
The NIST Real-Time Control System (RCS)- A
Reference Model Architecture for

Computational Intelligence

James S. Albus
Chief, Intelligent Systems Division

National Institute of Standards and Technology
Gaithersburg, MD

23

THE NIST REAL-TIME CONTROL SYSTEM (RCS)

A REFERENCE MODEL ARCHITECTURE

FOR

COMPUTATIONAL INTELLIGENCE

James S. Albus

Chief, Intelligent Systems Division

National Institute of Standards and Technology

Gaithersburg, MD

INTRODUCTION

The Real-time Control System (RCS) developed at NIST and elsewhere

over the past two decades defines a reference model architecture for design
and analysis of complex intelligent control systems. The RCS architecture

consists of a hierarchically layered set of functional processing modules

connected by a network of communication pathways. The primary
distinguishing feature of the layers is the bandwidth of the control loops. The

characteristic bandwidth of each level is determined by the spatial and

temporal integration window of filters, the temporal frequency of signals and

events, the spatial frequency of patterns, and the planning horizon and
granularity of the planners that operate at each level. At each level, tasks are

decomposed into sequential subtasks, to be performed by cooperating sets

of subordinate agents. At each level, signals from sensors are filtered and
correlated with spatial and temporal features that are relevant to the control

function being implemented at that level (Refs. 1-6).

25

ELEMENTS OF INTELLIGENT SYSTEMS

The elemental functions of intelligence are Behavior Generation,

Sensory Processing (or Perception), World Modeling, and Value Judgment.

The remaining elements are the knowledge database and the system
architecture that interconnects the functional models and databases. This is

shown in Fig. 1.

BEHAVIOR GENERATION and ACTUATION

(Planning and control)

SENSING and SENSORY PROCESSING

(Filter, detect, recognize, interpret)

WORLD MODELING

(Store knowledge and predict)

VALUE JUDGMENT

(Compute cost, benefit, and uncertainty attributes)

KNOWLEDGE

(States, events, entities, attributes, maps, tasks, processes)

SYSTEM ARCHITECTURE

(Communications, timing, operating system)

Figure 1

26

BEHAVIOR GENERATION

Behavior generation involves both planning and control of action, as shown in

Fig. 2.

In general, planning requires both spatial and temporal decomposition of tasks.

Spatial decomposition is the assignment of responsibility for jobs to organizational

units, or agents, and allocation of resources such as tools, materials, time, and

energy. Spatial decomposition may also involve the transformation of coordinate

frames in which the task is represented. For example, at the Servo level, a task is

typically represented in actuator coordinates. At the Primitive Trajectory level, a

task may be represented in end-effector, or tool, coordinates. At the Elementary

Move level, a task may be represented in a coordinate system embedded in the

surface of the object upon which the task is being performed.

Temporal decomposition requires generation of a sequence of subtasks for each

agent along the time line. In many cases, the subtask sequence for the various

agents must be coordinated in time and space in order to generate cooperative
behavior.

Planning may be accomplished by a number of algorithms, and may be done

either off-line long before action begins, or in real-time immediately before action

begins. Typically, planning involves a search over the space of possible actions in

order to select the best plan for execution. The purpose of planning is to find an

effective and efficient path from the current state to the goal and to avoid danger

along the way.

Control is the execution of the plan to produce action that is observable as

behavior. Discrete control involves the sequencing of subtasks along the time line

and branching on conditions. Continuous control involves moving the set point of a

controller along the reference trajectory defined by the plan. Control involves
detection and correction of errors.

Planning
Decompose tasks
-- organizationally assign responsibility

& allocate resources

-- temporally develop action scenarios
Search space of possible actions for "best plan"
Plan paths to goals and avoid danger
"Optimize" path dynamics

Control

Sequence subtasks and branch on conditions
Set goal points to planned trajectories
Detect and correct errors

Figure 2

27

SENSING AND SENSORY PROCESSING

Sensing is accomplished by a variety of sensors: visual, acoustic, tactile, smell,

taste and proprioceptive. Sensors provide the input for sensory processing, or

perception.

Sensory processing involves filtering input from sensory images provided by

sensors. Observed images are then correlated with internal predicted images, or

imagination, generated from internal knowledge sources. Both spatial and temporal

correlations are important in the detection and recognition of entities and events. If

observed images are correlated with internally predicted images, the input is

recognized, or detected.

