, mass flow rate) on a collection of overset surfaces with accurate accounting of the overlapping zones.

In this user's manual, instructions on how to run FOMOCO Utilities are given from a user's point of view. Theoretical development of the methods used are described in detail in reference 2. The equations used for computing the flow coefficients are given in Appendix A.

Figure 1. Overset surface grids with domain connectivity iblanks for wing/body/collar configuration (only every 3 points shown in streamwise direction for wing and collar).

The FOMOCO Utilities consist of two modules: the MIXSUR module and the OVERINT module. Both modules are written in Fortran 77. An overview of these modules is given in figure 2. The computation of flow coefficients on a set of overlapping surfaces is performed as follows.

(1) A hybrid composite surface grid consisting of non-overlapping quadrilaterals and triangles is generated using the MIXSUR module. This is executed by typing

mixsur < input parameters filename > output information filename

Figure 2. Overview of FOMOCO Utilities and its modules.

(2) Flow coefficients are computed by integrating flow quantities on the hybrid surface using the OVERINT module. OVERINT can be used in stand-alone mode or in conjunction with the Chimera overset grid compressible Navier-Stokes flow solver OVERFLOW (ref. 3). In stand-alone mode, OVERINT is executed by typing

overint < input parameters filename > output information filename In OVERFLOW mode, OVERINT is performed inside OVERFLOW. By setting the global parameter NFOMO to a positive integer in the OVERFLOW input parameters file, the flow coefficients are computed and reported every NFOMO steps.

The files required to run FOMOCO Utilities are described in the subsequent sections. These include an input parameters file and the grid and solution files. Users who are not familiar with the *PLOT3D* (ref. 4) or *OVERFLOW* grid/solution file formats can refer to Appendix B for details. The same input parameters file is used to run both *MIXSUR* and *OVERINT* in stand-alone mode; and is described first in section 2. The *MIXSUR* and *OVERINT* modules are described in section 3 and section 4, respectively. Concluding remarks are given in section 5.

2 The Input Parameters File

The same input parameters file is used for both MIXSUR and OVERINT in stand-alone mode. These parameters are used to

- (1) prescribe the flow conditions and the reference conditions used for flow coefficient computations, and
- (2) provide a description of the surface domain on which flow coefficient computations are to be performed.

A sample input parameters file is given in table 1(a) and brief descriptions of the parameters are given in table 1(b). More detailed discussions on the input parameters are provided in sections 2.1 and 2.2.

2.1 Specification of Flow and Reference Conditions

The flow conditions and reference conditions are specified in the first part of the input parameters file. The user should be careful in selecting the ALPHA (angle of attack) and BETA (side slip angle) parameters which are only used to transform the Cartesian force coefficients into lift, drag, and side force coefficients (see eq. (4.3) in section 4.3).

For typical computational fluid dynamics (CFD) calculations, body axes are chosen such that the X-axis points nose to tail, the Y-axis points root to tip on the right wing, and the Z-axis points up. Let V_{∞} and $(u_{\infty}, v_{\infty}, w_{\infty})$ be the free stream velocity magnitude and Cartesian components of free stream velocity, respectively. Then the angle of attack α and the side slip angle β are defined as

$$\alpha = \tan^{-1}\left(\frac{w_{\infty}}{u_{\infty}}\right), \qquad \beta = \sin^{-1}\left(\frac{-v_{\infty}}{V_{\infty}}\right)$$
(2.1)

In cases where the body axes are aligned with the Cartesian axes as described above, the definition of α and β in eq. (2.1) results in the conventional lift, drag and side force coefficients. If the body axes are not aligned with the Cartesian axes, then the user must interpret the lift, drag and side force coefficients appropriately based on the ALPHA and BETA used in the input parameters file. In any case, the user can transform the Cartesian coefficients into coefficients under any other coordinate system.

Different sets of reference conditions can be specified for each integration surface and component defined by the user (see section 2.2 for explanation of integration surface and component). The main point to note is that the reference condition parameters REFL, REFA, XMC, YMC, and ZMC should be in the same units as the input grid.

FSMACH, ALPHA, BETA, REY, GAMINF, TINF NREF REFL, REFA, XMC, YMC, ZMC }*				
NSURF }				
NSUB, IREFS NG, IBDIR, JS, JE, KS, KE, LS, LE				
NPRI NU1, NU2 } # } #				
NSUB, IREFS NG, IBDIR, JS, JE, KS, KE, LS, LE &				
NPRI				
NSUB, IREFS NG, IBDIR, JS, JE, KS, KE, LS, LE &				
NPRI				
NCOMP				
NIS, IREFC @ ISC(N) %				
NIS, IREFC @ ISC(N) %				

Table 1(a). Sample input parameters file.

* Number of lines specified by NREF

& Number of blocks specified by NSURF

Number of lines specified by NPRI

@ Number of blocks specified by NCOMP

% Provide NIS surface numbers

FSMACH	> 0	Free stream Mach number
	< 0	Read free stream Mach number from <i>a save</i>
ALPHA in range [-360	.360]	Angle of attack in degrees
outside of [-360	.360]	Read angle of attack from $q.save$
BETA in range -360	.360	Side slip angle in degrees
outside of [-360	.360]	Read side slip angle from <i>q.save</i>
REY		Reynolds number per grid unit for viscous flow
	= 0	Inviscid flow assumed
	< 0	Read Reynolds number from <i>q.save</i>
GAMINF	> 0	Free stream ratio of specific heats
	≤ 0	Read free stream ratio of specific heats from q.save
TINF	> 0	Free stream temperature in Rankine
	≤ 0	Read free stream temperature in Rankine from $q.save$
NREF		Number of sets of reference quantities
REFL	$\neq 0$	Reference length for flow coefficients *
	= 0	Use 1.0 as default reference length
REFA	$\neq 0$	Reference area for flow coefficients $*$
	= 0	Use total integrated surface area from a component
		in which surface belongs, or if surface does not
		belong to any component, use area of surface
XMC,YMC,ZMC		X,Y,Z coordinates of moment axes center *
NSURF		Number of surfaces to compute coefficients
NSUB		Number of subsets that belong to the surface
IREFS		Reference quantity set number for surface
NG		Grid number
IBDIR		Direction of surface normal
		(1 = +J, -1 = -J, 2 = +K, -2 = -K, 3 = +L, -3 = -L)
JS,JE,KS,KE,LS,LE		Start and end indices in J, K, and L, respectively. If an
		input index is negative, $(IMAX+1)$ is added to form a
		positive index where IMAX is the grid dimension in I
		(I = J, K, or L), e.g., JS = -1 is the same as $JS = JMAX$.
NPRI		Number of subset pairs to specify priority
NU1,NU2		Subset numbers within surface where subset NU1 will
		be kept if it overlaps subset NU2
NCOMP		Number of components (can be omitted if no component)
CNAME		Component name
NIS		Number of integration surfaces for this component
IREFS		Reference quantity set number for component
ISC(N)		List of surface numbers of integration surfaces
		for this component

Table 1(b). Description of input parameters. The name of the solution file is q.save (see section 4.1). Parameters indicated by * should be in same units as input grid.

