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Abstract

A modification of airfoil section geometry is examined for improvement of the leading

edge pressures predicted by the Computational Aeroelasticity Program--Transonic Small

Disturbance (CAP-TSD) [1]. Results are compared with Eppler solutions [2, 3] to assess

improvement.

Preliminary results indicate that a fading function modification of section slopes is

capable of significant improvements in the pressures near the leading edge computed by CAP-

TSD. Application of this modification to airfoil geometry before use in CAP-TSD is shown to

reduce the nonphysical pressure peak predicted by the transonic small disturbance solver.

A second advantage of the slope modification is the substantial reduction in sensitivity of CAP-

TSD steady pressure solutions to the computational mesh.

Introduction

The Computational Aeroelasticity Program--Transonic Small Disturbance (CAP-TSD)

code is an algorithm developed to predict unsteady behavior of realistic aircraft configurations

[1]. CAP-TSD makes use of the Transonic Small Disturbance equation to solve for the steady

and unsteady pressures acting on the aircraft geometry. This equation assumes that the geometry

produces only a small disturbance of the flow, restricting the input geometry to thin wings at

small angles of attack.

Applying the Transonic Small Disturbance equation to thick wing geometries violates the

small disturbance assumption and results in large values of pressure near the leading edge that

are nonphysical in nature. These large pressure values reduce the accuracy of CAP-TSD flutter

analyses and reveals the sensitivity of CAP-TSD solutions to the computational mesh density.

The primary objective of the current study is to develop an empirical method to reduce

the magnitude of the nonphysical pressures near the leading edge. A secondary objective is to

reduce the mesh sensitivity of CAP-TSD steady pressure solutions.



where,

Transonic Small Disturbance Equation

The Transonic Small Disturbance equation used in CAP-TSD is represented by
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In equations (1-9) the _ term is the small disturbance velocity potential, M.. is the free-stream

Mach number, and T is the specific heat ratio. The Transonic Small Disturbance (TSD) equation

is used by CAP-TSD to produce steady or unsteady pressure solutions. Steady solutions are the

focus of the present study. The TSD equation assumes that the wing geometry causes only a

small disturbance of the flow. Applying the TSD equation to thick wing geometries violates the

small disturbance assumption and results in the prediction of a pressure spike near the leading

edge that is nonphysical in nature. This leading edge pressure spike is predicted because of the

overestimation of surface velocities near the leading edge.

According to the equations employed in CAP-TSD, surface slopes of the wing geometry

define the z-component of the perturbation velocity, gtz. This leads to an inconsistency between
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thecomputationalschemeandthephysicsof theproblem. As thecomputationalmeshisrefined

nearthe leadingedge,increasingslopesincreasethemagnitudeof theCzterm. This leadsto the

predictionof asignificant¢Iz termat thestagnationpointof thesection. It is this inconsistency

betweenthephysicsandthecomputationaltreatmentof theproblemthatgivesrise to the leading

edgepressurespike.

Method of Approach

The current work examines slope modifications applied to two different 2-D airfoil

sections, the MS--0313 [4] and NLR-7301 [5]. A cosine distribution of points with no point at

the leading edge of the section was used to generate the computational meshes applied to these

airfoil sections. In these grids, as the number of grid points was increased, the first point of the

mesh is successively closer to the leading edge of the section.

The slope modifications used in this investigation are based on Riegel's Rule as

discussed by Van Dyke [6]. Riegel's Rule is a first-order velocity correction for use with thin

airfoil theory solutions for surface speed. Riegel's Rule is represented by

q/U = q/Ucosh (10)

where,

h = tan -1 (dz/dx). (11)

is the corrected surface speed, q/U is the original surface speed,In equations (10) and (11), q/U

and dz/dx is the section slope.

Riegel's Rule is used as the basis for the slope modifications because the nonphysical

pressure spike of CAP-TSD solutions is similar in appearance to the pressure spike of thin airfoil

theory solutions. As discussed in the previous section, the perturbation velocity is used by the

Transonic Small Disturbance equation to solve for the steady pressure coefficients, and the

predicted surface speeds are driven by section slopes. The slope modification based on Riegel's

Rule is represented by

dz/dx = dz/dx cos h (12)



where,dz/dx is themodified sectionslope,dz/dx is the original section slope, and h is given in

equation (11). The advantage of applying equation (12) to the section geometry before use in

CAP-TSD is that the slopes are significantly reduced, resulting in a section geometry in better

agreement with the small disturbance assumption. The negative aspect of this geometry

modification is that the section geometry input to CAP-TSD may be significantly different than

that of the original section. For this reason a second slope modification is examined which alters

only a portion of the section near the leading edge.

