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ABSTRACT

Dynamic data from tests of a T55-L-712 engine are

presented. Engine stall/surge data were analyzed using

digital signal processing techniques. In addition, forced

response testing (system identification studies) was

done at various engine speeds. Forced response testing

was done using eight jet ejectors approximately equally

circumferentially spaced about the compressor front

face. This paper presents some preliminary results for

the ground idle (approximately 60% of design speed)

point. Brief descriptions of the jet injection system, the
test matrix, and analysis techniques used are presented.

Results of these analyses indicate a substantial transfer

of energy across the compressor first stage at some fre-

quencies and that the ejectors are effective in modifying
the local flow conditions in front of the first compressor

stage.

NOMENCLATURE

f .................. temporal frequency

CPS ............ Cycles/Second

G(f) ............ Power Spectrum

H(f) ............ Transfer Function

RF .............. Rotor Frequency (Hz)
RR .............. Rotor Revolutions

SFA ............ Spatial Fourier Analysis

S(f) ............. Discrete Fourier Transform

_,2 ................. Coherence Function

Subscripts
m ................ mode number

x ................. input signal

y. ................ output signal

Superscript

-. ............... average

* ................. Complex Conjugate

INTRODUCTION

Compressors in gas turbine engines are subject to
aerodynamic instabilities known as rotating stall and

surge if required to operate at or beyond certain mass-

flow/pressure rise/rotor speed points. On the compressor

map, these points form a line known as the stall/surge
line. When rotating stall or surge occurs, gas turbine

engine performance is seriously degraded or not possi-

ble. To prevent operation in these regions, the gas tur-
bine cycle is normally designed to require compressor

operation away from the surge line on an "op line". This

provides an appropriate margin to assure continued

engine operation in the event of unplanned system oper-

ation excursions due to, for example, inlet distortion.

However, this normally results in accepting less than
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optimalengine performance. The ability to actively sup-

press these aerodynamic instabilities would allow oper-

ation nearer this surge line, thereby improving gas
turbine efficiencies.

Potential improvements in gas turbine engine efli-

ciencies due to active compressor stability enhancement

(active stall control) suggest that the development of

this technology should be encouraged. Indeed, studies at

AlliedSignal (Stratford) indicated a 4.0% reduction in

design point specific fuel consumption for the T55

engine I with studies of advanced designs indicating

potentially greater improvements. This promised perfor-

mance improvement has promoted considerable interest

in this technology area.

To further the development of this technology, the

US AaTny Vehicle Propulsion Directorate and the NASA
Lewis Research Center (LeRC) initiated an effort to

demonstrate an "active stability control" device that

would increase compression system stability across a

broad range of operating speeds in an axi-centrifugal

turboshaft engine. The program began with initial rig
testing of surge events in an AlliedSignal TSS-L-712

compressor rig (completed June of 1993). Preliminary
analysis of dam 4 indicated that precursor waves could

be identified in the compression system.

A T55-L-712 turboshaft engine was instrumented

and installed at LeRC. Surge testin_ began March 1995.
A proportional high speed valve" was designed and

eight were installed with shroud jet injectors for forced

response testing which started June 1995 and ended that
October.

A preliminary analysis of forced response data has

been accomplished using, in part, an approach sug-
gested by Weigl 3. The results of this analysis on a planar

pulse sine sweep test dataset is presented below. In addi-

tion, a rotating stall/surge event is also analyzed and

presented for comparison purposes. Data presented were

acquired while the engine was operating at ground idle

(near 60% of design speed).

To develop active stall control devices for turboma-
chinery applications at least one and possibly three

important pieces of information must be extracted from

the data. First, the approach of rotating stall/surge must

be detected with adequate warning time to respond. Sec-

ond, if two dimensional actuation is desired to inhibit

the development of rotating stall/surge, the spatial loca-

tion in time of those aerodynamic features that promote

the development of the dynamic event must be identi-

fied. Lastly, the transfer function for the control inputs
must be determined. The spatial Fourier analysis is

designed, in part, to provide that information. This paper

primarily addresses the last of these technical issues.

Figure 1. High Frequency Valve and Jet Ejector

TEST AND ANALYSIS FACILITIES

References b_vOwen 4 and a NASA Lewis Research
Center Pamphiev' detail the facility, testing, instrumen-

tation, instrumentation locations, data acquisition, and

data reduction methodologies and equipment.

For this testing, a waterbrake system and calibrated

belimouth were acquired, on loan, from AlliedSignal.