2.2 Specification of Surface Domain

The surface domain on which flow coefficients are computed is specified in the input parameters file. A complex surface domain is typically divided into one or more 'integration surfaces' where each integration surface consists of a collection of subsets from different grids in the input grid file grid.in (see section 3). Each subset can be any part of a J, K, or L=constant slice in the computational domain of any grid. While the flow solution is assumed to be node based, the integration scheme is cell (face) centered. For this reason, the indices used to specify the subsets (JS,JE,KS,KE,LS,LE) should include the end points of the region to be integrated. Grids in the input grid file that do not contain any of the specified subsets are disregarded.

It is frequently convenient to group a collection of integration surfaces together to form a 'component'. Flow coefficients for each component and each integration surface are computed by the integration module OVERINT. Each component and each integration surface is allowed to have a different set of reference quantities (length, area and moment center). The hierachy of surface domain, components, integration surfaces and subsets is shown in figure 3. Note that an integration surface may belong to more than one component although this is not typically the case.

Figure 3. Hierachy of surface domain, components, integration surfaces, and subsets.

For example, a wing/body surface domain can be divided into an upper wing integration surface, a lower wing integration surface and a body integration surface where each integration surface consists of several subsets from different grids. The upper wing and lower wing may be grouped into a 'wing component'. In the overlapped zone between two subsets from the same integration surface, the code automatically determines which subset has fewer points in the overlapped zone. Points from this subset are then blanked in the overlapped zone. The user has the option to override this scheme by specifying priorities for pairs of subsets. This is achieved by making NPRI > 0, and then providing two subset numbers for each pair (see table 1(a)). Points from the second subset will be blanked if they are in the overlapped zone with the first subset (see section 3.3 for an example).

Triangles are automatically constructed in the gap produced between neighboring subsets after the blanking step. These triangles are typically one to two layers deep (zipper grids). The blanking of points and construction of triangles are not considered between subsets belonging to different integration surfaces even if the subsets overlapped or abutted. Hence, if the user does not wish to have triangles created between two abutting subsets, the two abutting subsets should be defined under two different integration surfaces.

The surface subsets specified in the input parameters file may belong to solid surfaces (no flow-through) or field surfaces (flow-through). For example, the surface domain for a nacelle calculation may include the nacelle walls (solid) and the inlet and outlet surfaces (field). For a solid surface, the momentum flux and mass flow rate through the surface are zero.

3. The MIXSUR Module

The MIXSUR module is used to create a hybrid composite grid consisting of non-overlapping quadrilaterals and triangles on which flow quantities are integrated. The hybrid grid is automatically generated from the information contained in the input files described in section 3.1 below. This procedure can be performed prior to computing the flow solution since only the volume grids with domain connectivity iblanks are required as input.

The user is urged to use the automatically generated PLOT3D (ref. 4) command files to view and check the integrity of the composite hybrid grid before proceeding to the next step (see section 3.2). Note that a comparable grid resolution in the overlapped region between grids can greatly enhance the success of the triangulation of the region. Moreover, this property is highly desirable for accurate information transfer between grids.

3.1 Input and Output Files

The *MIXSUR* module requires two input files. The first is an input parameters file (see section 2) which describes the surface domain on which flow coefficients are to be computed. The second is a *PLOT3D* single or multiple volume grid file with domain connectivity iblanks. This file should be named grid.in and is identical to the input file required by the flow solver *OVERFLOW*. The user should be aware of the following two points on the grid.in file.

(1) For viscous computations, an alternative to supplying the entire volume grid for each grid is to provide a volume grid with two surface slices: the grid surface on which flow coefficients are to be computed and the neighboring grid surface in the normal direction. If only inviscid flow is considered, an alternative to supplying the volume grids is to provide just the grid surfaces on which flow coefficients are to be computed.

(2) The domain connectivity iblanks in grid.in are only used to determine the blanked cells on the surface domain. The MIXSUR code has its own methods to compute grid connectivity and does not rely on the connectivity information contained in the iblanks in grid.in. If grid.in does not contain iblanks, MIXSUR will assume a value of 1 for all the domain connectivity iblanks.

Several output files are written by MIXSUR. Some of these files are used as input to the OVERINT module while others are used for visualization of the hybrid grid produced by MIXSUR. Summaries of the input and output files are given in tables 2(a) and 2(b).

Table $Z(a)$. Input files required by MIAS

Filename	Description
STDIN	Input parameters in ASCII format.
	Grids not specified in this file but in grid.in are disregarded
	by MIXSUR and OVERINT.
grid.in	Input grids in unformatted PLOT3D volume grid file with domain
-	connectivity iblanks (single or multiple grid format).

Table 2(b). Output files produced by MIXSUR.

Filename	Description		
mixsur.fmp	ASCII file containing parameters of MIXSUR that will be read by		
	the flow solver OVERFLOW for running OVERINT.		
grid.ibi	Surface subsets in unformatted PLOT3D grid file with integration		
_	iblanks (single or multiple grid format). Each grid is a surface grid		
	defined by the J, K or L surface subsets in the input parameters		
-	file. The integration iblanks indicate which cells are to be integrated.		
grid.nsf Surface subsets in unformatted PLOT3D grid file (single or			
_	grid format). Each grid is a surface grid next to the corresponding		
	grids in grid. ibi in the user-defined normal direction. This file is		
	generated if grid.in contains more than a single slice in the first grid.		
grid.bnd	Unformatted PLOT3D multiple grid file. Each grid is a 1-D string of		
_	points marking the boundary of the region to be triangulated.		
grid.tri	Unformatted PLOT3D multiple grid file. Each grid is a 1-D string of		
_	points marking the corners of each triangle in the triangulated region.*		
grid.nor	Unformatted PLOT3D multiple grid fake solution file. The 2nd, 3rd		
-	and 4th component of each solution contains the x,y,z components of		
	the normals of the triangular cells in grid.tri.*		
grid.ptv	File containing pointers to each vertex of each triangle.*		

* Generated only if triangles are needed.

