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Abstract

Gelled liquid hydrogen was
experimentally formulated using sol-gel
technology. As a follow-on to work with
cryogenic simulants, hydrogen was gelled with
an alkoxide material: BTMSE. Initial results

demonstrated that gellants with a specific
surface area of 1000 m2/g could be repeatably
fabricated. Gelled hexane and metallized gelled

hexane (with 13.8- wt% Al) were produced.
Propellant settling testing was conducted for
acceleration levels of 2 to 10 times normal

gravity and a minimum gellant percentage was
determined for stable gelled hexane and
metallized gelled hexane. A cryogenic capillary
rheometer was also designed, constructed, and
used to determine the viscosity of gelled
hydrogen. Small volumes of liquid hydrogen
were gelled with a 7- to 8-wt% gellant level.
The gelled H2 viscosity was 1.5 to 3.7 times

that of liquid hydrogen: 0.048 to 0.116 mPa-s
versus 0.03 mPa-s for liquid H2 (at 16 K and

approximately 1 atm pressure).
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An experimental program was
conducted to produce gelled liquid hydrogen
with nanoparticulate materials. These
materials have a high surface area per unit mass

and can potentially reduce the total mass of
gellant needed to form a gel structure in the
liquid hydrogen. Both hydrogen and bexane
were gelled with new gellants produced from
alkoxide materials that have a specific surface

area of 1000 m2/g. In addition to formulating
the gelled fuels, a cryogenic rheometer was
built and used to determine the viscosity of the

gelled hydrogen. Syneresis or settling tests
were also conducted with gelled and metallized

gelled hexane.

Gelled propellants require a gellant that
maintains a viscous thixotropic nature for an
extended time. In metallized gelled fuels,
dense metal particles are dispersed
homogeneously throughout the fluid, and they
must remain uniformly distributed in the liquid
propellant during storage and transport. The
distribution of particles is achieved by proper
mixing, while the particle suspension can be
maintained by gelling the metallized fueL The
gelation of H2 fuel was successfully
demonstrated in earlier NASA studies.1 - 5

However, the studies of cryogenic fuels
employed high loadings of frozen cryogens
such as ethane or methane (10 to 20 wt%) or
silica particles (10 to 40 wt % of the fuel) to
prevent the metal particles from settling. Based
on mission studies, the lowest gellant weight %
is desired to maximize engine performance.
The frozen cryogens add combustion energy to
the fuel, but gelled hydrogen is often less
energetic than pure hydrogen. However, the
large fraction of silica gellant required does not
make the hydrogen combustion process more
energetic, making these type of gelled
propellants impractical for propulsion
applications. More efficient gellants that
provide higher combustion energy are
desirable.

The silica gellant materials employed in
earlier studies (Tetraethyl Orthosilicate or
TEOS)

were produced pyrogenically and have nominal
surface areas and particle diameters of

approximately 100 m2 and 15 nm,

respoctively.6, 7 The higher surface area
translates into higher gelling efficiency, and
therefore less gellant is used. These smaller
dimension gellant particles may be prepared
using sol-gel synthesis procedures and

advanced processing methods. _i,7 In
particular, tailored organic polymers are
attractive candidate gelling agents since these
materials are efficient gelling agents for non-
polar liquids and they contribute energy to the
combustion of the cryogenic gel propellants.

Background

Gelled rocket propellants have been

considered for many different applications. 1-14
While operational usage has not yet come to
fruition, there are many technology programs
that are underway to eliminate the unknowns
with gelled propellants and the propulsion
systems that will use them. Numerous studies
have shown the potential benefits of gelled
fuels and oxidizers. Technology programs to
prove the combustion performance of gelled
propellants have been conducted most recently
by the U.S. Army Missile Command, with
their industry and university partners, for
tactical missile applications. The NASA Lewis
Research Center and its parmers have
investigated 02/H2/A1 and O2/RP-1/A1 for
NASA missions and conducted experimental

programs to validate elements of the
combustion and fuel technology. Gelled and

metallized gelled hydrogen and RP-1 have been
emphasized because hydrogen and PP-1 are
typical propellants for NASA launch vehicles
and upper stages. Derivatives of these
propellants are therefore preferred to minimize
the incremental risk for a newly introduced
propulsion concept. Gelled hydrogen
technology is emphasized in this paper. Its
likely applications would be for rocket powered
launch vehicles and upper stages, rocket based

combined cycle airbreathing vehicles, and
combination (rocket and airbreathing)

propulsion options.S-17



Why Gelled Hydrogen?

