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Abstract

This paper presents the results of modeling and system identification efforts on

the NASA Large-Angle Magnetic Suspension Test Fixture (LAMSTF). The LAMSTF

consists of a cylindrical permanent magnet which is levitated above a planar array

of five electromagnets mounted in a circular configuration. The analytical model is

first developed and open-loop characteristics are described. The system is shown to be

highly unstable and requires feedback control in order to apply system identification.

Limitations on modeling accuracy due to the effect of eddy-currents on the system are

discussed. An algorithm is derived to identify a state-space model for the system from

input/output data acquired during closed-loop operation. The algorithm is tested on

both the baseline system and a perturbed system which has an increased presence of

eddy currents. It is found that for the baseline system the analytic model adequately

captures the dynamics, although the identified model improves the simulation accu-

racy. For the system perturbed by additional unmodeled eddy-currents the analytic

model is no longer adequate and a higher-order model, determined through system

identification, is required to accurately predict the system's time response.
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1 Introduction

The Large Angle Magnetic Suspension Test Fixture (LAMSTF) has been assembled by

the NASA Langley Research Center for a ground-based experiment that will be used to

investigate the technology issues associated with magnetic suspension at large gaps. This

technology is applicable to future efforts that range from magnetic suspension of wind-tunnel

models to advanced spacecraft isolation and pointing systems.

The LAMSTF system consists of a planar array of five electromagnets which actively

suspend a small cylindrical permanent magnet (see Figure 1). The cylinder is a rigid body

and has six independent degrees of freedom, namely, three displacements (x, y and z) and

three rotations (pitch, yaw and roll). The roll axis of the cylinder is uncontrollable and is

assumed to be motionless. A position sensing system is used to indirectly sense the pitch,

yaw, x, y, and z position of the cylinder. It consists of six pairs of laser sheet sensors and

photo-detectors mounted on a platform surrounding the suspended element. Therefore, the

inputs consist of five currents into the electromagnets and the outputs are six voltage signals

from the photo-detectors. The input currents to the electromagnets generate a magnetic field

which produces a net force and torque on the suspended permanent magnet. Bias currents

produce a force to counteract gravity. However, the field distribution about the suspension

point produces forces which cause the suspension to be unstable. The linear model describes

the systems dynamics in a region about this unstable equilibrium point. References [1] and

[2] give a more complete description of the LAMSTF and some of the control approaches

which have been investigated.

The analytical state-space model of LAMSTF is developed in Section 2. It has three highly

unstable real poles and two low-frequency stable oscillatory modes. Experimental results

obtained with controllers designed using the analytical model show reasonable agreement

with simulation results. However, there are differences in predicted frequency and level of

damping in the pitch axis. The differences are believed to be due to eddy-currents induced in

the electromagnet's iron cores which are not considered in the system model. The objective

of this paper is to derive the analytical model for a large-gap magnetic suspension system,

and to demonstrate system identification as a method of eliminating model errors due to

eddy-currents.

In the past few decades, a great variety of system identification methods have been stud-

ied. The choice of an identification method depends on the nature of the system and the

purpose of identification. For control of a dynamic system, the state-space model is usually

preferred. Recently, some methods were introduced [3] - [5] to identify a state-space model

from a finite difference model. The difference model, called Auto-Regressive with eXogenous

input (ARX) model, is derived through Kalman filter theories. This derivation is based on

a deterministic approach. For identifying linear stochastic systems, projection filters are

required as developed in [6] and [7]. There, the relationship between the state-space model

and the ARX model was derived based on optimal estimation theory. In Section 4 this

relationship is re-derived in a much simpler way through a z-transform of the ARX model.
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Sincethe LAMSTF systemis highly unstable,feedbackcontrol is requiredto ensureoverall
systemstability while obtaining input/output data. The identification algorithm is applied
to identify a state-spacemodel from the plant input to the plant output. This system
identification includesthe following steps. First, the coefficientmatricesof an ARX model,
which can representthe correspondingstate-spacemodel, are estimated from the plant in-
put/output data via the least-squaresmethod. Second,the systemand Kalmanfilter Markov
parametersarecomputedfrom the estimatedcoefficientmatricesof the ARX model in a re-
cursiveway. Third, the system matricesare realizedfrom Hankel matrices formed by the
system Markov parametersvia the singular-valuedecompositionmethod [8], [9].