3.2 Grid Visualization

The hybrid composite grid can be viewed using *PLOT3D* on the files grid.ibi and grid.tri. Table 3 shows the *PLOT3D* command files that are automatically written out. Some example plots using these command files are given in section 3.3.

Filename	Description				
ib.com	Surface subsets with integration iblanks (quadrilaterals)				
bnds.com	Gap boundary strings				
zips.com	Zipper grids (triangles)				
zn.com	Normals for zipper grids				
nowalls.com	Remove all walls from any of above				
minmax.com	Bounding box for all grids				

Table 3. PLOT3D command files generated by MIXSUR.

To view the hybrid composite grid followed by normals of the zipper grids:

- (1) Type @ib at the PLOT3D prompt. Type return after the plot is up.
- (2) Type @zips at the PLOT3D prompt. Type return after the plot is up.
- (3) Type @zn at the PLOT3D prompt.

To view the boundary strings of the triangulated regions:

- (1) Type @ib at the PLOT3D prompt. Type return after the plot is up.
- (2) Type @bnds at the PLOT3D prompt.

3.3 Examples

A simple configuration consisting of three grids is considered: the body, the wing and the collar (ref. 5). The overlapping surface grids on which flow coefficients are computed are shown in figure 1. Figure 4(a) shows the overlapping surface grids on the body/collar junction that are used as input to MIXSUR. Note that part of the body grid has been blanked out due to the presence of the wing. This blanking information is typically generated by a domain connectivity program such as PEGSUS (ref. 6) or DCF3D (ref. 7) and is stored in the grid.in file.

Figure 4(b) shows the surface grids after the integration iblank array has been constructed by MIXSUR. Gaps are created between neighboring grids while the remaining unblanked points belong to quadrilaterals that do not overlap. This view can be generated by using the *ib.com* command file in *PLOT3D*.

Points along the boundaries of the gaps are identified and connected to form gap boundary strings. These strings can be viewed by using the *bnds.com* command file in *PLOT3D* as shown in figure 4(c).

(b)

Figure 4. Body/collar junction. (a) Overlapping surface grids with domain connectivity iblanks, (b) surface grids with integration iblanks.

(d)

Figure 4. Body/collar junction. (c) Gap boundary strings, (d) hybrid composite surface grid with non-overlapping quadrilaterals and triangles. Collar has higher priority than body (automatically determined by default).

(e)

Figure 4. Body/collar junction. (e) Hybrid composite surface grid where the body subset is manually given higher priority over the collar subset.

Finally, triangles are constructed to fill the gaps. The resulting hybrid grid can be viewed by using *ib.com* followed by *zips.com* in *PLOT3D* as shown in figure 4(d). With this view up in *PLOT3D*, the normals of the triangular cells created can be checked by using the *zn.com* command file. Since the *MIXSUR* code is known to produce some bad triangles in difficult cases, the user is strongly urged to use these *PLOT3D* command files to check the integrity of the hybrid grid created prior to running the *OVERINT* module.

The hybrid grid in figure 4(d) is generated based on the default blanking priority, i.e. points from the coarser of two overlapping subsets are blanked. In this case, points from the body are blanked in the overlapped zone by the default scheme. The default priority may be manually overidden by the user for reasons discussed in paragraph (c) in section 3.4. In this example, the priority of the body subset can be made to be higher than that of the collar subset. The resulting hybrid grid is shown in figure 4(e).

An example of a complex configuration is demonstrated by the External Tank (ET) of the Space Shuttle Launch Vehicle as shown in figure 5. The view is looking downstream from the interior of the ET base region. The ET surface grid is overlapped by the collar surface grids from the various feedlines that intersect the ET. Further examples of complex configurations can be found in reference 2.

Figure 5. Hybrid composite grid for the base region of the External Tank.

3.4 Special Notes on Using MIXSUR

Given the input grids and the specification of the overlapping surface subsets, the hybrid composite grid is automatically generated by *MIXSUR*. High quality triangles are usually created when the grid resolutions of neighboring grids are comparable in the overlapped zones, and when the surface geometry is sufficiently resolved by the grid. However, when there is a large discrepancy in grid resolution between neighboring grids in the overlapped zones, the triangles created are not guaranteed to be totally correct. A triangle is considered 'bad' if it overlaps an unblanked quadrilateral. Its surface normal is pointed in the opposite direction to neighboring good triangles.

Figures 6(a) and 6(b) show the hybrid grid between two overlapping subsets and the surface normals of each triangle. For each triangle, the normals are plotted at the vertices (i.e., three arrows pointing in the same direction are plotted for each triangle). A bad triangle is produced in the region of high grid resolution mismatch. Its surface normal is pointing in the opposite direction to its good neighbors. Also shown in figure 6 is a singular axis point in one of the subsets. Such a point is surrounded by triangular cells and may be found at a domain boundary in a structured quadrilateral mesh. Singular axis points are automatically detected by *MIXSUR* and the neighboring triangular cells are treated as a zipper grid, i.e., *OVERINT* will use the integration scheme for triangles on these cells.

Figure 6. Hybrid composite grid for two overlapping subsets. A bad triangle indicated by thick lines is shown in the region of high grid resolution mismatch where the normals are pointing in the wrong direction. (a) Top view, (b) isometric view with surface normals of triangles (zipper grid).

The following notes may help to reduce the number of bad cells created:

- (a) A large number of surface subsets describing a complex configuration should be split into multiple integration surfaces where subsets belonging to different integration surfaces do not communicate with each other.
- (b) High curvature regions or extremely sharp corners are sometimes trouble regions. For example, points on the lower surface of a wing may be connected to the upper surface near the trailing and/or leading edge. This problem can be fixed by defining two integration surfaces for the wing: an upper surface with its collection of surface subsets and a lower surface with its collection of surface subsets. Now, points on the upper and lower surfaces are not allowed to be connected to each other.
- (c) The use of the default blanking priority between overlapping subsets (points from the coarser subset is blanked) can usually result in good quality triangles in the hybrid grid. However, this is not always true in cases where there is severe grid resolution mismatch in the overlapped zones. For these cases, a smoother triangulation gap boundary may sometimes be obtained by manually imposing blanking priorities using the NPRI, NU1, and NU2 parameters (see section 2). This may then result in better quality triangles. For example, the hybrid grid for the body/collar junction in figure 4d was generated using the default priorities which produced smooth gap boundaries for the triangulation. However, if the

body is given priority over the collar, a more rugged gap boundary is generated as shown in figure 4(e). In this case, the triangles generated are still of good quality, but the results from using the default priorities are preferred since the gap boundaries are smoother.

