
• ,__r • L '_t/

Trends and Issues in Fuzzy Control and
Neuro-Fuzzy Modeling

Stephen Chiu
Control and Information Management Department

Rockwell Science Center
Thousand Oaks, CA

107





TRENDS AND ISSUES IN FUZZY CONTROL

AND NEURO-FUZZY MODELING

Stephen Chiu

Control and Information Management Department
Rockwell Science Center

1049 Camino Dos Rios

Thousand Oaks, CA 91360
Email: sic @risc.rockwell.com

INTRODUCTION

Everyday experience in building and repairing things around the home have taught us the
importance of using the right tool for the right job. Although we tend to think of a "job" in broad
terms, such as "build a bookcase," we understand well that the "right job" associated with each "right

tool" is typically a narrowly bounded subtask, such as "tighten the screws." Unfortunately, we often
lose sight of this principle when solving engineering problems; we treat a broadly defined problem,
such as controlling or modeling a system, as a narrow one that has a single "right tool" (e.g., linear
analysis, fuzzy logic, neural network). We need to recognize that a typical real-world problem contains
a number of different subproblems, and that a truly optimal solution (the best combination of cost,
performance and feature) is obtained by applying the right tool to the right subproblem. Here I share
some of my perspectives on what constitutes the "right job" for fuzzy control and describe recent
advances in neuro-fuzzy modeling to illustrate and to motivate the synergistic use of different tools.

109



WHAT IS FUZZY LOGIC?

Because the reader may not be familiar with fuzzy control, I will start with a brief introduction
to fuzzy control.

Fuzzy logic was developed to compensate for the limitations of classical logic. In classical
logic, a statement can be either true or false, but nothing in between. For example, if we were to ask

the question, "is the distance to the market far?", the answer can be only yes or no, based on a very
precise definition of "far". In classical logic, the definition of "far" would look something like the step
function shown below. Here "far" is defined as any distance greater than or equal to 40 miles; hence, a
distance of 39.999 miles would still be considered as definitely not far, but a location becomes
definitely far as soon as it crosses over the 40 mile line. Fuzzy logic, on the other hand, allows a

smooth, graded transition between totally true and totally false states. At the heart of fuzzy logic is the
use of "membership functions" to define terms such as "far", as shown below. Using this fuzzy
definition of "far", we can say that 38 miles is far to some degree (e.g., degree of 0.4), and 42 miles is
also far, but to a greater degree (e.g., degree of 0.8).

What is Fuzzy Logic?

Fuzzy Logic is a method of reasoning that uses graded or
qualified statements rather than ones that are strictly true
or false.

Is the distance far?

Classical Loglc's Definition of "Far" Fuzzy Logic's Definition of "Far"

°11
0 Distance in

miles

38 miles is Idefinitely not far

F
42 miles is

definitely far

=:
E

I-
"6

==
$ J

0 Distance in
miles

f

I 38 miles is farto degree o! 0.4

L , 60

42 miles is far

to degree of 0.8 I

ii0



WHAT IS FUZZY CONTROL?

Currently, the most popular application of fuzzy logic is in automatic control. The basic idea of
fuzzy control is to express the control knowledge of human experts as fuzzy "if-then" rules, such as "if

the temperature error is small and pressure is average, then set the heating to low." The "if" part of the
rule describes a process condition, and the "then" part of the rule describes the control action lbr
handling that particular condition. The degree to which the "if" part of the rule is true indicates the
degree of applicability of the corresponding control action. Given a measured process condition, there
are usually several control actions that are applicable, each with a different degree of applicability. The
applicable control actions are combined to determine the final control action, usually by weighing each
control action by its degree of applicability and computing a weighted-average type value.

What is Fuzzy Control?

Use fuzzy logic decision rules to determine control action

Temperature
Set-point

+_ ___+ error

Temperature'?

Pressure

Sensor Measurement

Evaluate Rules Interpolate
Control Action

Rule #1 :

it temp. error is small & press, is average
then set heating low

Rule #2:

if temp. error is big & press, is low
then set heating high

Rule #3:
setting

• "If" part of rule describes a process condition

• "Then" part of rule suggests a control action
• Degree to which the "if" part is true gives the degree of applicability of

the suggested control action
° Final decision is a weighted compromise between the suggested actions

iii



FUZZY CONTROL = INTERPOLATIVE RULE-BASED CONTROL

A control algorithm is basically a mapping that maps the controller's input values into output
values. This mapping can be specified by analytical equations, decision trees, fuzzy rules, neural
networks, or a combination thereof. Conventional linear control such as PID control produces a

continuous, simple linear mapping; rule-based control employing classical logic produces a
discontinuous mapping (due to step-like transitions), but a highly complex mapping can be easily
specified by the designer through rules. Fuzzy control can be viewed as a cross between these two
previous methods; the rule-based nature of fuzzy control allows a designer to easily specify a complex
mapping, and the smooth transition and interpolation between fuzzy rules makes the mapping
continuous.