Experimental resultsarepresentedin Section5. Stepresponsesfrom simulationsand test
data are used to comparethe accuracyof identified modelsof the baselineand perturbed
systemwith the analytic model. It is found that the analytical model has a deficiency which

is most evident in the dynamics of the pitch axis. Previous work with this system [2], [10]

showed that increasing eddy-currents by placing an aluminum ring around the suspended

element increases the modeling error in the pitch dynamics. For the baseline system the

analytic model adequately captures the dynamics, although the identified model improves

the simulation accuracy. For the system perturbed by an aluminum ring the unmodeled

eddy-currents produce larger errors in pitch response and a higher-order model, determined

through system identification, is required to accurately predict the system's time response.

2 System Modeling

A representation of this system is shown in Figure 1. The motion of the cylinder is defined

by the body fixed axes, x, 9, z, that define the motion of the cylinder with respect to fixed

inertial axes x, 9, z. The development here follows the approach detailed in [11] and [12].

In a large-gap magnetic suspension system torques on the suspended element in the inertial

coordinate system can be approximated as,

Tc =/v(M x B)dV ,._ u(Mo x 13o) (1)

and forces as,

Fc= /v(M. T)BdV ,-_ u(Mo. V)/3o = v[OBo]Mo (2)

where v is the volume of the permanent magnet core, M is the magnetization of the core,

B is the flux density, and OB is a matrix of gradients. The approximation assumes that the

magnetization is uniform over the core volume and that the higher order terms, obtained by

expanding/3 about the origin of the core axis system are negligible.

In body fixed coordinates, the torque becomes

(Mo (3)
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and the corresponding force,

Fc "_, uTm[OBo]T_l i(lo (4)

where Tm is an Euler transformation matrix between the inertial and body fixed coordinate

systems. Under small angle and rate .assumptions we can write the angular and linear

acceleration of the suspended element, fl, V in the body fixed coordinates as

h = 1_-1 (_Pc + 7_s) (5)

=m:'(z + (6)
where Iv, mc is the inertia and mass, respectively, of the suspended element; _'_ and F'¢ denote

the control torques and forces produced by the electromagnets; and _'d and/_d denote external

disturbance torques and forces. For LAMSTF the only significant disturbance acting on the

suspended element is along the z-axis and is equal to its weight

F_=_[0 0 -meg] (Z)

where g is the acceleration due to gravity.

The control torques and forces are functions of position and orientation as well as the

input currents, thus the equations of motion are in the form

m[' (5:, I) + P_)
(8)

where,

x = [ ]T, (9)
and _" is the position and orientation of the body fixed reference frame with respect to the

inertial frame. The equation can be linearized around the nominal operation point (Xo, Io)

by performing a Taylor series expansion. Neglecting second-order terms and subtracting out

Xo results in

,55: = A,sx + BSI, (10)

Ox xo,Io _ xo,lo"
oAwhere ,4 = and B = The eigenvalues and mode shapes of the analytic model

for LAMSTF are shown in Table 1 and Figure 2, respectively.

The development above yields a linear system model which is valid under the stated

assumptions. In practice these assumptions are not overly constraining and are met by the

LAMSTF system. The planar arrangement of electromagnets leads to a symmetric field

distribution, and the suspended element is a uniform cylindrical magnet. Another factor,

however, which is not considered in the model is the dynamic effects of nearby conductors on

the magnetic fields. The actuator coils in LAMSTF contain iron cores which greatly improve

their efficiency. The field in the cores is kept below the saturation level for that material so

hysteresis effects are minimal, ltowever, eddy currents due to changing magnetic fields can

add dynamics to the actuator. Currently the system is modeled using a numerical package
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Analytic Model Nominal Identified Perturbed Identified

0.00- 0.96i

0.00 + 0.96i

0.00- 7.97i

0.00 + 7.97i

1.04- 12.09i

1.04 + 12.09i

0.75 - 7.38i

0.75 + 7.38i

0.54- 10.22i

0.54 + 10.22i

2.02 - 9.22i

2.02 + 9.22i

-9.78

9.78

-57.81

57.81

-58.78

58.78

-6.71

6.53

-56.95

61.72

-58.14

62.76

-6.16

7.16

-57.95

60.33

-58.48

62.65

-256.2

Table 1: Continuous plant eigenvalues for analytic model and identified models, under nom-

inal and perturbed conditions.

which considers the static effect iron cores have on the field distribution of each actuator.