The nonphysical pressure spike is only evident near the leading edge of the section.

For this reason a slope modification which only alters the leading edge geometry is investigated.

A slope modification similar to that of equation (12) is applied with a fading function, such that

the leading edge is gradually altered up to 10% chord. From 10% chord aft the section geometry

is unaltered. The fading slope modification is represented by

dz/dx = dz/dx [ 1 + ( f cos(h)- 1 ) cos (/1_ Xpt/2(ept) ] (13)

where, dz/dx is the modified slope, dz/dx is the true section slope, f is the function constant

(altered to match desired pressure coefficients), Xpt is the grid point number of the point

considered, and ept is the grid point number corresponding to the end point of the fade. For the

purposes of the current investigation the grid point number corresponding to 10% chord is

chosen for ept.

Comparison with Eppler

The current investigation requires a full-potential solution to assess the accuracy of the

CAP-TSD solutions. The Eppler computational algorithm [2, 3] is used to produce this solution.

Eppler is a potential flow solver which makes use of a panel method and compressibility

correction to predict steady pressure coefficients on a given airfoil.

The full-potential equation is a higher-level approximation than the transonic small

disturbance equation. It does not assume a small disturbance but still assumes isentropic,

irrotational, and inviscid flow. Although a full-potential solver such as FLO36, developed by

Jameson [7], would be most appropriate, Eppler is used for the current investigation because of
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accessibility and computational time considerations. Figure 1 shows a comparison of steady

pressure coefficients as predicted by Eppler and FLO36
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Figure 1: Comparison of Eppler and FLO36 Pressure Solutions for

MS-0313 airfoil section, M= 0.69, alpha=-0.75 deg

for the MS-0313 airfoil section at a Mach number of 0.69 and angle of attack of-0.75 °.

Figure 1 reveals a good comparison between Eppler and FLO36 for the condition examined.

This comparison is the basis of justification for using the Eppler code. A limitation of using

Eppler for this investigation is that the computational code is not capable of solving for flows in

the transonic range. For this reason the Mach numbers examined must be below those which

produce sonic flow. Although figure 1 shows a slight violation of this requirement, subsequent

analyses were maintained below the sonic flow level.

Discussion of Results

Figures 2, 3, and 4 display the leading edge pressure rise present in CAP-TSD solutions

for unaltered airfoil geometry, Riegel's Rule modified slope geometry, and fading function

modified slope geometry, respectively. Comparison of these three figures lends insight into the



level of improvement the slope modifications are capable of. Figure 2 displays the characteristic

pressure spike resulting from a CAP-TSD solution for the NLR-7301 airfoil geometry.
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Comparison of CAP-TSD and Eppler Solutions for
Thick Section Geometry

The solutions shown in figure 2 are for the NLR-7301 section at a Mach number of 0.6

and angle of attack of 0 o. Note that the pressure spike becomes increasingly severe as the

number of computational mesh points is increased from 32 to 52. This is because the fu'st grid

point of the 52-point case is nearer the leading edge of the section, and therefore has an

increased slope over that of the 32-point case. Another key point of figure 2 is the severity of

the pressure spike in both CAP-TSD solutions compared to the physical leading edge pressure

rise indicated by the Eppler solution. The primary objective of the two airfoil slope

modifications is to reduce the severity of the pressure spike predicted by CAP-TSD.
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Figure3 showstheeffectivenessof applyingtheRiegel'sRuleslopemodificationto the

NLR-7301 sectiongeometryprior to usein CAP-TSD. TheRiegel'sRulemodificationis

presentedin equations(11)and(12).
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Figure 3: Comparison of CAP-TSD Solution for Modified
Section Geometry with the Eppler Solution
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The solutions in figure 3 correspond to the conditions used for the 52-grid-point solution

in figure 2, with a Mach number of 0.6 and 0 o angle of attack. The scale of the axes in figures 2

and 3 is the same. This scaling allows the Riegel's Rule slope modified solution of figure 3 to be

easily compared with the solution for the unaltered section geometry displayed in figure 2.