Fuzzy Control =
Interpolative Rule-Based Control

Input 2 I • Neural Net

Rule-Based Control

via Class_

inpul 'I _ bnput2

Conventional Rule-Based Control

via Fu_

112



NOTABLE POINTS ABOUT APPLICATIONS

OF FUZZY CONTROL

The fuzzy controllers described in most technical papers deal with the set-point regulation
problem, where the control objective is to drive a process variable (e.g., motor shaft position, oven
temperature) to a commanded set-point. If you read a paper on fuzzy control, chances are you will see
that the inputs to the fuzzy controller are the set-point error and the rate of change of error, and the
output is an actuator command or a change in actuator command. When used in this way, fuzzy control
is not much different from conventional PID control - it is solving the same problems addressed by PID
control and solving them in essentially the same way as PID control, except that fuzzy control provides
a nonlinear input/output mapping. Hence, fuzzy control is often viewed as a tbrm of nonlinear PD or
PI control, and comparisons of fuzzy control versus conventional PID control abound in literature.

However, when we look at commercial products where fuzzy control is said to be incorporated, we
rarely see fuzzy logic being used to specify nonlinear PD or PI control; it is used mostly to handle high-
level, task-oriented control functions that analytical control methods do not address (e.g., select the
cycle time for a washing machine, select the gear for automatic transmission).

While fuzzy control can outperform conventional PID control to some degree, pursuing the use
of fuzzy control as a form of nonlinear PID control should be limited to only a few special applications.
The reason is that PID control is well established and can satisfy the performance requirements of most
set-point regulation problems at minimal cost. Because of the "establishment", cost, and personnel
training issues, there is little incentive to switch from conventional PID control to a more complex,
nonlinear form of PID control unless the conventional controller is doing an unsatisfactory job.
Therefore, commercial applications of fuzzy control are largely focused on task-oriented control rather
than set-point regulation. For the instances where fuzzy logic is applied to set-point regulation, it is
typically used in a high-level module that supervises or tunes a conventional PID controller.

Notable Points About Applications
of Fuzzy Control

Most fuzzy control papers deal
with set-point oriented control

- a replacement for PID control
- provides nonlinear PI or PD control

Most commercial applications
are task-oriented, not set-point
oriented control

- control to meet a fuzzy task objective,

e.g., comfort, safe

For set-point oriented control, _ co_,k. _fuzzy controller is usually a
supervisory module

113



FUZZY-ASSISTED PID CONTROL

(YOKOGAWA ELECTRIC)

The temperature controller from Yokogawa Electric is a good example of how fuzzy logic is
used commercially for set-point regulation. Temperature control usually involves processes that have a

long time delay; for many processes, it is also imperative that the temperature does not overshoot the
desired set-point. However, it is difficult to avoid overshooting when a process has a long time delay.

For example, consider boiling milk on an electric stove. It is difficult to turn off the heat at just the
right point to prevent the milk from boiling over. To ensure that the milk does not boil over, you will
need to heat it very slowly at low heat. Similarly, PID controllers must employ very low gains to
ensure that the temperature does not overshoot, and this leads to very slow time response.

In Yokogawa Electric's temperature controller, fuzzy logic is used to determine artificial set-
points that are fed to a conventional PID controller. The PID controller is allowed to have high gains
for fast time response. As the fuzzy module detects impending overshoot, it "fools" the PID controller
by telling him to aim for a temperature value that is somewhat lower than the actual set-point. As the
temperature rises to (and overshoots) the artificial set-point, the fuzzy module gradually raises the
artificial set-point toward the actual set-point In this way, the fuzzy module leads the PID controller
along a temperature trajectory that can quickly reach the actual set-point without overshooting.

Fuzzy-Assisted PID Control
(Yokogawa Electric)

Emulate human operator strategy for supressing overshoot
1. Sense impending overshoot
2. Change setpoint to "slightly lower"value
3. Monitor deviation & return setpoint "littleby little" to desired value

A_lliclal

Controlled Variable

Selpolnt

Time

Controlled Variable

Arlificial Setpotnt

/ . o,oo,o,

l _, iS ,., & rate is ... &

I /. I and arlif, se_poinl is ,.. then

I /_ I ,,if.,e,_i,,c"aoge',... _.