(d) The blanking scheme assumes that surface grids in the overlapped zones are approximating the same surface geometry, i.e., points from any one grid in the overlapped zone should lie very close to the bilinear surface defined by the network of points from any other grid in the overlapped zone. If 'big' gaps exist between grids in the overlapped zone, some points may not be blanked and the subsequent triangulation will be bad.

4. The OVERINT Module

The OVERINT module is used to compute and report the force, moment, and mass flow rate coefficients on the hybrid composite grid generated by the MIXSUR module. There is no interpolation of the flow solution onto new grid points since none are created by MIXSUR.

OVERINT can be run in stand-alone mode or be called from the flow solver OVERFLOW. In stand-alone mode, flow coefficients at the time step level for the given solution file are reported. In OVERFLOW mode, a history of the flow coefficients versus time step and versus elapsed CPU time is reported in an OVERFLOW output file. Software utilities for extracting and plotting histories of particular coefficients are available under the OVERFLOW release package.

When using OVERINT in OVERFLOW mode for moving body problems, MIXSUR still only needs to be run once before the flow solver, provided the grids do not deform. This is because grid points on the surface grids of rigid moving components remain in constant relative positions to each other. Hence, the connections between grid points on the hybrid surface grid and the integration iblank information produced by MIXSUR remain unchanged during body motions, although the physical coordinates of the grid points are changing. The connection and blanking information from MIXSUR is read by OVERINT which then uses the most recent grid coordinates to compute cell areas and normals at each time step.

4.1 Input and Output Files

Five input files are required to run OVERINT in stand-alone mode (see table 4(a)). The first is the same input parameters file that is used to run MIXSUR. The next three files, grid.ibi, grid.nsf, and grid.ptv, are files produced by MIXSUR. The final file is the solution file on the grid system given in grid.in. This file is assumed to be named q.save and can be in OVERFLOW or PLOT3D solution file format. OVERINT automatically detects whether the solution file is in OVERFLOW or PLOT3D format and reads it appropriately. Note that an OVERFLOW solution file may contain more information than a standard PLOT3D solution file. The additional information may include parameters for species convection, dependent

variables for turbulence tranport equations and species convection equations (see Appendix B for details of the formats).

Three input files are required to run OVERINT in OVERFLOW mode (see table 4(a)). The grid.ibi and grid.ptv files are the same as those used by the code in stand-alone mode. The third file needed is the mixsur.fmp file generated by the MIXSUR module.

Filename	Description		
STDIN	Input parameters file in ASCII format		
	(same as MIXSUR 's input) (s)		
mixsur.fmp	(generated by MIXSUR) (o)		
grid.ibi	(generated by $MIXSUR$) (s, o)		
grid.nsf	(generated by MIXSUR) (s)		
grid.ptv	(generated by $MIXSUR$) (s, o)		
q.save	OVERFLOW or $PLOT3D$ solution file * (s)		

Table 4	(a).	Input	files	required	bv	OVERINT.
TUOICI	(0))	Input	11100	roquirou	~./	••••••••••••••••••••••••••••••••••••••

* (single or multiple grid format)

(s) Required by stand-alone mode.

(o) Required by OVERFLOW mode.

A different output file is produced by OVERINT in stand-alone mode and OVERFLOW mode (see table 4(b)).

Table 4(b). Output file produced by OVERINT.

Mode	Filename	Description
Stand-alone	STDOUT	flow coefficients, integrated areas
OVERFLOW	fomoco.out	history of flow coefficients, integrated areas

4.2 Input Data

The dependent flow variables from the q.save solution file are assumed to be non-dimensionalized in the same manner as in the OVERFLOW flow solver (see eq. (A.3.2b) in Appendix A). If a spatially variable ratio of specific heats is given in q.save, that value will be used. Otherwise, the free stream value GAMINF in the input parameters file is used (see table 1).

The following parameters in the input parameters file, REFL (reference length), REFA (reference area), XMC, YMC, ZMC (moment reference center), should be provided in the same units as the input grid in grid.in. Similarly, the input Reynolds number REY is the Reynolds number based on unit length of the grid system. For example, if the grid system is represented in feet, REY should be the Reynolds number per foot.

4.3 Output Data

The OVERINT code computes projected areas, force, moment, and mass flow rate coefficients for each integration surface and component defined. Each integration surface and component can have its own set of reference quantities (length, area, moment center) from which the coefficients are computed. In stand-alone mode, coefficients for each integration surface and component are reported. In OVERFLOW mode, only the coefficients for each component are reported. Table 5(a) shows a sample output data file for OVERINT in stand-alone mode. Table 5(b) shows the pseudo code used to write the flow coefficient histories file when using OVERINT in OVERFLOW mode. The data reported include:

- (1) Projected areas in the X, Y, and Z directions and the total area.
- (2) X, Y, and Z force coefficients (pressure, viscous, momentum flux, and total).
- (3) Lift, drag, and side force coefficients (pressure, viscous, momentum flux, and total).
- (4) Moment coefficients about X (roll), Y (pitch), and Z (yaw) axes centered at (XMC, YMC, ZMC).
- (5) Mass flow rate coefficient.

In stand-alone mode, the momentum flux and mass flow rate coefficients are reported only if they are non-zero; and X, Y, Z force coefficients are reported for components only.

Equations used to compute the non-dimensional force $\hat{\mathcal{F}}$, moment $\hat{\mathcal{M}}$ and mass flow rate \dot{m} are given in Appendix A. The force coefficients C_f , moment coefficients C_m and mass flow rate coefficient C_{ρ} are obtained as

$$C_f = \frac{\hat{\mathcal{F}}}{\hat{Q}_{\infty}\hat{A}_{\text{ref}}}, \qquad C_m = \frac{\hat{\mathcal{M}}}{\hat{Q}_{\infty}\hat{L}_{\text{ref}}\hat{A}_{\text{ref}}}, \qquad C_\rho = \frac{\dot{m}}{\hat{\rho}_{\infty}\hat{V}_{\infty}\hat{A}_{\text{ref}}}$$
(4.1)

where

$$\hat{Q}_{\infty} = \frac{1}{2} \hat{\rho}_{\infty} \hat{V}_{\infty}^2 \stackrel{\cdot}{=} \frac{1}{2} \hat{\rho}_{\infty} M_{\infty}^2 \hat{c}_{\infty}^2$$
(4.2)

and (^) is used to denote non-dimensional variables (see section A3 in Appendix A); the subscript $_{\infty}$ is used to denote free stream quantities; ρ , V, M, and c are the density, flow speed, Mach number and sound speed, respectively; \hat{L}_{ref} and \hat{A}_{ref} are the reference length (REFL) and area (REFA), respectively.