Figure 3 reveals that the Riegel's Rule slope modification over-corrects the nonphysical leading

edge pressure spike such that the CAP-TSD solution under predicts the Eppler solution.

The slope modification results in a significant improvement in the pressure coefficients near the

leading edge. The upper surface pressure spike of the Riegel's Rule slope modification has a
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peakcoefficientof-l.0 comparedto thepeakcoefficientof-2.8 for theCAP-TSD solutionof

theunalteredsectiongeometry.TheEpplersolutionhasanuppersurfacepressurecoefficientof

-1.3 at the leadingedgepressurepeak. Thiscorrespondsto a 119.0%differencebetweenEppler

andtheCAP-TSD unalteredgeometrysolutioncomparedto a 23%differencebetweenEppler

andtheslopemodifiedCAP-TSD solution.

Figure4 displaystheeffectivenessof applyingthefadingmodifiedslopegeometryto

CAP-TSD.

1.5

1.0

0.5

-Cp

0.0

-0.5

-I.0 I

0.0
I I I I

0.2 0.4 0.6 0.8 1.0

CAP-TSD

52 Grid Points

(Fade Modified Slopes)

......... Eppler

x/c

Figure 4: Comparison of CAP-TSD Solution for Fading
Slope Modified Section Geometry and Eppler

Conditions for the solutions displayed in figure 4 correspond to those of figures 2 and 3, that is, a

52-grid point computational mesh, a Mach number of 0.6, and an angle of attack of 0 o.

Note that in figure 4 the y-axis range is altered from that of figures 2 and 3. This change allows

an improved view of the level to which the CAP-TSD solution using the fading modified slopes
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agreeswith theEpplersolution. Thefadingslopemodificationis presentedin equations(11) and

(13). Theresultsof usingthefadingslopemodificationis shownin figure4, andit is seento

significantlyimprovethecorrespondencebetweenCAP-TSD andEpplersolutions.

Theleadingedgepeakof theuppersurfacepressurecorrespondsto acoefficientof -1.3 for the

CAP-TSD solutionwith fadingfunctionmodifiedslopes.Thiscorrespondsto apercentage

differenceof 2.4%betweentheEpplersolutionandtheCAP-TSD solutionusingthefading

modifiedslopegeometry.

Oneadvantageof thefadingmodificationoverRiegel's Ruleis thatonly the leadingedge

of the sectionis altered. This leavesthesection'slesssevereslopeslying behindtheleading

10%chordunaltered.This way themodificationplacesgreateremphasison theleadingedge

regionandde--emphasizestheaft-portion of theairfoil, wherethetruesectiongeometrymaybe

assumedto bemoreconsistentwith thesmalldisturbanceassumption.

Thefading slopemodificationmakesuseof aconstant(fadefactor)to improve

correspondencebetweentheCAP-TSD andthetargetsolutions.This factor is representedasf

in equation(13). Thefactorusedfor theresultsdisplayedin figure4 is 1.2. For bestresultsthe

factormustbechosenthroughcomparisonof CAP-TSD andthe"ideal" solution. This requires

thatthetargetsolutionbeknownbeforeuseof thefadingslopemodification. Figures5-9 will

provideinsight into thedegreeto whichthefadefactor, f, dependsonangleof attack,Mach

number,andleadingedgegeometry.

Figure5 displaysacomparisonof theCAP-TSD solutionsfor both theunalteredand

fadingmodifiedslopegeometries.
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Figure 5: Comparison of Eppler Solution with CAP-TSD Solutions

for Fading Modified and Unaltered Section Slopes

NLR-7301 Airfoil, Mach = 0.5, c_ = 2 °

Solutions displayed in figure 5 are for the NLR-7301 section with Mach number equal to 0.5,

angle of attack of 2 °, and a 52-point computational mesh. The fade factor, f, is 1.2. This figure

shows that the fading slope modification yields a CAP-TSD solution that is in good agreement

with the Eppler solution. Figure 5, also shows that the combined changes of angle of attack and

Mach number from those used for the solutions displayed in figure 4 have little effect on the

choice of fade factor. A factor of 1.2 appears to be appropriate for both cases.