Recognized entities and events that fit into patterns can be clustered, or

grouped, into higher-order entities and events. For example, edge points can be

clustered into region boundaries. Surfaces may be grouped into objects. Phonemes

may be clustered into words. Words may be grouped into sentences.

Variance between observed and predicted images can be used to update the

internal knowledge database so as to estimate states, attributes, and relationships,

and bring the world model into correspondence with the reality of the external world

(see Fig. 3).

Filter images from sensors

Correlate with imagination

Detect or recognize entities and events

Cluster or group entities into higher order entities

Estimate states, attributes, and relationships

Figure 3

28

WORLD MODELING

The World Modeling function uses the results of sensory processing to update

the internal knowledge database so as to keep it a current and accurate

representation of the external world and of the control system itself. The World

Model function answers queries from the behavior generation module, providing a

best estimate of the state of the world for planning and control.

The World Modeling function also generates predictions for sensory processing

and planning. Expectations of sensory input are used for correlation with observed

sensory inputs. Predicted results of planned actions are sent to the Value Judgment

module for evaluation. This provides the basis for planning (see Fig. 4).

Update internal knowledge database

Compute estimated state of world

Generate expected sensory input

Predict results of planned actions

Figure 4

29

VALUE JUDGMENT

The Value Judgment functional module computes cost/benefit evaluations of

perceived events, situations, and states. It evaluates the payoff vs. risk of tentative

future plans. It assigns designations of good or bad to objects, friend or foe to

agents, and love or hate to persons. It computes pleasure or pain for sensory input,

contentment or anger for the current internal state, and hope or fear for imagined

future conditions. The Value Judgment function also assesses the level of

confidence or uncertainty to be ascribed to sensory observations or internally

generated imaginations as shown in Fig. 5.

Value judgment := An evaluation of current reality
past history, or future expectations. An estimate of cost,
risk, or benefit.

Value judgments compute state-variables that may be
assigned to objects, events, persons, or regions of space.

Examples of value state-variables :=
benefit-cost, payoff-risk, good-bad, pleasure-pain,
hope-fear, love-hate, friend-foe, contentment-anger,
confidence-uncertainty

Figure 5

30

KNOWLEDGE REPRESENTATION

Knowledge is represented in a distributed knowledge database in a number of

forms, as shown in Fig. 6.

Estimates of the state of objects and systems in the world are represented by
state vectors.

Attributes of entities and the relationships between entities are represented in

symbolic lists that can be indexed by name. Entity representations are defined by

symbols and strings, organized in frames, lists, and graphs. Relationships are
defined by pointers.

Maps and images are represented by arrays of attribute-value pairs that are

indexed by their position in the array. There typically exists a topographical

mapping between the location of the sensor (such as a photo-receptor in the retina,

or a touch sensor on the finger-tip) and the location of the attribute-value pair in the

array (such as the visual or somatosensory cortex).

Additional types of knowledge are:

Task knowledge which embodies skills in how to do things;

Laws of physics which embody models of how things are expected to behave in
the world; and

Laws of math and logic which embody concepts of causality, and provide the

basis for deductive and inductive reasoning.

States (conditions at time t)

Entities

Symbolic (symbols and strings)
Indexed by name
Lists of attribute-value pairs

Maps
Iconic (images)
Indexed by position
Arrays of attribute-value pairs

Task knowledge -- skills in how to do things
Laws of physics -- models of how things behave
Laws of math -- models of how things relate

Figure 6

31

SYSTEM ARCHITECTURE

The elements of intelligence are organized as shown in Fig. 7 such that the

Behavior Generating module can submit tentative plans to the World Model

module, which generates expected results that are sent to the Value Judgment

module which evaluates the cost/benefit and risk/payoff. This is returned to the

Behavior Generating module which decides either to execute the plan or to generate

an alternative plan. A series of tentative plans can be submitted for simulation and

evaluation before an acceptable plan is chosen for execution. The loop between the

Behavior Generation, World Modeling, and Value Judgment modules thus

constitutes a planning loop. The World Model also provides estimated state

information to the Behavior Generating module for its planning and control

functions. Output from the Behavior Generating module represents commanded

actions to be carried out by actuators that act on the external world environment.

Sensors sense events in the environment and provide observed input to Sensory

Processing (or Perception) modules. The World Model generates predicted sensory

input based on the estimated state of the environment. The Sensory Processing

modules filter the observed input, and apply correlation and difference operators to

the observed and predicted inputs. Strong correlations indicate recognition or

detection. Variance between observations and predictions provide the information

necessary to update the Knowledge Database. The Sensory Processing modules

also group or cluster recognized entities into higher-level entities, situations, and

relationships. Perceived situations are analyzed by the Value Judgment module as

to whether they are good or bad, and are labeled as such in the Knowledge
Database.