- ............ontrolled Va_'able

Time

114



SUBWAY TRAIN CONTROL

(HITACHI)

The subway train control system developed by Hitachi for the city of Sendai in Japan was

among the first commercial applications of fuzzy logic; its success helped to galvanize the fieldfitzzy
control and is often cited by proponents of fuzzy control. However, if we take a look at how fuzzy

logic was actually used in this control system, we will see that its operation departs significantly from
the input/output mapping notion of control, but is closer to the notion of an expert system.

For this particular system, the train's acceleration/deceleration is controlled by setting a power
lever and a brake lever at different notch positions. Changing the notch position frequently or in large
increments creates an uncomfortable tide. In addition to tiding comfort, a train operator must consider

safety, on-time arrival, energy consumption, and stopping the train accurately at a specified position
along the station platform. Here fuzzy logic was used to select the notch position that will best satisfy

these multiple, often conflicting objectives.

Subway Train Control
(Hitachi)

Train Operation Criteria:
Safety + F(timeto dangerzone, speed)
Comfort+ F(amountof notchchange,timesincelastnotchchange)

• Traceability= F(deviationfrom targetspeed)
• Stopgapdistance ControlNotches

•enero, on u  ,io il
- -- Brake

St_ation _ ....

stop gap

115



CONTROL BASED ON PERFORMANCE PREDICTION

The control method is based on predicting the outcome of each possible control action and then
choosing the action that corresponds to the most desirable outcome. A simple simulation of the train
dynamics is used to predict the resultant speed, stopping position, and time of arrival for each possible
choice of notch position. Fuzzy rules then rank the desirability of each notch position based on the
predicted outcome, taking into account factors such as the safeness of the resultant speed, arrival time,
stopping position, amount of notch change, and the elapsed time since the last notch change. The notch
position that received the highest ranking is selected as the notch command.

Here fuzzy rules are not being used to specify the familiar condition-action mapping, but to rank
the different control outcomes in a way that reflects a human's sensibility of "optimal." It would be
difficult to solve this type of task-oriented control problem within an analytical framework.

Control Based on
Performance Prediction

Assume a Command
Alternative

Keep current notch lb./
Change notch by AN ]
(AN = _+1,± 2,± 3) _

' predicted
tA

Set notch at B7 '_ ._ speed

Set notch at P7 __ _>, predicted
stop point

c
.E "_ predicted time
03 I- to station

Evaluate Perfornlance
Measures

Evaluate Desirability
of Each Command

Safety

Stop gap

Era_
Comfort

Traceability

__ When nc4ch ts unchanged, if

time to station is soon and sto

gap is good, then choose
notch = unchanged

When notch is 87, if safety is
bad then choose notch = B7

(maximum txake)

Ii!!! 0 nn
"" 3 2 1 P1 P2 P3 "'

Select Best Command

• Use fuzzy rules to rank command alternatives
• Emphasize traceability & safety when train is far from station
• Emphasizest____op ............gap & comfort when train is near station

116



NOTABLE POINTS OF APPLICATION EXAMPLES

We have been conditioned by education to have a narrow view of what constitutes a control
problem (i.e., set-point regulation via state feedback), which engenders a narrow view of how fuzzy
logic fits into the control big picture. The two previous example applications serve to illustrate several
important points about fuzzy control, which are listed in the figure below. The main point is that fuzzy
control is not just a form of nonlinear PID control; the number of ways that fuzzy logic can be Used for

control is only limited by your creativity. The essence of fuzzy logic is that it lets you express what's

on your mind. It is no wonder that the biggest payoff of fuzzy control has been for high level, task-
oriented control, where there are no standard solutions but ample human intuition.

In the commercial market, the motivation for applying fuzzy logic is not so much in improving
the performance of a product, but to make a product easier to use. For both consumer and industrial
applications, fuzzy logic is largely used to automate functions that had previously required the attention
of a skilled human. To appreciate this business strategy, consider the commercial success of the auto-
focus camera. Auto-focus cameras do not necessarily take better pictures than the traditional, fully
mechanical cameras, but resources spent on developing auto-focus reaped much greater payoff than any
incremental improvements on the performance of mechanical cameras. To derive maximum benefit
from fuzzy control, we must be creative and look for new opportunities - a better control system is not
simply one with a better state feedback law.