The benefits of gelled hydrogen have
been known for many years and experimentally

proven in the pastA-5 There are five major
benefits: safety increases, boiloff reductions,
density increases with the attendant area and
volume related mass reductions for related

subsystems (thermal protection system,
structure, insulation, etc.), slosh reductions,

and specific impulse (Isp) increases (in some
cases).

Safety can be significantly increased
with gelled fuels. A higher viscosity reduces
the spill radius of the gelled hydrogen and
limits the potential damage and hazard from a
fuel spill. Another important advantage is the
potential for leak reduction or elimination. The
leak paths from the feed systems would be
minimized and the possible explosion potential
would be reduced.

Boiloff reduction is another feature of

gelled hydrogen. The boiloff reductions are up
to a factor of 2 to 3 over ungelled liquid

hydrogen.S, 13, 14 This feature will assist in
long term storage of hydrogen for upper stages
that must sustain on-orbit storage or long coast
times. Also, lunar flight and interplanetary
missions with large hydrogen fuel loads will
derive a benefit.

Significant density increases are
possible with gelled hydrogen. A 10% density
increase is possible with 10% added ethane or
methane. These gellants are introduced into the

hydrogen as frozen particles that form a gel
structurein the hydrogenA3, 14 Appendix A

provides some additional analyses of gelled
hydrogen density and performance and some
additional discussion of its benefits.

Specific analyses of the performance
gains for various missions are dependent on the
vehicle and mission design. Systems analyses

performed for higher density hydrogen vehicles
have shown that the reductions of the gross lift

off weight (GLOW) for increased density
hydrogen are very significant In cases where
another high density hydrogen, slush hydrogen

was used, the density increased by 16%, the
GLOW was reduced by 10.2%, or 102,000
lbm.lS, 19 For airbreathing vehicles, such as
the National Aerospace Plane (NASP), the
estimated reduction in GLOW for slush

hydrogen was from 20 to 50%. Thus, a gelled
hydrogen with a 10% density increase may
deliver a significant fraction of these GLOW
reductions and other subsystem mass

savings.2O, 21

Experiment Description

The experimental program included

nanoparticulate gellant production, the
synthesis and syneresis (settling) testing of
gelled and metallized gelled hexane, design,
construction, and testing of a cryogenic

capillary rheometer, and the rheological
characterization or liquid hydrogen.

_. The principal objective was
to explore the feasibility of a new class of
gellant materials for advanced cryogenic gelled
propellants. The goal was to demonstrate the
synthesis and preparation of nanometer-
dimension polymer gellant materials which are
capable of efficiently gelling cryogenic liquids.
A second objective was to provide a
preliminary evaluation of the rheological
properties of candidate gelled formulations and
determine their fluid properties.

Genant Sol-Gel Synthesis

Sol-gel material synthesis methods
were selected for the preparation of candidate
advanced gellant materials. Sol-gel processing
technology has been extensively studied and
used to prepare a wide variety of fine-
microstructure film, foam and powder

materials.22 The technology uses solution-
based polymer synthesis reactions and well
established product drying/recovery methods
for preparing multi-component materials with
homogeneous molecules. The technology has
several attractive features: it is readily scalable

for producing large product volumes if
eventually required, it uses commercially

available precursors for starting, materials, and
it is uniquely capable of preparing



combinationaltypematerialslike organo-
ceramicpolymers.This lastfeatureis needed
for preparing gellant materials with selectable
chemical properties and affinities for fluids
with widely differing polarities.

Gellant Synthesis. Nanoparticulate
gellant was prepa_'ed in the same manner as that
for the preparation of earlier polymer gellant
material (BTMSE) described in Appendix B.
Twenty (20) grams of BTMSE nanoparticulate
gellant materials were produced using
supercritical fluid processing. To verify the
quality of gellant material that was produced,
selected samples were subjected to physio-
chemical properties analyses, including
determination of the specificsurfaceareaof the

BTMSE aerogel product.The qualityof

material produced was comparable to that
produced in the earlier work.