The waterbrake allowed engine operation over the entire

power envelope. The bellmouth allowed engine airflow

measurements to an accuracy within _O..'%. Eight jet

ejectors and a combustor inbleed system were designed

and installed to allow a more realistic compressor stage
matching during the approach to stall/surge.

Eight jet ejectors were designed for installation in

front of the first stage compressor rotor in existing
instrumentation holes with a diameter of 0.95 era. These

pre-existing holes are approximately one chord length

upstream of the first stage rotor and are nearly equally
circumferentially spaced. Figure 1 is a photograph of

one of these ejectors and its controlling valve. Each

ejector bead is immersed approximately lcm into the

inlet and the total frontal area per ejector is about 1.21

sq. cm. (-1.5% of the total inlet area at the compressor

front face). For this test, a high response pressure trans-

ducer (not visible) was mounted immediately down-
stream of the ejector opening.

Each ejector was designed to provide --0.61% of the

design speed engine airflow, (total of -5%), given air

supply conditions of 689 kPag and 20* C, and to provide

a jet of air that spans less than 25% of the passage radi-

ally. The ejectors were mounted to provide airflow

directly into the engine inlet.
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A voice coil actuated air valve was designed in

house and eight were used to control air injection into

the engine. As is shown in figure 1, these valves were
mounted immediately over the jet ejector. The machined

square block is approximately 7.5 cm on a side. These

valves were designed to control the required airflow and

operate proportionally at frequencies up to 450 Hz. Ref-

erence [2] provides detailed information concerning the

design and development of these valves.

Compressor loading was controlled using a com-

bustor inbleed system specifically designed for this pro-

gram. Unheated high pressure air was injected
immediately downstream of the diffuser exit through 30

openings in the outer combustor casing. The system
could deliver over 15% of the engine design airflow.

Instrumentation. Data Aeauisition. and

Data Reduction

High response pressure transducers in front of the
first stage rotor were collocated with the jet ejectors.

High response pressure transducers in front of the sec-

ond stage were located at nearly the same circumferen-

tial locations as those in front of the first stage.

Transducers were numbered in order increasing in the
direction of rotation. Circumferential increments were

approximately 45 ° . Fifteen pound absolute/in 2 pres-

sure transducers were used both at the inlet to stage 1

and the inlet of stage 2. Engine instrumentation included

flush mounted hub (wafer) transducers at the exits of the

first three stages. These confirmed that rotating stall

began in the tip region.
High speed data were recorded digitally using

either the LeRC central data acquisition system or, later,

an in-facility data acquisition system. High speed chan-

nels were digitized at a rate of about 12750 samples/sec-

ond/channel, providing a bandwidth of approximately 5
kHz. Critical high speed data were also backed up on

analog tape (speed of 30 IPS minimum). All high speed

data have been analog low pass filtered at approximately

5 kHz to eliminate aliasing. All data were then digitally

low pass filtered at 800 Hz (about 3.5 rotor frequency)

and resumpled at 2.5 kHz using an inhouse program

designed to maintain the signal frequency content. This
limit was deemed high enough to allow all pertinent

modal information to pass but low enough to eliminate

unnecessary noise.

For all tests, steady data were acquired consisting

of both research and operational parameters sampled at

1 sample/second/channel. These data included compres-

sor stage pressures and temperatures and overall engine

performance information.

SURGE TEST RESULTS

Introduction

This section provides an analysis of a ground idle

(near 60% of design speed) engine dynamic (surge)

event. A spatial Fourier analysis (SFA) is included in

these comparisons. The SFA accomplished on all data
used Syed's 6 implementation of Garnier's 7 method.

This spatial Fourier analysis technique was first imple-

mented by the Massachusetts Institute of Technology
and is based on the work of Moore and Greitzer, a well

known approach postulates the existence of very mild

momentum disturbances that travel circumferentially

about the front face of the compression system. As the

compressor approaches the surge line, the system

approaches neutral stability and these disturbances
grow. At the rotating stall/surge point, the disturbances

initiate or develop into rotating stall/surge. Spatial and

temporal variations (in this instance, pressure) sensed in

the inlet of the compressor are decomposed into their

Fourier components circumferentially in space about the

compressor inlet. The number of Fourier components

(spatial modes) that can be resolved is a function of the

number of sensors and, this application, three rotating

modes can be resolved (seven required sensors).

Detailed explanations of the technique are presented in
Paduano 8, Gamier 7, and Tryfortidis 9.

Engine Surge Event

Figures 2 and 3 show the results of a spatial Fourier

analysis of a ground idle surge induced using combustor
inbleed and without inlet Mach probes. The figures

show partial results of this analysis for test data acquired

in front of stage 1 (fig. 2) and in front of stage 2 (fig. 3).