Notable Points of
Application Examples

• Many different ways to use fuzzy logic for control applications

• Two classes of fuzzy controllers

- Direct condition/action control

- Ranking of discrete control options

• Two levels of fuzzy control

- Low level, set-point oriented

- High level, task oriented (biggest payoff)

• Commercial applications aimed at task-oriented control and
more "human-friendly" machines

- Increased convenience

- Increased match with human intentions�objectives

117



WHY INTEGRATE FUZZY LOGIC WITH

NEURAL NETWORK?

A fuzzy system is easy to develop, easy to understand, and easy to debug. However,
traditionally a human expert is needed to specify the fuzzy rules, and the rules are fine tuned by trial and
error. A neural network, on the other hand, uses well-grounded optimization methods to automatically
learn from training data, but the resultant neuron connection weights have no physical meaning, thus
making the neural network difficult to understand and debug. In short, a fuzzy system can explain the
knowledge it encodes but cannot learn or adapt its knowledge from training examples, while a neural
network can learn from training examples but cannot explain what it has learned. Because fuzzy
systems and neural networks have complementary strengths and weaknesses, there is increasing
interest in finding ways to integrate the two methodologies, to create hybrid systems that can learn from
training examples as well as explain what has been learned.

Why Integrate Fuzzy Logic with
Neural Network?

Fuzzy System
Can explain but cannot learn

TemDt [ '-I1Temp. is hot & Press. is

"'_._ high then Flow Rate is big; ow Rate

Pres_'_ If Temp. is cold & ._

Pros
• Easyto Develop
• Easy to understand
• Easy to debug

Cons
• Needs human expert for rules
• Don't know if it's optimal
• Mostadaptation techniques
are heuristic

Neural Net
Can learn but cannot explain

Temp_w Rate

Press. v _/

Pros
• Can learn from data
• Can adapt
• Based on rigorous
optimization principles

Cons
• Don't know howto initialize
• Difficult to understand
• Difficult to debug

118



NEURO-FUZZY METHODS

The integration of fuzzy logic with neural network techniques has resulted in what is commonly
referred to as neuro-fuzzy systems. These systems use fuzzy rules as the underlying structure and then
apply neural techniques to learn the rule parameters, e.g., the input region covered by each rule and the
output value of each rule. A popular architecture is the ANFIS (Adaptive Network-based Fuzzy
Inference System) shown below, where fuzzy rules are represented as an equivalent adaptive network
(a generalization of neural network); back propagation can then be applied to learn the membership
functions, output values, and parametrized logical operators (i.e., optimizing the "AND" operator). A
few fuzzy system development software now incorporate neuro-fuzzy algorithms to help the user
generate fuzzy rules from data. The ANFIS architecture, for example, is supported in the Fuzzy Logic
Toolbox for MATLAB.

When considering the different techniques and how they fit together, we must keep in mind that
the user is not interested in the techniques themselves, but in the fastest, most cost-effective way to
achieve an end. In modeling, the greatest cost is in acquiring training data and the desired end is a
simple model that can predict a system's behavior accurately in the future. Model accuracy with respect
to the available data is meaningless beyond a certain point because real data is invariably incomplete and
noisy. Choosing the "right" modeling tool means matching the characteristics of the modeling method
(e.g., ability to capture various nonlinearity, the number of fitting parameters needed to capture the
nonlinearity, need for trial-and-error iterations) with the characteristics of the problem (e.g., the
nonlinearity of the system, the amount of training data available/acquirable, and the amount of time you
can spend on the problem).

Neuro-Fuzzy Methods

Retain the Best Features of Fuzzy & Neural Systems
& Eliminate Their Deficiencies

Approach:
• Use fuzzy rules as underlying structure
• Set reasonable initial rule parameter values
• Learn/adapt rule parameters & fuzzy operators via backprop

_1 Rule #1: If X, is & & X2 is B_ then Y is C1

IRule#<_x_.2:/12: is _,2, :._i9_ B2...:.lhe?:.Y.i<?:.Ca.;..,>a_

A fuzzy system

/_. \ _, £ )_ represented as an

--,v.n.wor.

119



RIFLEX: SOFTWARE FOR EXTRACTING
FUZZY RULES FROM DATA

At Rockwell, we have developed a Macintosh software called RIFLEX that uses a combination
of clustering and neuro-fuzzy techniques to automatically extract fuzzy rules from data. RIFLEX can
extract fuzzy rules for both function approximation and pattern classification problems. The picture
below shows the user interface. To extract rules, the user needs only to enter an initial cluster radius;

the software uses clustering to determine the number of rules and initial rule parameter values, and then
optimizes the rule parameters by back propagation. The software can also automatically eliminate
unimportant input variables by searching a tree of possible combinations of input variables. The key
point here is that the user interface is very simple and gives no hint of the underlying relationships
between clustering, fuzzy rules, neural networks, and tree search. To the user, the pieces are
indistinguishable and appear as a single tool.