Table 1 shows the variation in the

specific surfaces of different batches of gellant
materials. Eleven batcheswere produced to
determine the repeatab'dity of the production
runs. Past experimental results have indicated
the need for gellant material with a specific

surface area in the region of 800-900 m2/g.
Batch 1 fell short of this goal by a significant
amount as this was the first experiment with the

process, but almost all of the other batches
produced the desired specific surface values.

Table 1
BET Surface Area Results

Gellant Batch No. Surface Area (m2/g)

1 676
2 931
3 926
4 950

5 (test aborted)
6 1012

7 959
8 869
9 845

10 788
11 780

Svneresis Ext_eriments. Metal particle
and gellaht syneresis-effects were qualitatively
studied. Settling is defined as the percentage of
the volume that is clear (or without gellant) that
is above the gelled liquid in its storage
container. Using the cryogenic simulant
hexane, settling effects were observed for both
BTMSE gelled hexane and metallired gelled
b.exane (13.8 wt% aluminum) under a variety

of gravityloading environments ranging from 2
to 10 G's. Tables 2 and 3 list the results for

the gelled and metallized gelled hexane
experiments, respectively. The slight
variations in the settling results are due to the
variations in the gellant specific surface or

strength.

The results appear to indicate the
existence of a critical gellant concentration,
above which no settling was observed. This
value resides somewhere between 0.07 and

0.03 wt% of gellant. Furthermore, this critical
value does not apparendy change over those
accelerations which were investigated, from 2
to 10 times that of gravity.

Cryo-Rheometer for Metallized

/axamgm.fz 

The existingliteratureon hydrogen

viscositymeasurements describe techniques
thatinvolveoscillatingdisks,torsionaldisks,

and a varietyof f'mecapillarytubcs._-27It

was anticipatedthattheseapproacheswould

notbe applicabletothemetallizedgelled

hydrogen due totheirnon-Newtonian

behavior.A directmeasurement approach,

using a cone-and-plate cryo-rheometer design,
was therefore initially sought. Additional
considerations for the design were the
capability to condense liquid hydrogen, mix the
metal additives and gellant materials with the
liquidhydrogen, maintain temperaturewithina
narrow liquidwindow of 15 to20 K duringthe

theologicalmeasurements, maintain an oxygen-

depletedenvironment,and measure flow rate
and viscosityinthe low shearratesfor

rhcologicalproperties,such asyieldpointand

pscudoplasticbehavior.



Table 2

Gelled Hexane Syneresis Results

GeUant Wt% Results

Acceleration = 2 gravities

0.03
0.05
0.07
0.10

20% Settling
0% Settling
0% Settling
0% Settling

Acceleration = 5 gravities

0.03
0.05
0.O7
0.1

50-80% Settling
30% Settling

Side Loss of Gellant

0% Settling

Acceleration = 10 gravities

0.03 50% Settling
0.05 0% Settling
0.07 0% Settling
0.10 0% Settling

Table 3

Metallized Gelled Hexane Syneresis Results:
10 Gravities Acceleration

Gellant Wt% Results

0.03 5% Settling
0.05 5% Settling
0.07 5% Settling
0.10 5% Settling

The initial design was developed on the
basis of the successful experience with

cone/plate rheometers and preparing propane

and ethane gels. These gels were mixed using
an ultrasonic probe. The gelled hydrogen
design involved modifying the existing
rheometer to
submerse a heat exchange chamber containing
the cone-plate measuring element into a liquid
helium dewar. The condensed hydrogen would
then be mixed with the metallic additives and

nanoparticulate gellant inside the housing with
the ultrasonic agitation of the in-situ
piezoelectric (PZT) crystals. However,
preliminary experimentation revealed that
adequate ultrasonic mixing could not be reliably
attained, and that mechanical stirring would be

required. The design was hence modified to
allow the gel ingredients to be stirred in an
external mixing chamber prior to transferring
the hydrogen gel to the heat exchange chamber
through an insulated delivery tube. The external
mixer design was considered to be too
complicated and its design could not ensure
effective transfer of the gel due to the excessive
thermal losses from the cryogenic (liquid

helium) valves and long delivery tube.
Therefore, the cone/plate rheometer design

concepts were abandoned.