The lift, drag and side forces (C_l, C_d, C_s) are computed from the X, Y, and Z components of forces (C_x, C_y, C_z) as follows.

$$C_{l} = -C_{x} \sin \alpha + C_{z} \cos \alpha$$

$$C_{d} = (C_{x} \cos \alpha + C_{z} \sin \alpha) \cos \beta - C_{y} \sin \beta$$

$$C_{s} = (C_{x} \cos \alpha + C_{z} \sin \alpha) \sin \beta + C_{y} \cos \beta$$
(4.3)

The roll, pitch, and yaw moment coefficients are counted positive for right hand rotations about the X, Y, and Z (body) axes, respectively.

Table 5(a). Sample output data file from OVERINT in stand-alone mode.

					*********	***********	******
Out	put from OV	ERINT versio	n 1.0	Data for compo	onent WING		
	**********		***********	Integrated An X	reas Y	z	Total
Mach number = Beta =	0.800 Alpha 0.000 Reyno	i = 2.000 olds number =	0.16700E+06	0.485539E-06	0.369832E+	01 -0.152588	E-04 0.168443E+03
Gamma_inf =	1.400 Tempe	rature_inf =	76.000	Force coefs	x	Y	z
Reference quar	titles set	<u>number</u> ⊥ fe = 0.10000	R+01	Pressure	-0.001626	0.004188	0.106021
Reference area	for coefs	= 0.87180	E+03	Viscous	0.004318	-0.000020	0.000115
Moment axes ce	nter=0.5500	OE+02 0.0000	0E+00 0.00000E+00	Total	0.002691	0.004168	0.106136
Reference quan Reference leng	tities set	number 2 $s = 0.10000$	E+01	Force coefs	Lift	Drag	Side
Reference area	for coefs	= 0.16840	E+03	Pressure	0.106013	0.002075	0.004188
Moment axes ce	nter=0.5500)0E+02 0.9000	0E+01 0.00000E+00	Viscous	-0.000035	0.004319	0.004168
***********	**********	**********	*************	10041	0.2000.0	••••••	
Data for surfa	ice 1			Moment coefs	Roll (X)	Pitch (Y)	Yaw (2)
Integrated Ar	eas	-	Total		0.074037	2.783830	-0.088568
X	¥ 			*********	*********	*********	************
-0.352421E+01	0.44450684	03 0.162479	E-04 0.703312E+03	Data for compo	onent TOTAL		
Force coefs	Lift	Drag	Side	Integrated An X	reas Y	z	Total
Pressure Viscous	-0.000037	0.002498	0.000040	-0.352421E+01	0.448204E+	03 0.000000	E+00 0.871755E+03
Total	0.005085	0.003911	0.029389	Force coefs	x	Y	Z
Moment coefs	Roll (X)	Pitch (Y)	Yaw (Z)		0 000919	0 030158	0.025647
	0.000131	0.170961	0.264587	Viscous	0.003332	0.000036	0.000073
	0.000151		••••	Total	0.004251	0.030194	0.025720
Data for surfa		**********	*****	Force coefs	Lift	Drag	Side
Integrated An				Pressure	0.025599	0.001813	0.030158
x	Y	Z	Total	Viscous	-0.000044	0.003333	0.030194
0.222120E-06	0.18491684	01 -0.828426	E+02 0.842213E+02	Moment coefs	Roll (X)	Pitch (Y)	Yaw (Z)
Force coefs	Lift	Drag	Side		0.198947	0.708695	0.242800
Pressure	-0.031813	0.003530	-0.002711				
Viscous	-0.000139	0.002181	0.000018				
Total Moment coefs	-0.031952 Roll (X)	Pitch (Y)	Yaw (Z)				
	-0 008758	-0 825687	0.078427				
	-0.000750						
Data for surfa	ace 3	***********	**************				
Integrated Ar X	reas Y	2	Total				
0.2634198-06	0.18491684	01 0.828425	E+02 0.842213E+02				
Force coefs	Lift	Drag	Side				
Pressure	0.137826	-0.001455	0.006899				
Viscous	0.000103	0.002138	-0.000038				
Total	0.137929	0.000683	0.006861				
Moment coefs	Roll (X)	Pitch (Y)	Yaw (Z)				
	0.082796	3.609517	-0.166994	ļ			

19

Table 5(b). Pseudo code used to write flow coefficient histories when using OVERINT in OVERFLOW mode.

DO I=1,NITER IF ((MOD(I,NFOMO)=0 DO NC=1,NCOMP WRITE CNAME(NC) WRITE I,-NC,SAC(I WRITE CXPC(NC),C WRITE CXMC(NC),C WRITE CLVC(NC),C WRITE CMRC(NC),C END DO END IF END DO) OR (I=NITER)) THEN NC),TAXC(NC),TAYC(NC),TAZC(NC) SYPC(NC),CZPC(NC),CXVC(NC),CYVC(NC),CZVC(NC) CYMC(NC),CZMC(NC),CLPC(NC),CDPC(NC),CSPC(NC) DVC(NC),CSVC(NC),CLMC(NC),CDMC(NC),CSMC(NC) CMPC(NC),CMYC(NC),CFRC(NC),TIMECP(I)
CNAME NITER NFOMO	 component name number of time steps in flow solver write force/moment data every NFOMO steps
I NC	= time step number = component index number
SAC,TAXC,TAYC,TAZC CXPC,CYPC,CZPC CXVC,CYVC,CZVC CXMC,CYMC,CZMC CLPC,CDPC,CSPC CLVC,CDVC,CSVC CLMC,CDMC,CSMC CMRC,CMPC,CMYC CFRC	C = total surface area, projected X, Y, Z areas = X, Y, Z pressure force coefficients = X, Y, Z viscous force coefficients = X, Y, Z momentum flux coefficients = lift, drag, side pressure force coefficients = lift, drag, side viscous force coefficients = lift, drag, side momentum flux coefficients = roll, pitch, yaw moment coefficients = mass flow rate coefficient
TIMECP	= elapsed CPU time

4.4 Special Notes on Using OVERINT

- (1) When computing flow coefficients for a single grid, the MIXSUR module still needs to be run before the OVERINT module.
- (2) The OVERINT code integrates $(\hat{p} \hat{p}_{\infty})$ over the defined subsets where p is the pressure. If the defined subsets form a closed surface, then the true aerodynamic force and moment coefficients are computed. If the defined subsets form an open surface, the user must decide whether to adjust the reported coefficients by the \hat{p}_{∞} term.
- (3) The user should be aware that the answers obtained with the current flow quantity integration scheme (see Appendix A) may vary slightly depending on the following:

(a) Quadrature rule used to integrate a function over the quadrilaterals and triangles.

