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Preface 

The Fifth Goddiud Confcrcnce on Mass Storage Systcms and Technologics has 
attracted more than f m y  papers which arc included in these Proceedings. Wc plan to 
include audio and video and, if available, text and vicwgraphs from the invited papcrs and 
the panel discussion in a CD-ROM which will be published before the end of 1996. 

A paper on application progran: ning intcrfaces (API) for a physical voluinc 
repository (PVR) defined in Version 5 of the IEEE Reference Model (RM) lor  Open 
Storage Systems is indicative of ongoing activity to flcsh out the RM. Howevcr, thcrc 
still remain a number of othcr intcrfaccs in the RM which lack APIs. A numbcr of' 
agencies have already deployed petabyte-sized archivcs with custom FSMS sincc thcrc 
are no standards yet, and so there are no COTS soltwarc modules which can k. 
combinedintegrated to provide file and storage management services. A user panel will 
discuss the problcms and issues associated with available software and, it is hoped, will 
lay out the desiderata which experience has shown is required for the managcmcnt o f  
large archives. 

Storage architecture, database management and data distribution are covcred in 
three sessions. The future of recording is not necessarily a mix of optical and magnetic 
technology; as the paper by Stutz and Lamartine shows, microchisels are around thc 
comer, and may provide a solution to thc problem of technology obsolescence which has 
been exacerbated by thc ever shorter product development and life cycles. 0,)tical 
tcchnology is updated by papers from the Air Force's Rome Laboratory, and from LOTS 
Technology. 

File system performance and modeling are dealt with by a number of authors, and 
there arc progress reports on the definition and usc of metadata in archives. 

Descriptions of specific archives and storage products have been moved this ycur 
to a poster session. Storage vcndors will have a special session where they can cxplain. 
elaborate and extol their particular solutions. 

We are grateful to the mcmbers of the Program Committee: 

Jean-Jacques Bedet, Hughes STX Corporation 
John Berbert, National Aeronautics and Space Administration 
Jimmy Berry, National Security Agency 
Bill Callicott, consultant 
Sam Coleman, Lawrence Livermore National Laboratory 
Robert Creecy, Census Bureau 
Charles Dollar, University of British Columbia 
Fynnctte Eaton, National Archives and Records Administration 
Bernie O'Lear, National Center for Atmospheric Research 
Saniay Ranade, Infotech SA 

iii 



Bruce Rosen, National Institute of Standards and Technology 
Don Sawyer, National Aeronautics and Space Administrahn 
Peter Topoly, National Ocearic and Atmospheric Admhistration 

for their diligence in identifying the topics and securing the excellent papers !or this 
conference. 

We also record our thanks to: 

John Ouanto, Systems Engineering and Security, Inc for help with some of the ligurcs; 
Len Blasso, Media Specialist Associates, for editing and layout; Jorge Scientific 
Corporation for logistics support. 
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Abstract 

The Goddard Space Flight Center (GSFC ) Version 0 (VO) Distributed Activc Archive 
Center (DAAC) has been developed to support existing and pre Earth Observing System 
(EOS) Earth science datasets, facilitate the scientific research, and test Earth Observing 
System Data and Information System (EOSDIS) concepts. To ensure that no data is cvcr 
lost, each product received at CiSFC DAAC is archived on two different mcdia (VHS and 
Digital Linear Tape (DLT)). The first copy is made on VHS tape and is under the control 
of UniTrcc. Thc sccond and third copies are made to DLT and VHS mcdia undcr a 
custom built software package named "Archer". While Archer providcs only a suhsci of 
the functions available with commercial software like UniTrce, it supports migration 
between near-linc and off-line media and offers much greater pcrlormance and flcxihility 
to satisfy the specific needs of a Data Centcr. Archer is spccifically dcsigncd io 
maximize toial system throughput, rather than focusing on the turn-around timc l o r  
individual files. The Commercial Off the Shelf Software (COTS) Hierarchical Storapc 
Management (HSM) products cvaluated were mainly concerned with transparent, 
intcractivc, filc acccss to thc end-user, rathcr than as a batch-oriented, optimizablc (hascd 
on known data lilc charactcristics) data archive and retrieval system. This is critical I(. 
the distribution requirements of the GSFC DAAC where orders f x  5oW or more filcs ai 
a tirnc are received. Archer has the ability to qucrle many thousands of filc rcqticsts and 
to sort these requests into internal proccssing schedules that optimize overall throughput. 
Spccilically, mount a d  dismount, tape load and unload cycles, and tape motion arc 
minimized. This leawre did not seem to be available in many COTS packages. Archer 
also utilizes a generic tar tape format that allows tapes tc be rcad by many dif'lcrent 
systcms rather than the proprietary format found in most COTS packages. This paper 
discusses somc of the specific rcquircments at GSFC DAAC, thc motivations f'or 
implementing thc Archer system, and presents a discussion of the Archer design that 
resulted. 
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Introduction 

One of the critical components within the DAAC's Data Archivc and Distributed System 
(DADS) is the HSM system. Several years ago, UniTree was chosen as the best 
candidate to satisfy the GSFC DAAC 's requirements providing both the basic HSM 
functions and the device drivers for the planned robotic devices. After months of 
integration and customization, UniTree reached some stability but it fell short of the 
GSFC DAAC throughput requirements [ 11, and was limited in the wnfigurability of the 
archive, retrieval, and caching systems based on data-specific characteristics; e.g., size, 
volume, likely reuse, multiple versions, etc. It also became apparent that this product 
and other similar commercial products were iiot fully suited for this domain of' 
application. 

Archer is an in-house software package that wds developcd by the GSFC DAAC to 
provide management of secondary and tertiary backup copies of all datasets stored in the 
archive. Archcr was developed to remedy some of the major drawbacks of HSMs, such 
as UniTree, in handling a data (vs. file) archival system In particular its design was kept 
simple and tailored to handle data requests with large numbcr of files and varying filcs 
characteristics, Performance was a key considerition in the design of the system and its 
higl-ly parallel dihbuted architecture allows the system to be scalcd to much larger 
archives. This paper starts by presenting an overview of the functionality needed for thc 
GSFC DAAC to be a fully operaticinal Data Center. The overall hardware architecturc to 
meet the needs of the GSFC DAAC is described, followed dy a discussion on what led 
the GSFC DAAC LO the development of Archer. The architectural design of Archer is 
presented with its main features. Finally. h e  status, lessons !earned, and future work arc 
briefly desct ibed. 

GSFC DAAC functions and architecture 

The GSFC DAAC can be v.zwed as cornposed of threc main components which arc a 
Product Generation Syster; l,PGS), an Information Management System (IMS), and a 
Data i' -chive and Distributio.1 System (DADS). The PGS and IMS are respectively 
associatd with the production o! higher level products and the catalog holdings searched 
and browsed by researchers. The DADS controls the overall processes of the ingestion of' 
new data and the distribution of data requests. The migration between near-line and on- 
line devices is handled by both UniTree and Archer, however only Archer has the full 
capability to migrate media between near-linc and off-line. For historical reasons, 
UniTree is currently responsible for the primary archive. Secondary and a tertiary 
archives, under the control of Archer, use respectively DLT and VHS as archive media. 
The Metrum RSS-600 Automated Tape Library (ATL) with 5 RSP-2150 drives and 6W 
VHS cassc;ttes (for a total capacity of up to 8.7 TB) is shared by UniTree and the tertiary 
archive. Most tapes in the ATL and four of the five VIS drives are controlled by 
IJniTree. The secondary ;:chive is composed of three DLT 7 cartridge stackers. While 
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UniTrec and the tertiary archive are run on an S P  Phallenge L, thc seaindiary archive is 
executed on an SGI Challenge S. 

Two SGJ 4W440 workstations are being u d  to test new version of the DADS, IMS, 
Archer software and new releases of UniTree. Having dedicated test machines is very 
important to avoid affecting the day to day operation at the GSFC DAAC. Sever4 SGf 
machines are afso used to process Pathfinder Advanced Very High Resolution 
Radiometer (AVHHR) land products a d  to perfom Quality Assessment (QA) on new 
products generated. Figure 1 and 2 and Table 1 illustrate some of main platforms 
acquired by GSEC DAAC along with their specific functions. 

.I 
c 

k 

Figure 1 GSFC DAAC 1996 Configuration as of 2/28/96 ( 1  of 2) 
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= M a i n e  name 
EOSDADS 

EOSBACK 

Figure 2 GSFC DAAC 1996 Configuration ils of 2/28/96 (2 of 2) 

EOSDATA 

EOSDADS2 

lEOSTEST2 

FUnCtiOn 
run UniTree & tertiary 
iuchive 

run secondary Archive 

run IMS and Oracle 
Database 

run ingestion & distribution 

test software in acctest & 
systest 

Hadware &scrip& 
SGI Challenge L, 256 MB memory 
4 R M )  CPUs ( 150 Mhz) 
- Metrum RSS600 automatic library 
- 32 GB UniTree stage disks 
SGI Challcnge S, 64 MB memory 
1 RWX) CPU ( 1  50 Mhz) 
- DLT stackers 
SGI Chdlenge L, 256 MB memory 
4 R4400 CPUs (250 Mhz) 
- 24 GB ftp stage disks 
- 275 GB anonymous ftp 
SGI Challenge XL, 5 12 MB mcmorp 
4 R U M  CPUs (2OU Mhz) 
- 36 GB ingest staging disks 
- 61 GB distribution staging disks 
- 8mm drives 
- 4mm drivcs 
- 3480 drives 
SGI 4D/440 VGX, 256 MB memory 
4 R3OOO CPUs (40 Mhz) 
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- .- -- .- 
test dads software & new SG1'4D/440,128 MB memory 
version of UniTree I 4 R3000 CWs (40 Mhz) 

- 8 GB UniTree cache 
memory 1 Ilnulgo , 

I EOSTIW 

E W A  1- 
I I 1 1  R4400CW (ISOMhz) J 

Table I .  Hardware at the GSFC DAAC 

Critefia for the development of a secondary archive 

This paper now focuses on issues faced by the GSFC DAAC during the last two ycars 
and some of the specific requirements that led to the devclopmcnt of a scandary archive 
system. 

Over thc years; the GSFC DAAC has faced prc 7s with the HSM system UniTm and 
the archive media (VHS tapes and 12" WORM opucal platters). in particular, L'niTrcc 
did not work very well when 12" WORM optical drives were working concunrnrly with 
the VHS tape drives. Unitrec also did not satisfy the gcneral throughput quirements. 
and pmved difficult to configure based on evolving data characteristics and data requcsr 
profilcs. While some issues have been resolved, others still remain open. AddirionaHy. 
occasional lass of data due to media failure, UniTree software failures, along with a 
rquircment from the Sea-vicwing Wide Field of View Sensor (ScaiWiFS) projwt 
necessitated the nccd to keep a second copy of all products. It hecame apparent that thew 
was an urgent need for a secondary data archive system that would hold a bdckup copy of 
all data rcccived at the GSFC DAAC, would take over in case the primary systcm f'rtillu, 
and if successful in increasing throughput, could be used as a primary retrieval systcm 
At thc time UniTree WM not fully stable and the GSFC DAAC was under incrcasing nccd 
to provide better, more rcliahlc data retrieval and a robust data rccovcry capability which 
did not rely on thc data providcr to re-send lost data. The choices wcrc cithcr to purchasc 
a second COTS product or to develop our own secondary data archival systcm. Thc Jitta 
archive system was intended to mostly stott: data to archive ~ p c s .  trick file location and 
tape utilization, and to handle both near-line and off-line tapcs. Most COTS pirckrtgcs 
evaluated were deemed too sophisticated and cxpensivc for the simple set of requirtmetits 
that had k e n  identified. Further, many of the COTS HSMs , which werc oricnrcd 
towards transparcnt, interactive tile retrieval functionality, did not seem to fully msc\ 
these simple requirements. This was particularly true for automatic migration of' nlediit 
between near-line and off-line storage, and large, batch oricnted fileldata requests. Our 
experiences with the UniTree COTS package also pointed out othcr pmblcms with 
cornmcrcial HSMs, such as perfomancc bottlenecks and maintainability issues. For 
these reasons, the decision was made that the GSFC DAAC would pain by devclopinp its 
own secondary data archive system. The remaindcr of this section focuscs on some 0 1  rhe 
critcria that wcrt' factorcd into thc secondary archive design. 
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As mentioned above, UniTree was designed around limited, interactive file access which 
imposed limitations that were undesirable for a large scale science data center. For 
instance. UniTree limits the number of concurrent stage operations (around IO) which 
causes major problems when large number of files are to be staged. Also, thc order of 
requestine and staging data, along with adequate feedback on both successful and 
unsuccessful retrievals, are critical, both to achieve good performance, and to . implify the 
media distribution process. For example, a quest  may d a set of files staged and 
then copied to a number of 8mm tapes for distribution in the time d e r  in which the data 
was initially produced. The request would k t  be handled by staging in the time order to 
be distributed, particularly if multiple distribution capes will be nee&.?. Additiosally, in 
a production environment it is not unusual to have unexpected hantw;tre and softwm 
problems or unexpected wcwkloads that must be rect i fd  manually. Therefore. it is 
important to have full control over the archive, letting the system run by itself, but 
allowing operators to take control of the system when needed. T o  p v i d e  flexibility and 
adaptability to facilities with UH: needed requirements and resources, HSMs should haw 
an Application Program I n W i  (API), which many commercial p d u c t s  either do not 
provide or provide with very limited capabilities. It would be highly desirable to have 
standardized APfs to facilitate transition to a new HSM when needed. 

A key element of a typical data reWkval q u e s t  submitted at the GSEC DAAC is the 
need to stage, in one request, a large number of small files. Some HSMs tend to perform 
poorly when ssveral hundred or thousand of files need to he staged, even if the filcs 
reside on few tapes. Chher products put a limit (e.g. 100) on the number of stages that 
can be submitted at once, reducing overall performance, requiring substantial software 
design to propedy handle the staging, and having a large impact 'm the day to day 
operations. On average, most of the files currently archived at the GSFC DAAC are 
small (around 1 MB) while data requests range from a single file to several thousa4 filcs 
at a time, resulting in a high penalty when retrieved from tapes. The overhead of the 
pick, mount, load, search and rtwind operations is high compared to the redwri te  
operation which may take only a few seconds for these small files. C .quently,  it is 
critical to minimize the number of mounts and maximizee, whenever possible, the amount 
of files r d w r i u e n  per mount. It is therefore desirable to sort the order in which files are 
transferred to and from tapes by which tape * k y  are on and their position on the tape. 
This may be achieved by knowing the physical location of the files on tapes and thcn 
writing software to request the files in that order. Unfortunately, this information is not 
easily available in HSMs such as UniTree. To maximize system throughput, it is also 
necessary to keep data transfer rates tdfrom the storage devices at nearly the limits 
imposed by the hardware. Detailed analyses were done on the performance of the VHS 
drives under UniTree, and it was shown that data transfer rates were substantially less 
inside UniTree than those measured outside UniTree, even with just a single drive 
operating [l]. 

Performance IS a key issue in an archive, but other considerations such as interoperability 
are equally important. HSM vendors with their own proprietary formats makc thc 
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transition to another HSM very difficult and expensive. This can have disistrous 
consequences if a vendor decided to stop marketing their products or io stop support of' a 
given hardwarc device, as was the case for UniTree and the Cygnet jukeboxes at the 
GSFC DAAC. The situation worsens as the size of archives increases dramatically 
(Petabyttv). The GSFC DAAC also has B rcquirement to migrate all of its archived citlia 
under the control of the Version 0 system to the next generation system. By storing thc 
data in a non-proprietary, gcnerally used format such as tar, migration can hc more casily 
and quickly accomplished, since dl that is q u i d  is to physically movc the t a p s  io thc 
new system. Thc interoperability of the tapes can be rr=solvcli by having onc or scvcral 
sundardized tapc format(s). This is difficult to achieve when vcndors disagrec on thc 
merits of the formats ;urd have already invested large amount of money in them. Another 
approach may be to provide a mechanism for HSMs to recognize and read formars from 
viuious vendors and do this without sacrificing performance. An important feature that is 
not always available is the abiIity to reconstruct the data base from the data itself. For 
instance, UniTree data is useless without the UniTree data base. These problcms haw 
been recognized and an Inf&mation and Image Management International (AIIM) File 
Level Metadata for Portability of Sequentid Storage Media gmup has been formcul io 
address some of these issues. This group met for the first time in April 1996, in Chicago, 
Illinois. 

Faced with storage requirements growing exponentially and limited budget, it may hc 
necessary to store data off-line. This solution is even more attractive in a data center 
where many tapes are seldom requested. This feature scems to be ignored or is limited at 
hest with some HSMs. It is not sufficient to indicate that the tape is off-line. At a 
minimum the physical location of each off-line media should be known by the HSM and 
operators should be prompted to transfer media between near-line and off-linc in an 
efficient manner. This should be viewed as anothcr level of hierarchy with full 
functionality, and statistics should be made available. 

A key issue in any Data Center is the data integrity and the data preservation. To ensure 
the high 3I quality for all data ingested and distributed to the users, it is important to 
capture, report, and react to errors in a usable way. These errors could occur with the 
media, the drives, the disks, or be related to some software problems. Even soft media 
emrs may need ti) be monitored to identify archive media degradation. Data corruption 
needs to be automatically detectable through methods such as computation and 
cornpison of file checksums upon all archival and retrieval requests. In spite of' k i n g  
critical, errors Ire not always provided with enough information, are often listcd in a 
cryptic fr  rm? arc difficult to locate in log files, or are simply not reported. Programs 
ITquesting tire data are often not provided with adequate feedback to respond to both 
crib (e .€ . ,  hard mcdia ) failure and non-critical (e.g. soft media) failures. This creates 
coilitision, rcquires a high level of expertise, and can have a detrimental impact on  day io 
day operations. Error detection is not sufficient in itself and "smart" algorithms should be 
in place to take appropriate actions aftcr errors are discovered. For example, a 
configurable limit should bc set pertaining to the number of retries to read or search for a 
file. Anothci example may be to not automatically mount new media when an 
unrecovei(ibk! write error is detected, sincc: thc problem could be due to a bad drive and 
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could result in numerous new t i s  being discarded. Similar problems can occur with 
WORM optical media where a failure due to a bad drive is incorrectly interpreted to bc a 
media failure and a new media is requested. When the request again fails, another ncw 
media is quested,  and so on, until operators notice the problem and shutdown the 
operation. This can cause the loss of many platters and requires extensive manual 
intervention to rectify this situation . These examples illustrate that the hard-codcd error 
handling policies implemeated for general, success-oriented operations do not always 
function well within a large, operational system. These policies art: easily correctable and 
changeable. Changing plicics and requirements may be a trivial task to implement 
with an in-house system, but may be much more difficult to integrate with a commercial 
p a c k e .  

When dealing with very large science data centers (*?etabytes), scalability is a major 
issue. An HSM should be designed to scale not only with the volume but also with the 
number of files being archived. This may require distribution of h e  software as well i ~ s  
the hardware. Implementation of a Unix file system or a virtual disk system is not 
regarded as a viable solution because of its limitations. There is a limit in the operating 
system on the number of concurrent open calls. The name sewer in an HSM can also 
become a bottleneck with very large number of files and some of the modules composing 
a data archive system may havc to be distributed over several machines to spread the load 
more evenly. 

Purchasing a commercial product such as an HSM provides many advantages. On thc 
other hand, there may be major drawbacks that should be diligently evaluated bcforc 
making any decision regarding the need for a COTS prtduct versus an in-house prtduct. 
One ma-jor problem experienced at the GSFC DAAC was the integration of UniTrce with 
custom archive and distribution software. The task was difficult, time consuming. 
expensive to implement, and caused long delays in the delivery of the whole system. Onc 
solution was to request the vendor to incorporate the desired functionality in P ncw 
release. However, these functions may be too specific to  havc market value; o r  whan 
there is interest to other users. it usually takes months. if not years, before design, 
integration ,and release. Another approach is to contract the integrator to develop spccilic 
functions that are not part of the core commercial product. Besides the length of time to 
set-up the contract, provide the requirements, and then design, write, test lind intcpratc thc 
functions, there i s  a high risk involved in tailoring a commercial product to meet specific 
needs, as each ncN release of' the product may tequire new customizeo devcloprnc.tir 
resulting in a high cost. All together, the process can be extrcmcly lengthy in time and 
frustrating in having to write work-around software or prcxedurcs to try and handle thc 
situation while waiting for the vendor to react. HSMs are rdthcr cnmplcx systems, built 
for specific, well-defined systems, and are not without flaws, Some of these bugs may 
seriously limit how the system can be uscd and it may take weeks or months to obtain a 
patch to fix the problem. While requiring in-house resources and cxpenise, there is rnorc 
control with programs developed in-house. Bugs can usually bc rectified more quickly 
and decisions can be made internally to prioritize them. Moreover, the experience we had 
with UniTree and the discussion we had with other colleagues tend to confirm that HSMs 
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have not yet re;tched the stage of maturity found in products such as data basc 
management systems. 

Part of the original charter of thc GSFC Version 0 DAAC was to test EOSDIS concepts 
and standards. Experimentation with various HSM strategies and the devclopmcnt of 
Archer as a possible alternative to commercial HSM producks fit within that charter. 
Having an in-house pmduct would also increase the ibility to add new mcdia typcs. 
which usually takes place on a longer time scale with COTS. The high cost of 
commercial HSMs is another consideration that cannot be ignored and contrihutcd 
heavily in the decision to develop Archer. This is even more important in a disrributcd 
environment when: a home-grown HSM can be freely redistributed whcreas a COTS h u  
to be licensed for multiple platforms and sites. In addition to the expensive purchasc 
price, there is usually a high maintenance cost and some integration development costs 
that makes commercial HSM solution less attractive. While the preference is to usc tl 
commercial product, in some cases no commercial product can satisfy specific and 
unique needs,.and the developer must rely too much on companies whose pods arc 
oriented towards slightly different requirements or functions. A key to the usability ol' ik 

COTS product is whether its main functionality matches or just resembles one's needs. if 
just resembling one's needs, as was the case of COTS HSM packages and the sciencc 
data needs of the GSFC DAAC, then attempting to either fit the COTS packdgc into tl 
slightly different functionality or assuming new releases to includc the xquircd 
functionality can be costly in time, resources, maintainability, and usability . Thcsc arc 
some of the arguments and justifications that led to the design and development of I 
secondary archive system at the GSFC DAAC. One can hope that HSMs will bccomc. in 
the near future, mature and flexible products that satisfy a vast and varied quantity of 
customers at a reasonable price. 

Design of the secondary archive 

Archer is a hierarchical storage management system that was designed to satisfy thc 
requirements specified in the previous section. Files can reside in a cache, be robotically 
accessible, or be on a tape off-line. Users do not need to know the physical location of' 
the files (data transparency), however, this information is w i l y  and rapidly accessihlc 
through an API or by querying the Oracle data base which is used to keep track of file 
locations. The use of a relational data base facilitated and expedited the development of 
the system and provided a journal file to insure integrity of the archive database. 
Migration between cache and tape is automated and data can be stored and organizcd by 
families. For instance, a family can represent all files that belong to a specific product 
and levcl. The Archer file names are similar to the ones used in Unix, yet thcrc is 110 

implementation of a Unix file system. Consequently, commands such as open/close arc 
not available and others, such as 1s must be simulated through database SQL commands 
(e.g., and "als" command is provided to simulate Is). Files are simply requested to hc 
stored or retrieved to/from the archive via PUT and GET operations. Multiple users can 
be serviccd simultaneously and the clienthervet architecture has been designed to pctmir 
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a distribution of the various servers among different machines to make *he system 
scalable. 

Archer file names have two parts. The first part identifies the directory to which a file 
belongs. The second part identifies the file. Both the directory and the file part can be 
any arbitrary string of characters (e.g. "/" are not required) but by convention, the names 
havc been chosen to be consistent with Unix. Each directory is assigned to a family when 
created and is stored in an Oracle database table. The first part of a file name must 
completely match one the Archer directories, the part remaining is considered the file 
name. 

Ihe architecture of Archer is illustrated in Fig. 3. The main components of the system 
we defined as: 

-: This is a series of C-callable entry points through which requcsb 
arc originated. A request can bc made to archive files, retrieve files, list files, deletc files, 
list directories, list families, add tapes, list tapes, delete tapes, and flush families. AI1 
client interfaces communicate with a single archive server process. 

Files can archived and retrieved in any size batch using either a synchronous or 
asynchronous method. Thc client is responsible for copying files out of cache during a 
tile retrieval requcst. Command-line wrappers exist around all API funciions so that the 
Archer internals can be acccssed from the shell. 

Only one archive server exists per archivc. The archive servcr supports 
multiple file servcrs, and is responsible for directing message traffic between cliont 
processes and file servers or rc3jecting any requesls which contain invalid inf'onnation. 
The archive server can run on any machine in the archivc. 

We s e r v a  Each file server is responsible for managing requcsts and filc t a k s  for a SCI 
of Fimilies in the archive. The file server manages cache space for all requcsts and 
verifies that the requests are satisfied. Each file server can manage multiple cache 
dircctorics. Each file server supports multiple storage managers. For performancc 
reasons, file servers may run on different machines in the archive. 

servm A copy server is a small process which receivcs requests from thc f'ilc 
servers to copy files into cache for archive requests. The copy scrver can copy a 
coniigurable number of files in to  cache in parallel. The copy scrver exists to miniinixc 
the overhead involved with forking processes to copy files in parallel. One copy scrwr 
runs on each machine in the archive. 

Each storage manager is assigned a subset of the filc server's families. 
Each may manage a different media type. The storage manager is responsible for 
managing and ordering the sroragdretrieval of requests tdf rom tapc. Each storiqc 
nianager supports multiple storage servers, all of which must contain the same inedia 
tY Pe. 
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storaee servers; Each storage server controls an individual storapc device whether i t  is I 
single drive, a stacker, or a more complex multiple drive robotic system. The storage 
server is responsible for all activities involved in the storage/rctricval of files todfrorn 
tape. These activities include the loadinghnloading of tapes tolfrom drives, tape 
positioning, tape verification, and the reddine/writing of files tdfrom tape. Each Cypc of 
storage server has its own type of ACE control display. 

This is a GUI interface through which the operator and the archive inttxiact. The ACE 
interface displays the status of the stor-gc servcr and the device it is monitoring. This 
status includes whether the device is on-line, off-line, reading, writing, or idle, and thc 
names of the tapes in the slots of the device, if applicable. 

Through this interface, an operator may be notified of various cvcnts (c.g. system restarts. 
tape write errors), some of which may require a response. An operator may he pmmpwd 
to mount a series of tapes in various slots of the device, or they may issuc a rcqucst to  
load tapcs manually 

31 1 



t 

Chant 

- 
I 
I 

'4  
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 

Macnlnr 0 

Fig 3 Archer Architecture 

In a typical PUT scenario, the client sends a request to thc archive server to archivc a 
file(s) to a specific family. The archive server directs the request to the appropriate lilc 
server. The file server allocates disk space in the cache and sends a message to the copy 
server to transfer the file@) into the cache. After the Ale is copied to cache, a message is 
Sent back through the system, informing the client of the cache transfer status. In a 
successful cache transfer, a message is sent to the appropriate storage manager. Thc 
storage manager receives and queues requests of successful cache transfers and waits lor 
a predefined number of files (by family) to be staged in the cache bcfore submitting a 
q u e s t  to the storage server to copy the files to tapes. Finally, the storage server mounts 
the right tape and writes the data to it. 
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In a typical GET scenario, the client sends the request to the archive server which 
forwards it to the appropriate file server. The file server identifies whether the tilc(s1 
resides in the cache. When the file is not in the cache, the file server allocates disk space 
in the cache and sends a messagc to the storage manager to retrieve the file. When thc 
storage manager determines the time is right to fetch the file, a message is sent to thc 
appropriate storage server, the right tape is mounted, and the file is read from tape into 
the cache. A message is then transmitted hack through the system informing the client of  
this transfer. To avoid authorization problems the client is responsible for copying data 
from the cache to its location. 

In designing the Archer storage format, the option of using a proprietary format such as 
the one implemented in UniTree was rejected due to concerns with portability, and 
flexibility. Another important coiisideration was the ability to reconstruct the metadata 
directly from tape without the need of the database. This feature can be useful in the 
event of a disaster and can also facilitate the migration to another archivc system which 
may not have access to the database system. There is no official standard archivc tormat 
available but tar is a de-facto standard with Unix and other platforms, and for this reason 
was selected as the best candidate to satisfy our requirements. As mentioned above, the 
GSFC DAAC average file size (at the current time) is relatively small ( 1 MB) and. 
therefore, saving each file in a separate tar format would result in a heavy perlormrincc 
and space penalty. To alleviate this problem, groups of files are saved in a tar filc callcd 
a "save set" prior to being rnigri'zd to tap. The number of files to tar together is usually 
selected so that a "save set" is around 50-100 MB for a 1-2 MB/s tape drive. Thc size of 
the save set is configurable for different media and data types (k., families) in order to 
best utilize the pcrformance characteristic of the tape drives hascd on thc l'ilc 
characteristics of the data. When a file is requested from an Archer rape, the whole SitVC 
set where the file resides is read from tape and untared on the fly. Reading a save sct 
takes longer than reading a single file but this penalty is small compared to the high 
overhcad associated with the mcunt/loWsearch times. In addition, since the data requests 
are based on high quantity, batch file retrievals, neither single file access (such as 
provided by UniTree) or, the even more granular, block oriented access (such as providcd 
in th2 AMASS HSM systcm) provide any benefit, and can, in fact ,hurt o v d I  
performance for this type of system. The Archer storage format is illustrated in Fig 4. 

From the beginning of the design of Archer, special care was given to error detection and 
recovery. This is critical not only to minimize impact on day to day operations but also 
to insure the integrity of the data archived and distributed at the GSFC D A K .  Thc lirsr 
type of errors to examine is media failure. When a tape write error is detected, scverd 
prc-assigned and operator configurable number of attempts are exccuted. Continucd 
failure will cause an operator prompt to occur with the option to continue retrying rhc 
operation, to ignore the requested operation, or to retry thc operation on a different ti\pC i n  
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the case of a hard write error. If the operator chooses to ignore the requested operation, 
hdshe can then take the suspected dnve off-line to avoid continuous operator prompts 
csulting from this write error. With a tape read failure, the read operation is retried for 
an operator configurable number of times, then marked as failed. Operators are notified 
on their terminals of the media problems. 

saveset saveset Saveset saveset 
1 2 N N+ 1 

.,.. 
I 

.... 

index file file tar 
tar . .. . 
file file 1 N volume 

name 

ASCIA 
file 

medium-name: XXX 
saveset-num: 2 
family-name: XXX 
file 1 : family-directory file-name 
file 2: family-directory file-name 
.... 
.... 
File N: family-directory tile-name 

tar 
volum 
label 

tape ndme 
# saveset number 

identical in 
rvcry save,.et 
on tape 

Fig 4 Archer tape format 

One of the main considcrations in the design of Archer was to develop a system with 
good performance. The emphasis was on the gross throughput of groups of rclated files 
as opposed to single-file turn around time. In order to achieve this objective seveial kcy 
features have been implemented. As mentioned above, files are grouped in save sets, 
improving the performance of a system with small files. To increase the hit cache ratio, a 
cad 3 management algorithm has been developed on the file server with hie capability to 
easily include new scheduling algorithms if desired. Improved log messages have also 
been designed to track the status of each file (examples: stagcd and purged) in the system 
and to monitor and generate performance statistics. New files ingested in the system are 
queued in the cache and copicd to tape only after a pre-assigned volume of data is 
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reached. This allows a large volume of data to be copicd with a single tape mount. Files 
requested are first searched for in the cache. When the files are not located in thc cachc. 
Archer will sort files in the order they Ere physically stored on tapes, to minimize the 
ovcrhead due to file positioning on the tape and the mounting and dismounting of tapes. 
Archer was developed with a multi-threadd client/server architecture and multi-threaded 
tape UO architecture that provides cfficient streaming of tape drives. The DLT tape 
drives havc been tested to readwrite close to the peak transfer rates advertised hy 
vendor.: Having a !arge databasc that contains the logical to physical relationship 
provide.; easy to utilize information but, due to the size of the files (millions) and thc nccd 
to continuously access the tahlc, performance is adversely affected. To partly allcviatc 
t h i s  problem, the first part of thc file name maps to the family namc, which allows a 
quick identification of the tdbk to which the file belongs. As mentioned in the Status and 
Futiirc Work Section, future versions of Archer will he independent of a relational 
database system. 

One of the goals of Archer was to facilitate the operational activities at tht '1 DAAC 
a.. well as the jobs pcrformed by operators. One of the features of ACii (utilizing a 
graphical TcyTk interface) is to provide a message button that highlights problems 
encountered. For example ACE (see Fig. 3 ) may list a tape write error . Archer 
processes are carefully monitorcd by an overseer process and if a problem arises, a 
message is displaycd to ind' -ate if the processes exited normally, abnormally, o r  failed 
due to a signal. In the event of failure, the archive is automatically restarted and the 
operator is notified. 

Table 2 summarim the issues discussed above. 
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Table 2: Summary of Archer Features and Functions 

Interoperability I 
Flexible 

Capture and nlonitor errors I 
Error recovery 

Scalable system 

Administration 

Hierarchical storage management I 

Features 
-low overhead to sustain operation at near tapc speed 
- minimize number of mounts 
- maximize number cf files requested from tapes 
- multi-threaded tape IK) 
- multi-threaded client services 
- hierarchical storage (disk cache, magnetic tape. off-line) 
- son file read order by tape 
- allow large batch reads for improved sb. 1 ~ 

- no proprietary tape formal (ust: tar) - open system - self contained (contains dara & mefadata1 (HDF) 
- recreate me:adata dbms from reading tap 
- save set 
- sumoft on-line, near-line, and off-line media 
- API 
-configurable parameters (based on dara type or families, tncdia 
syslem, etc.). 
- tape drive 
- media 
- disk cache failure 
- I) ACE display/monitor system 
-before file is cached 
- before migration 
- during migration 
- distributed HIW 
- distributed S/W 
- distributed storage devices 
- reliable 
- archive mcitiple copies 
- collcct statistics - errors 

- performance 

~ - 
- 

- facilitate migration from VO to VI - reduce dependencies OF. vendors 
- minimum coupling with DADS software 

- simplify integration - simplify exportation 

-journal file 
- integrity 

. support omator assisted oft-line tape access 
-does not implement a Unix file system 
- file name similar to Unix file system - simple synchronous and asynchronous put&[ user rntcrlacc - retrieval is by family and tile identifier 
- COTS software to handle archive database 
- fila can be in cache, on tape, or off-line 
- identical storage and retrieval opeta1ic.w 
- automatic migration from cache to lape 
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Status and Future work 

Since its delivery in Fall 1995, Archer Version 4.4 has been uscd on several ocwsions to 
recover lost tiles. Based on random audits, no file loss from Archer hw yet k e n  dctcctcd 
and Archer outperforms UniTrcc in archive operations, espxiaily with large hatchcs. 
Them have been somc opcrdtional problems. For example. some unexpected rapc errors 
have occasionally causcd the Archer system to hang. Also, only one single cache disk is 
currently supponLvj and file and tape status is available only through SQL databasr: 
queries. 

The next build of Archer, scheduled to be operational in August 1996, should improve 
the overall performance thrvugh better internal scheduling of database operations. 
Multiple cache support has been added. Error recovery has been mcwtifid to prompt 
operators when several tape retries failed and to provide a choice of options. A global 
proccss monitors Archer and alerts operators to any problem detected. 

Several . her NASA groups have cxptesscd an interest in Archer md thcre iifc plans to 
enhance Archer to he more like a COTS package with full documentation and its own 
configuration management Iindependent of the DADS devclopment). The two main 
features envisiontd are to remove Archer dependency on Oracle by maintaining the 
necded information internally and in disk files, and to improve the storage managcr and 
storage server to better support new robotic devices and drives. 

Condusion 

me GSFC DAAC has successfully designed and implemented a secondary archive 
system with a staff of one to three programmers over a fifteen month period. Thc initial 
release was operating after only seven months of design, development and tcsting. 
Though still in its infancy, Archer is satisfying the most pressing necds of the GSFC 
DAAC. 

While Archer provides only a subset of the functions available with COTS software likc 
UniTree, it supports migration between near-line and off-line media and offcrs good 
performance and flexibility. By selecting tar as tape format, Archer makes data inorc 
Fortable between Unix systems. 
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The Global Fik System (GFS) is a jwototypc design for a disnibutcd file system in which 
cluster nodes physically share storage devices connected via a network-like Fibre 
Channel. Networks and network-attached storage devices have advanced to a level of 
performance and extensibility so that the previous disadvantages of shared disk 
architectures are no longer valid. This shared storage architecture attempts to exploit the 
sophistication of storage device technologies whereas a server architecture diminishes a 
device’s role to that of a simple component. GFS distributes the file system 
responsibilities across processing nodes, storage across the devices, and file system 
resources across the entire storage pool. GFS caches data on the storage devices instcad 
of the main memories of the machines. Consistency is established by using a locking 
mechanism maintained by the storage devices to facilitate atomic read-modify write 
operations. The locring mechanism is  being prototyped on Seagate disk drives and 
Ciprico disk arrays. GFS is implemented in the Silicon Graphics XRE operating system 
and is accessed using standard Wnix commands and utilities. 

Introduction 

Distributed systems can be evaluated by three factors: performance, availability, and 
extensibility. Performance can be characterized by such measurements as response time 
and throughput. Distributed systems can achieve availability by allowing their working 
components to act as replacements for failed components. Extensibility is a combination 
of portability and scalability. Obvious influences on scalability are such things as 
addressing limitations and network ports, but subtle bottlenecks in hardware and software 
may also arise. 

These three factors are influenced by the architecture of the distributed and parallel 
systems. The architectures can be categorized as messagebused (shzred norhing) and 

This work was supported by the Office of Naval Research under grant no. N00019-95-l-Ofill. by the 
National Science Foundation under grant ASC-9523480, and by grant no. 5559-23 from the University 
Space Research Association which is administered by NASA’s Center for Excellence in Space Data and 
Information Science\ (CESDIS) at the NASA Goddard Space Flight Center. 
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sliared storage (shared disk) Message-bilscd architectures share data by communication 
between machines across a network with the data stored locally on devices within each 
machine. Machines in the shared storage architecture access all storage devices directly. 
Figures 1 and 2 show examples of message-bused and s h a d  storage architectures [ I}f2]. 

Advocates of both architectures claim the advantage with respect to them three factors. 
This is a techno-nligious war that will not be resolved any time soon, yet analyzing 
existing systems gives perspective on the strengths and weaknesses of each architecture. 
This acxt section summarizes a number of distributed file systems based on their data 
sharing approaches. 

Sun Network File System 

The Sun Network File System (NFS) was designed by Sun Microsystems in 1985 131. 
It's design goals were system independence, namc transparency, and preservation of Unix 
file system semantics. NFS uses a client-server approach. The server is stateless and 
writes modified data to stable storage before returning results. The server is  able to cache 
data in its system memory to improve performance. The clients make requests to the 
server with all information necessary to complete the operation. Clients and servers 
communicate over a network using remote procedure cills (RPC). The RPC is a high 
level protocol built upon User Datagram Protocol (UDP) and Internet Protocol (IP). 

The statelessness of the sewer eases crash recovery. A client that goes down does not 
effect h e  operations of the server or other clients. A server that fails need only to reboot. 
The clients will resend requests when the server has not completed their requests in a 
given time. The clients perceive the server as being slow but they are unaware that it has 
rebooted. 
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sprite F i i  system 

Sprite is a distributed operating system for networked workstations developed under the 
Symbolic Processing Using RISCs (SPUR) research project [4]. Like Sun NFS, Sprite 
uses remote procedure calls to communicate across its network. Sprite's file system is 
distributed across multiple servers and clients. It's primary goal was to provide name 
transparency while still providing adequate performance. Even device special files arc 
accessible to any process on the network. 

The Sprite file system maintains cache consistency using a server-initiated approach. 
The server tracks open files. When files arc non-write-shared, the clients may cache the 
portions of a file within their local memories. When a fite moves from non-write-shared 
to write-shared, the server performs a call-back operation and disables client caching. 

Andrew and Coda File Systems 

Carncgie Mellon University's Coda is a distributed file system descended from the 
Andrew file system which was a joint research project between IBM and CMU [5][6]. 
Both file systems are designed to operate on a distributed network of workstations scaling 
up to 5000 machines. 

Coda (constant data availability) was designed to improve on the availability of Andrew. 
Each client is able to cache entire files locally in its memory and disks. Furthermore, 
multiple copies of each file may exist on several servers. A server failure may then have 
little impact on availability. This approach also allows clients to run in discmected 
oprurion using only the files it has cached locally. The client can reconnect to the 
network and synchronize its cache with the est of the system. 

Like the Sprite file system, Coda servers maintain state concerning file accesses. The 
servers are responsible for performing call-backs when a clients cached data has been 
modified by another client. File sharing on a client is guaranteed to have consistency 
described by Unix file sharing semantics. Files shared across different systems see 
consistency a; the granularity of the entire file. 

xFS Serverless Network File System 

The xFS file system is part of the Berkeley's Network of Workstations (NOW) project 
[7]. It is a successor to some oi the research from the Sprite project. It uses a log 
structured approach like Sprite's Log-structured File System (LFS) and Zebra's [8] 
striping technique to simplify failure recovery and provide high throughput transfers. 
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In xFS workstations are connected by a fast, switched network. xFS is said to be 
serverless, since the storage server functionality can be placed on the same machines as a 
client. Hence, any system can manage control, metadata, and real data. This has 
advantages of load balancing, scalability, and high availability. 

Like Sprite, the system supports data caching on the clients f9]. The client requests data 
from a manager. This manager tries to satisfy the request from another client’s cache; 
otherwise it directs the client the appropriate storage device. xFS uses a token based 
cache consistency mechanism. A client must acquire a token for each file system block 
that it wishes to modify. The managers notify the clients to invalidate their stale copies 
of the data and forward their requests to the new owner of the token. 

shared storage Mstributed r* systems 

Digital’s VAXCIusters Vlws 

The VAXcluster is a “closely coupled” structuie of VAX computing and storage nodes 
that operates as a single system. This system had VAX nodes connected by a message- 
based interconnect. Each processor runs the same copy of the distributed VAXMMS 
operating system. The interconnection network had two topologies: the high 
performance Star Coupler hub that supported a maximum of 16 devices and a low cost 
Ethernet network [IO]. 

The storage devices are connected to the system through a Hierarchical Storage 
Controller (HSC). For high-reliability, another HSC could be placed between the dual 
ported storage devices and the star coupler by adding a redundant path between the CPUs 
and the storage devices. 

The operating system allows files to be shared using the cluster’s distributed lock 
manager. Lock requests are made for a particular access mode: exclusive access, 
protected read, concurrent read, or concurrent write. Incompatible requests for resources 
are queued until the resource is unlocked. This system i s  a shared storage architecture, 
since all file requests are serviced fron the shared HSCs. Each HSC can support up to 32 
disks. 

VMS allows caching for data ana file system resources. Coherence is mhintained 
between the CPU’s local memories by sequence numbers within the files’ synchronization 
locks. When the file system modifies a block, i t  increments the sequence number in the 
file’s lock. If another system has this block cached and later references it, this system will 
find that it’s sequence number is old. The block will be refreshed from the HSC. 
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Cray's Serverless File System 

Cray Research's Serverless File System (SFS) is a file system incorporated in their 
UNICOS operating system [ 1 I]. The file system uses a HIPPI disk array as the shared 
storage device. The disk array is connected to four C90 machines through a HIPPI 
switch. All C90 machines (nodes) act as peers; there is no server machine. 

Arbitration of the HIPPI disk array is performed on a Sun SPARC workstation which is 
also connected to the HIPPI switch. This workstation, call the HippiSeMuPbt-e (HSMP) 
is responsible for maintaining semaphores used for mutual exclusion of data stored on the 
disk array. It also has error recovery functions. 

Cray's SFS supports two types of file operations: multiple readers and single writer. SFS 
provides consistency by using the semaphores to facilitate read-modify-write oyerations 
as well as limiting the open file states. Nodes gtc able to cache data like P local file 
system but with the constraints of more limited parallel Ale operations. 

Mesa- Versus shared Storage 

The message-based architecture's strength lies in its extensibility. The approach is as 
portable as the network protocol connecting the machines and it can potentially scale to 
large numbers of machines. The best example of message-based portability is NFS. This 
file system dominates the industry, because it is available on almost every platform. File 
systems like Coda have shbwn that the message-based approach scales to thousands of 
machines. 

Message-based systcms may perform well if data access is well balanced across all 
machines. Load balancing is difficult since machine capacities and usage differ 
dynamically across the system. Locality is also difficult to maintain, since there will 
always be resources that are shared by many nodes in the system. Redundant copies can 
be maintained but at the cost of coherence overheads. Furthermore, the performance 
benefit of high speed devices like disk arrays is negated, since the bandwidth to each 
machine is  limited by the network. To summarize. achieving good performance on 
message-based systems is not an easy task. 

Server and device failures are another challenging problem facing the message-based 
approach, since a server failure may result in data becoming inaccessible. Fault tolerance 
may be maintained using disk array devices at each node, but redundancy is  not extended 
across machines. Software redundancy schemes must be built into the file system to 
maintain any fault tolerance. 

The shared storage approach has the advantage that every machine has iicarly uniform 
access to all storagc devices and freedom from servicing data requests from other 
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machines. This approach is similar to the traditional uniprocessor model where a 
machine acts independently. Also, failures of a machine have little effect on other 
systems except for possible load increases. Storage device availability can be improved 
using hardware RAID (121. 

The shared storage architecture takes advantage of the properties of the underlying 
storage hardware. Since every node has uniform access to the devices, the bandwid:h 
produced by disk arrays or disk striping can be utilized by all nodes. Also, devices 
capable of command queuing can optimize head seeks to provide high throughput. 

"he downfall of traditional shared storage system has been scalability and cost. Systems 
like the Digital's VAXcluster and Cray's SFS are based on proprietary networks and 
hardware. Proprietary hardware does not benefit from market competition and often 
remains costly. Furthermore, these systems do not scale with the number of nodes. In 
both examples, only one storage device and a few machines can be attached to the 
system. 

So far neither architecture fully satisfies all three factors - performance, availability, and 
extensibility but new network technologies are changing this. For instance, Fibre 
Channel (FC) is an emerging ANSI and International Standards Organization (ISO) 
standard for a network architecture (131 that supports network attached storage by 
including the SCSI-3 channel protocol. Fibre Channel provides two topologies for 
network attached storage: switched and arbitrated loop [ 14). 

A high speed network like Fibre Channel can improve the performance of both shared 
storage and message-based architectures, yet it does little to improve the extensibility ;urd 
availability of the message-based approach. Providing network attachment to storage 
devices greatly enhances the extensibility of shared storage. With a network like Fibre 
Channel, a system that is non-propriety and portable can be built using the shared storage 
architecture. 

Existing shared storage systems must be redesigned to exploit the properties of these 
networks and devices. The assumptions that traditional shared storage file systems made 
with respect to data caching, coherence, and resource management are OF ;olete. For 
instance, Cray's SFS caches data locally on its nodes to exploit the high bandwidth, low 
iatency memories of the 0 s .  This caching comes at the price of allowing only non- 
write-shared file operations. That is, if the file is opened by one or more readers, a writer 
cannot access it until all readers close the file. This coherence mechanism can lead to 
large latencies and even starvation. 
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The Global File System 

The Global File System is a prototype design for a distributed file system. Network 
attached storage devices are physically shared by the cluster nodes. The GFS prototype 
is implemented in the Silicon Graphics' IRIX operating system [IS][ 161 under the VFS 
interface and is accessed using standard Unix commands and utilities [ 1711 18][ 191. The 
machines and storage devices are connected via a Fibre Channel network. 

GFS views storage as a Nefwork Sroruge Pool (NSP) - a collection of network attached 
storage devices logically grouped to provide node machines with a unified storage space. 
These storage pools are not owned or controlled by any one machine but rather act as 
shared storage to all machines and devices on the network. NSPs are divided into 
subpools where each subpool takes on the attributes of the underlying hardware. 

GFS targets environments that require large storage capacities and bandwidth such as 
multimedia, scientific computing, and visualization [20][2 I]. These large capacities 
influence tradeoffs, such as caching and the metadata structure, associated with the 
design of a file system. 

Chip integration has transformed storage devices into sophisticated units capable of 
replacing many of the functions performed by a server machine in a client-server 
environment. These devices can schedule accesses to media by queuing multiple 
requests. They possess caches of one or more Megabytes that can be used for read and 
write caching and prefetching. 

GFS caches data in (hie nodes' main memories only during YO request processing. After 
each request is satisfied, the data is either released or written back to the storage devices. 
To exploit locality of reference, GFS caches data on the storage devices. GFS informs 
the devices on each request what data is appropriate to cache - such as metadata that is 
accessed repetitively and small files like directories which are frequently accessed. 
Consistency is established by using a locking mechanism maintained by the storage 
devices to facilitate atomic read-modify-write operations. This fcrm of locking has the 
simplicity of a centralized mechanism yet is distributed across a large number of devices. 

Figure 3 represents an example of the GFS distributed environment. The nodes are 
attached to the network at the top of the figure and the storage pool at the bottom. 
Connecting the nodes and the devices is a Fibre Channel network which may consist of 
switches, loops, and hubs. In the example, three different subpools exist: /single is a 
single disk, h i d e  is a striping of several disks, and the /fast is a disk array. 
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Fwre 3: GFS Distributed Environment 

To the figure's left is a tape device which is directly connected to the network. Such a 
tape drive may be used for data backup or hierarchical storage management. A node 
could initiate third party transfers between the disk devices and the tape drive. The figure 
ais0 shows how a GFS host can act as a NFS server. This ability allows machines 
without GFS capabilities to access GFS data via an NFS exported file system. The 
operating systems VFS interface handles the translation between GFS and NFS. 

File System Structure 

Each GFS file system is divided into several Resource Groups (RG). Resource groups 
are designed to distribute file system resources across the entire storage subpool. Figure 
4 shows the logical structure of a file system. Multiple RGs exist per device 3nd can be 
striped across several devices. 

Resource groups are essentially mini-fife systems. Each group has a RG block, data 
bitmaps, dinode bitmaps (used as the dinode free list), dinodes, and data blocks. The RG 
block contains information similar to what traditional superblocks maintain: the number 
of free dinodes, the number of free data blocks, and the access times of the RG. File data 
and metadata may span niultiple groups. 
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GFS also has a superblock which contains information that cannot be distributed across 
the resource groups. This information includes the number of nodes mounted on the file 
system, bitmaps to celculate unique identitiers for each node, and the file system block 
size. The superblock also contains P. static index of the RGs. This RG index describes 
the location of each group as well as the group attributes and layout. 

A GFS dinode takes an entire file system block. Each dinode is divided into a header 
section which contains standard dinode fields and a section of pointers. The number of 
pointers in a dinode is the determined by equation I and the number of pointers an 
indirect block has is given in equation 2. 

![-I 
I I 

I 
i.............f 

Resource Group - 0 

. 
I..l.l........~ 
Resource Group - 1 

I ... . .I . l l 0 .  .. .: 
Resource Group - n 

Figure 4: GFS Structure 
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The pointers form a tree structure in which all data blocks are at the tree's leaves and 
have the same height. This structure is used so that all its accesses require the same 
number of indirect accesses to the data blocks regardless of the offset into the file. This 
structure differs from the traditional Unix file system (UFS) where data blocks might 
have different heights. The UFS tree is simpler to implement yet can require an 
additional level of indirection. Furthemre, UFS places multiple dinodes per file system 
block. By taking an entire block, the GFS can have hundreds of dircct pointers in the 
dinode instead of just ten as in a UFS dinode. Figure 5 illustrat,, a GFS dinode and  ne 
level of indirection for referencing the data blocks. 

GFS Dinode Indirect Blocks Data Blocks 

0 Number of Links 

0 
0 

1 

Figure 5: GFS Dlnode 

Device Locks 

Device Locks are mechanisms for node machines to maintain mutual exclusion of file 
system data. They are implerncnted on the storage devices and accessed with a single 
SCSI command. The Dlock command instructs the devices to pcrform primitivc 
operations on the locks - tcst ctnd set and clear. The implementation of the device locks 
on thc device are limited by the following constraints: 

1. The device lock commands are independent of all other SCSI commands, 

2. Devices supporting r'e\ticc locks have no awareness of the nature of data or resourcc 
that is locked for mutual cxclusion. 
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3. Ewh lock requires minimal amounts of device memory - as little as one byte per lock. 

Lock States 

The state ,>f each lock is described by one bit. If the bit is set to 1, the lock >as been 
acquired and is owned by a machine node. If the bit is 0, the lock is available to be 
acquired by any node. The Dlock 2ommand action test and set first determines if the 
lock value is 1. If value is 1, the command returns with a status indicating that the iock 
has already be acquired. If the value is 0, Dlock sets the lock to 1 and returns a good 
status to the initiator. The Dlock command clear simply sets the lock bit to 0. 

clocks 

Associated with each lock is a clock. The clocks are logical clocks in th.: sense that they 
do not relate to time but instead keep an ordering of events for each lock. These clocks 
are incremented when a successful action is performed. The clocks ate used tu monitor 
how often a lock is accessed; Le., how many times the lock has been set and then cleared. 
Such a clock gives insight into load balancing hot-spors. These occur when some locks 
are accessed more often than others. More importantly, these clocks a*.e useful for error 
recovery. 

The clocks are implemented using a minimal amount of memory - typically 7 to 16 bits 
each. The initiators must be aware that the clock values periodically roll-over from their 
maximum value to zero. This may happtn several times a second on a highly accessed 
lock, so care should be taken by the initiator not to assume that the clock value i!: slowly 
growing. The clock value is returned after each Dlock command. 

Device Failures 

The device lock? and their accompanying clocks are stored in volatile memory on the 
device, although the locks are held across SCSI resets. When a device is powered on or a 
failure occurs which results in the locks being cleared, the devicc notifies a!! nc3des by 
setting Unit Attention . Upon finding a unit attention, node checks to see if its locks are 
still valid. Before proceeding, it will then re-acquire any locks that may have been lost. 

Node Failures 

A node that fails could leave device locks in the locked state indefinitely. These locks 
will remain in this state until some node clears them. A node attempting to acquire a lock 
that is owned by a failed node can identify that the lock has been untouched by checking 
the activity of the lock's clock. If the clock has remained unchanged for an extended time 
period, a node can identify such a case and clear the lock. 
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Care must be ...I t n  by the node clearing a lock that it does not own. The true owner may 
have failed or it may be in a hung state from which it will eventually return still believing 
it owns the lock. Furthermore, two separate nodes may simultaneously identify the same 
lock which must be cleared and send resets. It may be possible that the first node clears 
the lock and sets the lock in the following command. The second node which has already 
decided to clear the lock sends the command after the lock has been acquired by the first 
node. This second clear request must be ignored. 

When a node wishes to clear a lock as failure recovery, the device compares the current 
clock with the input clock from the node. This test ensures that the lcrt will only be 
cleared if the node can identify the cumnt value of the clock. 

Deadlocks arc avoided by the file system. The file system only acquires locks in am 
increasing order. Circular dependencies arc avoided. Starvation is handled by the file 
system and device drivers. The file system dots not hold locks for more than a few Yo 
requests to storage. A nude's device drivers test for its own starvation by checking the 
activity of the lock-based clock values. The node can increase the rate at which lock 
requests are performed an in attempt to feed its starvation. 

cw&tency and caching 

Consistency is maintained by using atomic operations guaranteed by the device locks 
a k n  modifying data. Given the limited number of practical device locks per device - on 
the order of I024 - individual locks cannot be assigned to each file. One lock is assigned 
to the super block, one lock is assigned to each resource group, and the remaining locks 
are divided among the dindes. Figure 4 shows how device locks are associated with the 
superblock, resource groups, and dinodes. 

When device locks are not implemented on the storage device, the SCSI commands 
Reserve and Release can be used to perform atomic operstions on data. These commands 
provide exclusive access to the entire device for one node by not servicing requests from 
other nudes. These commwds guarantee exclusive access but do not provide much 
paratlelism. With only one reservation per device, many non-conflicting requests have to 
wait until the storage device i s  released. In a distributed environment, such limited 
access decreases system throughput and response times. 

The SCSI pro!xoI describes the optional commands R m w e  and Release on Extents. 
These commands allow initiators to reserve for exclusive access only the data blocks that 
they may need. These commands decrease the granularity of exclusion from the device 
level to the block level. While potentially increasing the throughput of the distributed 
system, Rcscrvt and Release on Extent commands rcquire the devices to maintain 
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complicated states of access permissions. For this reason, these commands are generally 
not implemented by the majority of device manufacturers. 

We present device locks as a mutual exclusion mechanism that is highly parallel, has low 
device overheads, and recoven from failures gracefully. The Dlock command is being 
prototyped on Seagate disk drives and Ciprico disk arrays. 

Preliminary Results 

Preliminary measurements have been taken with parallel SCSI hardware instead of Fibre 
Channel. Fibre Channel hardware is not yet available to us, so we present the parallel 
SCSI results instead. We hope to have Fibre Channel measurements by the time this 
paper is presented. These results are based upon tests using SCSI Reserve aurd Releosc to 
maintain consistency instead of device locks. The Dlock command is still in 
development and testing by Ciprico and Sepgate. 

These tests were conducted on three SGI Indys running IRIX 5.3 operating system. One 
Indy has a 100 MHz R4600 processor while the other two have 132 MHz R4600 
processors. All machines have 32 Mbytes of main memory. 

A Seagate Barracuda 2LP was used as the shared storage device. The 2LP is a 2 
Gigabyte Fast SCSI-2 drive. It has a 17 millisecond maximum seek time and a 7200 
RPM spindle speed. Our tests measured the time for reserve and release commands to be 
approximately 2 milliseconds. This disk and all three system disks share the common 
bus. The disk caching parameters are set at their default values. 

The configuration shown in figure 6 is a representation of the test environment. To 
ovetrome cabling difficulties, the system disk of node 2 was attached to the internal SCSI 
bus of node 0 and node 2's controller was directly connected to the internal bus of node 1. 
All devices and controllers are electrically connected. 
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Small benchmark programs were run on ont, two. and aIl three machines to study how 
effectively the SCSI bus and disk are shared. Tht tests were run on the fik system 
running in user space as opposed to running under the VFS interfax of the kcmtl. "he 
user level file system allows for easy tracing and performance measuremtnts. The user 
level file system adds various overheads to the system, so we believe thaf tht VFS file 
system will perform even better. 

The benchmarks chosen involve tests of creating, writing, and reading fiks. The file 
sizes range from 1 Mbyte to 16 Mbytes. Files were written and read by making from t to 
128 requests per file A delay was placed between each q u e s t  ranging from zero to one 
second. This delay represents the time for which a real application would perform 
computation or wait for some reason other than YO. All tests were mn five times so that 
the median values could be used tc evaluate the performance. Table 1 summarizes tbese 
benchmarks. The benchmarks chosen for these tests attempt to match the performance 
capabilities of the single shared disk and 10 MB/sec SCSI bus. These benchmarirs will 
be scaled appropriately when performing the tests on Fibre Channel hardware with 
multiple devices. 
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I Parame*r 
Number of Nodes 
spes 

Number of Requests per File 
Delay Between Requests 

File Sizes 
Create and Write, Write, Read 

1 to 128 
0 ms, 100 ms, 500 ms, lo00 ms 

1 MB to 16b5y 

Figures 7 and 8 show the speedups for each machine creating and reading a 1 MB file in 
128 KB requests, respectively. Figures 9 and IO show the speedups where machines 
create and rtad a 16 MB file in 1 h#B quests, respectively. These results arc scaled to 
rcfkct eqwl amountsof wotk of3 MB and48 MB respectively. That is,& time for one 
machine is muhiplied by 3 uwt the time is multipkd by 1 .5 for two machines. All these 
times are then normalized to the one machine test by dividing by the ortc machine time. 
Curves arc given for no delay and 100 ms, 500 ms, and 1001, ms delays. The write ~ s t s  
show trends similar to the rcad tests. 

Figures I 1, 12. 13, and 14 are plots of the 16 MB creates with varying request sizes. 
Figures 15, 16. 17, and 18 are plots of the same test with read requests. The request axis 
is the number of rcquests needed to access the entire file. The three curves for each plot 
are the time for OM machine alone, the time of the slowest machine with three machines 
running simultaneously, and three tims the one machine time. This last curve i s  given as 
a constant worlcload Compivison to the three machine case. 

Figures 19 and 20 are plots of the number of conflicts encountered by machines when 
running the 16 MB create and cead tests and no delay between requests. Figures 21 and 
22 show the same tests with a lo00 ms delay. These conflicts were counted by the device 
driver whenever a reserve command failed because the device was already reserved. 
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The conflict plots show several obvious but interesting trends: the single machine tests 
had no conflicts; the three machines tests had more conflicts than two machines test; a 
delay between requests decieased the conflicts; and creates had more conflicts than reads. 
These trends can be explained by the argument that increasing numbers or the rate of 
requests increases the chances of having conflicts. The tests that had the most conflicts 
are those which issued the most requests in a given time period. 

The results are promising considering the nature of the tests. The no delay case 
represents nearly constant access to the device in the single machine case. No parallelism 
can be exploited by adding one or two machines, since the device is already fully utilized. 
The slowdown seen in some plots is a result of the contention for the shared device. 
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File creates arc slower than the reads because the creates require additional Yo requests 
to allocate the dinodes, allocate data blocks, and build the metadata tree. As can be seen 
in the plots with the number of quests as the X-axis, the number of requests is indirectly 
proportional to the performance. This i s  because each request has an overhead of greater 
that 2.5 milliseconds. Also, with each request there is a possibility of a reservation 
conflict which slows the request by as many as 100 milliseconds. With Fibre Channel 
and device locks, both these overheads will be substantially reduced. 

The 100 ms delay tests allow some parallelism to be realized. However, it is not until the 
500 ms delay that the parallelism is exploited for all three machines. The IO00 ms delay 
may represent the best speedup for this configuration, since according to figure 14 and 
18. the 1OOO ms delay test does not distinguish between one, two, or three machines 
running simultaneously. 

Striping the file system across multiple devices may have an effect similar to increasing 
the delay between file system requests. Assuming the 10 MB/sec SCSI bus is not a 
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system bottleneck, adding another device to the configuration may remove as much as 50 
percent of the burden from the single disk. 

8 16 32 64 128 

w=* RcqUrHs 

Figure 21: GFS Creates of 16 MB files 
with 1OOO ms delay 

Figure 22: GFS Reads from 16 MB files 
with lo00 ms delay 

NFS Comparison 

The benchmarks were also run on a configuration using NFS as a comparison between 
distributed file systems running on the same hardware. This configuration consists of a 
dedicated server machine and three clients. The workstations and disk are the same as 
above; the server machine is a 132 Mhz Indy. Connecting the machines is a 10 Mbit/sec 
ethernet network. The server's file system was SGI's XFS [22]. 

Figures 23, 24, 25, and 26 are the NFS equivalent of the speedup curves given above. 
Figures 27,28,29, and 30 are given as a time comparison between the NFS and GFS read 
tests. A few differences can be noticed between the GFS and NFS tests. First, while both 
file system have good speedup for larger delays, NFS never has slowdown. Howevcr, the 
NFS tests use a dedicated server which i s  onc more machine than the GFS tezt 
configuration. The speedup values do not take this into account, Second, the GFS times 
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are much smaller - between two and ten times faster. In cases where the request sizes 
were large, GFS exceed4 transfer speeds of 2 MB/sec. 

a 

Figure 25: NFS Speedup for 16 MB files 
Created by 1 MB requests 

Figure 24: NFS Speedup for 1 MB f i i  
&ed by 128 KB reqrrests 
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Figure 27: NFS Creates of 16 MB files 
with no dday 

Figure 29: NFS Reads from 16 MB fiks 
with no delay 

Future Work 

The GFS project is still in its early phase. 
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When Fibre Channel hardware and device 
drivers become available, an expanded set of performance tests will be performed. These 
tests will be performed on file systems with different configurations - file system block 
sizes, resource group layouts, etc. 

