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INTRODUCTION

Neural networks are being developed at NASA Ames Research Center to permit real-time
adaptive control of time varying nonlinear systems, enhance the fault-tolerance of mission hardware,
and permit online system reconfiguration. In general, the problem of controlling time varying
nonlinear systems with unknown structures has not been solved. Adaptive neural control techniques

show considerable promise and are being applied to technical challenges including automated docking
of spacecraft, dynamic balancing of the space station centrifuge, online reconfiguration of damaged
aircraft, and reducing cost of new air and spacecraft designs.

Our experiences have shown that neural network algorithms solved certain problems that
conventional control methods have been unable to effectively address. These include damage
mitigation in nonlinear reconfiguration flight control, early performance estimation of new aircraft

designs, compensation for damaged planetary mission hardware by using redundant manipulator
capability, and space sensor platform stabilization. This presentation explored these developments in
the context of neural network control theory. The discussion began with an overview of why neural
control has proven attractive for NASA application domains. The more important issues in control
system development were then discussed with references to significant technical advances in the

literature. Examples of how these methods have been applied were given, followed by projections of
emerging application needs and directions.
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OVERVIEW

Neural network applications for control have advanced rapidly in the last ten years. First,

reasons why neural networks have become important for control problems were discussed. A
summary of five key points was followed by a list of the most important research results in neural
control with discussion of often used neural network paradigms in control system development. After

examples of potential applications in the emerging New Millennium and Access to Space programs,
four NASA efforts at the Ames Neuro-Engineering Laboratory were detailed. The presentation
concluded with a discussion of current issues and future projections for this technology.

Computational Sciences Division

Overview.

Background
- Useful Neural Net Properties for Flight Control

Neural Network Technology
- The Primary Neural Control Building Blocks

Potential Technology Application in Space Systems
- Focus on New Millennium & Access to Space Problems

Selected Neural Control Projects at NASA Ames 1995
_ Neuro-Engineering Laboratory

Recognized Current Needs & Future EnablingTechnology Projections

C. Joq;ensen Neuro-Englneering Lab
,t Ames Resellrch Ce,lter 1991;
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IMPORTANT PROPERTIES OF NEURAL NETWORKS
FOR CONTROL PROBLEMS

There are five main reasons why neural networks are being used for NASA Space and Aero
technology challenges. Key is a neural network's ability to deal with nonlinear and adaptive online

control requirements. Other advantages include parallel computation, fault tolerance, adaptivity, multi-
input multi-output flexibility, and function mapping accuracy.

Computational Sciences Division

Important Properties of Neural Networks for Control Problems

They Are:

• Non linear

- Ability to approximate arbitrary nonlinear mappings (Cybenko 1988)

- Compactness (Potential to compress tabular rate tables and gains)

- Flexible model generation ( perhaps at the cost of analysis time)
• Parallel & Robust

- Inherently parallel computation structure

- Potential for high fault tolerance

- Fast processing

o Adaptive & Trainable

- Trained by observation of plant processes or measurement data sets+

- On line real time adaptation possible for reconfiguration learning
- Generalization may increase robustness

• Data & Method Flexible

- Can combine multiple local networks

- Can accommodate hybrid solutions (Traditional, Neural, & fuzzy)

l\ • Multi-Variable (MIMO)

\ C. Jorgenlen Neuro-Engtneering Lab

_._NASA Arnee Releerch Center 1995
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A BRIEF SUMMARY OF NEURAL NETWORK

CONTROL TECHNOLOGY

The next two slides summarize some of the most important issues for neural control. They

include research regarding the ability of a neural network to approximate an arbitrary function, how

accurately linear and nonlinear approximations can be performed, and under what circumstances
forward and inverse modeling approaches are used. Next, some of the techniques which can be used

for system identification are presented. Interested readers are directed to the list of references at the end
of the paper for greater detail of these techniques and the complete papers alluded to in the slides.
Refs. 6 and 14 provide particularly good overviews of this topical area.