Situation Planning and

I Assessment I Execution I

VALUE

UPDATES PLANS

SENSORY BEHAVIOR

PROCESSING WORLD GENERATING
MODEL

PREDICTED STATES

INPUT DATABASE

OBSERVED COMMANDED

INPUT ACTIONS

SENSORS ACTUATORS

EVENTS

INTERNAL

EXTERNAL

ENVIRONMENT

ACTIONS

JSA

8/90

32

Figure 7

ORGANIZATION OF INTELLIGENT SYSTEMS

A more abstract model of the functional elements of intelligent systems,
organized into computational nodes and interconnected to each other and to the

knowledge database by a communications system, is shown in Fig. 8. The Behavior

Generating element receives goals as input and generates action as output. The

Sensory Processing element receives observed input from sensors and generates

reports as output. Sensory input that reports success in achieving goals is rewarding.

Failure to achieve goals is punishing. Rewarding and punishing sensory feedback

can be used for learning.

Learning may change algorithms in the Behavior Generating, Value Judgment,

or Sensory Processing systems. Memory is a form of learning that changes what is
stored in the Knowledge Database.

Report Goal

_ _'_" VALUE _.._]

su ces

Figure 8

33

HIERARCHICAL ORGANIZATION

Complexity can be managed through hierarchical layering of computational

nodes. Higher level Behavior Generating modules have longer range goals and

make plans with longer planning horizons and less detail. At each hierarchical level,

Behavior Generating modules decompose longer range goals into strings of shorter

range subgoals with increasing detail and more immediate reactivity to sensory

feedback, as shown in Fig. 9.

Higher-level Sensory Processing modules have longer temporal intervals over
which historical trends are integrated and wider spatial windows over which entity

attributes are averaged. Knowledge Databases at higher levels contain more

general properties of larger-scale entities and more general relationships between

groups of entities.
Reactive feedback loops are closed at every level, with higher bandwidth loops

at lower levels, and slower more deliberative reactions at higher levels.

Perceptions Goals

•

Sensors Actions

Figure 9

34

SYSTEM ARCHITECTURE

The NIST Real-time Control System (RCS) is a Reference Model Architecture

for Intelligent Systems, as shown in Fig. 10. Processing nodes consist of Behavior

Generating (BG), Sensory Processing (SP), World Modeling (WM), and Value

Judgment (VJ) (hidden behind WM) modules. These are organized such that the

BG modules form a command tree. Information in the Knowledge Database (KB)
(contained in WM) is shared between WM modules in nodes within the same

subtree. Relational links exist between entities in the KB at different levels. On the

right, are examples of the functional characteristics of the BG modules at each level.

For example, the planning horizon and typical output is listed under the name of

each level. On the left are examples of the type of entities recognized by the SP

modules and stored by the WM in the Knowledge Database at each level. Sensory

data paths flowing up the hierarchy form a graph, not a tree.

This diagram is for an individual machine system. This system is decomposed

into subsystems of Attention, Communication, Locomotion, and Manipulation.

Each of these subsystems is further decomposed until at the bottom level, there are

actuators and sensors. Above the individual level, there are control levels that deal

with other individuals in a group, between the self group and other groups, etc.

The NIST RCS (Real-time Control System)

Reference Model Architecture for Intelligent Systems

Task context for next day

Task context for next hour

GROUP 3 Plans for next day

GROUP 2 Plans for next hour

Task context for next 5 minutes GROUP Plans for next 5 minutes

Objects INDIVIDUAL Plans for next 30 seconds

Task to be done on one object

Points

Surfaces

Lines

Atte_

SENSORS AND ACTUATORS

E-MOVE

3 second plans

Subtask on object part

Obstacle-free paths

PRIMITIVE

0.3 second plan

Tool trajectory

SERVO

0.03 second plan

Actuator output

Figure 10

35

RELATIONSHIPS WITHIN A RCS NODE

36

The Behavior Generating (BG) modules contain Job Assignment (JA),

Scheduling (SC), Plan Selector (PS) and Executor (EX) submodules, as shown in Fig.