The device lock mechanisms are to be studied to accommodate failure recovery. The 
polling rates between locking retry requests must be tuned to provide a good compromise 
between low latencies to each node and high system throughput. Associated with these 
rates is the delay between retry algorithm - constant delay versus variable delay. 

The time that a node waits before resetting a device lock owned by another node must 
also be investigated. This time duration has to accommodate failures in a short period 
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without resetting prematurely. Premature resets cause the previous owner to rebid for 
locks it once owned. This is acceptable occasionally but should be kept to a minimui,,. 

Currently GFS stores data in a linear layout across the storage devices. This k j t . v t  
allows various forms of striping and data partitioning, but we plan to genera1i:p ',lis 
Iayout to a subpool architecture. Each subpool will have attributes reflected by its 
underlying hardware and configuration. A translation layer will be placed between tihe 
file system and device drivers. This translation layer will convert the linear block 
addresses from the file system to the proper devices and block numbers padding requests 
when appropriate. 

Work has begun to study the caching algorithms and cache configurations of storage 
devices. Using hardware and simulations, we are attempting to determine the benefit of 
large caches. Replacement policies we also being studied. 

The GFS approach to a distributed file system using shared storage devices seems 
promising given the high bandwidth natures of new networks and the increasing 
sophistication of devices. The architecture places more responsibilities on storage 
devices than message-based architectures. Modem devices are able to cache, perform 
mutual exclusion, and schedule requests freeing these burdens from the node machines. 

The results from the preliminary performance measurements indicate that with sufficient 
delay between UO requests to a shared device, device parallelism is exploited within the 
system. This delay may take the form of machines performing file system requests 
between lengthy computation or low activity. Striping the file system across multiple 
devices may have an effect similar to increasing the delay between requests. 

We believe that by using 100 MB/sec Fibre Channel and multiple storage devices, this 
shared storage scheme will scale well to several machines even with large workloads. 
Furthermore, the fine grain mutual exclusion implemented using the device locks will 
decrease conflicts to further increase the performance of each node and the system. 
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AbstcPct 

We have rk . ;oped and deployed a Distributed-Parallel Storage System (DPSS) in severdl 
high speed ATM WAN testbeds to support several different types of data-intensive appli- 
cations. Architecturally the DPSS is a network striped disk array, but is fairly unique in 
thdt its implementation allows applications complete freedom to determine optimal data 
layout, replication and/or codin redundancy strategy, security policy, and d; namic recon- 
figuration. 

In conjunction with the DPSS, we have developed ;I "top-to-bottom, e '-toend" perf'or- 
mance monitoring and analysis methodology thdt has allowed us to characterkc all 
aspects of thc DPSS operating in high speed WAN environments. In particular, we have 
run a variety of performance monitoring experiments involving the DPSS in the MAGIC 
testbed. which is a large-scale. high-speed, ATM network and we descriht. our experience 
using the monitoring nlethodology to identify and correctinp problems that Iimit the per- 
formance of high speed distributed applications. 

Finally, the DPSS is part of an ovcrall architecture for using high-sped, wide area net- 
works for enabling thc routinc. lwation inkpendent use of large data-objects. Sincc this is 
part of thc motivation for a distributed storage system, wc describe this architecture. 

1. Thc worh dcscrihcd in this paper is  supprtcd hy ARFA. Computcr Systcms Tcchnoiogy Oflice 
(htrp://ltp.a~a.tiiillKewarchArcas.hrml) and the U. S. Wpt. of Energy, Oflic, of Er.1 py Research. Oflicc of 
Computational and Technology Rcwdich. Mathcmatical, 1nioniiatit)n. and Computational Scicncc5 Division 
(hi~p: / /www.cr.dc~.~ov/~r~~u~~ion/octr /mics) ,  undcr contrxl  DE-AC03-76SFOW98 with thc Universiiy of 
California. Authors: wejohnston@ I h 1 . p .  ticrncy (n. gcorgc.lW.gov. Lawrcnx Rcrkcicy Nation;tl I.;ihorirror!~, 
mail stop: MOB-22.19. Rcrkclcy, (:A, 94720. ph: 5 IO-486-5014. I'm, 5 IO-4Ah-636.3. 
h~tp://www-itg.ihl.~nv).  This I \  report no. L B N l , - 3 W .  
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1.0 Introduction 

We arc developing a strategy for using high-speed networks ;is enablers for stwage sys- 
tems whose components are distributed around wide area networks. The high-level goal is 
to dramatically increaw the location independence for access to "large data-objects". 
These objects - typically the result of a single operational cycle of an instrument, and of 
sires from tens of MBytes to tens of Gbytes - are the staple of modern analytical systems. 
It is further the case that many of the instrumentation systems tllat generate such 
data-objects arc used by a diverse and geographically diuributed community: examples 
from the scientific community include physics and nuclear science high enegy particle 
acceier.ators and detector systems, large electron microsccpes, ultra-high brilliance X-ray 
sources. etc. Them are correspondingly complex instntmentation systems in the health 
cact: community that generate large data-objects. Our approach is an architecture that uses 
a collection of highly distributed services to provide flexibility of managing storage 
re.wrces. re!iability of access, and high performance. all in an open environment where 
the use-conditions for resources and stored i n f m a t i m  ;11p guaranteed thmigh the use of 
it strong, but decentralized. security architecture. 

In this paper we will discuss some of the aspects of our distributed large data-object archi- 
tecture, but we focus on the issws for achieving high performance for distributed systems 
in wide-area ATM networks - a problem that is clearly central to the basic premise of our 
approach. 

As developers of high-speed network-bascd distributed services, we often observe unex- 
pectedly low network throughput andor high latcncy. The tcascwr for the poor perfor- 
mance is frequently not obvious. The bxlenecks can be (an.. have been) in any of the 
components: the applications, the operating systems, the device drivers, the network 
adapters on either the sending or receiving host (or both), the network switches and rout- 
ers, and so on. It is difficult to track down performance problems because of the complex 
interactiot. between the many distributed system ccrmponents, and the fact that problems 
in one place may be most apparent somewhere else. Further, these distributed applications 
are complex, bursty, and have snore than one connection in and/or out of a given host at 
one time and simple tools like ttcp do not adequately simulate these conditions. 

We have developed a methodology and tools for mmitoring, under realistic operating con- 
ditions, the behavior of all the elements of the application-to-application communications 
path in order to determine exactly what is happening within this complex system. Our 
approach is to instrument both the applications and the storage systems to do timestamp- 
ing and logging at every critical point in the data handling sysrem. We have also modified 
some of the standard lJn ix  network and operating system monitoring tools to log "interest- 
ing" events using a c m m n  log format that can be correlated with the instantaneous 
behavior of the application, the storage system, and the transport between them. This 
allows us to characterize the performance of all aspects of the distributed systems and net- 
work in detail, using "real-world" operations. This monitoring functionality is designed to 
facilitate identifying bottlenecks, performance tuning, and various sorts of network perfor- 
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mance research. It also allows us to meiwre throughput and latency characteristics of our 
distributed application code. 

The goal of the performance characterization work is to produce predictable, high-speed 
components that can be used as building blocks for high-performance applications. rather 
than hdving to “tune’ the applications topto-bottom as is  all too common today. 

in this paper we descrihe an architecture for handling large data-objects. the elements, 
implcmntation, and applications of that architecture. We ais0 describe in some detail the 
architecture and performance of it prototype application and a distributed - piwallel &itit 
server. called the DPSS (Distributed Pwallel Stwage Server. formerly known as the Image 
Server System, or ISS) that is used to drive many of the experiments, and is a key element 
of the l q c  data-object architecture. Finally, we describe some techniques for monitoring 
and analysis of the elements of the architecture. and some experimental results using these 
techniques. 

2.8 Distributed Large Data-Object Management Architecture 

The advent of shared, widely available, high-speed networks is providing the potential for 
new appruaches to the collection, storage, and analysis of large data-objects. In one 
example, high-volume kalrh care image data used for diagnostic purposes - e.g. X-ray 
CT, MRl, and cardio-angiography - are increasingly collected at tertiary (centralized) 
facilities, and may now be routinely stored and used at locations other than the point of 
collection. In thir rase, the importance of distributed storage is that a hospital (in fact. 
almost any instrumentation scenario) may cot provide the best environmcnt in which to 
maintain a large-scale digital storage system, and an affordable, easily accessible. 
high-bandwidth network can provide location independence for such storiigc. In the case 
of health care, the importance of remote end-user access is that the health care 
profcssionals at the referring facility (frequently remote from the tertiary imaging facility) 
will have ready access to not only the image analyst’s reports, but the original image data 
itseIf. 

This general strategy extends to other fields as well. In particular, the same basic 
infrastructure is required for iemote access to large-scale scientific and analytical 
instruments, both for data handling and for direct, remote-user operation. See [ I ] .  

The basic elements of a distributed large data-object architecture include: 
data collection and the instrument-network interface 

on-line storage that is  distributed throughout the network (for both performance and 
reliability) 
processing elements - also distributed throughout the network - for various sorts of 
data analysis 
data management that provides for the automatic cataloguing (mtadata generation) 
of the data being stored 
data access interfaces, including application-data interfaces 
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(troosparent) tertiary s tor i i  ("mass storage") management 
user access to dl nlevant aspccts (application, data, metdata, data mnagcment) 
transpent security that providts acccss control for all of the systems components 
based on the resomx-owner's policy 

Within the network storage system in p;utic\ilar - a "rniddlewate" sewice - the 
architectural issues include: 

distributed storage system operation and perfixmace 

useraccessmerhodologies 

security architecture 

These ekments all need to be provided with kxible. bation-kdepcndent interfaces so 
that they can be h l y  moved afound the netuK#lt as q u i d  far optrillionid or other 
logistical convenience. 

Figure i illustrates the overali architectwe. It indicates the central d e  of a high-speed 
cache, which is used both for initial dah dlection, and to provide wbsequent high-@ 
access by applications. 

Briefly, the data flow and infonnation generation proceed as fdbws. The data-objects are 
first cached on the DPSS (whose r0mponent.s cue frequently scatted all over the 
network). F m  the cache it i s  "processed" as required, hut typically to produce several 
pieces of information to be included in the "index". Metadilla is generated (by analyzing 
the object, collecting information forwarded by the object generator, or by associating 
separate information with the object). This m e t a a  is typically kept in Wagged-file" text 
files. "Derived" information is generated; in t t n  case of image-like objects, this includes 
typically "thumbnail" and screen-sized representations, UtypiCal" frames from a 
video-object, etc. The data-object itself is replicated in a tertiary storage system. All of the 
information related to the bta-okject is combined into a Web document that repsents  a 
comprehensive index and source of meta-information for the data-object. At this point 
the data-object has a comprehensive "index", a permanent instance in tertiary storage. and 
(perhaps) a temporary instance in the network cache. A Web interface can be used for 
searching, browsing, and accessing the metadata, or the object itself. (See Section 2.3, 
"Data Managemer.1. Mass Storage, and the User Interface" and Figure 3, below.) This 
same Web interface is used to manage the migration of the data-object in to, and out of, 
the cache. The user or applicarion never has to deal directly with the tertiary storage 
system - i t  is managed in a transparent and location independent manner. Applications that 
access the data-object can be launched directly from the Web interface, or can use the Web 
interface to migrate the object to cache, and access i t  there. Access methods for the 
data-objects an: typically provided as loadable libraries for the application, and provides 
for application or data specific views of the data-object. (These "objects" are not persistent 
C++ objects: the "object" consists of access methods (of which there may be several), the 
metadata (including "derived" objects"), and the data-objcct itself, all of which typically 
reside in different locations. ) As indicated in Figure 4 (Distributed-Parallel Storage 

346 



I 
erc)n I t  I 
(m) I. 'A& t . 

I I  I 

i a k X  create Web 
database fgclhl3zwnc(wl;rir 

ohjms, ;15 ropuid) - and "dcrivcJ" 
c 

large 
data-object ' 
generat iorr 

store in mas.. 
stwage system(s) 

L L 

Figure I ow+csfl ArrkStecture tor a Dwributed, Large Dabobject Environment 

System Architecture) the access library translates the application view of the objcct to 
DPSS logical block addresses. 

Together, these elements of a large data-ohjcct management architecture haw? provided 
effective management for several classes of data-objects. (See [2) and [3).) 

2.1 Data Cdlection 

instrumentation systems are at the front-end of many distributed iarge data-otyct 
environments. Examples incluck particle accele itor dettctb, .,, Earth environment 
monitoring satellites, and medical imaging systems. These sources generate essentially 
continuous data sircams, but ones that have "natural" boundaries that define 'ohjccts". For 
many of the instrumentation systems that we are interested in, one of the primary issues is 
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getting the data out of the instruments and onto the network. One of the circumstances that 
has I d  to both the interest in, and practicality of, the architecture king described here is 
that general purpose workstations now have memory and bus structures that are fast 
e m g h  to q u i r e ,  StNcture, and send to the  work. significant bandwidth data streams. 
(For example. the newest (mid-1996) DEC Alpha and Sun U1tr;rSpan: workstations can 
deliver 20 MBytedsec of user data to a network interface.) This is an important capability 
because it means that the only special hardware that is required to bring instruments 
on-line is the interface between the worirstation and the data source, and even this 
interface may be p v i d e d  in “Softwm” using off-the-shelf DSP-based VO boards. 

The frontend workstation acquires the raw data. f-ts it as “objects” by adding or using 
mctadata from the experiment environment. and then sends the objects into the distributed 
m i m m n t .  ”he data collection workstation frequently also senm as a buffer so that 
brief interpretations or slow-dnwns in the network do not result in loss of data 

A high perf“ widtly distributed network storage system is an essential componenl 
of a network-bad large data-objcct envirmmmt. Distributing thc components of a 
storage system throughout the network increases its capacity, reliability. performance, and 
security. Usable capacity increases in conjunction with a widely deployed. gencraiized 
security infrastructure that can support dynamic construction of systems through 
M e r i n g  and automated acquisition of ~esources. (See (41.) Reliability increases because 
storage systems that can be configured from components that have as little as possible in 
common (e.g., (ocation) provide the resilience that comes from independence (transparent 
redundancy of data is dso possible). Performance is increased by the combined 
characteristics of parallel operation of many sub-components, and the independent data 
paths provided by a large network infrastructure. Security is also potentidly increased by 
having many independent components, each of which has local and independent 
enforcement mechanisms that can limit the xope of a security breach. 

The Distributed-Parallel Storage System (“Dpss”, also known as the “ISS) is an 
experimental system in which we arc developing, implementing. and testing these ideas. 
In n m t  configurations, the DPSS is used as a network-striped disk array designed to 
suppiy and consume high-speed data streams to and from other processes in the network. 
(See [Sl and (61.1 

The DPSS is essentially a “logical block server whose functional components are 
distributed across a wide-area network. (See Figure 2) illustrating the DPSS architecture.) 
The DPSS uses parallel operation of distributed servers to supply image stream: fast 
enough to enable various multi-user, “real-time”, virtual reality-like applications 11: an 
Internet i ATM environment. There is no inherent organization to the blocks, and in 
particular, they would never be nrganized sequentially on a server. The data organization is 
determined by t k  application as a function of data type and access patterns, and is 
implemented so that a large collection of disks and servers can operate in parallel. 
enabling the DPSS to perform as a high-speed data source or data sink. 
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Figure 2 Distributed-Pamlkl Storage System lmpkmentation 

At the application level, the DPSS is a semi-persistent cache of named data-objects, and at 
the storage level it is a logical Mock server. Although not strictly part of the DPSS 
architecture, the system is usually used with an application agent library called a “data set 
structure access method”. This component provides an object-like encapsulation of the 
data, in order to represent complex user-lcvc’ data structures so that the application does 
not have to retain this information for each dirt, i :F’ data set. The function and interface of 
the access methods are lefi to the application domain, but one simple example is for video 
data. In this case the access method allows applications to rcqwst data by *‘frame’’ 
number. The access method converts the application requests into logical block requests. 
These logical block requests are then sent to the DPSS Master which serves two functions, 
request and 1.esource management. The Resource Manager maintains data set definitions, 
and the Request Manager is responsible for mapping the logical block requests to physical 
block requests. The Resource Manager also deals with interactions with the storage 
servers to determine available storage (a storage server is an independent entity and may 
deal with several DPSS Masters) and to establish the “security context** that provides the 
scope of control for various resources. 

A security model and supporting security architecture provides for enforcing “owner” 
defined management policy for the physical resacirces and access policy for the data. 
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Figure 3 illustrates some of these points. It shows a browser interfirce on the left, and on 
the right the results of automatically building a sub-collection of data-objects as the result 
of a search on the textual metadata. The information about the data-objects that result from 
the search is shown as a collection of thumbnails, associatcd pointers to other types of 
derived data, and a pointer to the original data-objcct. For the data-objects that reside on 
tertiary storage (a tape-robot based mass storage system in this case), there is an option for 
forcing migration of a data-object back to the on-line c,ache if thc data of interest is not 
already there. The example in Figure 3 ib Fairly simple, but in the health care information 
system mentioned below, the original video data-object cannot be compressed and 
requircs a special application to view the original data-objects (directly from the DPSS). 
or via JPEG or MPEG "movies" that are dcrived representations (see [2 1). 

2.4 A Health Care Information System Application 

An example of a niedical application that uses this distributed large data-object 
architecture is a system that provides for collcction. storage, cataloguing. and playback of 
video-angiography images using a metropolitan area ATM network. 

Ccirclio-criil:ir,~~ruyh?.' is used IO monitor m d  restore cimiitcry blood J c m :  
iind tkorq'k clinic*ally eflective, the required itiiagitig systems m i 1  
cissocictted fucilities tire expensive. To ntinirnize the cost of sircli procedirres. 
Iteirlth cure providers are heginiiing to concetitrlrte these services iii ( I  few 
hi~h-\ditine terticq ctrre centers. Patients tire typicdl!: referred to these 
ccnters b? c*uriIioko~ists operccting at c*liriics or other hospitcils; the cvtiters 
then ntitst c*omntunir.tite the restrlts back to the Iocd rcardioltqists ns sooil 

irs possible c$er the procwlitw. The iidvrrntages of providing spec.ictli:d 
se r\.iws ii I dis t ir r t t tr rt itr p c-en tu rs iire sign iJic-titi t l y  reduct4 if t lie lit edic vi 1 
it$micitioii obtiritied diiriii,q I '  cn.edure i s  not deli~*ered rq>iilly c t r d  
cic*c.rrriitely to the r+errin,y y r l  . , m i  tit tlie piitietit 's konte .fuciiity. The 
dc.li\vn system c~irrreittly i t s t  ,I to trarisfer pttieiit ii$Ortnertioii between 
fticilities iiiclirde iiiterojJic.e ttiail, US. Mcril, f i i x  iniirchiite, tekplione, tri id 

cotcrier: Oljkw tliesv spleim (ire incriieyiurte citid porentinlly cottl~i iiirrodicce 
de1uy.s in prtient care. (See 1-31.] 

Using a shared, metropolitan area ATM network and a high-speed distributcd data 
handling system, video sequences and still images are collected from the 
\ idcu-angiography imaging systems, stored, and accessed by a remoie user. The image 
(lata i~ie  .en1 through the network to storage and analysis systems, as well as directly to the 
w=rs  ai dinic sites. Thus, data can be stored and catalogued for later use, data can be 
Jclivctui live from the imaging device to remote clinics in rcal-time, or these data flows 
c.:n AI be donc simultaneously. Whether the storage servers are local or distributed around 
the network is entirely a function of the optimal logistics. There are arguments in regional 

-__----_ - -- 
2. Cai :io-anpiopraphy imaging involve\ ii two plunc. X-ray vidco imaging systcm that produccs from XV- 

era1 IC, 1c-w of r n i n u w  of dlFild video scqucncc\ for cach piticnt w d y  for cach palient session. The digital 
vidco is nrgan17ed BC lens ctf datwhjccts. each of which are of the order of 100 MBy~cs. 
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health care information systems for centralized storage facilities away frcm the hospital 
environment, even though the architecture is that of a distributed system. (See [8].) 

This application is in operation in the CalREN, ATM network in the San Francisco Bay 
Area, and is described in some detail in (2). 

3.0 Network Storage: The Distributed-Parallel Storage System 

A central issue for the approach of using high-speed networks and distributed systems as 
the foundation of a large data-object management strategy is the performance of the sys- 
tem components, the transport / OS software, and the underlying network. Problems in 
any of these regimes will negatively affect our strategy, but such problems can usually Re 
fixed if they can be isolated and characterized. A significant part of our work with 
high-speed distributed systems is developing a methodology and tools to locate and char- 
acterize bottlenecks. 

We have designed and implemented the DPSS, as part of an DARPA-funded collaboration 
knowl: as the MAGIC gigabit testbed3 (see 191). and as part of the U.S. Department of 
Energy’s high-speed distributed computing program. This technology has been quite suc- 
cessful in several environments. The DPSS provides an economical, high-performance, 
widely distributed. and highly scalable architecture for caching large amounts of data that 
can potentially be used by many different users. Our current implementation provides for 
real-time recording of, and access to large, image-like, read-mostly data sets. In the 
MAGIC testbed, the DPSS is distributed across several sites separated by more than IO00 
Km of high speed network that uses IP over ATM as the network protocol, and is used to 
store very high resolution images of several geographic areas. Thc first client application 
of the DPSS was “TeraVision”. a terrain visualization application that uses the DPSS to 
let a user explore / navigate a “real” landscape represented in 3D by using ortho-corrected. 
one meter per pixel images and digital elevation models (see [IO]). TerruKrion requests 
from the DPSS, in real time, the sub-images (“tiles”) ncedcd to provide a view of a land- 
scape for an autonomously “moving” user. Typical use requires aggregated data streams as 
high as 100 to 200 kibitdsec. Even in the current prototype system the DPSS is easily able 
to supply these data rates from sevcral disk scrvers distributed across the network. 

The combination of the distributed nature of the DPSS, together with the high data rates 
required by TerrtrVisiori and various load simulators, makes this a good system with which 
to test a high-speed network in a much more realistic manner than ttcp-like tools allow. 

3. MAGIC (Multidirncnsional Applications and Gigabit Intcrnctwork Consortiurn) is a gigabit network tcst- 
bcd that was cstablishcd in Junc IY92 by the U. S. Government’s Ad\,inced Rcsearch Projects Agency 
(ARPA). The testbed is a collaborarion between LBNL, Minncsota Supercomputer Center, SRl, Univ. 0 1  
Kansas, Lawrence. KS, USGS - EROS Data Center, CNRI, Sprint, I!. S. We\c. Southwcsc Bell, and Splitrock 
lelecom. Morc inlormation ahout M A G I C  may he found on the WWW at: http://www niagic.nct/ 
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3.1 DPSS Architecture 

As mentioned, thc DPSS is essentially a “logical block” server whosc functional compo- 
nents are distributed across a widc-arc.a network. The DPSS uses parallel operation of dis- 
tributed servers to  supply high-speed data streams. The data organization is detcrmincd by 
the application as a function of data type and access patterns, and is implemented during 
the data load process. Thc usual goal of the data organization is that dat;r is declustcred 
(dispcrscd in such a way that as many system elements as possible can operate siniulta- 
neously to satisfy a given request) across both disks and servers. This strategy allows a 
large collection of disks to seck in p;lriillel. and all servers to send the resulting data to the 
application in purallel, enabling the DPSS to perform as a high-speed data server. 

The implementation is bascd on the use of multiple low-cost. medium-speed disk servers 
which use the network to aggregate multiple server outputs for high performance applica- 
tions. To achievc high performance all types of parallelisni are cxploitcd, including those 
available at the level of the disks, controllers, processors / memory banks, servers, and the 
network (see Figure 2). 

The security model for the DPSS involves accommodating several different resource own- 
ers. The context cstablished between the Data Set Manager (DSM) (see Figure 4) and the 
disk/storagc servcrs reHects agreements between the ownei-h of physical resources (disks) 
and an agent that is providing storage to a user community. This context enforces the disk 
usage agreements. The separate context established bctween t!ie DSM and the users 
retlccts the use-conditions imposed by the data “owner”. and prsides for ensuring access 
control that enforces those use-conditions. For more information on the security architec- 
ture see (41. 

The overall data flow involves “third-party” transfers from the storage servers directly to 
the data-consuming application (a model used by mcst high perfonnance storage sys- 
tems). Thus, the application requests data, !hex ic!quCsts are translated to physical block 
addresses (server name, disk number. and disk block), and the servers deliver data directly 
to the application. 

3.2 Client Use of the DPSS 

The client-side (application) use of the DPSS is provided through a library-based API that 
handles initialization (for example, an “open” of a data set requires discovering all of the 
disk servers with which the application will have to communicate) and the basic block 
request / rcccive interface. It is the responsibility of the client to maintain information 
about higher-level organization of the data blocks; to maintain sufficient local buffering so 
that “smooth playout” requirements may be met locally; and to run predictor algorithms 
that will pre-request blocks so that application response time requirements can be met. 
The prediction algorithm enables pipelining of the operation of the disk servers with the 
goal of overcoming the inherent latency of the disks. (Sce [ 5 ]  and [6]). 

None of this has to be explicitly visible to the user-level application, but some agent in the 
client environment must deal with these issues because the DPSS always operates on a 
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best-effort basis: if it did not deliver a requested block in the expected time or order, it was 
because it was not possil?!t to do so. In fact, a typical mode of operation is that pending 
block requests are flushed from the disk server read queues when the next set of requests 
arrive from the application. Fven if the DPSS cannot send all the requested data to the 
application, it is posFible that ihe data was at least read from disk into the DPSS memory 
cache, where it will remdin available for faster retrieval (for a short time). The application 
may then routinely re-request some fraction of the data. This deliberate “overloading” of 
the disk servers ensures that they will be kept busy looking for relevant blocks on disk and 
caching them in server memory. This approach ensures that the data pipeline stays full, 
and that disk server resources are never idle. 

As mentioned, a DPSS client typically communicates with the DPSS through an 
application library called a “data structure access method library” (see Figure 4J.1 

physical 
block 

requests 

single 
high- bandw id t h 
sink ‘or source) 

Application - (client) 

I 

Figure 4 Dist ri hu ted-Parallel Storage System Architecture 

3.3 DPSS Implementation 

In our prototype implementations, a typical DPSS consists of several (four - five) Unix 
workstations (e.g. Sun SPARCStation, DEC Alpha, SGI Indigo. etc.). each with several 
(four - six) fast-SCSI disks on multiple (two - three) SCSI host adapters. Each workstation 
is also equipped with an ATM nctwork intertace. A DPSS configuration such as this can 
deliver an aggregaked data stream to an application of ahout 400 Mhits/s (SO Mhytesls), 
using these relatively low-cost. “off the shelf’ components, by exploiting the parallelism 
provided by approxiniately five disk servers, twenty disks. Icn SCSI host adapters. and live 
network interfaces. 
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The software implementation is based on Clnix interprocess communication mechanisms 
and a POSlX threads programming paradigni to manage resources on the disk servers (sec 
[ 1 I )  and [SI). The primary operating systeins (Sun's Solaris, DEC's OSE SGl's IP.?:?(. and 
FreeBSD) all have slightly different implementations of threads, but thcy arc close enough 
that maintaining a single source is not too difticult. 

The implementation supports a number of transport strategies. including TCP/IP, RTPllP 
[ 121 and UDP/IP. RTP and UDP do not guarantee reliable data delivery and ncvcr retruns- 
mit. Lost daty are handled at the application level. This approach is appropriate when data 
has an age-determined vaiue: data not received by a certain time is no longer useful, and 
therefore should not be retransmitted. This is the case for certain visuali7.;itron scenarios. 
(This paper. however, focuses on TCP pcrformancc issues.) 

Other papers describing the DPSS, including a paper that describes the implementation is 
detail 151. arc available at http:l/www-itg.lhl.gov/DPSS/papers.htnil. 

3.4 TerruKsion and fv-sim: Prototype DPSS Client and Monitoring Tool 

Terrtr Visiori UI':S thc DPSS client library's logging facilities to log all data movcinent 
events associated with an application session. It uses the a standardized log format to mon- 
itor a data block's progrehs from ths storage server disks, tnrouqh the nctuork, and i n t o  
the iipplication clicnt. 

We h a w  ill\(> developed d simulator prograni, r~*,vim. that can gcncratc datii requcsts iind 
receive data bloi:ks from the D E S  in a nianner similar to T'.rrcrVision's. U4ng this ro- 
gram we can gcneratc synthetic rcquest patterns, or repcatcdly I * W  actual TvrrciVisior. 2s- 
sion datu rcqucst traces, and attempt to verify and analyze pcrforniancc bnttlcneclis in the 
DPSS, the appliciition. or in the network in ;I controlled environment. Tc.rrciVi.siori is a 
complcx softw;irc suitc running on complex hardware, and piitterns of requestcd data arc 
complex. t\--.sitii can emu.dte the RrrtiVision data request patterns through thc 
tracc-drivcn operation facility, but ih a "null" application that can he run at much higher 
overall request rates than ,tal applications, and can eliminate possible cffccts 0 1  data pro- 
cessing o r  graphics processing on  the network throughput. 

Thc ~\*-sinr data rcquest sending rate, i n  terms of  block lists per second iind hlocks per list. 
ciit1 be set by the user, as can the saving of history logs in the DPSS standard format. Thc 
sender can al\o uvi trace / playback tilcs of actual Tvrrtit'ision sessions instead of generat- 
ing its own lists of block requests, as mentioned above. Addilionally, the user can specify 
the use of multiple data sets, overall running time, and other runtime characteristics. 
tiv-.\itii and the DPSS thus can bc conligured to impose alinost arbitrary load patterns on  ;I 

network iillu to record the rcsults. 

The Et-r.tr\'i.sion data request tracc is kcpt i n  terms of logical block rcqucst so that all 
a\pcctx ofthe configuration of the DPSS may be changed - the number of storage servers, 
lhcir localion in the network, the data Iiiyout. etc. - to facilitate niany typcs of experinicn .?. 

I n  other words, real application data request patterns may be applied against different con- 
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figurations of the distributed stora~c system, network, etc., because the logical block 
requests are independent of any aspect of the phyzical organization of the storage system. 

4.0 Performance Monitoring Mechanisms 

Nctwork performancc and distrihutcd operation characteristics an: obviousl-. an importurit 
factor in the architecture that we are describing. There are virtually no behavioral aspects 
of  an ATM “netw,)rk” that can be taken for granted, even in an end-to-end ATM network. 
By “network” we mean fhc end-to-end data path from the transport API through the host 
network protocol (TCPt’IP) software, the host network adaptors and their device drivers, 
the many different kinds of ATM switches and physical !ink bandwidths, and then up 
through the corresponding software stack on the receiver. Further, thc behavior of different 
elcments at similar places in thc network architecture can be quite different because they 
arc implcniented in different ways. The combination of thew aspects can lead to complex 
and unpredictable network behavior. 

Wc haw built performance and operation monitoring into thc s:orage system and several 
applications, and have designed tools and rncthodologies to characterize the distributed 
operation of the system at many levels. As ,equests aad data enter and leave all parts of the 
user-level system, synchronized timestamps are logged using a common logging format. 
At the same time, various opc!atin,: system and network parameters may be logged in [lie 
same format. Several of these instrumented applications and tools are described bclow. 

4.1 DPSS Timing Facility 

A request for a data block takes the following path through the DPSS (see Figure 5). A 
request (a lis1 of blocks) gc5s from the application to the Request Manager, where the log- 
ical block names are translated to physical addresses (server: disk: disk offset), then the 
individual requests are forwarded to the appropriate disk xervcrs. At the disk servers, the 
data is read from disk into local cache, and then sent to the application (which has connec- 
tions to all the relevant servers). Precise timestamps are gathered before and after each 
major function, such as name translation, disk read, and network send. All timestamps are 
then logged hy the DPSS servers. The timestamps are also sent with the data block to the 
reqilesting application, where logging can be performed using the DPSS client library. 

Timestamp consistency is provided by the GPS clock-based network time protocol (NTP 
- described below), which allows us to make precise throughput and latency measure- 
ments throughout the DPSS system and underlying network. Instead of trying to analyze 
the aggregate delay between sending a request and receiving the associated data block, we 
can pinpoint delays to within narrowly-specified steps in the data path. 
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Figure 5 DPSS Pttrfornrance Characterization Points and Optimal Average 
Timings 

4.2 OS and Setwork I.ayer Jloniloring, 
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modified to poll and report continuously (it normally provides only a snapshot of current 
activity). We rypicdly poll at 100 rns intervrtls, and since the kernel events are not times- 
tamped. the data obtained this way represents all events in t h i h  interval. 

4.3 Common logging format 

To easily prwes4 the wvcral gigabytes of lop files which can be generated from this typc 
of logging, all events are logged using a common fomiat: 

kcyivord: ho\tnaiiw: wconds,; nrtno-sec: data: data; data; ...... ; 

The logging fornut is i t  semi-colon separated list o f  fields. l h e  “keyword” is a uniquc 
identitier dehcribing what is k ing  logged. By convention, the first part of the keyword is a 
reference to the program that is doing the logging (e.g.: DPSS-SERV-IN. 
C’MSTAT-SYS-CALLS. NETSTAT-HETRANSSEGS, TV-REQ-T1I.E). Each log record contains 
both the hostnamc of the system on which the event occurred and a tinlestamp. The times- 
tamp is mcdeled after the format returned from the Unix “gettimeofday” call. and is 
logged with a numerical precision of one nanosecond. (We expect to be able t o  get the 
NTP synchronized accuracy of  the timestamps down to better than one microsecond 
through a combination of thc recently increased available prccision of GPS signals and the 
u.se of real-time clock boards in  the systems under study.) 

Thc end of evcrq log record can contain any number of “di~ta” elements. These can be 
used tc, store any information about the logged event that may later prove useful. For 
example, for the NETSTAT-RETRANSSEGS event, there is one data clement, and il contains 
the number of TCP retransmits since the previous poll time. and the dPSS-START-WRITE 
event data elements contain the logical block name, the data set ID, a “user session” ID, 
and an internal DPSS block counter. The log records for a givcn data block are associaled 
by virtue of being collected and carried in the data block request mcssage as i t  works its 
way through the system. 

4.4 Log File Aidysis Tools 

Tools to analyze log files include per1 scripts’ to extract information from log files and 
write data files in 3 format suitable for using gnuplrd to graph the results. Thcse tooh 
were used IO generate the graphs in Section 5.0. 

When trying to identify thc wurce of  specific problems (such as those that showed up in 
the early WAN experiments described below) a good deal of exploratory. interactive anal- 
ysis of the log data was the key to identifying the important factors, and graphical analysis 
of individual. exceptional events has proven to be the most important aspect of analyhrs 
%hen one is trying IO identify the causes of specific behavior. There are several character- 

4. Both nersrclf (display., network statistics I and vmstcit (d15plays virtual incmory 5ratistics) are tools avail- 
able on m:?y Unix systems 
5 .  For more in format ion see. h ttp:Nw w w rnrtrone~ .com/perlinfo/perl5. hirnl 
6. For more inlvrmation see: http:/~wuw.cs.dartniouth.edu/gnuplot-in~~,ht~il 

--___--- 
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istics that have made graphical analysis a powerful technique. What turned out to be the 
most important was the ability t o  treat ”lifelines” (the temporal trace of a single block 
from application request all the way through the system to receipt of the data) as identifi- 
ahlc entitics that could be individually manipulated and quantitatively analyzed. 

in order to enable the quantirativr analysis of individual events the graphical tools need to 
have several characteristics. Probably most important isthat the significant features (e.g.. 
a11 of  the time points in a lifeline) must be grouped into graphical objecls that can be 
manipulated as units. Further. it turned out that being able to ‘‘sketch’. annotate, and create 
special measurement tools were all important capabilities. and so a versatile graphics 
drawing tool is very important. (This is illustrated in Figure 7 and Figure IO.) 

The gniiplor graphics device driver for FrameMaker MIF’ filcs groups graphics primitives 
at two levels: the graphics primitives that result from plotting data from one file are one 
“object”, and at the next level down. each associated set of line segments are sub-objects. 
Thercfore. each of the log file elements, such as block histories. flushed block histories. 
TCP retrinsmits, etc.. are organized as objects. and the individual block life-lines are kept 
as sub-objects within these larger objects. The FrameMaker graphics tool can manipulate 
these objects and sub-objects independently. as well as providing the annotation. measure- 
ment. ctc.. mentioncd above. and this proved invaluable in isolating, measuring. and mark- 
ing significant events. 

4.S Useof NTP 

To be able to perform meaningful analysis of a network-based system, precise timestamps, 
based on the synchronized clocks of all systems is efsential. All MAGIC testbed hosts run 
the ‘xntpd’ program [ 131, which synchronizes the clocks of each host both to time servers8 
and to each other. (End-to-end transit times, including speed-of-light and switch delays, 
are of the order of IO ms.) The MAGIC hickbone segments are used to distribute NTP 
data. allowing us to synchronize the clocks of all hosts to within about 250 microseconds 
of each other. The location of the NTP servers in the MAGIC network are shown in Figure 
9 (below). 

This synchronization between host clocks allows us to characterize the operation of the 
systcm in useful and surprising ways. (See Figure 7. below.) For example, the DPSS name 
scrver. DPSS disk server, and application are typically on different physical hosts scattered 
over the network. For the events that characterize the operation of the system, 1 millisec- 

7 .  FranwMdker ~htrp:/luww.adohc.com/prodindexlframcmaker/main.htmi) is a multi-platform desk-top 
puhlt\hing program. MIF is  its inicrchange file forrnai that represents both text and graphics. 
8 .  Thcrc i s  considcrahlc craft and lorc in interfacing a precision time source to an NTP server platform, and 
uc rcddil) acknowledge Ciaip Lere\ of the LBNL Network Research Group (http://ee.lhl.gnv) for working 
with h v c  Mills and his studcnts at Univ. of Dclawarc to “fine tunc” every aspect of Ihc particular GPS clock 
kind wkcr plilrfomi OS that wc use in our cxperinients and in the MAGIC testhell Also scc 1141 for d 

tic. ‘ion of thc chariictcri\tic\ of NTP in thc MAGIC cnviroimcnt using thi\ GPS rcccivcr and server 
coniimat ion. 
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ond resolution is enough to establish the relationship between the impact of an event at 
one point in the network. and the origin of the event somewhere else in the network. 
Therefore 250 microseconds clock synchronization of all systems is required. 

5.0 Example Anal) sis 

This section presents some of the types of analysis that we have been able to do using the 
methodology and tools described in the previous section. The specific examples repre.sent 
a snapshot of the state of our performance mcasumments during early 1996. As will be 
illustrated, there are several aspects of the overall system that dramatically affect perfor- 
mance. Two of these aspects that are changing rapidly are workst.ttion ATM interfaces and 
ATM switch buffer management, and the numbers quoted here are prim;rrily intended to 
bc illustrativc rathcr than an analysis of specific products. For example, over the p u t  two 
years the throughput of a Fore Systems SBA-200 interfidce card operating in a Sun SS-20 
has gone from SSMbitdsecond to 105 Mbitdseconds. due to upgrides in both OS and 
device driver software. and in the same time frame the Fom ASX-200 ATM switch buffers 
have increased in size by 50 times. It is therefore certain that specilic numbers like these 
will have changed by the time this paper is published. 

The following sections describe performance results and analysis based on w r  monitoring 
and logging methodology i ls applicd to the DPSS. Turrcr Visiolr. and w-qitn progrims 
(de.wribed above) operating togcther in ATM LANs and thc MAGIC WAN. 

5.1 End-to-End Performance Experiments 

Exprinients have been performed to cxmine the detailed interaction between a DPSS, 
whose disk servers are distributed over both ATM LANs and a wide-area ATM network, 
and the TrrrtcKsion application. Our initial monitoring experiments have focused on 
issucs important to high-performance, highly distributed applications such as thc TurrciVi- 
sion / DPSS combination. Using the log files descrihcd above. we are able t o  gcneritc 
graphs (shown in the figure\ in this section) that have proven 10 bc cxtreniely uscful in giv- 
ing il detaild view of the throughput and latcncies at cach point in thc distributed system: 
that ih. in thc application. thc DPSS. and in the network. 

5.2 LAN Experiments 

Figure 6 represents a set of traces. collcctcd by monitoring during application-driven opcr- 
ation, that i l lu~iites the general opcrdtional chitracleri\[ics of the DPSS, and spccilically 
bhows thc strategy used by the TemrVisiori application in order to keep the overall "pipe- 
line" of the storage system full. 

Generally, each line s'yk in the &rilph< indicate5 JiltiI from 3 different DPSS disk wrvcr. 
and difkrent line styles arc a l w  used for "flushed" data rcquchts (dcscribcd below). Thc 
gr;rphs plot "real time" on the horizontal axis, and the monitoring points on the vcrtical 
axis. The tirilestamps arc collcctcd at the nionitor points, which represcnt crirical points in 
the data reque<l-responsc procc\,s frotn application to distrihutcd sroriige \y\tem and hack. 
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nections). Log files were collected in the various distributed components for satisfied ilnd 
unsatisfied block requests, TCP retransmission information, CPU usagc. and ATM cell 
loss in the host adapters and ATM switches (though in this case the switche:, did not accu- 
rately report cell loss). 

5.3.2 Analysis af a WAN Problem 

In the early operating environment of MAGIC, it was very difficult to pet anywhere near 
the cxpccted throughput with multiplc DPSS servers driving a single application. This 
resulted in a series of cell-pacing expcriincnts done hy our  collahorators at C. Kansas. 
Lawrence (sec [IS] and 1161) that eventually detcrinined that if every sourcc (e.g. DPSS 
disk server) was paced at 1/N of the final link bandwidth that the total throughput 
increased significantly. While this solved an immediate problem. it was not a gcncrai 
solution. so we went back and conducted a series of experiments attempting to pinpoint 
rhc specitic causc of thc problem. These experiments and their results arc described in 
[ 171; however. here we illustrate s o l x  of the analysis. 

Rcfcrring to Figure IO, first. Ict us analyze what the perforniance monitoring shows 
directly. If we look at the longdelayed block lifelines (emphasized in the figure) we set: 
the characteristic behavior of a data block getting into the write queue (,vrm-W!e 
monitor point) and then incurring some very long delays getting to the application. These 
long delays are almost always accompanied by one or more TCP retransmit events. The 
reason that thc server is blocked as a whole (actually just one application is blocked since 
each application has its own TCP connection to the disk server) is that once a block is 
written to thc TC'P socket. the user levcl flushes have no effect. and TCP will re-send the 
block until transmission is successful, even though the data is likely no longer needed and 
is holding up newer data. The server unblocks when the ii retransmission is successful, 
letting the ncxt write primed. The impact of this is substantial. Following reccivcd data 
lifelines back in h e ,  the time that the data transfers stalled can be identiticd. These points 
arc luhcled (a t  the top of the graph) with the subscript "h" for blociicd. (The three servers 
ire litbeled A, €3, and C.) The transmission path (TCP circuit) has recovered when the ncxt 
transmission procccds at a "masonable" ratc. and the received data event just prior to the 
first of a group of "normal" receives is labclcd with a subscript "J*' for unblocked. At the 
bottom of the graph, the effective transmission from the servers for this application data 
path is indicated by the horizontal bars. The impact of this blocking and unblocking is that 
thc effective throughput of all thrce servers combined (on a 100 Mbit/s data path that has 
n o  other traffic) is of the order of I MbiUs. Unfortunately, at the time of this sxpcriment 
w t  wcic not ahlc 10 get accurate reporting from the switch "A" in Figure 9. However, what 
we surmise hnppcncd is thc following. 

Thc ATM switch A is where the three server streaiiis come together, and this switch has a 
pcr pon output buffer of only about 13K bytes. The network MTU (minimum 
trinsnrission uni') is 9180 Bytes (at; is typical for ATM networks). So, the situation i s  that 
three sets of 9 KBy IP packets are converging on a link with less than 50% that amount of 
buffering available. resulting in most of the packets (roughly 65%) being destroyed by cell 
loss at the switch output port. The TCP congestion window cannot get smaller than the 
MTU, arid thercfore TCP's throttle-buck strategy is pretty well defeated: on average, every 





retransmit fails, even at TCP’s “lowest throughput” setting, because this smallest uni! of 
data is still too large for the network buffers. 

Although we could not ”prove” these assertions because we could not get accurate switch 
cell loss information, this analysis of Figure 10 provided enough information that the 
network operators upgraded the switch at A. The new switch as 600 KBy of buffering, 
which allows TCD’s congestion algorithms to work corrcctly, and throughput is now up tc: 
an “average” of 30 Mbit/s per data path, as should bc the case. For a more detailed analysis 
of this experiment. see [ 17). 

6.0 Conclusions 

In order to achieve high end-to-cnd performance in widely distributed applications. a great 
deal of analysis and tuning is needed. In the MAGIC testbed we are evolving a methodol- 
ogy that includes network-wide precision time sources and extensive instrumentation for 
time. latency, and throughput at all levels of the network, operating system, and applica- 
tions. We monitor a large collection of parameters simultaneously (from the ATM level all 
tb, way up through disk performance on the storrtge scrvcrs and the application’s use of 
the delivered data) in order to identify and correct performance bottlenecks. This 
top-to-bottom, end-to-end approach is proving to be a very useful mechanism for analyz- 
ing the performance of distributed applications in high-speed wide-area networks, and the 
type of graphs presented here are very useful and informative. 

Apart from the immcdiate need for performance in MAGIC. thc larger question that we 
hope to address by this methodology is whether high-performance use of networks, com- 
puting platforms, middleware, and applications has to be trcatcd as a “system” problem 
(that is. all componcnts considered and optimized togetherj or whether, as we find and cor- 
rect problems, we will end up with an environment in which widely distributed. high-per- 
forniance applications can be build by composing “stock” components, both hardware and 
software. 

Some advice for those building distributed applications: timestamp all critical operations 
using a uniform log format, and r:n NTP on all hosts, so that the sort of analysis described 
here is possible. 

7.0 Future Work 

We are refining the tools and the measurement techniques that capture and log events, and 
several of the other MAGIC cmsortium members are doing the same. (For example, a 
number of the “events” currently collected are the results of watching system variables for 
some interval, and then using the interval mid-point as the time stamp, when we should he 
getting the actua! ebent timestamp.) We are exploring the use of the University of Kansas 
“Data Stream Driver” [IS] to improve our timing accuracy for operating system events. 

We hope to be able to use the log files from the DPSS client library as “playback” lib for  
‘netspec’[ 191, which is  a distributed network performance measurement tool that is being 
designed and developed at the Telecommunications and Informations Sciences 
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Laboratory. University of Kansas. nvfspec supports multiple connections per session, and 
i t  will support multiple protocols. This will allow us to easily recreate many different 
traffic scenarios. This work was presented at the 1996 DARPA Workshop on Wide Area 
ATM Performance (see http://www. tisl.ukans.edu/Workshops/ATM-Performance/), and 
one result o f  this workshop is there will be niorc work put into working with the 
University of Kansas to incorporate this logging and graphing methodology into nvt.spec. 
to create a general purpose set o f  tools. 

This work is ongoing. and progress report\ will he published at 
ht t ~ : / / w w w - ~  t g. I bl . gov/DPSS. 
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Abstract 

An important trend in the design of storaye subsystems is a move toward direct network 
attachment Networic-a,tached storage offers the opportunity to off-load distributed file 
sxsteni functionality from dedicated file server machines and execute many requests 
direct!y at the storage devices For this strategy to lead to better performance as perceived 
by users, the response time of distributed operations must improve In this paper, we 
analyze measurements of an Andrew File System ( AFS) semer that we recently upgraded 
in an effort Lo improve client performance in our laboratory While the original server’s 
overall utilization was only about 30.0, we show how burst loads were sufficiently intense 
to lead to peiiods of poor response time significant enough to trigger customer 
dissatisfaction !n particular, we show how, after adjusting for network load and traffic to 
non-project servers, W/O of the variation in client response time was explained by 
variation in server CPU utilization That is, clients saw lor.; response times in large part 
because the server was often over-utilized when it  was used at all. Using these measures, 
\be see that off-loading file server work in a network-attached storage architecture has the 
potential to benefit user response time Computational power in such a system scales 
( - :t;y with storage capacity, so the slowdown during burst periods should be reduced. 

This rcscnrch is sponsorcd by DARPAilTO lhrough RRPA Or&r DWO. and issued by Iad:an Hcad 
D n  ision. N;n al Suifacc Warfarc Ccnter. tinder coiilracl NO01 74-YG-OOOi Thc views and conclusions 
conl.iincd i t \  diis dociimenl arc those of lhc aulhors and should not be lrilcrpretcd as representing officr,il 
plicics. ci;IIcr cvprcssed or implicd. of sponsoring or supponmg agency. including the Defense 
Ad\ anccd Rcsearcli Prqccts Agency and llic Urulcd Slates Govcnmicnt 
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1. Introduction 

Recent trends in the coniputer industry have greatly increased the demands for common, 
shared i -.;ormation repositaries In most cases, these have taken the form of distributed 
tile systems that are shared across a workgroup, organization-wide. or even world-wide. 
A distributed tile system, with a number of machines acting as "servers" and a much 
larger number of "clients" ha\.e bxome popular due to a number of factors, including 
separation of administrative concerns. sharing of data, and transparency [SpasoJevic96] 

Advances in other compu.in2 technologies have made possible many novel applications 
that are placing increasir,g demands on distributed storage systems. The delivery of video 
and audio. large-scai : parallel applications. and the growth of the Internet have increased 
demands on distri dted information systems both in terms of the resources required by 
individual applicati -7s and the aggregate 
number of clients 

demands made 3g a continually increasing 

Distributed File Systems 

Figure I - Traditional Distrihuted File System 

At the core of all distributed intormation systems lies a set of' server resources that are 
becoming incroasinyly loaded as the demands increase A traditional distributed file 
system model, where "storage" is simply embodied in  the disk and device driver. is 
illustrated i n  Figure 1 This picture explains in part v.hy incrcaslng load on distributed 
file systems often iequires fast file seners - the tile server must traverse two protocol 
stacks for each client request Data must mov t  from attached disk drives, acrass the SCSI 
bus, through the sewer's memory svstem. back across the system bus. down the network 
protoccjl stack and. firtally. o n t o  the netuork wire The serler has \e? little "interest" in  

the data. yet i t  must move i t  through its ineiii'-t, hierarch! - Iwssihly several tinies - i n  
order t o  satisfy all the protocol layers i n \  olved 

In conjunction with this pressure toward using faster inachiries as tile servers, recent 
!ear: have ceen rapid developyxnt. hoth in  terms of areal density and in the raN 
bandwidth that can be provided of'f the platters of fixed storage devices On top of thes; 
trends, perhaps the IargLst change comes from standardizing storage interfaces The 
adoption of the SCSl interface for storage devices allowed storage vendors to optimize 
below a commc- -rotocol. and appiication and file svstem developers to optimize above 
it By specifvii. beparate high-lt*;bi "logical" interface and a physical interiace, SCSl 
made possible numerous optimizations inside disk controllers including RAID, 
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2 Experimental Methodology 

2.2. ARdrew Fila Syskm 
At Carnegie Mellon (and at hundreds of other large institutions around the world) the 
Andrew File System is used by nearly all computer usem. The major contribution of AFS 
over previous distributed file systems such as the Network File System (NFS), was the 
focus on salability of server resources The goal of AFS was to support a campus-wide 
network of workstations and users with a relatively small amount of file server resources 
[Howard88]. The primary way in which AFS addressed this goal is through the use of 
local disk for extensive client-side caching. Each client workstation in an AFS 
environment dedicates a portion of its local disk space as a cache for frequently accessed 
remote data Data in client caches is kept up-to-date through h e  use of a strong 
consistency protocol based on callbacks When a client accesses a particular file from an 
AFS server, the sewer marks a callback for that data and client and promises to inform 
the client when the data is changed. Rather than having a large number of clients 
constantly checking in at the file server to see if data has changed, the responsibility for 
cache invalidation lies with the server.' 

In  the Spring of 1996, our lab upgraded its AFS server in response to our users' 
complaints about AFS performance A major motivation in  writing this paper is to 
identify and detail the performance reasons behind the upgrade and determine the 
implications for AFS distributed file systems built on network-attached storage 
architectures 

22 Measurement Environment 
The measurements reported here were taken from a single file server over the course of a 
two month period at the beginning of 1996. This server contained all of the project 
volumes used for research in the Parallel Data Laboratory (PDL) The server was a Sun 
SPARCstation 4/60 with 24 hlB of memory serving 20 vollimes representing a total of 8 
GB of data in 4 partitions The clients were fifteen Alpha AXP machines (Tuhochannel 
models 300, 400, SO0 and 600 and PCI models 200 and 400) nine ISM RS/6000 250s 
located in a single laboratory, and fifteen additional machine ".- varying types, ranging 
in power from DECstation 5000s to a SPARCstation 20. in tt,is lab and in the ofices of 
students and faculty The wrkload. a diverst set of activities one would expect from a 
medium-sited research group, included software development. document preparation, 
data analysis and simulation 

The School of Computer Science network, to which all these machines are connected, 
consists of an Ethernet segment for each floor of its building, with an additional segment 
for the central machine room where all AFS servers are housed, all of which are 
connected to a single bridged backbone The c.s.cmu.edii AFS cell, in  which our 
measurements wherc taken, consists of 25 (primarily SPAKC'station) dedicated savers 
providing home directories. repositories for shared, locally-maintained sofiware 

I Anotlicr goal of AFS is IO scnc ;is ;I widc-arcit distnburcd filc systcni illat can span thc cnt:w globe In  
ordcr to racilrlatc flus. AFS proiidcs G singlc global niniespacc that is dnidcd at Ihc top lcvcl of Ihc 
hiwirch? info ;I numbcr of t c 1 l l . b .  c x h  of which rcprcscnts n specific orgaiimlion or sdnnnistntivc doniain 
Thc basic snit  of dislnbiition in AFS IS ;I i vhmc.  a rclated SCI of files .?ssigncd for n spccific piirposc and 
wrcscnting a spccific :illocation of disk space h c h  cell coniains a set of well-known cfdnhase .swwr 
ntacknes Ihqt mantain a n~npping of which volomcs rcsidc on which of a niinibcr of Eli? .wn.er mlchincs. 
Tlic filc scncr nlnchines havc disks attaclicd thnt are dividcd into logicill pir t i tnm.  cach of which iiolds 
sonic numbcr of volunss 
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collections, and volumes assigned to specific research projects. Larger projects often 
“own” an entire server which houses all of that group’s project volumes The server 
under test was running AFS 3.2 with local patches under the Mach 2 6 operating system 
and the cr,snts were running several different operating svstenis with AFS versions 
ranging from locally modified 3 I to 3 4beta 

2h ,4nalysis Tools 
Traces of file server activity were taken with the aid of a tracing package developed by 
the Coda group at Carnegie Mellon [Mummen94] A number of trace points, including 
most system calls. all accesses into the buffer cache. and all disk requests, within the 
operating systeni were annotated with log entries Logs were collected in a kernel buffer 
and periodically extracted and shipped over the network to a second machine that 
gathered the traces on its local disk and periodically transfer them to tape. This facility 
allowed the collection of very detailed system traces without much effect on 
performance. The Coda group measured a performance impact of between five and seven 
peacent in their studies. Traces were collected almost continuously over a two month 
period resulting in over 4 GB of data 

In addition to this data, client and server AFS activity was measured throush the use of 
the AFS x w f  facility mhich collected hourly summaries of operations performed, 
aggregate pertbrmance per operation type, as well as details on request sizes ’ We also 
used r . rJch~*  and ~ Y A S  to collect information on active clients and volume use patterns 
from the server Statistics of the server and clients over three months represent :d an 
additional 400 hlB of raw data 

To track performance of the network connecting our machines, we collected statistics 
derived from a periodic measurement of the round-trip time to the server and client 
network segments Our measurement machine (ozone) executed a 30-seccnd ping every 5 
minutes notiny the average round-trip time and packet loss rate to a selected number of 
climts (one on each tloor with client machines) and to the server 

We developed a set of. scripts \a process the trace and summary data and used the Matlab 
numerical computation and visualization systeni to provide plots and statistical tests in 
the follo\ving s e c t i o n s  we tvi l l  prot’idc plots of measured data as well as means, 
VarianLs. and Pearson r correlation coeficients, and r-’ coefficients of determination We 
use the Pearwn coefficient of determination to quantify how much of the variation in a 
set of measurenients can be accounted for by the characteristics of underlying system 
factors [ Kirk901 

3. M’orkload Characteristics 

In this section, we summarize a number of basic parameters of the w~ klosd recorded in 
our traccs Specifically the effectiveness of client caches, the mix of AFS operations at 
hoth the clients and our server. and the transfer size distributions at the server. 

Dric to thc hrgN) distnbutcd naturc of AFS and our dcsirc to measure a mal workload. it  was not possible 
io tcick all of thc clicnts th,tt madc rcqucsts IO this particular sewer. nor can we deternrrne exactly what 
clienl acthit! was dircctcd to this panicular scwer Th15 iritroduccs soine amount of “noisc” into our data. 
m h n g  somc \anations more difficult to explain 
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3.1. Client Caching 
As shown in previous work, the hit ratio for data i n  the local AFS cache is extremely 
good (SpasoJevic96, Howard881 Table 1 gives the average hourly hit ratio across the 
twenty clients for which we have the most complete data. This data emphasizes the well- 
established fact that there is a high degree of temporal locality in user access streams, and 
that IIlcal disk caching in AFS removes a considerable burden from the file server The 
data shown represents measurements from a single week of traces - specifically the week 
of January 29, 1996 to February 4, 1996 This representative week-long period will be 
used throughout the rest of the paper. 

I 970  996 989 927 94.2 WS 99.4 81 7 95.8 9 8 8  96.5 
metadata 61 8 980 31.5 369 15.6 22.1 76.9 16.6 17 5 33.9 20.8 I data 

99 I 994 987 999 996 993 995 993 984  991 
623 2 2 9  4 S O  999 982 993 991 969  990  952 k u d a t a  

32 Operation Distribution 
Table 2 shows a breakdown of the most frequently used A F S  operations and their relative 
popularity. The Clients column shows the total for the 20 clients reported above over the 
course of the same week. Note that the number of client and sewer requests does not 
match up because !his is not a closed system - there were additional clients making 
requests of the PDL sener, and the PDI. clients made use of other AFS servers (as we 
wili discuss in more detail later) The total amount of data transferred by clients was 993 
MB in FetchData requests and 520 MJ3 in StoreData requests The server provided a total 
of 750 MB of data via FetchData and accepted 955 MB via StoreData requests. 

, .- 
\b5 o p ~ l ~ i ~ l l o I l  ( l l ~ i l l ~  \ ( & I . \  (‘ I  

total fracti o1 I total fraction 
Fetchstatus 748,620 68 OYo 4 12,695 43 4% 
StoreStatus 20,085 1 8% 22,642 2.4% 
FetchData 174,717 15 9% 62,288 6.5% 
StoreData 46,630 4 2% 32,4 I4 3.4”/0 
CreateFile 15,407 14% 17,089 1 8% 

Bulkstatus 0 0.0% 244,636 25.7% 
GetTinie 50,568 4.6% 122,393 12.9% 
Gi veU pCal1 backs 28.343 2.6% 17,298 I 8% 

RemoveFile 13,242 1.6% 20.422 2.1% 

total 1,101,6 12 95 1,877 

Table 2 - Distribution of  AFS Operations 
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3.3. Request Sizes 
Table 3 shows the distribution of request sizes over the course of a week. As seen in 
previous studies, small requests dominate the mix, while most of the bytes are moved in 
large requests [ Spasojevic96, Baker9 I 1. 80?6 of reads and 65% of writes are for less than 
8 kilobytes However, for StoreData requests, more than two-third? nf the bytes are 
moved at the largest request size This means that system designeis must consider 
optimizations that maximize the bandwidth of the largest requests without adversely 
affecting the latency of the majority of small operations. 

I< c '1 11 c s  I S ii. c 
- 

.. . - - s t OI'C D;\ t ;I I .  vf c I1 u;1 t ;I .. . 

up to 128 bytes 19,503 3 1.3% 7,607 23.5% 
129 bytes to I K 3,663 5 . w o  3.196 9.9?! 
I K t o 8 K  24,858 399% 10,035 31 OYo 
8 K t o  16K 2,127 3.4% 2,244 69% 
16 K to 32 K 1,889 3 W/o 2,510 7.8% 
more than 32 K .  10.245 16.4yo L total 62,285 

6,789 2 1 .Oo/o 
32,38 1 

Table 3 - Distribution of Request Sizes 

4. Impacts on User-Perceived Performance 

4. I. Sewer Utilization 
These statistics provide some idea of the typical work being performed by an AFS file 
server, but how does the performance of the server figure into customer purchasing and 
system sizing decisions? The Parallel Data Laboratory recently upgraded its AFS server 
from a dedicated SPARCstation I to a brand-new dedicated SPARCstation 20 with about 
5 times the rated performance This upgrade was done to a large extent in response to the 
increasinglv vocal complaints of slow performance by our users. In fact, little data was 
consulted in the decision to upgrade this server. In an attempt to understand what effect 
the resources available on our server has on user performance. we took a look at the load 
on the original server after the upgrade. Given the traces described above, we can in 
hindsight attempt to better Understand how server load relates to file system performance 
and customer satisfaction 

The top chart o" F'!gure 3 shows the fraction of the sewer CPU spent in the AFS 
,fi/c.wrwr process over the course of a week, averaged over ten minute intervals. As we 
can see, the CPU on the server is mostly idle. Although . le do see a number of peak 
periods in which the utilization reackes as high as 65%. the mean CPU utilization is less 
than 3?/1 This is a distitrhing result Were we wrong to spend about $10,000 for a new, 
fast file server to replii. - :ow, inexpensive server that is only 370 utilized? 
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Day [Hourly Averages - 29 January to 4 February] 
Number of Completed Disk Operations 
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Day [Hourly Averages - 29 January to 4 February] 
Figure 3 - CPU and Disk Utilization 

A similar effect is seen in the plot of disk activity in the lower chart of Figure 3. This 
chart shows the total number of physical disk accesses completed in each of the same 10 
minute intervals I t  is harder to talk about percentage utilization in this case, but the three 
drives on this server should be able to sustain considerably more than the 50,000 
accessedhour (14 accessedsecond) that correspond to the highest point on the chart The 
average is les; than one access!second over three disks Again, a negligible total average 
load 

Simply looking at these numbers, we might be tempted to conclude that this five year old 
machine is performing adequately and there is no need for an upgrade at all.3 So how do 
we explain our users' complaints" We clearly needed some other measure that we could 
use to gauge users' perception of the performance of the system Since overall utilization 
I S  not the problem, we surmised that looking at response time might prove more 
enlightening 

In fact. the upgrade poliq at large AFS sitcs is rumored to be gcncnlly insensitive 10 ulrlimrron as * 111 

Thc algoriihni used can rouglll!, bc paraphrascd as, when ciislomcrs complain. bcgin with thc oldest 
coiiipoiicnt of thc systciii and contintic to rcplace cquipiricnt with iicwer niodcls iintrl coinplaints subside 
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4.2 Client Response Time 
The client data that we collected provided hourly samples of the number and total elapsed 
time of all AFS operations of each type completed by that client in that hour We chose to 
use the average response time for Fetchstatus operations as our measure of user-visible 
performance because 1)  it is the most frequently-called operation, 2) in the absence of 
outside influences, it does an approximately constant amount of work on each call (since 
data fetches in AFS may be as large as several hundred kilobytes, but most files are much 
smaller than this, FetchData delays are expected to be much more variable) and 3) we 
found an r2 coefficient of dctermination suggesting that 50% of the variation in the 
response times of Fetchstatus and the per-kilobyte latencies of FetchData are correlated, 
as shown in Figure 4 

If we again look at the average response time in Figure 4, we see significant variation - 
ranging over an order of magnitude. We hypothesize that users of AFS, accustomed to 
local disk access times (due to high local cache hit ratios described above) will be 
significantly affected by high variance in response times, particularly when the effect 
lasts for significant lengths of time, such as the hourly intervals shown in  this chart 
Based on this, we begaq searching for the causes of high variance in user response time 

Comparison of Average Response Time for Fetchstatus and FetchData 
I I I I I I 

500 - - 

1 Fetchstatus 
FetchOata (per kbyte) - 

i: 

400- L 

"0 1 2 3 4 5 6 7 
Day [Hour'y Averages - 29 January to 4 February] 

Figure 4 - Fetchstatus and FetchData Perfwmance 

In order to convince ourselves that our AFS server upgrade had indeed been worthwhile, 
we performed an experiment to compare the performance of our old dewer and our new 
server under the same workload. The numbers in  Table 4 show the results of this 
controlled experiment. One test client was constantly performing s t a t  ( ) calls at 
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random into a directory of 2,000 files. At the same time, a second client was running a 
"competing" workload by continuously reading a large file from the same partition on the 
same server. Both clients flushed their caches at the end of a cycle so that all operations 
wzre handled at the server The table shows the average response time of the Fetchstatus 
operations that resulted from the s t a t  ( ) calls, the number of Fetchstatus operations 
completed in the five minute measuring interval, and the average throughput of the 
competing process 

SPARCstation 1 + 14 0 25.9 
SPARCstation 20 69 0 16.7 I 8,486 

15,291 I 212.7 
343.8 

Table 4 - Direct Comparison of Server Platforms 

From this experiment, we see that the increased CPU performance of the newer machine 
reduces average Fetchstatus response time by 35% at periods of high server load. At the 
same time, the faster machine can complete almost twice as many Fetchstatus operations 
in the same time interval while also providing 62% higher data throughput Since more 
server processing power is clearly effective for improving client performance. we expect 
to be able to find a dependence between server CPU utilization and client response time 
in our trace data. 