The software cannot, however, predict the dynamic effect of eddy-currents in the iron cores.

In general eddy current effects are difficult to model because the relevant material prop-

erties vary with frequency and the resulting field distortion depends upon the conductor's

geometry. Within a conductor the effect of eddy-currents is purely dissipative. Fields arise

from eddy-currents which exactly oppose the inducing fields and are proportional to the in-

ducing fields time rate-of-change. However, at points outside the conductor, fields may add

in-phase with the suspension fields. For applications where magnetic suspension systems

must operate in the vicinity of complex conductors, detailed modeling of eddy-currents is

difficult if not impossible. For this reason it is desirable to investigate the use of system

identification to refine the analytic models of these systems.

3 Relation Between State-Space and ARX Models

A finite-dimensional, linear, discrete-time, time-invariant system can be modeled as:

xk+l = Axk + Buk + wk, (11)

Yk = Cxk + Duk + uk, (12)

where x E R '_xl, u C R s×l, y C R '_xl are state, input and output vectors, respectively; wk

is the process noise, uk the measurement noise; [A, B, C, D] are the state-space parameters.

Sequences wk and uk are assumed Gaussian, white, zero-mean, and stationary with covariance

matrices Q and R, respectively. One can derive a steady-state filter innovation model [6]

2k+1 = A2k + Buk + AKek, (13)
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Yk = Ckk + Duk + ek (14)

where kk is the a priori estimated state, K is the steady-state Kalman filter gain and ¢k is

the residual after filtering: ek = Yk - Ckk - Duk. The existence of K is guaranteed if the

system is detectable and (A, Q1/2) is stabilizable. Substituting (14) into (13), one has

2k+l = Axk + [TUk + AKyk, (15)

where it = A - AKC, [7 = B - AKD, and ft. is guaranteed to be asymptotically stable

because the steady-state Kalman filter gain K exists. Taking the z-transform of (15) and

(14), one has
k(z) = (z - ft)-'([_u(z) + AKy(z)), (16)

y(z) = C2(z) + Du(z) + _(z). (17)

Substituting (16)into (17)yields,

y(z) = C(z - A)-l(t)u(z) + Agy(z)) + Du(z) + e(z) (18)

Taking the inverse z-transform of (18) with (z - it) -_ = Ei___, A i-lz-i , one has

Yk = _ Cfti-lAKyk-i + _ CAi-lBuk-i -_ Dllk "_- (k (19)
i=l i=1

Since A is asymptotically stable, fii _ 0 if i > q and q is chosen large enough. Thus (19)

becomes
q q

yk + E + (20)
i=1 i=0

where, ai = CAi-IAK, bi = CA i-l_, and bo = D.

The model described by (20) is called the Auto-Regressive with eXogenous input (ARX)

model which directly represents the relationship between output and input without state

variables. The coefficient matrices ai and bi can be estimated through least-squares methods

from random excitation input uk and the corresponding output yk. From (20) and for l

points of the input/output data, one can have

_ 0¢ + E (21)

where,

0 =

1
Yq+l Yq+2 "'" Yl ] ,

bo al bl a2 b2 ""

_q+l ([q+2 -.. el ] ,

Uq+l Uq+2 .'' U l

Cq Cq+l "'" ¢1-1

_q-1 Cq "'" ¢1--2

: : ".. :

O1 _)2 "'" ¢l-q

aq bq ],

, and ¢=
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From (21) it can be seen that parameters of the ARX model are linearly related to the

input/output data. Therefore, solving for an ARX model involves solving a linear system

involving an over determined set of equations. The batch least-square solution for the coef-

ficient matrices ai and bi is

O=¢q )t (22)

where _* is the pseudoinverse of the _ matrix.