The figures included in this section present ana-
lyzed data for approximately the last second prior to the

recorded dynamic events. This time interval is a com-

promise. On one hand, it is short enough to allow a more

detailed look at the development of the dynamic events.

On the other, the interval is long enough to identify

changes that can be used to signal the onset of stall/

surge. While this paper cannot present a detailed expla-

nation of the spatial Fourier analysis, a short explanation

of the figures is included to help orient the reader.

Figures 2a and 3a display the time traces of the

eight circumferentially mounted transducers. In these

figures, the direction of rotor rotation is up. The x-axis is
time measured in units of rotor revolutions and the y-

axis is non-dimensional pressure, with the pressure

traces offset vertically for clarity.

Figures 2b and 3b plot the location of the modal

wave peak (unwrapped phase angle) versus time. As has



been mentioned, the spatial Fourier analysis decom-
poses the spatial signal content of the eight circumfer-
endal transducers into a summation of sine waves.

The first spatial mode represents a single sine wave in
one circumference, mode 2 is 2 sine waves in a cir-
cumference, and mode 3 is 3 waves. This is done for
each time step and the spatial location of the peak of
the wave is plotted versus time. If a single frequency
becomes dominant in any of the three modes, the rate
of change in location becomes constant - the slope of
the line becomes straight. Each of the mode phase
angles shown in figs. 2b & 3b has been divided by its

mode number, which causes the phase angle plots to
present the correct rate of change of the modal waves.
Phase angle tracking is apparent in front of both stages
but no mode clearly shows a constant rate of phase
change approaching staU to indicate a single dominant
frequency. However, the mode 1 results do show inter-
vals of _racking at -132% RF (rotor frequency), for
example, at about 80 RR (rotor revolutions) and again
immediately prior to surge. This indicates that the pres-
sure signals, when broken into their spatial Fourier com-

ponents, contain a mode 1 component that is often
dominated by a wave that moves about the front face of
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the compressor at 132% of the rotor speed. However,
this tracking is broken up intermittendy.

In general, the most constant phase angle track-
ing in the stage 1 data appears to be in mode 2. How-
ever, a closer inspection of this tracking reveals short
sections of steep slopes intermingled with sections of
much more disorganized tracking, as is also the case
for the third mode.

After the initiation of surge at about 190 RR, all
modes in front of the first stage (fig. 2b) begin to

clearly track a pressure pulse rotating at about 61% of
the rotor speed.

Also notable is the weak phase angle tracking in
the stage 2 data (fig. 3b) at any time but particularly
after the initiation of surge. Clearly no frequencies are
dominant here.

In front of a compressor traveling wave energy of
many frequencies exists. Spectral Magnitude (SPM)
plots show the relative strengths of the different fre-
quencies that exist in each of the modes Figs. 2c,d,e &
3c,d,e present the SPM differences for the first, sec-
ond, and third modes. These plots present the overall
traveling wave magnitudes (eliminating standing
wave components) as a function of frequency for the
acquired datasets. The spectral magnitude difference
may be defined:

IsCf)l- 18(-_01 (EQ 1)

= IFFT [SFCm] (f_I - [FFT [SFC=] (-jOI

These are plotted with frequency on the abscissa
and a non-dimensional magnitude difference on the
ordinate. They represent a summation over time of all
the traveling wave energies in the first three modes.
Note that the results in figs. 2c,d,e & 3c,d,e have not
been divided by the mode number. Therefore, a given
frequency in a plot represents a sine wave with the
number of cycles per circumference equal to its mode
moving at a speed about the circumference that is the
displayed frequency divided by the mode number.
Remember, the analysis will provide the overall fre-

quency of a sine wave moving about the face of the
compressor. For the mode 2 results, there are two sine
waves/circumference. Thus, the actual frequency of,
for example, the double sine wave of the mode 2
results is only half of the frequency calculated.

Finally, references in the text to a specific frequency
shown in the spectral difference plots are only
approximate.