4.3. lmpact of the Network 
When we first compared the CPU and disk utilization tracr to the FetchStaii , response 
time trace, we were unable to find a significant correlation between times of slow user 
response and times of high server utilization This unintuitive result led us to look for 
other factors that might explain performance at the clients The most obvious factor in a 
distributed system is the network between machines, so this i s  the parameter :,e 
examined next 

The top chart of Figure 5 shows the average network round-trip time of pings on the lab 
and machine room Ethernet segments c er one hour periods We see a mean of 9 0 ms 
and a standard deviation of 7 2 m s  on the server network. and I 6  9 ins 15.8 ms on the lab 
segment, where most of' 1.ie clients were located. The lower left portion of Figure 5 shows 
the graphical correlation between the response time of the network and Fetchstatus 
response time' Although not a strictly linear relationship. the Pearson r' coefficient 
suggests that 35% of the variation ir. :he response times can be attributed to variation ir! 
network performance To focus on this relationship, the correlation graph in  the lower 
right of Figure 5 reports only those hours where average ping time was larger than 20 ins 
In this figure, a linear relationship between server response time and network response 
time is more plausible This matches our expectations that the network connecting the 
machines in a distributed system is a considerable factor in overall performance It  is for 
this reason that the new server .nd many of our clients are being outfitted with switched 
ATM networking dedicated to the PDL in addition to the existi,.g Ethernet However, we 

' Piredly correlated data. with 100°4, of tlic vanation explained. would ;Ippcilr ;is n straight It11 , i t  rhesc 
W P k .  
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also see that nervork response time is not a complete explanation of client response time 
variance. 

Average Ping Timc 
1001 I I 1 I I I 1 

400 r I 

"0 50 100 
Ping Time 

High Network Load 
200 I 

40 60 BO 100 
Ping Time 

Figure 5 - Correlation of  Response Time with Network Behavior 

44. Impact of Shared Resources 
Our next step was to again compare server utilization (Figure 3) to average client 
response time after the periods of high network load are eliminated from the response 
time t i x e  (see the top chart of Figure 6) Again, we were not able to explain as much of 
the remaining variance as we expected Seeking an explanation for this disappointment, 
we did notice an effect that we had not considered in our initial analysis. Although ail of 
the project volumes for the target group were on the server we were tracing, home 
directories and shared binaries were being accessed on servers shared across the 
department Since we were looking at all Fetchstatus operations performed in hour-long 
intervals, load on these shared servers could have a significant impact on user response 
time We see a significant r' coefficient of 6% between clients 0. *; same system type, 
suggesting that about 65Y0 of the variation in  a single c\ient's response time trace is 
explained by the variation on the average response time trace of machines of the same 
system type At the same time, we see a s!:ong anti-correlation (r'coefiicient of 
essentially zero) with clients of different system types. The plots at the bottom of Figure 
8 show the corrciation between the response time seen at millburn (an KS/6000) and 



response time at other RS/6000s and, in  the right plot, the correlation between millburn 
and some of the Alpha AXP machines in the study. Not surprisingly in hindsight, our 
mistake was to overestimate the effecriveness of the replicatic2 of commonly used 
binaries and underestimate the frequency with which users' home directories are used in 
the course of project work Although most of the user data may be stored on a fast server, 
binaries and home directories stored on shared, slow servers may be a considerable drag 
on user-visible performanw " 
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Figure 6 - CorrJstiort ~i Response Time by Ctient System Type 

4.5. Imp,ict of Ser.w Utilization 
In order tu minimize the effect of interaction with servers other than the one we are 
tracing, we filtered the response time data to include only those periods when a host was 
active on our server ' Figure 7 shows thc graphical correlation between average 
Fetchstatus response time and server disk activity and average Fetchstatus response time 
and server CPU activity it is apparent from the leftmost correlation chart of Figure 7 that 
much of the response time is not correlated with server activity, but as we cnlild not 

" W.: hill bc taking a closcr look ;it thus cffcct imd will bc placing rcad-oitl! rcplicatron sites Jf  the most- 
used shared filcs 011 our upgradcd scncr IO itnprovc our o\vcrdl pcrfornlailcc 
' A host \c,w classified as bring :icliic on thc SCT\'CF in a parncular hour if it  rrppc;ircd in the . ufehup outpiit 
at llic end of the hour Sincc r . u k h g  providcs iilfornntioii onl! for thqsc clicnls thc scncr has rccently 
~ntcri~ctcd H i t h .  this docs no1 coinplcrcl! cliiiiinntc. Stif should sigilifiriintlv rcdvcc. the fracttoii of 
"forcigii" FetchSIaliis rcqucsts i t1  rhc wcr;igcs 
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extract the delays associated with central AFS servers, we expect some amount of 
uncorrelated points Neglecting data points with less than 500 disk accesses per hour in 
the center plut, we see an r’correlation of 2S%, as response times are impacted bv the 
amount of disk work (dominated by FetchData operations) the server is already 
processing when new requests arrive. In the rightmost correlation plot, we see an even 
closer correlation with CPU utilization (for the same set of points as in the center plot 
where the disks are busy) which explains just over SO% of the variation in response time. 
This susgests that poor response times occur when the server CPU and disk are busy 
(after netNoork and “foreign” server c,-fects have been accounted for). This result fits well 
with our prior ohservations that a considerable number of cycles are required to move 
bath fro111 a disk. through the user-level . f i k s c w c v -  proc-ss, back into the kernel, and onto 
the network and that these numbers scale with the amount of data being moved 
[Gibson‘’ 11 
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Figure 7 - Correlation of Response Time Nith Disk Activity and CPU Iltilization 

We ha\e finally discovered the correlation we have been seeking - a faster server CPU 
bencfits AFS users because there are bursts Gf CPU activity, specifically when data is 
bang translerred, during which server load leads to poor client response times. 
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5. Sctwork-Attached Storage 

5.1. Optftrnities for Netwurk-Attuched Sturage 
Recalling Fisure 2, which sho\vs how the distributed file server machine acts as an 
intennediar), copying da:a be!ween the client ne!'. k and the storag.. interconnect. we 
would like to develop techniques for reducing server utilization during periods of intense 
transfer worhloads In fact. because of the speed addiessability. and distance Itmitations 
of SCSl cabling. new storage interconnects such as Fibre Channel are increasingly 
similar to client network fabrics With this convergence in mind, we propose that the 
client and storage network3 discussed in Section 1 be combined into a single fabric As 
ilhstrated in Figure 8, this creates the opportunity for disks with sulxcient intelligence to 
perform a significant fraction of the clients' file operations without the need for 
intervention frtm the distributed tile scner [Gibson%] 

Eliminati.,g the server machine as a bottleneck for data transfers between storage and 
zpplications provides a signi ticant opportunity for improving overall performance. By not 
involving a third party. common case transfers are considerably fastcr and the number of 
requests that can be serviced at any given time should be increased Data transfer 
functions are off-loaded IO the network-attached devices and the  server would be 
responsible only for "higher-level" distributed file system functionality 

NASD 

Network-Attached Storage 
Figure 8 - Network-Attached Storage Architecture 

There is a range of possible configurations for such a system At one end of the 
spectrum, Network SCSl is being promotcd by several vendors as a means of providing 
third-party transfer between clients and drives attached directly to the network 
(Seagate961 All commands are processed by a sewer which uses the SCSl third-party 
transfer iiiterface to instruct drives to transfer data directly to clien:s At the other end of 
the spectrum, dedicated Network File System (NFS) or Netware semers [ NetApp9b. 
bietFrame961 are storage systems that directly implement these distributed file system 
protocols. backed by special 1 y opt I m ized hardware con figurat ions Net work-at tac hed 
storage proposes to prokide a n  intermediate point The distributed file system s e n w  
would contintie to be responsible for operations such a file y e n s  and metadata 
management, but drives would have sufficient intelligence to 'landie data transfer 
requests without server intervention for each individual requcst In  order to achieve the 
desired scalability and performance. it  may also be necessary t o  have file status and 
inquiry functions handled at the dnves [Gibson961 
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This direct transfer concept is not a new one In 1991, Randy Katz described the basic 
adlmces that make network-attached devices feasible [Katrq I 1 The High Performance 
StoraSe Systems prcject [Watson951 is exploriny these technologies in the context of 
large MPP and SMP >ystenis based on the framework of the Mass Storage Systems 
Reference Model [Miller88] Van Meter provides a suney of current products and niajor 
research issues, including security, network protocols, and the changes in operating 
system paradigms necessarv to efficiently support network-attached devices [Van 
Meter961 

Such an architecture raises several important issues Can the drive be made sutliciently 
intellisent at a reasonable cost' How do we ensure the security and integrity of the data 
being stored3 Can enough of the server functionality be off-loaded to significantlv 
improve both throughput and scalability? How effective will  this architecture be for 
meeting the needs of the clients in a distributed system? 

5 .2  lmplications of this Study for Network-Attached Storage 
The i:;,;sest lesson that we take away from the preceding analysis is that the mean 
behavior of the system is essentially irrelevant. Even though the system is 97% idle when 
measured in total. it is the high load periods that matter to customer satisfaction. As Table 
S shows, peak loads. even rct the granularity of an hour, are much higher than average 
loads. Moreover, the distribution of operations measured over the long term, shown on 
the left of Table 5 and similar to previous studies (SpasoJevic96] is not presewea in these 
peak periods - data activity is nearly twice as common in these peaks With customer 
satisfaction sensitive to response time variation, the server performance during peak loads 
is likely to be more important than at other times 

-Lions \\ c c k h  '1'01;il Yeah Ilui i t .  

Fetchstatus 3 I 2,69S 70 6O/O 1,247 6,209 
Storestatus 22,642 3 9910 134 175 
FetchData 62,288 I O  7% 3 70 4,2 19 
StoreData 32,414 S.S?/o 192 147 
CreateFile 17,089 29Yo 101 52 
RemoveFile 20,422 3.5% 122 2,587 
Gi veU pCal I backs 17,298 3 Oo/o 103 3 26 

13.715 

total fraction hourly total 

- total 584,848 2,269 
I 

Table 5 - Distribution of Server Operations 

fract i on 
45 3?6 

30.8% 
I .  10,a 
0 4?/0 

I8 97.0 
2 49.6 

1 ,3%0 

Given a high emphasis on the server performance during peak loads, off-loading the 
high-cost data movement operations, as proposed by the network-attached storage 
architecture, should decrease the variance in  user response time signit'lcantly. even 
though overall averages will simply be reduced from a small number to an even smaller 
number The appropriate analogy is not to system throughput, but something closer to the 
way reliability is measured, Changing the mean time to data loss (MTTDI.) of a system 
from I O  years to  100 years does not mean that one expects the system to last ten times as 
long. but that the probability of a failure occurring within the next hour is reduced by an 
order of niagiiitude We suggest that there is an analogous measure for distributed file 
systems, the mean time until  burst (bad) performance (MTTBP) which should be 
increased so that the probability of poor response times in any given hour of work is 
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decreased We would expect users to be pleased if the occurrence of a period of bad 
response time were reduced from once a week to once every 3 months 

6. Conclusions 
Modern distributed file systems such as AFS very successfully cache file data on client 
machines While this ensures that average response time IS low, it also ensures large 
variance in response time because operations that must contact remote servers are much 
slower Direct measurement of these remote servers show that their overall utilization can 
be quite low, 3% in our data, while users are simultaneously sufficiently dissatisfied with 
performance to pay for a faster server. This study shows that the faster server is in fact 
needed because, although 97°/~ idle overall, these file servers can be intensely overloaded 
during bursts of activity, leading to periods of poor response time long enough to 
disgruntle users 

In addition to focusing our attention on burst server loads. our analysis shows that the 
distribution of operation types during bursts is different from overall distributions. 
Servers should be optimized for workloads with much more data transfer than the overall 
di sui buti on suggests. 

These results confirm our intuition that network-attached storage, if it can re-route most 
data transfer directly to storage devices, has the potential to reduce customer response 
time in two ways - I )  i t  avoids the copying steps at the server and 2) it off-loads the work 
of data transfer from the server. reducing the chance of a bust of overutilization 

Out future work, then, i s  to evaluate the client performance on such network-attached 
storage architectures and demonstrate the implications on distributed file system design 
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Abstract 

As the speed and power of modurn digital computers continues to advance, the demands 
on secondary mass storage systems grow. In many cases. the limitations of existing tilass 
storage Educe the overall et7cctiveness of the computing system. Image storagc and 
retrieval is one important area where improved storage technologies are requirtxi. Three- 
dimensional optical memories offcr the advantage of large data density (on the ordcr of 1 
Tb/cm3) and faster transfer ratcs because of the parallel nature of optical rccording. Such 
a system allows for the storage of multiple-Gbit sized images. which can bc recorded and 
accesscd at reasonable ratcs. Rome Laboratory is currently investigating several 
techniques to perform three-dimensional optical storage including holographic rwotding. 
two-photon recording, persistent spectral-hole burning. multi-wavclcngth DNA rccording. 
and the use of bacteriorhodopsin as a recording material. In this paper. the current status 
of each of thcsc on-going efforts is discussed. In particular, the potential payoff’s as well 
as possible limitations are addressed. 

1.0 Introduction 

The national security requirements of the United States have undergone fundamental 
changes in just a few short years. The cold war and incumbent strategic threats haw 
given way to new Third World threats and rcgional conflicts. In ordcr to achieve Glohal 
Awareness and, if necessary. implement Dynamic Planning and Exccution, vast amounts 
of information must be collected. stored. processed. and disseminated through an 
interoperable Command, Control. Communications. Computing. and Intelligence (C41) 
architecture. 

Air Force C41 systems must effectively store. retrieve, and manage massive amounts of 
digital data. Optoelectronic and massively pnrallel computing demands multi-terabit 
memories and near real-time urite and retrieval rates. Current Air Force systems range 
from centralized Terabyte and Pctabyte storage comprised of I q c  objects (imagcs) to 
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distributed heterogeneous databases that contain many small and large objects (open 
source databases). Although technologies for storage, proccssing, and transmission are 
rapidly advancing to suppnfl centralized and distributed database applications, more 
research is needed to handle niassive databases cfficicntly and achieve thc Air Force goal 
of %formation Dominance”. 

Our go31 is to retain data for potential future analysis in it cost-effective manner. lhc 
more relevant data would remain on-line, say for five yciirs. organized with the most 
relevant data accessiblc in the least amount o f  time. It is expected that 2 to 5 Terabytes 
of new data will be processed each day. Thus the total sizc of the database (both on-line 
and off-line) could be as large as 20 Pet:ibytcs with ahout 300 Terabytes of data stored 
on-line. I t  becomes apparent that new storage devices (primary. secondary and. even. 
tertiary) for large multimLdia databases. as well as data pathways with the required 
capacity, must be developed. Access time is about 5 seconds for the data less than a 
week old. about 30 seconds for data under two months old. and on the order of minutes 
for the data up to 10 years old. 

Over the years, Rome Laboratory has nurtured a comprehensive program, developing 
revolutionary new storage techniques that meet the various demands for data storage and 
retrieval. Our group is currently investigating various approaches to ultra dense, highly 
parallel three-dimensional optical memory storage system. This article traces the recent 
history of optical data storage and updates the status of Rome Laboratory’s research 
efforts in this field. 

In the mid-1970s and early 1980s optical storage reached the consumer market. Industry 
giants like RCA and Philips developed and marketed playback devices and large format 
“laser disks” for home movie viewing. While laser disks never genera;ed a large, broad- 
stream consumer market (VCR is still the dominant technology for home movie viewing). 
compact disks (CDs) are now the primary means of distributing and listening to high- 
fidelity music. The introduction of laser diode devices made compact disk systems a 
viable consumer product. Laser diodes operating within the near-IR (infrared) spectrum 
allowed lpm embossed pits to be easily detected. The new laser technology, in 
combination with powerful error detecting and correcting codes. enabled SONY and 
Philips to introduce the first CD audio product a decade ago. 

Better optical media, more powerful laser diodes, and very precise, low-mass optics have 
propelled optical disk technology to a practical, powerful system( 1-31. The next- 
generation device introduced in the mid- 1980s provided a flexible write-once, read-many 
(WORM) capability. This enabled end-users to record and pl?;.back computer data from 
the same drive. Rome Laboratory has continued to sponsor work in this area to further 
exploit the benefits of new storage technology. An early Rome Laboratory prototype 
used an argon laser to record and playback digital data from a 12.5-inch plastic-based 
optical disk. Further inve-tment led to the delivery in 1982 of a large-capacity optical 
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juhebos for satcllitc imagery storage and retrieval applications. The jukebox holds 100 
WORM disks that providc a storagf- capacity of one Terabyte. 

1 lie third generation optical disk, today's rewitable systems. ofltr record. playback. and 
crasc capahilit). These nupicto-optical (MI)) disks are composed of a rare-earth alloy 
and transition materials. which oftcn include terbium. iron, and cobalt clcments. Optical 
disk storage is playing a largcr rolc in mass data storage for many military applications: 
particularly. those applications that rcquire reliable operation under harsh operational 
cnvironnients. Commcrciall!. MO disk drives have also made an impact on the market. 

Present devices store one-dimensional (serial) information in a two-dimensional plane. 
Threc-dimcnsional memory devices store two-dimensional information (bit planes) 
throughout a volume. A 3-D memory is. therefore. a single memory unit where three 
independent coordinates specify the location of information. 3-D memories are generally 
classified as bit-plane-oriented and holographic. Bit-oriented 3-D memories, where each 
bit occupies a specific location in 3-D space. differ significantly from 3-D holographic 
memories. With holographic memories the information associated with stored bits is 
distributed throughout the memory space. Bit-oriented 3-D memories generally use 
amplitude recording media while holographic memories use phase recording media. In bit- 
oriented 3-D memorics, the coordinates that specify the location of information can be 
spatial. spectral. or temporal, giving rise to a variety of 3-D memory concepts that use 
different materials with various properties. For example, materials that exhibit 2-photon 
absorption are the basis for true volume memories, while materials wherein spectral holes 
can be burned, provide a storage medium for spectraVspatia1 storage. In addition, 
materials that exhibit the photon-echo effect could, in principle, lead to ;emporal/spatial 
storage. 

In 3-D memory, information is partitioned in binary planes that are stacked in the third 
dimension. One memory operation is performed on the entire bit plane, giving rise to a 
tremendous memory bandwidth increase over conventional 2-D bit-oriented memories. 
Also. by storing information in volumetric media, we can achieve very high density ( lo1* 
bits/cm3). High-speed reading and writing of an entire memory plane then becomes 
feasible. These considerations make 3-D memory very compatible with emerging, highly 
integrated parallel array processors and optoelectronic multiprocessors. 

In this pappi-. we discuss the current status of our ongoing efforts in several areas of 3-D 
memory. Section 2 investigates a varicty of 3-D memory storage techniques. 
Holographic and two-photon storage methods are discussed in detail. Both system and 
material aspects are addressed. In addition, a less involved discussion is given for three 
other techniques: Persistent Spectral Hole Burning (PSHB), recording in DNA molecules, 
and the use of bacteriorhodopsin (BR) as a storage medium. Finally, in Section 3 a 
summary and some conclusions are provided 
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2.0 Various three-dimensional recording techniques 

2.f Holographic data storage Holograms for artistic posters and pictures started gaining 
popularity in recent years d w  to the maturation of technologies which produce very 
pleasing images. These same technologies provide a potential to store data using 
holography, with smaller system sizes but larger data capacity and faster throughput 
rates(4-61. This idea is not new to the data storage world. and dates back to the late ~ O ’ S ,  
but was only recently considered practical due to the emergence of improved critical 
components such as improved laser diodes, Spatial Light Modulators (SLM), and Charge- 
Coupled Device (CCD) detector arrays. Holographic memories also process data in 
parallel, affording fast data transfer rates, high storage density, and small physical size. 

A hologram is a recording of the amplitude and phase of a wavefront, which is in contrast 
to photography, where only the amplitude of the wave is recorded. A hologram is Lreated, 
or written. by the interference of two beams, an object beam and a reference beam, as 
shown in Fig. 1 .  When a hologram is read using one beam, the original wavefront 
(amplitude and phase) is reconstructed, as shown in Fig. 2. To create the extremely high 
dab  capacity, data is stored in the same physical space of the media. but is written and 
read by multiplexing. Multiplexing is a way of giving each set of data a unique address. 
Typical multiplexing methods used for holographic storage are angular, spatial, and phase 
multiplexing. 

Refercncc Beam -- 

Figure I .  System used to  record holographic data. A reference bcam and object bean~ are 
interfered within the recording mcdium. The resulting interference pattern is recorded 
within the medium. 
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Figure 2. System used to read previously recorded holographic data. The reference beam 
playback the recorded data. The data is then imaged onto a CCD. 

Angular multiplexed holograms. shown in Fig. 3, change the angle of incidence of the 
reference beam on the storage medium without changing the location of thc area. or spot. 
being recorded. This is one method of recording several holograms. or pages of 
information, on top of each other in the Same location. Figure 4 shows how angular 
multiplexing changes the reference beam angles but the recording location does not change. 
The schematic diagram shows three collimated beams with different angles of incidence on 
the storage medium. Note all three beams stay within a common location. An important 
consideration for angular multiplexing systems is the need for sophisticated beam steering 
devices. since without it this method can resuit in some very complex optical paths for 
large storage systems. 

<!$iF? Reference .-I_.-. Beam I 

Reference Beam 2 

Figure 3. Basic premise of angle multiplexing. Multiple holograms stored in thc samc 
spot. all recorded with a reference beam at a different angle. 
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Figure 4. A system used to perform aiigular multiplcxing. A beam steering device is 
used to modulate the angle of incidence of the rcference beam. 

Phase multiplexing uses rcference beams with different phase fronts to xite composite 
holograms associated with the object beam. Each reference beam consists of a set of plane 
waves with a unique phase distribution. This phase distribution represents the address of 
the recorded information. Holographic memories using phase multiplexing have the same 
data storage capacity as angle multiplexing, but involve different problems generating the 
phase codes. We are working with Surface Optics Corporation to develop a compact 3-D 
stolage system using this method, which will store 26 Gigabytes and have a footprint of 
one square foot for the entire system. 

Spatial multiplexing is a method used to change the recording spot location to a different 
location in the medium. In volume holography, holograms recorded on top of each other 
will ultimately reach saturation of the recording medium unlcss redirected to a different 
spot. Spatial multiplexing can be combined with angle or phase multiplexing to increase 
the storage capacity of the memory device. Holograms cm bc stored in one spot up to 
their practical limit using angular or phase multiplexing, then the information beams arc 
redirected to a different spot using spatial niultiplexing t o  f i l l  the  next area with the new 
pages of in fomiati on. 

Optimizing the number of holograms per spot is the key to tinding the best system. The 
most successful efforts apply angle and spatial multiplexing. Researchers v. .:h the Psaltis 
Group at the California Institute of Technology have demonstrated the storage of I d0,OOO 
individual holograms in a 2 cm x 2 cm x 4 cm crystal of LiNb03. The p:. Jtorefractive 
I,iNbO:, crystal is thick. and can have a high number t)f holograms per spot. The 
thickness determincs the numhcr of' holograms that can bc stored in a given area of 
material before reaching the point where saturation occurs and the data resolution 
decreases. The higher the density of data. the lower its resolution. However, thick 
hologranis require niore complex optics for data addressing. Thin holograms cannot store 
as much as thick holograms, but can have simpler optics. and therefore a simpler system. 
We are finding two efforts with Holoplex, Inc to make data storage systems out of thin 
film photopolyiner disks. Each of these disks will store 2.8 Terabits, with 17 ms access 
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time, and each disk can be recorded in 60 sec. Overall hologr:tphic storage looks more 
reliable than current solid state or disk memories since the individual bits of information 
are stored collectively throughout a homogcneous recording mcdilm. Recorded 
information is not susceptible to the same kind of losses magnetic or magneto-optic 
devices have from dust, scratches. or other imperfcctions. A holographic recording 
medium is generally a solid volume of homogeneous material, requiring few manufacturing 
constraints to make. Lvhere semiconductx mcrnorics require fine line lithogruphy. Since 
information is stored optically. the system is a "free-space" system and does not require 
elements of the systeni to be in contact with each other to operate, leading to greater 
spced and reliability. 

2.2 Two-PhofonStorage In addition to our holographic work, we are also 
investigating 3-D memory storagc which utilizes two-photon absorption[7-8]. Currently. 
we are worhing with Call/Recall to dcvclop a two-photon based optical memory. Such a 
system is capable of data capacities eip to IO'* bitskm'. This system takes advantage of 
the parallel nature of optical recording. allowing for a page of digital data to be written (or 
read) simultaneously. We have invested in this technology for the past 5 years and have 
recently developed a demonstration WORM system. It is hopcd to have a functiona! 
readlwitelcrase yystem within the ncxt few years. Currently. a great deal of work is 
being done both in the system and material areas of this technology. The basic premise of 
a two photon recording system is the simultaneous absorption of two photons whose 
combined energy is qual to the cncryy difference between the initial and final states of 
the recording material. 'This simultaneous absorption results in a change ir? the molecular 
structure of the material. This structural change alters various properties of tlrc material, 
including index of refraction. the material's absorption spcctrum and the material's 
fluorescence spectrum. Therefore. by intersecting two optical beams, either spatially or 
temporally, the material's optical properties can be altered locally and addressed 
anywhere within a threc-dimensional space. Digital data is written in this fashion, with 
the ultimatc limitation on storagc capacity set %y diffraction effects in the optical system. 
3ata readout is accomplished by probing the material with a single read beam to measure 
a change in one of the material's optical properties. 

l'h: current system architccture uses picosecond pulses of the first and second harmonic 
( A l  = 1064 nm, L2 = 532 nm) of a Nd:YAG laser. A schematic of the optical system is 
shown in Fig. 5 .  Image storage (recording) is shown in Fig. 5{ii), while image retrieval 
(readout) is shown in Fig. 5(b). Digital informz!ion is recorded in the two-photon 
material as pagcs of digital data. the data planes separated in the axial dircction. 
(Currently. the matcrial is fabricated in a cubic shape, but wc are investigating other 
geometries.) l h e  input (data) ami of the system ( h  - 532 nrn) is spatially modulated 
with a SLM and imaged to the proper plane within the cube. A scsond. addressing beam 
( h  = 1063 ntii), 
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Figure 5. 'Thc recording (a) and readout (b) systems used for a ?-photon memory. In 
(a). recording occurs wherc the spatially modulated input beam and cylindrically focused 
addressing beam overlap. The system is readout by measuring thc excited fluorescence of 
each recorded data plane as shown in (b). 

propagating orthogonal to the input beam, is cylindrically focused throughout the cube. 
A page of data is recorded when the inpiit beam and addressing beam simultaneously 
illuminate the image plane. The axial yesolution is limited by the divergence of the 
addressing kxam, while the latcral rcsolution is determined by diffraction effects and/or 
aberrations in the input ami. A more detailed discussion of data parallelism versus 
density is given later in this section. 

Readout is accomplished b: easuring the flutcescence of thc materid. The input beam 
is blocked and thc 532 nnr bear: is cylindrically focused to read the proper data page. For 
the urn ;Iten matcrial, the 532 nm beam is unr?b-orbed and passes through the system. 
However. for the written form of the material, the readout beam is absorbed, exciting a 
fluorescence at a longer wavelength. The readout plane is then imaged through a 
wavelength selective tilter onto a CCD. Thresholding of the individual pixels of the CCD 
is performed to digitize the data. 

A variety of recording materials have bee11 proposed. The proper material must posses 
several key characteiistics in order to be considered. Some of these characteristics aie: 
photocror.;isirn (the change of chemical structure after excitation by 1igt.t). a fluorescence 
in one of the two chemical states, stability of both states at room temperature, ability to 
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read data 1 Oh tinirs ivithout loss of information. high quantum cfiiciency of the rcad fonn 
!luo~sct.nctt. and a wide cnough wavelength shift bet** -en thc read heam and peak of thc 
fluorescence spcctrum to prcvcnt cross-talk. In ti paper. we Hill discuss one of the 
more promising candidates. Spiroknmpyrun (SP). 

Spriobenzcqy ran molecules are composed of two distinct molecular components linked 
by a sp' hjbridired carbon. Upon cscitatiun simultaneous absorption of a 532 nm 
photon and a IO61 nni photon the chemical state of the material is altered. as shown in 
Figs. @a) and 6(h). 'lhc unmrittcn form. Fig. Ma). is colorless in appearance and shows 
strong ahsorption in thc ultraviolet ( A  <: 400 nm) portion of thc spcctrum. tiowevcr. the 
urittsn form. I-'ig. Qb).  is colored in apparancc and shows strong ahsorption in the 550 
nm region. The lluorcsccnce spectra of SI', show in Fig 6(c). is peaked around 600 nni. 
Note that the this peak is sutficiently separated from the r e d  wnelength to prevent 
Lross-talk during readout. figures Ma) and 6(b) show tuo species of  SI'. -1.0 fabricate 
solid. stable recording materials. the SY is dispcrsed in polymers such as PMMA. This 
alters the absorption and fluorcsc-encc spectrums slighdv. tmt docs not cffect the basic 
system prcmise discussed in the previous paragraphs. 

Figure 6. The absorption and fluorescence spectrum for two different types of SP 
compositions. In (a) the spectrum for the unwritten form is shown. while in (b) the 
spectrum fcr the written form is shown. In (c) the fluorescence of the written form is 
shom.  
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Currently, a working WORM system has been built and is used for writing and readout of 
pages of digital data. The system uses a lcrn-’ cube of SP for a recording material. The 
system has been used to record 100 planes of data with a scparation of 80 pm between 
planes. The input beam is spatially modulated with the use of chrome masks. The 
mask’s resolution is 100 x 100 pm’. Dynamic focusing is performed by moving the cube. 
Currently no dynamic aberration correction is performed. With a demagnitication in the 
system of 3.4, the recorded bits are 30 x 30 x 80 pm3 resulting in a density of 1 Mb/cm3. 
Data readout is accomplished with the use of a HeNe laser (A = 543.5 nm), and a 640 X 
480 CCD array. While the system’s density is well below our desired goal of 1 TWcm3. 
the system allows us to demonstrate and improve on the current technology. 

Using this system initial Bit Error Rate (BER) characterization will be performed. In 
order to be competitive with existing mass storage systems, raw BERs on the order of 
IO4 must be obtained. In addition, we have begun work with the University of 
Pittsburgh on an optoelectronic cache memory system which will act as cache memory 
between the optical memory, and a uniprocessor or multiprocessor computing 
environment. By caching a page of data during a memory read, the relatively slow access 
time to the user will be significantly lowered. since the access time of the cache memory is 
orders of magnitude faster than the two-photon memory. 

There are several obstacles to overcome in this rppidly developing technology. The first 
involves cube fabrication. Important characteristics are surface quality and material 
homogeneity. Surface quality is especially important, since defects in the material’s 
surface will result in scattering of the light beam and optical aberrations of the transmitted 
ham. llsing injection molding techniques, it is hoped to produce surfaces wrth RMS 
roughness of approximately 0.25 pm. Another significant obstacle is the current need for 
high intensity beams for data recording. The probability of recording a mark (ie. causing 
a local transition of the material from the unwritten to written form) is proportional to the 
product of the two beams intensities. Typically very high intensities are ncedcd to alter 
the material (intensities i j i i  the order of 1.6 GW/cm’ are typical). In addition t o  designing 
the materials for lower powers. we are currently investigating modifying the material’s 
energy gap to allow writing at existing laser diode wavelengths. Finally, we are hoping to 
design materials which can be used in a read/witc/erase systcm. We are currently 
exploring an exciting class of material which have shown repeated read/write/erase 
c yclability . 

A major concern with the optical system is the ability to dynamically image through 
various layers of the material. As different planes are recorded in the cube, the 
magnification and amount of sphcrical aberration in the system changes. To dynamically 
compensate for this requires very expensive high performance imaging optics. One way 
to overcome this obstacle is to fabwate the recording material in a three-dimensional disk 
format. Using this 3D-CI) approach. pages of images are stored as “spokes” in the 
rotating disk. The addressing beam is again cylindrically focused through the side. whilc 
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the recorded page of data is imaged into the proper plane of the SD-CD. Since the disk is 
constantly rotating. the conjugate planes remain in the same location and the magnification 
remains constant. In addition. with the usc of a properly designed compensator in (he 
input arm, spherical aberrations can bc corrected. 

5 x 5  

l o x  10 

A major design issue is the trade-off between data density and parallelism during the 
recording operation. Due to the parallel nature in imaging spatially modulated beams, 
whole arrays of data cail be recorded at once. Assuming that a 1024 x 1024 SLM is used, 
it is possible to simultaneously write up to 1 Mb of data. llowever. as larger data pages 
are written. the longitudinal distance the addressing beam must remain collimated 
increases. I;nfortunately, since the addressing beam diverges as it propagates, parallel 
recording results in the need for larger spacing between data planes, and thus, lower data 
densitics. An alternative approach would be to write data in a bit-by-bit fashion allowing 
thc density to bc limited only by the Airy spot diameter of the two beams. While this 
drastically increases the data dcnsity, it eliminates t jarallel nature of data recording. In 
Table I, three different data recording format are presL ... ed. 

128 x 128 640 640 23 1.7~109 

0.1 x 1 09 t024x1024 10240 10240 93 

Data 
Format 

Bit 
Vector 

Image 

Table 1. Thc Maximum Volumetric Density (MVD) is shown for various data recording 
formats. 

In the bit format bits are recorded serially. In the vector scheme. a vector (a column or 
row) of data is recorded in parallel, while with the image scheme two-dimensional data 
arrays are recorded at once. Computations are performed assuming Gaussian beam 
propagation of the addressing beam. The beam width and length are derived from the size 
of the imaged data array within the cube, while the thickness corresponds to the minimum 
plane-to-plane spacing of data pages which can be used. Finally, the maximum volumetric 
density (MVD) correspond to the maximum data density which can be stored within the 
cube. Note, that going from a hit-by-bit recording format to one in which 1024 x 1024 
data arrays arc stored in parallel incrcases the parallelisn by 1 Oh bitdrecording stcp. but 



results in a density reduction of IOJ bitdcm’. It is important to point out that these 
calculations neglect aberrations in the input path’s imaging system which becomes worse 
when larger arrays, resulting in larger field angles, are recorded. 

2.3 Other TechniqMes in addition to our work with holographic and two-photon 
memory. we also have ongoing programs in other multi-dimensional op.:cal storage 
systems. These approaches are all developmentally in a much earlier stage. but each 
offers significant advantages in terms of capacity. throughput or material fabrication 
Persismtt JppcrruZ Holeburning (PSHB) takes a step ahead of one-bit-per-spot memories, 
allowing multiple bits to be written. erased and rewritten in a single location and offering 
the potential of storing up to I O “  hitu‘cm3. The two techniqucs currently being explored 
are frequcncy-domain and time-domain PSHB. 

Frequency-domain Holeburnirtr involves burning “holes” in a material’s absorption band 
[9].  ’The ideal material has many narrow, individual absorption lines that blend together 
into a broad absorption band. When writing information. a frequency-tunable laser would 
focus on a single spot. and Scan d o m  in wavelength while sending a s;ream of bits. At 
peak laser output (one pulse at a certain frequency), an absorbing center would make the 
transition from one stable state to another, so when the same spot is spectrally scanned 
there would be “holes” at certain frequencies which would indicate the presence of stored 
hits; this is one-wavelength (non-gated) holeburning. However, since non-gated 
holcburning tends to be volatile. a second, fixed wavelength is used (gated holeburning) to 
make the change permanent but still erasable. 

Time-domain (also known as photon echo) holeburning also utilize5 spectral holes for 
memory storage, but relies on coherent optical transient phenomena to store data[ IO]. 
Two temporally modulated beams are set to spectrally interfere, and that i n k .  .rence 
pattern is stored in the form of spectral holes. This concept is spectrally analogous to 
holograms, which are spatially constructed from the interference be?;. .I ihe reference 
and modulated (object) beam. When a reference beam illuminates the spc. for d i n g ,  the 
material emits a delayed cohercnt output signal that resembles the temporal wbveform of 
the original data pulse. 

There are a number of technical challenges to ovcxome before PSHB becomes viable for 
storage. however. One issue revolves around how to gate the material; current techniques 
inflexible or irreversible. Another problem is temperature; typically, practical operating 
temperatures have not exceeded IO degrees Kelvin, making it difficult and costly to write 
and maintain data. One particular Rome Lab effort is an exception, achieving room 
temperature holeburning with a novel material, but even this requires considerable 
development before an acceptable storage density has been attained. These obstacles 
have s10wc.J PSHB advancement, and have yet to be resolved before any practical 
applications can be produced. 
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Biological molecules would certainly be Darwin's media of choice for thrcc dimensional 
recording. Sercndipitous natural selection has given researchers a promising material in 
the protein hacteriorhodopsin (bR). This material is the light transducing protein found 
in the bacterium Halohactcrium halohiurn. This light harvesting protein is found in the 
purple membrane of the bacterium. This membrane is essential, protecting from the harsh 
environment of salt marshes where the salt concentration is six times that of ordinary sea 
water. Bacteriorhodopsin provides the If. Halobacterium the ability to co+.vert light 
energy to a metabolically useful form when conditions do not allow for aerobic 
respiration. This flexibility allows the bacterium to switch from photosynthesis to 
aerobic respiration depending on the environmental conditions. The conditions of the 
marsh dictate that the protein be resistant to thermal and photochemical damage. These 
qualities combined with its natural cyclicity (exceeding IO") of the protein make it an ideal 
media for optical recording[ 1 1 J. 

The photocycle of bR is shown in Fig. 7. The main photocycle consists of the left-hand 
side of the figure[ 121. In the course of studying this material, a branching reaction was 
identified. This is identified by the P and Q statcs. The resting state of the molecule, the 
bR state. can be elevated to the K state by the primary photochemical event. The other 
transitions arc caused by thermal rcactions and result once again in the resting state, bR. 
The entire photocycle takcs about 6- 10 milliseconds depending on the temperature. The 
interesting reaction which creates this brariched photocyclc happens when the last 

Figure 7. 'Thc ihotocycle ot'bR. 
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intermediate state, 0, is converted by light to P which subsequently decays to Q. P and 
Q are the only states involved in the branched reaction and i t  exists as its own entity to 
the original photocycle. The Q state is the one used for rgcording data and is created by a 
sequential one-photon process. This implies that the timing of the reaction must be 
precisely controlled. The material must be illuminated a second time while the molecules 
are in the 0 state about 2 m s  after the initial writing pulse The room temperature 
lifetime of the written state is roughly five years. 

The architecture shown in Fig. 8 is used to record on tht media. This sctup is similar to 
the architecture of the two-photon approach discussed earlier, with the main difference 
being that data beam and the addressing beam not only must intersect at a given data plane 
in the material, but they must follow a timed sequmce with the paging pulse activating 
the media followed by the data pulse 2 ms later changing the 0 state to the P state, as 
shown in Fig. 9. The entirc memory can be bulk thennally erased, or selective page 
erasure is possible by illuminating with blue light (3. = 413 nm). This wavelength will 
convert both the P and r) states back to bR. Alternately, the entire memory can be bulk 
erased with incoherent light in the 360 - 450 nm range. Some investigators have 
suggested, however a WORM system as the amount of bacteriorhodopsin required for a 
memory capable of storing many hundreds of megabytes is on the order of milligrams and 
mass quantities of 
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Figure 8. Schematic diagram of the branched-photocycle volumetric memory prototype 
base on bR. 

this material can be made through fermentation processes. Ultimately. this may provide 
extremely cheap memory media. Jndividual bulk erasers could be provided for those 
wishing to re-use the media. 

Volumetric 3-D optical recording is a relatively new process in the data storage world, but 
not nearly as new as nrulri-wavelength DNA storage - based on the use of enhanced 
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development can be applied to the secondary and tertiary memory requirements offering 
large data capacities, medium access time, and archivability. The 3-D optical memory 
concepts with terabit capacities, gigabit throughput rates, and 1 0-nanosecond access times 
are potential solutions to the primcry and secondary memory requirements. 

With our two-photon and holographic work we have developed working demonstration 
systems. and anticipate operational systems within the next few years. Unfortunately, 
the prospects of a future system are still somewhat limited by key system components 
such as SLM’s, fast (non-mechanical) beam deflectors, two-dimensional error correction 
and detection encodetddecoders and dynamic focusing/aberration control. However, 
these systems ultimately offer the advantage of extremely high data densities, and 
reasonable data YO rates due to the parallel nature of data recording/readout. We are also 
pursuing some more elaborate techniques and materials such as spectral hole burning and 
DNA recording systems and bacteriorhodopsin as a recording medium. These techniques 
represent technologies which may be hrther from maturation, but represent significant 
progress in mass data storage technology. 
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Abstract 

Information technology has complctel y changed our concept of record keeping. The 
advent of di@ records was a momentous discovery. as significant as the invention of 
the pi .ting press, because it allowed huge amounts of information to be stored in a very 
small space and he to examined quickly. However, digital documents are much more 
vulneriblc to thc passage of time than printed documents, because the media on which 
they arc stored are easily affected by physical phenomena, such as magnetic fields. 
oxidation, materia1 decay, and by various environmental factors that may crise thc 
information. Even more important. digital information becomes obsolete, bezausc, even 
if future generations may be able to rcad it, they may not necessarily bc able to interpret 
it. This paper will discuss the Focus Ion Beam milling process. media life considerations, 
and methods of reading the micromilled data. 

The Focus Ion Bean, (FIR) micromilling process for data storage provides a ncw non- 
magnetic storage mcthod for archiving large amount' of data. The process stores data on  
robust materials such as steel, silicon, and gold-coaied silicon. The storage prilcess was 
developed to provide a method to insure the long-term storage life of data. We estimatc 
that thc useful life of data written on silicon or gold-coated silicon to bc on the order of a 
few thousand years w' '-?ut the need to rewrite the data every few years. The process 
uses an ion beam to carve matcrial from the surface, much like stone cutters in ancic,it 
civili7,ations removed material from stone. The deeper the information is carved into the 
media, the longer the expected life of the information. 

The process can record information in three formats: 1) binary at densities of 
23Gbits/square inch, 2) alphanumeric at optical or non-optical density, and 3) graphical at 
optical and non-optical density. The formats can be mixed on the same media; and thus, 
it is possiblc to record, in a human-viewable format, instructions that can be read usin2 an 
optical microscope. Thrsc instructions provide guidance on reading the remaining 
higher density information. The istructions could include inform i t k n  about the formats 

' Approved for release LAUR# 36-2205 

409 



c>f the data, how to interpret the data hit-stream, and inforniatioa on thc types 01' readcrs 
or methtufs that can be used to rwovcr the data. 

There are several methods to read the information written with thc ion beam. The 
selection the method is hiued on the density of the written data. Human-vicwahlc d ; ~  
writtcn ;it optical dcnsities can he read with optical microscopes; binary data writtcn at 
optical densities can be wad much like currently CDs. Data written at non-optical 
densities can hc read using forccltuniieling microscopcs or SEM rcadcrs. In any casc the 
information reau can bc integrated with a computer. 

Introduction 

Information technology has compictcly changed our concept of' record keeping. The 
advent of digital rccords was a momentous discovery. as significant as thc invention of' 
the printing press. because it ailowed huge amounts of information to tx stored in a very 
small space and bc to examined quickly. However, digital documents arc much more 
vulnerd- . to the passage of time than printed documents, because rhc mcdia on which 
they are stored arc: easily affected by physical phenomena, such as magnetic f'iclds. 
oxidation, material decay. Jnd by various environmental fictors that may crisc thc 
information. Even more imponant. digital information bccomes obsuletc, becausc. cvcn if' 
future generations may be nhlc to read it, thcy may not necessarily bc able to interpret i t .  

For data storage over hundreds to thousands of years, there IS reasonable conccm ahout 
effects of man-made ~r naturd disasters. Fires and floods haw destmyed many major 
data ba.ws, for example. thc great library at Alexandria. burncd in about 642 AD. Exacc!ly 
who w3s responsible is debatcd. but an irmplaccablc storthouse o l  knowledge was aliiro.\t 
ioUlly destroyed. HD ROM (ion micromilling) technology discussed hclow \v~~i i lJ  
survive most such .'isasters. Thc meltink point of stainless steel is approximatc!y Z . C I H )  
degrees F (1370 C) and can be used as thc mcdia for data storage with this process. Most 
ouilding fires hum at about 13Ml deFrecs F (70() 0. thus thc probability of data survivid 
is quite high. It is noted that ihcre are circumstances in which sustained fires can rcuch 
higher temperatures. Again. choicc of materials for HD ROM storage can he dcsignctf to 
resist the most aggressive fires. However. simple piacement of storage media in buildings 
that do not contain matcrials with high temperaturc combustibility would proviclc 
adequate protection. Of coursc. flooding is of littlc concern provided abrasion cun tw 
eliminated. 

ComDarisons with other technoloeies 

With these concerns in mind, one can look for methods whcrc tnformation has hwn 
preserved fcr very long periods of time. A primary example is paper. Paper has hccn 
used fer scveral thousands of years and has proved, on thc whole, to be a reawnahly 
stable media for the storage of information. Papcr provides a means ol' storing 
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i?formatian in a native languagc format that can he understood by large numhcrs of 
people. The printing press cxpanded the rolc and dependence on paper as a means li,r 
storing information. Ncvcrtheless, papcr has limitations that rducc its usefulness as I 
long term medium. The Europeans arc now hcginning tu sty: detcrioration in SOO-ICWW) 
year old documcnts produced on low acid papcr. Many documcnts produced within thc 
last hundred years on common paper (high acid content) arc so  Jcteriorated that thcy arc 
even hard to micro-film. 

Limitations of paper: 

Fire 
Mold 
Environnientil reactivity 

Fading o f  inks 
Slow information search and read rates 

Media life of about IOW years dcpending o n  storagc conditions 

Advantages of paper: 

Nativc language 
E ~ q y  to copy 
Docs not rcyuirc special equipmcnt to wad or write 

Thc next c x : m p k .  from rcccnt times. is the use of microfilm as a storagc mcJi;i. 
Microfilm providcs a native language capability. lt also pr ovidcs a mcthod ol rcducing 
the volume reyuircd to hold thc information. Copies arc easy and ohcap to make bur still 
harder than making copies of papcr docurncnts. Microfilm is acccptcd in courts ;id 

gcncrally as a rcplaccmcnt for pupcr documents. It is rclativcly hard to tamper u i t h  rhc 
information that is copied t o  microfilm. However, microfilm gcncrally has thc S;III~C' 

disadvantages i ls papcr with the addition that it rcquircs an cnlsrgcmcnr device to rcad rtw 
information. 

Limitations of micro film: 

Fire 
Mold 
Environmcntal reactivity 
Slow information search and rcad rates 
Loss o f  rcsolution 
Requires an cnlargcment dcvice to rcad 
Requires chcmicals for processing thc film 
Mcdia life of about 5 0  - 5 0 0  years depending on storagc conditions 
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Advantages of microfilm: 

0 Reduced space requirements 
0 Hard to modify information 

Accepted by legal system 
Native language 

The development of magnetic storage was next in the chain that provided a means to 
store ever increasing amounts of information on compact media. Magnetic storage can be 
divided into two main groups - tape and disk. Both can provide high data densities in the 
order of 1 Gbit per square inch. Magnetic technologies are reaching the limits for storing 
information. Funhermore, large improvements in areal density are not anticipated 
because of the minimum size of magnetic domains. The main advantages to magnetic 
media are the ability of machines to quickly read and write information, to store large 
amount of information, to update and append information depending on formats, and to 
correct some errors with built-in error correction information. However, there are a 
number of disadvantages to the digital storage of documents over printed documents. 
First, magnetic tape and disk media that are used to storc digital documents are easily 
affected by physical phenomena, such as magnetic fields, oxidation, material decay, and 
by various environmcntal factors that inay erase the information. Even mom important, 
digital information becomes obsolete because, even if future generations may be able to 
read it, they may not necessarily be able to interpret it. This is the result of requirir.g a bit 
strcam interpreter to convert the information from a sequence of one and zero to numbers 
and text. Another coticem for the archivist is that information storzd on magnetic 
medium can be changed without lcaving any indications of a change. 

Limitations of magnetic storage: 

Fire 
Local RF and EMP fields 
Environmental reactivity 
Overwrite capability (advantage in some applications) 
Magnetic fade 
Requirement for hit stream intcrpreters 
Medium life of about 2- 1 0  years depending on storage 

Not native languapc 
conditions 

Advantages of magnetic storage: 

Rapid reading and writing 
Relativity high data densities 

0 Error correct capahilitics 
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Optical storage systems are a recent addition to storage methods. They providc a 
non-magnetic method for storing information. They can support high data 
densities and can be divided into three general classcs. The first arc WORM 
devices that are write once - read many times. The second class is  read only. Thc 
third class is crasablc optical disks. All device classes provide a rcasonahk 
method to store information at relativity high Jata densities in .Jigital tormats. 
There are advances being made in this area and densities will contir.rte to increase. 
Some classes of optical disks are accepted in some court systems but therc is no 
uniform acceptance of digitally stored information. The main draw-hack to thew 
dcvices is still thc medium. The medium is much like a current CD-ROM and is 
subject to many of rhc same limitations; for example, optical med'a will melt at 
relatively low temperatures. 

Limitations of optical storage: 

Fire 
0 Environmental reactivity 

Requirement for bit stream interpreters 
0 Not native language 

Media life of about 40 years depending on storage conditions 
Slow data writing 
Not uniformly accepted by the courts 

Advantages of optical storage: 

Relativity high data densitics 
Relativity rapid reading 

0 Error correction capabilities 
Notafftctd by EMP or RF 

None of the above methods have been able to match the process developed before the 
time of the pharaohs for long term storage of information. In tl:3se times men chiseled 
messages in stonc as a means of creating enduring records. To be sure, these glyphs h a w  
imparted the information of their sculptors for readers millennia later. Some of the 
important factors that allow thc infomation to be understood millennia later relate to thc 
fact that the information is written in a native la-guage. The Rosetta stone provided the 
key that allowed to translation of one native language to another. Greek and Latin writing 
can still be read without the need for a "rosetta stone" because they were written in a still 
active native language. The new method developed at Los Alamos National Laboratory 
uses an ion beam to chisel information into durable medid. In fact, the durability of the 
this high-dcnsity technique is so great that one observer suggested that "long-term" 
should hc replaced by "geologic," when describing thc longevity c,f this data storage 
mcthod. The mcthod allows data to be written in native languages, direct human- 
viewablc images, and in binary formats. The information types can be mixed on the same 
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media. Therefore. it is possiblc to include in a human-vicwable format, instruction o n  the 
bit-strcam interpreter required to read the binary information. 

Limitations of HD-ROM: 

Highcsi data densities require Scanning Electron Microscope for 

Large size of writer 
reading -- SEM -re large devices 

Advantages of HD-ROM: 

Very high data dcnsities 23Gbits - 1 I,OW Ghits per square inch, highcr 
denslues arc possihlc 

Media lifc of thousands of years 
Not effccted by EMP or RF 
Not environmcntally reactive depending on rnatcrial l-scd 
Several reading methods are available 
Native language formats arc possible but not rcquircd 
Can have mixcd densities on the same media 
Can have mixed data formats on the samc media 
Rapid reading and writing 
Error correction capdilities 
WORM device (good for archiving information) 

The HD-ROM servcs two main functions: ( I )  it stores archival data for very :on€ periods 
of time, and (2) i t  stores high-density data in binary, alphanumeric, and p p h i c  formats. 
Reiriictive errors from thermal or mechaliical shock art: unimportant to HD-ROM. 
Additionally, it is rcsistant to reversals of magnetic fields that could affect the intcgrity 01' 
the data. This is contrary to thc performance of current magnctic storage tcchnologics. All 
present day da!a storage media rely on at least one soft, rcactivc, mallcablc, or flammiihlc 
material for data integrity. However, hD- ROM marcrials are nonflammable. rclativcly 
unreactive, hard. and nonmalleahlc. 

WritinP Pmed UIW 

The high-density data storage is achieved by writing data with it micmmill that cmploy5 ii 
single focused ion beam. Thc micromiil was built from cxisting parts, itntqudy 
configured. The process allows writing at the nanoscalc level with dcep fc'aturcs. thus 
obtaining a very high data density. Data may hc rccordcd in any vacuum-comparihlc 
material. Ion beams can produce high-aspect-ratio (thc ratio between depth and width) 
features with channel widths as small as 75 atoms, or about 5 nanometers and aspect 
ratios approaching 45. Although these features are extrcmely small, they are still well 
under thermal stability limits (that is, the temperature abovc which atoms rcarrangc. ;I 
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process that results in data loss). Data can be writtcn at a larger scale that would further 
enhance the survival of the stored informu:ion. 

The ion beam writing system used for the devclopment of the process is composed of ;in 

ultrahigh vacuum system, a load lock, a secondary electron detector, and a liquid metal 
ion source column. Media are loaded into the load lock chamber and then pumped t o  ;1 
medium vacuum (5  E-7 Torr). The media is subsequently trmsferrcd to the ultrahigh 
vacuum chamber (7 E-1 1 Torr, or about one-ten trillionth of an atmosphcrc). The ion 
beam then is used to image the physical location of the medium by introducing sufficicnt 
secondary electrons to produce a contrast imagc similar to the more familiar scanning 
electron microscope (SEM). Subsequently, when operating thc ion beam under highcr 
current density, complcx milling of digital. graphical or man-readablc data is carried out 
by placing the beam position and dwell time under computer control. The level 0 1  control 
is similar to that available in typical computcr aided manufiicturing (CAM) softwarc. and 
the operation in practice is similar to that of a waterjet mill. 

The hean of the writer is the ion hean column. A liquid metal (typically pallium) is drawn 
to the tip of a source under high electric field and is then ionized. Shaping and focusing of 
the bcam is accomplishcd with well known electrostatic (not magnetic) elcmcnts 
including the apertures, condensers, stigmators, and blanking elements. The rcsultiiig 
current density at the sample surface can be as high zs 50 Ampskm . Fcaturcs such ;is 
channcls and holes can bo milled at aspect ratios approaching 45 at heam spot siscs ncar 
0 . 5  microns. Alternatively data can bc written at higher arcal densities using smaller bcam 
spots and lower currents. The minimum spot sizc achicvahlc in oui currcnt systcni is 
about 500 angstroms. Using such a beam, channels as small as 770 angstroms haw bccn 
rcproducibly millcd. A practical limit of milled features (channel o r  Jot) sizc l o r  data 
storage work appears to be about 5 nanometers ( 5 0  angstroms) for archival storago. 
depending on the materials uscd. 

2 

Since writing donc with an ion heam can bo controllcd, vcry much likc writing +nc with 
a dot matrix printer, niultiplc formats are also possible. Each charactcr is rcproscntcd hy 
an arrsy of points. cach point characterized by a position and dwell timc. This means that 
a feature can represent a binary value. a three-dimcnsional graphical imagc 01- ;in 

alphanumen: charactcr. Morcovcr. diffcrent data formats and dcnsitics ciin cocxiht on 
the samc physical medium. 

Currently, the writing capability is limited to the speed of a single ion beam micromill. 
This allows writing at 276 GigabyteMay using the highcr current densitics. To hc 
cfl'ective at storing large data baves, advances must take placc to allow simu1t;uicous 
etching (writing) with multiple beams. This is seen as a mechanical issuc and plans lor ;I 

multi-hcad writer arc progressing. 
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Reading Procedu re 

One of the unique features of the ion beam writing is that the data can be rcad in a 
number of different ways. Scanning electron microscopes provide the capability to read 
the highest data density while simple laser methods much like current CD-ROMs can he 
used for the lower density data. The readers are designed so the highest density neadcr 
can also read the lowest density information as well. This allows for data migration from 
low density reader systems to higher densities systems without the need to rewrite the 
data. Another unique feature is that the media can contain information written at human- 
viewable low density that describes how the higher density information can be read. The 
low density information could also contain instructions about any bit-stream interpretcrs 
required to make use of the higher density data. This would provide a means to insure 
that data written today could be read several thousand years from now even with new 
reader systems and even if the fornutting and engineering information related to the 
media was lost. 

There are three basic types of information that the readers must be able IO read. The first 
is binary that is used for the storage of many styles of information such as numeric 
infomation, text, and bit map images. The second is one level image and tcxt 
information in human readable Form. Thc third is multi-tevcl such as gray scale imagcs 
and 3-D shapes. 

Optical Systems 

Optical systems fall into two general classes and three basic types of readers. The first 
class is for low density optical scale information much like current CD-ROMs. This 
density is a little better than current CD-ROMs and read rates of about 12x. Thc high 
density optical reader is designed to push the limits of optical reading efficiency. This 
density is much grcater than current optical systems and read ritcs approaching S O 0  
Mbytes per second are estimated. 

Sub-optical 

The sub-optical readers also fall ‘into 13 two main classes. The first is a reading system 
designed to read sub-optical fcaiurcs without the use of a scanning electron microscopc. 
These readers operate at much higher densities than the high density optical rcaders 
discussed above and have read rates in the order of 2 Gbytes pcr second. The high 
density sub-optical reader is a modified scanning elcctron microscope that can read 
features as small as 3 nm. The read rate for the scanning cleclron microscope is in thc 
ader of 2 to 20 Ghytes pcr second. 
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Other reading methods 

In addition to thc above method, data can be read with atomic force microscopcs and 
STM. At present these methods are slower and more costly. 

Jeff Rothcnberp, in the January 1995 Scientific American[ 11. addressed the advantagcs 0 1  
digital mcdia for document storage and the need for a long-tcrm solution for preservation 
of select rec~rds. HD-ROM offers such a solution. Of course, some argue there is little 
data worth storing for such a long period. Others suggest they would prefer a read-write 
system so that files can easily be updated. These arguments are valid. However, thcrc are 
a substantial number of files for which read-only, (or read maybe) an: appropriate. One 
example is need for "data assurance" where data must be safe from modifications. As 
another example, several institutions have an intense interest in maintaining genealogical 
data. The largest genealogical repository estimates their storage requirements at I2 
pentabytes ( I O  15 ) of digital data. They also have an interest in the storage of genealogical 
data in a human-viewable form with greater longevity than micro-film. Sincc thc actual 
storage cost is so low, an estimated $20.0 per terabyte for media materials, and thc 
storage space so small, it would make sense for many industries and governmental 
agencies to take advantage of the technology. 

As Rothenberg points out, magnetic media, the current choice for digital data storage, are 
vulnerable to "the ravages of time" through both material degradation and exposure to 
electromagnetic pulses(EMP). On the other hand, HD ROM is virtually impervious to 
EMP, and the degree of physical degradation can be controlled by choice of materials. For 
most circumstances, stainless steel should offer sufficient protection to ensure longevity. 
The major concern in long-term storage would be to ensure thc potential for abrasion was 
minimized. Given the possibility for atmospheric contamination through increases in 
acidic content, materials should be protected nominally through prudent encapsulation. 
No extreme environmental measures such as cryogenic or high vacuum containers would 
be required. 

Numerous recent articles have extolled the virtues of advances in magnetic data storage. 
Simonds, in Physics Todoy[2], April 1995, suggested recordings are the most significant 
market for magnetic technology. He states the business sector has mass storagc 
requirements that amount to petabytes of digital data. In predicting advances in magnctic 
storage density, Simonds states, "10 Gbitdin would be reached by the year 2Oc)S." He 
further predicts commercial densities of 5 gigabytedin and 5 terabytedin by 2003. 

2 

2 3 

These predictions pale when considered against demonstrated current HD-ROM 
technology. Extant capability for data storage is 23 Gbits/in . Writing done on 2 
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high-strength, 10 micron stecl tape would produce storage grcater than 50 terabytcs/in3 
even allowing an air space packing factor. If 3 micron tapc was used for data storage, then 
densities in excess of 190 terabytesh are possible. It is belicved 3 micron, or thinner, 
tape would be strong cnough for commercial applications. All of' these figures an: based 
on current capability. Further, the HD-ROM process does not currently entail any dala 
compression. Many of the prescnt and projected magnetic recording techniques employ 
data compression to achieve thcir storage densities. Should HD-ROM employ data 
compression techniques. then even higher densities than those described arc possible. 

3 

A recent article by Terry Cook in Technology Reviewl3] discusscs thc nced for bcitcr 
methods of storing information in the computer age. The paper also discusses same 
common problems associated with storage that do not exist to thc human eye. 

There arc many applications for HD-ROM. Movies offer a substantive example. We arc 
already aware of the substantial number of films that have been lost due to disintegration 
of materials. An industry is emerging to reconstitute film classics. but this is a time and 
labor intensive process. While nothing can be done short of this rcstoration process fix 
degaded films, something can bc done to ensure that new films can have long lit'c 
expectancies. With an estimated 250 Grgabytdfilm data rcquircmcnt for threc color 
separation, each major studio could permanently record a film in less than two days using 
the multi-head writer. 

The National Archives would also be a candidate user. There are many national records. 
including the Congressional Record, that should be stored for a long duration. Financial 
institutions would find long-term storage of incorruptibk data a major advantage. Then, 
events such as the stock market information warfare attack depicted in Tom Clancy's 
recent book, Debt of Honor, would have minimum impact. It is the inability to uhangc 
these records, making retroactivc adjustments impossible, that would bc of importance io 
that industry. In fact any business that values a sound data base would appreciate HD- 
ROM. 