The indistinctness of the different methodologies is not just cosmetic, but real in many hybrid

architectures. For example, it is difficult to categorize ANFIS as either a fuzzy system or a neural
network (fortunately, we now have the new category called neuro-fuzzy system). The integration of
fuzzy logic and neural network in ANFIS goes beyond having a separate fuzzy box that interacts with a
separate neural box; it integrates fuzzy logic and neural network at a more fundamental level. Similarly,
the distinction between existing methodologies will be blurred as one methodology borrows the best

ideas from another to remedy its own weaknesses.

RIFLEX: Software for Extracting
Fuzzy Rules From Data

Rockwell International Fuzzy Logic EXplorer
Mode Infe

Model Name: IOperator Model

OUlpUl - _ ClalI

0 Fuzzy

0 Conllant

linear [qrl,

[] Optll_IZm OUtptll oqrl. I- OplIODI _J

[] Oplilrlize fuzzy fn.

[] Opllltlize model lize

[] flllo_ lwe-siaed fUZZy In.

( I Remlve unlmportanl Inpuls:

_) _lJIOmllitell.tl O IolerlKtluely

Extracts fuzzy rules for function approximation& pattern
classification by clustering + neuro-fuzzy methods

120



EXAMPLE: GAS FURNACE MODELING

To illustrate the benefits of neural fuzzy systems, we consider a benchmark problem that
involves modeling the dynamics of a gas furnace (the Box and Jenkins gas furnace data). The task is to
predict the CO2 concentration from past measurements of CO2 concentration and gas flow rate. We
consider ten possible input variables: the CO2 concentration at the past four sample times {x(t- 1), x(t-
2) ..... x(t-4)} and the gas flow rate at the past six sample times {u(t-1), u(t-2) ..... u(t-6)}. The
RIFLEX software determined that only three of these input variables are important and generated a
model composed of only three rules. The rules are shown in the figure below. Here we have elected to
use the Takagi-Sugeno type of rules where the consequent is a linear equation in the input variable;
hence, an aspect of linear modeling was also involved. Because of the additional fitting parameters in
the consequent, the Takagi-Sugeno type of rules can significantly increase the accuracy of a model
when compared to the same number of conventional fuzzy rules.

The model tells us that the important input variables are x(t-1), x(t-2) and u(t-4), which
indicates the gas furnace dynamics are approximately second-order with a dead time of four sample
periods. From the rules, we also get an intuitive understanding of the relationships among system
variables. The first rule tells us that medium levels of CO2 concentration is associated with medium gas
flow rate; the second rule tells us that high levels of CO2 concentration is associated with low gas flow
rate; and the third rule tells us that low levels of CO2 concentration is associated with high gas flow
rate. The rules also tell us that CO2 concentrations do not change drastically over one sampling period,
e.g., input combinations such as low x(t-2) and high x(t-1) do not exist.

Example: Gas Furnace Modeling

_Ule i

Auto 2

Rule 3

Problem: Predict CO 2 concentration x(t) from past x(t-k)

and gas flow rate u(t-k)

Consider x(t) = F(x(t-1),x(t-2) ..... x(t4),u(t-1),u(t-2) ..... u(t-6))

If x(l-l) is and x(t-2) is and u(t-4) is then x(t) is

• 0 5_ x(t-2)

• 0.651 u(t-4)* 21 7
7 i i

45 60 6C_0 4'5_ _0_0 -Z7_6 Z 134

• 0643 xO-2)
• 0252 u(t-4)

r _ , v gg0
4_ ¢)¢ 6C 50 4_ _¢_0 -27t6 2 134

- 0 00094 x(t-2)

- 1 26 u(t-4)

+301

I_ e_ 6o _o 45 so _ so -2 _6 2 134

121



EXAMPLE: IRIS CLASSIFICATION

Now we will look at a benchmark problem in pattern classification (Fisher's iris data). The task
is to classify an iris flower into one of three species based on four input features: sepal length, sepal
width, petal length, and petal width. The RIFLEX software determined that only petal width and petal
length are important inputs and generated a classifier composed of three rules. The rules are shown in
the figure below.