Capillary_ Flow Rheometer Desima. The
final design selected was a capillary flow
rheometer which is typically used to measure
flow behavior of fluids in the high shear rate

region. The key elements consist of two
internal mixing cups of known volume (90 ml)
connected with a transfer tube of predetermined
inner diameter (0.001 m) and length (1 m).
Each mixing cup is equipped with silicon
diodes and heaters for temperature sensing and

control. They are housed in a heat exchange
chamber which is submerged in liquid helium

inside a magnetic dewar. The interior of the
heat exchange chamber is either filled with

helium gas for thermal exchange between
mixing cups and dewar, or in a vacuum to
provide thermal isolation of the mixing cups.
Hydrogen gas is condensed in the temperature-
controlled buffers which function as liquid

hydrogen reservoirs. The liquid hydrogen is
mixed with metallic additives and

nanoparticulate geUant in the mixing cups
equipped with long-shaft stirrers and powered
by twin external motors. An in-situ liquid level



probe, which consists of a string of series-
connected carbon resistors, is used to

determine the volume of hydrogen gel inside
each mixing cup.

The key measurement is the time
required to expel a known volume of gel from
one mixing cup to another. The gel expulsion is
achieved through releasing helium gas into one
of the two the mixing cups to establish a
constant pressure gradient between the two
mixing cups. These measurements provide the
flow rate versus expulsion pressure (Q vs. P)
profile for a given geL The viscosity for
Newtonian fluids can be determined using the

Hagen-Poiseuille equation:

ndyn = _AP Rc4/(8 Q L)

where rtayn is the dynamic viscosity, AP is the
pressure drop, Q is the volumetric flow rate,
and Re and L refer to the inner radius and the

length of the delivery tube, respectively.

For power-law fluids:

t = AP Rc / (2 L) = K (gamma-dot) n

gamma-dot - r (d f2/dr)

ndyn = K (gamma-dot) n-t

where t is the shear stress, r is the cylinder
radius in the gap of the rheometer, and f_ is the
rotation rate of the rheometer cylinder. These
equations allow the capillary rheometer shear
rate results to be compared with those for cone

and plate rheometers.

(_ryogeni¢ RheomCter Ex_riments and
Resul_. A check-out run of the cryo-
rheometer was conducted with liquid neon
(normal boiling point [N-'BP] of 27.1 K) and
demonstrated that the system can safely be

operated at liquid hydrogen temperatures.
After this checkout, liquid hydrogen testing
was conducted, followed by gelled hydrogen
experiments. In the rheometer, the gelled

hydrogen is formed by filling one cup with
BTMSE, filling the other with hydrogen, and
forcing the hydrogen into the BTMSE to mix
the two. Enough BTMSE was used to produce
gelled hydrogen with a 7-wt% gellant loading:
approximately 0.24 grams.

After thermal and chemical equilibria
were attained (as evidenced by the temperatures
becoming constant and by and zero
pressure/gradient across the two cups), helium

gas was introduced into the f_rst mixer cup,
thereby creating a positive pressure of up to
1,000 Pa which expelled the hydrogen gel into
the second cup. A key parameter in
determining viscosity using this device is the
time required to expel a known volume of
material from one mixing cup to the other via

the capillary path. Material transfer is
accomplished through releasing helium gas into
the mixing cup which contains the sample, thus
establishing a constant pressure gradient
between the two mixing cups. By monitoring
the liquid level probe inside the fwst cup, the
amounts of hydrogen gel transferred was
determined, where each incremental voltage

increase corresponds to a rise in resistance of
the level probe which reflects a drop in liquid
level between the two sequential carbon
resistors.

In the gelled hydrogen tests,
approximately 48 mL of gelled hydrogen were
transferred in 250 seconds. The steady state

portion of this transfer was 120 seconds.
Assuming Newtonian behavior, this transfer
rate equals a viscosity of 0.048 to 0.116 mPa-s
at a shear rate of 4,000 s-1. This is about 1.5 t

o 3.7 times higher than the viscosity of liquid
hydrogen (0.03 mPa-s) measured in the

hydrogen flow tests demonstrates the
thickening effect. For comparison, a value of
hydrogen viscosity of 0.023 mPa-s is reported
in the literature for liquid hydrogen (at 14.5 K
and 1 atm pressure), so there is some small
discrepancy in the viscosity value. The shear
rates and higher viscosities were not
representative of those in a full-scale
propulsion application, but they show a trend
that implies that the gelled hydrogen will have a
small viscosity difference from the ungeUed



hydrogenfuel underhighvelocity flow
conditions.