This also applies to the scientific community. Large, permancn! data bases would hc 
invaluable to researchers doing longitudinal studies. One example, would hc NASA's 
Earth Observation System (EOS) data that is estimated will be collccted at a rate ol' onc 
Terabyte per day. NASA would like to keep the data for 90,000 years. Cross refwcnces to 
such data bases would assure the accuracy of base line data. Deep space probes too could 
benefit from HD-ROM. Detailed instructions could be etched on very small surl'accs. 
These etchings would be impervious tc the extremely harsh environmcnts and unknown 
electromagnetic fields that might be encountered. 
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Abstract 

Data mining i, the automatic discovery of pattcms, associations, and anomalics in data 
sets. Data mining requires numerically and statistically intensive qucrios. Our 
assumption is that data mining requircs a spccialized data managcmcnt infrastructurc to  

support the aforcmentioncd intensive queries, but bccause of the sizcs of the dais 
involved, this infrastructurc is layered ov -r a hierarchical storqc system. In this paper. 
wc discuss the architecture of a system which is laycmd for modularity, but exploits 
spccialixd lightweight services to maintain efficiency. Rather than use a full funciioncd 
database for example, wc use light weight objcct services spccializcd for data mining. Wc 
propose using information rcpositorics hetwccn layers so that components on cithcr si& 
of lhc layer can ~ C C C S S  information in the repositories t o  assist in making decisions ahoul 
data layout, the caching and migration of data, the scheduling of qucrics, and iclatcd 
matter!;. 

Introduction 

Data mining is the automatic discovery of patterns, associations, and anomalics 11 data 
scts. Thc data mining of large data sets is ;1 special challengc becausc the proccss 
requires numerically and statistically intensive queries on large amounts of data. Our 
assumption is that data mining rcquires a spccializcd data management infrastructurc. hut 
hecausc o f  the sizes of the data involved, this infrastructure is laycrcd over a hicrarchic*al 
storage system. Our concern in this paper is an appropriatc open. layered architcctun to  
support this. 

This work was supported in part by the Massive Digital Data Sysrems Propram. 
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A common layered architecturc for this type of system is illustrated in Figure 1. Thcic 
are three layers: the storage management layer. thc data management layer, and the data 
mining and analysis layer. Uiiless these three layers coadinate how the data is physically 
l i d  out, how it is cached acd nigrhted, and how it is prefetched, these layers can work ai 
cross purposes and drastically impdir the performance ol' the o l~ r s l l  system. 

The traditional approach forgoes th : convenience and modularity of a layered approach 
for efficiency: with this approach, the data manasement system manages storage itscll. 
while the data mining and data analysis applications manage thc data themselves. In 
practice, this has meant that generally davd mining applications simply work with flat data 
that fits into main memory. Of course, this data may he obtained by samrling large 
databases, but the point is thal the data mining applications themselves work with stiiall 
amounts of relatively simple data. This may be thought of as a sample-hued approach to 
data mining. 

In this paper, we arc concerned with an alternative a;:proach: the system is layered lor 
modularity. hut exploits specialired lightweight serviccs t o  maintain efficiency. Rathcr 
than use ;1 full functioned database for example, we use light weight otject services 
specialiicd for data miriing. With this approach, the data mining applications can work 
with large amounts of complex data. Another advantage of this approach is that the data 
management services can be uscd to manage the intcma! data structures required by thc 
data mining algorithms. This may be thought of as a data-driven approach to data 
mining. 

One of our specific concerns in this :iote is how the different layers can share 
information, especially In a heterogeneous environment. We propose using infcrmation 
repositories between layers so that components on either side of !he la:.:.r c.\n access 
information in the repositories to assist in making decisions ?>out d a b  layout, the 
caching and migration of data, the scheduling of queries, and r c i h 4  mdters. 

This proposal generalizes and extends the proposal irr Brown et. al. [ I ]  for providing a 
repository between a mass storage system and a relational database mandgement system 
and is a refinement of the architecture described in Grossman 121 aid [?I for :: scakahle 
data mining system. 

This work is preliminary. A fuller treatment is in preparation. 
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access lo data 

Data Mining 

I Data Management Layer 

t _tj 
I Storage Management Layer I 

Figurc 1 .  In a layered approach to data mining. rather than iiianapc thcir own data. data mininc 
applications use serwc'cs from a dala management layer. which in turn use storage serlices 
fronl a lowcr layer. 

Background and Related Work 

Broadly speaking. there arc two relevant traditions: onc system-based and onc scrvice- 
based. in the first. thc essential question is how a database management system can 
interface to a storage management system. In the second. the essential question is what 
services arc required so that data management. storage managcment, ard application 
services can intcroperatc in an open network environment. 

Relational dalabase-mass storage system inlerfaces 

Historical:y. databases have managed the storage of single disks; more recently, they 
have managed the storage of distributed disks. For some applications though much of thc 
data i s  distributed on a stawage hierarchy, including tape and other tertiary storage. which 
is m' ?aged by a mass stcrage system. One of the most important interfaces et'tccting 
performance is the interface betwecn a relational datahasc client and the mass storapc 
system. A group at Lawrence Livermore National Laboratory has proposed an intcrl-acc 
between a client of a relational database management system and a storage system 
Brown et. al. [ 1). This interface which they call an information Data Repository (IDR) 
would serve as thc home f6- several relational tables, including: one fo r  relatic.rna1 tahles 
from the client database (called the bundle table), one for instances of the vanous 
components in the storage hierarchy (called the store table), one for mapping regular suh- 
components of bundles to stores (called the block table), and one for a list of pending 
requests for moving data between stores (called the movement t:ible). In addition. the 
proposal [ 1) si1ggest.s using a standard relational database management system to maniige 
the various tables in the IDR. The IDR would be external to both the database and the 
storage system and all interactions between the database and the mass storage system 
would be required to go through the IDR. 
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Light Weight Object Management Using Network Services 

Another approach is to develop a data management system specifically designed for the 
mining and analysis of data. This type of system docs not require thc full functionality ol' 
a database, but instead is optimized to provide low overhead, high performance access io 
data which is read often, occasionally appended, but infrequently updated. In addition, 
data may be prc-computed and specialized indices may he provided. This can be thought 
of as providing specialized lightweight application specific data management scwiccs 
Grossman et. ai. 141; or alternatively, as providing an object warehouse specialized tor 
data mining applications Grossman [3]. 

As usual with databases. with this approach there is a manager for physical collec.ricm of 
objects (called segments). In addition, to achieve scalability, physical collections ol' 
segments are $emselves gathcrcd into larger physical units called folios. There is also a 
folio manager which interdcts with file and storage services, including m a s  storage 
systems. Just as the segment manager can query the folio manager. so can the mass 
storage system. Thc folio manager maintains a tablc of folios and their physical 
1ocat:ons. In some sense. thc fblio manager can be viewed as h e  interface between a 
database and a (hierarchical) stomge systcm. See 131 and 141 for more information about 
this approach. 

Distributed Object Services 

The Object Management Group's Common Object Request Broker Architccturc 
(CORBA) is an industry standard for the development of distributed objcct-oricntcd 
applications across hetcrr~pcncous platforms. The OASIS cnvironment developed ai  
UCLA by Mcsrobim et. al. [SI is an open environment for working with scicntilic 
ir.formation based upon CORBA. CORBA is optimized for worki~g with rclativcly 
largegrained objects in heterogeneous envimnments in contrast to the usc of lightwcight 
data management and data warehousing described ahovc. In some scnse. CORBA is 
pc- imistic about the physical layout of data and provides the infrastructure to support 
this in order to work in heieropencous environments. while a lightweight approach 
optimistic and only translates the physical format of data when nccessary. 

Requirements and Objectives 

Our ovcr all  objective was :o design an open system for data mining and data analysis 
which scales as the amount of data and the numerical complexity of thc query increases. 
More specifically. wc had the following requirements: 

Large dutu sets. Our most important goal was to support the mining and 
analysis of very large data sets, including data sets large enough to require 
muhiplc disks or tertiary storage. 
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Numerically intensive 9ueries. Our second most important goal was to provide 
very low overhead, high performance access to the data. In some sense 
datahues  re optimimd to prov.4- safe access to data which is expected to 
change; our goal was to prov: +igh performance access to data which is 
relatively static. 

Transparent access tu datu. Because of the sir2 of tho datii sets. much o f  thc 
data is expected to hc either on tcrtiary sioragc or on large arrays of disks. An 
important goal was to provide transparent access to the data. independent ol' 
its location or  mdia  type. 

Architectural Description 

Our architectural framework consists of a storagc managcmcnt layer. 3 data managcmcnt 
layer, and an application layer consisting of clients of the data management serviccs. Wc 
are primarily concerned with data mining and data analysis client.. . Between each of thc 
layers is a repository for information: a Storage Interface Repository (SIR) hctwccn thc 
storage managemcnt and dava management layers and a Data Interface Repository (DIR) 
between the data mining applications and the data managcmcnt layer. 

Data Interface Repository (DIR) 

Traditionally, data mining has looked for patterns in small amounts of tlat file-hrrscd data 
or samplcd small amounts of data from relational databases using SQL qucricx. Datu- 
driven data mining requires working with large amounts of complex data, much of which 
has to he warehoused because of pcrfmnance considerations. Thc DIR has scvcril rolcs. 
including: 

6 Thc data required fo r  data mining and data analysis querics may be distrihurcd 
in several data management systems, including data warchousos and 
operational and archival data management systems. The DIR provides a 
uniform interface for data mining and data analysis queries. Thc DIR 
maintains a Iist of logical data sets and the systems which are maintaining 
thcm. 

For performance rcasons, some of the data for data mining applications may 
be warehoused, and specialized index and access structutcs may be provided. 
This requires periodically refreshing the data from the operational and archival 
databases. The DIR maintains the information required for this to take place. 

The DIR can also maintain the information for the optimization of data mining 
queries using information obtained from the results of prcvious queries. 
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Data management system by necessity divide the data they manage into regular sized 
extents. For example, access to file-based dah is through blocks of equal length, while a 
common type of object-oriented database provides access to objects through extents of 
equal length called segments. These extents can then he managed by thc dara 
managemeat systems themselves or by file or storage systems. In particular, they may he 
managed by hierarchical storage systems. The SIR has several roles, including: 

The demands upon extents imposed by the database management system arc 
not necessarily those imposed by the hierarchical storage system. Not all 
extents are treated the same by the data management system: for example, 
some may contain directory or index infmation, which it would prefer 
remain pinned to secondary sttalge. even if infrequently acoessed. The SIR 
provides a mechanism fot a database and a hierarchical storage system to 
exchange infonn;dtion about desired movements of extents or sequences of 
extents. 

A database must be able to estimate the time to access data. If the physical 
management of the data is delegated to the hierarchical storage system, then 
the SIR must contain enough information so that the database can still make 
these estimates. 

To work with very large data sets, a hierarchy of extents, as described above, 
must be supported by the SIR. For example, for terabyte SIE data seis, there 
are simply too many segments to be managed directly by the databasz. 
Instead, it is important to group objects into segments, and segments into 
larger units. 

The SIR discussed here is an extension of the IDR proposed in Brown et. al. 111. 
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figure 2. The role of the Data Interface Repository (DIR) and the Storage Inlerface Repository (SIR) IS i o  
m n t a i n  information so that services and applications in different layers can interoperare. 

Discussion 

In this section, we discuss some issues regarding the architecture. 

Is the interface r ~ u d i i t 0 9  or advisory? Systems can be built either way. If’ 
the interface is mandatory, then performance may suffer, since some of a 
component’s essential services may have to be accessed externally. On the 
other hand, if the service is advisory, inefficiencies are likely and deadlocks 
am possible because different components accessing the service may make 
conflicting choices. 

Is the interface part of one of the components or independent? Traditionally. 
for example, the management of table information, block information, and thc 
mapping from tables to blocks has been a component of the data management 
system. The role of the SIR is to provide this information through a separare 
service. Alternatively, the SIR could be incorporated into one of the laycrs 
and accessed from the cther layer. 
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How should the DIR and SIR be implemented? A variety of implerncntaiions 
an: possible: The DIR and SIR could simply be implemented as a network 
servicc. Alternatively, a relational database can be used as proposed in Brown 
et. d. [ I]. or a CORBA Object Request Broker (ORB) could be used. 

0 What is the gmnularity of access? For this approach to succeed. i t  is 
important to be able to adjust the granularity of the objects referenced in rhc 
SIR and DIR so that pcrformiincc is not advcrscly offeutd. 

Status 

This approach arose out of work with a system for data mining devclopod by Magnilj. 
Inc. called PATERN. PATERN currently consists of hch versions of an oljcct 
warehouse [3] and data mining modules for classification. prediction. and optimixaticm 
Grossman et. al. [6). A demonstradon of the systcm mining and analyzing high cncrgy 
physics data took place at Supcrc-omputing 95. A pcrtbrmancc cvaluation of thc systcin 
is currently being prcparcd: and will appear elsewhere. 

Currently. the SIR is part of the object warchouse and interfaces to the High rerformancc 
Storage System (HPPS) Tcaff 171, while the functionality proposed by the DIR i s  
currently shared between the differmt data mining mcdules. 

Summary 

In this paper, we propose a layered approach to a data mining system. Data mining 
applications exploit specialized data management services from a lower level, which in 
turn exploit specialized storqe management services. We propose providing information 
repositories betwccn each level so that services on either side can efficiently exchange 
information. To maintain pcrfotmance. we use specializtd lightweight data management 
services instead of a full functioned database, and adjust the granularity of the datu passcd 
bctween the layers 10 lower the cost of accessing the informalion repositories. 
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Abstract 

At the San Diego Sapercomputer Center, a Massive Data Analysis System (MDAS) is 
being developed to support data-intensive applications that manipulate terabyte-sized data 
sets. The objective is to support scientific application access to data whether it is located 
at a Web site, stored as an object in a database, and/or stored in an archival storage 
system. We are developing a suite of demonstration programs which illustrate how Web. 
database (DBMS), and archival storage (Mass Storage) technologies can be integrated. 
An Application Presentation Interface is being designed that integrates data access to a. 1 
of these sources. 

We have developed a data movement ipterface between the Illustra object-relational 
database and the NSL UniTree archival storage system running in production mode at the 
San Diego Supercomputer Center. With this interface, an lllustra client can transparently 
access daia on UiiiTree under thL, control of the Illustra DBMS server. The current 
implementation is based oil the creation of a new DBMS storage manager class, and a set 
of library functions that ailow the manipulation and migration of data stored as lllustra 
"large objects ". 

We have extended thib interface to allow a Web client application to control data 
movernent between its Ixal  disk, the Web server, the DBMS Illustra server, and the 
UniTree Mass Storage environment. This paper describes some of the current approaches 
for Web, DBMS, and Mass Storage interoperability, and presents a framework for 
successfully integrating these technologies. This framework iz msrlsured against a 
representative sample of environmental data extracted from the San Diego Bay 
Environmental Data Repository. Practical lessons are drawn and critical research areas 
are highlighted. 

1. introduction 

A series of projects are being undertaken at the San Diego Supercomputer Center to 
develop the software technology that is needed to support data-intensive scientific 
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applications (Moore [ I ] ) .  These projects explore various aspects of distributed data 
handling capabilities, including integration of object-relational database management 
systems (ORDBMS) (Moore j2)) with archival storage. development of Web and Java 
interfaces for databases and archival storage systems, and development of a s t a n d 4  API 
for accessing data from heterogeneous sources. 

The ability to manipulate very large data sets and large collcctions of data sets is a chief 
goal of the Massive Data Analysis System (MDAS) project (Moore 131). Two fcatures 
are essential components of this system: accessing data sets by attribute rather than \!NIX 
file name, and transporting very large data sets across parallel I/O channels. Object- 
relational d3tabase technology is used to support query by attribute, and archival storage 
technology is used to support third-party parallel transfer of data sets. The MDAS projcct 
is integrating these technologies to create a data handling environment capablc of' 
supporting terabyte-sized data sets. Large objecis that are controlled by the databasc arc 
stored in the archive instead of the database local disk. This allows the ORDBMS to 
manage collections of data objects which exceed the local database disk capacity. By 
using transportable methods for manipulating data objects. it is also possible to minimiit. 
CPU execution constraints. When a query is processed, both the data object and the 
transportable method are sent to a system on which the analysis is then done. The data 
handling system effectively serves as a data scheduler, moving data and associated 
computational methods to available compute resources. 

The data-handling system architecture is presented in Figure 1. 'three different clients are 
shown accessing the system, corresponding to interactive Web-based access, scientific 
application access. and DBMS access to support data movement between multiple data 
handling systems. The DBMS maintains large objects within the archive and has the 
ability to schedule computationally intensive work on various production systems. The 
system is designed to support third-party transfer of data from the archive directly to the 
requesting system across parallel I/O channels. 

To gain insight into issues associated with database/mass-storage integration, we built a 
prototype using Illustra (Illustra [4]) as the database engine and NSL UniTree as the mass 
storage system. NSL UniTree is a hierarchical archival storage system currently running 
in production mode at SDSC. The hardware platform consists of a single IBM RS/6000 
99J workstation, a disk cache of 100 GB, two StorageTek tape silos and 8 tape driies 
transfemng data at rates up to 2.9 MBls with 1 controller per four drives. The system is 
capable of storing up to 20 TB (terabytes) of data. The most recently accessed files arc 
staged on the large disk cache and the rest are migrated to tape. 

A second research prototype has been created through a similar integration of Postgres95 
Stonebraker [S, 61) with NSL UniTree. The database runs on a 17-node IBM SP-2. which 
controls a 500-GB IBM Serial Storage Architecture (SSA) Disk Subsystem and a 60-TB 
IBM 3494 Tape Library Dataserver using six high-capacity 3590 Magstar tape drives. 
This system will be used in collaboration with IBM to develop a Massive Analysis 
Testbed that integrates the DB2 Parallel Edition DBMS with the High Performance 
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Storage System (HPSS) mass storage system (Archival Storage Research at SDSC 171). 
Data transfer rates of 300 MB/sec are expected from this system. The nominal design 
point for expansion of this testbed is to sustain at least 1 GB/sec data access rate for each 
additional terabyte of disk. The design point for data access to tape is 1 GB/sec pcr 100 
terabytes storage capacity. 

Production Systems 

SMP/VP Clwtet hUPP Pvint/Visud Media 

+ 
Web Client Web Server #t 

DBMS 

Inteta ct ive 
DBMS Client DBMS Server 

Hierarchical Storage Systems 

Interactive Systems 

+ 
Figure 1: MDAS System Architecture 

This paper presents the various sofhare interfaces that have been developed in the 
research prototypes. The mass storage interface is described in section 2, the database 
interface in section 3, and a Web interface in section 4. A real-world example consisting 
of a reprcsentative sample of environmental data extracted from the San Diego Ray 
Environmental Data Repository is shown in section 5 ,  and concluding remarks and 
expanded data access scenarios are given in section 6. 

2. Mass Storage interface (MSI) 
We halie developed a data movement interface between the Illustra object-relational 
database and the NSL UniTree archival storage system. With this interface, an lllustra 
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client is able to transparently access data on UniTree through the Illustra server by 
sending appropriate queries and commands. 

2.1 MSI software features 

Metadata describing the data set attributes are stored on the local disk under the database 
control. Large objects (data items larger than approximately 8K bytes) are stored in 
UniTree through the Illustra/UniTree interface. A large object is a defined data type that 
is crea'od using the J!lur*ra DBMS facilities. Large objects stored in UniTree have all the 
database properties of any Illustra object, such as transaction rollback, crash recovery, 
and multi-user protection. Llnreferenced large objects can be removed from the database 
by issuing the "vacuum" SQL statement. However, once created they cannot be 
overwritten or appended to. lllustra supports a built-in data type for pointing to a large 
object, called "large-object". When a user selects a large object from a table, the 
returned value is a handle to the large object. The handle is a character string, such as 
'1098723987211 ', which is used to define a unique data set within the UniTree system or 
the local database disk. 

From an Illustra client standpoint, except for the difference in access speed between local 
disk and remote archive, ''lurge objects" stored in UniTree behave erwtly the same as 
other "large objects". A user can use nort.ial queries and commands to perforin the 
following tasks: 

Store and retrieve large objects between local disk and UniTree. 

Vacwm unreferenced large objects stored in UniTree. 

"Dump", "restore" and "recover" "large objects" stored in UniTree. 

To test the integration, "lurge object" files stored in UniTree were intcntionally deleted 
after a "dump". "Restore" and "Recover" were then used to restore the deleted files. 

2.2 MSI software implementation 

The implementation of the MSI is done by addinq a storage type - "UniTree" to the 
ORDBMS storage manager. This required creating a set of 35 new UniTree specific 
access functions for operating on data sets. Example functions are open, close, read, 
write,jlush, abort, and synch. The design provides a one-to-one counterpart for each 
UniTree access function with the corresponding function for accessing magnetic disk 
storage. 
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Sixilar to the magnetic disk starage type functions, the UniTree access functions do not 
make direct 110 calls. Instead they perform 110 through Virtual File Descriptor functions 
that call the 1ibn.el.u and 1ibnslrree.u UniTree libraries to interact with the IhiTrcz Mas? 
Storage System. These libraries providt client proccsses with UNIX-like 1/0 access 
functions as well as functions that are specific to UniTree such as file staging and 
pigration. 

3. Database software interface 

User functions have been developed to allow user-level control over the storage IC - * h n  
of the data sets within the integrated database/archival storage system. Note that the data 
sets might initially be stored on !he user’s local disk, then stored as a large object OF the 
database sjstem disks, or stored in the archival storage system. The responsiveness of thc 
system typically improves, the closer the cache level is to the user. Hence user control is 
needed to optimize access performance. 

Three DuruBlude functions - myFileToLO(), LocalToUtree() ai i UtreeToLocal() have 
been created to provide an easier way for an Illustra user to convert local files to laryc 
objects on UniTree and to migrate objects between UniTree and database file systems. A 
DataBlade i.; a mechanism to extend the Illustra server to manage new data types a d  
functions on these data types. 

The DufaBlade terminology comes from the following analogy: just like a general 
purpose utility knif? can he ertcnded to perform different cuttirg jobs by iri;erting 
special-purpose blades, so ran th; illustra t.rver be extended to manae,e new data types 
by snapping in the required CrltuBlade. Basically, these functions use the large-ohjwr 
manipulation functions of lllustra to mo’e large objects between database magnetic disk 
and UniTree. 

3.1 Data caching functions 

1)  myFiIeToL0 (filename, flags, smgr) - used to copy a local disk 1% to a large object 
stored in the archival storage system. This is the same as the FifeToLU 0 function that 
comes with Illustra with the exception that a parameter - smgr has been added to allc IN 

users to specify the storage type for the large object. 
Filename = The name of the file to be converted to large object. 

Flugs = the location of the file : 
0 = the file is on the client machine. 
1 = the file is on the server machine. 

Smgr = the storage type where you want to store the large object. 
0 = local disk. 
2 = UniTree. 
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The returned value is the LO handle of the newly created object. 

2) UtreeToLoeal(1arge-object) - used to migrate large objects from archival storage io 
the database disk. 

Lurge - object = The LO handle of the large object to be migrated. 

The vrurned sulue is  the LO handle of the newly created large object. 

3) LocalToUtree(large-object) - It is used to migrate large objects from the database 
disk to archival storage. 

Large-object - the LO handle of the large object to be migrated. 

1 I.C reurned t*ulur is the LO handle of the newly created large object. 

3.2 Examples 

The following script illustrates the use of these three DaraBlude functions. One could 
interactively enter this script using the msql command shell. The text bold corresponds 
to the system's response. The large object handle value encodes the cache location of the 
data set (12 ... means that the large ohject actually resides in the UniTree archival storage 
system. aqd IO ... ireans that it is on the Illustra Server disk). Two data sets are stored in 
the system; "fool" on UniTree and "f002" on database disk. "fool" i s  then migrated 
onto database disk. and "foo2" is migrated into L'niTree. 

_ - - -  First, create a table named LOTest 
create table LOTest 
( 

name t e x t ,  
myLO large-object 

1 ;  

- - - -  The following command will store the large objecc in Unitree 
insert into LOTest values ( ' fool ' , 

one row ineerted 
myFileToLO ('filel', 0, 2 ) ) ;  

_ - - -  The followin9 command will store the large cb]ect to local 
- - - -  d i s k s .  
insert into LOTest values ('fco2', 

one r o w  inserted 
myFileToLO ( I f ile2 I ,  0, 0) 1 ; 
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- - - -  
_ - - -  The next 2 commands migrate the large objects between the 
_ - - -  local disk and UniTree. 

update LOTest set myL@=UtreeToLocal(myLO) where name='fool'; 
update LOTest set myLO=LocalToUtree(myLO) a'lere name='foo2'; 

- - - -  

- - - -  Illustra does not delete the old object automatically, so 
_ - - -  you need to vacuum it. 
vacuum from MTest; 

1. Web software interface 

A Web Server side C-language CGI (Common Gateway Interface) to Illustra was 
developed. This program allows the user to build or specify existing SQL queries which 
are then passed to the Illustra server. In essence the C interface program is a multi- 
purpose program acting as a Web Clieni program (generating HTML) and also as an 
lllustra DBMS client program (connecting remotely to the Illustra Server. issuing Sol, 
commands. collecting SQL command result sets, disconnecting from Illustra, extracting 
information from the result sets and displaying it to the screen). The DBMS client part is 
done by linking the code to the 1ibmi.a Illustra C-programming interface library. 

Other than the fact that the SQL commands which are sent to the sewer allow the use of 
the new UniTree DataBlade functions, the Web software interface is a standard interface 
that one would find in most Web to DBMS integrations. 

This section illustrates how one might be able to control this integrated environment on a 
simple web example (section 4.1) and concludes with general considerations on how we 
dealt with server time-out issues (section 4.2) . 

4.1 An integrated example 

The WFR demo presented here can be executed from the following Web page: 

http://www.sdsc.edu/projectsNassDataAnaVDemo-lllust rii+Unitree/ 
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A second goal is to provide ubiquitous access to scientific data sets. Scientific 
applications should be able to access data and cache it locally no matter where the data is 
origirially located. Some of the key requirements of such a system are: 

heterogeneous data sources: Possible sources for data include databases, archivcs, file 
systems, and anonymous FTP servers on the Web. An API is needed that will allow an 
application to specifjl a data source, establish a connection. select a data set based on 
requested attributes, and then cache the data set locally. 

parallel I/O: Because of the size and number of data sets that can be acccssed l'or 
analysis, mechanisms for redistribution of data sets from multiple peripherals onto 
parallel compute nodes are needed. The emerging MPI-IO standard will be the foundation 
for the API we are constructing. 

distributed computation support: Data sets may be distributed to multiple platforms. 
for analysis by methods that are retrieved from ORDBMS. Support for distribution of 
computation objects is needed. 

third-party data access: If both data sets and computational methods are distributed to 
a remote platform. mechanisms are needed to allow the method to access a temporarily 
cached data set. 

third-party authentication: Sirnit I .cthods and data sets need to validate their 
interoperation through an authentici,:. n mechanism that is independent of the local 
operating system. 

The end result is a data handling environment where the focus is on moving and caching 
data rather than moving and distributing applications. The operating system at cach 
server or compute platform controls use of the local resources. The data handling 
er;lirunment provides a higher-level infrastructure that supports remote access. 
aninenticiition, and data movement. 

4~ example of this environment is shown in Scenario 1. A user makes a request of a 
remote system for a particular data set. The process consists of retrieval of an applet 
stored on the local disk of the system, which is then used to access an ORDBMS 
database. The data object is retrieved from the archive that is  linked to the database. 

A prototype of this system based on a Java interface to the Postgres95 ORDBMS is being 
developed. Interfacing Java to Postgres95 required porting the Postgres9S client interface 
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library to Java. This enables a Web client that has Java capabilities to interact directly 
with the Postgres95 DBMS. Part of this work has been inspired by a prototype developed 
by John Kelly at the Blackdown site (Ap: // substance.blackdown.org ,' pub / Java ! h a -  
Postgres95). In particular, we have added support for large objects. a functionality rhat 
was not provided earlier. 

User 

SP-2 

~ ~~ I Application 

Postgres95 fq--.@ Server 

Scenario I: Pulling out applets and large object data 

An improvement to this architecture is shown in Scenario 11. The applct is st.. .:J as il 
method within the ORDBMS. The request to the Web server results in the e~traction of 
the applet out of the archival storage system, and its transmission to the remote uscr. Thc 
applet is then cxccuted on thc remote system to access data objects through tlic 
ORDRMS svstcm. 
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Java Web 
Sewer 

Scenario 11: Pulling out large object applets 

A further extension of the system is  shown in Scenario 111. The Web server interface is 
directly integrated into the ORDBMS. A request for analysis of a data object results in 
both the data object and the associated method being moved to a compute platform. To 
provide data privacy, the data set may be encrypted. The encryption key is sent to the 
method, thus providing both third-party authentication and nrechanisms for controlling 
third-party data access. 

p Key 

JPostgres95 I 

Scenario I l l :  Third-party data access and third-party authentication 
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Finally. as shown in Scenario IV, the abovc capabilities can bc implemented directl! 
within 110 libraries that are used . a scientific application. Thc application then directly 
accesses the remote database/archival storage system to retrieve a data set. Data 
subsetting and redistribution can be provided by application of appropriate methods to thc 
data set on the compute platform which supports the ORDRMS. 

P 17 
Scenario IV: Supercomputer analysis of scientific data sets 
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Introduction 

This paper discusses the desired characteristics of a tape-bzsed pclabyte science data 
archive and retrieval system (hereafter refemd to as "archive") requited to store and 
distribute several terabytes (TB) of datd per day over an extended period of time, probably 
more than 15 years. in support of programs such as thc Earth Observing System (EOS) 
Data and Intormation System (EOSDIS) Kobler [ I ] .  These characteristics take into 
consideration not only co+effcctive and affordable storage capacity, but also rapid access 
to selected files. and reading rates that are needed to satisfy thoumaids of retrieval 
transactions per day. It Seems that where rapid random access to files is not crucial, the tape 
medium, magn::ic or optical, continues to offer cost effective data storage and retrieval 
solutions, and is likely to do so for many years to come. However, in environments likc 
€OS. these tape based archive solutions provide les, than full user satisfaction. Therefore, 
the objective of this paper is to describe the performance and operational cnhancements that 
need to be made to the current tape based archiv i  systems in order to achieve grcater 
acceptance by th EOS and simikr user communities. 

User 8 

connection 
may be 
netwGrk 

Or via media 

. 7 

Hosts Disks I 
mtmtic 
Tape 
Libr ar y 

Note: includes software such as 
operating system, dbms, file 
storase management system.. . - I 

Figure 1 : Generic Tape-based Archive 

The archive discussed in this paw' shown in Fig.1. Its hasic components - host, 
m. Znetic disk (perhaps solid state ' s t  r .b -IC sraphic memory in the not too distant future) for 
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caching/staging (hereafter referred to as “disk”), robotic tape library, inputloutput media 
devices, and associated software (operating system, database, filc management, resource 
management. network. communication protocol, operation control, etc.) are assumed to be 
fully integrated as an opcrdtionai system, which could bc centralizd or distributed as 
appropriate to the user environment and data souc~es. The archive architecture and 
configuration are assumed to he such as to allow expansion or growth from a nominal one 
petabyte to 100 petabytc storige and performance capacity as data continue to be 
accumulated and the numher of users continues to increase. Thc archive is expected to store 
and retrieve a variety of data types. thc files of which may rangc: from 1 KB (kilobyte) to 
1 0  GB (gigabyte) in size. and handle thousands of user transactions a day. Being an 
operitionitl system required to satisfy a multitude of users (vs. a laboratory facility), this 
archive is, therefore, characterizcd from a system’s rather than a component’s perspective. 
For example. the performance of a given tape drive is not addressed directly; rather, the 
d3ta transfer rate from disk to l a p  or from tape to disk, including 2111 overhead as.sociated 
with managing each data file before it lands in a given location. is specified. Thus, the 
salient archive c:wiacteristics addressed in this p-r m: storage density, storage 
organization and managcnwnt, write rate. mad rate, file access time. data 
integritylprcservation. data rctrievalldistribution, data interchange or interoperability, and 
operation controi. They are examined from an operational system’s perspective to highlight 
their significance in realizing the archive’s desired capabilities. 

Given the state of current technology and available archive components as desclibed in the 
literature Shiclds [2) and observed in the field. can the subject archive be offered by dle 
vendor community at an affordahle pricx? This twofold question of performance and cost 
is examined from the standpoint of real progress alrcady made I: this area - .I reality check. 
and what remains to bc done to reach the goal of achieving the desirable archive 
characteristics at an affordable price. 

Salient Characteristics 

In discussing the archive’h halient characteristics. it is assumed that the systcm arc, itccture 
allows thc use of multiple tapc drives, robots. disk banks and hosts as appropriate to 
achieve the desired capacity and performance, and thc local nctwork bandwidth is sufficient 
to support this performancc. As mentioned prcviously. thehc characteristics, which become 
spccifications when they are given spccific/particular values. are considcrcd from the 
standpoint of a fully operational system. and their measurements are made on this basis a 
well. This means that for ‘iystcins which u l i l i x  multiple components opcrating in parallcl. 
e.g., tape drives or disk Lives. characteristics such as data transfer rdte (write or read) P?: 

given as aggregate values. as illustratcd in Fig. 2. In general, characteristics iwociated with 
data transfer or data flow are considered to be “end-to-end”, viz.. for storage, data transfer 
bcpins when the data enters the host, and for retricval. data transfcr ends when data lands 
on the archive disk shown in Fig.) .  System level chancteriration of the archive is key to 
describing the archive’s capabilities in realistic terms and relating thcni to operational 
expcctation:.. Regrettably. the practice of characterizing archives at thc system levcl is not 
yet standard or even prevalcnt, pcrhaps because the vcndor community does not usually 
offer integrated archives as products. Instead, archives are typically specified in terms of 
performance of their components such as tape drives, tape libraries. etc., which means that 
a great dear of system engineering and development effort must be applied by or provided 
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to the customer in order to rcali7c the complete archive solution. From the archive 
customer's perspective, procuring thc m h i w  on the basis of system level chxiteristics 
presciita the vendor community with an opportunity to offer fully integrated archive 
systems as products and, hopefully. at lower cost to the custonwr. In m y  event. what 
follows are the desired archive characteristics as wen by the end user. It s h d d  he noted 
that at this time them are no ccrmmc3rcial-off-thc-shclf (COTS) tape-based archive systems 
that include all o f  the desired characteristics. Adding new fcatuxs to COTS products tends 
to be very costly. Thus, by examining the following characteristics. it niay be possible tu 
identify opportunities to enhance existing COTS products or to develop new products. 

Storage Oensity 
Storage Organitation and Management 
WriteRate 

r 

Aggregate 
L e  

R = individual rate 
TD=tapedriwe 

ReadRate 

01 SK 
ead 

R = individual rate 
1 TO = tape dnve 

File Access lime 
Data IntegrityPresewation 
Data RetrievaUDistribution 
Interoperability 
Operation Control 

~ 

Figure 2: Salient Characteristics of a Tape-bascd Archive 
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Storage Density 

Storage Dtnsity. given in terms of bytedin. bytedcm, or hytesltapc (with known tqx 
dimensions. i.e.. width and length), is directly related to the archive’s storage capacity. For 
example. the D3 tape csvtmlge is advertised to hoid 50 GB. Ac%ually. fmm a system’s 
perspective. the e tkt ive storage density is lower due to the associ;$ed fik management 
overhad, which incmses with the number of files. In addition, data compression. if used. 
must also be taken into account. Therefore. this c h a m c t c ~  .. ic should be given in k. AS of 
effective storage density. A pct;lbyte (PB) arcniw using 50 GB tape carlndga requires 
20.000 cartridges which. at SS#unit, amaunts to Sl.ooO.ooO! Both numbers ;yc 

prohibitive, espaially when extended to a I 0 0  PB archive. M y ,  a tmfdd incre;rsc in 
storage density would be welcome within the next few years, and i. I TB per tape! capzcity 
wmld be required in tht near futurc. But, haeased capacky (at thc samc c o ~ l  and overall 
size, of coursc) ahme is not enough wilhout higher m d w r k  rates. and shorrer file a x e s  
time to sustain a reasonable performance level. Is this a techdogid challerrge, axmomic 
(commercial demand) challenge. or lmth? Thc likely answer is that the challenge is 
economic. but time will tell. 

StorrrgeoPganization And Managem 

storage Organic And M a n a g e m  (SOM) provides the capability to COntIol rht way 
in which data f iks (headler n f d  to as ‘Kles”) are stored on and rebiwed from tape. 
For example. SONI selects tape drives (hemafter r e f e d  to as “drives-) and tapes, directs 
the flow of files tdfrom seteceed drives, provides logical and physical file organizatkm, 

seleded tapes (volume mcwmting/dismounting), d s  access to d file, and keeps 
statistics an file llccess freguency. In discussing this characteristic. in is assumed that SOM 
also codlvols the availability ofthe cache/sraging disk (Hg. I ), which is part of rhe arrhive. 
The criticality ofthis system level chasmst . ic cannot be omstated with regad to system 
performance, especially #men oadered files such as those arriving from L m l s a ~  USGS 131 
are requested to be retrieved in random subsets, and the system has to manage a 
continuously increasing file inventory on the & of I -  10 billion files. 

mrrintains irnoww of file Iuation and status. tames the roBotin to load or U n M  

In order to allow system performance tuning, the SOM should include, among others, dze 
following selectable options for writing files onto tapes: 

( 1 ) Chmological order 

(2) No file splitting iwoss tapes 

(3) File continuation on second tape (The first tape must identify the existence of a 
partinl file and provide the identification of the second tape. The second tape must 
identify the existence of a continuation file and provide the identification of the first 
tape. Note that no more than 2 partial files may exist on a given tape: the beginning 
part of one, and the continuation part of another.) 

(4) Unique file grouping (Writing a uniquely identifiable file collection on the same 
tape, e.6.. files from a certain scientific instrument) 
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(5) Supcrfiles (Writing a dkct ion  of files as a super file so as to be ~ ~ r i e v e d  as oflc 
super file or as individual files) 

(6) Data compression (Per whole tape) 

(7) Maximum tape utilization (Random collection of files to minimize unused tape) 

(8) File replication (Writing the same file to different tapes or to the same tape) 

(9) Tape duplication (Writing multiple tapes of same files simultaneously) 

(IO) Simultaneous file recording (Writing multiple files to multiple tapes 
simultaneously, Fig. 2) 

For data retrieval. the SOM must provide the following red  options: 

( I ) ordered files from a single tapc (Per rcquestcd sequence) 

(2) Ordered files from mltiple tapes (e.g.. k files from tape I ,  m files from tape 2, n 
fiks from tape 3. etc.) 

(3) Interleaved files from multiple tapes (e.g.. file A from tape I ,  file B from tape 2. 
File C from tape 3, etc.) 

(4) Superfiles (Collecting multiple files from a single tape or multiple tapes into one file 
as quested)  

( 5 )  Compression/decompressim 

(6) Tape quality information 

The SOM must also include the capability to produce or write tapes that an: .self describing 
so zs to bc read on any compatible drive external to this archive. 

As a file manager of a growing archive, the SOM must be scalable to accommodatc a 100 
fold (from I00 million to 10 billion) increase in the number of files. In addition, it should 
be applicable to centdi7A as well as distributed archive architectures. It would Bc nicc if 
the disk shown in Fig. 1 could be eliminated whilc still providing the desired SOM, since 
by so doing the scalability problem could easily be solvcd, and one data flow hop could be 
eliminated as well. However, barring that possibility, separating file management and 
volunic management should be considered as part of the scalability problem solution. In 
addition. advantage should be taken of this disk to improve the efficiency of tile storage 
management and retrieval (e.g., executing the various writing options stated above, 
dis?ributing a given file to multiple users, collecting filcs located on multiple tapes to satisfy 
a single data request). In general. the SOM should have the necessary features to optimize 
the overall file storage and retrieval perfonnance, whilc being independent of any operating 
system (OS) as much as possible. This independence is crucial for the SOM software to be 
able to run on any hardware platform, present or future. which i s  key to evolvability. 
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Although a number of SOM versions such as UniTree, AMASS. FileServ, which are 
known as File Storage Management Systems (FSMS). are presently in use, they 
incorporate only a few of the SOM options, and are strongly dependent on :he platform’s 
OS. Also, these FSMS do not conform to any standard since none exists yet. To achieve 
plug and play COTS FSMS (or SOM) products, the vendor community must support the 
development and adoption of a FSMS standard. It appears that the efforts made by the 
IEEE and IS0 over the years to develop an open systems standard have not borne fruit 
yet. However, some activity in this area has been afoot which provides an opportunity to 
revitalize this effort. Kobler (41. Jones [SI. 

Write Rate 

This characteristic defines the time required to read incoming files from the disk and writ- 
(store) them to tape so that they can be retrieved upon request. As a system levu 
characteristic, it includes the time to uniquely identify each file. append location metadata. 
select the drives, Id the tapes, perform compression (when required) perform error 
protection for error detection and correction, write the files. update the catalog/database. and 
return status. The write rate is given for a single or a multiple drive configuration. For a 
multiple drive configuration, the write rate is the aggregate rate, viz., R(w) = R( 1) + R(2) + 
... + R(n), where R() are the individual write rates with all I) drives writing simultaneously 
(See Fig. 2). For example, if the incoming data rate is 10 MB/sec (as expected from EOS), 
the system could handle it with one drive, which must be capable of writing at a rate greater 
than 10 MB/sec in order to compensate for delays due to FSMS overhead, and physical 
tape handling functions such as robotics, loading and unloading. Alternatively. the system 
could accommodate this incoming data rate with multiple drives writing simultaneously at 
an individual drive write rate lower than 10 MWsec. Therefore, the write rate (which could 
also be referred to zs “storage rate”) is the effective end-to-end system rate at which files 
can be stored in the archive. It is assumed that in cases where unique file grouping is 
required, the disk provides sufficient staging and buffering capacity to feed the drives. To 
write files onto a 50 GB D3 tape cartridge at 10 MB/sec requires the use of drives that cost 
$15O,ooO each, which is expensive. It appears that the drive write rate needs to be increased 
by a factor of 2 or more. and the drive cost needs to be reduced considerably to make a 
petabyte archive more affordable. 

Read Rate 

This characteristic defines the time required to read (retrieve) files from tape and write them 
to the disk for distribution. As a system level characteristic, it includes the time to read the 
data request, identify and locate the tapes of the requested files. access the files, read the 
files and write them to the disk with error detection and correction (EDAC) applied, 
append the metadata, and return status. This read time is comprised of 2 components: file 
access time, and the timc to read the file. The file access time is described in the next 
paragraph as a separate characteristic, although it is included here as pan of the read rate 
definition for completeness. The read rate is given for a single or a multiple drive 
configuration. For a multiple drive configuration, the read rate is the aggregate rate, viz., 
R(r) = R(1) + R(2) + ... + R(n). where R() are the individual read rates with all n drives 
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reading simultaneously (See Fig. 2). For example, if the required outgoing data rate is 30 
MBlsec (as expected for EOS), the system could support it  with one drive, which must be 
capable of reading at a rate greater than 30 MB/sec in order to compensate for the delay due 
to file access time. Alternatively, the system could accommodate this outgoing data rite 
with multiple drives reding simultaneously at individual drive read rites lower than 30 
MB/scc. (Of course. if all requested files were to be located on the sim= tape, the multiple 
drive configuration would not meet the 30 MB/sec output rate). Therefore. the read rate 
(which could also be referred 10 as “retrieval rite”) is the effective end-to-end system rite 
at which files can be retrieved from the archive. It should be noted that. based on current 
technology, the file access time can become so significltnt when many files have tu be 
accessed on many tapes as to require additir ai drives to compensate for it. The 
requirement for multiple drives should also be ccmidered in light of the user response 
requirements. namely. the number of users that need to be served simultaneously. This 
aspect is discussed later as part of the Data Retrieval/Distribution Characteristic. Generilly. 
the read rate requirement is significantly more stringent than that for the write rate, not only 
because more data is going out of the archive to users, but also due to the need to minimize 
waiting time for non-uniform data request distributions. Therefore, to accommodate 
thousands of trinsactions a day. the archive may have to utilize 10-20 drives which, on the 
current market, may cos! $1.5 million to $3 million. This is prohibitive, and points to the 
need for improved drive performance and cost reduction. 

File Access Time 

File Access Time (FAT) which is part the previous read rate characteristic, is the total 
system time required to locate a given file in a tape-based archive following the issuance of 
the request to retrieve it. This time includes file identification, drive and tape selection, 
robotic motiodtravel, loading the tape, reaching the desired file in a position ready to be 
read, unloading and returning the tape to its bin. The current tcchnology achieves a FAT of 
1-2 minutes, depending on the tape length and file location. Clearly, this lowers the 
effective retrieval rate, especially when many files have to be retrieved from many tapes. 
To c o p  with such a delay, today’s archives must utilize multiple drives, with attendant cost 
increases. Therefore, the FAT must be reduced by a factor of 3 or more to improve the cost 
performance ratio, and allow the on-line user to start receiving data within less than one 
minute from the time of having made the request. 

Data IntegrityPreservation 

A persistent archive requires that files stored on tape be entirely preserved with no 
degradation of their content during the archive’s life (30 years). Therefore, the system must 
be capable of monitoring the state of data quality (e.g., BER), and the physical condition of 
the medium to determine when to refresh (transcribe to a new tape) or just rewind a given 
tape, and do so automatically or under operator control. These actions should be based on 
frequent checks of the BER, which should not exceed 1 in 10 to the 12th bits (each time a 
file is read or at specified time intervals), file access frequency, and time in storage. In 
addition, a backup capability is needed to make and manage copies of selected tapes or 
files. Since in today’s systems the capability of this characteristic seems to be limited to 
manual intervention, this capability should be enhanced to the fullest level. 
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Data RetrievaMhstribution 

This characteristic defines the manner in which files are to be retrieved and distdbuted to 
users electronically or on media (tape, CD-ROM, the drives of which are assumed to be 
included in the archive). For example, it should be possible to retrieve and distribute files in 
whole or in part, in specificc’ order (e.g., chronological - oldest file first, or most recent file 
first; per list specified in the request; or other), grouped by category (e.g., instrument; 
science discipline; product type), random file collections, file interlcaved by tape (a given 
file from tape 1 followed by a given file from tape 2, etc.), and compressed or 
uncompressed format. Format conversion is a separate service which may be included in 
the archive system. This system level characteristic applies to both software (FSMS or 
SOM, DBMS, request processing) and hardware components’ performance in order to 
achieve the desired data outflow rate. It is assumed that an appropriate DBMS is available 
and is included in the archive to serve the file catalog and file search functions. however. 
the schema design and implementation is a user provided application. It is also assumed 
that the disk capacity and speed (data transfer rate), the number of drives and their read 
rates are sufficiently high to support the required data distribution rate and the number of 
simultaneous data requesters. 

As mentioned previously in the Read Rate paragraph, to support the requirement to retrieve 
and distribute several terabytes of data per day in response to thousands of transaction 
requests is very demanding of software (FSMS, DBMS, NFS) and hardwar- 
performance. V e today’s technology available on the market, this requirement can be met 
only by using Icts of expensive hardware. Therefore, it is imperative that the hardware 
performance and reliability be greatly improved to make petabyte archives less costly. 

Interoperabi I i ty 

This characteristic is intended to allow the archive component5 to be changed out in a “plug 
and play” manner without affecting the archive’s functionality, and to support media-based 
data interchange (providing data to and distributing data from archives and users) among 
archives and users. In addition, [he archive architecture must provide for the application 
software and user interface software to be independent of a given hardware platform and its 
OS. Thus, this charactenstic, allows the archive to be scalable and evolvable as capacity and 
performance requirements continue to grow, and superior technology becomes available. 
To realize such a characteristic. COTS products (hardware and software) must comply 
with appropriate standards which are yet to emerge. Regrettably, toddy’s products do not 
lend themselves to open interchanges. For example, tap  formats are unique to the 
systems, FSMS are tailored to specific platforms and OS. and information describing their 
implementation is proprietary . 

With regard to developing archive system standards, it should be mentioned that the work 
begun under the IEEE and IS0 sponsorship has not progressed as far as was expected. 
Perhaps this slow progress can be attributed to the approach undertaken by these groups, 
without realizing that advances in archive and Internet technology are occurring at a much 
more rapid pace than anticipated, thus diminishing the desire of system developers and 

456 



vendors to wait for these standards before participating in the market and application 
opportunities. A better approach to developing archive system standards would be the 
model of the IETF. As Dave Clark of the IETF said in 1992: The IETF (Internet 
Engineering Task Force) credo is: 

“We reject kings, presidents, and voting. 
We believe in rough consensus and running code.” 

Perhaps this nontraditional approach taken by the IETF group should be followed in 
developing the standards for Mass Storage Systems (MSS) and FSMS. Rather than 
following a top-down approach to include “all or nothing”, it might be more productive 
and effective to pursue thc incremental and less rigorous approach with the notion that 
“having a standard is bettcr than none”. The EOSDIS Project at the Goddard Space Flight 
Center is participating in the effort to develop these standards, and is committed to using 
them. 

Operation Control 

This characteristic describes the extent to which system operation should be controlled 
automatically. The most desirable feature would be full automation or “lights out” mode of 
operation. where the only required interface is the user, while the operator/technician 
performs maintenance, or user services type functions. To achieve a high degree of 
automatic control, thc system must bc capable of self checking, monitoring ongoing 
activities, sensing critical conditions and reacting to them, controlling resources, balancing 
workloads, managing request queues, tracking user requests to the file level, accounting for 
resource utilization per user request, helping users, monitoring system performance and 
quality, collecting production statistics, reporting and logging events, issuing remedial 
instructions, etc. (Also, it would bc nice to have the system repair itself, but for now this 
must remain a dream to come true). Unfortunately, today’s systems require considerable 
operator intervention in running an archive. Therefore, such intervention should be 
minimized at best in order to control the operation cost. 

Discussion 

A growing tapc-based petabyte archive for science data. which is the subject of this paper, 
is described in terms of its salient characteristics, and their implication on the architecture. 
implementation. acquisition, and cost thereof. Ideally, these functional and performance 
characteristics should be sufficient to specify the desired archive (large or small) so that it 
could be procured at a reasonable price from a given vendor as a COTS product, consisting 
of COTS components which the vendor would wlect, integrate, test, demonstrate. and turn 
over to the customer as a fully operational archive. The customer’s invoivement in this 
process would be rrinimal except for 3 fixed price proposalhid evaluation and acceptance 
testing. To use the archive acquisition approach described above, which is expected to 
result in considerable cost savings, the customer must know what is needed. the 
technology must be mature, suitable components must be available as COTS products that 
are compliant with industry standards, and there must be a market for these components. 
By examining these characteristics in light of available COTS products, the aforementioned 
premises are not all satisfied at this time. The most critical of these premises are technology 
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and standard COTS products that would satisfy the desired functionality and performance 
requirements at a reawnable cost. Historically, not much has happened until 1995, when 
new tape drives and cartridges were introduced that boosted the readlwrite rates to 10 
MB/sec, and increased the storagc capacity to 20 GB per 3480 type cartridge (higher 
capacities are on the way, e.g., the D3 cartridge). However, more work is needed to 
produce a 1 TB cartridge, and a 30 MBlsec read rate drive with a tile search time of less 
than 20 seconds anywhere on the tape. In the DBMS and FSMS areas, plug and play 
products are not yet available. Perhaps the= will be an opportunity to develop a standard 
modular (to allow for increniental addition of features and scalability) SOM product which 
can be plugged into a microkernel type OS. Of particular interest and concern are the 
scalability and evolvability aspects of FSMS and DBMS COTS products in the absence of 
open system standards. The promises made in 1991 Rybczynski [6], McLean [7] toward 
the realization of petabyte archives have been slow in coming. It seems that the challenge to 
do so is still up for grabs. 

The salient characteristics approach describes and specifies the archive at a system level 
because these characteristics are directly related to the user's needs or expectations, and can 
be measured on that basis. By so doing, the vendor is offered the opportunity to be creative 
andcosteffective in producing the optimum archive system in terms of functionality and 
performance. For example, selection of the type and number of tape drives should be a key 
consideration for a petabyte tape-based archive to achieve the required storage and retrieval 
rates, and to satisfy the required number of simultaneous user requests. Similarly, the 
vendor has the choice of selecting the hardware platforms and disks, as well as the 
appropriate software components. (Please note the emphasis on the vendor rather than the 
customer). Thus, vendors have the opportunity to offer standard archive components, or 
fully integrated, scalable turn-key archives. At this time, it is still necessary to stage files on 
disk as part of the storage and retrieval operation. (How nice it would be if disks could be 
eliminated from this operation). Therefore, adequate disk capacity and speed (data transfer 
rate) must also be a key consideration. 

In conclusion, it appears that affordable (less than $10 million) tape-based petabyte 
archives for science data are difficult to find on today's market. However. it might be 
possible to find them in the near future with the help of cnhanc:d technt4ogy. standard 
COTS products supporting plug and play system architectures, system level procurement 
specifications, integrated archive system products, turn-key system acquisition, and open 
storage system standards. The time must come when a 1 petabyte archive could be 
expanded or scaled up 100 times by simply replacing (plugging in) existing components 
with new more powerful components as they become available, in a manner completely 
transparent to the user, and at reasonable cost. That is still a challenge. 
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1. Introduction 

In July 1997, NASA will begin to launch a series of IO satellites as part of its Mission to Planer 
Earth, more popularly known as EOSDIS (for Earth Observing System, Data Information Sys- 
tem). When fully deployed, these satellites will have an aggregate data rate of Aout 2 megabytes 
a second. While this rate is, in itself, not that impressive, it adds up to a couple of terabytes a day 
and IO petabytes over the 10 year lifetime of the satellites [ 11. Given today’s mass storage tech- 
nology, the data almost certainly will be stored on tape. The latest tape technology offers media 
that is vcry dense and reliable, as well as drives with transfer rates in the same range as magnetic 
disk drivcs. For example, Qunirtum’s DLT-4000 drive has a transfer rate of about 3.0 MB/sec 
(compressed). The cartridges for this drive have a capacity of 40 GB (compressed), a shelf life 
of 10 years, and arc rated for 500,000 passes [2]. However, since tertiary storage systems are 
much better suited for sequzntial access, their use as the primary medium for database storage is 
limited. Efficiently processing, data on tape presents a number of chal’enges j3). While the 
cost/capacity gap [4) between tapes and disks ha; narrowed, there is still about a factor of 2 in den- 
:!ty between the best commodity tape technology (20 gigabytes uncompressed) :tad the best 
commodity disk technology (IO gigabytcs uncompressed) and at least a factor of 4 in total cost 
($2,000 for a 10 GB disk and Sl0,oOO for a 200 GB tape library). 
Raw data from a satellitc is termed level 0 data. Before the data can be used by a scientist it must 
first undergo a number of processing steps including basic processing (turning the electrical volt- 
age measured for each pixcl in a image into an digital value), cleansing, and geo-registration 
(satellites tend to drift slightly bctween passes over the “same” area). The end result is a level 3 
data product consisting of a series of geo registrated images that an earth scientist can use for 
hidher research. Processing actually expands the vdume of data collected by a factor of 2 or 3 
and the original data rr Aved from the satellite is never deleted. Thus, the processing and storage 
requirements actually exceed the 2 terabytedday figure cited above. As part of the EOSDIS proj- 
ect, NASA has contracted with Hughes to build such a system. 
Once processed the data is ready for analysis by an earth scientist. Analysis involves applying a 
serizs of algorithms (typically developed by the earth scientists themselves) to a large number of 
images in a data set. Frequently a scientist will be interested in a certain type of images for a par- 
ticular region of the earth’s surface over an extended period of time. 
The focus of this paper is how best to handle images stored on tape. We make the following as- 
sumptions: 

’ This work is supported by NASA under contracts #USRA-5555-17. #NAGW-3895, and #NAGW-4229, ARPA through 
ARPA Order number 018 monitored by the U.S. Army Research Laboratory under contract DAAB07-92-C-QS08, IHM. 
Intel, Sun Microsystems, Microsofl, and Ixgato 
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1. All the images of interest to a scientist are stored on a single tape. 
2. Images are accessed and processed in the.order that they are stored on tape. 
3. The analysis requires access to only a portion of each image and not the entire image. 

With regard to the first assumption, while the images from a single sensor will undoubtedly span 
multiple tapes, it makes little sense to mix images from different sensors on the same tape. 
Analysis requiring access to multiple tapes (for data from either the same or different sensors) can 
use the techniques described in [5 ]  to minimize tape switches in combination with the techniques 
described below. The second assumption requires that the reference pattern to the images be 
known in advance so that the references can t: sorted into "tape order.'' In some cases, this order 
can be &ermined by examining the meta data associated with the data set. In a companion paper 
[dl we show how a new tape processing technique that we call "query pre-execution" can be used 
to automatically and accurately determine !he reference pattern. The third assumption is based on 
the fact that satellite images are q& iuge (the size of an AVHRR image is about 40 megabytes) 
and scientists are frequer.ily interested in only a small region of a large number of images and not 
each image in its entirety. The EOSDIS test bed [7] also places a strong emphasis on providing 
real-time dynarnic subsetting of AVHRR images. 
There are two alternative approaches for handling tape-based data sets. The first is to use a Hier. 
archical Storage Manager (HSM) such as the one marketzd by EMASS is]. Such systems A- 
most always operate at the granularity of a file. That is, a wt,ole file is the unit of migration from 
tertiary storage (i.e. tape) to secondary storage (disk) or memory. When such a system is used to 
store satellite imagcs typically eacn image is stored in a separate file. Faefore an image can be 
processed, it must bc transferred in its entirety from tape to disk or memory. While this ap- 
proach will work well for certain applications, when only a portion of each inagc is necdcd it 
wastes tape bandwidth and staging disk capacity by transferring entire images. 
An alternative to the use of an HSM is to add tertiary storage as an additioiial storage level to the 
database system. This approach is being pursued by the Sequoia (91 and Paradise [ 101 projects. 
Such an integrated approach extends tertiary storage beyond its normal role as an archive mecha- 
nism. With an integrated approach, the database query optimizer can be used to r,,t!rnize accesses 
to tape so that complicated, ad-hoc requests for data on tertiary storage can be executed efficiently. 
In addition, the task of applying a complicated analysis to a particular region of interest on a largc 
number of satellite images can be performed as a single query [ 1 11. 
Integrating tertiary storage into a database system requires the use of a block-based sckme to 
move data between different layers of the storage hierarchy in the process of executing a query, 
While 8 KB is a typical blcck size for moving data between memory w.d disk, it is too small to 
use as the unit of transfer between tape and either memory or disk, especially when dealing with 
large raster images. The approach used insteac by Postgres [5]  and Paradise [IO] is to partition 
each satellite image into a set of files. Tiles become the unit of transfer between tape and mcmory 
or disk while a smaller disk block (e.g. 8K bytes) is used to transfer data between disk and mem- 
n:y (Le. thc database system buffer pool). When a query references a portion of an image resi.. 
ing on tape, the meta data associated with the image is used to determine the minimum number 
tiles necessary to satisfy the request. These tiles are first moved from tapc to disk in tile-sized 
units and then from disk to memory in units of disk block size." 

" Actually data cannot be msved directly bctween two mechanical devices such as tape and disk without first passing 
through main memory Thus, 3 tile IS first read by the tape conlroller into memory and thcil written to b tapc icick cache 
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The dashed rectangle in Figure 1 corresponds to the portion of the image that the analyst wishes IO 
examine - what wc term the clip mgion. The shaded area indicates which tiles must be retrieved 
from tcrtiiuy storage in ordcr to satisfy the clip request. The impact af tiling is best illustrated in 
the comparison between thc untiled image (top-left rectangle in Figure I )  and the ldtile image 
(top-right rectangle in Figurc 1 ). For the untiled image, t5e entire image must be mad from tape in 
order to process the clip requcsr. On the other hand for the image that has been partitioned into 16 
tiles, only 9/16ths of the image (9 of the 16 tiles) must be read. However, the numkr of seek op- 
erations increases from 0 to 3 assuming that the tape head is initially positioned at the start of the 
image. 
In general, the usc of tiling can reduce the amount of data that must be transferred when clipping 
partial images. On the other hand, it can introduce additional seek operations between consecutive 
t i k  acccsses. The total time spent in migrating the necessary parts of the image to memory or 
disk deper+ on the tupe seek speed, the tape transfer speed, and the seek startup cost. 'Ihe seek 
srurtup COJI is a fixed oveihead associated with each tape head movement while the tape seek 
speed indicates how fast the tape head can be advanced when not actually redwriting data. To- 
gether, these two parameters dstermine the random access latency on a single tape. In addition, 
thcre arc a number of other factors that affect performance. For example, consider the image in 
Figure 1 that was partitioned into 4 tiles. For the clip request shown in Figure I ,  this partition 
strategy has no advantage with respect to the number of seeks performed or the amount of data 
transferred compared to the untiled image. Olher clip requests would have different results; for 
example, if the clip region was entirely contained inside tile If of the 4 tile image. In this case. the 
untilcd image would incur no seeks but would transfer the entire image. Thc image tiled into 4 
pieces would incur one seek (to the start of tile I f )  and would transfer - of the image. The image 
tiled into 16 pieces would incur two seeks (on0 to transfer tiles 2 & 3 and a second to transfer tiles 
6 &7) and would also transkr - of the imagc. Thus, both the size and location of the clip region 
can affect the performance of the various tiling alternatives. In order to better understand the 
prablem. we devclopcd an analytical formula to model the average-case behavior. 

2.2 Model Assumptions 
11 ordcr to reduce the complexity of the problem, the analytical model makes the following as- 
sumpt ions: 

1.  Each tile is stored as a single fupe block. which is the unit of migration from tape to men-  
ov- 

2. The :3pe head is initially positioned at the bcginning of the image. 

3. Images are square (e.g. 5 by 5 or 9 by 9 tiles but not 4 by 6 tiles). 

f Tt:e shape of the dipping region is proportional to the image shape, and the clipping region 
is always contained iirside the image boundary. 

5. Clipped tiles are returned from tape in their original order stored on tap.  

The first assumption eliminates the indirect effect of tape block size since multiple tiles could PO- 
tcntially be packed into a single tape block. We examine the effect of this assumpticn in Section 3. 
The second assumption allows us to concentrate on a single irnagc without considering the redual  
impact from t!,e previous tape head position. The third and fourth assumptions reduce the number 
of par3meter.i that must be considered since variations i n  tile size and the shape of the clip region 
may eitect performance. This will be discussed in Section 4. The final assumption minimides the 
r; qdomness between seeks within o, 3 clip opcrarion. 
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Case3: F = ( a - ~ b J - l ) - ( u - L b J I .  .?'= (l-(h-LbJ))-(b-LbJ) (mat). then 

Pb3 = (U -Lh]- l ) - (~ t -LbJ) .  ( I  - (h-LbJ)) . (h-LhJ) /  ( ~ - h ) ~ .  
Case4: F = (a-Lb])', Af = (l-(b-IbJ))' (=A), then 

Pb4 = (u-LbJ)' .( l-(b-LbJ)) ' /  (cr-b)'. 