Figure 6 displays the CAP-TSD and Eppler solutions for the MS-0313 airfoil section

with the conditions of a Mach number equal to 0.69 and angle of attack of-0.75 o.
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Figure 6: Comparison of CAP-TSD (Fade and Unaltered Geometries)

and Eppler Solutions for MS--0313 Airfoil Section

Mach = 0.69, c_ = -0.75 °

The conditions of the solutions displayed in figure 6 are identical to those of figure 1, the

comparison of Eppler and the Full Potential solver FLO36. The fading slope modified solution

displayed in figure 6 uses a fade factor, f, of 1.2. This comparison shows that the thinner leading

edge slopes of the MS-0313 section allow CAP-TSD to produce a solution in better agreement

with Eppler than for the NLR-7301. Note that the fading slope modification slightly improves

the CAP-TSD solution in comparison with the unaltered geometry solution. Though an

improvement, the fading slope modification does not produce a CAP-TSD solution at the level

of agreement with Eppler displayed in the previous figures. This indicates that the fade factor of

1.2 is too high a value for the MS-0313 section at this Mach number and angle of attack.
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Figure 7 displays a comparison of CAP-TSD and Eppler solutions for the same

conditions of figure 6, a Mach number of 0.69, angle of attack of-0.75 o, and 52-point

computational mesh. The fade factor of the fading slope modification is here changed from 1.2

to 1.0.

......... CAP-TSD
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Eppler

-1.0

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 7: Comparison of CAP-TSD and Eppler Solutions for

MS--0313 Airfoil Section, Mach = 0.69, _ = -.75 o

Figure 7 shows that for these conditions and the MS-0313 section a fade factor of 1.0 slightly

underpredicts the upper surface pressure peak of the Eppler solution. This reveals a sensitivity of

effective fade factor to the leading edge geometry of the airfoil section.

Figures 8 and 9 are used for examination of the effect of angle of attack on the choice of

fade factor. Figure 8 displays the CAP-TSD and Eppler solutions for the MS-0313 section at a

Mach number of 0.55, an angle of attack of 0 o, and a 52-point computational mesh.
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Figure 8: Comparison of CAP-TSD and Eppler Solutions for

MS-0313 Airfoil Section, Mach = 0.55, _ = 0 °

Figure 8 shows that the fading slope modification with a fade factor of 1.0 is in good agreement

with the Eppler solution at the upper surface pressure peak. The modified geometry also leads to

a significant improvement of the lower surface pressures in the leading edge region. The change

in Mach number and angle of attack from the conditions used in the figure 7 comparison appear

to improve the effectiveness of this fade factor, f = 1.0.

Figure 9 displays the CAP-TSD and Eppler solutions for the MS--0313 airfoil at a Mach

number of 0.55, an angle of attack of 2 °, and a 52-point computational mesh.
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Figure 9: Comparison of CAP-TSD and Eppler Solutions for

MS--0313 Airfoil Section, Mach = 0.55, cx = 2 °

This figure again shows that the fading slope modification with a fade factor of 1.0 is in

reasonably good agreement with the Eppler solution. Figures 7, 8, and 9 indicate that the

effectiveness of a given fade factor is primarily a function of leading edge bluntness, while angle

of attack and Mach number have a less significant influence on the effectiveness of a given fade

factor.

Figures 10 and 11 indicate the mesh sensitivity of the CAP-TSD solutions for the fading

modified slope and unaltered section geometries. Figure 10 displays the CAP-TSD unaltered

section geometry and Eppler solutions for the NLR-7301 section with the computational meshes

of 32 and 52 points, a Mach number of 0.6, and an angle of attack of 0 o.
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Figure 10: Mesh Sensitivity of CAP-TSD Unaltered Geometry

Solutions for NLR-7301 Airfoil Section, Mach = 0.6, cx= 0o

Figure 10 reveals the extreme mesh sensitivity of CAP-TSD solutions for the unaltered NLR-

7301 geometry. Here the upper surface pressure spikes vary from a coefficient of-2.7 for the

52-point computational mesh to -2.0 for the 32-point mesh.