- (b) Integration using triangles versus quadrilaterals.
- (c) Size and shape of the triangulated region.

Initial results seem to indicate that the variations caused by the above factors are typically much smaller than the accuracy of the flow coefficients required.

5 Concluding Remarks

The FOMOCO Utilities are currently in beta release stage. The software has been used by a number of groups within NASA and industry. These include oblique wing with pylons, fins and nacelles (ref. 2), subsonic transport with wing, body, pylon, nacelle, core-cowl (refs. 2 and 8), Stratospheric Observatory for Infrared Astronomy (SOFIA) (ref. 9), Space Shuttle Launch vehicle (refs. 2 and 10), and the X-CRV crew return vehicle (ref. 10). Very good results have been obtained for comparisons between numerical computations and experiments.

Bug reports and comments are most appreciated and can be sent to wchan@nas.nasa.gov

Appendix A

The equations used to compute forces, moments, and mass flow rate for a surface are described in this appendix.

A1 Surface Integrals of Flow Quantities

In general, the forces and moments acting on a solid or field surface consist of contributions from the pressure, viscous stress and momentum flux. For a solid surface, the momentum flux and mass flow rate through the surface are zero.

In Cartesian tensor notation, the force \mathcal{F}_i acting on a surface A due to a moving fluid is given by

$$\mathcal{F}_i = \int_A \sigma_{ij} n_j \, dA \tag{A.1.1}$$

where σ_{ij} is the stress tensor and n_i is the local unit normal to the surface. The force Θ_i due to momentum flux through a field surface is given by

$$\Theta_i = \int_A \rho u_i u_j n_j \, dA \tag{A.1.2}$$

where ρ is the density and u_i is the velocity. The mass flow rate \dot{m} through a field surface is given by

$$\dot{m} = \int_{A} \rho u_j n_j \, dA \tag{A.1.3}$$

A2 General Form of the Stress Tensor

The stress tensor is given by

$$\sigma_{ij} = -p\delta_{ij} + \tau_{ij} \tag{A.2.1}$$

where p is the pressure, δ_{ij} is the Kronecker delta function and τ_{ij} is the viscous stress tensor given by

$$\tau_{ij} = \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) + \lambda \delta_{ij} \frac{\partial u_k}{\partial x_k}$$
(A.2.2a)

The laminar viscosity is denoted by μ . From the Stokes hypothesis $\lambda = -\frac{2}{3}\mu$, eq. (A.2.2a) becomes

$$\tau_{ij} = \mu \left[\left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} \delta_{ij} \frac{\partial u_k}{\partial x_k} \right]$$
(A.2.2b)

When the stress tensor is evaluated at a solid wall, the turbulent eddy viscosity can be assumed to be zero.

A3 Non-dimensional Form of the Stress Tensor

Let (^) denote non-dimensional variables and ()_{∞} denote the free stream value of the variable. A typical term in the stress tensor is given by

$$\sigma \sim -p + \mu \frac{\partial u}{\partial x} \tag{A.3.1}$$

The non-dimensionalization used in OVERFLOW is summarized by

$$\hat{x} = \frac{x}{L}, \quad \frac{\partial}{\partial x} = \frac{1}{L} \frac{\partial}{\partial \hat{x}}$$
 (A.3.2a)

$$\hat{u} = \frac{u}{c_{\infty}}, \quad \hat{\rho} = \frac{\rho}{\rho_{\infty}}, \quad \hat{\mu} = \frac{\mu}{\mu_{\infty}}, \quad \hat{p} = \frac{p}{\rho_{\infty}c_{\infty}^2}, \quad \hat{\sigma} = \frac{\sigma}{\rho_{\infty}c_{\infty}^2}$$
(A.3.2b)

where L is the length scale and c is the sound speed. Substituting in eq. (A.3.1) gives

$$\rho_{\infty}c_{\infty}^{2}\hat{\sigma} \sim -\rho_{\infty}c_{\infty}^{2}\hat{p} + \frac{\mu_{\infty}\hat{\mu}}{L}\frac{\partial(c_{\infty}\hat{u})}{\partial\hat{x}}$$
(A.3.3a)

or

$$\hat{\sigma} \sim -\hat{p} + rac{\mu_{\infty}}{
ho_{\infty} c_{\infty} L} rac{\partial \hat{u}}{\partial \hat{x}}$$
 (A.3.3b)

The Reynolds number Re and the scaled Reynolds number \widetilde{Re} used internally in OVERFLOW are defined as follows

$$Re \equiv \frac{\rho_{\infty}V_{\infty}L}{\mu_{\infty}}, \qquad \widetilde{Re} \equiv \frac{\rho_{\infty}c_{\infty}L}{\mu_{\infty}} = \frac{Re}{M_{\infty}}$$
 (A.3.4)

where M_{∞} is the free stream Mach number. Using the scaled Reynolds number in eq. (A.3.4) and dropping all hats, the non-dimensional form of the stress tensor is given by

$$\sigma_{ij} = -p\delta_{ij} + \frac{\mu}{\widetilde{Re}} \left[\left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} \delta_{ij} \frac{\partial u_k}{\partial x_k} \right]$$
(A.3.5)

A4 Stress Tensor in Cartesian and Generalized Coordinates

In Cartesian coordinates, the components of the non-dimensional stress tensor (following from eq. (A.3.5)) are given by

$$\sigma_{xx} = -p + \frac{2\mu}{3\widetilde{Re}}(2u_x - v_y - w_z)$$

$$\sigma_{yy} = -p + \frac{2\mu}{3\widetilde{Re}}(2v_y - w_z - u_x)$$

$$\sigma_{zz} = -p + \frac{2\mu}{3\widetilde{Re}}(2w_z - u_x - v_y)$$

$$\sigma_{xy} = \frac{\mu}{\widetilde{Re}}(u_y + v_x)$$

$$\sigma_{yz} = \frac{\mu}{\widetilde{Re}}(v_z + w_y)$$

$$\sigma_{xz} = \frac{\mu}{\widetilde{Re}}(u_z + w_x)$$
(A.4.1)

The right hand sides of eq. (A.4.1) can be expressed in generalized coordinates ξ , η , and ζ using the chain rule. For example, σ_{xx} can be written as

$$\sigma_{xx} = -p + \frac{2\mu}{3\widetilde{Re}} [2(u_{\xi}\xi_{x} + u_{\eta}\eta_{x} + u_{\zeta}\zeta_{x}) - (v_{\xi}\xi_{y} + v_{\eta}\eta_{y} + v_{\zeta}\zeta_{y}) - (w_{\xi}\xi_{z} + w_{\eta}\eta_{z} + w_{\zeta}\zeta_{z})]$$
(A.4.2)

Quantities on the right hand side of eq. (A.4.2) can be conveniently computed in the flow solver.