Initial Seek Time (Tfi 
Ihe lniriol Seek Time. TJ is the time rquired to move the tape head from the beginning of the image to thc 
first tile touched by the clip region (indicated as SI in Figure 2). From the analysis above. we know that 
the upper left corner (PI of the clip region can only reside in a restricted area depending on thc various 
cases. Suppose this area is M by Nat the upper left comer of the image, then P hiis an equal probability of 
being in my of the X by Y tiles in this region. Assume that P is in the tile defined by row i and column j 
( 0 I i < h!. 0 I j < N 1. Then, the number of tiles that must be skipped to reach P from he beginning 

tile covered by the clip. Hence, Tf = (6:;' ~ ~ ~ ~ ( j  + i . a ) Y  A4 - N )). I / s  . Applying this to each 

of the four 4 cases in Figure 3, we get: 

Caw I :  M = N = (a -Lbj- I) ,  then 

case 2: A4= (a-LbJ- 1). N = (u-LbJ), then 

caw 3: M = (a - Lb]), N = (a -LbJ - 1). then 

case 4: M = N = (a- 161). then 

Finally. the lniriul Tile Seek Time is given by : 

Tf = P b l - T f l +  P b 2 . T f 2 + P b 3 . T f 3 + P b 4 - T f 4 .  

Intermediate Seek Time (Ti) 
The Infermediare Seck Time. Ti, is the total time spent seeking between transfers of contiguous sets of tiles 
contained in the clip rcgion. For example, in Figure 2 above, after transfemng the set of tiles in region TI, 
we must perform seck S2 before we can transfer the tiles in T2, and, after transferring the tiles in T2, w 
must perform seek S3 before transferring the tiles in T3. After the transfer of a set of contiguous tiles. the 
tape head must te moved to the next group of tiles affected by the clipping region. Assuming that the tiles 
touched by the clip region form aX by Y region. then the numkr of tiles lo he skippcd over after the initial 
seek i s  (u -- S), and there are (Y - 1 )  such movements. Thus, Ti = (a  - X )  * (Y- 1 j . f / S .  Applying 
this toall the cases in Figure 3, we o h i n :  

Case I :  ,Y = 1. = (LhJ + 2), thcn Til = (o  - [ h J  + 2) ) .  (LhJ + 1) . t /S  ; 
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czw 2: x = ahJ +2). Y = abj+ 1). then Ti2 = (u - -  ( t b J + 2 ) ) - L h J * t / S ;  

caw - A’ = (Lbj + I ) .  Y = a61 + 2 ) .  t k n  Ti3 = (0 - (Ib J -t- 1)) .(Lb) + 1). t / S  : 

case 4: X = 2’ = (IhJ + 1). then Ti4 = (a - Q6J + 1)) 3 Lb]. t/S . 

Finally. the Inrermecfiate Seek Time is : 

Ti = Pbl . Til + Pb2 . TI2 + Pb3 . Ti3 + Ph4 . Ti4 . 

Transfer Time (Tr) 
‘Ihe Tile I.rcitjsfcr Time, Tr. is the total time spent tmsfemng tiles in the clipped region to memory (TI, 
72 and TI in Figure 2). Based on the same assumptions made when calculating the Inremediate seck 
Time, ,Y . 1- tiles must he transferred . This leads to: Tr = X . Y. r / R  . Again, analyzing the different 
ciws in Figure 3 using this formula, we obtain: 

Case 1: X =  Y=fih]+2) , then T r l = ( L h J + 2 ) 2 . f / R ;  

ca~e 2: x = a h ]  +2), Y = a b  J + 1). then Tr2 = (tb] + 2 ). (Lb J + I) - ‘ / R  ; 

Caw 3: X = (LhJ + 1). l’ = (f_hJ + 2). then Tr3 = (Lb] + 1) -(Lb] + 2 )  - t / R  ; 

Caw4: A‘= Y=(IhJ+l ) , then  T r 4 = ( L b ] + l ) ? . f / R .  

The overall Transfer Time is : 

Tr = P6l . Trl + P 6 2 .  Tr2+ P b 3 .  Tr3 i- Pb4- T r 4 .  

Seek Startup Time (7‘s) 
Each tape seek is associated with a f i x 4  startup overhead which we model with h e  variable Seek Sturrup 
Time, Ts.  This overhead only depends on the number of seeks performed, and not the size of each seek 
operation. Using the same X . Y region as above, then Y seeks are needed for each clip and Ts= Y I . 
Breaking this into the different cases yields: 

case I :  Y =  abJ+2), then TSI = b 6 ] + 2 ) - 1 ;  

caw 2: Y = a b j + i ) ,  then T S ~  = (LhJ + I ) . ]  ; 

Case 3: Y =  { h ] + 2 ) ,  then Ts3= ( l h ] + 2 ) - I  ; 

Case 4: Y = ab]+l),  then T94 = (L6J + I )  I . 
Finally, Ts= P h l . 7 s l +  P b 2 - s r 2 +  Ph3.Ts3+ P b 4 - T . 4 .  

Total Response Time 
Ttu Totd Hc~spon \c Time, T. is the sum of the four terms above: 
r = 77- + Ti + I’r + T s  = f(u. h.S. R. 1)’” To makc our rcsults easier to interprct, wc substitute image 

” rhr s h n l c  formula of 1. even aftcr simplification. i s  too cnmplicarcd to present InWiId. WP w i l l  sho\c i ts paramctcrs and 
prcccnt thcm graphically 
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size M ,  tik size I ,  and clip selectivity c foi a m d  u ( c = u / ~  and M = a ' - t ) .  NOW 
T = f '( A.l.t. C, S, R. I ) .  

For analysis purposes. we fix the image size M and the clip region size ( l/c2 of an image). Under these 
conditions, tk formula reveals the following interesting properties: as the tile size increases, the seek time 
(including T j  Ti. and Ts) dmcases while the transfer timc ( Tr) increases. The combination of these two 
opposite effects makes the response time a complex function of the tile size. 

Parameter 

M 
C 

s ' 
R 
I 

Values Evaluated 

8 MB, 32 MB. 128 MB 
2,4,8, 16 

2.G48 WSec 

1,356 W!kc 

0.1 (sec) 

1'1 : response times for a variety of image and clip size combinations along with the gain relative to always 
fetL hing m entire image m shown in Figures 5 to 7. These results indicate hit, as the tile size is increased, 
thc respmw time first decreases slightly before increasing and that tiling provides a significant benefit 
c(.rnpam.l to fetching an en tk  image. 

-- 

2 8  
128 512 -,= 

Tile (KB) - 8 MB Image 

+1/16 Clip 

+164 cllp 

-20 a I z? 
512 8192 

Tile (KB) - 8 MB Image 

Fl,ycrc 5 .  Rcrponse Ttriic and Pe#mnance Gain over Entire Image Transfer for 8 M B  Images 

' L3ecniisc D1.I~ uses serpentine 1npr.s the seek time is not a linear function of the seek distance. For the DLT4000 we ob- 
srncd  i~ maximum seck time o f  180 h e t w e n  two random blocks If the seek is within a single track the seek time is c:i : 
io a linear function I 121 contains an accurate rnodcl of seek time for D1.T drives 
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Figure 6: Response Time and Perforniance Ca in  over Entire Iniage Transfer for 32 MB Images 
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Figure 7: Response Time and PerJonnance Cain over Entire Image Transfer for 128 MR Images 

To help understand these results, Figure 8 decomposes the time r e q u i d  io clip 1/16* of a 32 MB image 
into its three component parts: Seek, Transfer, and Seek Overhead. While both the seek time (Tf+Ti) and 
seek overhead (Ts)  decrease as the tile size increases, the transfer time (Tr)  increases at a faster rate and 
eventually dominates the response time on the right side of the graph. The effect of tape seeks is best 
illustrated for tile sizes less than 512 iU3 where the reduction in seek time, resulting from both fewer and 
shorter seeks, offscts the increase in transfer time as the tile size increases. 

B 

1 ib Size (KB) - 32 Map(#la&? 32768 
'9 128 512 

ins clip 

-& -Transfer (Tr) 