4 Markov Parameters and State-Space Realization

The previous section presents the relation between an ARX model and a state-space model.

The ARX model can be estimated through the least-squares method. The estimated ARX

model has to be transformed back to a state-space model for system model comparisons or

controller designs. First, the system and Kalman filter Markov parameters are calculated

from the estimated coefficient matrices of the ARX model. Then a state-space realization

can be obtained by using singular-value decomposition for a Hankel matrix formed by the
system Markov parameters.

4.1 System and Kalman Filter Markov Parameters

Taking the z-transform of state-space model (13), one has

2(z) = (z - A)-'(Bu(z) + AKe(z)). (23)

Substituting (23) into the z-transform of the output equation (14) yields

y(z) = C(z- a)-l(Bu(z) + AKe(z)) + Du(z) + e(z) (24)
OQ O0

= F-,Y(k)z-ku(z)+ F_,N(k)z-k_(z) (25)
k=0 k=0

where Y(0) = D and Y(k) = CAk-IB are called system Markov parameters, N(0) = ] an

identity matrix, and N(k) = CAkK the Kalman filter Markov parameters.

Taking the z-transform of the ARX model (20), one has

]- y_ aiz -i y(z) = __biz-'u(z) + e(z) (26)
i=1 i=0

Applying long division to (26), one has

y(=) = (bo+ (b_+ a,bo)Z-_
+

+

(b2 -_- al ( bl -4- albo) -4- a2bo)z -2 -4-...)u(z)

(]alz -1 + (ala, -4- a2)z -2 -4- (al(a,al -4- a2) + a2al + a3)z -3 -4-...)¢(z)

(27)
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By comparing with (25), the system and Kalman filter Markov parameters can be recur-

sively calculated from the estimated coefficient matrices of the ARX model as follows

k

Y(k) = bk + __, aiY(k - i) (28)
i=1

k

N(k) = _ aiN(k - i) (29)
i=1

It is noted that Y(0) = b0, N(0) = ], and ai = bi = 0, when i > q. One may obtain (28) and

(29) from (20) and the definition of the Markov parameter [4],[5]. However,the derivation

is much more complex. The Markov parameters of the Kalman filter can be used to design

an optimal estimator without requiring noise statistics. The system Markov parameters are

used in the following section to form the state-space model.

4.2 State-Space Realization

To obtain the open-loop state-space model, the realization through Singular Value Decom-

position (SVD) method [8], [9] is used• The first step is to form a Hankel matrix from the

system Markov parameters as follows:

Y(j)
Y(j+ 1)

H(j) =

r(J + 7)

Y(j + 1) ... v(j +
Y(j+2) ... Y(j+_+I)

• . *

Y(j+2+I)-.-Y(j+_+_)

(30)

where Y(j) is the j-th Markov parameter• From the measurement Hankel matrix, The

realization uses the SVD of H(1), H(1) = UEV T, to identify an n-th order discrete state-

space model as

// _1/2 D Y(0) (31)A = E-£'/:UTH(2)V,_E_'/2, B = E_/2VJE,,C = Ervn-,_ , =

where matrix E_ is the upper left hand n x n partition of E containing the n largest singular

values along the diagonal. Matrices Un and V,_ are obtained from U and V by retaining

only the n columns of singular vectors associated with the n singular values. Matrix Em is

a matrix of appropriate dimension having m columns, all zero except that the top m x m

partition is an identity matrix. E, is defined analogously.

5 Numerical and Experimental Results

A number of experimental tests were conducted to both validate the analytic modeling

procedure and to demonstrate system identification as a method of generating models which
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include eddy current effects. A control law was designed, based on the analytic model, to

achieve approximate pole-placement [13]. The continuous control design was then converted

to a discrete system via a tustin approximation. Real-time code implemented the controller

at 250 Hz and provided reference inputs and data storage. A system simulation was also

developed. The simulation was based on the discrete controller and used both the analytic

and identified models for comparison.