Typically, forces and moments acting on a solid wall are required. Suppose the solid wall is along a ζ = constant surface. Since all velocity components are zero at a viscous solid wall, all terms containing derivatives of velocity components in ξ and η are exactly zero in the viscous part of the stress tensor when it is evaluated at the wall. Note that no thin layer approximation is invoked in dropping the ξ and η derivative terms. The components of the non-dimensional stress tensor at the wall now become

$$\sigma_{xx} = -p + \frac{2\mu}{\widetilde{Re}}(\zeta_{x}u_{\zeta} - m)$$

$$\sigma_{yy} = -p + \frac{2\mu}{\widetilde{Re}}(\zeta_{y}v_{\zeta} - m)$$

$$\sigma_{zz} = -p + \frac{2\mu}{\widetilde{Re}}(\zeta_{z}w_{\zeta} - m)$$

$$\sigma_{xy} = \frac{\mu}{\widetilde{Re}}(\zeta_{x}v_{\zeta} + \zeta_{y}u_{\zeta})$$

$$\sigma_{yz} = \frac{\mu}{\widetilde{Re}}(\zeta_{y}w_{\zeta} + \zeta_{z}v_{\zeta})$$

$$\sigma_{xz} = \frac{\mu}{\widetilde{Re}}(\zeta_{x}w_{\zeta} + \zeta_{z}u_{\zeta})$$

(A.4.3a)

where

$$m = \frac{1}{3}(\zeta_x u_\zeta + \zeta_y v_\zeta + \zeta_z w_\zeta) \tag{A.4.3b}$$

Consider the terms involving derivatives of velocity in the tangential direction to the surface in eq. (A.4.2). There are two situations when these terms may be non-zero. The first is in the case of a field (flow-through) surface where tangential velocity gradients are not necessarily zero. The second is in the case of a solid surface in unsteady motion. In an inertial reference frame fixed in space, different points on the solid surface may have different velocities (e.g., a rotating body), thus resulting in non-zero tangential velocity gradients. In the above two cases, all derivative terms must be retained in computing the stress tensor components. These tangential derivative terms are disregarded in the current release of FOMOCO Utilities. They will be implemented in the near future.

A5 Flow Quantities Integration

The total force \mathcal{F}_i , moment \mathcal{M}_i and mass flow rate \dot{m} are computed by summing the respective elemental forces $\Delta \mathcal{F}_i$, elemental moments $\Delta \mathcal{M}_i$ and elemental mass flow rates $\Delta \dot{m}$. The elemental quantities are computed in a cell-centered scheme for each cell in the surface domain consisting of non-overlapping quadrilaterals and triangles.

The elemental force $\Delta \mathcal{F}_i$ acting on a vector area element $n_i \Delta A$ where n_i is the local unit normal at the surface is given by

$$\Delta \mathcal{F}_i = \overline{\sigma}_{ij} n_j \Delta A \tag{A.5.1}$$

where (⁻) denotes some averaging operator (see below). Similarly the elemental moment $\Delta \mathcal{M}_i$ about a point r_i^0 is given by

$$\Delta \mathcal{M}_i = \epsilon_{ijk} (r_j - r_j^0) \Delta F_k \tag{A.5.2}$$

where r_i is the position vector of the centroid of the local area element and ϵ_{ijk} is the Levi-Civita permutation symbol. The elemental mass flow rate $\Delta \dot{m}$ is given by

$$\Delta \dot{m} = \overline{\rho} \, \overline{u}_j n_j \Delta A \tag{A.5.3}$$

The (\neg) quantities above are evaluated at the cell center using a zeroth order scheme where the value at the center is taken to be the arithmetic average of the values at the vertices. Higher order schemes such as assuming a bilinear quadrilateral or triangle may be used but are not employed here. Simple numerical experiments seem to indicate that such higher order schemes are not needed for the typical accuracy required of the flow coefficients.

A6 Evaluation of Area Elements and Metrics

The local vector area element $n_i \Delta A$ for a quadrilateral is computed by one half times the cross product of its diagonals. Similarly, the local vector area for a triangle is computed by one half times the cross product of the two vectors along any two of its edges. In both cases, the normal is ensured to be outward pointing from the surface.

The metric terms $(\zeta_x, \zeta_y, \zeta_z) = \nabla \zeta$ are evaluated by

$$\nabla \zeta = n_i \Delta A / \Delta V \tag{A.6.1}$$

where ΔV is the local cell volume. This local cell volume is evaluated in a finite volume sense as in references 11 and 12. However, a symmetric evaluation independent of the index direction is used. The symmetric value is obtained by averaging the four volumes computed using the four diagonals of the hexahedral cell.

Appendix B

The various file formats used by FOMOCO Utilities are given below.

PLOT3D multiple grid XYZ file with IBLANKS

READ(IUNIT) NGRID READ(IUNIT) (JDIM(N),KDIM(N),LDIM(N),N=1,NGRID) DO 10 N=1,NGRID READ(IUNIT) (((X(J,K,L),J=1,JDIM(N)),K=1,KDIM(N)),L=1,LDIM(N)), & (((Y(J,K,L),J=1,JDIM(N)),K=1,KDIM(N)),L=1,LDIM(N)), & (((Z(J,K,L),J=1,JDIM(N)),K=1,KDIM(N)),L=1,LDIM(N)), & (((IBLANK(J,K,L),J=1,JDIM(N)),K=1,KDIM(N)),L=1,LDIM(N))

10 CONTINUE

PLOT3D multiple grid solution file

READ(IUNIT) NGRID READ(IUNIT) (JDIM(N),KDIM(N),LDIM(N),N=1,NGRID) READ(IUNIT) FSMACH,ALPHA,REY,TIME DO 10 N=1,NGRID READ(IUNIT) ((((Q(J,K,L,NV),J=1,JDIM(N)),K=1,KDIM(N)),L=1,LDIM(N)),NV=1,5) 10 CONTINUE