-& - Overhead 0s )  
+Total 

~~~ 

Figure f i :  Breakdown of Response Time 
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Based on thesc figures, for the DLT drive a tile size in the region between 32 KB and SI2 KB provides tk 
best perform.. - - for a variety of image and clip sizcs. In generdl. using appropriateiy sized tiles provides 
between a 2 ',. b,,i 7 0 8  improvement compared to fetching the entin. image. 

3. Simulation Experiments 

From the analytical model described in Section 2 it is clear that there is a trade-off between decreasing the 
seek time and increasing the transfer time a5 the tile size is increased. The analytical model, however, was 
based on anumber of simplifying assumptions so that it would be easy to derive and analyze. There may 
be conditions for which the results obtained using it are not valid. To verify its accuracy, we developed a 
simulation model that we use in this section to explore a broader range of test conditions. 

3.1 Simulation Configuration 
As with the analytical model, the simulation model focuses on the response time for transferring data from 
tape to memory. The simulator consists of three components: a work loud generator for genent ing clip 
requests of various sizes, shapes, and locations, an image dipper for generating the sequence of tile ac- 
cesses required to satisfy a particular clip operation, and a sirnulared block-bused zerriury swruge manager. 
Given a =quest for a tile, the tertiary storage manager simulator first converts the tile number to a tape- 
block address. Next. it simulates moving the tape head from its current position to the desid tape block 
and transferring the block from tape to memory. The tape parameters from Table 2 m used to model a 
Quantum DLT-4000 tape drive. Each data point represents the avenge response time of IO00 clip requests 
at different locations. There are several major differences between the analytical and the simulation models. 
First, assumptions 3 and 4 from Section 2.1 are relaxed: images no longer must be square, and the clip 
shape necd not bc proportional to the shape of the image. In addition, the tape block size can be different 
than the tile size. That is. multiple tiles can be packed into a single tape block. 

3.2 Analytical Model Verification 
To verify the analytical model, using the simulation model we repeated the experiments presented in Fig- 
ures 5,6 .  and 7.. To simplify the comparison of the two sets of results, we show the rclative differences in 
response times from the two models in Figures 9, IO, and 1 1. The difference is never greater than 4%. In 
general, the response times generated by the simulation model m slightly lower than the analytical model 
(Le. a negative difference) for larger tile sizcs and slightly higher for extremely small tile sizcs. This is due 
to the randoinness in selcct ing clip regions. This error margin is acceptable given the number of tests used. 
Based on thew rcsults, i t  is clear that the analytical model is quite accumtc given the assumptions it is based 
on. 

* * 3 2  
'2a 512 2w8 8192 

Tile Size (KB) - 8 MB Image 
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Figure IO: Relative Difference between Analytical and Simulation Result - -  32 MB Image 
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2 

lE+05 
Tile Size (KB) - 128 MB Image 

Figure I I :  Relative Lliffercnce between Ana/jticml and Simulation Result - 128 MB imuge 

3.3 Tape Block Size vs. Tile Size 
As mcntionzd in Section 3. I ,  the simulation model allows us to examinc the impact of viuying the tile si72 
and the tapc block sizc independcntly. Using a t a p  block smaller than a tilc will not significantly affect pr- 
formancc since e x h  tilc is then stored as a set of contiguous tape blocks. On the other hand, when the 
size of a tape block is larger than the size of a tile, multiple tiles can be packed into a single tape block. 
This c u i  affcct response time as fetching one tile is likcly to result in ~ a d i n g  tiles that are not covered by thc 
clip operdtion. Figure 12 contains three curves corresponding to three different Tape Block S i x f T i l e  Size 
ratios. Clciirly, using a tap blwk size larger than the tile size causes performance to degride. In gencnl, 
packing multiple iiles into 3 single tape block has an effect similar to increasing the tile size. However, since 
packing tilcs into a biggcr tape block is done in row-major order, when too many tiles are packed into a tape 
block. the over-all shape of all thc tiles in a tape blwk is no longer rectangular. This irrcgular shape CUI 
further depritdc perfor..iance. These results indicate that it is the best to use tt,e same tile and tape block size. 
Consequcntly. all  suhsequent results presented in this paper use the same bltxk size and tile size. 
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"t  Tiles per Tape Block 

U a t i o  = 2 
atlo = 4 

15 - -  
lo a -  

5 

I o  
2 8  

32 128 512 
Tile Size (KB) - 8 MB Image, 1116Vp 8192 

Figure 12: Eflect of Tape Block Size vs. Tile Size 

3.4 Alternative Clip Shapes 
One of the assumptions made for the analytical model was that the shapes of the clip region and image had 
to be the same. Clip wgions with the same area bL! different shapes can also affect performance. To inves- 
tigate this effect. we experimented with three different clip shapes: Long, Wide, and Square. Lung is a thin 
rectangular shape whose height is four times its width; Wide is the Long shape rotated 90 degrees; Square 
is proportional to the image shape (which has been used in all previous experiments). Figure I3 shows the 
results from this experiment and illustrates that the different shapes indeed have different response times. It 
is interesting to notice that the "Wide" curve is consistently below the "Long " curve. This is caused by the 
row-major linear ordering of tiles on tape. Such a layout helps "Wide" clips reduce the number of tiles that 
must be sought over. The "Square" clips is relatively close to the average behavior, and in most cxes, is 
jus: between the " Wide" and "Long" curves. However, when the tile size is much larger than the clip size 
(e.g. 2,048 KB), the "Square" shape had lower responses than the " Wide" shape becauu it is less likely to 
overlap more than one tile. A key result from this set of experiments is that, regardless of the clip shape, 
the best response time occurs when the tile size is between 32 KB and 51 2 KB. 

4 

3 :: 
't 1 

Y 
512 2048 8192 

Tile Size (KB) - 8 YB Image, 1/16 Clip 

----Wide El 
Figrrre 13: Alternurive Clip Shapes, Simulation 
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4. Implementation Results 

To verify the results obtained both analytically and through simulation, we next repeat some of the experi- 
nients using the following two configurations: an application-le\cI program that accesses raster images di- 
rectly on tape, and Paradise -- a DBMS extended to handle data on tape. 

4.1 Configuration 
The application program is a stand-alone program that is capable of accessing tiled raster image stored on 
tape. This corresponds to a typical scientific application accessing L tape-resident data set. Paradise [IO] is 
an object-relational database system developed at University of Wisconsin - Madison, which is capable of 
handling both spatial data (vector-based) and images (raster-based) efficiently. For raster images, Para- 
dise combines tiling with compression to maximize performance. In a separate project [6]. Paradise was 
extended to include support for tertiary storage. Both the application-level program and Paradise shae tk 
same block-based DLT device driver and the raster image clip code. Thus, the amount of time each spends 
doing tape VOs and clipping raster images in memory is comparable. However, the application program 
directly transfers data from tape to user space while Paradise first stages tape blocks on a staging disk. The 
experiments using Paradise represents the end-to-end performance in a tertiary database system. 

Experiments in both configurations were conducted on a DEC CELEBRIS XL590 (Pentium 90MHz) with 
64 MB memory. The tertiary device used is the Quantum DLT4OOO tape drive. The block-based tape 
driver breaks each tape blocks larger than 32 KB into multiple 32 KB physical chunks before performing 
the actual tape UO via an ioctl call. This scheme is used to simplify the mapping between physical and 
logical block addresses". A single logical tape block is mapped to multiple contipuous 32 KB physical rec- 
ords on tape. For Paradise, all queries were executed with cold buffer pools (for both main memory and 
disk cache). Due :o the high cost of running actual tests, we had to cut down the number of randomly gen- 
erated clip shapes from loo0 (used in simulation experiments) to 20. 

4.2 Alternative Clip Shapes -- Application Program 
Figure 14 displays the results obtained using the application program for the same set of experiments pre- 
sen!ed in Figure 13. Although there arc some discrepancies at the ends of the curves, the general trends are 
the same. The Wide shape benefits the most from the layout of the tiles and, thus, has consistently lower 
response times. The Lon: shape tends to seek across more tiles than the other cases and hence has the 
highest response times. Finally, the Square shape is close to the average case. Note that the response times 
for 2 and 8 KB tile sizes are lower than the values predicted by the simulation model. This might br: ex- 
plained by the DLT tape drive's internal read-ahead cache. While no literature was found in the product 
manual on how it works, we suspect that tape head does not stop at :he end of the last read but may actually 
read ahead to some location further down the track, thus hiding sollie of the seek latency. With small tile 
sizes it is more likely that most of the intermediate seeks can be absotbed by this read-ahead mechanism. 
This can also explain why the different clip shapes are closer together with the application-level program. 
Another discrepmcy between the two sets of results is the difference in absolute times. This is caused by 
several factors ihat are not captured by the simulation model. including post. tape processing time (ie. the 
clip time in memory), a smaller population of random samples, and the overhzad of decomposing logical 
tape blocks larger than 32 KB into multiple 32 KB physical chunk transfers. 

The maximum system 110 buffer s a c  for a single read/wite request without being translated into multiple kernel lcvel l/O 
calls is 63 K U  Since each kernel-level tape write call generates a separate record on tape i t  IS easier to manage smaller 
physical chunks and providc a large (variable sized) record interface for the highcr level 
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Figiirt, 14: Alrerncitivr Clip Shape. Applic-utiori ProRrmti 

4.3 Comparison among all Models 
Figure I5 shows the response times obtained for clipping 1/16‘‘ of a 32 MB Image under dl four configu- 
ritions (Analytical, Simulation. Qpplication and Pwidise)”. Again. all the curves illustrate Vle same trend: 
as the tile siLc is increased bcyond 32 KB the response time increases As cxplaind above. the difference 
between the simulation and application-lcvc; rzsults i s  mainly due to the cxtm ovcrhoad of having to break 
large t a p  I/Os into multiple 32 KS chunks. In addition, it appears that thew iirc additional fixed StiIrttip 
costs that are not captured by thc iiniilvtical or sirnuliltion modcll;. 

Then: ;m: a nuinbcr of causes for thc difference bctween Yrvadisc and the application-lrvcl prugririn. First. 
a\ agencral DBMS engine, Paradiw assuitics that tape blocks requested by onc qticry niiplit bc. uwfiil for 
other, conoirrently executing qucrieg Thus. tape blocks are staged first on disk and then copied into Para- 
dise’s buffer pool in main metiiory on demand. Sccond. Paradise incurs sonie extra proce\4ng ovcrhcad 
while managing large objects like tiles. Ncvcrthrlrss. die impact of tile size on pt~forniancc is iipparcnt. 

-+-Analytical 

+&muia\on 

+Application 

*Paradise 

5L 128 512 
2orK; 32768 Tile Size (KB) - 1\16 Clip, 32 MB 

Image 
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4.5 Processing of Multiple Images 

To detennine the effect of clipping a large nunibcr of images, we next conducted an experiment in Hhich 
fir 3? MB images weic clippcd by a fixed region whose area was 1/16” the size of the image boundary. 
-i,o..le 16 and 17 show thc rcsults froin this test on the appkation-lcvei program and Pdradise. While both 
figures show a smdl advantage of using ‘J smaller tile size, the most promising result is that Paradisc’s 
performance for this tcst i \  within 5-10% of the hand-coded application program. 

m 2048 8192 

Tile Size (KB) I 
128 2008 8192 

Tile . .* ’%a) 
I 

5. Conclusions and Future Work 
In this paper wc descrihcd il simple atiulytical modcl to study the impact of tilc si?. on the perfonnmcc of 
rcli-icving partial satcllitr imqcs from hpc. Using this analytical model as well il.s il siinulation model md 
two actual implementation\ ( Piradi.w i d  ti hand-coded application program) we demonstrated that the tile 
.. / e  has a complex effect on the cost of executing queries involving clips of partial satellite iniages stored 
on up. Our results indicate that, for the Quantum DLT 4000 tape drive. a rile s i x  bctwcen 32 KB iwA SI 2 
KB provides the hest  petformitncc for a wide range of image and clip region sizes. Tltcse results w: very 
encouraging as srnallcr tilc sizcs simplify spacc managemcnt on both the di\k c i ~ c h ~  and buffer pool *bile 
providing good perfonnmcc. 

While this study wsumed that the images k ing  proceswd m stored sequentially on up, in a coinpanion 
study (61 we descnbc ;I set of new tcchniques that are capable of rcordcring tape accesscs from complcx 
objcct-relational qucries in order to hiltisfy this constraint. Although this piper dcalt only with 211 imagcs. 
we klieve that our rcsuIt\ also apply t o  3D images as well as arbitrary N-dimension?: arrays stored on 
tape. As dimensionality is increa4. thc number of seeks and the seck distances can incrcaw exponen- 
tially. We expect that i n  thew CIFSCS thc tilc si7e will have cven a Iauger impact. 
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Introduction 

Magnetic tape data storage systems have evolved in an environment where the major 
appl ications have been back-uphestore, disaster recovery, and long term archive. 
Coincident with the rapidly improving price-performance of disk storage systems, the prime 
requiirments for tape storage systems have remained: 1 ) ;ow cost per MB, and 2) a data rate 
balanced to the remaining system components. Little emphasis was given to configuring 
the technology components to optimize s t r ievd  of the stored data. Emerging new 
applications such as network-attached HSM, and digital libraries, place additional cmphasis 
and requirementson the retrieval of the stored data. It is therefore desirable to consider the 
system to be defined by both STorage And Retrieval System (STARS) requirements. It is 
possible to provide comparative performance analyses of different STARS by incorporating 
parameters related to A) device characteristics, and B) application characteristics in 
combination with qveuing theory analysis. Results of these analyses are presented here in 
the form of response time as a function of  system configuration for two different types of 
devices and for a variety of applications. 

STARS (norage And Retrieval System) 

Some simplifying assumptions will be necessary to be able to provide comparative 
performance analyses for two differen: tape devices. A list of the required input parameters 
for both A)  Hardware characteristics and B) Application characteristics is given in Table 
1 .  The output of the model \;ill be given as an average reiponse time for various 
combinat!orrs of these parameters. In order to directly compare device types only, the 
assumption is made that both devices are serviced by a robot with identical characteristics, 
Le. a fixed nbo! average cycle time with no allowance for queuing delays at the robot level. 
Device queuing delays are calculated using the methodology in reference [ I ] .  For [his 
analysis. an M/M/C queue is used. 

~~ 

' The m d e l  and graphical output are developed using MathCadOh 0 (GO-MathSoft ... ) 
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Table I 
Input Parameters Required for Performance Model 

. .  . .  Hardware Chmcteristics ion Characteristics 

Device data rate (MB/sec) (D) Service Requzst Rate (#mr) (11 
Cartridge Capacity (MB) (C) Object Size (MB) (0) 
Recording Density (MB/m) (K) Library Size (MB) (L) 
Searcmewind ( W s e c )  (V) Random Retrieval Factor (#) (A) 
Velocity 
Load Time (=) (LD) Drive Number (#) (N) 
Unload Time (sec) (ULD) 
Robot Cycle Time (sec) (AS) 

It is necessary to distinguish between: a) a base cycle time which is a necessary input for 
calculating queuing delay times, and b) a base service time which is defined as the response 
time in the absence of any queuing delays. Additionally, service times are defined for the 
cases where: 1 ) the required cartridge is already mounted in a drive, or 2) the cartridge is 
in a library bin and must be transported to and loaded into a drive. The assumed sequences 
of operations for both cycle time and service time are listed in Table 2. These sequences 
assume that there is no preemptive unloading of cartridges upon completion of a service 
q u e s t .  It is additionally assumed that at the completion of each service request, there is 
a rewind to the starting point prior to servicing the next request. 

.. 

Table 2 
Sequence of Operations for Cycle Time and Service Time 
Cycle Timc 

Ynmount.ed Mounted 
Unload Cartridge 
Robot Put Cartridge 
Robot Get Cartridge 
Load Cartridge 
Search Search 
Read Read 
Rewind Rewind 

ice Time 
Unmounted Mounted 
Unload Cartridge 
Robot Put Cartridge 
Robot Get Cartridge 
Load Cartridge 
Sedrch Search 
Read Read 

In order tocalculate an average system response time, it  is necessary to be able to estimate 
the probability, P. that the next incoming request will be serviced by an already mounted 
cariridgc asopposed to requiring a robotic Put and Get operation. The expression given in 
Equation ( 1 )  is used to estimate this probability as a function of the library size, the 
cartridge capacity, the number of drives in the robotic system, and an application dependent 
adjustable parameter, A, which characterizes the degree lo which the requested objects are 
randomized within the library cartridges [2]. 
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N - C  
100 

where: A = application dependent random factor 
C = cartridge capacity (MB) 
L = library size (MB) 
N = number of drives in library 
P = probability of next request being serviced by a mounted volume 

Figure I +ows P as a function of the cumulative percent of volumes in the library ordered 
by activity from highest to lowest. Equation ( I )  is dcrived empirically. however its 
relevance to a statistical analysis is covered in reference [2]. 

- 0  10 20 30 40 50 60 70 80 90 100 

LIBRARY CAPACITV MOUNTED ( % ) 

Figure 1. Probability, P, of next request being serviced by a mounted volume as a 
function of percent of library capacity mounted. Plotted from Equation 
( 1 )  for A = 1.0,1.2, 1.6,2.2, and 3.2. 

The output of the model is presented in terms of an average System Response Time (SRT). 
(tu complete the service request) as a function of various combinations of the other input 
parameters. Intermediate output parameters include, in addition to P, an average cycle 
time, CT, (appropriately weighted by the fraction of requests serviced by mounted and 
uniiiounted volumes). a drive utilization factor, U, and an average device queuing delay. 
QD. 

The expression for [he queuing delay rime for multiple servers in an M/M/C queue is 
adapted from reference [3] as: 
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The M M C  queue designates an expone.,+ial interarrival time request distribution and an 
exponential service time distribution with means designated by the chosen values for the 
input parameters. 

Average cycle times, utilization factors, and service times are calculated in a straight 
forward manner from the parameters designated in Tables 2 and 3. The average system 
response time is the sum of the average service time and the average queuing delay time. 

- -- .. -.. . I- ._ . _ _  
Table 3 

Hardware Characteristics of Two Prototype Devices 

parant:&( Device I, 
.- -. . _ _  - 

Data Rate (D) (MB/sec) 9 
Cartridge Capacity (C) (MB) loo00 
Recording Density (K) (MB/m) 34 
Velocity (V) W=) 5 
Load Time (LD) (set) 15 
Unload Time (ULD) ( sec) 1 1  
Robot Cycle Time (AS) (sec) fixed" 

Qia!uxa 
2.2 
5000 
34 
1 0' 
2 
2 
fixed" 

Actual Search Velocity 5 dsec .  Midpoint cartridge load translates this parameter 
into an effective IO d s e c  consistent with the model formulation. 
Assumed common robotic device to highlight contrasts in device characteristics. See .. 
Figures for values . used. . - 

. .  B) b d w a r e  Charactenstu 

A description of two different types of prototype devices that could be developed from 
advanced technology recording components has previously been presented [4]. Their 
characteristics are designed to complement each other for different application 
requirements. For the purpose of this pcrformance analysis, devices are assumed with 
characteristics similar to those previously described. The specific values used in the 
comparative performance analysis are given in Table 3. STARS are defined by specifying: 
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a)  a robot system with a fixed cycle time", b) the type of device (1 or 11) defined in Table 
3, c )  the number of devices in the library system, and d) thc library capacity (in MB). 

Analysis 

In  addition to the large number of STARS hardware variables, the analysis must 
acconimodatc the application variables; 1. the service request rate, 0. the object size being 
rrtrieved, and A. the random retrieval factor. In  the first analysis, the system response time 
ihcalculatcd as a function of the service request rate for both types of devices and with the 
number of drives as an independent parameter. All other parameters are fixed. This is dotte 
for both a large object size, 300 MB, and a small object size, 1 MB, to highlight the 
differonces in device Characteristics. 

A helpful way to assess appropriate operating domains for the different types of devices is 
to plot the averdge system response time as isochrons over the domain space of object size, 
0, and service request rate, 1, with the remaining parameters fixed. Most of the calculated 
re.wlts are presented in chis format. System configuration variables such as the number of 
drives in the library represent another dimension and these data can be represented 
parametrically in separate, individual plots. 

Results 

A. Syste in Response Time as a Fu nct ion of R e a  * t u  

Fipres 2A and 2 8  show the system response time as a function of request rate for the two 
different types of devices in system configurations of I ,  2. or 4 drives, and for a library 
capacity of 10 TB. with a value of the randomness factor, A. equal to 3.2 Figure 2A plots 
results for a 1 MB object size and Figure 2B is calculated for 0 = 300 MB. Figures 2C and 
2D repeat these calculations with all values the same except the library capacity is set to 
0.5 TB. This has the effect of modifying the mountedhnmounted service request ratio via 
the probability function given in Figure 1. The effect this has on system respor 2 time is 
a complex function of device characteristics, robotic cycle time and the specific application 
parameters. The data in Figure 2 illustratr one possible scenario. In general the response 
time is improved at smaller library capacities as a result of a higher probability of the 
request being satisfied by an already mounted volume, thereby eliminating the need to 
invoke a robotic move to satisfy that parameter request. 

.. 
The performance modc: presented here does noi provide for robotic queuing dclays in ordcr to 

emphasiir the different charat lenstics of the two types of devices 
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I I AVERAGE SYSTEM RESPONSE TIME 

A=3.2. 04 .0  
AS=lO. L=lOE6 

I 

2 t  

TYPE II 

1 I 

I00 200 366 

REQUEST RATE ( NUMBER 1 HOUR ) 2A 

(#/hour), for N = 1,2,1 drives of Device Type I and Device Type 11. 
Average system respomiie time, SRT, as a funcm-m of service request rate 

A = 3.2, AS = 10 seconds, L = 10 TB, 0 = I MB. 

Figure 2A. 

I AVERAGE SYSTEM RESPONSE TIME I 
A13.2. 01300 
AS=10, L-10E6 

TYPE I = SOLID 

TYPE I1 = OPEN 

1 1 - A  

o * j -  20 40 60 80 100 120 1 40 
38 REQUEST RATE ( NUMBER / HOUR ) 

Figure 2B. Average system resporrse time, SRT, as a functicn of service request rate 
(#/hour), for N = 1,2,4 drives of Device Type I and Device Type 11. 
A = 3.2, AS = 10 seconds, L = 10 TB, 0 = 300 MB. 
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I AVERAGE SYSTEM RESPONSE TIME 

--- d 
i 00 200 300 

REQU€ST RATE ( NUMBER I HOUR ) 2c 

Figure 2C. Average system response time, SRT, as a function of service request rate 
(#/hour), for N = 1,2,4 drives of Device Type I and Device Type 11. 
A = 3.2, AS = 10 seconds, L = 0.5 TB, 0 = I MB. 

I AVERAGE SYSTEM RESPONSE TIME 

300 
A 

d 
% 

1 1 2  2 4 
I t 

4 
t 

, 
,' A=3.2. 01300 

TYPE I = SOLID 
TYPE L L  = OPEN 

L - A L  ' 1 1 ' --A. 

% 20 40 60 80 100 120 140 

REQUEST RATE ( NUMSER / HOUR ) 20 

Figure 2D. Average System response time, SRT, as a function of service requesl rate 
(#/hour), for N = 1,2,4 drives of Device Type J and Device Type 11. 
A = 3.2, AS = 10 seconds, L = 0.5 TB, 0 = 300 MB. 
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It is readily apparent from the data presented in Figure 2 that Device Type I provides 
superior performance (on a per drive basis) for those applications requiring large object 
sizes and modest request rates. Conversely, Device Type I1 excels for those applications 
characterized by modest object sizes and high request rates. In order to get a better 
perspective of the preferred operating domain for these two different types of devices, the 
data is next presented as a series of isochrons (lines of constant system response time) over 
the domain space of object size X request rate. The infohnation is presented with number 
of drives as one of the paranieters thus resulting in perfomisnce comparisons on a "per 
drive" basis. 

B. mnse Time Isochrons 

Figures 3A and 3B display isochrons of average system response time for Device Types I 
and 11 respectively. These figures display the operational range of object size (MB) X 
request rate (#/hour) that can be satisfied within 60 seconds, 90 seconds, or 120 seconds, for 
a system configuration of 4 drives, a library capacity of 10 TB, and a random retrieval 
factor, A = 3.2. In Figure 3B, as a result of the faster response times (for small to medium 
object sizes) of the Type II Ikvice, an isochron at 30 seconds is also shown. Figure 4 shows 
only the 90 second isochron for both types of devices in overlay fashion to better illustrate 
the operational domain where each type of device excels, as well as the range of overlap. 

O6JECT SIZE-REQUEST RATE DOMAIN 
RESPONSE TIME (SEC.) ISOCHRONS 

DEVICE TYPE I 
A13.2. L=lOE0 
N=4. AS-10 n 

m 

\ 
2w 300 

REQUEST RATE ( NUMBER 1 HOUR ) 3A 
I - _- 

Figure3A. Isochrons of average system response time, SRT, in seconds in the 
operating domain of object size (MB) X request rate (#/hour). 
A = 3.2, N = 4,L = 10 TB, AS = 10 seconds. Device Type 1. 
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OBJECT SIZE--REQUEST RATE DOMAIN 
RESPONSE TIME (SEC.) ISOCHRONS 

300 DEVICE TYPE II 
A13.2. LalOEB 
N 4 ,  AS=10 

L I 

100 200 300 

REQUEST RATE ( NUMBER /HOUR ) 36 

Figure3B. Isochrons of average system response time, SRT, in seconds in the 
operating domain of object size (MB) X request rate (#/hour). 
A = 3.2, N = 4, L = 10 TB, AS = 10 seconds. Device Type 11. 

OBJECT SIZE--REQUEST RATE DOMAIN 
NINETY SECOND lSOCHRON 

DEVICE TYPE I A-3.2. L=10E6 
N=4. AS=lO \ 

\ L 

300 4 1 0 __-- 
0 100 200 

REQUEST RATE ( NUMBER / HOUR ) 

Figure 4. Ninety second isochron of average system response time in the operating 
domain of object size (hlB) X request rate (#/hour). Overlay of Device 
Type I and Device Type 11. Sdme conditions as defined in Figure 3. 
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These analyses provide a nieans of quantifying expected performance for many variables 
characterizing different types of devices, different system configurations, and different 
application parameters. It is obvious that a higher data rate device will perform bettei than 
a lower data rate device for large object sizes. Howcver. because of the non-linear nature 
of the queuing delays, it is not obvious where the crossovers occur in the operating space 
ofobject size X request ntc. A comparison of' the data in Figure!, 3A and 3B illustrates that 
for object sizes up to slightly in excess of 100 MB, the Type 11 device equals or exceeds the 
performance of the Type I device for all values of the request rate. At 150 MB, the Tyy- 
fl device becomes superior only for request rates greater than approximately 100 per h o  
for the configurations assumed. In order to convert this iype of analysis to a price- 
performance analysis (rdther than on a per drive basis) i t  would be necessary to first convert 
the configurations to equal dollar configurations and then compare performance over the 
operational space of inlerest for the given application requirements. 

The performance results are specific for the defined assumptions made for the cycle time 
and service time components. Performance enhancements via software control algorithms 
at possible. For example, the algorithm used in this analysis assumes that following a read 
operation, the device rewinds the tape to the beginning of the tape and the tape remains 
mounted until  a service request arrives that requires a new cartridge mount whereupon a 
drive is unloaded. If a request arrives for an object on a cartridge that is mounted, the drive 
searches from the beginning of tape. the new object location without invoking a robotic 
action. Depending upon the application, two possible alternative cycle sequences may 
provide better performance. In one situation it may be preferable to search for an incoming 
request from the stop point of reading the previous request rather than automatically 
rewinding to the beginning of tape. This could result in shorter average search distances. 
Another scenario could provide preemptive drive unloads [ 5 ]  which might shorten robotic 
service times under some application conditions. An early pre-analysis of the specific use 
conditions would permit "tuning" the system for optimized performance. 

Cartridge Capacity Considerations 

In paKqive tape storage applications that very infrequently retrieve stored data objects, the 
emphasis hac been on higher data rates and higher cartridge capacity. Increzm in capacity 
can be achieved by either an increase in areal density or by way of a longer length, thinner 
tape. The K value, given in MB/M, is reflective of the areal density capabilit:! for a given 
tape width. For a fixed value of K, capacity is linearly dependent upon tape . :ngth, which 
in turn affects search and rewind times. An analysis of the average system response time 
as a function of cartridge capacity (Le. length) is shown in Figures 5 and 6 as isochrons of 
average response time over the domain space of request rate X capacity for the fixed 
conditions listed. 

Device Type 11 is unique in its design for type storage devices to be able to economically 
provide solutions for active applications such as HSM and digital libraries. However, for 
wide acceptance. it  must also be capable of meeting the needs of the passive applications. 



Hence, it was necessary to provide a carefully considered balance between capacity and 
rtsponse time under multi-user loaded conditions. The performance target was set to be in 
the range of 15-30 second average response time for request rates of a few hundred per hour 
and with an economicai nul11ki of devices. There arc many variables that affect the design 
space over which these objectives may bc achieved. These include the randomization 
factor(A). the library size, the robot cycle time, and the size of the object being retrieved 
Using the tcchnology recording density (K = 34) and the design of Devtcc Type I J ,  ii 
capacity 111 the range of 5-  IO GB providis a reasor.dble balance to meet the bide range of 
application characteristics. This is illustrated in Figurcs 5 and 6. These analyses arc 
analogous to awssments of the trade-offs niade between disk storage capacity and number 
of actuator arms. The result has been smaller physical disk sizes as the technology 
advanced to provide higher recording densities. 

Figure SA presents 20,25 ,  and 30 second isochrons over the domain space of request ratc 
X cartridge capacity for the system parameters stated. Of note, randomization factor. A, 
isset at 2.2. the accessor cyclc time = 15 scconds and the number of drives = 2. Foi a 5 GB 
cartridge capacity an average responsc time of s 25 seconds is maintained up to 
approximately 100 requests per hour. Figure 5B illustratcs the improved performance and 
the enlarged acceptable opcrating domain resulting from the addition of a third drive. 
Alternatively. improvements may be obtained by using a faster accessor. The rcsults 
obtained b i t h  an accessor cycle time, AS of 10 seconds (and with 2 drives), is shown in 
Figure 5C. Figure 6A illustrales the effect (with 3 drives and AS = 15 seconds) of an 
application tiiat has a highly non-random recall pattern (A = 3.2). This results in a high 'hit' 

~ CAPACITY--REQUEST RATE DOMAIN 
RESPONSE TIME (SEC.) ISOCHRONS 

OEWCE TYPE II 
A4?.2,0=1 0. L=3E5 

N-2. AS115 

REQUEST RATE ( NUMBER / HOUR) 6A --- 
Figure SA. Isochronsdaverage system response time, SRT, (seconds) in the design 

space of request rate X capacity (as determined by tape length) for 
Device Type 11. A=2.2,0=1 MB, L=3x105 MB, N=2, AS=lS seconds. 
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Figure SC. lsorthrons of average system response time, SRT, (seconds) in the design 
space of request rate X capacity (as determined by tape length) for 
Device Typc 11. A=2.2,0=1 MB, L=3x105 !WB, N-2, AS=10 seconds. 
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Figure 6A. Lcochnnrsof average system response time (seconds) in the 'esign space 
of request rate X capacity (as determined by increased tape length) for 
Device Type 11. N=3, Ae15 seconds, 04 MB, L=3x13' MB. A=3.2. 
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Figure 6B. Lwhronsof average system response time (seconds) in (he desip! space 
of request rate X capacity (as determined by increased tape lengfh) for 
Device Type 11. N=3, AS=IS seconds, 0 = 1  hlB, L=3x105 MB. A=1.0. 
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rate to mounted cartridges and hence performance improvement as a result of fewer 
required robot movements, and load-unload cycles. Figure 6B shows the other extreme of 
a totally random retrieval pattern (A=l) for the same system configuration parameters. 
Figures 6A and 68 should be compared to Figure 5B to see the effect of the application 
retrieval pattern on the response time for an otherwise fixed set of system parameters. 
Clearly, optimizing for one application will result in sub-optimization for other 
applications. The values chosen for the parameters for Device Type I1 in Table 3 provide 
a good balance. are achievable with current technology, and provide a basis for possible 
future technology enhancements. 

Conclusions 

The type of analysis presented here may be useful to the application engineer in comparing 
different STARS as to suitability for different application requirements. Likewise, this 
analysis has been used by developers to guide the development of device characteristics to 
meet existing or anticipated application requirements. The diversity of applications 
precludes the possibility of a single device doing all jobs equally well. A comparison of the 
p r e f e d  operating domains for two different types of devices which have been developed 
from a common advanced recording technology has been presented. 
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Abstract 

Parallel inputloutpu~ characterization studies and experimem with flexible resource 
management algorithms indicate that adaptivity is crucial to .ile system performance. In 
this paper we propose an automatic technique for selecting anc; refining file system policies 
based on application access patterns and execution environment. An automatic 
classification framework allows the file system to select appropriate caching and 
prefetching policies, while performance sensors provide feedback used to tune policy 
parameters for the specific system environment. To illustrate the potential performance 
improvements possible using adaptive file system policies, we presenl results from 
experiments involving classification-based and performance-based steering. 

1. Introduction 

InpuVoutput performance is the primary performance bottleneck of an important class of 
scientific applications (e.g., global climate modeling and satellite image processing). 
Moreover, inputloutput characterization studies such as Crandall [ 11 and Smirni [2] have 
revealed that parallel applications often have complex, irregular input/output access patterns 
for which existing file systems are not well optimized. Experience has shown that a few 
static file system policies are unlikely to bridge the growing gap between input/output and 
computation pcrformance. In this paper we propose an automatic technique for selecting 
and refining file system policies based on application access patterns and execution 
environment. Knowledge of the inputloutput access pattern allows the file system to select 
appropriate caching and prefetching policies while the specific execution environment 
determines what policy refinements are necessary to further improve performance. For 
example, a sequential access pattern might benefit from sequential prefetching. The 
available memory and access latencies detemne the quantity of data that ! hould be 
prefetched. By being responsive to both application demands and system environment, this 
approach can provide better performance than a single static file system policy. 

Adaptive file system policy controls rely on continuously monitoring access patterns and 
file system performance. We obtain a qualitative access pattern classification either through 
wtomatic analysis of the input/output request stream or via user-supplied hints. We also 

Supported in part by the National Science Foundation under grcn! NSF A X  92-12369. by the 
National Aeronautics and Spnce Administration under NASA Contracts NGT-51023, NAG-1-61 3. and 
USRA 5555-22 and by the Advanced Rcbearch Projects Agency under ARPA contracts DAVT63-YI-C- 
0029. DABT63-93-C-oMI and DABT62-94-CW49 

493 



continuously monitor file system performance sensors (e.g.. cache hit ratios, access 
latencies. and request queue lengths). The values of these sensors, together with the access 
pattern, are used to select and tune specific file system policies. For example, the file 
system can enable prefetching when the access pattern is sequential, using the interaccess 
delays determine how much data to prefetch. Updated performance sensor values or 
changing access pattern classification may result in additional refinements to file system 
policies. 

The remainder of this paper is organized as follows. In 82 we give a high-level overview of 
the adaptive file system infrastructure. Validation of these concepts requires an 
experimental framework; we have implemented adaptive file system policies within a 
portable, user-level file system called the Portable Parallel File System (PPFS) Huber (31. 
described in B3. Our system has two major components; in B4 we discuss how one 
automatically classifies user access patterns and uses this information lo select file system 
policies. In B5 we describe how to use an input/output performance summary generated 
from sensor values to select file system policies and parameters that should be modified to 
improve performance. Finally, n6-67 place this work in context. summarize our results, 
znd outline directions for future research. 

2. Adaptive Steering 

Given the natural variation in input/output access patterns, it is unlikely that one, static, 
system-wide set of file system pnlicies will suffice to provide good performance for a 
reasonable range of applications. Even in a configurable environment, a priori 
identification of effective file system policies is difficult because application access patterns 
are sometimes data dependent or simply unknown. Furthermore, inputloutput 
requirements are a complex function of the interaction between system software and 
executing applications and may change unpredictably during program execution. We 
believe that integration of dynamic performance instrumentation and automatic access 
pattern classification with configurable, malleable resource management algorithms 
provides a solution to this performance optimization conundrum. Below, we describe the 
two major components of this approach. 

2.1. Classification-Based Policy Selection 

Parallel file system research such as Patterson [4], Kotz [SI, Krieger [6] ,  and Grimshaw 
(71 has demonstrated the importance of tuning file system policies (e.g., caching, 
prcfetching, writeback) to application access patterns. For example, access pattern 
information can be used to guide prefetching, small input/output requests can be aggregated 
and large requests can be streamed. 

One intuitive way to provide the file system with access pattern information is via user 
supplied hints, or qualitative access pattern descriptions, for each parallel file. 
Unfortunately, this approach requires ongoing programmer effort 10 reconcile the hints 
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with code evolution. Inaccurate hints can cause performance problems if the file system 
selects policies that are unsuitable for the actual access pattern. 

Our solution to this dilemma is to automatically classify access patterns during program 
execution. This approach requires no programmer intervention and is robust enough to 
handlc dynamically changing or datadependent access patterns. A classifier module 
observes the application-level access stream and generates qualitative descriptions. These 
descriptions, combined with quantitative inpuVoutput statistics, are used to select and tune 
file system policies according to a system-dependent algorithm. Hints can be used in 
conjunction with this approach to provide access pattern information that cannot be intuited 
from the access stream (e.g., collective input/output). 

2.2. Performance-Based Policy Selection 

Although application access pattern information is a prerequisite for selecting appropriate 
file system policies, inputloutput performance ultimately determines the success of a 
particular policy choice. Extrinsic (external) input/output phases that occur when other 
applications compete for shared resources are equally important to file system policy 
selection, yet are not evident from application access patterns alone. Using a basic feedback 
system as a model, we can frame parallel file system policy optimization as a dynamic 
steering problem that tracks performance to refine file system policy selection. ‘This type 
of computational steering framework has proven useful in other contexts (e.g. Vctter [SI, 
Wood [SI, Gergcleit [IO], and Gu [ 1 I].) 

In our dynamic steering framework, we monitor performance sensors that encapsulate the 
performance of critical file system features. consult access pattern dependent policy 
selectors that map changes in input/output performance to potential policy changes, and 
invoke system actuators to effect these policy changes. The resulting perfomiance sensor 
metrics reflect the influence of our policy reconfiguration. When coupled with autcmatic 
access pattern detection, this closed loop steering infrastructure can adapt file system 
policies to match application access patterns and then tune these policies to the dynamic 
availability of system resources. 

3. Portable Parallel File System (PPFS) 

PPFS is A portable inputloutput library designed as an extensible testbed for file system 
policies [3]. A rich interface for application control of data placement and file system 
policies makes it exceptionally well-suited for our experiments. Below we describe the 
PPFS design and extensions that facilitate adaptive file system policy experiments. 
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3.1. PPFS Design 

InputYOutput Serverfs) 

Applicairon Client( s) 

Figure 1: Basic PPFS Design 

Figure 1 shows the PPFS components and their interactions. Application clients initiate 
inputloutput via invocation of PPFS interface functions. To open a file, the PPFS library 
first contacts the metadata server, which loads or create4 information about the file layout 
on remote disk servers (input/output nodes). With this information, the application is able 
to issue input/output requests and specify caching and prefetching policies for all levels of 
the system. Clients either satisfy the requests or forward them to servers (abstractions of 
input/output devices). Clients and servers each have their own caches and prefetch engines. 
All “physical” input/output is performed through underlying UNIX file systems on each 
PPFS server. 

In the PPFS inputloutput model, files are accessed by either fixed or variable length 
records, and the PPFS library has an extensible set of interfaces for specifying file 
distributions, expressing inputloutput parallelism. and tuning file system policies. For 
example, the user can specify how file records are distributed across input/output nodes, 
how and where they are cached, and when and where prefetch operations should be 
initiated . 
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3.2. PPFS Extensions 

The original PPFS interface provides the application with a rich set of manual file svstem 
policy controls and structured data acce s functions, but the rules guiding their use arc ad 
hoc. Ideally, the file system should automatically infer appropriate policies from low-level 
application access patterns, lessening the applicdtion programming burden and the 
likelihood of user misconfiguration. Dynamic performance data should be used to verify 
and refine these policy decisions. Through automatic access pattern classification, used to 
select tile system policies, and performance-based policy refinement, we automate tile 
system policy control. This has motivated two basic extensions to the base PPFS design: 
support for automatic access pattern classification and automatic policy refinement based 
on monitoring inputloutput performance. 

To I/O servers 

Policy configuration 

PPFS Interface 

Code 

Figure 2: PPFS Classification and Policy Selection Extension 

We have rcplaccd manual PPFS file system controls in our extension by an adaptive access 
pattern classification and file system policy selection mechanism. During program 
execution, an inputloutput statistics module monitors the file access stream (each access is 
represcnted as a byte offset, read or write, and request size) and computes the statistics 
needcd by the classifier module. PPFS uscs the classification to selcct and tune prefetching 
and caching policies. Figure 2 illustrates the interaction of the classification cxtensions with 
thc original PPFS components. 
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Global 
Selector 
Table 

Figure 3: PPFS Performance Monitoring and Steering Extension 

To refine policy selections using performance data, we instrumented the system 
components to periodically provide ensor metrics and created sensor-driven selector tables 
to automate invocation of the same native PPFS policy controls that a PPFS user could 
invoke manually. Figure 3 shows how our performance based policy selection extension 
interacts with the PPFS. Dynamically computed sensor metrics (e.g., input/output queue 
lengths, cache hit ratios, inter-request latencies) are routed to local and global policy selector 
tables, where they index appropriate file system policies and parameters for the system 
environment. 

The local policy selector can only change local policies. For example, a client selector table 
may decide to increase the client file cache space and the number of records to prefetch 
ahead. It cannot change file system policies on other client nodes or on the PPFS servers. 
As shown in Figure 3, sensor metrics are also muted to a global selector mechanism that 
can select policy parameters for other nodes. For example, if the write throughput visible 
to client nodes for large writes drops below a certain threshold, the clients may elect to 
disable caching, and stream data directly to the PPFS servers. Rather than w3iting for the 
individual server metrics and selector tables to disable server caching and stream data to 
disks, the global selector mechanism detects this input/output phase shift in the clients and 
invokes the policy change on the servers. 
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4. Automatic Classification and Policy Selection 

As described in R3, we have replaced thc maiiual file system controls in PPFS with an 
adaptive access pattern classification and policy selection mcchanisrn. Below wc dcscribe 
in grcatrr dctail o u r  classification and policy control methodology. 

A file access pattern cla4fication is useful if it describes the input/output features that ~ l re  

most rclevant to file systcin performance; it need not bc perfectly sccwitc. For exmplc, 
one might classify an inputhutput pattern as "sequential and write only" even if thcn: are 
occahnill small file seeks and read\ - -  this would suffice to correctly choose a sequential 
prctetching policy. Such a qualitative description is difficult to obtain based on heuristics 
illone. Instead, one needs a general classification mcthodology cap~hle of learning from 
cxamplcs. 

As a first step toward adaptivc file system policies, wc have implemcnted automatic access 
classification to select file system policics, adapting to application requirements. This is 
only hallof the complete system; after making policy sclcctions we rely upon performance 
sensor data to refine policy parameters, adapting to the total system environment. 
Performance-based steering is the subjcci of 8s. 

4.1. Classification Methodology 

Within a parallel appiication, file inputloutput access patterns can be observcd at two levels. 
The firs! is at the Iwd (e.g., per thread) level, and the second is at the global (e.g.. per 
parallel program) level. For cxamplc, a pwallel file might be distributed across the threads 
of a parallel program in such a way that each thread appears to be accessing the file locally 
in strides. but the interleaved ~ C C C S S  stream is globally scq:~.ntial. Global classifications m 
formed from local classifications and inputhutput statistics. In 04.1.1 we describe our 
accew pattern classification approach. In 134.1.2 we illustrate how global classification 
works in a parallel application. 

4.1.1. Access Pattern Classification 

To accommodate a variety of underlying file structures and layouts, we describc access 
pattern classifications assuming a byte stream file representation. File accesses are made 
uhing LlY1X style read, write, and seek operations, and file access patterns are dcterrnined 
from this rcprescntation. Thus. an inputloutput trace of file accesscs may be represented as 
il stream of tuples of the form 

(bvie oflset, request size, read 1 write) 

49s 



Sequentiality 
h 

sequential 

1-D Str idd  1 

2-D Svided 
I 

Nondecreasing j 

Variably Stridad 

Figure 4: Access Pattern Space 

Patterns observed in each of the time-varying values of the tuple components form a three 
dimensional access pattern space. Figure 4 shows certain categories along each axis that 
can be used to influence file systein policy selection and :abel all points in the access space. 
Additional categories can be adued as necessary to each axis to further refine the access 
pattern space. 

Many techniques can be used to classify and identify observed access patterns withii the 
space shown in Figure 4. Our approach is to train a feed-forward artificial neural network 
as in Hinton [ 121 to classify patterns. Although neural networks are expensive to train 
initially, once training is complete, classification is very efficient. To tiain the neural 
network, we represent the access pattern in a compact, normalized form by computing 
input/output statisth on a small fixed number of accesses, called the classification 
window. For exavple, representative statistics might be the number of unique read rcquest 
size\. or a transition matrix of the probabilities that one type of request (reaawrite) will 
follow the other. 

Table I: InpuUOutp- i Trace Features 

Table I shows the features recognized by our trained neural network. These features 
correspond directly to planes or regions within the space snown in Figure 4. The neural 
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network selects one and only one feature within each category; for example, a set of 
accesses cannot be both read only and write only. Ncuriil networks a r s -  inherently 
imprecise, allowing us to train a network to identify patterns that are “close” to a well- 
defined pattcrn in a more general way than specifying heuristics. For cxample, a pattern 
might be treated a$ read-only if thcrc is only one small write among very large reads, but 
readwrite if thc sin& write is the same size as thc reads. This allows UP to train the file 
system to classify ncw access patterns. 

4.1.2. Global Access Pattern Classification 

Local acccss pattern classification is only pd of a larger classification problem. Local 
classifications are made per pilrallel program thread; however, the Iwal acr,.ss ?atterns 
within a parallel program merge during execution, creiating a global access paitel. Global 
knowledge is especially important for tuning file system policies. For example, if all 
processors acceqs a single file sequentially, one could poteniially improve performance by 
employing a caching policy that does not evict a cached block until every processor has 
read it. 

Our global classification infrastructurc is based on an acccss pattern algebra. We combine 
local classifications and other locd information to make global classificatiws. For 
cxamplc, if ail local access patterns are read only, the global access pattern is read only. The 
number of proccssors contributing to the global access pattern is called the cardinality of 
the classification. Generally, wc attempt to make global classifications with cardinality p, 
wnere p is the number of processors involved in the global input/output. However, a global 
classification involving a subsct of the these processors is still useful for policy selection. 
A partial global classification may even be peferabb, if It more accurately represents the 
temporal characteristics of the global access pattern. 
Global access pattern clas:;%cation cannot be useful for influencing file system policies 
unless we recognize common global access patterns in time to effect policy changes. To 
demonstrale that this is feasible, we have examined parallel applications from the Scalable 
Inputloutput (SlO) application suite [ 1,2]. These applications exhibit a variety of global 
access patterns, including glabal sequentid, partitioned sequeniial (processors sequentially 
acccss disjoint partitions), iand interleaved sequential (individual strided access patterns are 
globally interleaved). The patterns m primarily read-only or write-only with regular and 
irregular request sites. All of these patterns can be recognized by our classification 
infrastructure. 

One specific application area we have examined is computational fluid dynamics. PRISM 
is a parallel irnplemcntation of a 3-D numerical simulation of the Navier-u:okcs equations 
froni Henderson [ 13,141. The pardlelization is implemented by apportioning slides of the 
periodic doniain to the processors, with a combination of spectral elements and Fourier 
modes uscd to investigate the dynamics and transport properties of turbulent flow. 

Figurc 5 shows a file access timeline for PRISM on a 64 processor Intel Paragm XP/S 
running OSF/I vcrsion 1.4. This code exhibits three distinct inputloutput phases. During 
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the first phase. eveq prikchsor reads three initialization tiles (m16.nt. ml6.rea and 
ml6.mor). Each file is accessed with a glAal sequential access pattern; ml6.rst is also 
accessed with an interleaved sequential access pattern. In the second input/output phase, 
node zeio performs input/output on behalf of all the nodes, writing checkpoints and data 
(access to files nl6.Rstat. ml6.Qstat. m16.Vstat. rnl6.mea and ml6.his). In the final 
phase, the result file is written to disk by dl processors in an interleaved sequential access 
pattern ml6.fld. Phases two and three occur iteratively throughout progrim execution. 

m I6.Rstat 

m 16.Qstat 

m I6.Vstat 
e, 
$ ml(i.mea 
z 
2 ml6.his 
i i  

ml6.tld 

rn16.rnor 

ml6.rst 

m I6.rea 

When accesses are ad;acent and very small. local classification windows (the time to make 
!en inputhutput accesses) are short, and we must observe more windows to detect overlap 
among processors and global behavior. For example, Figure 5a and Figure 5b show local 
classifKation times for a globally Mquentiidly accessed initialization file (nilbiea). The 
reads are very sml l  (most im Ichs than -SO bytes) and we reclassify the pattern every ten 
accesse5. We can make a glchl uquential classification when sequential access patterns 
with overlapping bytes have been detected on every pmcssor. Despite initial startup 
synchronicity, the slowest prowssor (number 3 1 j completes its tenth access to this file at 
7.79 seconds. Because this initialization input/output phase accounts for approximately 
!25 seconds 4 execution time. adapting file system policies t 3  the x c e w  pattern is 
fundamental ta improving performance. 

I I I I I I I 

- 0 0 0 0 O - 
- 0 0 0 0 0 - 
- 0 0 0 0 0 - 
4 - 
.+ - 
c- 0 0 0 0 0 - 
8 - 

(D - 
de I I 1 I I 1 1 

Figure 5: PRISM: File Access Timeline 
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Figure 6: PRISM: Imal Processor Classification Points for Global Sequential Access Pattern 

4.2. Intelligent Policy Selection 

A file acceis pattern classification as described above is platform-independent and unique 
to a particular application execution. However, an optimal choice of file system policies for 
a pitrticular access pattern is systenidcpendent. A file system uses the classification to 
tunc file system policies for each input/output platform. By making policy decisions to suit 
the application requirements and the system architecture, not only is input/output 
perform;mcc portable ovcr a variety of platforms, but the file systcm can provide bctter 
performance over a range of applications than it could by enforcing a sinsle system-wide 
policy. This adaptivity should occur transparenrly, without application hints or user level 
optimizations. 

Abstractly, PPFS continuously monitors and classifies the inputloutput request stream. 
This classification is passed to the file system policy suite for policy selection and 
configuration. For example, when the access pattern classification is sequential, the file 
system can assume that file access will continue to be sequential. If the classification is read 
only,  the filc systcm C'M prefrtch aggressively; if it is write only, a write-behind policy 
might hc efficient. When the classification is regularly (1-D or 2-D) strided. the file 
system can take advantage of this information to adjust the cache size and prefetch 
anticipated blocks according to the access and stride sizes. 

As describcd in &I. 1.2, we can combine local classifications to make global classifications, 
which we usc to adjust policies at all system levels with global knowledge. For example, 
when all processors read the same file sequentially (global sequential) we can select a 
caching policy at inpuhutput nodes that prefctches file blocks sequcntially but does not 
tlush cachc block\ until every processor has accessed them. In contrast, if we detect an 
interleaved sequential global pattern, each input/output node could prefetch file blocks 
sequentially, retaining them only until each has been accessed in its entirety once. 
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Figure 7 shows a simple, parameterized example of a policy selection algorithm that selects 
PPFS policies for a unigrocessor UNIX workstation. Its default behavior is to favor small 
.sequential reads, typical of UNIX workloads. However, when the classifier detects other 
access patterns, the algorithm adjusrs policies to provide potential performance 
improvements. Quantitative values for the parameters of Figure 7 (e.g. 
LARGE-REQUEST) depend on the particular hardware configuration and must be 
determined experimentally. 

The algorithm of Figure 7 is but one simple possibility for policy control. Richer control 
structures can be built upon more accurate models of inpuVoutput costs. However, in 84.3 
we show that evzn this simpie policy suite suffices to yield large performance increases 
over that possible with standard UNIX file policies. In a5 we describe our methodology 
for tuning automatically selected policies in response IO overall system performance, 
closing the cla.sificaiion and performance feedback loop. 

if (sequential) { 
if(write only) C 
enable caching 
use MRU replacement policy 

disabic caching 

enable caching 
use LRO replacement policy 

} else i f  (read only k h  average request size > LARGE-REQUEST) { 

1 else { 

1 
1 

if (variably strided 1 1  1-D strided 1 1  2-D strided ( 

if (average request size > SMALL-REQUEST) ( 

1 else { 

i f  (regular request sizes) { 

disable caching 

enable caching 
increase cache size to MAX-CACHE-SIZE 
use LRU replacement policy 

1 
) else { 

enable caching 
use LRU replacement policy 

1 

Figure 7: Dynamic File Policy Selection (Example) 

4.3. Experimental Results 

As a validation of automatic behavioral classification and dynamic adaptation, we used the 
enhanced PPFS to improve the input/output performance of Patitfinder, a single processor 
satellite data processing code. Pathfinder is from the NOAANASA Pathfinder AVHRR 
(Advanced Very High Resolution Radiometer) data processing project described in Agbu 
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[ 151. Pathfinder processing is typical of low-level satellite data processing applications - 
fourteen large files of AVHRR orbital data are processed to produce a large output data set. 
It is an extremely inputloutput intensive application; over seventy percent of Pathfinder 
execution time is spent in UNIX inputloutput system calls. 

4.3.1. Pathfinder 

The goal of the Pathfinder project is to process existing data to create global. long-term 
time series remote-sensed data sets that can be used to study global climate change. Thcre 
are four types of Pathfinder AVHRR Land data sets (daily. composite, climate, and browse 
images); we consider the creation of the daily data sets. Each day, fourteen files of 
AVHRR orbital data. approximately 42 megabytes each, in Pathfinder format 
processed to produce an output data set that is approximately 228 megabytes in 
Hierarchical Data Format (HDF) from NCSA (161. For simplicity, we examine the 
processing of a single orbital data file. 

During Pathfinder execution, ancillary data files and the orbital data file are opened, and an 
orbit is processed 120 scans at a time. Although the orbit file is accessed sequentially, the 
access patterns for other ancillary data files range from sequential to irregularly strided. 
The result of this processing is written to a temporary output file using a combination of 
sequential and two-dimensionally strided accesses. Finally, the temporary file is re-written 
in HDF format to create three 8-bit and nine 16-bit layers. 

Table 2 shows the relative execution times for Pathfinder using UNIX buffered 
inputhutput and PPFS Nith adaptive policies on a Sun SPARC 670. The dynamic 
adaptation of PPFS yields a speedup of approximately 1.87 with the policies Figure 7.' The 
PPFS automatic classifier could detect that the output file access pattern was initially write 
only and sequential, with large accesses, and that the pattern later changed to write only, 
strided. with very small accesses. Adapting to the first access pattern phaqe, PPFS selected 
an MRU cache block replacement policy. In the second phase it enlarged the cache, 
retaining the working set of blocks. 

Figure 8a and Figure 8b illustrate the dramatic benefits of dynamic policy adaptation for 
Pathfinder's execution. Both graphs represent the same amount of inpuVoutput; however, 
in Figure 8a we use the same static policies for all access patterns. The first cluster of 
accesses in each graph is the write only sequential phase. Performance for the first phase is 
roughly equivalent using either MRU or the default, non-adaptive LRU replacement policy. 
However, enlarging the cache ir: the second phase suLtantially decreases the average write 
duration. PPFS successfully retains the working set of blucks (the overall rache hit ratio 
exceeds 0.99). while UNIX buffered inputloutput forces a write of 8 KB for every one or 
two byte access. 

' However, due to limited physical memory. we diqabled caching for small, variably strided reads. 
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Figure 8: Patblinder Writ- 7 tretions (Beginning Phase) 

Table 2: Pathfinder Execution Times (second\: 

5. Performance-Based Steering 

Although file system policy selection is partially a function of application inpu!/outpuI 
access patterns, system performance ultimately determines the success of a particular 
policy choice. Performance sensors provide feedLack on file system behavior that can be 
used to optimize the parameters of policy decisions. 

Below, we describe :I complement to qualitative access pattern classification: sensor based, 
closed loop policy selection and configuration. As described in 62.2 and shown in Figure 
3, our framework partitions the steering problem into three components. The sensor 
metrics in 65.1 provide input for policy selectors of B5.2 which, based on system and 
application performance history, select policy paramcters and activate them via the policy 
actuators of 05.3. 

9.1. Performance Sensors 

Table 3: PPFS Sensor Metrics 
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Operation Time 
Read Count 
Read Byte Count 
Read Time 
Write Count 
Write Time 
Cache Hits 
Server Cache Hits 
Cache Check Time 
Server Time 
Server Queue Time 
Server Queue Lengths 
Prefetch Byte Count 
Prefetch Cache Check Time 
Prefetrh Off Node Time 
Hit Miss Time 

Mean operation service time 
Number of read requests 
Number of bytes r e d  

~ Mean read service time 
~ Number of write requests 
1 Mean write service time 

~ Number of requests scrviced by offnclde caches 
Number of requests servked by caches 

Time to check local cache 
Time spend on inputhutput servers 
Time spend in disk queue 
Length of disk queue 
Number of  bytes prefctched 
Time to scan cache on prefetch initiation 
Time spent offnode for prefetch operiitions 
Time spent waiting for overlapped prefetch IO 

I I complete 

To capture input/output pcrformance data. we augmented PPFS with a set of performance 
sensors that arc periodically sampled using the Pablo instrumentation library of Reed 171. 
Tahlc 3 shows the current PPFS sensor metrics. We chose these particular rnetrics 
because they m inexpensive to calculate, and we believc thcy m broad enough lo reflect 
the perforninncc of mallcable file system policies within PPFS. In prictice, ninny metrics 
;ut: strongly correlated wiih others. magnifying or validating trends detected via other 
metrics. 

5.2. Policy Selectors 

Table 4: Sample Sequential Access Selectors 

& Disable Prefetch 

Given detailed performance sensor metrics and an access pattern classifica!ion. our  
framework tunes file system policies using the sensor metrics as the indices to a selector 
tahle containing policy parameters for that set of sensor metrics. The dashed line4 of 
Figurc I show thc flow of sensor data from PPFS modules to the policy selectors. Table 4 
shows some sample selectors that a system might provide. given a sequential access 
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pattern classification. For example, if the sensor metrics indicate that relatively small read 
requests take a long time and the cache hit ratio is low, we might increase the cache size 
and the number of blocks prefetched to anticipate the request stream. If the sensors 
indicate that too much data is being requested to effectively cache and prefetch, we may 
disable caching and prefetching altogether to avoid V i n g  the cache. 

The sensor rules shown in Table 4 are qualitative rather than quultitative. We quantify the 
selector table rules when we calibrate them with the specific sensor metrics for a given 
platform. For example, on an IBM SP/2 with 128 MB of memory per node 
manageabie-byte-thruput may calibrate to (Read-Byte-Count’ e 100 MB/second). 
Similarly on an Intel Paragon with only 32 MB of memory per inputloutput node, the 
calibration may be (Read-Byte-Count < 25 MB/second). 

To create selector tables for a given access pattern. we need to know how different file 
system policies perform for this access pattern. By executing access pattern benchmarks 
with a variety of policies and under a variety of load conditions, we can develop a set of 
selector rules such as those shown in Table 4. We calibrate the qualitative rules on a given 
platform by storing the quantitative performance sensors with the qualitative rules. Our 
portable, dynamic steering infrastructure can then adapt to a system’s resource constraints 
by simply loading selector tables calibrated for that system. 

5.3. Policy Actuators 

After the policy selector mechanism determines what file system policy pameters  
should be used, actuators provide the mechanism to instantiate policies and configure 
parameters. Currently, PPFS supports actuators that allow dynamic reconfiguration of 
cache sizes, replacement policies, and prefetch and write behind parameters on each client 
and server node. These actuators provide a rich variety of controls to our dynamic 
steering infrastructure. We have tested these controls by interactively steering application 
behavior based on a virtual reality display of the sensor metrics as in Reed IS]. 

5.4. Experimental Results 

To demonstrate the efficacy of sensor-based adaptive control when coupled with behavioral 
assertions, we used an inputloutput benchmark to conduci a sct of simple experiments on 
several parallel architectures. We had several fundamental goals for the benchmark study. 
First, we wanted to verify that sensoi metrics help us make improved PPFS policy 
decisions. We also wanted to determine how long we have to wait bctween policy changes 
to allow the sensor metrics to settle to their new stecdy state values. 

In our benchmark, a group of tasks reads disjoint interleaved portions of a shared file. 
Task i reads all blocks, i modulo thc number of tasks (e.g., task 0 of p tasks reads tile 

’ Note that Read -Byte-Count is a sensor metric from Table 3 
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blocks 0, 2p, p .  ... ) Between accesses, a processor computes for a uniform random 
interval with a pwmctric mean. We executed this benchmark on several p d l e l  
architectues with a variety of request sizes, prefetching options, and computation 
overheads for varying numbers of reader tasks. 

I I i 1 I I 1 I 
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Figure 9: Sensor Variation for Different Workloads 

Figure 9 shows the effect on server request overhead3 of varying the inter-access 
computation interval and thc number of nodes reading a file. This experiment was 
performed on an Intel Paragon XP/S using a single inputloutput server controlling a 
RAID-3 disk w a y  with a throughput of 3.1 MBkecond. In Figure 9a, eight processors 
read the file and the PPFS server prefetches only sixteen KB ahead of the access stream. 
In Figure 9b. on the other hand, the PPFS server prefetches 256 fU3 ahead and clients wait 
on average 175 milliseconds in between each access. The PPFS server performance 
depends on the number of q x s t s  arriving at the server each second. In Figure 9a, the 
arrival rate varies from 27 to 54 requests per second. Similarly, in Figure 9b, the request 
arrival rate varies from 6 to 92 requests p"r second. 

The sensors values in Figure 9 fall into three basic categories. As shown in the top of 
Figure 9a, most of the requests could result in cahe  misses coupled with long queuing 
delays where the server time exceeds ten millisecorrds. A substantial increase in the 
amount of prefetching is required to alleviate this prob1e.n. When some of the requests 
result in cache misses, we see that the server time is between four and six  millisecond^.^ A 

' Server request overhead is the time that a request spends on the PPFS server node. It includes 
cache check rime, buffer copy overhead, and disk queuing times if the request ic, nor in the server 
cache 

In Figure Yb. the startup transient lasts about sixty reconds before these cache misses occur 
regularly 
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moderate increase in the number of blocks prefetched qhould result in improved 
performance. Finally. at the bottom of Figure 9b, we see that when dl of the requests cm 
be serviced from the cache, the mean time spcnt on the PPFS server is less than one 
mi 1 I isecond. 

Table 5: Benchmark Selector Rules 

.Sensor Conditions I Policy Options 

Based on the figure, we can develop the two simp!c selector rules shown in Table 5 for this 
benchmark access pattern. One rule detects when the prtfetch pardmeters should be 
increased considerably while the other detects when the prefetch pardmeters should be 
increased slightly. To calibrate thesc rules for the Intel Paragon with a single RAID-3 disk 
array, we simply augment the selector tablc with the appropriate sensor values as shown at 
the bottom of the Table 5.  When the calibrated selector table i s  used for an application that 
exhibits this access pattern. the steering infrastructure cm detect poor PPFS server 
performance and increase the pefetch parameters appropriately.’ 

6. Related Work 

Current work in pimallel file systems centers on understanding application inpuVoutput 
requirements and determining how to  consistently deliver close to peak inpuVoutput 
performance. This challenge necessitates re-examining the traditional interface between the 
file system and application. 

~~ 

’ The rules in Table 5 are examples of 3 subset of the needed rules for thi\ benchmark. A complete 
set of rules could also reduce the aniount of prefetchinp performed when the sensors indicate that 
resources were being wasted. 
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Chwactcrization studies have revealed a large natural variation in input/output access 
patterns. During the past two years, our group and others have used the Pablo input/output 
analysis softwrue to study the behavior of a wide variety of parallel applications on the Intel 
Paragon XP/S [ 1,2] and IBM SP/2. We have determined from thesc application studies 
that high performance application5 exhibit a wide variety of inputhutput request patterns, 
with both very small and very large request sizes, reads,and writes, scquential and non- 
sequential access, md a variety of temporal variations. 

Given thc natural variation in p;lrillcl inputloutput patterns. tailoring file system policics to 
application requirements can provide better performancc than a uniformly imposed set o f  
stritegics. Many studies have shown this under diffcrent worklwds and environments 
(5.6,7]. Small inputloutput requests wc best managed by aggregation, prefetching, 
caching, and write-behirld. though large rcquests are better served by streaming data 

application policy control; these can be grouped into systems that offcr explicit policy 
control (e.&. SPIN from Bershad [ 191, exokerncl from Engler [ZO], thc Hurricane Filc 
System from Krieger 12 11, and Galley from Nicuwejaar [22)), and implicit policy control, 
via hints [4], exprcssivc user interfaces (e.g., ELFS [7) and collcctive input/output as in del 
Rosario 1231 and Kotz [24]). or intclligent modeling of file acccss (e.g., Fido from Palmcr 
[2S] and knowlcgc based cachinp from Korner 1261). Fido IS an example of a predictive 
cachc that prefetches by using an associative memory to xcc)giiizc access patterns over 
time. Knowledge hascd caching has been proposed to enhance cack  performancc of 
remote file scrvers. 

directly to or  from storage deviccs and application buffers. Thcre arc several approa L .h es to 

Thc second compcment of our research, dynamic performance based steering. has h e n  
used successfully in many contexts. A natural analog to explicit policy control is inleractivc 
stccring. wherc the stectirlg infrastructure extracts run time sensor information from iin 

application, prcsents this ,n!ormation t o  the user who selccts system o r  application policies, 
and actuiitcs thcse policies to change application behavior. Falcon as in Gu 1271 and 
SciChem froni Parker [ 281 are two representative cxarnples of this interactive approach. 

In contrilst to interactive steering environmcnts, automatic stcering environments do not 
rcquirc continuing user involvement. Instead, steering decisions are made automatically 
without user intervention. DIRECT \IO], Falcon [29,30] and the Mrta Toolkit 191 dl 
provide automatic steering interfaces. DIRECT targets real time applications, a domain 
where the primary concern is validating thitt the system meets real-time constraints. This 
goal is different from run-time performance improvement, but the steering infrastructurc is 
similar. Automated run-time steering is used in Fiicon to selcct different niutual cxclusion 
lock configurations based m the number of threads blocked on the lock (301. The Meta 
Toolkit provides a framework for performing dynamic steering and provides special 
guards that help 10 maintain mutual exclusion of critical state variables [9] that may be 
changed during actuator execution. When an actuator is invoked, the appropriate guards 
arc C Y C C U I C ~  hefore the system module i s  modified. 
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7. Conclusions 

The wide variety of irregular access patterns displayed by important input/output bomd 
scientific applications suggests that optimizing application performance requires a judicious 
match of resource management policies to resource request patterns. Because the 
interactions between dynamic, irregular applications and system software changc during 
application execution, we believe that the solution to this performance problem is adaptive 
file system policies that are controlled by user-level access patterns and by system-level 
performance metrics. 

In this paper, we described a prototype of an adaptive file system and presented the results 
of experiments demonstrating the viability of this approach. This prototype, buiit upon on 
our PPFS user-level parallel file system. selects and configures file caching and prefetching 
policies using both qualitative classifications of access patterns and performance sensor 
data on file system responses. 

In the coming months, we plan to more tightly couple automatic access pattern 
classification with performance steering. We are currently rounding out the prototype by 
extending PPFS to perform run time global access pattern classification and enhancing the 
perf'ormance-driven steering infrastructure. 
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Abstract 

b'hile mass storage systems have k e n  used for several decades to store large quantities 
of scientific data. there has k e n  little work on devising standard \says of nicawriiig 
them. Each systcm is hand-tuned using parameters that scem to work hst. but it  is ciitfi- 
cult to gauge the potential etfi-x1 of similar changes on other qstems. Thc prolifemion 
of storage managenient .software and policies has made it diflicult fur users to tiiakc the 
best choices for their own systems. The introduction of benchmarks \ \ i l l  make it pwih le  
to gather standard perfcmnancc measuements across disparate systems. allow itig userx to 
make intelligent choices of hardware. software, and algorithnis for their mass storrye 
system. 

This paper presents guidelines for the design of a niass storagc system knchniarh suitc. 
along with Frrliminary suggestions for programs to bc included. '1 he hCI~~ht1ii~rk.~ 15 i l l  
measure tmth peak and sustained performance of the system as well as prcdicting hdi 
short-term and long-tcmi behavior. These benchmarks should he both portable atid S C ~ I I -  
at'e so they m y  hc used on storage systems from tens of gigabyte:: tir petahytes o r  nitvc. 
By developing a standard sct of knchmarks that reflect real user \ v d I c d .  N C  hopc t o  
encourage q ctztii designers and users io publish performance ligurcs that i a n  lw COIII- 

parcd ~ i t n  time of other systcms. This will allow users to choose the system that hcht 
meets their needs hest and give designers a tool with which they can measure the per- 
formance effects ot' improvcments to their systems. 

1. Intrsduction 

Mass storage s~stems are usea by niany data centers around the Mnrld to store and n i m -  
age terabytes oldata. These systems are composed or'hott hard\\are from many \endorb 
and storage management software. often from a different vendor. Each data centcr huilclx 
its o w n  system. and no two are alike. How can two different mass storage s>stcnib hc 
compared? Additionally, how can users gauge perforniance of planned systcms'? 

We believe the introduction of a standard benchmark suite for mass sloragc' systcms \ \ i l l  
enidde storage users to plan their systems in the same way that the SI'EI' and Pertect 
benchmarks allo t users to compare different coniputing systems. i i t  such suitcs. onc o r  
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more of the benchmarks should sufficiently resemble a user's needs so that she can pre- 
dict the performance on her own application. Similarly. data center personnel should be 
able to pick the metrics that most closely model their mass storage workloads. allowing 
some prediction of system performance without the need to experimentally configure 
multiple systems. 

Mass storage system benchmarks must be portable, scalable, and reflective of real system 
workloads. Achieving portability will require limiting the scope of changes that must be 
made to the tests for dit'fewnt systems. Scalability is necessary because a mass storage 
system can hold from tens or hundreds of gigabytes to petabytes. and access patterns and 
file sizes will both vary greatly across this range of sizes. Finally, btnchmarks must re- 
flect real system workloads. Rather than rely on a single metric, a mass storage system 
benchmark suite must test both burst and sustained transfer rates and gauge the effixtive- 
ness of migration algorithms using several "typical workloads. 

This paper proposes several candidate benchmarks for a scalable mass storage system 
benchmark suite. These programs are synthetic; they do not include code from actual 
user applications. but instead are based on access patterns observed on real mass storage 
systc ms. Some of the benchmarks generate access patterns similar to those of individual 
programs, typically requiring less than a day to run. Others model long-term accesF by 
many users to mass storage over periods of many days. Both types of benchmarks in- 
clude programs that mimic "rcal world" access patterns ;LS well as others that stress the 
system to find its limits. since both factors are important to mass storage system users. 

While this paper contains concrete suggestions for mass storage systems benchmarks. 
there is still much work to be done. Using feedback from users of mass storage systems 
as well as vendors, it is our hope that this benchark suite will become a standard that 
will ease the process of comparing many different options in storage system design. 

2. Background 

Research into mass storage system benchmarks builds on work in tw3 different areas: the 
analysis cf mass storage system usage patterns and the development of benchmark suit:s 
for different areas of computer systems. There are many papers that discuss benchmarks 
for areas ranging from proccsors to file systems to disks, providing a good foundation 
for deciding what a benchmark should (and shouldn't) do. However, there are relatively 
few quantitative papers on the usage patterns seen by mass storage systems; while many 
organizations study their systems to help plan for the future, these studies are rarely pub- 
lished. 

Of the many papers that have been published about benchmarking, the most relevant to 
thi research are those on file system benchmarks. These benchmarks fall into two broad 
categories: those that consist of a single program [ 1.21 and those that are built from many 
programs and are meant to model longer-term usage [3]. Additionally. many papers use 
ad hoc benchmxuks to compare research file systems to already-existing file systems. 
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The few tile system benchmarks that do cxist are designed to test workstation-class tile 
systems. both standalone and in a networked environment. Several of the henchniarks 
consist ofa  single program sending many mad and wite requests to the tile system; such 
programs include IOStone [ I  1. iozonc [JJ. a-vJ honnie IS] .  Thzsc benchmarks arc tic- 
signed to gauge the maximum file system o. '-k system perfomlance available to a sin- 
glc application over a short pcricd of time. 14, Wvever, constant improvements in memory 
size and disk performance require scalahle hmchmarks: Chen's scalahlc disk hcncliniarh 
[2] addrt-sses this problem tq* scaling the workload to the system used. Still. this scaling 
is restricted to a single program. 

NFSstone and the Laddis benchmark used by SPEC. on the other hand. arc designed to 
model the activity of several programs and their etTccts on the file server. Rathcr than 
prescnt a uorkluad tiom a single client. these benchmarks can mimic an entire net\vorh 0:. 

workstations. Thew benchmarks may be scaled by increasing the file request rate o r  tlic 
filc size o r  both. I'nfortunatcly. thcy arc very specific in that thcy tcst thc ability of;i tile 
=mer to respond to NFS reyucsts. b'hile NFS is a commonly-used file system. it ih not  
clear that good perfimnance for an NFS workload is necessarily the hallmark of 3 high- 
perfornirincc file systc'ni. 

An e ~ ~ n  more complex htnclimark. the Andrew file system knchmark 1.31 tests the ctifirc 
file s>I;tcm by including operations such as file creation and dclction. Ilowcver. the ..In- 
d r w  hcnchmarli is not directly scalable. and still runs for only a fcw minutes o r  ks\. 
C'Iearl> . ;I niass storage sFstcni benchmark must mcasurc perforniancc over longer j w i -  

ods of titnc as well as gauging thc burst rates that the system can attain. 

Xlany rcsc-archers gi1llging llic perfrmnance of their new tilc systcnis create thcir on t i  

"benchm,irks" that involve rc;rtiing and writing many tiles. While such ad hoc hench- 
niarks c;iii provide conipirriwns hct\vecn ditkrent file systems the) require tha t  [lie 
authors of such benchmarks rwi them on all ofthe systsms being compared. This hurdcn 
is not c\ces.;ivc tix rcseiI~c1i~r~ hecnusc the? oticn comparc. their rescarch file systcnl t o  
one or two "real-wdd" sjstcms that arc a!ready running at their site. Ilowcver. this ap- 
proach crerttcs problenis for "normal" users becausc most of them do not have access to 
the systems mhhose performance they wish to measure. While this approach is infeasihlc 
for standardized comparisons of many mass storage systems, the idea khind it is a good 
onc: use ;i typical norkload to measure performance. This method can be varied lo tilid 
both pcrtormancc tinder a normal load and the maximum load a systeni can handle. 

Since s> nthetic hcnchrnarks must mimic actual usage, knowing the acccss patterns cs- 
liihited h) users ot  real systems is crucial. The system at the National Center fix Atnios- 
plicric l<cscrircIi was studied in [6 ] .  and the National Center for Supercomputing 
Applications wa5 studied in [7]. Both of these studies suggest that mass storage systcm 
performance must be measured over a period of days or  weeks because that is  the tinic 
scale o \ w  ivhich file migration algorithms operate. Examining shorter periods is similar 
to running file system hcnchmarks that acccss a file that tits in memory - it provides a 
nie;isurc' o f  pcah biind\vidth hut does not give an indication of long-term performance. 
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These papers, along with other studies done for internal use at various organizations. 
provide a basis for designing benchmarks that test long-term mass storage system per- 
formance. 

Short-term performance of large storage systems is also an important metric. Bench- 
marks that stress the file system as a single program would can model their 110 after the 
single program access patterns such as those reported in [8] and [9], which detail usage 
patterns exhibited by supercomputer and parallel computer applications, respectively. 
Short-term benchmarks might also include programs that stress the storage hierarchy. 
such as one that searches the relatively short file headers of hundreds of multi-megabyte 
files for a certain pattern. 

3. Bencbmsrk Characteristics 

In order for a collection of mass storage system benchmarks to be useful, the benchmarks 
must have several features and characteristics. First and foremost, they must provide a 
good basis for comparing two systems that may be very different. They must also be 
portable and scalable, and should reflect real system workloads. 

3.1 Suitability 

Perhaps the most important quality for a benchmark suite is suitability. A benchmark 
must do two things to be useful. First, its results must bear some relation to the real use 
of a system. Typically, this is a predictive relation - the performance of a benchmark 
should be directly related to the performance of a real workload that the user wii! even- 
tually run. Second, a benchmark suite should allow the comparison of two different sys- 
tems in a manner more meaninghl than “A is faster than B.” While this is a good 
observation. i! is almost always necessary to know how much faster A is relative to E. 

Benchmark suites such as SPECint95, SPECfps5 and Perfect [ 101 are successful in large 
part because they use real programs (or fragments of them) to predict the performance of 
a computer system. A combination of several of the benchmark programs from these 
suites that closely mirrors the intended use of a system can usually be found, and the per- 
formance of the system on the real workload can be approximated by combining the sys- 
tem’s scores on each individual benchmark program. Thus, benchmark reporting usually 
includes both a suite-wide average and a listing of the components‘ individual scores. 
The average is useful for gauging overall performance. while the individual listings allow 
the prediction of performance for a specific workload. 

A relatively small suite of benchmarks works well for CPU benchmarks, but how will i t  
work for mass storage systems? A benchmark suite may contain dozens of programs. but 
they are of no use if a user cannot assemble some of them into a workload that resembles 
her usage patterns. Fortunately, there are some general access patterns for mass storage 



systems that may be generated by a benchmark suite. These patterns will be discussed in 
Section 4. 

3.2 Portability 

The portability of a benchmark suite is another major concern for mass storage systcm 
benchmarks. CPU benchmarks are often portable because the interface to the system is at 
a high-level - programs are simply written in a high-level language such 3s C or 
FORTRAN. Running the benchmark on a new system requires is largely dependent on 
the existence of a compiler for the appropriate language being available for the system 
being tested. While there are may be other requirements for a portable CPU benchmark 