Computational Sciences Division

Brief Summary of Neural Network Control Technoloqv

Approximation and Model Bulldinq Theorv exists_

- Arbitrary polynomial approximation ability shown (Welerstrass theorem)

- Feed forward network approximation power shown (Cybenko, Funahashi,

Hornik, Carrol & Dickinson)
- Theoretical proof for layer sizes exist but their utility is uncertain

( The. Kolmogorov Theorem vs. Girosi and Pogglo's limitations)

System Identification can be performed

- Forward Modeling - possible but how are useful dynamics introduced

,, Real time recurrent networks (e.g.. Williams & Zipser 1989)

• Time delay networks

• Series-Parallel nets (Nerendra 1990)

,, Dynamic neurons (Willis, DIMassimo, Montague, Tham & Morris 1991)

- Inverse Modeling

,, Direct inverse modeling (Psaltls 1988) is one way, but

• its not goal directed (Jorden & Rumelhardt 1991)

• incorrect inverses possible if not 1 to 1 mappings

,, Specialized inverselearning
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SOME USEFUL NEURAL CONTROL ARCHITECTURES

To be used in real world systems, the learning mechanisms of neural networks must be
embedded in an overall control architecture. Some of the more useful architectures are listed below

along with methods for filtering input data which a neural network must use during online learning and
diagnosis.

Computational Sciences Division

Brief Summary of Neural Network Control Technoloqy

(Continued)

Control Structure Options are Available:

- Supervised control (Werbos)

- Direct inverse control (Miller 1990)

- Model reference control (Narendra and Parthasarathy 1990)

- Internal model control (Morari and Zafiriou 1989)

- Predictive control (Mayne and Michalska 1990 stability proofs)

- Optimal decision control ( Wilton and Schulten 1992)
- Adaptive linear control

- Reinforcement learning control

- Modified Gain Scheduling

,, Gains as stable states of attractor nets (e.g.. terminal attractors)

,, Gains as interpolated look up tables (CMAC, Infold, SOM)
Filtering and Prediction Can be Added as Well

- Linear minimum variance filters (Ydstie 1990)

- Linear filtering & prediction (Widrow and Winter 1988)

C. Jorgenlen Neuro-Englneerlng Lab
SA Arrme RelNmrch Cefltw 199S
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POTENTIAL NEURAL CONTROL APPLICATIONS
IN SPACE SYSTEMS

There are many areas suited for application of neural network technology within the scope of

the current program definitions for NASA's New Millennium and Access to Space initiatives. Five that

are particularly well suited for neural control are presented below along with their justification. One
common element is a need for real time online reconfiguration, system identification, and platform
stabilization. Whether Aero or Space, if a system changes dramatically due to accident or an unexpected
event, the ability to learn a new plant online becomes very important. If the system is highly nonlinear

or noisy, offline linearized models often give an inadequate approximation or are too slow. Neural
control methods hold promise of providing fast online identification and adjustment.

.................C-omput ai ona gcience S [Sivision .........................................................

potential Neural Control Applications in Space Systems

• Naviflation 1Rendezvous & Docking: Current closed-form methods do not do an accurate job of

ntrollin s acecraft navigation for rendezvous and docking operations because spacecraft mass
_r°operties g ar p not known exactly and are time varying. As a result, the expenditure of propellant is
inefficient and spacecraft docking is not performed quickly for safety reasons. Closed-form
mathematical methods do not compensate in real-time for hardware failures or severe degradation

in performance such as partial thruster operation or collision damage

• ipstrument platform Stabilizat on: Stab e spacecraft instrument p aflorms are important to
ensure accurate science data measurement and to maximize science return on each m ss on.
Current closed-form methods do not easily stabilize instrument platforms in "real-time" because the

mass properties of instruments are not known and can be time varying due to mechanical
articulation (instrument pointing), and expenditure of instrument resources (cryogenics). In addition,
extraneous disturbances from the spacecraft itself can directly effect instrument stabilization.

• Oamaao Reconfiauration: Severe damage or unant c pated events such as unusual planetary
rover configuratiofis can dramatically effec_tthe adequacy of the controller s plant model. Regaining

control requires that the controller identify, in real time, critical stability and control properties during
mission execution and hardware actuation. Algorithms for automatic synthesis of emergency or off-

normal controllers are needed to maximize spacecraft performance.

• Adaptive Parallel Hardware Architectures: H gh speed parallel processing needs of on line
adaptive algorithms may require new architectures to take advantage of neural network fault
tolerance properties and the capability for multiple integrated adaptive Such mixtures of hardware

and software could reduce weight by omitting redundant hardware systems in favor of reconfigable

adaptive control software and customized processors.