11. The World Modeling (WM) module contains a plan simulator and mechanisms

for updating the Knowledge Database (KD), which contains both long term and

short term symbolic representations and short term iconic images. The Sensory

Processing (SP) module contains filtering, detecting, and estimating algorithms, plus

mechanisms for comparing predictions generated by the WM module with

observations from sensors. It has algorithms for recognizing entities and clustering

entities into higher-level entities. The Value Judgment (VJ) module evaluates plans

and computes confidence factors based on the variance between observed and

predicted sensory input.
Task commands are input to the BG module from an EX submodule at the next

higher level in the RCS hierarchy. The task commands are of the form

Do <Action> On <Object> To Achieve Goal <x*>

The <Action> consists of a verb that specifies the name of the task to be

performed, plus parameters, such as priority, or speed, or timing requirements, that

specify how the task is to be performed. The <Object> is a noun, the object of the

action verb. The <Object> specifies the thing, or things, to be acted upon by the

task. The goal <x*> defines the state to be achieved or maintained by the task.

The Job Assignment (JA) submodule decomposes the task specified by

<Action> into jobs to be performed by subagents and assigns resources to the

agents. JA may also transform the coordinate frame in which actions are expressed.

For each subagent, there is a Scheduler (SC) submodule which schedules a

sequence of subtasks that accomplish the job assigned to its agent, and coordinates

its schedule with other subagents. The output of the SC submodules is a tentative

plan that is sent to a simulator in the WM module. The expected results generated

by the WM simulator is forwarded to the VJ module for cost/benefit/risk/payoff

analysis. The VJ evaluation is returned to the Plan Selector (PS) submodule which

decides whether to replan in an attempt to find a more desirable plan, or to send the

best of the plans generated so far to the Selected Plan register for execution. The

selected plan defines a path from the current state _ to the goal state x*. This path

is a reference trajectory x** that becomes input to the Executor submodules for each

of the subagents. _ is the WM best estimate of the state of the world. _ provides

feedback to be compared with the reference trajectory x**. Errors between _ and x**

are then used to compute actions designed to null the difference between the

reference trajectory and the state of the world.

<Object> provides input to the WM to access the long term memory section of

the Knowledge Database. Information stored in long term memory about the

<Object> is transferred into short term working memory, so that the <Object>

becomes an object of attention. Attributes and state of the <Object> provide input

to a graphics engine to generate masks and windows for filtering, and a template for

correlation matching with sensory observations. Comparisons between sensory

observations and world model predictions provide the information to update the

attributes and state of the <Object> in the WM so that the control system can

manipulate the <Object> in a way designed to achieve the goal state x*.

VJ - Value Judgment

I WM - World Mod,

Plan simulator

Predict results
Plan evaluator

Evaluate results

I KD - Knowledge database

Long Term

Symbolic

Memory I

Short Term _ntity-of-attention i

Symbolic "_ Name

Memory2¢, _
Attributes

I I Pointers to

SP - Sensory Processing I

_ Sensor _ I Cluster 11
/ Image I IRecognizeII
L[--'-]_' J--_ C°mpare }_

Graphics Engine

_Short Term "N r '

Iconic Image

Estimate

Detect

Filter

Sensors _ I

J
................. ,J

Plant

Figure 11

current
state "_

Task Command

Do-action
on object
to-achieve-x*

BG - Behavior Generator
[

PL - Planner J
1

JA - Job Assigner

assign jobs and resources
transform task coordinates

SC - Schedulers

generate schedules for
coordinate schedules

Tentative Plan

a path from xhat to x*

agents

"1ents

-\

J
I I I

PS - Plan Selector I Replan
I

,,,,l ,ao

Selected Plan ")
a path from xhat to x*

a reference trajectory x**

] reference trajectory
X **

I I

EX - Executors

.,
Error Estimator I

error = x** - "_
V ,,

Compute action
to null error

' !

I

action I Actuators

37

OPERATOR INTERFACES

An operational RCS system provides operator interfaces to each of the modules

in each of the nodes. These allow the operator to view plans, including part drawings

with tolerances and bill of materials, as well as assembly drawings with exploded

views, and diagrams of planned tool paths. The operator may also display sensory

data that show measurements made by inspection instruments, or knowledge

database diagrams showing layouts of work sites. Displays may include symbolic

and numeric data, dials and gauges, and plant diagrams showing state of control

modules and flow of parts and material.

Operator interfaces also provide means for inputting operator commands such

as feed-rate override, jog, feed-hold, pause, and emergency stop. Input devices may

include joysticks, keyboards, function keys, and voice input (see Fig. 12).