such as environment or operating system dependencies, building portable benchmark 
suits for CPUs is relatively well understood. 

Portability of mass storage system benchmarks is another matter altogether. While mass 
storage systems tend to have the same functionality, they ofken have very different inter- 
faces. Some systems require ii user to explicitly request transfers to and from tertiary 
storage, while others do so automatically. Worse, the commands to effect such transfers 
are often different from system to system. As a result, mass storage system benchmarks 
will likely need to be customized to lzul on each individual system. To preserve portabil- 
ity. this customization should be limited to a few small pieces of code so that porting the 
benchmarks to new systems is not a difficult task. Nonetheless, there may need to be 
large changes in the benchmarks between systems. While it is straightforward to makc a 
small & n g e  to read and write files via system calls or ftp. it may be more difficult to 
adapt a benchmark that assumes explicit transfers of files between tertiary storage and 
disk to a system that uses implicit transfers. These tradeoffs will be discussed in Sec- 
tion 4. 

A second difficulty with portability of mass storage system benchmarks is the existence 
of different features on various mass storage systems. This issue is not present in CPV 
benchmarks - while an individual processor may not have a vector coprocessor or 
floating point unit. it can emulate those features using other instructions, albeit at 3 loss 
of speed. However, mass storage systems may have features that are simply not present 
elsewhere and that greatly improve performance. For example. one mass storage systcni 
might have the ability to compress files before storing them tape, while another lacks this 
feature. Should the two systems be compared without compression? The use of corn- 
pression is likely to slow down the system that uses it, but it will also free up additional 
space. The decision of whether to include such features will be left to  the benchmarkcr: 
as long 3s the settings of such relevant features are reported, a user can choose the appro- 
priate benchmark results. 
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33  Scalability 

The second goal of the benchmark suite is scalability. The suite must permit comparisons 
of two systems of roughly equivalent size, regardless of whether their capacity is 50 GB 
or 500 TB. On the other hand. comparing the performance of two mass storage systems 
of very different sizes makes little sense since the two systems will almost certainly have 
different workloads - a SOGR storage system would not experience many repeated 
reads and writes of 1 GB files. though a 50 TB system certainly might. 

Scaling the benchmarks can be done by a combination of two methods: increasing the 
request rate. and making individdal quests larger. Increasing the request size reflects 
the larger data sets that necessitate larger storage systems. However, more storage space 
can also correspond to a larger user community or faster computers, both of which can 
increase request rate as well as allowing l q e r  data sets. The TPC database benchmarks 
[IO] follow this model. increasing request rate as the capacity of the storage system in- 
creases while keeping request size relatively constant. 

Not all of the benchmarks need be scalable in order to provide a scalable benchmark 
suite, though. Clearly, some of the benchmarks must place a higher demand on the sys- 
tem as it becomes larger, but individual benchmarks need not. For exa:nple. a benchmark 
that mimics the behavior of a single program requesting a single gigabyte file might not 
change from a 50 GB system to a 53 TB sjstem. Since this benchmark measures peak 
transfer bandwidth and nothing else. does not have to scale up as the system becomes 
larger. llowever. other bcnchmorks must measure the performance of the systeni as o 
whole instead of focusing on short-term performance issues such as peak transfer ratc. I t  
is these benchmarks that must take pnrneters governing their behavior to allow them to 
model various workload levels. A benchmark measuring a storage system's ability to 
service clients. for cxamplc. must take the number of users as an input. For small sys- 
tems. this number might bc three or four. For larger systems. though. it could bc sevcral 
hundred. Similarly. average request size and an individual user's request rate \ \ i l l  he Jil- 
ferent for different systems; thew parameters must be customizablc between benchmarks. 

3.4 Feasibility 

Whilc mass storage system benchmarks share many characteristics with CPt ! and disk 
benchmarks, they also have limitations not suffered by CPll and file system benchmarks. 
CPLJ benchmarks usual!>. have running times of a few hours o r  less, with many necdiiig 
only a few hundrcd seconds to complete. Disk benchmarks may takc longer. hut still 
complete in well less a day for even the longest benchmarks. Those time scales arc too 
short for mass storage sysrcm hcnchmarks, however. Individual programs using i1 ni;iss 
storage system may complete in 3 few hours or less, but long-term performance is just ;15 

important. and much more difficult to measure. The effects of' ii poorly-chosen tile nii- 
gration algorithm may not be apparent until several weeks ha\fe passed becausc tlie stor- 
age system's disk is not filled until then, Worse. policies governing f le placement o n  
tape may have little effect o n  overall performance until files are mib.3ted froni dish t o  
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tape and back. a process which could take several months heforc a significant nunihcr of 
files have taken thc path. 

Additionally. longrunning benchmarks are difficult to use for tuning purposes. Seeing 
the e t k t  o f a  faster C'PII on o benchmark suite requires only an hour or two. while rrdd- 
tng one niorc tope drive may not show performance improvement o n  a bcnchniarh suite 
for days. This lack of responsiveness makes it likely that mass storage system bench- 
marks \vi11 he run on simulators rather than on real equipment at least some of the tinic'; 
this requires the development of good simulators that model softMarc systcms and their 
quirks as well a:, hardware. 

A scxond issue for inass storage system benchmarks is the existence o fa  system on \vhich 
the henchmarks can be run. This is typically a simple matter for CDI! benchmarks h- 
cause thc manufacturer usuall> has a system on which the benchmarks can he run. For 
expensive supercomputer systems. the manufacturer netxi only run the suite as part 01- tlie 
development process or even during the testing pcriod for a new system. Sincc. tlie 
benchmark suites take less than a day. the cquipment cost is minimal. For mass storage 
systems. however. equipment cost is not as low. A system is usually built from compo- 
nents from xvcral vendors. and the installation of the software t o  manage the storige is 
hardly trivial. Thc difficulty of assembling E storage system for benchmarks is another 
factor that makes it likely that a benchmark suite uscd for its predictive ability will be run 
on simulated rather than real hardware. 

4. Proposed Benchmark Programs 

Rasccl on the anal>ses presented in several studies of mass storage systems [6.7] and tlie 
behavior of individual programs [8,9]. we propose a collection of mass storage sJscni 
benchmark progmms. '1.0 assure their portability. the bcnclimarks use few file system 
features hcyond reading. writing. tile creation. file deletion and directory listings. Rnthcr. 
thcy focus on the ability of the mass storage system to supply and store data. The! ;Ire 
not restricted to  reading and writing whole files, however; some of the benchmarks pcr- 
fwrn operations that model workstation file usage cf large scientific files including partial 
lite reads. Although such operations may not be supported eficiently by man: mass 
storage systems today, our experience has shown that users viewing large data files often 
do not view the entire file. 

The benchmarks in this collection fall into two broad categories: short-running bench- 
marks that highly stress the system to gauge its maximum performance. and long-running 
benchmarks that model long-term user behavior, allowing the testing of file migration 
algorithms and other long-term processes that cannot be measured by a single program 
that only runs for a few hours. It is our expectation that the long-running benchmarks 
will he primarily run on a simulation model of the mass storage system rather than on an 
actual system because of the time and expense 
a hcnchmark suite for more than a month. 

- .  

involved in dedicatirtg 3 storage system to 
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4.1 Sbort-Running Beacbmsrks 

One aim of the benchmark suite is to measure short-term performance of mass storage 
systems. Since these systems consist of both disks and tertiary storage devices such as 
tapes and optical disks, any benchmark suite must be capable of measuring the sustained 
performance of each of these parts of the system. Measuring the peak performance of the 
disk is straightforward, but measurements of tertiary storage device performance may be 
more difficult, particularly in systems that do not require explicit commands to move files 
between disk and tertiary storage. 

The first program in the benchmark suite merely writes several large files and then reads 
them back. The number of files to be written and the size of the files i. configurable. al- 
lowing users to scale up the benchmark to larger systems. This benchmark only tests 
peak sequential read and write performance; it does not attempt to gather any other file 
system metrics. Nonetheless, the peak performance of a file system on large sequential 
reads is of great interest to many users, necessitating the inclusion of such a benchmark. 

A similar program can be used to measure the ability of a mass storage system to create 
and delete small files. As with the first pmgram, the number and size of files are speci- 
fied as parameters. Rather than merely create all of the files, though, this benchmark 
creates the files, lists the directory in which they were created, reads them in, and then 
deletes them. These operations stress other aspects of the mass storage system software. 
showing its performance on small file operations. 

Another variation on the first program creates several large files and then reads only the 
first few blocks of each file, “searching” for a particular piece of data. This benchmark is 
similar to the access pattern exhibited by a user when she is looking through the headers 
of large data files. 

The remaining “micro-benchmarks” model two types of real user behavior: workstation 
users accessing the mass storage system, and scientific programs using the storage system 
for input and Jutput. Human users typically read a group of files over the span of several 
hours, perhaps performing a few writes during that time. While some files are read in 
their entirety, many are partially read as users look at slices through their data. Since this 
program is designed for measuring short-term performance, it only models a user’s access 
to a single set of data over a relatively short period of time. Longer-term benchmarks that 
model user behavior are mentioned in Section 4.2. While this program only generates the 
workload for a single user, it is possible to run multiple copies of the program, generating 
a workload resembling that from multiple users. 

Batch jobs using the storage system behave quite differently from human users. They 
almost always read entire files and perform more and larger writes than do humans [6]. 
stressing the storage system in a different way. Programs such as out-of-core matrix de- 
composition and global climate modeling make excellent benchmatks because their I/O 
access patterns can easily be captured without the need to actually perform the computa- 
tions called for in the programs [12]. Rather than actually factor a large matrix, the 
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benchmark simply reads and writes the files in the same pattern as the real application . 
Similarly, the bench-k simulating global climate modeling does not do any actual 
modeling, but rather follows the same access pattern as the real program. This allows the 
benchmarking of a high-performance storage system without the need for a high-powered 
CPU to run applications. This is particufarly important for planning purposes, since there 
may not yet be a computer that can run the program sufficiently fast - given the rate 
with which computers increase in processing power, a storage system that will beconis 
operational in eighteen months must deal with programs twice as fast as those running 
today. 

The benchmarks listed in this section are generally useful for determining peak ptxform- 
ance for bandwidth, request rate, or both. Combining the various benchmarks and run- 
ning several copies of each allows users to customize the benchmark to their nceds. 
matching the presented workload to what their installation will eventually support. How- 
ever, these benchmarks are only good for measuring peak rates such as maximum hand- 
width for reading files from tertiary storage or disk or the maximum rate at which a user 
may create small files. They do not measure any long-term statistks such as the efti- 
ciency of the file migration aigorithms or the efficacy of tertiary storage media alloca- 
tion. 

4.2 Long-Running Benr’lmarks 

A second class of  benchmarks are those that generate multi-week horkloads. tJnlike 
CPUs and disks, mass storage systems exhibit activity with cycles considerably longer 
than a day. To measure the effects of file migration and differing sizes of disk cache for 
tertiary storage, benchmarks must run sufficiently long so that the disk fills up. Mcrcly 
filling the disks is not sufficient, though, since the benchmark must also exhibit other user 
behaviors such as occasional file reuse after a long period of inactivity. 

Fortunately, long-term benchmarks can be built from the short-term benchmarks mcn- 
tioned in Section 4.1. Rather than running the benchmark programs alone or in small 
groups, though, long-term benchmarks run hundreds or thousands of instances of !he 
same programs, possibly supplying different parameters for each run. This is done by a 
“master” program that controls the execution of all of the micro-benchmarks. 

In addition to the usLal issues of setting parameters appropriately, the master prograiii 
may also need to throttle the execution of the benchmark suite. For example, a batch job 
that normally takes 200 minutes might take only 180 minutes because of improvemcri:s 
in the mass storage system. Rather than leave the machine idle for that period of time, 
the master benchmark coordinator should run the next benchmark “job.” Of course, not 
all benchmarks need such throttling - it is unlikely that a human being will want to 
come to work earlier just because she finished a few minutes early the night before. 
Thus, the benchmark coordinator only throttles batch jobs, leaving the programs model- 
ing human behavior unaffected. While this may not accurately reflect reality (people may 
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actually do more work with a more responsive system), the question of gauging the 
changes in human response time are beyond the scope of this work. 

Because of the length of time necessary to run a long-term benchmark and the expense of 
setting up and maintaining a system for the weeks rxcessiiry to complete its run, it is 
likely that most long-term benchmarks will be run on siniulations of a mass storage sys- 
tem rather than on real hardware. as will be discussed in Section 4.3. 

4.3 Running the Benchmarks 

A major concern with a benchmark suite is the method used to run it. CPU benchmarks 
are simply run as programs, either individually in or in a group. The results of running 
the benchmark are the time takcn to complete it and the amount of work the benchmark 
program did. A similar principle applies to file system and disk benchmarks because 
their behavior can be cncapsulated in either one or a small group of programs. 

Mass storage system knchmarks follow the same general guidelines but on a dityerent 
time scale. Certainly. some benchmarks will consist of a single program or a small group 
of programs that finishes within a few hours. Since these benchmarks will model indi- 
vidual pi Jgrams. they must intersperse "computation" with requests for file data. This  
presents a problem, however - a mass storage system's performance should not be de- 
pendent on the computation speed of its clients. To address this problem, benchmarks 
will avoid computation as milch as possible, focusing on file I/O. Benchmarks \vi11 thus 
often be of the form "transfer all of this data, and then do nothing with it." While this 
l b r m ~  removes !he effect of a slower CPU, it allows the Iile system to perform 
"optimizations" by not actually fetching or storing the requested data. This can he pre- 
vented by writing files with pscudo-randomly generatcd data, reading them back in. and 
c'lecking the rcsults b;, either tising thc same generator or conipuling the digital signature 
L; t k  file and cnsuiing that i t  matciics that computed lbr the original. 

Workload generators that m y  rim for many days present a dift'erent set of problems. I t '  ;I 
system crashes in the middle of- a one hour benchmark. the program can just be rerun 
from the start. This is not practical for benchmarks that may run for more than a month 
(though it may cncouragc mass storage system softwarc vendors to improve the quality of' 
their code...). Instead. the :vorkload generator may be rcstartcd so it  begins with the next 
request after the last one that conipleted successfully. Of coursc, Fuch an outage will ad- 
versely affect overall performnncc, since the time spent fixing [lie s y  tem counts towards 
the total time necessary to run the benchmark. 

4.4 Benchmark Customization 

Running the benchmark yrugrrtms may require customization in the form of providing the 
appropriate calls to open. rcad. ivrite. close, and perform other operations on files and cii- 
rcctorics. To facilitate customization. tlic hctichmark suite uses a standard librar? ;icross 
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all programs to access the mass storage system. This library can contain real calls to ;t 

storage nianager. as would be required for short-running benchmarks. or it can contain 
calls to a inodel of the storage system that returns appropriate delays. Since the intcrfiicc 
to the storage system is localized to a single file, the benchmark suite can easily he portcd 
to new nrchitectures by modifying that library file. 

Localizing the interface to a single file allows benchmarks to be Lvidely distributed. iillll  

lessens the ability of manufxturers to "cheat" on the benchmarks ty reducing 111c 

changes they may make to the benchmarks. I t  also thcilitates the development ot' ncu 
benchmarks. since the programs may call a standard interface rather than requiring ;I 
custom interface for each system. I t  also encourages the development of a standard set 01' 
capabilities for mass storage systems because "special" functions are not exercised by thc 
benchmarks and will  not improve tlicir performance. While this may sound rcstricti\ e. it 
will actually benetit usus by enwring that they will not need to niodi1). their programs to 
run efficiently o n  different mass storage systems. 

5. Evaluating the Benchmark Programs 

The true test of hcnchmarks is their ability to predict system behavior: thus. we plan to 
test our benchmark suite on several systems to gauge haw wrcll its results niatch thc itctllill 

pcrforniance of Norking systems. Because the dcsigns presented in this paper are \vry 
preliminary. \vc espcct that several rounds of benchmark tuning will he necessary betiwe 
the suite is ready for wider distribution. 

Thc hasic testing method is similar to that of benchmarks in other areas: obtain perform- 
ance nicasures tiom thc bcnchinark by running i t  on scveral systems. and compare the 
rcwlts u i t h  the actual performance of thc systems. This exercise is not as simple alr i t  
may setmi. however. because n o  IWO mass storage systems have the same workload pat- 
tern. I - o r  a fair test. i t  will be necessary to select the most appropriate benchmark niis for 
a system without knowing in advance what performance to cxpect. Thus, our final test 
will be to run the benchmark on one or more systems before mcasuring performance and 
looking for correlation bctwecn predicted performance and real perfomlance. 

6. Future Work 

The work on mass storage system benchmarks presented in this paper is still in its w r y  
early stages. By prcsenting these ideas to the mass storage system community at this 
point. we hope to get valuable feedback and direction for the construction of this bench- 
mark suite. In particular. we hope that mass storage system users will contribute reprc- 
scntative codes to be added to the collection. 

Our tirst goal is to produce source code for several of the benchniarks mentioned in the 
paper and run them o n  difterent storage systems including workstation tile servers 3s well 
;IS multi-teratyte tertiary storage-backed storage systems. Using the results. we plan to 
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refine our benchmarks, producing a set of a dozen or fewer programs that generate 
workloads representative of those seen in production mass storage systems. 

We are also building a simulation model of mass storage systems to allow the running of 
long-term benchmarks. M e r .  this model is complete, we will Ire able to examine long- 
term effects such as the tradeoffs between different file migration algorithms and per- 
formance gains from different sizes of disk cache for tertiary storage. Using the bench- 
mark suite rather than a particular workload will allow us to come up with general 
guidelines for building mass storage syslems rather than the site-specific advice common 
in the field today. 

7. Conclusions 

This paper presented design principles for building a benchmark suite for a mass storage 
systems with capacities ranping from tens of gigabytes to petabytes. The benchmark pro- 
grams will be synthetic; while they will be based on access patterns observed on real 
mas storage systems, they will not include real code from actual user. Some of the 
benchmarks will generate access patterns similar to those of individual programs, typi- 
cally requiring less than a day to run. Others will mt ,el long-term access by many users 
to mass storage over periods of many days. Both types of benchmarks will include pro- 
grams that mimic ”real world” access patterns as well as others that stress the system to 
find its limits, since both factors are important to mass stornge system users. Using feed- 
back from users of mass storage systems as well as veadors, it is our hope that this 
benchmark suite will become a standard that will ease the process of comparing many 
different options in storage system design. 
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Abstract 

Large scale scientific pro.jtx:cts generite and use hugc amounts oi c ala. For example, the NASA 
EOSDlS project is cxpccted to archive one pctahytc per year of  r.1 v satellite data. This data is 
made autoniatically availahlc lor processing into higher level data products md for dissemination 
to the scientific community. Such large volumes of data can only he storcd in robotic storage 
lihrarics (RSLs) for near-lint access. A characteristic of RSLs is the use of a rohot arm that 
trmsfers media ktwccn a storigc rack and tho n-adwrite drives. thus multiplying the capacity of 
thc system. 

The pcri'ormancc of thc RSLs can k a critic& limiting factor of the pcrtormancc of  the archivc 
system. However. thc many interacting componcnts of an RSL makc a pcrt'ormrtncc ;~niil~sis 
difticult. In addition. diffmnr RSL componcnts can have widcly varying pcrlormancc 
charactcristic~. This papcr dcscriks our work to  dcvclop pcrli,rmancc models of a RSL. W: first 
develop a pcrformancc, nitdcl of a RSL in isolation. Next. wc show how rhc RSL iiiodcl c;tn he 
incorpcmrcd into ;I queuing nctivork mcdcl. Wc IISC the models IO nnkc soi i~c  cx;riiiple 
pcrlomiancc stud;cs 0 1  archivc systcnis. 

http://w ww1.ci.s. ufl.edu/--red/ 

lntroduct ion 

h r g c  scale scicntific projects generate and usc hugc amclunts 0 1  dah. For cxamplc. thc h'tISA 
EOSDIS prcjcct is cxpccfcd to archive one pctahytc per year of r-,iw satcllitc dar;~ IKBCIIOJJ. 
This data is madc automatically available for proccssing into higher level data products and tor 
dissemination to rhc scientific community (see. I'or cxamplc, the reports in I ESDlS 1 ). Auioiiialic 
inanirgcmciil ol' such larpc data sets rcyuircs thc use ol' tertiary storagc, typically implcnicnted 
ii\ing rohotic .\toru,qt' librrrrie3 (RSLs). In addition to EOSDIS :ind related projects. illany 

orpiii/atioi-.s and scientific disciplines makt use of mass s:oragc iirchi\cs ( f o r  cx;iinplc high 
energy physics jLu95J and digital lihriirics [CoHuS)3]). 



The database community has also become interested in the use of RSLs 
[DSF94,CHL93,Squoia2k,Sa95]. This interest is motivated in part by scientific database 
problems such as EOSDIS. Another motivation for integrating RSLs with on-line database 
systems is to facilitate data warehousing. 

Tertiary storage is required when the managed data set becomes 100 large to store economically 
with conventional magnetic disk devices. The point at which tertiary storage becomes neccsary 
is an economic uadeoff. Currently. it seems that tertiary storage is needed to manage more than a 
terabyte of data. A RSL is much slower than magnetic disk storage. and data access latencies can 
run into minutes even on unloaded systems. However, RSL-rcsident data can he xcessed 
automatically. Hierarchical storage management systems, such as Uniuee, Filestore, and Amass, 
provide the illusion that the RSL is an exension of the file system. Access to archivd data 
incurs a short delay. The storage capacity of a data system can also be increased by using off-line 
storage -- i.e. tape racks with human operators. Access latencies with off-line s t o w  can hc. very 
large, ranging int;, hours or days. but the data storage capacity is limited only by the size of the 
warehouse that one can afford to rent. Since RSL provides data volumes and access latencies 
between those provided by on-line and off-line storage, it is often referred to as near-line 
storage. A cost analysis of on-line, near-line, and off-line archives can be found in [KGWOJ. 

A characteristic of RSLs is the usc of removable media and a robot arm. The removable media 
(e.€. magnetic tape, optical disk, crtc. am normally h a t e d  in ;i storage rack. To service a r cqwt  
Cor a file, the robot arm fetches the proper media from the storage rack and delivers it IO a 
redwrite drive. The media is acccssed in the normal way to fetch the file. Finally. thc mcdia is 
returned to the storage rack. The capacity of RSL is the product of the capacity of the media and 
the size of the stzras rack. Recent magnetic tapes have a data capacity on the order of 10 
Gbytes, and storage rack sizes range from 10 to 1000 media (approximately). The tirnc to fetch 
and mount the media which holds the requested file can he a large component of the access 
latency. 

The performance of the RSLs can be a critical limiting factor of the performance of the archive 
system. Given the high data request rates expected for EOSDIS, attation to handling these 
rcquests efficiently is critical [KBCH%,ESDIS]. However, the many interacting compcnents of a 
RSL make a performance analysis difficult. In addition, dificrent RSL components can have 
widely varying performancc characteristics. 

This paper describes our work tu develop performance models of tertiary storage. We first 
develop a performance model of a RSL in isolation. Next, we show how the RSL model can be 
incorporated into a queuing network model. Finally, we model fork-join jobs to study the 
tradeoffs of using multiple deviccs. We use the models to make some example performance 
studies of archive systems. 
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The mdcls  described in this paper, developed for the NASA EOSDIS pro-iect, are implemented 
in C with a well-defined interface. The source code, accompanying documentation. and also 
example JAVA applets. are available through: 

Previous work 

Considerable work has been donc to develop performance models of mius storipe. Rahm 
(Rh921 presents a simulation study of a database system with a hierarchy of storage devices. 
Riunakrishnan and €mer [RE891 present a queuing model of a client/server file system. 
Drakopoulos and Merps [DM921 present ;i closed queuing model of a clienllserver storige 
system with hierarchical storage. Kelly, Haynes, and Ernest [KHE91] discuss a bcnchrnark for 
network storage systems. Hauscr, Rivera, and Thoma [HRlVl J discuss the performa~.ce of  tlieir 
networked WORM semcr. 

Some work has hecn done to characterize the performance of mass storage devices. Waters 
[Wa74) presents a validated model of seek times in hard disk drives. More recently. Rucmmler 
and Wilkcs [ReWiWj present a detailed model of a modern disk drive. and discuss the 
difficulties inherent in YO modeling. Christodoulakis and Ford ICF881 and Christcdouldcis 
[Ch87] prescnt analytical performance models of optical drives. Chinnaswamy [Ch92 1 prcsents 
performance models of a streaming tape drive to investigate the benefit of a cache. 

Models of disk arrays resemble the models presented in this paper in several aspects. Burkhd,  
Claffy, a d  Schwarz [BCSBI] present a simulation study of a disk m y  scheme. Lcc and Katz 
ILK931 and Yang. Hu and Yanp [YHY94] present ar.alytical mcxlcls of disk mays. Chcn CI aI. 
[CL,GKP94] and Thomasian Ill195 j present surveys of research in RAID modcling. 

Several authors have modeled a RSL. Butturini [ B u ~ U )  prescnts the results of a simulation study 
of an optical disk jukebox system. Hevner [He851 presents a model of an optical jukchox that i s  
used for a database application. Howard [Hog21 gives a performance model for data duplication 
from an archive. Finestead and Yeager (FY921 give performance measurements of a Cnitrcc file 
server at the National Center for Supercomputer Applications. Hull and Ranadc IHRY3J prcscnt 
measurements of tape loading and unloading, and of data throughput, in a tape silo. Bcdet et al. 
[Be931 discuss the results of a detailed simulation model of thc Goddard DAAC. Pcntakalos, 
Mcnasce, Halern, and Yesha [PMHY95) develop a queuing nctwork modcl tbat incorporates a 
RSL. Daigle, Kuehl, and Langford [DKL90) present a queuing model of an optical disk jtikchox. 
Golubchik, Muntz and Watson (GMW95j analyze tape striping on an RSL. 

The analyses most closely related to the one in this papcr are [PMHY95,DKL90,GMWY5I. The 
analysis in [DKLW] gives a detailed model of access times to data on an optical platter. 
However, only one drive is permitted and contention for the robotic arm is not modclcd. In 
[PMHY95], the authors present a detailed model of a data centcr, incorporating RAlD disk 
caches and user computation. However, the authors assume that contention for the drivcs in the 
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RSL is negligible, and modzl the RSL as a delay server. Contention for the robotic arm duc io 
batch arrivals is mode!d in (GMW951, but contention bstwccn jobs is not modeled. 

The contribution of this work is io present a validated mtwfel of' ii RSL that xcounis ior hatch 
arrivals, multiple drives. contention for the robotic arm, and realistic operiiion. We show. how 
the model can be used to make a variety of data layout anq dcvicc comparison studics. Findly, 
we show how to incorporate thc RSL model into a queuing network model. 

Model of a Robotic Storagc Library 

Our model of a RSL is illustrited in Figure I .  Previous studies of mass storagc atchivc log Ides 
(see, for example. IJo95a,DKLY(I]) indicate that request!! to ;I mass storapc deviw coiiic in 
batches. This study has been c:)rrohw&ed by our studies of access to  preliminary vcrsions of the 
EOSDIS archives (the VO archivcs) IBcdetY6. DunhmNonh961. As a rcsult, our RSL mcdd 
u s s  batch arrivals. 

drives 

storage rack 

pb anival 

Figure 1 

A uscr rcqucsts thiit f IIILY hc Ioad~d into on-line stor;~pe. and t h c w  IiIcs arc distrihurcd ovcr m 
media in the RSL. Thc request is siitist'icd when cvcry file has hccn Ioadcd into on-liiic storagc. 
So, it user Ioquc~r consists 01 tti job.$. each 0 1  which must he cc)inplctcd hcforc thc rrqiwt in 
linishcd. A RSL conhist.\ 0 1  i1,1 drive's, each of  which can rcad I):  tvritc ilily of the mcdr;i 111 thc 
ASL?. a storage rack conraining thc rcrnavahlc media. and a rohtii arm for rranslcrring ihc mcdia 
hciwccn ihc drivcs and thc strwagc r d .  The model 0 1  ;L RSL is illustr;itcd i n  Figure 1 .  



Figure 2 

The steps Laken by a drivc in mtricving files from a mcdis is illustrated in Figurc 2. Whcn a 
request arrives, its jobs arc placed in thc job queue. If there are jobs in the RSL queue and a drive 
is idle, the drive allocates onc of the jobs for exccution. First. the robot arm fitchcs the 
qpropriatc mcdia from the storage area and loads it into thc drive. If the robot arm is busy 
serving other drives, the drive must wait for service. After the media is brought to thc drivc. it 
must he mounted. For cvery file of interest on the media, the drive must suck to thc start of  the 
tile, spend a settling time for precise positioning and opcning communications channels. and thcn 
transfcr thc lilc to on-line storage. Aftcr all files havc bccn transferred. the mcdia is rcwound and 
rcturncd io the storilgc rack by the robot arm. Howcvcr, thc job is linishcd once all of' thc l'ilcs 
have bccn transfcrred. 

In the next section, we briefly discuss our analytical performance model of ;1 RSL system (a  more 
detailed discussion can he found in [Johnson96]). In this prcliminxy model, we makc the 
following assumpions: 

Requests arrive in a Poisson process. 

The distribution of the n3mber of media per rcquest and the nurnbcr ol' I'iIcs per 
ruqucst must be qecified. In the model discussion, wc assume that thc numbcr of 
media per request and the number of files per rcquest h a w  gcometric distribution.. . 
These can hc replaccd hy user-specified distrihutions (e+ empirically dctcrmincd). 
but at thc cost of rcquiring the user to specify mort' parameters. 
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The RSL can contains one robot arm. The robot arm can access every media, and 
every drive. 

Every drive can read and write every media. 

Requests (i-e., jobs) an: serviced first-come-first-sere3. 

The service for a request is completed w h a  the last file of the batch has been read 
(written). 

Network or communication channel conention is not significant4. 

Service times at the drives are independent. 

Analytical model 

A RSL presents many difficulties for performance modeling, including batch arrivals, multiple 
servers, derived parameters, and interacting components. Ihe  primary component of the RSL 
model, the Mx/G/c queuc, has been studied and solved in the literalure ITijms94). Solving the 

actual M'IGIc queue is intractable, so the solution technique is I interpolate between the results 
for the MX/M/z queue and the MX/D/c queue using the coeffkient of variation of thc servicc time 
as the interpolation parameter. Because of the potenrial complexity of the batch amval 
distributions, we do not use explicit (Le., generating function) formulas. Instead, we numerically 
solve the recurrence eqilation that defines the state occupancy probabilities. If the occupancy 
probabilities of the first N states must be computed for an error hound of c, then solving the 
M'/M/~ queue requires o($) time and solving the b. ~c queue requires o(ivJ) time. 

Fortunately, we can take advantagc of the nature of the problem to speed up the solution times. 
The state occupancy distributions eventually converge to a gcomctnc distribution (].e.. p , ~  = ro p ~ -  
I ) .  Therefore the recurrence equations only need to be solved up the first No states, and the 
remaindcr can be computed using the to ratio (or perhaps the performancc metria can be 
computed directly). No depends primarily on the distribution of the size of the batch arrival. 
Fortunately, the batch arrival distribution will have a short tail -- one cannot request that more 
media than exist in the storage rack be mounted, and usually only a few media are required to 

~~ ~ 

3 
situation has a negligible impact on performance in this model. 
4 
Communication contention can be incorporated into the seek times or mount times using standard techniques [Ka92]. 

A simple optimization is to load files for all requests once a media has been mounted. We assume this 

Polenrial model users indicated lhal communication channel contention is not a problem for their systems. 
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satisfy a request. By using these tricks, we implemented batch queue solvers that are fast enough 
to be incorporated into a higher level model which calls them many times. 

We model the RSL as an Mx/G/c queue -- that is, a queue with Poisson batch arrivals, general 
service time distribution, and c servers. The parameter; of a Mx/G/c queue are: 

Arrivalrate 

Mean service time 

0 Coefficient of variation of service time 

Batch size distribution 

Number of servers 

All but the service time distribution arc input parameters, so our analysis is focused o n  how to 
compute the cxpectcd scrvice timc, Ed and thc coefficient of variation cvd. To computc queuc 
length distributions and expected waiting times properly, we necd to  computc thc timc that a 
cirivc is unzble to serve other jobs pcr media that it serves. This period includes the time to 1i.tc.h 
the media, mount it, seek to each tile, transfer each file, rewind and +ct thc media, ilnd return i t  
to the storage rack. We will incorpomtc the timc to return thc media as part of thc mcdh retch 
time, so we have: 

drive scrvice = (robot fcrch)+(mount time)+(seek timc)+(translcr time)+(rcwitid timc) 

Since we are interested in the response tinie of the last job in thc batch to finish ji.c.. instcad of 
the average job), we need to modify the response time computation. An efficient algorithm for 
compi *ing the response time of the last job in the batch is given in fKa921. The modified h.I'/G/r: 
queue provides the batch response time RbatCh, the drive utilization rd. and pd(O), ...,p,d I?,/- I ). the 
probability that 0, ... , nd-1 servers arc busy on a request arrival (where nd is the numbcr 01' driws 
in the RSL). The effective drive service timc (and PA.)) depcnds on the robot respoiisc time, 
which in iurn depends on pd(.). Finally, the job is finished when the last file has been rriinsllrrcd, 
there is no need to wait for the tape rewind. Therefore: 
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For more information about thc derivations in the modcl. plcase scc our othcr rcport 
[ Johnson961. 

Interfaces 

The RSL solver consists of ri numbcr of modules, mostly consisting of proccdurcs to solvc 
bf/G/c queue. Figure 3 shows ;I map of thc proceduri crills. Thc !unctions rslsdvc: and 
rslsolvc-f are thc entries to  the RSL solver. 

Figure 3 

Thr: prototype fc. r ihe rslsdve function is 

v o d  ,dsol;*?(float I.float fr,float mr,int nd,int N,flOat,Etr, 
float Vtr.float tmt.flnat Xb,floar Esz,float Vsz.flo3t Erwd, 
float VrwdJloat (* seekfun)( i ni, lloal*, floal*).int ncust, 
lloat *drho, flost *dR. float *dW. float* dRv, float *dWv, 
float *rrho,float *rR, Iloat *rVv’,float ‘dmrr, float *dV, 
that *h;tr,mu,float *drhusy.int DEBUG) 
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where the input parameters arc: 

e 

e 

e 

e 

0 

e 

a 

0 

0 

e 

e 

e 

e 

e 

e 

1 is the arrival rite. 
fr is thc avorage numhcr of lilcs per request. 
mr is thc average numhcr of media per request 
nd is thc numhcr of drives in the RSL. 
nr is the numhcr of rohot arms. 
Etr is thc is the average robot fetch time. 
Vtr is thc variance of the robot fetch time. 
tmt is the media mount time. 
Xb is thc transfer rate. 
Esz is the iiver~ge file size. 
Vsz is the variance in the file size. 
Erwd is thc avcriigc taps rewind and unmount timc 
Vrwd is rht. vsriancc in the average tape rewind and unmount time. 
moments of thc seek time, givcn that nl'iles are loaded. 
DEBUG is set true to print a trace. 

And the output paramctcrs arc: 

e 

e 

e 

e 

e 

e 

0 

e 

e 

e 

drho is the drive utilization 
dR is the hatch job response timc 
dW is the batch job waiting time 
dRv is the variance in job response time 
dWv is the variance in job waiting timo 
rrho is the robot utiliziition 
rR is the avg. robot response timc 
rW IS thc avg robot waiting timc 
cimu is the drive scrvicc time 
dV is the variance of drive scrvicc 
hascmu is the basc drive scrvice timc 
drbusv is an array where drbusy( i )  is the long-tcrm prahahility that I drives iIrc husy. 0 
e= I e= nd-I (drbu. j must point to the sroragc location liw the array when thc call is 
made). 

The rslsolvc function assumes that the numbcr of' mcdia pcr request and thc numbcr 01' filch pcr 
mcdia havc ;i gcomctric distribution. In the rslsolvc-1 function. thc user supplies the Jihtrihution 
o f  thc numhcr of mcdia per request, but thc numbcr o t  film per nicdia has a gcrmctric 
distribution. Thc prott'typc lo r  the r~lsolvc-I' function is: 
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void rslsolve-f(float Moat fr. int nd.int nr,float,Etr, 
float Vrr,float tmt,float Xb,float Esz,float Vsz,float Erwd, 
float Vrwd, float *bd, int bmax, 
float (* seekfun)(int,float*,float*),int ncust, 
float *drho, float *dR, float *dW, float* dRv, float *dWv. 
float *rrho,float *rR, float *rW,floai *dmu, float *dV. 
float *basemu,float *drbusy.int DEBUG) 

where 

bd is an array where bd[ i l  is the probability that a request requires I media. 
0 bmax is the largest number of media required to service a request. 

Validation Study 

We wrote a simple RSL simulator. The simulation accepts batch arrivals, quires  that a robot 
unload and fetch a media before a drive can service a job, handles multiple drives, and accounts 
for media rewind times. Thc drivc scrvice time, except for the robot snn component, is sampled 
from an Erlang distribution. 

We used the following values of the parameters in the validation study: 

fr = 20. 

bd[. J : Geometric distribution. 

nd=4.  

Etr = 10.0 seconds. 

. vtr = 10.0. 

tmt = 10.0 seconds. 

0 X-b = 1.0 Mbytdsec. 

We ran four sets of experiments to test the model. In the “large files” experiments, Esz=50, 
Vsz=IOO, Tfs=50, and Tsl=l. In the “small files” experiments, b z = 5 ,  Vsz=lO, Tfs=20, and 
TsI=2. We tested the model with mr=2 and mr=6. 
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The results of the validation study arc shown in Figures 4 through 7. In cach case thcrc is close 
agreement between the analytical and the simulation models. The most difficult case is when the 
files are small and distributed over an avetdge of six media, because the robot fetch times 
constitute a large portion of the dri! service times (about 224 c?f the total drive scrvice time 
when the robotic arm waitirig time is added). However, the analytical model is accurale enough 
to predict response times and drive utilizations. Charts comparing analytical and simulation 
drive utilizations are shown in Figures 8 and 9. 

Performance Study 

A perfgrmance model is useful for studying implementation alternatives. In this scction, we 
present two sample performance studies based on the RSL model. 

Clustering 

Conventional wi Aom holds that striping or declustering is necessary for obtaining high transfer 
rates from tertiary storage (by making use of parallel YO). So, one should spread the filcs of a 
typical request around as many media as possible. conventional wisdom also holds that 
swapping media is a source of great inefficiency in RSL access, so that one should try to ensure 
that the files of a typical request are placed on as few media as possible. 

Neither argument is convincing, unless one has a predictive performance model. We ran the 
"small files" experiment with mr ranging between 1.2 and 8. In Figure 10, we plot the response 
time of a request against the number of media per request for varying amval rates (A similar 
chart can be found in an analysis of tape striping [GMW95]). For low arrival rates, setting mr to 
approximately nd produces the best results. When lamhda=.0001, setting mr  =3 results in a 22% 
lower response time than setting m ~ 1 . 2 .  For high arrival rates, setting m-2 givcs lower 
response times than other choices. 

In Figure 11, we plot the drive utilization against mr for varying arrival rates. Increasing mr 
causes a linear increase in the drive utilization. As the arrival rate increases, it becomes less 
likely that all nd drives are available to service the request. So, distributing the files over a 
smaller number of media reduces queuing delays. If the demand on the RSL is expected to be 
close to the device's capacity, then mr should be small to increase the maximum throughput of 
the device. 

The question of whether to cluster or deeluster the files on the media can be summarized as: 

If the expected drive utilization is low [PMHY95] and fast response is important. then 
declustering can be a good strategy. However, the decrease in transfer timcs must be 
larger than the increase in queuing delays. 

If high throughput is important, clustering is a good strategy 
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Number of Drives 

Many RSLs allow the user to install a ranging number of drives. AdJiilg drives to a RSL can 
improve the pcrlurmance 0 1  the device. But after a threshold. adding drives doc.\ not 
significantly improve pcrlormancc. 

We ran a sample study using the "small files" paramctcrs and ftjur nicdia per rcyucst. In Figure 
12, we plot thc rcsponsc time vcrsus the amval ratc for a tiumhcr of  drives varying botwt:cn 2 
and 8. Adding a drivc significantly improvcs perforrnancc up to lour drives. but gives Icss hcncl'it 
after four drives. In Figure 13, we plot the drive utilization agcinsi thc arrival ratc. Adding a 
drive to the RSL increascs thc capacity of the device. Howcvcr. thc robot arm will start to 
become a bottleneck. This can he sccn in thc non-linear increase in utilization ol' soiiic ot' the 
c 'mcs,  lor cxamplc tor nd=8. 

Computing Response Times for Particular Jobs 

Thc rslsolve function computes thc rcsponsc time for an tlvcrrtgc rcquest. Howcvcr. i l  is often 
necessary to compute the expccrcd response time for a particu!;lr reyucst (with il particular 
number of media io be accesscd. ctc.). The scrvtirne* routines use informiition compu. ! by 
rslsolvc to compute rcsponsc timc3 for particular requests. Thc pr'x 'type :'or the scr-vtiii,c-rnI. 
function is: 

void servtinic-mf(floal* hd,!loa: hnux.lloat* pr,tloat m, int c, 
float* Escrv, float* MZscrv) 

whcrc the input parimctcrs arc: 

0 

0 

m -sowice ratc. 
c - numhcr ot'scrvors. 

hd - batch arrival distribution. 
htnax - largest batch arrival. 
pr - prlkl is thc probahility that k scrvcrs arc busy. 0 c= k < i d  

And tnc output paramotcrs arc: 

0 Escrv - average rcquc.\t scrvicc time. 



MZscrv - 2nd niomcnt of rcqucst service timc. 

The function scrvtimc-mf assumes that the servicc time has s n  cxponcntial distribution. A 
similar routine, scrvtimc-dt, assiimcs that thc service timc is dctcrministic. Rcs: ,lis tor pcncral 
service timc distributions arc obtained through intcrpolation. 

We considcr thc following application. A large scale data cciitcr is likely IO have multiple RSLs. 
The dcvtccs mighr be acquired to h a d k  data ccntcr growth, o r  muhipic small dcviccs might be 
less expensive than a singlc large dcvicc. In this scction, wc discuss an iipproximation to the 
rcqucst rcsponsc time whcn the rcclucst is scrvcd by multiple RSLs. 

If a requcst is services by two diftcrcnt RSLs, the rcqucst is f i n i s h 4  whcn both dcviccs havc 
completcd their part of  thc rcqucsr. Since we assume that requests arc inctcpcndcnt, wc trccd to 
analyzc a fork-join qucuc with intcrfcring traffic. Thomasian and Tantawi (ThTa94ThWil havc 
found that a good approximation to thc rcsponsc timc of thc fork-join job is to takc thc maximum 
of the rcsponsc times of' each dcvicc (we assum an Erlang distribution on the rcspoiw time 
whcn computing odcr  statistics). 

For an experiment, wc applied the "largc filcs" workload to two RSLs. with both rccciving the 
samc arrival ritc. Wc consideref! a rcqucst that required filcs lrom six mcdia. In Figure 14 we 
plot thc rcsponsc timc of this rcquc'd against the arrival rate, *tnd varied the numhcr 01' nicdia 
that must bc loaded from each dcvicc. The results show that whcn the load on the tcrtii:ry stomgc 
dcviccs is low, it is hetier to divide the rcqucst cvciily hctwccn the two dcviccs. But. whcn the 
load is high i t  is heifer to usc onc dwicc only. Thc reason lor this result is that splirring thc 
rcyucst bctwccn thc two dcviccs providcs parallcl YO, bur il' thc rcqucst lotrd is high. ihcn thc 
variance in thc rcsponsc timcs hcctmws large. Thus. the decision I t )  allocittc files s o  that most 
requests use only one dcvicc or that most requests use both dcviccs dcpcnds on the cxpcctcd load 
placccd on ihc dcviccs. 

Queuiiig Network Model 

A mass storage data system consists of many componcnts in addition to the RSLL Typical 
hicrarchical storagc rnanagcmcnt systcms use a database to track lilc 10 media location cliippings, 
and maintain I I  simblc staging and caching area. Thc computing centers that itsc tcrti;iry sloragc 
often havc liirgc scale computing tasks. For examplc, EOSDIS archivcs m w t  pcrlorm /wo,/uct 
,y:uiirrcitiort to filter. corrcct, remap. and fuse salcllitc images (see thc reports iii IESDISI. ~ i i d  also 
the discussion in (PllfHY951). 

To capture the cflicrs ol' RSLs in computing systcms, we need to integrate the RSL niodcl in io  ;1 
queuing nctwork niodcl. Thc typical ;ippr('iich for incorporating dwiccs with unusual rcsponsc 
timc charactcristics in lo  a yuciiing nctwork modcl is to  ulrc nic;in value analysis ( hlV11).  ;rid 

dcvclop a MVA rccurrcncc fc r  thc dcvicc in question IKii'I2I. Howvcr. i t  1 5  ditficiilr to ~ l ~ ~ v c l o p  
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such a recurrence even for multiple Server devices. 
integrdting the open RSL queue into a MVA model. 

Therefore. we take the approach of 

Although the RSL model solwr is fast (about 2 seconds of execution time), an exact MVA 
solver requires an iteration ovcr every possible population vector. If the population is large and 
there are many job c1;isses. solutir’n times become intolerihly large. We instead used an 
approximate MVA solver, making use of Sthweitzer’s approximation on queue lengths and 
Bard’s approximation for the load dependent servers [ Ka92 J. The approximate MVA solver built 
using these approximations compute the throughput at e x h  iterition. which we use ;1s the arrival 
rate at the RSL (after scaling by the visit ratio). 

The function that solves the queuing network mod31 is closedyn-rsl. Its prototype is: 

int clOSedqn-rSl( int M. int K. double D[MaxM](MaxClass], double* N, 
in[* servtype. double alpha[MaxLD]IMaxPop]. sma rslpa~amstr+ rslparam, 
double visit[MaxM1[MaxClass]. 

double lam-out[MaxClassJ. do::ble Rloc[MaxM1IMaxClassl, double* U) 

where the input parameters are: 

e 

e 

e 

M - number of servers. 
K - number of classes. 
D - D[k][r] is the service demand of a class r job at scrver k. 
N - N[r] is the number of customers of class r. 
servtype - scrvtype[k) encodes server k’s type, and possibly points to additional 
parameters. 
alpha - dpha(l][*] are rhc service rate multipliers of load dcpendcnt server 1. 
rslparam rslparamfl] is a structure containing the service parameters of RSL 1. 
visit - visit[ kllr] is the number of times a class r job visits server k. 

And the outrut parameters are: 

0 

lam-out - lam-out[r] is the throughput of class rjobs. 
Rloc - Rloc[k][rj is thc residence time of a class r job at server k, per visit. 
U - U[k] is tne utilization of server k. 

Incorporating an open queuing model into a closed queuing network can introduce inaccuracies 
(we implemented some heuristic corrections). To test the accura-.’ of the aoproximate MVA 
model, we simulated a computer systev tith a RSL and three otrrer queuing devices. The 
requests to the RSL used the “1a:ge f i ! - ’  .- doad, and every customer submits a single request 
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to the RSL per task execution. There are three queuing devices, with per-task service demands of 
250,4;)0, and 350 units of work. respectively. 

We plot the response time of the RSL against the number of customers in the system in Figurc 15 
for a sleep time of S O W  and 9000. The mcdel is accurate even for a small number of customers. 
However, the accuracy declines when the number of customers is large and the sleep time is 
small. This problem is occurring becau~e one of the queuing devices is saturated, and the 
approximate MVA solver becomes inaccurdte in these situations. 

Conclusions 

We have developed an analytical model of a robotic storage library and validated. the model by 
comparison to simulations. The RSL consists of a storage rack for removable media, a set of 
drives that read and write the media, and a robotic arm that transfers the media bctwcen the 
storage rack and the drives. 

The RSL model can be  sed for many useful studies. We provide examples of data layout and 
device selection studies. A RSL is used as a part of a larger computing system. We incorporited 
the RSL solver into an approximate M V A  queuing netwotk model, and validated the model by 
comparison to a simulation. 

We have developed this model to support NASA's EOSDIS on-line archiving efforts. Future 
work will he directed towards refining the model and providing studies useful to archivc sites. 
This work includes further model rcfinements, and encapsulating the yueuint model solvcrs into 
Java applzts that perform particular analyses. 
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Abstract 

In r twn t  yoars, I/O-efirietit algorithms for a wide variety of pra\,lcnis have 
appeared in the literature. Thus far, trowevcr, systems specifically desig:d 
to assist programmers in implementing such algorithms have remained scarce. 
TPIE is a system designcd to fill this void. It supports I/O-efficient paradigms 
for problenis from a varirty of domains, incliiditig coinpiitat ional gromctry, 
graph algorithms, and scientific computation. Thc TPIE intcrfacct frees pro- 
gratntners from having to deal not only of explicit read and writc calls, but also 
tile conrplex tnrmory management that mist he pt?rfortnrd for I/O-cfficicmt 
computation. 

In thi5 paper, we discuss applications of TPIE to problcms in scientific 
computation. We discuss algorithmic issues underlying the design and imyle- 
mentation of the r t k w n t  components of TPIE and present performancp results 
of programs written to solve a series of benchmark problems using our currctit 
TPIE prototype. Some of the benchmarks we present arc based on thc N A S  
parallcl benchmarks IS], while others are of our own crcation. 

We demonstrate that the CPU overhead required to manage 1/0 is stiiail 
and that  even with just B single disk the 1 / 0  overhead of I/O-efficient conipii- 
tation ranges from negligible to the same order of magnitude as CPU timc:. Wc 
conjecture that if we use a number of disks in parallel this overhead can tw all 
but eliminated. 

- - 
'Siipptwtrd in pert by the U.S. Army Research Office under grant DAAHO4-93-G- 0076 arid hy 

the Nat lorial Science Foundat.ion under grant DMR- 9217290. Portions of this work were conducted 
while \isitinh the University of Xlichigan arid Drike ITniversity 

tSui~portrc1 in part by the National Scirncc! l~oilndation iitiriw grant CCR- 9007851 arid by t*he 
L.S. Artily Rowarch Office iintfrr grai1t.s DAALOJ-!)l- C; 0035 and DAAH04--93 G -0076. 
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1 Introduction 
The Input/Output communication between fast internal memory and slower sec- 
ondary storage is the bottleneck in many large-scale applications. The significance of 
this bottleneck is increasing as internal computation gets faster and parallel cornput- 
ing gains popularity [17;. CPU bandwidth is currently increasing at a rate of 40-60% 
per year, versus an annual increase in bandwidth of 7 -10% for disk drives (181. Main 
memory sizes are also increasing, but not fast enough to meet the needs of many 
large-scale applications. Additionally, main memory is roughly two orders of magni- 
tude more expensive than disks. Thus, if I!O-efficient code can be written so as to 
provide performance near that obtained by solving the same problem on a machine 
with a much larger RAM, a great deal of money can be saved. 

Up to this point, a great macy I/O-efficieat algorithms have been developed. The 
problems that have been wmidered include sori ing and permutation-related problems 
(1, 2, 14, 15, 221, computational geometry [3, 4, 11, 231 and graph problems (71. Until 
recently, there had been virtually no work directed at implementing these algorithms. 
Some work has now hcgun to appear [6, 191, but to the best of our kncwledge no 
comprehensive package designed to support l/O-cfficient programming across rnultiph 
platforms arid problem domains has appeared. 9nc  goal of our ongoing research is 
to remedy this problem. Towards that end, we arc developing TPIE, a transparent 
parallel I/O environment designed to facilitate the impktnltmation of I/O-efficient 
programs. 

In this work, we describe a series of experiments we have run using a prototype 
implementation of the TPIE interface. The experiments were chosen as models of 
common operations in scientific codes. Several of the experiments are on ISAS parailel 
benchmark-; designed to model large-scale scientific computation [SI. The results of 
our experiments demonstrate that I/O-efficient programs can be written using a high- 
level, portable, abstract interface, yet run efficiently. 

In Section 2, we introduce the parallel 1/0 model of cornputation on which the 
algorithms that THE iniplcments are based. In Section 3, we describe the TPIE 
system itself and thc! structure of our current prototype. In Section 4,  we discuss 
the benchmarks we implemcnted, the algorithms that TPIE uses, and the p-for- 
mance of our implementations. Finally, we list a number of open problems wort!.y of 
examination in the continued pursuit of I/O-eficient conipii tacion. 

2 The Parallel 1 / 0  Model of Computation 
The algorithms TPIE uses are typically based on those designed for the parallel 1/0 
model of computation 1221. 'rhis model abstractly reyesents 3 system having one or 
morc proc'essots, somc fixed mount  of main memory, and one or more independent 
disk drivcs. It is described by the following parameters: 

h' = # of items in the problem instance 
= # of items that can fit into main inernory 
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B = # of item per disk bloa. 
2 = # of disks. 

We define an I/O operation, or simply an 1:O for short, to  the be procecs of trans- 
ferring thxartly OIW block of data to  Or from each disk. The 1/0 complexity of an 
algorithni is simply the numtrcr of I/Os it performs. 

111 discussing the i i 0  c*oniplexity cjf ;iigorrthms, we make every effort t o  avoid the 
use of big-Oh asymptotic n o t a t i n  Instead, we are iuterested in as exact a figure as 
possibicl for the number of I/Os an algorithm will use for a given prableni size and rnn- 
time environrnent. In somc cascs. the relative effect of rounding up certain quantities 
to t.he their integral ceilings can 1,- significant, for example, when quantities rouiid 
to sniall natural numbers. This effevt is typically ignored when big-Oh notation is 
used. We are careful in this work r.0 consider ceilings explicitly when their effect is 
siqilificatit: we use the ceiling noti~tion 1x1 to dcnote the smalltst intcger that is 2 I. 

3 TPIE: A Trailsparent Parallel 1 / 0  hvironment 
TPIE i20, 211 is 2 system designed to assist. prcgranimers in the developxneiir. of 1,'O- 

r7irit~iit. programs for iarge-scale con:ptitation. TFIE, is designed to be portable across 
a variclty of platforms, i 4 u d i n g  both s q i i r w t  ial and parallcl niadiines with bcth 
single arid nidtiplc. I / (  4cvicc.s. Ap$lic'at,ions written rising TPIE should continue 
t.o t i i n  unmoditicd niov~ul from ow syst.em that supports TPIE to anot h. 
In order t o  fac*ilit.s.. ,... !we1 of port ability. TPIE irn?lcmcnts a nroricrai.t~ly sizrd 
sc! 4 'C high-ltw4 wcess iiwthods. Thci ac~'c.5~ RI(  thods wcre chosen b a s d  on their 
paradigniatic impc.)r:anre in the ue:-'gn of I/O-efficimt hlgorit.hrns. ['sing t hwc awrss 
mrt hods. WP can iniplt~n;rnt. I/O-efiicient algarithms for inany prohlniis. inrluding 
sorting ['L. 13, . 22;. pcriiwting [8, 9. I o .  2-L!, c.ornpiit.ationa1 geonictry prohlrnrs 13, 
1. 11 ., 231. graph-throretiv problems 171. and scicntific prohlwis [S. i3.  221. 

i3waiiw sudi a large iirixiihrr of  prol,Ietns can tw solved rising A rrlnt i vd? -  : 
number uf paradigms. i t  is important that t,hv accc~s nrethod inipleinent.ist ioirs rwliain 

f l k  bic moiigh to allow appliration yrogranis a grvat (leal of control ovvr tlir fiirir- 

t i r m d  dt.1 ails of the c-rmpiitation taking p law wit. l i in ttie fixed set of parm?igms. To 
awomplish this, TPIE takes ii somewhat non-traditicna! apnruach to I/() .  Instrad of  
;wwing computation iis a ~ i  enterprise i n  which code lo.. fi; data. op(:Idtw m i  i t  and 
thrn writes rtwlts, we view i t  as a contiinlous process i:i :;hic.h program ol)jcrt,s art' 
fed rt,reams of data frctni en outside source and leave trails o f  results behind t t i m i .  

The dibtinrtion is subt If., h i t  significant. In the T:IE model, programmers don't 
havc, t,o worry about inakiiig explicit calls to 1 / 0  subroutines or nisn;iging intmial 
tiicmory dare st nictiirc.~ in a run-tinit% d t y w l m t .  ?nvironmwt. Insttwf . t \ivy iiwrrly 
cpwify thr fuiit*t.ional details of the coini:iitation thpy wish t o  pvrforrii witfiirr ii g i w i  
paratiigni. TFIE t.heri choreographs an appropriate srquenrc of data riioveiiieiit.: to 
ktvp t iw (wxnp11t ation i d .  

' l l ' l l ~  is imylrrirvi cd in C++ a!! a .set of triiiplatrd c.lrtssc~s and fiiim.ions and 
a ril1l-t imc iibr;ary. L'iirrwt,ly. a prt)totyl)c iriiplriiwiit ;it,ioii supports awt 6s td cint 'i 



stored on one or more disks attached to a workstatiori.' I n  the future, we plan to port 
the interface to larger multiprocessors and/or collections of workstations connw-ted to 
a high-speed LAN. From the programmer's perspective, wry little will change when 
the system muves to parallel hardware. .MI the sattic wcess methods will contiriiie 
to exist, and applications will still be written with a singlt. logical thread of control, 
though they will bc excrtited in a data parallel manner. 

The current. TPIE prototypc is a mociular system with thrw componetlts. 'The 
Access 12lcthud Interface (:lMI) provides the high-lwel interface to the yrograrnmer. 
This is  t.hc only componerit with which most. prograniniers will nccd t.0 tiircytly in- 
teract. The Block Transfilr Engine (BTE) is responsible for niovirig blocks of (lata 
to and from tile disk. I t  is also rvsponsihle for scheduling synchronous read-ahead 
anti writebehind when nocessarp to allow computation and I/O to overlap. Finally. 
the Memory Manager ( M h l )  is responsible for managing main nicrnory resources. All 
memt .ye allocated by application programs or other components of TPIE is han(ll(ul 
tjy the blhl. In the caw of application programst this is facilitatcd through t.ho IISC of 
a global operator new0 in the TPIE library. 

The Ah11 support< accws methods including scanning. distribution, merging, sort- 
ing, pcrmut,ing. and nrat,rix arithmetic.. I n  ortier to spwify the functional details of a 
particular operation. thc programmer dcfinos a partiwlar class of object called a xaii 
rrian~geiiicrit object. This ot>jcct is then p s e d  to thr h X l I ,  which coordinates I/O 
and calls niernber functions of the scan management o1)jec.t to perform computation. 
Readers interested in t hc synbact ic details of this intcract ion arc referred to the TPIE 
?lanuill, a draft version o f  t4iicl) is currently awilalde 121 1. 

TPIE Performance Benchmarks 
Tho benchmarks we iriiplcitit.nt,cd m r k  wit ti four of thc I)asic paradigms TPIE sup- 
ports: scanriing, sorting. sparsc, rriatriccs. arid dense ~natrices. The benchmarks i l -  
Iiist riltt' important c*harac.tc)rist,ics not only of thv TPIE pwtotype and thv plat forin 
on which the tcst.s were run. hut also of I/O-t~fficicnt computation in genoral. I n  t.hv 
rxposition that follows we will discuss both. 

' T w  of t h e  bcn(4iriiarks are based on t h e  NAS parail-1 lwnrhmarks set I;]. w!iic.h 
cwnsists o f  kernels taken from applications in conipiit at ional fluid dynamics. Bcsitics 
bciing rrprescnt ativr o f  wicw ific coniput at ions. t h c w  bcric*hrriarks also proyide refer- 
(WCP output, valiivs that (*an hc chwked to verify that. t,hry are implemcntr4 (-orrcctly. 
1.- ath?it ion to t tic) N.lS 1)twc-hniarks. t h c w  are t . w  I i t w  t)c~nc.hmarks dcsigned !o fur- 
t hvr exercise TPlE's mat r is  arit hinetic. routines. 

Eiu.11 of thc twnchtnarks is ar*c.omyariied by R graph illust.rating thc i;rrf,)rwp1.. '1 
of o ~ i ~  or  more T PIE applications w.r i t t cn  t o  (*xwtitv i t .  The graph show hot11 ovcmll  
wall t,ime and (:PI- t iinc on the y-axis, as plnt t.wI zgainst, various prot)lttni sizes on 
t h e  s axis. G i w n  adcquarv am! appropriately utilized I / ( )  t)nndwidth. the will t , i r ~ i v  

Tti.7 following workstatiori/OS cornbinations are supported: Siin S~~arcstat~nn/Suri(iS 4.x,  Si i r i  
---- - - - 

Sl,arcstation/Solnris 5 x.  DS.C Alpha/OSF/l 1 . x  and 2.x. H P  9r)Of)/HP-IIX. 
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and CPU time curves would be identical: therefore, getting them as claw together as 
possible is an important performance goal.* 

.?\I1 of thc benchmarks were run on a Sun Sparc 20 with a single local 2CB SCSI 
disk. The operating system was Solaris 5.3. Aside from the test application being 
run. t1.t. systwi was idle. I n  all cast%. THE was configured to restrict itself to 
iisirig 4 inq+Iytcs of main nicmory. I/O was performed in blocks of 6WB? with 
rcacl-ahead and write-behind hancllni by a combination of TPIE and the operating 
systvin. The rcixson we uscrl such ;d large block size was so that our coniputations 
woulci be st riictiirally similar. in  t e rm of recursion and read/write schcduling. to the 
samv applications rui1nii.g on a machinc with D = 8 disks and a more natural block 
size of 8KB. On such a system. 1 / 0  perfornlancc would incrmw bv a factor of close 
t o  8. ivliercws iiittr-.al cc)nipiitatio~i would he eswat iall? unaffwted. 

4.1 Scanning 
Thc most basic acc'css intit hod availablv in TPIE is scanning, which is iniplcniented 
by t.lit> polyniorphic TPIE cwtry point AMI-scan0. Scanning is the process of se- 
quentially reading atid/or writing a small nuinher of streams of data. Esscrit idly 
any opwation that can be pcrfornied using O( .? /DB) I/Os can he iniplcniented 3' 
a sc'iiti. This includes such operations as data gt-neration, prcfix sunis, e1t*tutwt-ts 1st. 

arithmctic. innor products. Graham's Scan for 2-D convex hiills (once the points w i  

appropriately sorted). sclcction. type convmion. stream comparison. and niany oth- 
ers. The fiinct,;onal details of any particular scan are spwcified t q  a scan nianagtrrncnt 
t )  b jw t . 

4.1.1 Scanning Benchmark 

Be.c.arisc scanning is siidi a gcwric opcmt.ion, wo could haw cliown an? of R w r y  wide 
varioty of problcm a a benchmark. We c.lime thr &.AS bonchmark NXS EP 151 for 
two reasons: it was designed t o  niodel cornpiitat ions t.hat. actually ocmr in largc-scalc 
scientific computation; and it can be used to illustrate an important c l a s  of scan 
optimizations cdled scan combinations. 

Ttw SAS EP benchmark gencratcs a sqiience of indcpendont pairs o f  Gaiissian 
d(*viiitw. It first. gt-nerates a sequence of 2iY independelit. uniformly distributed devi- 
atcis iisirig thc liner congrricnt.ia1 mc.tlicJd [ 12). Thvn, it. uses t.he polar mct.hod 1121 to 
gtnwtte  approximately (r/4).Y pairs of Gaussian deviates from the original scqiicnrc 
of riniforiii dcviates. 

Performance of our TPIE implemcntat.ion of NAS EP is shom in  Figure 1. Thtw 
t h r t ! t b  scts o f  curves, labeled "'I'PIE. 2 Scans," "TPIE, Optimized," aid "Single 

Lariat )IC. '' 
- - 

obvious way t3 bring thc*se cur-r%s together is to increase the CPU time t y  pc~forniing 
achIitional or less rfficient cornputaainn. Clearly, this is not. *he mwhanisrn of ctioicr. Inst,c.ad we 
w v k  t o  rtuiuc-v t lw  overall tinir by i 4 w i n g  t tic ~ ~ n o i i t i t  of I/() and/or iniprovitip, in r rewing  tlic 
o v t d a p  bet w w n  rompritat ion atid a.syric.hrotii)us l /O.  
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Generate (x/4)N Pairs of Independent Gaussian Deviates (NAS EP Benchmark) 
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Figure 1: SAS EP Benchmark 

The distint tion betwwn the 2 scan TPIE curves and the optimized TPIE curves 
is that in t.hc former, two separate scans are performed. one to write the uniformly 
distributed raiidorn variates and t,hc other to read the uniformly distributed ran- 
dom variat,es arid write the Gaussian pairs, whereas in the latter, the two steps are 
comhincd int,o a single wan. As expwttd. the optiniizcd code outperforms the unop- 
timized code. 

This difference is significant not so much bemuse it tells programmers they should 
rombinv scans. as bt.c*ausc~ of the fact that scan corrihination is a relatively straight- 
forward optirriization that. (*an be automated by a prcprocsmr. Such a preprocessor 
~vould parse thc  C++ test of a program and, where possible, construct hybrid scan 
rnanagemriit objects. The scans would then bc replaced by a single scan using the 
hybrid object. Additionally. wans can often be piggy-hacked on many other types of 
operations. such as mcrgcs. ckribiitions, sorts, and permutations. 

Returning to Figure 1, the single variable curvc plots the CPU performance of a 
C'++ program that r h s  not perform any I/O at. all, using TPIE or any other system. 
Instead. each pair of rando,:) variates is simply written over the previously generated 
pair in inain memory. Thcb purpose of this curve is to illustrate a fundamental lower 
bound on thc CP1' complexity of gcrierating the variatc. By comparing this to the 
CPU curvcs of the TPIE iniplementatiw.; we can w e  that the CPU overhead associ- 
ated with scheduling and pwforming I/O, communicating beteween the components of 
TPIE, and intcracting with the user supplied scm management object is quite small. 
In the opt,iniizvd c.ase it, aniounts to approxiinately 20%. 
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4.2 Sorting 
Sorting is a fundamental subroutine in many computations. There are a tremendous 
number of sorting algorithms which support many different models of computation 
and assumptions about input format and/or key distribution. In this section we 
discuss 2 number of issues rehtcd to sorting in extcrnal-memory, both theoretical 
and practical. 

4.2.1 I/O-Efficient Sorting Algorithms 

\I\‘ith rare exception3, I/O-efficient comparison sorts fall int.0 one of two categories, 
merge sorts and distribution sorts. Merge sorts work from the bottom up, sorting 
small subfiles and then combining them into successively larger sorted files until all 
the d a h  is in one large sorted file. Distribution sorts work from the top down by com- 
puting medians in the data and then distributing the data into buckcts based on the 
mcadian vducs. The buckets are then recursively sorted and appended to one another 
to produce tfic fina1 output. The 1 /0  structure of radix sort reseniblrs that of distri- 
bution sort. except that t,he entire set of keys is involved in O((lgA’/;\f)/(lg M / D B ) )  
large O( dl/DB)-way distribution steps. 

One common technique for dealing with multiple disks in parallel is to stripe data 
across them so t.hat the heads of the D disks are moved in lock step with one another, 
thereby siniiilating a single large disk with block size DB. On a stripvd disk systctn, 
thc 1 / 0  complrxitv of nierge sorting IL‘ objects is 

Each item is read once and written once in each pass, ilnd all r d s  and writes arc 
fully hlocktd. The logarithmic fartor is the niimhcr of levds of reairsion rrqiiircd to 
rcv111c.v mc-rge mbproblenis of sizo BI ir i to t,hc final sohitic.. of size ;Y. Each strcwn is 
douhlc buffered, herice we can nierge hf,”?DB) streams at a timc. If wh‘c arc al,lc t o  
compute mctdiaiis perfectly with no additional cost, as in t h c b  case whcrc t,he krys arc’ 
uniformly distributed. wc can perform distribution sort in this sanw boiind. 

Asyniptotically, the 1/0 bound (1) is not optimal for sorting. By using tlir I7 
disks independent.ly. wc can do distribution sort in 

I/Os, whcre k 2 1 is a constant whosc! value deperitis on thc coniplrsit,y of tinding 
t h v  niwiians, the quality of the medians as partitioning clcrncnts, aiid Iiow r \ ~ w l y  t Iici 

buckcts are distributed over t,ht! D disks. Although thr the derioniiiiator i i i  (2) is 
larger than the denominator in (1) by an additive tcrni of Ig D, the leading constant 
factor in (2) is larger than that of (1) by a mult.iplicativt. factor of k .  A niirn1)er of 

3F0r a recent example, SPC 131. 
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independent disk distribution sort algorithms exist [ I ,  15, 16, 221, with values of k 
ranging from approximately 3 to 20. 

bAore implementisg an external sort on parallel disks, it is useful to examine the 
circumstances under which the I/O complexity (2) for using the disks independe. t.ly 
is less than the 1/0 complexity (1) with striping. If we neglect the ceiling term for tihe 
moment, algebraic manipulation tells us that it is better bo uw disks independently 
when 

Thus, D must be a t  feast some root of M/2B. The critical issue now becomm the 
value of k .  If k = 1 (i.e., if we do not need extra I / U s  to compute M/2B medians 
that partition the data evenly and if each resulting bucket is output evenly among 
the D disks), i t  is better to use disks independently. flowever, if k = 4, we 11etd 
D > (h1/2B)3/4 in order for using disks independently to be worthwhile, which is 
not the case in current systems. For this reason, TPIE implements both merging and 
distribution in a striped nianner. Work is continuing or i  developing practical mcthocis 
that  use disks independently. 

Another important aspect of the behavior of I/O-efficient algorithms cor sort.- 
i rg  concerns the behavior of the logarithmic factor [ l g ( N / M ) /  Ig(M/2DBI1 in the 
denominator of (1). The logarithmic term represents the niimher of merge passes 
in the mrrge sort. d i ich  is always integral, thus necessitating the ceiling nota- 
tion. The ceiling term increases from one integer to the next when X/M is an 
exact power of Ml(2UB).  Thus over very wide rangcts of values of iV, of the form 

of s o r t i q  remains lincar in  .V. Furthermore, the possibility of a _> 3 requires an 
extremely large valuc of ,%' if the system in question has anything but the tiniest of 
main memories. As a rcsr;lt, although the I/O complexity of sorting is not, strictly 
speaking, linear in :v, in priicticc it oftcn appe;:rs t.o be. 

4.2,' Sorting Benchmark  

The IVAS IS benchmark is tirsigned to model key ranking 151. We are givcn an array 
of integer keys KO. K,. . . . h ' , ~ - ~  chosen from a key uaivtme [0, U ) ,  where C: << N .  
Our goal is t o  produce, for each i, the rank R ( K , ) ,  which is the position Kt would 
appear in if the keys wcrc sorted. The benchmark dotis not technically require that 
thc kcys be sortcd at any tinic, only that their ranks be computer' As an additional 
caveat, each key is the average of four random variates chosen independently from a 
uniforrn probability distrihition over [ O ,  I ] ) .  The distribution is thus approximately 
normal. Ten iterations of ranking are to be performed, and at the beginning of ezch 
iteration an extra key is added in each distant tail of tht? distribution. 

I n  orticr t o  rank thc kyvs, we sort them, scan the sorted list to assign ranks, and 
t,heri re-sort based on thr original indices of the ktys. In the first sort, we do riot 
have a tiniforni dist.rihut ion of keys, but we do have a distribution whose yrobahili9tic 
structure is known. C:ivc.n any probabilistic distribution of keys with curnulativc 
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distribution function (c.d.f.) FK,  we can replac*- a hch key value ki by k: = F K ( k i )  
in order to get keys that appear as if chosen at random from a uniform distribution 
on [0,1]. Because the keys of the NAS IS benchmark are sums of four independent 
uniformly distributed random variates, their c.d.f. is a relatively easy to  compute 
piecewise fourth degree polynomial. 

For the sake of comparison, we implemented this first sort in four ways, using both 
nierge sort and three variations of distribution sorting. One distribution sort, called 
CDF1, assumed that the keys were uniformly distributed. The next CDF4, used the 
fourth dcgrce c.d.f. mentioned above to make the keys more uniform. Finally, as a 
compromise, CDF2 used a quadratic approximation to the 4th degree c.d.f. based on 
the c.d.f. of the sum of two independent uniform random variables. 

In the second sort, the indices are the integers in the range ( O , N ) ,  so we used 
a distribution sort in all cases. The rationale behind this was that distribution and 
merging should use the same amount of 1/0 in this case, but distribution should 
require less CPU time because it has no need for the main-memory priority queue 
that merge sorting requires. 

The performance of the the various approaches is shown in Figure 2. As we 
expected, nicrge sort uspd more CPU time than any of the distribution sorts and the 
more complicated the c.d.f. we computed the more CPU time we used. When total 
time is considered, merge sort came out ahead of the distribution sorts. This appears 
to he the result of imperfect balance when the keys are distributed, which causes 
an extra level of recursion for a portion of the data. Interestingly, the quality of 
our c.d.f. approximation had little effect on the time spent doing I/O. We conjecture 
that this would not be the case with more skewed distributions, such as exponential 
distributions. We plan experiments to confirm this. The jump in the total time for 
the merge s a t  that occurs between 8M and 10M is due to a step bcing taken in the 
loguithmic term in that range. 

4.3 Sparse Matrix Methods 
Sparse matrix methods are widely used in scieatific computations. A fundamental 
operation on sparse matrices is that of multiplyi-g a sparse N x N matrix A by an 
N-vector I to produce an N-vector t = Ax. 

4.3.1 Sparse Matrix Algorithms 

Bef:m we can work with sparse matrices in secondary memory, we need a way of 
representing them. In the algorithms we consider, a sparse matrix A is represented 
by a set of nonzero elements E. Each e E E is a triple whose components are row(p), 
the row index of E .n A, col(e), the column index of e in A, and value(e), the value 
of A[row(e),col(e)]. 

In main memory, sparse matrix-vector multiplication can be implemented using 
Algorithm 1. If the number of nonzero elements of A is IV,, then Algolithm 1 runs 
in O(Nt)  time on R sequential machine. 
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Figure 2: NAS IS benchmark performance 

In secondary memory, we cat1 also use Algorithm I! but I/O performance depmds 
critically on both the order in which the elements of A are processed and which of 
components of z and I are in main memory at any given time. In the worst case, 
every time we reference an object it could be swapped out. This would result in 3Nz 

In order to guarantep I/O-efficient computatiotr, we reorder the elements of A in 
a preprocessing phase. In this preprocessing phase, A is divided into N / M  separate 
hi x IV submatrices .4,, called bands. Band A, contains all elements of A from 
rows iM to (i + l)M - 1 inclusive. Although the dimensions of all the A, are the 
same, the number of nonzero elements they contain may vary widely. To complete 
the preyroccssing, the elements of each of the Ai are sorted by column. 

I/Os. 

Once A is preprocessed into bands, we can compute the output sub-vector 

z [ i M  . .  . (2  + l ) M  - 11 

from .4, and x using a single scan, as shown in Algorifhm 2. If we ignore the prepro- 
cessing phase for a moment and assume that the elements of z appear in order in exter- 
nal memory, the I/O compiexity of Algorithm 2 is N z / D B  + [ N / M 1  N/DB + N/DB.  
The entire preprc:-. ’ !< I + H S ~  can be implemented its a single sort on the nonzero 
elements of A, with and index bcing the primary key and column being a secondary 
key. This takes 2 N , / D 5  [$$#&I 1/Os, as explained in Section 4.2.1. Note, how- 
ever, that the preprocessing only lras to be done a single time for a given matrix A. 
After that, the main phase of the algorithm can be executed repeatedly for many 
different. vectors x. This is a common occurrence i n  iterative methods. 
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(1) 2 t o ;  
(2) 
(3) 
(4) endforeach 

foreach nonzero element e of A do 
z[row(e)] = z[row(e)] i- value(e) x x[col(e)]; 

Algorithm 1: An algorithm for computing t = Ax where A is a sparse N x N matrix 
and r and 2 are N-vectors. 

4.3.2 The SMOOTH Benchmark 

T H E  supports sparse matrices at a high level as a subclass of AMI streams. The 
nonzero elements of a sparse matrix are stored in the stream as (row, column, value) 
triples as described in the preceding section. AMI entry points for constructing sparse 
matrices as well as muitiplying them by vectors are provided. 

In order to test the performance of TPIE sparse matrices, we inipleriiented a 
benchmark we call SMOOTH, which models a finite element computation on a 3-D 
mesh. 

'The SMOOTH benchmark imp1ement.s sparse matrix-vector multiplication be- 
tween a A' x N matrix with 27N nonzero elements and a dense A'-vector. The result 
is then multiplied by thc matrix again. Ten iterations are performed. 

The performance of SMOOTH is shown in Figure 3. Although we do ten itera- 
tions of multiplicat,ion, and only preprocess once, the total time with preprocessing is 
significantly higher that that of the multiplication iterations alone. As expected, I/O 
is not a major contributor to this difference, because sorting only requires a small 
ntirnber of linear piwscs through the data. The big difference is in CPU timc. The 
additional CPU timc used in preprocessing the sparse matrix is roughly twice the 
CPU time used in all trn iterations of the multiplication. 

4.4 Dense Matrix Methods 
Dense matxkes appear in a variety of computations. Like sparse matriccs, they are 
often multiplied by vectors? and banding techniques similar to those discussed in the 
prcvicws section can by used. Another fundanicntal operation is mnltiplicatioii of two 
K x K matriccs A and B to produce C = AB. 

4.4.1 Dense Matrix Alcorithms 

Asytiiptotically I/O-optimal multiplication of two A' x K matriccs over a q~iasiring 
can be done in 0 ( K 3 / f l D B )  I/Os [22]. There are at lemt two simple algorithrris 
that achieve this bound. The first algorithm, Algorithm 3, uses a recursive dividc- 
acd-conquer approach. The second algorithm, Algorithm 4, also partitions the  input 
matrices, but all partitioning is done up front in a single permutation of each matrix. 
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// Prepmcessiny phase: 

(1) foreach nonzero element e of A do 

(3) endforeach 
(4) 
( 5 )  
(6) endfor 

(2) Put e into A[fOW(e)/M] ; 

for a t 0, N / M  do 
Sort the elements of A, by column; 

// Main algorithm: 

(7) 
(8) 

(10) 
(11)  
(12) end foreach 
(13) 
(14) endfor 

Allocate R main memory buffer ZM of M words; 
for i t 0 to [ N / M 1  do 

(9) ZM 6 0; 
foreach nonzero element e of Ai do 

tM[row(e) - iM] = zM(row(e) - iM] i- value(e) x z[col(e)]; 

Write ZM to t [ i M  . .  . ;i + 1)hf - 11; 

Algorithm 2: An I/O-efficient algorithm for compubing t = Az where A is a sparse 
N x N matrix and .z and z are N-vectors. 
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Figurc 3: SMOOTH Benchmark 

The riiatrix product is then produced iteratively, and a single final permutation re- 
t.urns it to canonical order. Both algorithms assume the input matrices are stored in 
rGw major ordcr. 

T h t  I/O complexity of Algorithm 3 is 

while that  of Algorithm 4 is 

where prep(N) is t t .2  1/0 complexity of the preprocessing and postprocessing steps, 
which can be done by sorting the K2 elements of the three matrices, giving us 

In special circumstances, when B ,  D, K, and a are all integral powers of two, the 
pre- and post-processing are bit-matrix multiply complement permutations, which 
can bc performed in fewer ,/Os than sorting [lo]. 
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if 3K2 5 M then 
read A arid B into main memory; 
compute C = AB in main memory; 
write C hack to disk; 

partition A at row K / 2  and column K / 2 ;  
label the four quadrant sub-matrices A I J ,   AI,^, 41, and AZ,Z as shown in Figure 4; 
partition B into B I J ,  B1,2, 4 1 ,  and B2,2 in a similar manner; 
permute all submatrices of A and B into row major order; 
Perform the (11)-(14) using recursive invocations of this algorithm 

else 

G,l c- A1.IB1,t f A1,2&,1; 
(71.2 +- AI.IB1,2 + -41,282,2; 

C2,i + A42.~ & , I  + .42,2B2,1: 

c2,2 + AP,IBI.2 + 42B2.2; 
Rcconstriict G from its sub-matrices C1.1, C1.2, C2.1 , and C2.2; 

peririute C hack into row major order; 
endif 

Algorit irin 3: .A ro(:iirsiv(* cii\.idra-and-conqucr apyroar.h to niat.rix niultiplication. Two 
K x A’ input iriatriccs A and B are niuitiplitri to produce C.’ = AB. 

4.4.2 Dense Matrix Benchmark 

TI’IE has  higli-lcvcl slipport for dense matrices ovcr iwbi trary user-defined quasirings. 
Operations supported irrdtidc initialization, elcmcnt-wise arithmetic, and matrix- 
matrix multiplic.ation. !dat rix-matrix ~riult~iplicat.iori iiscs Algorithm 4. Separate AMI 
ciitry points arr available for the prcprociessing pcrtniitation arid the iterative mnlti- 
plic*ation itself, allowing a rriat  rix to be yrcproccsscd once arid then tiiultiplied by a 
iiiitnhtv of othw riiatriws. 

\Vo implerncmted H Iwiirhmark, called DENSE, which constructs twc K x K matri- 
w s ,  prcpiowssc’s theni. and tlwn iiiiiltiplics them. Times were rccorded for 110th the 
total t,cnrhniark and for the niultiplication only. Tht~ results are shown in Figure 6. 
12s clspectcd. the CPI‘ tiiiic rrrpirtv] to multiply tho niatrices follows a cubic path. 
B(TBIIS(> of road-aiwad, I / ( )  is alniost. fully ovorlappcd with coniputation, making the 
CPI.- arid tot a1 time curves virt.ually indistinguishablc. The ccst of preprocessing the 
niatriws is approximately oiic third of the cost of niult,iplyirig them. Thus if several 
miiltiplic*at ions dono with tho same matrix amortization greatly reduces this cost. 

5 Conclusions 
1% have prescritrd a swics of results demonstrhiing that, I/(>-efficient computation can 
he matie prartical for a variety of scientific computing problcms. This computation 
is madc practical bv TPIE. which provides a high lcvel interface to computational 
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Figure 4: Partitioning H matrix into quacirants 

partition A into K / m  rows and K / m  coluiiiiis of 

/ /  step ( I )  is shoiiiri an Fiyurr 5 
partition B in a ~iia~i i icr  siinilar to A; 
pcrmutc ;\I\ A, ,  and Bt , j  into row Iiliijor order: 
foreach . i , j  do 

end foreach 
rctcotistriic:t. C.' from all C,,,,; 
pcrtniitc C back iiitu row major ortlcr; 

suh-matbriws ciwh having rows and columns: 

ci,j e x k  At,kBk,l; 
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Figure 5: Partitioning a matrix into sub-matr im in step (1) of Algorithm 4. Each 
sub-niatrix A,,] has m3 rows and columns. The number of sub-matrices 

across and down A is K = K/m. 

methods, all of which wr p h i  to exylorc! as the TP!E project cmtinur+s. We also 
plan to  investigate the coiistruction of a scan combining preprocessor as described in 
Section 4.1.1. 

Complementing this hig!~ level work, there are a number of potentially interesting 
I/O related research topics concerning how environments like TPIE should inte;.:ct 
with operating systems. 'These include models of application controlled virtual mem- 
ory and thc bchavior of TPIE applications in multiprogranimed environments where 
the main memory availablr to a given process may vary over time. 

In closing, we aro encouragcd by the results we have presented, which denionstratc 
that  1/0 efficient computation using an abstract, high level model is practical. I t  is 
important to  realize, howwer, that this research is o d y  in its infancy. and that many 
more questions, M h  thcoret ical and practical, remain to be atiswereti. 
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A High Performance Optical Tape 

Recording Technology 

W. S. Oakley 
LOTS Technology, Inc  
I274 Geneva Drive 

Sunnyvale CA 94089 
408-747 - 1 1  1 I 

Fax: 408-747 - 0245 

In Scptember 1995 LOTS Technology received an award under the Advanced Technology 
Program to pursue high performance digital optical tape recording technology using a 
pmcn laser source. Thc program is a two year technology devclopmcnt effort with the goid 
of demonstrating useful rcadwritc data transfer rates to at lea5t 100 megahytcs per second 
and a user data ciipaoity of up to one terabyte per cartridge implemented in a systcm using 
a '3480' style mono-rccl tape cartridge. Although both write once and crasablc phusc 
change optical media hrrvc k e n  previously demonstrated, and both arc compatihlc with 
this technology, current availability limits this effort to the use of writc once media. This 
paper discusscs the tcohnology developments achieved during the first yciir of thc program 
during thc priod Scprmber 1995 through August 1996. 

Beamforming Hoiogrm 
64 Beams in 8 x 8 array Ohjcctivc Lcns & 

\ Focus Track Actuator 

t 
I 

Solid Slate 
Diode Pumped 
hquency Douhlcd 
532 nm Laser. 400 mw 

Moving Media 

t 
64 Channel Modulator 

' t  I 
! 
1 

I 

L_W( Dab Detectors ; 
Focus & Track Servo 
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The prim* intent of the program is to develop the technology for multi-beam digital 
optical recording and playback at high data transfer rates, 100 MB/sec. and above, and 
consistent with a minimum of a terabyte capacity per data cartridge. The basic design is 
implemented by a linear tape transport moving tape at several meters per second while the 
tape media is written to longitudinally by means of an array of focused and modulated laser 
beams. All writing beams are derived from a single diffraction limited green laser 
operating at 532 nanometers. The desiga is implemented using a hologram as a passive 
Beam-forming element to split the output from a single laser source into an array of 64 
similar optical beams, each of which is independently modulated prior to focusing on the 
media with a nominally half micron spot size. Beam modulation is implemented at rates to 
20 MHz. by means of an array modulator of 64 elements, one element for each beam. The 
basic recorder design concept is shown in Figure la and the optical implementation in 
Figure lb. 

Tape Media -- 
Focus 8. Track 
Actoator 

f 
Beam forming 
Hologram 

r i7 .C- Optical Elements 

i 

r i  Fcxcus & Track 
b Detector 

Reflective Spatial 
Llght Modulator - WntingBeam 

Focus & Track - and Data Beams 

A conceptual physical layout of a future product is shown in Figure 2, emphasizing the 
inherent benefit of no heaamedia contact for optical recording and the preference lor a 
clean tape transport environment to minimize media contamination by dust and dirt. Thc 
mechanical media transport system is configured to eliminate contact between the media 
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recording surface and any transport component. The only recording layer contact is with 
the rear surface of the tape when it is wound either onto the take-up reel o r  into thc 
cartridge. 

* No Contact with Media Recording Surface 
* Media in  Filtered Air Environment 

The overall system performance is directly determined by thc specific implementations and 