This classifier's performance is similar to those of pure neural-based classifiers reported in
literature, but this classifier is much simpler and lets us understand how to classify iris flowers. The

rules tell us that species #1 is marked by small sized petals, species #2 is marked by medium sized
petals, and species #3 is marked by large sized petals. The rules also tell us that there are no species
with disproportionate petal shapes, e.g., combinations such as long petal width and short petal length
do not exist.

Example: Iris Classification

Problem: Classify iris flowers into one of three species based
on sepal length, sepal width, petal length, and petal width

Rule 1

Rule 2

Rule 3

t pelal wl_h Is and petaE lenglh IS lhen class Is

_; 250

I o 2_o

T_O lS 0

i
lo o 69 o

_ class = 2

lo o 69o

._/_ class - 3

f
1o o 69 o

122



KEY TECHNICAL CHALLENGES IN

NEURAL-FUZZY SYSTEMS

A neuro-fuzzy system by itself solves only the parameter identification problem, but does not
address the structure identification problem (i.e., determine what input variables are useful, the number
of rules, and how to partition the input space). In the RIFLEX software, for example, input variables
are selected by tree search and the number of rules is determined by clustering (which necessarily leads
to a scattered input partition). Other past methods have used tree search to simultaneously partition the
input space and select input variables. Although these methods can provide reasonable solutions, there
are better alternatives waiting to be explored. For example, tree search is necessarily heuristic for
practical applications and cannot guarantee finding the optimal input and partition combination.
Searching by genetic algorithm is computationally more demanding than tree search, but a genetic
algorithm may provide the best trade-off between computational tractability and increased likelihood of
finding the optimal solution.

Key Technical Challenges in
Neural-Fuzzy Systems

• Neural-Fuzzy systems solve only parameter id problem

• Lack reliable and practical solution for structure id
- What are the important input variables?
- How to partition the input space (style, # partitions)?

A t A 2 A 3

I<<

Grid

At A 2 A3 A4 A 1 A? A 3

R1

R3

R4 R5

Tree Scatter

123



USING GENETIC ALGORITHMS TO SOLVE

STRUCTURE ID PROBLEMS

Genetic algorithms can be used for structure identification by encoding possible input variable

and partition combinations as chromosome strings. In the figure below, possible combinations of ten
input variables are encoded as chromosome strings, where a 1 represents the presence of an input
variable and a 0 represents absence. Genetic algorithms generate a population of different solutions and
retain the best solutions to further "breed" a new population containing better solutions. Because

genetic algorithms search along multiple paths simultaneously and introduce some randomness into the
search, the search process is unlikely to paint itself into a bad comer. However, search by a genetic

algorithm is much more computationally demanding than a conventional tree search because more
potential solutions need to be evaluated. The choice of search algorithm should depend on the degree
of difficulty in evaluating a potential solution, the importance of finding the best solution versus just a
good solution, how well the selection criterion reflects real needs, the computational resource, and how
much time can be spent on the problem.

Using Genetic Algorithm to
Solve Structure ID Problems

• Encode possible input variable combinations
and partitions as "chromosomes"

I1 Io Ioll lol ol 11 11 11 11

• Generate a population of solutions

• Select good performers for further "breeding"

11 10 10 I110101 11 11 11 11
+

I1 Io 11 Iolol ol ol II 11 ol
II

I1 Ioll I1 Iolol _1 11 11 o]

124



SUMMARY

In today's competitive economic environment, solving engineering problems requires a careful
balance between the quality of the solution, time-to-market, and the cost of the solution. To solve
problems in the most effective way, an engineer must be aware of the different tools available,
understand the strengths and weaknesses of each tool, and apply the right tool to the right job.

The "right job" for a particular tool is typically a narrow subtask within a broader problem;
hence, each tool is often just a small piece of the overall solution. Using the different tools in
combination is not an academic fancy, but a necessity to achieve an optimal overall solution. Using the
tools in combination can involve attacking each subtask with the most appropriate tool (e.g., linear
analysis, fuzzy logic, neural network, genetic algorithm), or creating a more effective hybrid tool such
as neuro-fuzzy systems.

There is no good tool or bad tool, but there are definitely appropriate and inappropriate uses for
a tool. We can tell that a tool is inappropriate for a job when using the tool for that job is clumsy. If all

existing tools are clumsy for an important job, then chances are we need to invent a new tool.

Summary

• Complex problems must be attacked by
using a collection of different tools

• Matching the right part of the problem
with the right technique results in most
effective solution

125