To validate the analytic model a series of step responses were taken and compared to

simulation. Inputs were placed at the system's sensors to achieve a unity feedback tracking

system, as shown in Figure 3. The tracking signal was a series of steps in 0y, 0z, z, 9 and z

with magnitudes of 2 degrees angular and 1 mm linear. Although the system does not track

the reference perfectly, for most degrees of freedom simulation results match the experimental

results as shown in figure 4. The analytical model lacks some cross-coupling in yaw, and has

a different damping and frequency in pitch dynamics. A step response in pitch is shown in

Figure 5 along with its simulation.

System identification tests were run to try and improve the model accuracy. A white noise

reference input was placed at the control coils as shown in Figure 3. Data was recorded from

the plant input and plant output. The recorded data length was 6000 points for each of

the five actuators and six sensors. The model order was chosen to be 15, large enough to

capture the dynamics of the system. From the Markov parameters a 10th order state-space

model was derived. Using this identified model the tracking response was simulated. The

simulated response compared well with the experimental response even in pitch, which is
shown in Figure 6.

In order to study the effects of eddy-currents a conductive structure was added to perturb

the nominal system. The perturbed system included an aluminum ring around the suspended

element, as shown in Figure 7. The aluminum ring produces eddy-currents in response to

changes in the magnetic fields but does not cause a static warping of the fields. This adds

dynamics which are not considered in the analytic model. Previous experiments (which used

an aluminum ring to mount the sensor array) had shown this geometry to cause modeling

errors primarily in dynamics of the pitch axis. Using the same controller as before, step

responses were taken for the perturbed configuration. The experimental pitch response of

both the nominal and perturbed systems are shown in Figure 8. As evidenced from the

figure, the effect of the aluminum ring is dramatic, causing a significant loss of damping in
the closed-loop response.

System identification tests were repeated on the perturbed system. As before, white noise

was injected at the systems actuators and a total of 6000 data points were taken at the

input and output of the plant. The resulting system model included the effects of eddy-

currents and was able to accurately predict the response in pitch as well as in other degrees

of freedom. The pitch response of the experimental perturbed system and the simulation

with the identified model are shown in Figure 9.

The eigenvalues of the analytic model, the identified model of the nominal system, and

the identified model of the perturbed system are compared in Table 1. Two points are to be
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noted here. First is that the perturbed model has an additional real pole. It was not possible

to obtain a 10th order model which would accurately match the system's time response. An

llth order model, however, with an additional real pole, did match the experiment quite

well. Although the pole is much higher in frequency than the nominal model dynamics, it

is important for the closed-loop dynamics and adds the type of phase errors expected from

eddy-current effects.

The second point is that the neither identified model contains the low frequency stable

eigenvalues corresponding to the analytic model. This is believed to be an error in the

identified model which has a negligible effect on the closed-loop performance. In obtaining

bounded input/output data for identification, feedback control is required to provide overall

system stability. Under closed-loop operation, however, it is difficult to guarantee sufficiently

rich input to the plant to excite all the systems dynamics. In practice it was found that the

low frequency oscillatory modes associated with the motion in the z-axis were difficult to

identify. It is believed that, due to the controllers large low frequency gain, the white noise

input, which acts as a disturbance, did not induce sufficient low frequency power at the plant

input.

6 Concluding Remarks

An analytical model is derived for an unstable large-gap magnetic suspension system. This

model is linearized to provide an analytic state-space model. The linear model dynamics

are described and validated through experimental testing. A method of system identifica-

tion is also described. The relation between the state-space and ARX models is derived

through z-transforms. This derivation provides physical interpretation of the mapping from

input/output data to the state space and the explicit meanings of the ARX parameters. Ap-

plying the system identification algorithms to the experimental system yields models with

improved fidelity. Experimental tests are also conducted to show the effect of unmodeled

eddy-currents on the closed-loop system. Applying system identification yields models for

the perturbed system which include eddy-currents. These models are also validated through

comparison of closed-loop step responses.
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Figure 3: Block diagram for experimental LAMSTF system
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Figure 4: Analytic model simulation (solid) and experiment (dashed)

416



-1

_-2

_v

I

-6

-7

I I

I I \\

il

0.05 0.1 O. 5 02 0.25 03 0.35 04 0.45 0.5
Time, sec
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Figure 7: Perturbed LAMSTF system with aluminum ring to provide source of eddy-currents
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