On successful runs, a readily detectable
stable transfer of fluid flowed through the

capillary. Figures 1 and 2 illustrate the liquid
hydrogen and gelled hydrogen transfers,
respectively. Data were taken from liquid level
sensors located in one of the two transfer cups

connected via the capillary tube and translated
into a total volume of transferred fluid. The

transfer shown in Figure 1 depicts the transfer
of 90 ml of hydrogen in 270 seconds. A

pressure drop of 351.5 Pa (0.051 psi) was
required. For the gelled hydrogen experiment
in Figure 2, the pressure drop for the transfer
was 723.6 (0.105 psi) and there were 48 ml
transferred in 250 seconds. A very smooth
transfer occurred with the gelled hydrogen and
the smoothness is attributed to the gellant

creating and promoting a more laminar flow of
the hydrogen. In the rheological flow
experiments, the upstream cup was maintained
at approximately 4824.3 to 6891.8 Pa (0.7 to
1.0 psi) above atmospheric pressure and the
downstream cup open to the ambient
atmosphere. The temperature of the hydrogen
in the experiment was 16 K.

Table 4 summarizes the results of the

seven experimental runs. The pressurization
of the liquid beyond the yield point results in
rapid flow through the capillary. Prior to
reaching that point, however, pressure must
first build up in the mixing cup to that yield
point. Measurements of the pressure just prior
to initiation of flow provides a direct
measurement of the yield stress.

In the cryo-rheometer, yield stress was
determined by a measurement of the capillary
tube pressure drop, in terms of pounds per
square inch. The pressure at which the flow is
initiated corresponds to the yield stress
associated with the yield point of the gellant
molecular network. Table 5 provides the yield
stress data for runs 7a and 7b (with gelled

hydrogen). Runs 7a and 7b are part of and
related to Experiment 7 of Table 4. The yield
stress is very low and would be easily
overcome using the typical tank pressures of

Table 4

Cryo-Rheological Data Summary

Experiment# Viscosity Comments
(mPa-s)

Liquid hydrogen

1 0.0314 Successful
Baseline Run

2 0.0319

3 0.0313

7 w% BTMSE/Liquid Hydrogen

4 0.0843 Some Icing
Encountered

5 0.0482 Icing
Encountered

6 0.0751 Some Icing
Encountered

7 0.1157 No Icing
Detected

Table 5

Gelled Hydrogen Yield Stress Data

Experiment Initial Can Measured
Pressure Yield Stress

(psig) (psi)

7a 1.045 1.1

7b 0.720 0.8



currentpump-fed or pressure-fed propulsion
systems.

These results demonstrated the

effectiveness of polymer-derived gellants for
cryogenic propellants, and verified the
approach of using nanoparticulates to gel

cryogenic fluids.

The current experiments were
conducted under a very restricted set of
temperatures and pressures, and many of the
conditions were not completely representative
of actual propulsion applications. Extremely
small volumes of fluid were tested with the

capillary rbeomete_. 48 ml. Also the test
pressures were low: only about 16 psia. Also
the test temperature was ab.out 16 IC No
metallized gelled hydrogen testing was
conducted, though testing of the metallized
gelled hexane was conducted and proved some
of the syneresis results at high G levels.
Gellants are extremely effective in other
hydrocarbons such as hexane, etc. The
relatively low percentage needed (0.03-0.07
wt% BTMSE in hexane) bodes well for

hydrocarbons with higher boiling points.

The yield stress for gelled hydrogen
was measured in the region of 1 psi. Viscosity
after reaching the yield point of the gel network
was found to decrease rapidly, approaching
that of liquid hydrogen itself in the range of
0.046 to 0.116 mPa-s, allowing for nearly
unrestricted flow after reaching the yield point.