• Real time data And -q anal anAlv_=is and comnen_tiorLLOn no system identification requires

}_pid interpretation and filtering 0f sensor information. In some cases the sensor sute may be
damaged or miscallibrated. This can lead to propagation of errors in on line identification. Improved
neural tools for data analysis could benefit both control and mission science return likelihood

_'. C. Jorglnliln Nluro-Engln4NN'lng Lab

"_. NASA Amel Releerch Center 1 _ ...........................................................
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NEURAL CONTROL PROGRAMS AT NASA AMES

Four NASA programs were discussed in detail at this workshop. Each illustrated a different

aspect of neural network control application problems. First, the intelligent flight control program
which dealt with online reconfiguration of a modem jet aircraft after a scenario of system failure or
damage that significantly deviated from the original controller design model. The second described
work which permits flight control of a commercial airliner after a total hydraulic actuator failure

permitting only differential thrust from remaining engines. The third considered vibration damping in
the Space Station Freedom centrifuge and problems associated with dynamic load balancing. The
fourth concerned the use of neural nets in the earliest stages of flight system controller designs.

Computational Sciences Division

Neural Control Proqrams at NASA Ames

I.ntelli,qent Fliqht Control

ARC, Dryden, & McDonnell Douglas developing real time on line neural
flight controllers

- Reconfiguration flight tests on F-15 ACTIVE aircraft

Propulsion Control Auqmentation

- Control of B757 assuming total hydraulic failures using only differentialthrust

Space Station Freedom Centrifuge Stabilization

- Centrifuge balancing under conditions of moving animals and "biomass"
deposits that dynamically change stabilization parameters

Kuiper / SOFIA Airborne Observatory Telescope Balancin,q

- Rapid change out of new experiment payloads with non linear actuator
drags caused by cabling and mass displacements

Wind Tunnel Desi_ln Parameter Estimation

- Early Aircraft Design enhancement by learning aircraft coefficients
directly from wind tunnel testing and linking to on line learning and virtual
reality flight simulation

C. Jorgensen Neuro-Engineerlng Lab
%% NASA Amem Research Center 1995
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INTELLIGENT FLIGHT CONTROL

This effort is a four year advanced concepts research program funded under the NASA Office
of Aeronautics Critical Technologies Division and involves NASA Ames, NASA Dryden, and
McDonnell Douglas Aerospace Corporation, St. Louis. The objective of the program is to develop and

flight demonstrate a revolutionary control concept that can efficiently identify aircraft stability and
control characteristics using neural networks, and utilize this information to optimize aircraft

performance. The program addresses the needs of the U.S. aerospace industry for control systems that
can be developed and tested at lower cost, and for flight systems that can accommodate major changes
to aircraft stability and control characteristics which might result from failures to flight control actuation

or damage to aircraft control surfaces.

Three technology elements are combined in this program. First, neural networks will be used

to continuously identify critical stability and control properties during flight. Second, algorithms for
automatic synthesis of optimal controllers will maximize flight performance, and finally, high capacity
digital flight computers will process optimum flight controller data and integrate and use the neural
network identification information. In 1993 the ability of neural network technology to rapidly

prototype a new aircraft flight control system was demonstrated on a full-scale F-15 flight simulator.
In 1994, work began on line neural control methods at Ames Research Center and on the configuration
of the F- 15 aircraft to accept neural control codes. The next major step will be taken when a modified
F-15 aircraft (the ACTIV program) at Dryden will be flight tested using the neural controllers. Mr. C.

Jorgensen at Ames is the principle investigator for the neural algorithms, and Mr. James Umess at
McDonnell Douglas serves as the corporate principle investigator leading systems development,

integration and flight testing.
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PROPULSION CONTROLLED AIRCRAFT (PCA)

Partial failures of aircraft flight control systems and structural damage to aircraft during flight
have led to catastrophic accidents with subsequent loss of lives (e.g., past crashes of a DC-10, B-747,
C-5, B-52, and others). These types of accidents can be prevented if sufficient alternate control

authority remains which can be used by the pilot to execute an emergency safe landing. Following a
United Airlines (Fit 232) DC-10 accident at Sioux City, Iowa in 1990, the National Transportation
Safety Board recommended "research and development of backup flight control systems for newly
certified wide-body airplanes that utilize an alternate source of motive power separate from that source

used for the conventional control system." The problem in the general case was that currently there is
no satisfactory means onboard the aircraft for effectively controlling the aircraft with a disabled primary
flight control system. In addition, using only manual throttle control of engines is extremely difficult
because of pilot unfamiliarity with dynamic response of the aircraft in this mode.