The results shown in figs. 2c,d,e (in front of the
stage 1 rotor) show strong traveling energy at a num-
ber of discrete frequencies. Mode 1 indicates traveling
at 0.9 RF, 1.0 RF, and 1.32 RF. The strongest energy
resides at 1.32 RF and this is reflected in the phase
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angle plot (fig. 2b). Mode 2 shows only strong traveling

wave energy at 1.8 and 2.0 RF, although some exists at
1.32 RF. This 1.8 RF energy would suggest modal phase

wacking at 0.9 RF and, although this frequency tracking
is apparent at some times in the signal, it does not domi-
nate the phase angle tracking. The strongest traveling
wave frequencies in the mode 3 data are at 1.8 and 3.0,
implying traveling wave frequencies at around 0.6 and
1.0 RE

Like stage 1, the stage 2 mode 1 energies indicate

traveling energy at 1.32 with less prominent peaks at 0.9
RF (this peak is also somewhat apparent in front of the
first stage rotor) and at 1.8 RF. These equidistant peaks
at 0.9 RF, 1.32 RF, and 1.8 RF are, because of the equal

spacing between them, clearly related. They reflect a
single mode 1 wave traveling at about 1.32 RF. How-
ever, the amplitude of this wave, as it moves about the
front face, varies (somewhat like an AM radio signal).
Mode 2 shows the 1.8 RF signal with very weak Wavel-

ing wave energy at 0.9 & 1.32 RF. Mode 3 energy in
front of the second stage is virtually non-existent.

Note for both the stage 1 and stage 2 analysis, mode

1 traveling energy is the strongest with modes 2 some-
what weaker and 3 being very weak.

Although not presented here, strong standing wave
are present in the data for all three modes which tend to
corrupt the results of the analysis, particularly the phase
angle traces presented in figs. 2b & 3b (and, later, in 6b
& 7b).

Finally, certain common frequencies exist in both
sets of data. These are 0.9 RF & 1.32 RF in mode 1 and

1.8 RF in mode 2. To obtain a better understanding of
the relationship between the data acquired at these two
locations, a further analysis of this data can be done.

Transfer Function and Coherence

Weigl 3 of MIT has suggested a straightforward

approach for assessing the relationship between the data
acquired at the inlet of stages 1 and data acquired at the

inlet of stage 2. This approach involves the calculation
of the transfer function across stage 1 and the coherence
between the calculated spatial Fourier coefficients. Note
that these calculations are not, per se, averaged estima-
tions of the ratios of the temporal Fourier transforms of
the input pressure transducer signals but ratheraveraged
estimations of the ratios of the temporal Fourier trans-
forms of the spatial Fourier coefficient (i.e., the 8 point
discrete spatial Fourier transform) for any specific
mode. The following development of "transfer func-
tion" and "coherence" is more completely explained in
reference [10], from which this section is condensed.

Note that, in contrast to the spectra in figs. 2 & 3
which show only traveling wave magnitudes (eliminat-
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ing effects of standing waves), the transfer function

magnitude and coherence results shown in figs. 4 & 5

include the effects of both standing waves and traveling
wave, s.

For this development, the "Cross Power Spectrum"
(CPS) is defined as:

Gxy (10 = S*x 0') Sy (/) (EQ 2)

The input autopower spectrum used in the denomi-

nator of eqns. 3 & 4 may be calculated by multiplying

the complex conjugate of desired data by itself in Eq. 2.
The 'q'ransfer Function" is defined as:

H-'-_ - Gxy (10 (EQ 3)
oxx 

The capital letter "S" is the discrete Fourier trans-

form, 'T' indicates the frequency domain, the overbar

denotes averaging, the subscripts x an y are input and

output, and the "*" indicates the complex conjugate.

Equation (2) is the product of the complex conju-

gate of the discrete Fourier transform (DFT) of the input

signal and the discrete Fourier transform of the output

signal and is the numerator in equation (3). The denomi-
nator in equation (3) is the autopower spectrum of the

DFT of the input signal. The transfer function definition
minimizes the effects of uncorrelated noise in the trans-

ducer signals and the transfer function measures the out-

pat/input transmission characteristics of a linear system

at each frequency.
The ''Coherence Function", which varies from zero

(no coherence) to one (entirely coherent), is also derived
using the CPS. Here, coherence is defined as:

(EQ 4)

This equation provides a measure, at a #oven fre-

quency, of the proportion of the power in the output sig-

nal related to the power of the input signal.

Summarizing, the estimated transfer function mag-

nitude shows the ratio of a systems total output power

(including noise) divided by the systems measured input

power, as a function of frequency. In the presence of

noise, the coherence shows the fraction of output power

due the measured input power at the same frequency.

Modal Wave Transfer Analysis

Rotating stall/surge events in the T55-L-712 engine

are clearly complex events involving not only all stages
of the compressor but, also, other components of the

engine. Nevertheless, it is clear from analyses of surge

events at ground idle that surge at this speed is preceded

by a rotating stall event that is first observed in the tip

region of compressor stage 1. Thus, the first stage in this

system appears to be the critical stage in the develop-

ment of dynamic events in this compressor. Therefore,

the estimated transfer function (Eqn. 3) and coherence

(Exln. 4) relationships were applied to the spatial Fourier
coefficients calculated from data acquired in front of the

first stage rotor (input) and in front of the second stage
rotor (output). The results provided information on the

effects of the first compressor stage (the assumed linear

system) on the change in the modal waves through the

stage and, later, the influence of the jet ejectors on stage

dynamic operation. We can now look in detail at the

transport of modal waves across the first stage of the

compressor.