This thixotropic gel, with the very low yield
stress will be required for conventional
propellant transfer from propellant tankage to
the rocket or airbreathing engines. The low
yield point of the gel will also minimize the
number changes to existing feed system and
engine designs to use gelled propellants.

There are many possibilities for gelling

liquid hydrogen and the selection of the gellant
will depend on the mission needs; methane and
ethane are advantageous and nanoparticulates
are also a strong contender if the cost is
reduced. The best possibilities for making a

gelled propellant work in the near term are the
methane or ethane gellant and using this
formulation to demonstrate the effectiveness of

gelled hydrogen to eliminate propulsion
leakage, increase safety, increase propellant
density, reduce propellant slosh, and
potentially improve performance. Gelled

hydrogen has great potential for improving
future propulsion systems, especially atr-
breathing Earth-to-Orbit vehicles.

C.oardmiam

A nanoparticulate gellant material was
synthesized and the theological characterization
of cryogenic propellants after gelation were
measured. However, only one gelled hydrogen
formulation was characterize. Measurements

of viscosity, yield stress, and syneresis under
various high gravity levels confn'med stable
gelled hexane and gelled hydrogen fuels and
potentially favorable rheological properties.

To evaluate the gelling efficiency of
polymer-derived nanoparticulates for extremely
low temperatures, a 15-K capillary-flow
rheometer was designed and assembled. A
demonstration nan was conducted with liquid
hydrogen gel using a BTMSE gellant mass
fraction of 7 wt % and the gel exhibited a

viscosity of 0.048 to 0.116 mPa-s at a
moderate shear rate of 4,000

s-1. This is approximately only about 1.5 to 3.7
times higher than that for liquid hydrogen
alone.

Experiments to characterize the
rheology of gelled and metallized gelled hexane
were also conducted. Syneresis and stability
tests was conducted with gelled hexane and
metallized gelled hexane (13.6-wt% Al) and a
critical concentration of gellant, at a loading of
0.03 to 0.07 wt% BTMSE, was able to

establish a stable gelled fuel during high
acceleration testing at 2, 5 and 10 gravities.

Concluding Remarks

The low shear rates and consequently

higher viscosities of the gelled hydrogen are



not representative of those expected in a full-
scale propulsion application, but they show a
trend that implies that the gelled hydrogen will
have a minimal viscosity difference from the
ungelled hydrogen fuel under high velocity
flow conditions.

The objective of any future gellant
optimization would be to produce a gellant
material that is efficient for gelling liquid

hydrogen at concentrations less than 2 to 3 wt
%. At these concentration levels gellant
material will have a much-reduced

thermodynamic and engine system performance
penalty over the currently-required 7 to 8 wt %
gellant level.
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Appendix A
Gelled Hydrogen Density and Specific Impulse with Methane GeUants

The Isp of a gelled hydrogen powered vehicle may also increase over a liquid hydrogen
powered vehicle, in some cases. Figure A1 shows the Iq, variations for gelled hydrogen over an

methane (CI-I4) percentage range of 0% to 70%. This range was selected to cover the typical
values of added gellant percentages investigated in past experimental work. Also, these geUant
percentages may offer attractive density increases for future vehicles. Table A1 provides the
mixture ratios for the different methane loadings. Oxygen is the oxidizer, the expansion ratio is
40:1 and the chamber pressure is 2250 psia. A 94% lsp efficiency is used to compute the delivered

Isp. The maximum Isp occurs at a 5% CH4 loading and this performance level is 4 seconds higher

than ungelled O2/H2.
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Figure AI: Gelled Hydrogen Rocket Engine Specific Impulse
(Oxygen as oxidizer, 2250 psi chamber pressure, expansion ratio = 40:1)
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TableA1
GelledH2/CH4MixtureRatiosandDensities

CI-I4Loading(wt%) MixtureRatio Density (kg/m 3)

0.0 6.0
5.0 4.2

10.0 4.2
15.0 4.2
20.0 4.3
25.0 4.3
30.0 4.3
35.0 4.2
40.0 4.3
45.0 4.2
50.0 4.2
55.0 4.1
60.0 4.1
65.0 4.0
70.0 4.0