NASA Dryden Flight Research Center (DFRC) successfully demonstrated in 1993 that throttle

control of engines alone can be used to augment or replace the aircraft primary flight control system to
safely land an aircraft. The NASA DFRC concept used specifically developed control laws in the
aircraft flight control computer system to drive the engines in response to pilot input commands for

bank angle and flight path angle. PCA control laws provided aircraft longitudinal flight control by
equally increasing or decreasing thrust of both engines in response to pilot commands for increased or

decreased flight path angle. PCA control laws provided aircraft lateral-directional flight control by
asymmetrically increasing or decreasing thrust of both engines in response to pilot bank, heading, or
track commands.

Piloted simulations were conducted in the Advanced Concepts Flight Simulator (ACFS) at
NASA Ames Research Center. The ACFS is a moving base simulator representative of a mid-size

two-engine jet transport with engines located under the wings. The ACFS aerodynamic and engine
models are similar to those of a Boeing 757 aircraft. The cab layout of pilot controls and displays is
very similar to those of a typical Boeing jet transport with CRTs for pilot and copilot primary flight
displays and map displays, and with a typical Boeing mode control panel (MCP) located above the

instrument panel for selection of various auto pilot modes. The visual out-the-window display is a
night visual scene for landing at San Francisco Runway 28R.

We are currently using neural net concepts for expanding the emergency envelope available to
the pilot over and above that of current PCA concepts using classical control laws. Neural nets are
being used to identify in real-time unexpected changes in aircraft dynamics and control. Control laws
will be updated and modified in real-time in response to neural net identification of the new aircraft

stability and control characteristics. Mr. John Bull at NASA Ames is the principal investigator for this
effort in conjunction with Mr. Bill Burcham at Dryden Flight Research Center.
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SPACE STATION CENTRIFUGE BALANCING

Space Station Freedom is intended as an orbiting microgravity research facility for conducting
life sciences and material processing experiments. The key hardware in the life sciences research

program is an onboard artificial gravity research centrifuge. Satisfactory operation of this hardware is
extremely important because vibrations can interfere with delicate onboard experiments such as remote
sensing and crystal growth. Imbalances can be caused by 1) dynamic redistribution of internal mass
(specimen movements), 2) time varying experiment-related effects (specimen weight change, food and
water consumption, and biological waste buildup), 3) resource resupply and delivery (water, food),
and 4) dynamic reconfiguration (cage removal/insertion). An automatic robotic extractor/installer is
used to remove and insert cages without stopping the centrifuge. The accompanying change in the

centrifuge moment of inertia can cause the angular velocity to increase, decrease or oscillate. The
corrective torques issued by the centrifuge angular velocity controller are in themselves torque
disturbances which can affect the microgravity environment of Space Station Freedom. If the moment
of inertia variations are unmodeled or inaccurately modeled, these torques can be large.

An automated mass balance system is currently under development to cancel centrifuge
imbalances. There are shortcomings, however, in the methods currently available. First, current
methods cannot cancel centrifuge imbalances in real time. They require that unknown imbalances be
measured and averaged over many rotational cycles before an estimate of magnitudes and locations can
be determined. As a result, extraneous disturbances are left unabated during the estimation cycle. In
some situations, the mass balance system can actually become a source of significant disturbances.

Adaptive neural control techniques are well-suited to this problem because they operate in real-
time and can be trained online to learn quasi-static changes in a centrifuge. Adaptive neural techniques

can also be used to capture the underlying function using only a small subset of the total data for the

training set. Thus, if the neural algorithm is appropriately trained with an adequate data set of "mass
imbalance vs. correct mass balance parameters," or "responses to a change in moment of inertia vs.

controller parameters," it may be possible to capture the required underlying functions. Real-time
determination of the balance parameters to cancel centrifuge imbalances and the controller parameters to

compensate for moment of inertia changes is possible because neural networks operate efficiently in a
table lookup mode. The objective of this research is to examine the applicability of adaptive neural

algorithms for real-time control of disturbances due to mass imbalances and inertia property changes.
Dr. Bob Mah at NASA Ames Research Center is the principal investigator for this effort.
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NEURAL NETWORKS FOR AIRCRAFT MODEL
ESTIMATION IN WIND TUNNELS

Neural networks were demonstrated in 1994 to increase productivity and reduce costs in wind

tunnel operations by learning to predict the performance of aircraft models undergoing tunnel testing.
A significant amount of test time is normally spent measuring aerodynamic effects from geometric
variations. Such variations include flap and slat positions, deflection angles, elevator and rudder
deflections, and power settings. If a neural network can be trained to accurately predict the effects of
these various parameters on the aerodynamic coefficients while using a smaller subset of the test matrix
than would normally be required to generate an adequate database, significant savings in test time and
associated costs can be realized.