Figures 4 show the estimated transfer functions for

the first three spatial modes across stage 1. The solid
line represents the "forward" traveling wave (in the

direction of blade rotation) and the lighter dotted line is

the reverse traveling wave. These figures display the rel-

ative strengths of signal downstream of the first stage

when compared to the upstream location. For example,

the forward traveling mode 2 energy at about 0.9 RF is

over 2.5 times stronger than the energy upstream of the
stage.

To better understand figs. 4, it is helpful to plot the
coherence between the two sets of data. This informa-

tion is presented in figs. 5. Coherence may be looked

upon as a measure of the strength of the relationship

between the two signals at a #oven frequency. While it is

difficult to establish a 'qninimum" acceptable coher-

ence, let us specify that a coherence of 0.7 or higher

indicates a valid coupling between upstream traveling
waves and downstream traveling waves.

Ifthe 0.7 coherence criterionis used, strong mode 1

coherencesappearat0.9 RF (forwardand reversetrav-

eling),1.0 RF (forward traveling),1.32 RF (forward

traveling),and 1.8RF (forwardtraveling).There isalso

a near0.7coherenceat1.32RF forthereversetraveling

waves. The transferfunctionsfor0.9 RF, 1.32RF, and

1.8RF areallapproximately1.0whilethetransferfunc-

tionsat 1.0RF aremuch lower.However, figs.2c & 3c

indicatestrongmode I travelingwaves are only indi-

cated ataround 1.32 RF with a much lessprominent

peak at0.9 RF. The resultswould indicatethatthemost

importantmode 1 frequencyisat 1.32RF, where the

strongest traveling waves exist both upstream and
downstream of the stage. At this frequency, the transfer

function magnitude is roughly 0.9, indicating much of

the energy is transferred. The modal frequency at 0.9 RF



is also important, but the size of the modal wave is
much smaller.

Mode 2 coherence is strong at 0.9 RF (forward tray-

cling), 1.0 RF (reverse), 1.8 RF, and 2.0 RF (both for-
ward). A review of the spectral magnitude differences

shows strong traveling waves only at 1.8 RF. The trans-

fer function has a magnitude of over 0.9 at this fre-

quency. The 1.8 RF and 2.0 RF points are clearly
harmonics of the lower frequencies that indicate the
non-sinusoidal

The mode 3 results clearly indicate that little mode

3 traveling wave energy exists behind the first stage.

The only acceptable coherences are at 0.4 RF, 1.8 RF,
and 3.0 RF but the u_nsfer function at these frequencies

indicate very little transfer of modal wave structure

across the stage.

_;ummarv of the En2ine Sunze Event

It is clear that traveling wave energy of many fre-

quencies exists both in front of the first stage rotor and
in front of the second stage rotor and that standing
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waves of many frequencies exist in the data for all three

modes. The traveling wave energies are strongest in the

first mode for both stage 1 and stage 2 data with the sec-
ond mode weaker and the third mode weakest.

A comparison between the stage 1 and stage 2 data

indicate that the modal energies are weaker in front of

the second stage.

Very few traveling wave frequencies are common

to both stages. They can be summarized as follows: for

mode 1; 0.9 RF and 1.32 RF (possible 1.8) are common

to both stages and for mode 2; 1.32 RF and 1.8 RF are

common. No strong modal energies exist in the mode 3
results.

Calculations of the transfer functions and the coher-

ence further restrict those frequencies of importance. Of

the prominent frequencies common to both the stage 1

and stage 2 data, only 1.32 RF and, to a much lesser

extent 0.9 RF and 1.8 RF are prominent in the Mode 1

results. In the mode 2 results, only at about 1.8 RF are

high power signals related. These are the traveling
waves that are transported across the first stage. They

are the waves most involved in the development of

rotating stall at this speed in this stage.

Further, these results will help identify what fre-

quencies are effected during the forced response testing

and by the existence of the ejectors.

FORCED RESPONSE TEST RESULTS

Introduction

Forced response testing consisted of single valve

"sine sweeps", double valve "sine sweeps" and mode

"sine sweeps" of the jet ejectors previously discussed.