70.00
73.17
76.63
80.44
84.65
89.33
94.55

100.41
107.06
114.65
123.39
133.58
145.60
160.00
177.56

Other benefits of gelled hydrogen

For airbreathing propulsion, the largest volume of the vehicle is the hydrogen tank.
Therefore, the volume reductions enabled by gelled hydrogen may be significant and this effect
cascades into other subsystems for significant further mass and volume reductions. The
subsystems that are affected are the aerodynamic thermal protection systems, cryogenic insulation,
structural masses, and all of the other subsystems influenced by the hydrogen fuel tankage. A

higher viscosity for the gel will also reduce the slosh modes in a propellant tank. Slosh baffle size
and mass reductions are therefore possible by using gelled propellants. These masses can be very

significant for a launch vehicle application.

Another option with gelled propellantsisadding metal particles. Metallized gelled
propellants may have modestly higher specific impulses (Isp increases of 5 to 6 lbf-s/lbm for O2/H2

/A1 system, 60 wt % A1 in the H2/A1 fuel) compared to nonmetallized hydrogen fuels. For

proposed NASA Mars evolution and expedition missions, it has been estimated that metallized
gelled O2/H2/A1 propellants can resuk in a 20 to 33% improvement in surface payload delivery

capability.6 More importantly for O2/RP-1/AI and NTO/MMH/AI propellants, adding metal can
deliver considerably higher propellant density, depending on the application. Hence, both the
tankage mass as well as the overall propulsion system dry mass can be substantially reduced. The
propellant density increases and their attendant Isp changes with the aluminum additives allow a

payload increase of 14 to 35 percent by replacing the Space Shuttle Solid Rocket Booster with a

Liquid Rocket Booster using 02/RP-1/A1 and N'TO/MMH/A1, respectively.7
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AppendixB
Nanoparticnlate Gcllants: BTMSE Formulation

The candidate gellant materials were prepared from organic compound polymerization
reactions carried out in an alcohol solution. The starting compounds used in the synthesis reactions

were boron and silicon esters of ethyl and methyl alcohol. These compounds are known as
alkoxides and are commonly used reagents in sol-gel synthesis of various glass and ceramic
composition materials. Alkoxides containing ethyl (BTMSE) hydrocarbons were also used for
synthesis purposes where an organic group was desired in the f'mal polymer gellant material The

polymerization reactions were initiated through acid-catalyzed hydrolysis of the alkoxide
compound. Mustrative examples of the overall reactions revolved in the synthesis of single and
copolymer composition products are given in Refs. 1 and 2. The hydrolysis and polymerization
reactions proceed to form weakly-coherent, translucent alcogels in the reaction medium. Gel
formation typically required anywhere from a few minutes to 24 hours depending on the catalyst,
monomer concentration and temperature conditions employed.

Product Drvin_ and Recovery. The precursors react to form, coherent polymer alcogels

from homogeneous solutions containing as low as 0.05 molar monomer. These polymer alcogels
consist of delicate three-dimensional structural networks that cannot be dried using conventional

methods, such as vacuum bake and oven heating since these methods can lead to high surface
tension forces at the solid-fluid interface and cause the networks to collapse. Two-zero surface

tension drying techniques, freeze-drying and supercritical fluid processing, were used to recover
products for this study. The freeze drying involves solvent freezing followed by evaporation of
the frozen solvent at reduced pressure. A commercial unit having a processing capability of 5 liters
was used in this study. Critical fluid processing involves the use of a fluid such as CO2 in a

supercritical state. By raising the pressure and temperature above the critical point of the exchange
fluid (304.2 K and 73 atm for CO2), it is possible to extract the solvent from the alcogel without

encountering significant surface tension forces at the solid-fluid interface. Nanoparticulate gellant

materials with large specific surface areas were successfully prepared using both methods.l_

m B(OCH3)3 + 3 m H20 -> m H3BO3 + 3 m CH3OH
Boric Acid Methanol

n Si(OC:H5)4 + 4 n HzO -> n Si(OH)4 + 4 n C2HsOH
Silanol Ethanol

HO[-B (OH)O]m[-Si(OH)20]nH

(1)

(2)

m H3BO3 + n Si(OH)4 ->

Linear borosilicate polymer

or

[B203]mr2[SiOz]a

Crosslinked borosilicate polymer

(3)
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