Display plans
Part drawings with tolerances and materials
Assembly drawings with exploded views
Tool path diagrams

Display sensory input
Site metrology
Inspection measurements

Display world model knowledge
Symbolic, dials and gauges, state diagrams
Maps with feature overlays

Input commands, queries
Joystick, keyboard, function keys, voice

Figure 12

38

ENGINEERING METHODOLOGY

The design of an intelligent machine system, outlined in Fig. 13, begins with a

scenario analysis wherein the requirements, objectives, and operational behavior of

the system are specified in great detail. Experts in the desired performance are

interviewed and specifications are developed for both normal operating conditions

and error recovery procedures. This is followed by a definition of the hierarchy of

task vocabularies required at each level to achieve the desired performance, plus a

specification of the task knowledge needed to accomplish each of the tasks in the

vocabulary. It is then possible to specify the world model knowledge necessary to

support the task decomposition processes, and define the entities, events, agents,

attributes, maps, lists, and state variables needed for world model representation.

Next the sensors and sensory processing algorithms with the capability to detect

events, recognize features, and provide the required world model data are defined.

Then the set of messages and communication protocols is defined that can support

the communication of task commands, status reports, world model queries and

responses, and data flow in the sensory processing hierarchy. At each level, timing,

sampling, and spatial/temporal resolution must be defined. Finally, the computing

platforms, memory requirements, and communication protocols can be specified,

and operating systems and operator interfaces can be defined (Refs. 7 and 8).

This methodology typically needs to be integrated through a number of cycles

before the system design stabilizes.

Scenario analysis
Task decomposition and task knowledge
World model knowledge representation
Maps, lists, and state variables
Entities, events, agents, states, and attributes
Sensory processing algorithms and filters
Event detection and feature recognition
Communication messages and protocols
Timing, sampling, and spatial resolution
Computing platforms, memory, buses, and LANs
Virtual machines

Operating systems
Operator interfaces

Figure 13

39

SOFTWARE DEVELOPMENT TOOLS

Intelligent systems are typically too complex to be designed and developed

using conventional programming practices. Advanced software development tools,

such as suggested in Fig. 14, are required in order to achieve any degree of

proficiency in intelligent system design. Below are some of the types of tools and

representations that are needed.

Task frames
Message formats
Product data representations
Object oriented analysis
Functional module definition
Data flow analysis
Simulation tools

System configuration tools
Frequency response and transient analysis plots
State diagrams and Petri nets
Path planners and motion control libraries
Programmable logic analysis

Figure 14

40

REFERENCES

. Albus, J. S., "Outline for a Theory of Intelligence," IEEE Transactions on

Systems, Man and Cybernetics, Vol. 21, No. 3, May/June 1991, pp. 473-509.

2. Albus, J. S., Brains, Behavior, and Robotics, Byte/McGraw-Hill, 1981

° Albus, J. S., "A Reference Model Architecture for Intelligent Systems Design,"

in An Introduction to Intelligent and Autonomous Control, Antsaklis, P. J. and

Passino, K. M. (eds.), 1993.

. Albus, J. S., McLean, C. R., Barbera, A. J. and Fitzgerald, M. L., "Architecture

for Real-Time Sensory-Interactive Control of Robots in a Manufacturing

Facility," Proceedings of the Fourth IFAC/IFIP Symposium -- Information

Control Problems in Manufacturing Technology, Gaithersburg, MD, Oct. 26-28,
1982.

° Albus, J. S., McCain, H. G. and Lumia, R., NASA/NBS Standard Reference

Model for Telerobot Control System Architecture (NASREM), NISTTN 1235,

1989 edition, National Institute of Standards and Technology, Gaithersburg,

MD, April 1989 (supersedes NBS Technical Note 1235, July 1987).

. Senehi, M. K., Kramer, T. J., Michaloski, J., Quintero, R., Ray, S. R., Rippey, W.

G. and Wallace, S., Reference Architecture for Machine Control Systems

Integration: Interim Report, NISTIR 5517, National Institute of Standards and

Technology, Gaithersburg, MD, 1994.

° Huang, H. M., Quintero, R. and Albus, J. S., "A Reference Model, Design
Approach, and Development Illustration Toward Hierarchical Real-Time

System Control for Coal Mining Operations," Advances in Control and

Dynamic Systems, Academic Press, July 1991.

. Quintero, R. and Barbera, A. J., "A Software Template Approach to Building

Complex Large-Scale Intelligent Control Systems," Proceeding of the 8th IEEE

International Symposium on Intelligent Control, Chicago, IL, Sept. 25-27, 1993.

41