Sine sweeps frequencies began at 10 Hz and increased
smoothly to 450 Hz in fifteen seconds. A sine sweep is

an input sine variation in the valve opening position.

The mode of the sweep defines the lag in time between

valves. A sweep that has all valves operating in unison

is referred to as a "mode 0" sine sweep. However, this is

a misnomer since no spatial modal variations occur in

this input. A mode 1 sweep, intended to mimic a mode 1

traveling wave, has each adjacent valve lagging its pre-

decessor by 45 ° . Similarly, a mode 2 sweep has each

adjacent valve lagging its predecessor by 90 ° . The pur-

pose of this type of experiment is to excite frequencies

in the compressor and to quantify compressor response

to valve inputs.

Discussed below is a planar pulse sweep of all eight

valves. It is presented as a representative example of the

testing done and highlights problems as well as results

associated with these tests. For this particular sweep,

combustor inbleed was approximately 0.8 lbm/sec of

air, thereby reducing the compressor airflow by that
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amount and allowing compressor operation closer to the
nominal surge line. The test procedure called for the
ejector valves to be set at 25% of full open at the start of
the sweep. Thus, the ejectors contributed to the com-
pressor airflow and did modify the compressor operat-
ing conditions.

Figure 6a is the time trace of the transducers collo-
cated with the jet ejectors in front of the fLrststage and
fig. 7a shows the transducers in front of the second stage
rotor. The transducers in front of the second stage rotor
were located at essentially the same circumferential
locations as those in front of the first stage. Therefore,
each of these wansducers was nearly downstream of a
stage 1 transducer and it's collocated jet ejector.

Notice in fig. 6a that all of the jet ejectors did not
operate equally well. Specifically, ejectors 1, 4, and 6
appeared to less effective at higher frequencies (over
100 Hz) and ejectors 2, 5, and 7 clearly did not have a
uniform response over all frequencies. The controllers
for these ejectors were of an analog rather than digital
design, making consistent operation of the valves
extremely difficult.

Also notice that there is no clearly obvious effect on
the stage 2 transducers shown in fig. 7a.

Spatial Fourier Analysis

Initially, we will consider the higher modes that are
excited as a result of the existence and operation of the
valves during this planar pulse sweep. This will identify
system differences and non-linear effects.

Figures 61) & 7b show remarkable results. In con-

trast with the results of the surge event shown in figs. 2b
and 3b, the first stage (fig. 6b) shows no phase angle
tracking while the transducers in front of the second

stage (fig. 7b) clearly show strong phase angle tracking
for both modes 1 and 2. The tracking frequencies in
front of the second stage rotor appear to be about 61%
of the rotor speed.

During the forced response test, as previously men-
tioned, the jet ejectors were initially set to 25% of nomi-
nal full open and actuated at +12.5 % of their nominal
rated massflow. It would appear that the presence of the
jet ejector flows in front of the first stage rotor disrupt
the development of simply overwhelm any modal waves
at the compressor inlet. Attempts to surge at ground idle
with the ejectors operating during these tests have indi-
cated that the compressor operates stably at much lower

massflow although this improvement has yet to be quan-
tiffed.

Power spectral differences are shown in figs. 6c,d,e
and 7c,d,e. The long data acquisition time for this test
(approximately 20 seconds) explains the extreme reso-
lution of frequencies displayed in these figures.
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Mode 1, stage 1 forced response test SPM differ-
lx_O -4

ence (fig. 6c) shows strong energies at 0.6 RF, 1.3 RF,

and 1.7 RE The 0.6 RF signal is generated in the 2500-

3500 RR time period, as shown in fig 6b. Mode 2, stage
1 results for the forced response test (fig. 6d) has a char-

acteristic spike at -1.7 RF. This negative traveling wave

energy is the reason for the overall negative tracking

shown in fig. 6b for mode 2. Mode 2 data also contains a

smaller traveling wave at about 0.85 RF.

Mode 1, stage 2 data (fig. 7c) show sharp spikes at
0.85 RF, 1.3 RF, and 1.7 RE As was mentioned in the

surge data analysis, 1.7 RF is twice the 0.85 frequency

and the strong 1.3 RF signal bisects the two. Mode 2,

stage 2 results (fig. 7d) have a very strong forward trav-

eling wave at 1.7 RF with much weaker peaks at 0.85
RF and 1.3 RF. Curiously, there exists no traveling wave

energy at the apparent phase angle slope shown in fig 7b
for either modes 1 or 2. 2.OxlO-4

Mode 3 data for both stages (figs 6e and 7e), while

much clearer than the surge event data, again reflect

extremely weak signals.