OVERFLOW multiple grid solution file (most general form since version 1.7e)

```
READ(IUNIT) NGRID
READ(IUNIT) (JDIM(N),KDIM(N),LDIM(N),N=1,NGRID),NQ,NQC
READ(IUNIT) FSMACH,ALPHA,REY,TIME,GAMINF,BETA,TINF,
IGAM,HTINF,HT1,HT2,(RGAS(I),I=1,MAX(2,NQC))
DO 10 N=1,NGRID
READ(IUNIT) ((((Q(J,K,L,NV),J=1,JDIM(N)),K=1,KDIM(N)),L=1,LDIM(N)),NV=1,NQ)
10 CONTINUE
```

Special Notes

- (1) The number of grids is given by NGRID. The grid dimensions are given by JDIM, KDIM, and LDIM for the J, K, and L directions, respectively.
- (2) Single grid format for all of the above files is recovered by omitting the first READ statement and using NGRID=1 for the rest of the READ statements.
- (3) XYZ files without IBLANKS are also acceptable and are read by omitting the READ on the IBLANK array.
- (4) The solution file can be in *PLOT3D* or *OVERFLOW* format. NQ is the number of Q variables. The first five Q variables contain the density, X, Y, and Z momentum and total energy per unit volume, respectively. The sixth Q variable in an *OVERFLOW* solution file contains the ratio of specific heats. All other Q variables, if any, are disregarded. If a *PLOT3D* solution file is used, the ratio of specific heats is assumed to be constant everywhere and equal to GAMINF in the input parameters file.
- (5) The NQC,IGAM,HTINF,HT1,HT2, and RGAS parameters are disregarded.
- (6) Solution files for earlier versions of OVERFLOW are also acceptable. These may not contain the BETA and TINF parameters.

References

- Benek, J. A.; Buning, P. G.; and Steger, J. L.: A 3-D Chimera Grid Embedding Technique. AIAA Paper 85-1523, July 1985.
- Chan, W. M.; and Buning, P. G.: Zipper Grids for Force and Moment Computation on Overset Grids. AIAA Paper 95-1681, Proceedings of the AIAA 12th Computational Fluid Dynamics Conference, San Diego, Calif., June 1995.
- Buning, P. G.; Jespersen, D. C.; Pulliam, T. H.; Chan, W. M.; Slotnick, J. P.; Krist, S. E.; and Renze, K. J.: OVERFLOW User's Manual, Version 1.7e. NASA Ames Research Center, Moffett Field, Calif., 1996.
- 4. Walatka, P. P.; Buning, P. G.; Pierce, L.; and Elson, P. A.: PLOT3D User's Manual. NASA TM-101067, 1990.
- Parks, S. J.; Buning, P. G.; Steger, J. L.; and Chan, W. M.: Collar Grids for Intersecting Geometric Components Within The Chimera Overlapped Grid Scheme. AIAA Paper 91-1587, Proceedings of the AIAA 10th Computational Fluid Dynamics Conference, Honolulu, Hawaii, June 1991.
- 6. Suhs, N. E.; and Tramel, R. W.: PEGSUS 4.0 User's Manual. AEDC-TR-91-8, June 1991.
- Meakin, R.: A New Method for Establishing Intergrid Communication Among Systems of Overset Grids. AIAA Paper 91-1586, Proceedings of the AIAA 10th Computational Fluid Dynamics Conference, Honolulu, Hawaii, June 1991.
- 8. Cheung, S.: Aerodynamic Design: Parallel CFD and Optimization Routines. AIAA Paper 95-1748, Proceedings of the AIAA 12th Computational Fluid Dynamics Conference, San Diego, Calif., June 1995.
- 9. Srinivasan, G.: Flowfield and Acoustic Characteristics of Telescope Cavity in SOFIA Platform. AIAA Paper 95-1862, Proceedings of the AIAA 13th Applied Aerodynamics Conference, San Diego, June 1995.
- 10. Greathouse, J.; and Gomez, R.: Unpublished results on Space Shuttle Launch Vehicle and X-CRV Vehicle, NASA Johnson Space Center, 1996.
- 11. Kordulla, W.; and Vinokur, M.: Efficient Computation of Volume in Flow Predictions. AIAA J., vol. 21, no. 6, 1983, pp. 917-918.
- 12. Obayashi, S.: Free-Stream Capturing in Fluid Conservation Law for Moving Coordinates in Three Dimensions. NASA CR-177572, Jan. 1991.

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, 1205.03			
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND July 1996		D DATES COVERED morandum	
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
User's Manual for FOMOCO Utilities – Force and Moment Computation Tools for Overset Grids			
6. AUTHOR(S)			505-59-53
William M. Chan* and Pieter G. Buning			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER
Ames Research Center Moffett Field, CA 94035-1000			A-962064
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSORING/MONITORING
			AGENCY REPORT NUMBER
National Aeronautics and Space Administration Washington, DC 20546-0001			NASA TM-110408
 11. SUPPLEMENTARY NOTES Point of Contact: William M. Chan, Ames Research Center, MS 227-2, Moffett Field, CA 94035-1000 (415) 604-6607 *MCAT Inc. Sen Ioce California 			
12a. DISTRIBUTION/AVAILABILITY STATEMENT			12b. DISTRIBUTION CODE
Unclassified-Unlimited Subject Category – 02			
13. ABSTRACT (Maximum 200 words)			
In the numerical computations of flows around complex configurations, accurate calculations of force and moment coefficients for aerodynamic surfaces are required. When overset grid methods are used, the surfaces on which force and moment coefficients are sought typically consist of a collection of overlapping surface grids. Direct integration of flow quantities on the overlapping grids would result in the overlapped regions being counted more than once. The FOMOCO Utilities is a software package for computing flow coefficients (force, moment, and mass flow rate) on a collection of overset surfaces with accurate accounting of the overlapped zones. FOMOCO Utilities can be used in stand-alone mode or in conjunction with the Chimera overset grid compressible Navier–Stokes flow solver <i>OVERFLOW</i> . The software package consists of two modules corresponding to a two-step procedure: (1) hybrid surface grid generation (<i>MIXSUR</i> module) and (2) flow quantities integration (<i>OVERINT</i> module). Instructions on how to use this software package are described in this user's manual. Equations used in the flow coefficients calculation are given in Appendix A.			
14. SUBJECT TERMS			15. NUMBER OF PAGES
Overset grids, Force and moment computation, Chimera methods			31 16. PRICE CODE A03
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIF	CATION 20. LIMITATION OF ABSTRACT
Unclassified	Unclassified	UL ABUINAUL	
NSN 7540-01-280-5500		······································	Standard Form 298 (Rev. 2-89)

Standard Form 298 (Rev. 2-89 Prescribed by ANSI Std. 239-18 298-102

• ,

, . .