A secondary goal of the current investigation is to reduce the mesh sensitivity of CAP-

TSD solutions. Figure 11 displays the mesh sensitivity of CAP-TSD solutions using the fading

slope modified geometry.
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Mesh Sensitivity of CAP-TSD Fading Slope Modified Geometry Solutions for

NLR-7301 Airfoil Section, Mach = 0.6, cx = 0o

Figure 11 shows that the fading slope modification effectively reduces the sensitivity of CAP-

TSD solutions to the computational mesh density as well as producing a better comparison with

Eppler.

Concluding Remarks and Recommendations

A fading function slope modification of airfoil section geometry is developed and

investigated for use in the Computational Aeroelasticity Program--Transonic Small Disturbance

(CAP-TSD). The fading modification of slopes is motivated by Riegel' s Rule as presented by

Van Dyke [6]. The fading modification presented in the current paper alters only the leading
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10% of the airfoil section geometry. A fade factor is chosen to match the CAP-TSD solution

with an "ideal" solution.

Although the results of the current study are limited in scope, effectiveness of the fading

factor appears to be primarily driven by the leading edge bluntness of the airfoil section

considered. Effects of possible secondary drivers such as Mach number, angle of attack, and

computational mesh density are investigated in limited detail. For the cases examined the

effectiveness of the fading factor is not overly sensitive to Mach number, angle of attack, or

computational mesh density. However, the effectiveness of the fading factor is highly sensitive

to the leading edge geometry of the airfoil section.

For the NLR-7301 [5] section, a fade factor of 1.2 is determined to be appropriate.

This fade factor results in a high level of agreement between CAP-TSD and Eppler solutions for

the following cases: (1) Mach = 0.6, o_ = 0 °, mesh = 52 grid points (all meshes considered use a

cosine distribution of points); (2) Mach = 0.6, _ = 0 °, mesh = 32 grid points; (3) Mach = 0.5,

= 2 o, mesh = 52 grid points.

The second airfoil section used for investigation is that of the MS-0313 [4]. A fade

factor of 1.0 is chosen for use of the fading slope modification with the thinner slopes of the

MS-0313 section. For the case of Mach = 0.69, _ = --0.75 °, and a 52 point mesh, a fade factor

of 1.0 slightly underpredicts the upper surface pressure peak. For the two cases of Mach = 0.55

and angles of attack of _ = 0 ° and o_= 2 °, this fade factor produces pressure predictions in good

agreement with Eppler at the upper surface pressure peak.

The fading modification of section slopes as presented in this investigation appears to be

a promising means of improving the leading edge pressures predicted by CAP-TSD. A key

aspect for the effectiveness of the fading modification is the choice of fade factor. With the

proper fade factor, this modification is capable of matching the leading edge pressure peak

predicted by CAP-TSD to an "ideal" solution. The results of this investigation suggest that the

fade factor is not overly sensitive to angle of attack, Mach number, or computational mesh

density. This would mean that the choice fade factor must only be examined once for a given
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sectiongeometry.Oncechosenthis factorcouldbeappliedarbitrarily to thesectionwithout

regardto Mach number,angleof attack,or computationalmeshdensity.

Although theresultsof thecurrentstudyareencouraging,theyarenotcomplete. Dueto

thelimitations of theEpplercode(usedfor comparisonwith CAP-TSD solutions),thecurrent

investigationexaminesonly subsonicMachnumbers.Theeffectivenessof thefading slope

modificationis expectedto beunaffectedby thechangeto transonicMachnumbers.

A secondandmoresignificantlimitation of thecurrentstudyis thenumberof airfoil

sectiongeometriesconsidered.In orderfor this modificationto bewidely andeasilyappliedthe

correspondencebetweenleadingedgegeometryandeffectivefadefactormustbedetermined.

Thiswill mostlikely requireextensiveinvestigationof severalairfoil sectionsof varying leading

edgebluntness.TheNLR-7301 section,usedfor investigationin thisstudy,is mostlikely on the

high endof leadingedgebluntnessfor airfoil sectionsof interest.TheMS-0313 section,also

investigated,is mostlikely in themid-rangein termsof leadingedgebluntness.
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