Modal Wave Transfer Analysis

A review of the coherence and transfer function cal-

culations (figs 9) would indicate a large number of high

coherence frequencies with strong transfer functions

(for example, mode 1 frequencies include 0.6, 0.85, 1.0,

1.2, 1.3, 1.7, and 3.0 RF). To isolate the important fre-

quencies, the results of the PSD analysis must be used.

For the mode 1 traveling waves, 0.6 RF, 1.3 RF, and
1.7 RF show high coherences. The 1.3 RF shows a

transfer through the stage of nearly 1.0 and the 1.7 RF is

enhanced through the stage with a transfer function of

almost 2.0. Similarly, both the mode 2 traveling wave

energies of 0.85 RF and 1.7 RF show a strong transfer
function of 2.0 and 3.0 with high coherences for both.

Mode 3 shows three strong coherences, at 0.6 RF,

1.0 RF, and 3.0 RF, but the transfer functions and PSD

magnitudes at those frequencies are extremely weak.

Comoarison Between the Sure Exa_eriment

aad the Forced Response Exoeriment
(Modes 1.2. and 3)

A detailed comparison between the forced response
test data and the surge data reveal much commonality

between the two datasets (as would be expected), but
there do also exist differences.

Mode 1, stage 1 surge data includes a peak at 0.9

RF while the forced response data includes a 0.6 RF

peak. Both contain 1.0 RF and 1.3 RF traveling wave

energy.
Mode 2, stage 1 data both contain strong traveling
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wave signals at 1.7-1.8 RF but the forced response

results are apparently traveling in the reverse direction.

The signal at 2.0 RF exists for both but is much damped

in the forced response results.

Mode 3 surge data, while weaker than the more fun-

damental modes, still contains traveling waves at 1.8 RF
and 3.0 RF while these are not at all apparent in the

forced response results.

In front of the second stage, mode 1 results are sim-

ilar for both sets of data with traveling energies at 0.85

RF, 1.3 R.F, and 1.75 RF.

Similarly, mode 2 results are very similar between

the two sets of stage 2 data with common frequencies at

approximately 0.85, 1.3 RF, and 1.7 RF with the last

being the strongest by far.

The existence of the ejectors during the forced
response experiment excited a mode 1 traveling wave at

0.6 RF when actuated at higher frequencies (above 200

Hz) in front of the first stage rotor. It s_engthened the

1.0 RF signal for mode 1. It also induced a strong mode
2 reverse traveling wave at 1.7 RF. Lastly, it damped the

mode 3 traveling wave energies.

The traveling wave content in front of the second

stage appeared largely unaffected by the ejectors.

The transfer functions, however, indicated that at

modal frequencies with strong coherence, the presence

of the ejectors greatly increased the strength of the

energy enhancement across the stage 1 for 1.3 RF in

14



mode 1 and 1.7 RF in mode 2.

Planar Pulse (Mode O) Snatial Fourier

Analysis

Figure 10 presents the planar wave energy for the

valve commands, stage 1 pressure transducers, and

stage 2 pressure transducers during the planar pulse

sweep. Since these are planar pulse calculations, the

plots do not present differences, but, rather, the positive

frequency output of a temporal FFT calculation on the
valve command or transducer pressure averaged over

eight transducer (or valve) locations at each sample
time.

Since the valve command plot does not show input

pressure traces but valve position commands, fig. 10a

merely shows the desired signal inputs. The valve com-

mand signal clearly shows a planar wave content.

The processed spectral magnitudes from the data

acquired by the stage 1 transducers show considerable

planar data wave energy. Peaks exist at about 0.6 RF
and, also, at about 1.2 RF.

Figures lla & llb show the estimated transfer

function magnitudes between the average commanded

valve position and the first stage transducers (fig lla)

and between the stage 1 and stage 2 transducers (fig.

lib). Figures 12a & 12b show the coherence calcula-

tions that correspond to figs. lla & lib.

It is clear from figure lla that there is a strong

transfer in the system between the commanded valve

positions and the transducer location upstream of the

compressor. These occur over large regions of the input

frequency sweep. The coherences shown in fig. 12a also

indicate this with very high coherences across most of

the frequencies of interest. The drops in coherence at

-0.8 RF, -1.3 RF, and -1.8 RF are currently under
study. These drops do imply that, at these frequencies,

the planar pulses occurring are not driven by the valves

but by other system dynamics.

The transfer of the planar pulse across the first stage
is much less clear. Certainly, there exists a slightly

higher coherence between 0.0 RF and 0.5 RF but this

coherence is still very much lower than the desired 0.7.