In 1994, data was collected as new aircraft design tests occurred and were simultaneously used
to train a multilayer neural network. As more and more data was acquired, the network learned to

produce highly accurate estimates of test results for new, unseen conditions after being given only
aircraft test configuration parameters. The network eventually learned a complete static model of the

aircraft and this model along with a set of developed software analysis tools, was used to predict the
results of the next session's tests and identify key design points such as maximum lift.

The procedure that was developed proved to be extremely robust to different test conditions and
has been applied to previously collected data from the T-39 and High Speed Civil Transport scale
models. In December 1994 it was used in tests of the Super High Alpha Research Concept aircraft
(SHARC). The method proved to be very fast relative to approaches using mathematical simulation of

flows. Learning a model of the entire aircraft occurred in under thirty seconds to an accuracy level well
under 1% root mean square error. The need for much less test data than is required using current
methods was also demonstrated. In tunnel tests of the SHARC the learning of an adequate predictive
model was done with approximately 40% less data. This reduction translated into marked savings in
facility operations costs resulting from less electricity, faster test turn around, earlier identification of

critical performance test areas, and improved analysis tools. Increased wind tunnel throughput resulted
from freed up tunnel resources. Cost savings occurred through a reduction in the number of tunnel test

hours required for a new aircraft test. Long term implications of the method include faster development
of new aircraft prototypes through more rapid simulation of aircraft flight performance and possibly the
need for less intermediate scale models to estimate aircraft design characteristics. Currently, the

method has been installed in the Ames wind tunnels as part of a neural software package and a patent
application has been filed. Dr. Charles Jorgensen is the principal investigator for this effort.
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ENABLING TECHNOLOGY DEVELOPMENT REQUIREMENTS

If neural networks are to be fully used in future NASA programs, a number of issues must be

resolved. Some of these issues have been recognized and are under research in university and

government laboratories. Others are more global and require joint agreement by coordinated
government regulatory and research groups. Among the more immediate problems are a need for new
certification procedures which will be accepted by hardware development and FAA review panels so as

to permit the application of nonlinear computational intelligence technologies in areas in which there is
potential risk to human life or property. Without methods which go beyond the current linearization,
stability and robustness tools, the full use of CI techniques is likely to be inhibited.

Computational Sciences Division

Enablinq Technoloav Development Requirements.

Stability Proofs for Dynamic Adaptive Neural Controllers

- Lyapunov & Hyperstability methods have been developed for adaptive
time invariant linear systems but can be overly restrictive

- * New proofs & methods are needed for dynamic non linear plants

Excitation and Convergence Requirements

- How to improve generalization through persistent excitation of plant until

convergence is reached
- The correct number of system parameters for good estimation

- * More work needs to be done to determine bounds on what can be
learned with limited on line parameter samplin.q (e.g.. after aircraft

accidents before stabilization )

• Robustness

- * When are control properties such as stability and conver,qence retained
given the presence of system dynamics not modeled by tile controller

C. Jor;len*en Neuro-Engineerlng Lab

"_SA Amen Rmmlirch Center 191;15
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ENABLING TECHNOLOGY DEVELOPMENTS (Cont.)

This presentation has surveyed the state-of-the-art in neural network control. It has done so in

the context of a series of key issues which must be considered when a control system for a highly non-
linear, time varying system must be developed. Examples were provided of how neural control is

being used to increase the safety of commercial airlines, how damage survivability is being increased in
military aircraft, and how these same techniques are being positioned for application in the evolving
NASA programs called New Millennium and Access to Space.

Computational Sciences Division

Enablinq Technoloqv Development Requirements

Applicability Guidelines

- Where do networks fail to improve over existing control methods

- * For which classes of non linear systems are networks best applied

- What optimization metrics are best for which engineering objectives

Real Time Performance Demonstration

- * More work is needed to evaluate real time on line learninq control
system architectures e.q.. adaptive critics or hybrid linearization schemes

- New, accepted certification procedures need to be developed to facilitate
migration of non linear control methods into safety certified commercial
industries

J

J
/

_'_. C, Jorgenlen Neuro-Englneering Lab /

"'-_ .._NASA Ame. R ...... h Center 1995 _
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