With the exception of a very low frequency (approxi-

mately in the range of the surge frequency) transfer

function in the range of 0.05 RF, the transfer function is

very low with the exception of sharp spikes at a number

of frequencies. Acceptably high coherenee.s exist only at
0.6 RF, 0.85 RF, 1.2 RF, 1.3 RF, and 1.7 RF.

Summary of the Forced Res_tmnse E _xperi-

merit

The existence of jet ejectors in front of the corn-

pressor clearly affected the operation of the first stage of

the compression system. Traveling wave energy in front

of the first stage rotor was damped over most of the pla-

nar pulse sweep, including that portion of the experi-

ment where the ejectors were fixed at a single valve

position. However, at higher valve frequencies, a mode

1 traveling wave emerged that appeared to travel at

-60% of the rotor speed.

The existence of jet ejectors apparently enhanced

the phase angle tracking in front of the second stage

rotor but no strong spectral magnitude peak exists at the

apparent frequency of travel.

At the inlet of stage 1, strong PSD signals exist at

0.6 RF, 1.3 RF, and 1.7 RF for mode 1. Strong PSD sig-

nals exist for -1.7 RF for mode 2. At the inlet for stage

2, strong PSD signals exist for 0.85 RF, 1.3 RF, and 1.7

RF. These peaks reflect a traveling wave of varying

magnitude that is moving at approximately 1.3 RF. No

strong energy exists in the third mode.

The transfer function/coherence analysis indicate

that mode 1 transfer of coherent signals occur at 1.3 RF

(transfer of-l.0) and 1.7 RF (transfer of-2.0) while the

mode 2 transfer of signal occurs at 0.85 RF (transfer of

-2.0) and 1.7 RF (transfer of-3.0).

Clearly there exists a strong planar pulse transfer

function with high coherence between the valve position

command and the compressor inlet static pressure over

most of the frequencies excited by the valves. However,

the transfer across the first stage is very much weaker.

Nonetheless, certain very low frequencies (in the proba-

ble range of surge cyeles) show an indication of higher

energy transfer and higher coherence.

Once again, certain frequencies appear in the planar

prise transfer function. These are 0.9 RF, 1.3 RF, and
1.7 RF.

CONCLUSIONS

1) It is clear that several wave faequencies dominate

the data presented here. They are at about 0.9 RF, 1.3

RF, and 1.75 RF. They are transferred across stage 1

with little damping or with amplification. One or more

of these frequencies exists in the planar pulse, modes 1,

and mode 2 sets of data. They frequencies appear to be

coupled to each other, across the stage and in the various
modes.

2) The ejectors clearly affect the traveling wave

(Modes 1 and 2) development in front of the first stage

by damping the development. Above 250 Hz (roughly

the last 30% of the valve sweep), the ejectors enhance

the development of a traveling wave at about 60% RF in

front of stage 1. It would appear that they can be an

effective controlling mechanism for active stall conUrol

at ground idle.
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3)The presence of the ejectors enhances the trans-

fer of energies across stage 1 at about 1.3 RF (mode 1)
and at about 1.7 RF (mode 2).

4) The ejectors enhance the phase angle tracking in

front of the second stage rotor, probably by the disrup-

tion of weak traveling waves in front of stage 2.

5) There exist a strong system coherence between

the valve command and stage I (compressor inlet) trans-

ducers over the valve actuation range with the exception

of three frequencies bands centered around 0.75 RF, 1.3

RF, and 1.8 RF.

6) The transfer function and coherence results

across the first stage are ambivalent but some indica-

tions exist that low frequency planar pulses are trans-

ferred across the first stage.

APPLICATION TO ACTIVE STALL

CONTROL

The presented data indicate that the traveling wave

energies at -0.9 RF, -1.32 RF, and -1.7 RF are the

important wave energies at this engine speed. It is also

likely that they are strongly coupled.

It is apparent that the jet injectors used in this

experiment can be effective in this engine at ground idle
as the disruption of traveling waves in front of the first

stage clearly indicate.

The analysis technique presented here will aid in

quantifying the effects of the ejectors at given frequen-

cies. It shows the traveling wave frequencies of impor-

tance in the compressor first stage at ground idle. This

planar pulse sweep shows that certain frequencies

respond to the planar pulse inputs, specifically, 1.32 RF

(mode 1) and 1.7 RF (mode 2).

These data have also clearly highlighted the domi-

nant frequencies in this compressor at ground idle.

However, these results have not shown the effectiveness

of the ejectors at exciting a particular traveling wave

frequency. This information will be obtained from the

analysis of the Mode 1 & 2 sine sweep data.
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