the individual performance characteristics of the key components of the intended design. 
The design approach requircd to demonstrate a I 0 0  MB/sec. transfer rate consists of' Ihc 
following major components; 

(1 )  The tape transport. 
A linear tape transport is desired to move half inch wide optical tape in a controllcd 
manner at speeds up to about ten meters per second. The baseline design requircs ;L 

tape speed of eight m/sec. for a 100 MB/Sec. user data rate. 

(2) The array beamformer. 
An array beamformer is required to produce an array of 64 similar optical read/writc 
beams from a single diffraction limited input beam at a wavelength of 532 nm. 

(3) The array modulator. 
An array modulator is required to modulate each beam in the write array at a rate 
consistent with the desired bit writing rate, 1.e. modulator rise and fall times ot' under 
10 nanoseconds for the 100 MB/sec. system. 
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(4) Wtite/rzad channel data Pncoding and system. 
Each writdread beam in the m a y  and it's associated detector forms a data channel for 
writindreading toifrom the media. Increased system performance is achieved by 
encoding the data to improvc the linear bit density in a track, thereby increasing systcm 
capacity and minimizing both tape speed and laser power requirements. 

( 5 )  The 532 nm laser. 
A green laser operating at 532 nm is required with sufficicnt power to writc tct thc 
media at the desired data rates, allowing for system optical transmission etticiciicy. 
The laser must be diffraction limited with a low noise amplitudc to prescrvc data 
integrity. At the IO0 MB/sec. data rate a source lascr power of about 40() mW is 
required for the optical media currently in use. 

(6) A multi-element detector. 
A detector m a y  matched to the format of ihe optical footprint o n  the tapc mcdia is 
required for data retrieval. 

(7) Focus and track capability 
A means must he provided of both maintaining optical focus on the moving mcdia and 
following a previously written track group to sub micron accuracy for data rctricval. 

The key characteristics of these components are intcmlated with the basic systcin 
performance being developed ;LS follows. Thc degree of data encoding employed dircctly 
affects the linear bit recording density and in conjunction with a given track spacing and 
tape width thereby determines the tape length for a given capacity. The bit density also 
directly affects the tape speed required to achieve a given data rate for a spccificd nunihcr 
of simultaneously written (or read) bit tracks. For a track spacing of 0.88 microns and a 
track group consisting of 64 individual bit tracks, each track group occupies sc'clion o f  
tape 56.32 microns wide. With a guard band of two hits between track groups ;I group 
occupies 66 track widths or 58.08 microns. Therefore, 200 track groups can be writton 
across a half inch (12.7 mm) wide tape a .d occupy 11.62 mm.. leaving unwritten bands ot' 
0.54 mm on each of the upper and lower tape edges. For a system of I Terahytc iiscr 
capacity per cartridge with a data overhead of 30% of thc raw capacity, a total capacity of' 
l ,0WO.7 or 1,428 gigabytes is required. For 200 x 64 (= 12,800) data bit tracks thn  
corresponds to a requirement of 1 1 1 .S6 megahytes or 892.5 mcgahits pcr hit track. Thi3 IS 

5.0 user (7.14 raw) gigabytes per 64 bit track group per tapc length. For a systcm 
recording data with a linear dcnsity of I bit per micron. cach hit track would thcrclorc tic 
1.00 x 1 1  1.6 mcters = 892.5 meters in length. It follows that a linear density of 2 bits pcr 
micron requires a tape length of 446.25 meters, and a tape length of 400 meters rcquircs ;I 
bit track density 01' 2.23 hitdmicron, etc.. 

The maximum length of tape that can be wound onto the SO mm diameter huh in thc 
industry standard 2480 cartridge is a function of the tape thickness and the mlrximiim 
allowed outer tape pack diameter. A maximum outer diamcter of 100 mm is assumcd !'or 
the 3480 cartridge tape pack. (the reel flange diameter i s  101 mm), which for 13 micron 
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thick optical tape givcs a maximum tape length of 453 mews  which results in a minimum 
linear recording density requircment of I .97 hits per micron for a one terabyte capacity. A 
more conscrvativc tape length of 400 m requires a linear bit density of 2.23 bitdmicron. 
To provide a one terabyte capacity in thc ‘3480’ style cartridge the data linear density pcr 
track must therefore be at least 1.97 and preferably grcater than 2.23 bits per micron if a 
maximum of 400 rnctcrs of tape is used. Thc tape pack diameter for various lengths of I3 
micron thick tape arc given in Table 1. 

Table 1. Outer Tape Pack Diameter vs. Tape length for 13 Micron Thick Tape.. 

Tapc Pack Diamctcr in mm. 85 90 9s 100 
# Tapc Wraps in Pack 1,346 1,538 1,730 1,923 
Avg. kngtldwrap - mm 212 2 19.9 227.8 235.6 
Total Length - m 28.5.4 338.2 394. I 453.0 
_-__---__--_____-_------------------------------------------------------------------------------------------- 
Note: Thc maximum Ilangc diamcter for a ‘ 3 4 0 ’  cartridge reel is 1 0 1  mm. 

With a bit density of  1.97 bits/micron the tape velocity corrcnmding to a lo!) MBls. 
transfer ratc in a design with 64 parallel data channels is 9.06 m/scc.. For thc samc channel 
parallclism and dat; rate, and with a bit density of 2.23 bits per micron thc required tapc 
speed is 8.0 m/scc.. Highcr bit densities, i.c. of 3 bits/micron (or more). arc prcfcrrcd and 
would allow tapc speeds below 6 m/sec. howcver such bit tiack densities are unlikcly to bc 
achieved with a 0.532 micron wavelength laser source and PPM (Pulsc Position 
Modulation) cncoding. Greater data storaee densities can be achieved by thc use 01’ PWM 
(Pulsc Width Modulation) encoding but are not ncccssary to achicvc the program 
performance goals and would entail considerably greater effort and technological risk. 

With thc user capacity at 704 of thc raw capacity a 100 mcgabytdscc. uscr data rille 
requires a raw ratc of (l00/0.7 =) 142.86 megabytcs/scc.. giving a raw bit rate of I.132.0 
mepabitdscc. ovcr 64 data channels, or 17.86 mcgabits/sec. per channel. At ;t linear 
dcnsity of 1 bit per micron this rcquircs a system tapc spccd of 17.86 mctcrs/scc.. Higher 
lincar bit densitics require lcss tape to provide a given capacity and consequcntly requirc 
lowcr tape speeds for any given data rate. Greater readwrite channel parallelism, i.c. iiiorc 
bit tracks per track group, also permit a lowcr tape spccd for a given aggrcgatc data ratc. 
but has n o  cffcct on cartridge capacity. Highcr trick densitics also reduce the limc 10 cnd 
of tapc (EOT) for a given total capacity. Thc tape lcngths and spccds rcquired for  various 
lincar track densities (# bits per micron) for a one terabyte capacity system operating at ;i 

user data rate of I00 megabyteskec. are given in Table 2. 
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Table 2. Tape Length per Terabyte & Tape Speed vs. Channel Parallelism, at 
Various Linear Bit Track Den ities. 

Linear Density 

(bitdmicron) meters 

Tape Length / TB Tape Speed (meterslsec.) vs. Number Bit Tracks 
per Track Group 8 100 MB/sec. 

64 96 
1 .0 892.5 17.86 11.91 8.93 
1.5 595 .o 11.91 7.94 5.95 
2.0 446.3 8.93 5.95 4.46 
2.5 357.0 7.14 4.76 3.57 
3.0 297.5 5.95 3.97 2.98 
3.5 255.0 5.10 3.40 2.55 
4.0 223.1 4.46 2.98 2.23 

With a system capacity of one tcrabyte configured into 200 parallel track groups each of 5 
gigabytes the time to the physical end bf the tape is obviously the same for a givcn data 
rate regardless of the linear bit track density. i.e. The time to read/write each track group 
of 5 gigabytes, at a 100 MB/s.(= 0.1 GB/s.) data rate is (5 / 0.1) = 50 seconds. The time to 
write/read the entire tape is 200 times greater at 10,ooO seconds or 2.778 hours. 

For a diffraction limited green laser system operating at a wavelength of 532 nm the 
recording spot size is determined by the Finumber (or Numerical Aperture, N.A.), of the 
objective lens which focuses each spot onto the optical tape media. A N.A. of 0.6 
corresponds to an Fhumber of 0.666 which for a plane wave incident on the !ens would 
create an Airy disc of radius 1.22 x 0.532 x 0.666 = 0.433 microns. For a slightly trunc:fed 
Gaussian input beam as used in this system the full width at the half maximum (FWHM). 
power point of the focused writing beam is slightly less than this at about 0.39 microns. 
This is the nominal width of each written bit track on the media. The bit track separation 
of 0.88 microns is therefore more than twice the track width, providing greater than 2OdB 
isolation between adjacent tracks on data readback. 

The required modulator response times to write a bit of appropriate mark length on the tape 
can be determined as a function of tape speed using the somewhat arbitrary criteria of write 
pulse risdfall times equal to 10% of a bit mark at that speed. For a system using a green 
laser operating at 0.532 micron wavelength a minimum sized bit mark can be considered as 
nominally one wavelength long; i.e. 0.5 microns. Hence, for example; a rise time of one 
micro!:ecwd occurring during transit of 1 0 8  of a bit mark of 0.5 microns gives a tape 
speed of 0.05 micrcns per microsecond a* 0.05 m/sec. Modulator rise times of 100, 10, I 
nanoseconds similarly correspond to tape speeds of 0.5, 5.0, and 50 meterslsec. 
respectively. As shown above, linear recorded bit densities between 2 and 3 bits per 
micron require tape speeds of between about 9 to 6 m/s., and therefore correspond to 
modulator rise times from approximately 5.9 to 8.8 nanoseconds. Tape speeds and array 
modulator rise times over these ranges have been demonstrated by LOTS during the first 
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year of the ATP program, thereby validating these parameters in rcgard to the chosen 
design approach. 

The data in Table 1 and Table 2 and the associated modulator response times are shown 
graphically in Figure 3. As the per cartridge tape length is limited to about 450 meters, 
recording densities below two bits per micron (0.5 microns/bit) do not provide a terabyte 
capacity. Pulsc position encoding does not provide recording densities above about 2.3 
bitdmicron (0.435 microns/bi t). Therefore to provide a terabyte capacity and reduce 
program risk by thc use of standard PPM encoding, the system must operate in the range 
between 0.435 and 0.5 microns/bit. Selection of the standard PPM (2, 7) code provides il 
bit density of 2.22 bits/micron (0.45 micronshit), requiring a tape speed of 8 m/sec for 64 
parallel channels, o r  4 m/sec. for 128 parallel channels, etc. to obtain thc 100 MB/sec. data 
ratc. A dcsign utilizing fewer channels requires a proportionately grcater tape speed and 
consequently a faster modulator response to enable recording. Two dimensional modulator 
arrays on about 150 micron centers have been fabricated and tested during thc firs: year of 
the program. 

Fimre 3: Tape Velocitv vs. En coded D ata Dens itv 
for 100 MB/s. Data Rat e 

Blt Track Spsdng I 0.88 Mlernnr 
Overhead = 30% of Tots1 Data 

Tape 
Number of Bit Tracks per Track Croup 

Vclorlty. Ids. 
32 64 96 

Nanoseconds 
5.30 

6.63 

n.13 

Modulator Rlne Tinw 
@ 10% bll t h e  

Tape Length tor 1 TtraBytc User Capadty. iii 
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lntroduction 

High bandwidth applications rcquire large amounts of data transferred todfrom storqc 
devices at extremely high data rates. Further, these ?plications often arc 'real-timc'. in  
which access to the storage device must take place 011 * schedule of the data source, not 
the storage. A good example is a satellite downlink - the volume of data is quilc largc 
and the date rates quite high (dwens of MB/sec, typicaliy). Further, a telcmcrry downlink 
must takc place whilc thc satellite is overhead; once it passes over the horizon thc 
telemetry is lost forever. 

A storage technology which is ideally suited to these types of applications is RAID 
(Redundant Arrays of Indcpendent Disks). Thc concepts of RAID were presented in an 
academic paper from the University of California's Berkeley campus in the mid- IC)l(Os. 
This paper (often referred to  as the 'RAID papcr') offered five different architccturcs. 
colloquially referred to AS the 'RAID levels'. Each RAID level, numbered one through 
five, defined a different methodology for using multiple disks grouped togcthcr io 
improve performance and offer redundancy. Each of the levels had distinct strcngths and 
weakncsscs. It is a fallacy to  helicvc the RAID levels with highcr numbers (e .€ .  RAID4 
versus RAID-2) are superior: the ideal RAID lcvcl for an application varics with 
applications - one application may find RAID-1 best suited, RAID-S for another. and ycr 
another application's best choice may be RAID-3. 

RAID Levels 

RAID-1 is classic disk mirroring, in which every disk has a mirror image of its data 
storcd on another disk. This level was the frame of reference in the RAID papcr. 
Mirroring has been around for some time, primarily in mainframe computing. its 
strengths are redundancy and performance. Any single drive in any given data pair may 
h i !  and thc disk system will remain acccssihle, though at a reduced performancc IcvcI. 
Becausc there are two disks for any givcn piecc of data, read pcrformancc is quitc good LIS 

any two arbitrary requests for a singlc logical disk can hc scrviccd simultaneously o n  two 
physical disks. However, thc cost for mirroring is quite high - essentially a IOO'X 
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premium since every disk is duplicated. ?he power, cooling, and packaging costs are also 
quite high. Reliability is also halved because of the duplication of disks. 

RAID-2 and -3 stripe user data across a group of data drives (typically four or eight drives 
per gmup). Every block of user data is suiped, typically a byte at a time, resulting in all 
the data disks servicing every user data request in parallel. This ~ s u l t s  in extremely high 
data transfer rates, since multiple disks are transferring data simultaneously. RAID-2 and 
-3 differ in their redundancy methodologies. RAID-2 uses multiple disks to implement a 
Hamming error detection and correction code. The codes stored on a RAID-2's 
redundant disks were generatd from the data on the data disks. RAID-3 uses a single 
redundant disk to store a error correction code generated by calculating the logical 
exclusive-or of thc data on the data disks. Because RAID controller technology doesn't 
require the use of a Hamming code to detect a failed drive, RAID-2 hasn't found 
commercial acceptance as it IS more costly than MID-3. 

RAID-4 and RAID-5 also stripe uscr data across z group of data drives. However, instcad 
of striping every block of data across all drives, each block (or sometimes groups of 
blocks) is stored entirely on an individual disk. This results in good transaction 
performance as cach disk in thc group can service separate requests for individual blocks, 
simultaneously. RAD-4 and -5 differ in the methcdology uscd for storing the error 
correction codes. Both usc the exclusive-or code as uscd in RAID-3. RAID4 dedicates 
one drive for thc error correction codes while RAID-S rotates thc codes throughout a11 
drives in the array. RAID-5 has  better write performancc bccausc of this rotation as thcrc 
is less contention for acccss to thc redundant codes. 

The Right RAID Level for High Bandwidth Applications 

Real-time, high bandwidth applications require thc following from d ~ n  storage: high 
sustained data transfer rate under all normal operating conditions. Of all the R.4D Icvcls. 
only RAID-3 f i t s  the protilc. 

RAID-4 and RAID-5 don't tit bccausc their perlormance charactcristics arc designcd Ior 
delivering a largc number of indcpcndcnt requests (high VOs pcr second). These RAID 
levels operate best when cach disk is servicing a separate request. Howcvcr, high 
bandwidth applications arc chwacterizcd by large sequcntially stored data scts. For such 
data scts, transfer rate (mcasurcd in MB/sec) is the important mctric, not VOs pcr second. 
Also. both RAID-4 and RAID-5 have severe performance degradations after a drive 
failure, which is considcrcd a normal opcrdting condition in RAID disk arrays. For rcal- 
timc applrc ations this is unacccptable as i t  is imperative that rhc RAID suhsystcm he ahlc 
to service any request. at any rimc, regardless if there has bccn a drive failurc. 

5 84 



RAID3 fits for two primary reasons. First, hecause all user data is striped across all 
drives, transfer rate is very high. This is true for either reading or writing. In pcneral. a 
RAID-3 disk may will have a sustained transfer rate equal to the product of sustiiincd 
winsfer rate of the disks used in the array and the number of data drives in the array. 
Second, RAID3 doesn't suffer any perfonnmcc dcgradation after a drive fails. Bccausc 
dl of the drives are accessed for each data request, there always is sufficient information 
being transferred from the m a y  that can be comhincd with the error correction code 
:.which is also always transferred on every dau request) to generate Liie failed drive's data. 
Special hardware on a RAID3 controller is able to pcrfomi I...: fi led drive's data 
reconstruction on-the-fly, with no performance loss. 

Other Factors to Consider 

In addition to the media redundancy inherent in RAID. other subsystcm components 
should be protected against failure. For instance, moqt RAID subsystems include AC to 
DC power supplics. These units have failure rates similar to disk drives. Power supply 
redundancy should also be considered. One good approach is to inccqorate dual. load- 
sharing power supplies in the R A D  subsystem. Each power supply has sufficient power 
to operate the entire subsystem in case the other should fail. 

Another subsystem component worth considering for redundancy are the cooling Pins. 
Fans, being a mechanical device, are also prone to failures. A RAID subsystem can 
incorporate rculundant fans to protect against overheating in case of a fan failure. 

All redundant components, drives, power supplies, and cooling fans. can support 'hot 
swapping'. Hot swapping is the ability to replace a failed component without shutting the 
suhsystcm down or taking i t  offline. Most hot swap components will be housed in 
canisters ' carriers which slide into thc RAID subsystem. 

Another factor to wnsider is the host interface. The host interface directly affects the 
performance a RAID disk m a y  will be able to deliver. The most common interface 
found is SCSI-2. It is a 16-bit wide parallel interface which clocks data at 10 MHZ for a 
burst rate of 20 MB/sec. Sustained rates of over 19 MB/sec are possible with SCSI-2 
RAID-3 di .k may. 

The ,dccessor to SCSI-2, SCSI-3, includes a performance improvement to 43 MB/sec. 
nis capability, sometimes referred to as UltraSCSI, is backward compatible with SCSl- 

2. SCSI-3 uses the same 16-bit wide parallel interface as SCSI-2, but data is clocked at 
20 MHz, instead of SCSI-2's 10 MHz. UltraSCSI RAID-3 disk arrays are capable of 
sustained data rates in excess of 38 MBlsec. 
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Another interface which offcrs excellent high bandwidth performance is Fibre Channcl. 
This is a serial interfax which is clocked at 1 GbiVscc with a sustained inicrt'acc 
capability of 100 MB!scc. Fihrc Channel is not physically compatible with SCSI-2 or -3 
hut is software compatible. Fibrc Channel supports a number of software prottxols 
which are encapsulated in 'fmmcs' which arc thc data packcts that rn transferred hctwcun 
Fibre Channel nodes. SCSI is one of the software protocols supported. The first Fihrc 
Channel compatible RAID-3 disk arrays are becoming availahlc in 1996 with sustained 
data rites of nearly 90 MBisrc. 

Model Interface Burst Sustained 
Transfer Rate Transfer Rate 

6500 UltrdSCSI 50 MB/sec 38 MB/sec 

6700 SCSI-2 20 MB/sec 19 MB/scc 

6900 UltriSCSI 40 MB/sec 38 MB/scc 

7000 Fibre 100 MB/sec 80+ MB/scc 
Channel 

A good example of high bandwidth RAID-3 disk mays arc those available from Cipriw. 
Inc. (klinneaplis, MN). Ciprico offers a fill1 line of 'ligh bandwidth disk arrays which 
arc well suited to real-time, high bandwidth applicaticb;ls. Ciprico's arrays all offcr high 
data transfer ratc, no pertbrmance degradation aftcr drive failurcs. and media rcrfundancy. 
There arc a number of intcrficc. redundancy. and capacity options, designed to support a 
variety of applications. Table I summarizes the capahilities of Ciprico's disk array. 

Redundancy Hot Swap 

Drives No 

Drives YES 
Power 

Dri vcs YES 
Power 

Drivcs YES 
Powcr 
Fans 

Summary 

High bandwidth applications require high sustained data transfc'r rates under all operating 
conditions. RAID storage technology, while offering diffcring methodologics for a 
variety of applications, supports the performance and redundancy requircd in rcal-limc 
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applications. Of the various RAID levels, RAID-3 is the only one which providcs high 
data transfer rate under all operating conditions. including aftcr ii drivc fiailurc. 
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Introduction 

Mirroring, data replication, backup, and more recently, RAID are all technologies utilized 
by corporate America to protect and ensure access to critical company data. IS managers 
have taken comfort in knowing that critical data was being copied and safely stored for 
future access in the event of an equipment failure, operator or user error, or even worse, a 
iocd disaster. If one of these events were to occur, this critical data could still be 
transparently accessed, or at least recovered, and operations would continue. Or would 
they? 

A whole new set of problems have arisen a> J corporation’s data becomes more and more 
geographically distributed. Do conventional protection techniques - mirroring, data 
rcplication, RAID, backup etc. - truly provide the level of data protection and data 
accessibility needed under this changing environment? The answer to this question is - 
probably not. Each of these technologies provides important benefits; but each has failed to 
adapt fully to the realities of distributed computing. The key to d& high availability and 
protection today is to take these technologies’ strengths and “virtualize” them across a 
distributed network. 

Traditional Backup and High Availability Methods 

RAID and mirroring offer high data availability. while data replication and backup provide 
strong data protection. If we take these concepts at a very granular level (defining user, 
record, block. file, or directory types), and then liberate them from the physical subsystems 
with which they have traditionally been associated, we have the opportunity to create a 
highly-scaleable network-wide storage fault tolerance. The network becomes the virtual 
storage space in which the traditional concepts of data high availability and protection are 
implemented without their corresponding physical constraints. Let’s look at the evolution 
of these technologies. 

The concept of RAID has existed for several years, giving users the ability to copy and/or 
stripe data to an array of disks. Because of the redundant design, data remains accessible 
even if an individual disk should fail. But what if the server fails? Because the disk array 
is located in a single physical location, its data is vulnerable to a “single point of failure.” 
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Using RAID, no dtematc “safe” locations from which to retrieve data exist, making it 
incomplete as a reliable, uninterrupted storige fault tolerant solution. 

Disk mirroring, like RAID, enables IS managers to “duplicate” or “mirror” critical data to 
a second disk so that the data can later be retrieved in the event of a primiiry disk failurc. 
This method also poses several drawbacks. For one, mirroring is not efficient; the entire 
contents of the disk must be duplicated. Neither RAID nor mirroring offers the level of 
granularity needed to define which users, records, blocks and/or files receive top-level 
protection. Additionally. mirroring, like RAID, is constrained by physical location and 
vulnerable to a single point o f  failure. 

Backup and data replication technologies have been uwd tor some time to protect 
mainframe and workgroup level data. Historically, they ensured that dah was always 
available, but how do you back up a file system when it is hundreds of gigabytes to 
terabytes in size, or whcn you’re collecting hundreds of megabytes of data per day? The 
window of time available to perform these tasks is no longer enough. This magnitude of 
data can’t be backed up during regula business hours because of the already high level of 
network traffic versus the network pipe size available. 

Emerging SIT Technology 

Although there m still henetits to RAID, mirroring, data replication and backup, today’s 
storage needs demand what these technologies can’t provide - high data protection and 
availability across the cntirc enterprise. Administrators are looking 10 a new generation of 
software to take high data availability and protection concepts one step further. A new 
concept of network-wide storagL fault tolerance (SFT) has emerged, which utilizes the 
cntirc network’s storage resources, giving administrators the ability to store multiple copies 
of information at multiplc sites in thc enterprisc, even a! remote storage vaults. 

SFT technology evolvcd from II need to ensure that data was consistently and readily 
available to key users. If key users cannot get consistent and immediate access to their 
critical data, then individual productivity suffcrb, meaning loss of money to a company. 
SFT software scnds key user data not to a single, same site location (as in RAID and 
mirroring), but to various storage devices locatcd throughout ii company’s computing 
environment, climinating any single point of failure (Figure 1 ) .  In this way, it offers an 
enterprise-wide levcl of high data availability and data protection rather than traditional 
subsystem-speci fic security. 
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1 have heen involved with the computer industry for more than 20 years, and I've 
idcntifid a few constants. ?plesc are change, growth, and an exponentially incruasing 
volume of data to he managed. 

My industrr niche is in data management, and for that reason I am very focuscd o n  the 
growth of iata volume, storage density, data granularity, and DO handwidth. I think that 
the cxpcrience Qf Cray users over the years is a relevant caw study. 

In the early 198oS, Scymour Cray completed work on thc Cray 2, a comp;rcr 
supercomputer that used a revolutionary liquid cooling system. The Cray 2 coulJ crcatc 
new data at the rite of (about) 5 to 1 0  megabytes / second. Thc prcxessinp spctd was 
great enough that data gcneration and use outpaced thc machincs VO channels. rind the 
system had 10 be idled cvery fcw hours to allow for cxport of newly created dalil. ;uiJ 
import of a new data set. The cycle was repeated several timcs a day. Data transtcr w;is ;L 
bottleneck, and the best that could bc hoped for was 1 to 2 gigabytes I day. 

The Y-MP class of Criiy machincs provided a greatly incrcased YO handwidth, and ai thc 
- m e  :imc the capacity of both vector and scalar machines was incrcased s o  thar data 
could be created at 10. 20, 30 ... megabytes per second. All of rhc prcviously ctunputc- 
hound prohlcms became VO bound, and this created a logistics problem. which is -- how 
do we mow and store all of this data? 

Automated Storage Management 

Well, thc traditional approach has been to keep our currcnt stutf on magnetic disk. and 
store less current informadan on tape. (Stuff, that's a technical term we usc to dcscrihc 
the other guy's digital data.) This scheme worked OK, as long as we had "manilpcahlc" 
data sets, and enough operators to keep the data moving. But when data volumes gci into 
the range of I to 10 gigabyes per day, we muFt have automation io handle thc shccr 
volume of data, to provide transparent access, to give us around-the-clock operation. r~nd 
to manage access control, that is -- security. 
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IBM marketed one of the first automated storage management systems, based on thcir 
proprietary DFHSM software. And, the emergcnce of UNIX and open systems 
computing led to a second generation of storage managcment applications, such as Bump, 
developed at NRL, and UniTree, developed at Lawrence Livermom. 

These were followed by a wave of architecturally simihr products, such as Cray's Data 
Migration Facility (DMF), which falls into the Bump class, and products in the UniTrce 
mold that use proprietary file systems, and operate in parallel with the UNIX file system. 
Both methodologics offered customcrs improved functionality, and satisfied many of 
their customer's rcquirements at the time. 

But the marketplace has changed. UniTree and other like products were traded like 
baseball cards, and were not valued or supported by the new owners, as strongly as by the 
old. 

There is much 'hat  is new in today's madet, and much remains the same. Basic customer 
requirements have not changed; they need stability, scalability, performance, and support 
for the newest storqe subsystems. Customers want to know that their data is secufe and 
accessible, with redundact copies for disaster recovery. But the check-off list of rcquird 
functionality has grown significantly, today's customers want more functionality than any 
one software product can provide, and they want it low-cost, with guwdnteed updates and 
tech. support -- forever. . 

A major issue for all customers is vendor stability, which means: will the softwarc 
provider be then: to support the product next year - and in five years. Many place their 
hopes in large companies that are presumed to be more viabfe, but this is inconsistent 
with the dynamics of the computer industry, whez  growth, change and innovation are 
fueled by products developed at start-ups and small companies. In fact, both large and 
small companies in the computer industry are volatile and offer volatile product lines. 
Whoever the provider, customers are advised to secure softwarc that works for thcir 
environment and is supported by established systems integrators. 

SAM-FS from LSC 

Which brings mc to my company, LSC, which stands for Large Storage Configurations. 
Our HSM product, called SAM-FS, is the happy result of an eclectic marriage of the best 
elements of the old paradigm with a new 
generation of code, functionality and pformance. SAM-FS is a robust, high- 
performance storage and archivc manager, opcrating under Sun's Solaris 2.X operating 
system. 

I'll have more to say about performance later, but it's important to make a point about i t  
herp. Pcrforrnance is important in all aspects of HSM operation -- not just in YO transler 
rates. 
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LSC has designed performance into every part of SAM-FS; into file system restoration 
for example. In an adual test performed by DLR in Germany (that's Germany's NASA) a 
SAM-FS file system and a competitor's system were restored from backup media after a 
simulated interruption. The competitor's product q u i d  about 1-1/2 days per IW,CMlO 
files restored; SAM-FS took less than a minute per 100,OOO files. We didn't do this test, 
the customer (DLR) dcsigned the test and carried it out. 

Don't you think that performance like that will be important to ypldt users or customers if 
they are trying to get back into production after an intemption, maybe a server disk 
crash? 

SAM-FS is a full featured HSM that operates as a file system on Solaris-based machincs. 
The SAM-FS file system provides rhe user with ali of the standard UNIX system utilities 
and calls, urd it adds Some new commands, i.e. archive, release, stage, sls, sfind, and a 
family of maintenance commands. The system also offers enhancements to the standard 
UFS, i.e. high performance virtual disk read and write, control of disk through an extent 
m y ,  and the ability to dynamically allocate block size. This allows for very fast disk 
access, up to 2X faster than ufs. SAM-FS supports all RAID levels and the use of 3rd 
party file systems such as Veritas and On-line Disk Suite (ODs). 

SAM-FS provides "archive sets", which are groupings of data to be copied to secondary 
storagc. Archive sets can be defined (controlled) as tc, number of copies, when and whcrc 
each copy will be stored, how long each copy will be retained, file size included (max. 
and min. sizes), and by VSM for each copy in the set. 

As with other HSM systems, SAM-FS migrates files onto secondary media. In practice, 
as soon as a filc is written to disk, SAM-FS will make copies onto secondary media. 
These filcs then become candidates for release from disk cache. The archiving process 
can be automatic or explicitly driven. This may not sound all that revolutionary, hut t h m  
are some very neat things going on: 

First, one to four copies of a file are dynamically and automatically writtcn to secondary 
..,edia, either automatically or by spccific command. And SAM-FS provides parallcl 
threaded opcration so that all files can bc written to YO devices simultaneously. 

Second, data is written to secondary media with the metadata included, and can hc read 
independently using standard tar on any UNIX system. 

OK, now we have the filc on disk and secondary storage; what now? The SAM-FS 
releaser utility can he tasked specifically to release a file, or 
group of files, with immediate operation. Or the releaser can be programmed to rclcasc 
filcs according to predetermined criteria. Files c3n hc sr, *:ified for immcdiatc rclcasc 
after archiving, or  can be tagged release-never, which means they are hacked-up 
(archived) but ncvcr leave the disk. Now, the released files arc off of  cachc and residc 
only on secondary storage in a tape library, jukebox, or on media stored on shclv-u, 
possibly in a vault sornewhcre. 
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Files are nto cache to get them back. Think of the system as a virtual disk; when 
the user rtccesses a file, he wants it as soon 8s possible. To do this fast you must tunc the 
system to take advantage of the media performance. which means to do parallel VO at full 
speed. Stage requests are organized by media type and VSN, with tt.c queue organized 
for most efficient access to h e  media. New requests are added to the qlEue dynamically 
and rn p l d  in the most logical place based on media type and VSN. Once a request is 
satisfied, and if no other quests are pending, the tape or MO remains in the drive for a 
userdefined priod of h e .  Then it is rewound and put away. 

File access can be specified sruge-rrewr so as allowing large file 
i~ccess directly from secondiuy media, without disturbing the file mix in cache (3rd par~y 
transfers). 

Users can access dl or any pm of a file, specifying *h sw of data (byte offset) ;urd the 
number of bytes to retrieve. Only the specified data will he returned. 

Files can be archived kaving a stub on disk cache. This allows h e  file tu be opened and 
read without staging it onto disk. 

When files are modified they gct a new date and time and m* archived as a new file. Thc 
pointer to the old version is deleted, and the media now has a hulc. 

Now, having holes in your media isn't all bad, and I suggest hat you keep them. B0Cau.w 
as long as that hole is present in the media, the older version of thc file that the holc 
represents is still accessible. Sooner or later, though, you may want to rocycle media. 
The SAM-FS recycler will copy the remaining files Onto new media, and you can reuse 
the old media, or you can kecp it until you don't need access to the older file versions 
anymore. SAM-FS provides utilities and procedures to access the older file versions. 

Scalability 

SAM-FS is a richly scalable storage management system. It can manage N file systems 
on one server, where N is a vcry large number limited by 64 hit architecture The system 
can manage millions of files per system, though this is limited today by the spced of 
UNlX and its utilities. ktcr this year, LSC will implement a new search algorithm that 
rcmovcs logical and performance restrictions on the numbcr of files. 

Currently, SAM-FS supports tapc and MO libraries from all major vendors, including 
Grau robots with mixed media tapes and StorageTek libraries with Timberline and 
Redwood drives. 
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LSC has tested the more popular tape devices imder load to validate vendor claims and to 
determine actual performance with SAM-FS: 

Native Qmm=id 

DLT 2000 i.2MByte/sec. 2.0 MBytelscc. 
DLT Qooo 1 .5 MByte/sec. 3.5 MByWsec. 
DLT YO00 
349OE 3.5 MBytelsec. 5.0 MBytedsec. 
Redwood (FW SCSI) 9.5 MByte/sec. 14.0 MByte/sec. 

not yet available for test 

SAM-FS sc&s in perfumance from one drive to simultaneous use of multiple drives as 
followri: 

1 DLT 2000 1.2 MByae/sec. 1 Redwoort 0.0 myww 
2 DLT 2000 2.4 MByte/Sec. 2 Redwood 18.0 MBytelsec. 
3 DLT 2000 3.6 WIBytelSec. 3 Redwood 27.0 1vIBytdse.c. 

M DLT 2O00 n( 1.2) NIBytdsec. n Redwood n(9.0) MByte/sec. 

This test assumes the use of multiple SCSI channels. if all drives ate on the same SCSI 
bus, then performance will suffer 

SANI-FS was also tested to determine added overhead: 

Diskwrites + 1% 
Disk reads + 28 

Tape writes + 0.1% 
Tape reids + 0.1% 

For more information about SAM-FS testing and performance contact one or both of the 
following: 

DLR Deutsche Forschungsanstalt fur Luft w g  Raumfahrt e.V. 
German Remote Sensing Data Center @FD) 
82234 OberpfatTenhofen, Germany 
Phone: 49 8153 282 623 
E-mail: willi @dfd.dlr.de 

rattei Odfd.dlr.de 
how @dfd.dlr.de 

Contact Names: Wihelm Wildegger, Willi Rattei and John How 
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JIC-PAC IS0  
P.O. Box 500 
Pearl Harbor, HI 96860 
Phone: (808) 47 1-7272 
E-mail: djpQpixi.com 
Contact: Dale Podoll 

It is a fact of life in the storage management software business that everybody wants 
something more than we can deliver today. They love what they see but they also want 
something diffetent or mote of it. This is more of a job description than a problem, LSC 
is a customer-driven software development company. We add the new requested features 
and enhancements to our release schedule if we think its a g o d  idea, and we get a better 
product over time. 

In the last release several customer-requested features wcre added: 

BPI; Interface to access SAM-FS from a user application. 
Both client and server versions ~ t r :  provided. 

Enables additional disk cache devices to be added to 
a file system it.!! it grows. Additional disk devices can 
be added without system rcinitialization. 

Provides Associative Staging. Fila in a common 
directory with this control set are all staged when any one of 
the set is accessed. 

In the next release are more customer-requested features: 

Enables users to verify that data on 
removable media has not been altered. 

ve Sets; Allows recycling based on archivc set 
thresholds, in addition to recycling based on robot thresholds. 

AP1Enhancements: Making the API jump through hoops. 
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The Last Word 

A major reason that customers want HSM is for disaster recovery, and SAM-FS has some 
unique capabilities for data recovery in case of catastrophic failure: 

First, if the disk cache dies, the system can be reinitialized and back on line in a matter of 
1 to x minutes depending on the number of files and speed of the tape device reading the 
last inode dump. Average performance is 1 minute / IOOK files in the SAM-FS file 
system. 

Second, if a file is damaged, the archive copy is used. If the archive copy is damaged, 
SAM-FS will look for a second copy. Older versions (holes) can be accessed using the 
SAM-FS interface. 

Third, if the primary Server installation is destroyed, the system can he reinitialid using 
replacement hardware and a backup copy of the archive maintained specifically for this 
contingency in a remote vault. 

Last, it is important to tune the storage management system with disaster recovery in 
mind, i.e. files that have not been migrated to secondary storage will bc lost. 

People who try SAM-FS like it, so I'd like to ask you to give it a try. We have demo 
software available if you want to wring it out. 
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Hierarchical Storage Management (HSM) systems have evolved to become a critical 
component of large information storage operations. They are built on the concept of using 
a hierarchy of stcrage technologies to provide a balance in performance md cost. In 
general, they migrate data from expensive high-performance storage to inexpnsive low- 
performance storage based on frequency of use. The predominant usage characteristic is 
that frequency of use is r e d u c e d  with age and in most cases quite rapidly. The result is 
that HSM provides an economical means for managing and storing massive volumes of 
data. 
Inherent in HSM systems is system managed storage, wilich has the system performing 
most of the work with miilimum operations personnel involvement. This automation is 
generally extended to include: 

Backup and recovery 
Data dup!exing to provide high availability 
Catastrophic recovery through use of off-site storage 

Types of HSM 
HSM can be broktn into two main categories based upon the level of the objects that are 
accessible through the HSM system: file level and record level. 

File Level 
Most of today's HSM systems operate on a magnetic disk file level Basis. In these HSM 
systems, when data is migrated off magnetic disk, the associated directory entry remains 
while the actual data is moved down the hierarchy. When the end-user or end-user 
application needs the migrated data, the file containing the data is opened, and the data is 
migrated back to magnetic disk. For example, if transaction information for a deposit 
that occurred a year ago is required, the HSM system copies the entire file back to the 
magnetic layer, and then the application extracts the specific information it needs. 

Record Level 
"he second type of HSM system operates on a record level access basis. In these HSM 
systems, data is written with one or more keys or a record number. Then when the end- 
,,.i:r or end-user application needs information, the file containing the required data is 
opened, a key or record number is supplied, and the associated record is transferred. The 
main difference between file and record level HSM systems is that in record level HSM 
systems, data can be accessed directly from the storage me :a without having to be 
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restored to the magnetic layer first. This is particularly useful when storing billions of 
small objects such as user transactions, phone calls, and statements. 
The following table compares the performance of file and record level access HSM 
systems. 

Action 

Copy Data to Mag (500 Mbytes) 
Perform high-speed search for 
block 

Select 1 Record 

Total 

The preccding table shows a significant performance advantage for record level HSM 
when only a small object is needed. This is even more significant when optical disks are 
used instead of tape. This performance improvement can make the difference between 
being able to provide an online rcsponse versus a batch and call back response. Anothor 
significant advantage is that the storage drives used to suppon the accesse;. are in use 
much less for each request enabling many more requests to be processed per day. 

Record level HSM has been used in mainline storage managemcnt for a number of ycars 
for microfiche replacement, online report viewing. IBM VSAM archiving and 
application-based database extension. 

HSM In Databases 
HSM has seen little use with databases. Only small databases are built on the file system 
enabling the use of file level HSM. In these cases, the delay required to return the file 
(table) usually makes it impractical. 

StorHouse'" System 
StorHouse is the first relational database system that was developed to be fully integratcd 
with a record level HSM system (DBRISM"). It is built on the proven base of thc 
FileTek" Storage Machine@ (SM) system, which has been in operational use in nearly onc 
hundred sites for managing close to 200 TBytes of online storage. 

StorHnuse has a high volume data loader for Direct Channel loads from mainframes and 
FTP loads from the network. It can process 10s of GBytes of table data per day and 
concurrently build all required indexes. It can build macsive tables spanning many years 
and holding 10s of TBytes. Both hash and value indexes are supported to enable fast 
exact match retrievals and range-based retrievals. Indexes are multilevel and can reside 
separately in the storage hierarchy. This enables indexes to reside on high performance 
storage (RAID or optical) while data resides on less expensive storage (optical or tape). 
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StorHouse contains its own SQL query processor, optimizer, execution managcr a i d  
database gatcways. The SQL query processor, optimizer and the Storage Machinc cnsurc 
that SQL queries arc processed such that minimal use of robotics (optical and trqw) is 
required. This support includes the use of large magnetic disk performance huflcrs thitI 
enable the storage of 100s of GBytes of the most active portions of indexes or tahlcs io  
further enhance performance. These performance sensitive capabilities are cxrremcly 
important because daubax queries executed against very large dat:.\.hasses (VLDBs) C;LII 

be very demanding. 

The following diagram illustrates the various StorHouse components. 

r- 

Database gateways provide access to StorHouse from many different datihasc systcms. 
Today, StorHouse supports DB/2@ In thc 
future, StorHouse will support several other yet-to-be-announced middlcwarc standards. 
StorHouse and the gateways provide for full sharing of data from different datahasc 
environments. For example, data stored from MVSO DB/2 can be accessed by ORAC1,E” 
environment.. . This open query capability enables ad hoc querics to bc proccsscd onlinc 
in support of all operational systems. 

StorHouse will have a high volume data extractor that can access 100s of GBytcs per day 
for bulk loading into RDBMSs or analytical tools. This will providc data for dccision 
support applications whether they be OLAP or Data Mining. 

cing DRDA”I, EDA/SQLm and ODBCm 

Summary 
StorHouse provides a low-cost storage alternative for RDBMS data using thc Storagc 
Machine’s automatic managed storage hierarchy. StorHousc climinatcs thc nccd I‘or 
separately archiving SQL databases to tape and supports SQL ~ C C C S S  to very largc iliid 
ultra large databases. With standard protocol a c w s  from a varicty 0 1  computing 
platforms. StorHouse expands the media options by migrating RDBMS data tahlcs !rom 
expensive mainframc DASD and client/scrvcr aagnctic disk to lowcr-cost rcusahlc o r  
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1.1 ObjectiveandSoope 
"he purpose of thrs paper is to provide a technical description of RAID-S. It is intended 
to give the reader an understanding of how RAID-S is architected and implemented in the 
EMC Symmetrix u)o(r/5000 series Integrated Cached Disk Array. Topics include a 
RAID-S taxonomy, configuration considerations, operational characteristics, 
performance, and implementation guidelines. 

It should be noted that the RAID Advisory Board granted EMC's petition to use thc 
:onformance logo for RAID Levels one, four, and five for the Symmetrix series of 
ICDAs. Use of the conformance logo for RAID levels four and five were also granted for 
the Extended On-line Storage ICDAs in June 1996. Symmetnx is considered RAID 
Level anc-conformant when configured with mirrored devices, RAID Level four- 
corCormant when RAID-S is configured without Hyper-Volume Extension, and RAID 
Level five-conformant when RAID-S is configured with Hyper-Volume Extension. 

The Symmetrix series of Intelligent Cached Disk Arrays represent a family of information 
storage and retrieval systems available in a broad range of capacities to address current 
and future business and scientific requirements. Systems provide instant and dependable 
access to mainframe and open platforms. For further details refer to EMC's web page. 
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1.2 What is RAIBS? 

1.2.1 Improving data availability 

R A D S  (Redundant Array of Independent Disks-Symmetrix) is a Combination of 
hardware and software functionality that improves data availability in Symmetrix 30t) 
and 5000 series ICDAs by using a portion of the m a y  to store redundancy information. 
This redundancy information, called parity, can be used to qcnerate data should the data 
on a disk drive become unavailahle. 

1.2.2 Flexible availability ootiorrs 

RAIDS is the newest R A D  sdution to be delivered for the Symmetrix ICDA. RAID- 1, 
also called Mirroring, was first delivered in 1991. Compared to a mirrored Symmetrix. 
RAID-S offers EMC users more usable capacity than a mirrored system containing the 
same number of disk drives. Also. with the introduction of RAID-S, users can now select 
the level of protcction they desire for dah storcd in the Symmetrix. Within the same 
Symmerrix system, data can be protected via RAID-S. Mirroring, SRDF, andior Dynamic 
Sparing. 

1.2.3 Technological innovation 

RAID-S employs the same tcchnique for generating panty information as many other 
commetcially available RAID solutions. i.e., the Boolean operation EXCLUSIVE OR 
(XOR)'. However, EMC is the first vendor to reduce the overhead associated with paricy 
computation by moving the operation from controller microcode to the hardwan: on thc 
disk drive itself. This is done through the use of XOR-capable disk uives. This also 
positions R A D S  to benefit from future improvements in internal disk subsystem 
communications protocol performance when SCSI is supplanted by fiber channcl 
t echdogy  . 

1.2.4 Prerequisites 

RAID-S is transparent to the host operating system. Thc prequisites required for RAID- 
S are a 3000/5000 series Symmetrix with XOR capable disk drives and the appropriate 
Symmetrix microcode level. 

2. R A I D 4  Taxonomy 

Like most Symmctrix features, R A D S  introduces new tcnninology and concepts that 
need to be clcarly understood IO properly dcscribc the functions and cornponcnts 01- 
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RAID-S. Figures I and 2, will be referenced in the following discussion of R A D S  
te lmS.  

21 Croup 

A RAID-S group is the set of four or eight (EOS systems only. see section 2.7) physical 
disks within a Symmetrix system that are related to each other for parity protection. 
Current implementation requires that all members of a RAID-S group must be attached to 
the same disk director. Figures 1 & 2 both &pic1 RAID-S groups of four physical deviccs 
each. Note that each of h e  four disks are on a different Disk Director SCSI bus. 

A logical volume is a unik of storage implemented on a single Symmetrix disk drive. 
When Hyper-Volume Extension (HVE) is not used, the size of a logical volumc is usually 
the same as a physical volume. With HVE up to eight logical volumes can exist on a 
physical volume. 

2.3 Rank 

A rank is the set of logical volumes related to each other for parity protection. Each 
RAID-S group supports a minimum of one rank, and with HVE enabled, a maximum of 
eight rinks. Figurc 2 shows a RAID-S group consisting of four 9 GB drives with four 
ranks defined across the group. A rank is the "horizontal layer" of logical volumcs and 
utilizes all four SCSI paths attached to a disk director. 
A rank is equivalent to a "redundancy group stripe" as defined by the RAID Advisory 
Board. 

2.4 DataVolume 

A data volume is similar to a traditional logical volume in Symmetrix terminology. It is 
the "virtual volume" image presented to the host operating system and defined a,, a 
separate unit address to the host. All data volumes within a rank must be the same si7a. 
There can be a maximum of 5 12 data volumes in a Symmetrix. 

It is important to note that %AID-S does not "stripe" data across members of a rank as is 
done in traditional RAID implementations. Each data volume emulates either a complete 
3380 or 3390 device or a complete FBA logical volume mapped to an Open Systems 
host. This is a key differenuator because it allows the group to sustain the loss of more 
than one member and still service requests from all the surviving members. In RAID 4 5  
implcmentations which stripe data, the loss of more than one member would result in data 
loss for the entire group. 



This “diract” mapping of disk images to disk drives also allows standard performance and 
tuning techniques to be used to manage the volumes in the rank. 

A parity volume is a logical volume which holds the parity information for the rank. It 
must be the same site as the data volnrmes it supports. Parity volumes do not have unit 
addre~ses and am transpamt to the host software. AS is true with ~ 2 ’ ”  vo~umes in a 
mirrored Symmetrix, parity volumes ate not included in the 512 device limit within a 
single Symmetrix system. In fact the p i t y  volusne is ref& to BS an “MY volwne and 
is associated with thee “M 1” data trolumt-s m a 3: 1 rank. This is illustrated in figure I - 

when using HVE parity volumes m distributed araongst &e members of a RAID-S 

over a single physical volume whidr COUW become a performance bottleneck in a heavy 
write W o r k h d .  

~ , a s S w R i a f r g u r e 2 .  ?his ~ p r 0 ~ f o r ~ p r o v e d p e r f o r m ; e n c e  

When a RAID-S rank is operating with all members functioning it is said to be operatang 
in normal mode. 

When a RAID-S rank is operating wit4 one failed data volume it is said to be running in 
reduced mode. Parity protection is suspended for the rank. Referring to figure I ,  the 
failure of device 00 would force the rank to operate in reduced mode. In figure 2, h e  
failure of device 00 would cause the first three ranks to operate! in reduced mode. 

2.6.3 Non-RAIDMode 

When a W - s  raak is operating with one failed par@ vokime it is said to be ilnning in 
non-RAID mode. As in reduced mode, @ty protection is suspended for the rank. Again 
referring to figure 2, the failure of device 00 would cause the fourth rank to operate in 
non-RAID mode. 
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When a data volume fails, the data on that volume is ~~onstructed by XORing the parity 
volume with the remaining data volumes in the same rank. This process is called 
regenemtion and is used in place of the normal READ command when one data volume 
has failed. The regenerated data is placed on the parity volume of the rank. Any 
subsequent request for the data will be serviced by the parity volume, which is acting as a 
data volume for the regenerakd data. 

Referring to figure I ,  if device 01 were to fail, the data on volume B would he 
regenerated by computing the exclusive OR of the data on volumes A, C. and the parity 
volume. 





2.7 EMC Extended On-line Storage (EOS) 

In March 1996, the flexibility of RAID-S design and MOSAIC 2000 amhitecture was 
demonstrated with the announcement of the EOS base product (model EOS-SOXX). EOS 
is a high capacity storage solution intended for archived data that is typically accessed in 
a read only mode, and where high performance is not a requirement. An EOS disk 
storage a m y  offers e i k  Dynamic Sparing or RAID-S protection for the disks in the 
system. The group size for EOS systems was expanded from 4 disks (3 data + 1 parity) to 
8 disks (7 data + 1 parity). This has the effect of increasing the moun t  of storage 
available for user data from 7 5 8  of the m y ’ s  capacity to 87.5%. 

In July 1996, the EOS product line was expanded with the introduction of the EOS 9R 
models (EOS-BRXX). EOS 9R models offer improved performance over the base EOS 
models and support some of the advanced microcode features of the Symmetrix. 

In both the EOS base and EOS 9R models, the number of data volumes in a rank was 
increased from 3 to 7. A 7-14 R A D S  group is depicted in figure 3 below. (Note that 
each SCSI bus now contains two members of a RAID-S group) 

RAID-S in EOS systems, as in Symmelrix, can be implemented as either RAID level 4 or 
RAID level 5 as defined by the RAID Advisory Board. When implemented without 
Hyper-Volume Extension it conforms to the definition of RAID level 4. When 
implemented with Hyper-Volume Extension, as in figure 3, it qualifies as a RAID levcl 5 
-Y * 
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3.2 Ranks and SCSI buses 

Normally RAID-S configurations will have a rank size of four, with three data volumes 
and one parity volume per rank. In these configurations each member of the rank will be 
on a different SCSI bus behind the same disk director. This improves the performuncc 01’ 
the rank by reducing SCSI bus contention during XOR calculations. The only exception 
to this is EOS systems which support 7+1 ranks. These implementations support two 
members of a group per SCSI bus. 

3.3 HVE considerations 

During installation and configuration of the Symmetrix 3000~5000, parity volumes are 
distributed across all devices in the RAID group. Obviously. the mdximum number of 
logical volumes that can be defined on each physical device, without having two purity 
volumes on one device, is four. However, the maximum number of hyper-volumes 
allowd, including parity volumes, remains eight. 

3.4 Intermixing with L d  Mirroring 

RAID-S groups can coexist with mirrored pJrs in the same Symmetrix. It is important t o  
remember that RAID-S group must be defined behind the same disk director, while 
mirrored pairs must be defined behind diflerent disk directors. In addition, RAID-S 
volumes cannot bc locally mirrored, and locally mirroed volumes cannot be part of’ a 
RAID-S group. 

It is possible to dynamically reconfigure a mirrored configuration to R A D S  and vicc 
versa. 

3.5 SRDF and SDM Support 

RAID-S is supported with the Symmetrix Remote Data Facility and the Symmetrix Data 
migrator. This support is described below. 

3.5.1 Symmetrix Remote Data Facility 

SRDF provides the capability to remotely mirror logical volumes to another Symmctrix 
system. This logical volume approach is maintained in a R A D S  environment. SRDF 
does not require that a RAID-S rank or group be remotely mirrored in its entirety. 
Rather, SRDF simply allows a logical data volume in a rank to be remotely mirrored to 
another system where it can be protected via local mirroring, RAID-S, and/or dynamic 
sparing. Note that parity volumes are not remotely mirrored. SRDF views this rcmotc 
copy (target volume) of the data as a third copy which can bc acccssc(1 via the SRDF link 
in the event that thc local copy (source volume) becomes unavailable. 
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This offers the benefit of using the remote copy of a volume to access data in the event 
the local copy is unavailable, thus avoiding the overhead of RAID-S regeneration when 
accessing a failed volume. 

3.5.2 Symmetrix aata Migrator 

SDM is a Symmetrix microcode based product which allows the direct migration of data 
from an existing. ins*;llled control unit (called the "'donor") to a Symmetrix (callcd thc 
"target"). During a migration, the target Symmetrix is connected to a mainframe host and 
the donor control unit is connected to the Symmetrix. Data is then migated from the 
donor to the target Symmetrix in either an on-line or off-line fashion. Parity computation 
can be perfottned during migration (the default), or after all data has been migrated to thc 
data volumes in group. 

The introduction of RAID-S protected target volumes into an SDM migration does not 
impact the configuritbility of the target Symmetrix. Donor c(mFltc0I unit volumes arc 
mapped to target Symmetrix volumes just as they were in a mirrorcd scenario. 

4. R A n S  Operational Characteristics 

4.1 Normal Mode operation 

4.1.1 Write Operations 

Fust write: 
.A arc satisiid in !!IC cache. 

As with all Symmctrix operating modes. 100% 0 1  writes arc fast writcs 

Destuging write: 
Modify-Write sequcncc of I/O opsriitions as depicted in figure 4 and dcscribed below. 

Wrix  opcr;rtions to a RAID-S rank are complercd using ;L Rcad- 
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Figure 4 Read-Modi@-Write Sequence 

k 

la The Disk Director begins the Read-Modifywrite sequence by sending the new 
data to the data drive using a new SCSI command called an XOR READ. This 
command reads the old data into the disk’s buffer, XOR’s it wi:h the new data 
(creating difference data), and writes the new data in the disk. 

ib  Simultaneously, the DD sends the parity drive another new command called an 
XOR WRITE (command phase only). This command instructs the parity drive to 
read the old parity into its buffer in preparation for XORing with the difference 
data from la. 

2 

3 

This Read-Modifywrite sequence constitutes the “write penalty” in RAID-S. It is 
significantly different from the write penalty in other RAID 4/5 implementations. The 
typical RAID 4/5 approach rcquires four discrete, scquential YO operations be executed 
by the controller: 

The difference data is sent to the DD for transfer to the parity drive. 

The DD sends the difference data to the parity drive during the data phase of the 
previously issued XOR WRITE command. The difference data is XOR’d with the 
old parity waiting in the buffer, and the resulting new parity is immediately written 
to the disk. 

1. Read old data 
2. Read old parity 
3. Write new data 
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4. Write new parity 

In addition, two processing steps must be executed by the controller microcode: 

5.  XOR old data with ncw data (creating difference data) 
6. XOR difference data with old parity (creating new parity) 

In contrast, R A D S  requires only two discrete sequential YO operations be executed by 
the controller. 

1. Writc; new data 
2. Write difference data 

The design of RAID-S distributes the work of computing parity between the disk dircctor 
and the disk drives, using .!le XOR chip and the disk level buffer. The disk containing 
the data volume performs the read of the old data, the XOR to compute difference data, 
and sends the difference data to the disk director. The disk containing the parity volume 
reads the old parity (at the same time that the data drj-f~, is reading the old data), XOR’s it 
with the difference data received from the controller, and writes the new parity to the 
disk. 

The parallelism introduced into the parity computation process through the use of XOR 
drives allows the “controller” (disk director) to do only half the number of back-end YOs 
as competitive RAID solutions. This reduces the impact of the writc penalty significantly 
and improves the overall performance of RAID-S compared to competitive 
implementations. 

4.1.2 Read Operations 

Read hits: Read hits ar- -*wcessed via the cache as in normal Symmetnx praccssing. 

ReadMiSses: Read misscs arc directed to the disk drive and processed as normal 
Symmetrix read misses. They.: is no XORing of the data, and only one disk drive is 
involved in servicing the request. This is a significant advantage over other RAID 4/5 
implementations that “stripe” data across multiple disk drives. In these implementations 
more than one disk drive may be required to service the request. 

4.2 Reduced Mode Operations 

Note: In reduced mode operations parity protection is suspcndcd For the .ank. No new 
parity data is written. 
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4.2.1 Failed Data Volume 

I 

2 

Read Miss Operation: Read requests not satisfied in the cache arc called read misses, and 
are serviced by the disk drive. When read requess are made to a failed member of  a rtlnk 
the data must be regenerated to service the request. The reger..;ration process is dcpicrcd 
in figure 5.  

Rcgcneration hcgins with the DD issuing a standard SCSI READ command to thc 
lirst surviving member in the rank and receiving the data back from the drivc. 

The data is sent to the second member using an XOR READ cammand with a hit 
sci to instruct the drivc to not write the data to the disk, hut allowing it to perform 

Figure 5: Regeneration Function 

3 The DD issuus another XOR READ sending thc XOR'd data to the last drivc in 
thc rank (the parity drive), again with the bit set to prevent the data that was scnt 
from hcing writtcn to thc disk. Thc data is XOR'd wiih thc data on thc disk and 
the result (the regencrated data) is scnt back to the DD. In addition to hcing scnt 10 
the DD to srrvice the requcst, the regenerated data is written to the parity drivc its 

data. This improves thc pcrforrnance of subsequcnt rcqucsts for rhc datu. Thc 
parity volume is now considered a data volumc for thc affected tracks. 
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Write operations: De-stages to the fiiiled member of a rank first require that the data 
be regenerated in preparation for the write operation. The track(s) which comins the 
data to be writzn is regenerated by B.>ring corresponding tracks on the surviving data 
volumes and the parity volume. The track i; then updated with the new data and written 
to the parity volume as data. As with read operations, this is done to improve the 
performance of subsequent requests for the data. 

4.2.1.1 Media errors 

In the event of I media error, the affected tracks will be regenerated and piaced on the 
parity volume as data. This condi*;on will cause the Symmetrix to place a remote service 
call to the Customer Support Center. The Prod.*ct Support Engineer IPSE) at the support 
center will determine if a disk drive has been identified for replacement and dispatch a 
Customer Engineer. Once on site, the CE will invoke the Symmeuix Hot Replacement 
procedure on the service proccssor. The logical volumes on tte disk being replaced will 
be placed in a not ready state and the associated ranks will begh either reduced mode or 
non-RAD mode of operation (depending on if the logical volume which was made not 
ready contained data or parity information). Once the new drive is in place, the rebuild 
process (described below) begins. 

4.2.1.1.1 Manual Sparing 

When the Symmetrix places a rPmote service call to report a disk drive problem, !he PSE 
has the ability to invoke F spxing operauun to a spare disk iocate3 anywhere in h e  
system. This sparing operaiion will copy the data volumes from the failing disk to the 
spare, regenerating data where necessary to ensure a complete copy of the data volume is 
placed on the spore di~k While the array i s  in this spared ;lac 70 new parity is 
generated, and the array opcratcs in non-RAID mode. 

When thc service action is complete the data volumes will be copied to the new disk stncl 
parity will be rebuilt where neccssary to return the array to normal opc*.rtion, 

4.2.1.2 Dynamic Sparing 

The Dynamic Sparing function exploits an architectural enhancement made to Symme:ris 
which allows up to four copies of data to be maintained in thc subsystcm. As a rcsult of 
this change, the minimum number of spares required to provide dynamic sparing 
protection far R A D S  was reduced from one per disk director to tliiee for the entire 
subsystem. Thesc spares may also he used to protect local mirrors or the local copy ol' B 

rcmotely mirrored pair. The sparing process itself was also improved and now works i b  

follows: 

When the Symmetrix detccfs thc pending failure of a disk drivc it ;tablishes a mirrorcd 
relationship betwecn the data volumes in the R A D S  group and three spare drives (which 
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This will reduce the parity rebuild workload when the service action is complcre and 
return the m a y  to normal operation as quickly as possiblc 

When the scrvicc action is complcte and the new disk is in placc, thc data volumcs arc 
copied onto the replacement disk and a parity =build is performed for dl parity volumcs 
in thr: group. 

This approach to full and partial dynamic sparing pmvidcs scvcral benefits: 

Elapsed time for rebuild is lower since less reconstructic,r, via XOR is requird 
Pedormancc during rebuild is improved through the use of mirroring. 
The amount of storage dedicated to the sparing function is less, especially in larger 
configuritions. 

4.2.2 Failed Parity Volume 

The failure of a parity volume does not place a rank in ~ d u c d  mode. All YOs are 
serviced from thc surviving data volumes as normal non-RAID requests, ~IMI parity 
protection is suspended for the rank. The disks then operate as normal non-RAID 
devices. When thc parity volume is replaccd, the rebuild function rcstows the volumc as 
a parity volume and parity protection is fesumed for the rink and RAID-S operating mode 
is restored. 

4.2.3 Surviving Members 

Read Miss Operarians: 
rank are cquivalent to non-RAID operating modc. 

Read operitions to surviving members in a reduced mode 

Write Operations: Write operations to a surviving member in a rcduced modc rink 
triggers the regeneration of corresponding tracks for the I'aiid mcmber, and the writing of 
the regenerated data to the panty drive. Oncc this is complcte. the write UO is allowcd io 
completc to the surviving member. The m o n  that inc failed member's data is 
regencratcd first is becausc writing data directly to a surviving mcmbcr would 
immediately invalidate the parity data. Rather than allow parity data to bc invalid, thc 
Symmetrix replaces it with valid data for the failed mcmber. thus ensuring data intcgrity 
in the rank and improving perfonnancc both for future mqucsrs to thc failcd mcmher and 
thc rcsynchronimtion of the failed mcmber after a scrkicc action. 

Note: Gradually, the parity volume will take over for thc failed data volume and service 
all YO intended for the failed volume. All read and write rcqucsts to thc failed volume. as 
well as all write requests to thc surviving volumes, result in regencratcd data being 
written to the parity volumc. 
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5. Rebuild 

1 

When a drive in a RAID-S group is replaced, the rcbuild process begins. Rebuild consist.. 
of distinct phases. The first phase is h e  restoration of the data volumes on the al'fcctcd 
disk drivc. This can occur in one of two ways; either regenerated data from the p i t y  
volume is copied to the data volume, or the data is rcgenerdted fmm the surviving 
members. Thc second phase is the rebuilding of the #anty volume, and is depicted in 
figure 7. During parity rebuild, only locations that s t o d   generated data during thc 
reduced mode operation are rebuilt. This helps to improve the overall rebuild time for il 
g*"P. 

Rchuild begins with the DD issuing a standard SCSI READ command to the Iirst 
data volume in the rank and receiving the data back from the drive. 

I 

Figure 7: Rebuild F u d n  

4 The DD issues a standard SCSI WRITE command to write the chuilt parity to thc 

2 

- 
3 

The data is scnt to the second data volume using an XOR READ command with I 
bit. set 10 instruct the drive to not write the data to thc disk, but allowing i t  io 
perform the XOR computation with the data on that disk drive. The XOR'd JiU is  
sent back tt; the DD. 

The DD issues another XOR READ sending the XOR'd data to the third dida 
volume drivc in the rank again with the hit set to prcvent the data that was scni 
from being written to the disk. The data is XOR'd with the data on the disk and 
thc result (parity for thc rank) is sent back to the DD. 
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I disk drive. I 
?he rebuild process is invoked b y a  Cfi or PSE as put of the disk drive replacement 
pmcedure. During the rrbuild pp.oce~s requests caa continue to be serviced by the rank, 
however. parity protcctiorr is not restcmd to the ranlr until the n!buikl opention is 
complete. fhe nbuild process is a backgrowid task th;u is seamday to servicing k t  
mrequests. 

LargeCh 
Symmetrix large central cache continues to jmvide customers with very high red hit 
rates regardless ofthe RAID prosection scheme impIemened in the "back-end" of & 
subsystem. Cache msowrces are not used to store or compute redundancy dab (i.c.. 
parity of mi l lod  d a w  

100IFastWrite 
The "cache all** philosophy of &e Symmevix ensure.. that all writes are fast writes 
thus ensuring the highest possible "fmt-ed' performance for wrile requests. Sincc 
RAID-S made no changes to the front end of the system, the benefits of this 
architecturz continue to accrue for RAID-S system. 

DistrCBuQedXOR 
The use of XOR capable disks in RAID-S improves the performancc of the Red- 
Modify-Write sequence for parity generation compared to traditional R 4ID schcmcs. 
By ducing the workload on the controller, back end path contention is dso reduccd, 
contributing to faster performance when operating in normal modc. 

SegtegstedRAIDCroups 
RAID-S groups are segregated from each other in the back cnd of the system. 
Rebuild activity on one group does not impact the pcrformancc of rhc rcmaindcr of 
thc groups in the system. 
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Tuning 
RAID-S keeps logical volumes i n w  by exploiting the Symmetrix Hyper-Volumr 
Extension feature to map logical volumes io one and only one member disk. As a 
result, traditional perfonnance tuning techniques that have been employed by storigc 
administrators for decades can bc used to tune R A D S  systcms. 

aS with all Symmecrix ICDAs cache size and cache friendliness of thc worklo;rtl hwc il 
major impact on the performance & l i v e d  by the Symmetrix. Standid cache sizes for 
RADS Symmearix systems have been adjusted upward to ensurc a consisten1 lcvcl of 
perfmance when amrktds have a heavier write orientation. As is ~lw for dl parity 
b e d  RAID implementations, RAWS is best suited LO workloads whose write conwni is 
k s  than 25%. 

ik configuration flexibility of Symmcuix is an important fcaturc in ensuring gikd 
per5mnKmancc for all worklds. The ability to configure a pwl of RAD-l  protwtcd 
volumes in a Symmetrix that is mostly prorccced via R A D S  is callcd "bsc;llshlc 
availability", md should he used to support applications with very high wriic contcnt. 
such as disk to disk copies and large sequential file loading operitions. 

Having said chat, however, it is imporrant to keg in mind that a cachc hit is a c x k  hit. 
and in this respccr R A D S  Symmeuix performs in thc samc manner it.. non-RAID iind 
mirromd Symmeirix. Lrderstmling workload characteristics. and exploiting scalahlc 
availability where appropriatc, will help ensure successful RAID-S implcmentations 

62.1 NormalMode 

For mad miss UOs. RAID-S pcrformance in normal mode is equivalent to non-RAID 
p e r f o r m a .  

During pcriods of high utilization, UOs m q  he impacted and experience a rntdcst 
incease in responsc time. It is impossible io specifically quantify thc effect sincc it is a 
function of readwrite ratios, YO rates, cache size. data blocksi?~, and duration of thc high 
demand. Like other parity hied RAID impicrncntaticw, RAID-S does exhibit a writc 
penalty, however thc basic design of the Symmctrix (i.c. large cache) and the innovative 
approach taken with RAID-S minimizes thc inipact compared to traditional RAID 
implcmcntations. Ovcrdl perfom.ancc of RAID-S will obviously be dcpendcn! on fhc 
VO rate and writc content of the workload. Higher YO rates and write content (>2Sri; 
may result in longer elapsed time due to the write penalty under thcse conditions. 
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Reduced mode performance of P RAID4 p u p  is dependent upon several factors 
including: which volumes in the rank are being accessed, thc number of volumes affwtcd 
by the failure, the layout of the ranks  with;,^ the Symmetrix, the VO rate, and the 
read/write ratio of the workload. 

Reads misses and &-stages to the failed members invoke the regtneration process for the 
fust access to each track. De-stages to surviving members dso invoke the regeneration 
process for the failed member (if the corresponding tracks on the failed member have not 
dready been regenerated). 

Reads misses to surviving memt 21s are treated as normal non-MID I/&. 

These variables, the types of YO and which volumes are being accessed, combine to make 
it difficult to predict the exact performance of a reduced mode RAID-S group. 

The performance rnetrics of intcrest in rebuild mode are respme time for host U O s  and 
the elapsed time of the rebuild (i.e., the wall clock time spent returning thc m a y  to  
normal mode). These meuics are affected by the mount  of host YO, the distribution of 
that VO between the replacement disk and the orher disks in the array, and the read/writc 
ratio of the workload. 

Elapsed time is also directly impacted by the size of the disks in the RAID-S group. 
While this may seem obvious, it is often overlooked, especially when comparing diffcwnt 
vendors RAD-5 implementations. RAID-S uses either 4GB or YGB disks. A rebuild can 
clearly execute faster on a 4-GB disk since less than half the amount of data is being 
rebuilt. It is inaccurate to compare the rebuild times of a four disk array utilizing 4-GB 
drives with a four disk array which uses 9-GB drives. 

It is also important to remember that thc performancc impact of a RAID-S rebuild i s  
isolated to me group undergoing the rebuild. The rcmaind-r of the systcm is essentially 
unaffected. 
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6.2.3.1 Symmetrix RAIDS Rebuild perfortlla~le 

“Rebuild” is one of the thtee modes of operation in a RAID-S protectcd Symmetrix. (Thc 
other two modes are “normal” and “reduced“). A MID-S group enters rebuild mtdc 
when a f;lJIed member of rhe p u p  is replaced with a new disk and that new disk must hc 
populated (rebuilt) with user data and parity re-calculated for the g t ~ u p .  

6.23.1.1 RAIWS Rebuitd Differentiators 

RAID-S is implemented on a disk d imtor  level and utilizes all four SCSI huscs on ;I 
disk dimtor (i.e.. a R A D S  group cannot span disk directors). Consequently. the 
impact of rebuilding a RAID4 p u p  is Mated to the group undergoing the rebuild 
and does not &xt &e rest ofthe subsystem. 

Also, R A D S  is thc only parity based RAID system on the market that does not maiiwin 
parity when running in reduccit mode. Rather than maintain parity whcn operating with LI 

failed mcmher, R A D S  plxcs regenerated data on the parity volume so that sutsuqwtit 
requests for the samc data do not incur thc averhcad of rcgcncrition. This lilattirc ih 

exrbitcd during rcbuild mode since a new disk can hc pop dtcd by copying previously 
regencratcd dava, rather than by incurring the overhead of P rchuild. This hclps rcducc 
responsu timcs for host UO rcquests during thc rcbuild opcrdtion. 

Furthcr, R A D S  rcbuild runs as a lower priority task on the disk director. so host VO is  
serviced hcfore rebuild il0, resulting in lower response times for host UOs. 

For P dctailed description of XOR scc one of the following: 
“A CompiUison of RAID- 1 and RAID-5” 
“What is Exclusive OR?’’ SalesAd~iuanra,ee lkhruary 27, lU9Sl 
“Thc RAIDBook,“ The RAID Advisorv Board [Scptemkr 1. 1994) 
” M2 is tlw term uscd to descrik thc w a n d  volume in ii mirrorcd pair. 

i 

Morkerinx Corpumtr SI:’ SY,)O~Y.V [Fchr\i.iry 13. I UWl 
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Abstract 

The Kudak Digital Science OD System 2000E Automated Disk Library (ADL) Base 
Module and write-once drive ace being developed as the next generation commercial 
product to the currently available System 2OOO ADL. Under government sponsorship 
with the Air Force’s Rome Laboratory, Kodak is developing magneto-optic (M-0) sub- 
systems compatible with the Kodaa Digital Science ODW2S drive architecture, which 
will result in a multifunction (1w;) drive capable of d n g  and writing 25 gigabyte (GB) 
WORM media and 15 GB erasable media. In an OD System 2OOOE ADL configuration 
with 4 MF drives and 100 total disks with a 50% ratio of WORM and M-0 media, 2.0 
terabytes (TB) of versatile near line mass storage is available. 

Introduction 

The architecture of the MF drive is a highly leveraged version of the WORM drive. With 
the exception of the MF optical head, MF analog head electronics, and bias field magnet 
the drive hardware is unchanged from the commercial WORM design. The MF analog 
electronics condition the M - 0  teatiback signals such that when they are forwarded to 
digitizing electronics, they are compatible with WORM signals, thereby prese qing a 
majority of the hardware architecture. 

The MF optical head has a 680 nanometer wavelength laser and 0.55 numerical aperture 
lens, which provide a 0.7 micron minimum mark size. The signal balancing capabilities 
in the MF analog electronics reduce effects of power variations and media birefringence. 
At 12 meters per second using an optimum record power of 5 milliwatts, a narrow band 
carrier-to-noise-ratio greater than 56 dB has been obtained. 

The M - 0  media is fabricated on the same 356 millimeter diameter aluminum substrate as 
the commercial WORM media. While this approach required technological advances in 
MF head electronics because of the polycarbonate coversheet birefringence and the char- 
acteristic media noise of the underlayers, the benefits of this approach are numerous. 
Utilization of existing manufacturing processes and fabrication equipment positively af- 
fect quality, process yield, and unit costs for a new media offering. Furthermore, the 
commercial cartridge hardware provides turn-key mechanical compatibility with existing 
drive and robotic library designs. 

As manufactured, the media is featureless. Tracking pads and sector headers are servo 
written as part of the manufacturing process. The featureless characteristic allows the 
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erasable media to be re-formatted to accommodate performance improvements in track 
pitch and capacity as they become available later in the product lifecycle. 

The ODW25 drive uses the Intel 960 processor and employs an object orientated design. 
Therefore, adding the erasable functionality to the WORM baseline is straightforward. 
The ODW25 drive is field upgradable to MF by means of an optical head change and 
firmware download through a PCWCIA card. 

KodrrR Digilar Science ODW25 Optical Drive Architecture 

The System 20OOE is an evolutionary product based upon the current Kodak Optical 
Storage Products' large format high capacity automated disk library, the System 2000. 
The "E" connotation refers to the enhanccd capabilities that are provided via the next 
generation ODW25 optical drive,. The drive is fully backward compatible with Kodak's 
preexisting 14" media types, can be readily installed into existing System 2000 libraries 
and features dual writdread heads, increased data rates, reliability and media capacity. 
The drive size and weight has been reduced to support a fourdrive library configuration 
providing additional throughput and back-up capability. 

The ODW25 drive has been engineered with a platform architecture to facilitate future 
enhancements and features. Kodak's 14" optical media format was designed to be "dud- 
head" ready from the onset by formatting opposing spirals on either si& of the disk. The 
platform architecture concept was applied to both the drive and media to support a prod- 
uct family commensurate with the "Technology Roadmap" shown in Figure 1. The strat- 
egy behind the platform concept was to develop a "system" design that would provide 
both a hardware and software base which could be enhanced to support additional fea- 
tures and functions requested by the customer in a timely, cost effective manner. 

I 

Figure 1. 14" Optical Storage Technology Roadmap 
I 

The ODW25 disk drive features ;1 variety of innovative hardware and software techniques 
intended to improve reliability and flexibility for future applications. The block diagram 
shown in Figure 2 illustrates the major subsystems of the drive. 
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Figure 2. System 2OOOE ODW25 ArcPritecture Block Diagram 

The System Control Electronics (SCE) circuit board contains the Intel I-%O microproc- 
essor which controls the entire machine, performs error detection and correction on data 
read back from the media in the drive and handles all communication with the host 
through a SCSI interface. The Digital Interface Electronics board (DIE) is responsible 
for all the machine control and YO not associated with the optical head. These functions 
include media handling, disk clamping, temperature sensors, monitoring power supply 
voltages, and more. The Spindle Analog Electronics board (SAE) delivers the required 
power to the spindle motor and processes the hall sensor data to provide velocity feed- 
back to the servo. The spindle motor is controlled utilizing a pulse width modulated 
motor driver under software qetvo control. The HeadlAccess Interface Board (HIE) 
processes all signals coming to, or going from, the optical heads. A multiplexer approach 
switches between the top and bottom heads allowing for near instantaneous access to ei- 
ther side of the disk. Each head is driven by its own carriage motor and motor driver to 
facilitate access to data on either side of the disk without external robotics. The present 
HIE contains only one programmable data channel and data channel controller. Future 
generations of the ODW25 drive will employ simultaneous access to both sides of the 
media platter. 

Sensors integrated into the media handling robotics determine the media type upon inser- 
tion into the drive. The Intel 1-940 microprocessor then "programs" the gatc arrays that 
comprise the data channel into the proper format for that media capacity. Therefore, fu- 
ture media upgrades and capacity increases can be accommodated with existing hard- 
ware. Also, the data channel is fully backward compatible with previous media types. 

Control of the various servo subsystems required by the optical drive to maintain media 
velocity, access position, focus, tracking and laser power is critical to obtain performance 
expectations. The machine servo control systems must meet product specifications over 
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a wide operating range. The ODW25 drive has utilized a digital servo system, which is 
controlled by the 1-960 processor. These software servos provide both effective machine 
control and flexibility. The microprocessor samples the servo error signals from th,o opti- 
cal head and can "tune" itself to provide optimum performance, something that cannot be 
accomplished with conventional analog implementations. Modifications to the optical 
head and head electronics required for future performance upgrades may be accommo- 
dated by "reprogramming" the servo functions without changing hardware in the drive. 
The software servo controls have improved diagnostic tapability i . 3  .d reliability via the 
reduction in the number of electronic components required to operate the optical head. 

The Error Detection and Correction (EIIAC) algorithm employed by the drive is also 
coded in software. This concept allows real-time access to byte error rate measurement, 
improves reliability and lowers cost by eliminating the need for expensive ASIC's md 
logic arrays. The software EDAC subsystem can be easily modified for future formats as 
EDAC strategies change as a result of increased packing densities. 

The ODW25 drive platform was conceived to provide optimum performance to the cus- 
tomer and maximum flexibility to allow for future upgrades without complete hardware 
redesign. The platform concept will protect the customer's investment in hardware and 
ease the integration of future features. The cumnt drivdmedia system will operate at a 
writelread data rate of 1 .S to 2.5 megabytes per second per optical head depending upon 
the media type (capacity). The media is manufactured with a zoned constant angule ve- 
locity (ZCAV) format, which provides the most effective comr xmise between access 
time and media capacity. The ODW25 drive will utilize all previous media types manu- 
factured by Kodak, 6.8 GI3 (read only), 10.2 GB, and 14.8 OB, as well as the upcoming 
25 GB platters and beyond with additional firmware upgrades. With future performance 
enhancement in mind, each drive was equipped with independent access systems for e.$. .I 

side of the disk. This will facilitate future enhancements to enable simultaneous access .3 
both sides of the disk which will, in effect, double both the write and readback data rates 
without substantial hardware modifications to the drive. The ODW25 drive with the 
2000E automated library will propel the user and the optical storage technology into the 
2 1 st century. 

Rome Laboratory Erasable Optical Program 

Program Overview 

The objective of the Rome Laboratory Contract (# F30602-94-C-0047) is to develop 
erasable optical recording hardware and media subsystems for integration into Kodak's 
commercial large format drive and library system. The system portrayed in Figure 3 will 
be delivered to the Air Force and integrated with other storage devices (magnetic disk 
and magnetic tape) as part of a hierarchical storage management (HSM) system. Large 
file size intellisence data processing and mission planning operations will be demon- 
strated using the HSM solution. 
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System 2QooE ADL 
Em .bleModuls 

AD1 Base Module 

The approach employed in the program is to design the erasable subsystems utilizing 
andlor leveraging the commercial write-once design such that an offering of a commer- 
cial erasable drive in the future will require a minimum level of engineering work. Thus, 
the engineering task focus areas under development including: (1) the optical head; (2) 
analog conditioning/processing elecrronics; (3) servo written media format; and (4) 
high-level SCSI interface command and control software all have significant linkages to 
the commercial product family. Low-level servo control for laser writing and reading, 
focus, and tracking a= aimed specifically at the MF head and erasable media. 

Expanded detail of the technology development work and results obtained to dcte are 
contained in the following sections. 

Magneto-Optical Media 

Here we describe the overall disk structure, characterization of the individual layers, and 
optimization of the optical stack. 

Disk Structure 

A new simple trilayer disk structure was used. The disk structure, AI Substratemi re- 
flecting layer/MO layer/AIN antireflection layer, eliminates the second dielectric in the 
conventional quadrilayer structure, while essentially maintaining its performance. Also, it 
eases some of the tight manufacturing tolerance limits involved in the quadrilayer struc- 
ture. Ti metal layer can be deposited more easily and at a significantly higher rate than its 
dielectric countcrparts, e.g., AIN or Si3N4. Figure 4 contains a side view detail of the 
MO disk structure. 
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i Firmre 4- MO Disk Structure Side View 

Magneto-optic media was fabkated using a modified Balzen LLS-801 sputter deposi- 
tion system. The sputter depositiori is carried out using three cathodes for depositing a Ti 
reflector layer, a TbFeCebascd MO layer, and the AIN dielectric layer. During deposi- 
tion, the substrate is rotated 3.ound an axis perpendicular to the sputtering cathode using 
a turn table affixed to the indexing drum. In this way, all three layers m deposited in 
sequence with no vacuum break. Subsequently, a protective polycarbonate coversheet is 
attackd and the disk is cartridged identically to the ODW25 product. 

MO Layer Characterization 

Recording h ~ ,  - The recordin3 layer composition, thickness, and deposition conditions 
were chosen to provide the optimal combination of signal quality. recording power, and 
environmental stability. The sputtering pressure and film composition were adjusted for 
a coercivity less than about 10 kOe to enable static room temperature disk erasure using a 
large area electromagnet; this is a much faster method of initialization compared to dy- 
namic crasure using a focused optical stylus. The circumferential variation in recording 
layer propertie\ was negligible due to the rotatinq substrate motion, and the radial varia- 
tion in thickness *as held within 25% using a specially designed mask. Additions of 
small amounts of Zr and Pd. have been shown to enhance the intrinsic environmental sta- 
bility and writing .wnsitivitv of the MO layer. 

Dieltwric h y e r .  An AIN diclectric layer wa5 used to optimize the Ken rotation and re- 
flectivity of the optical stack and, importantly, to provide corrosion protection for the MO 
layer. It was deposited by DC reactive sputtering of an AI  targct in an Ar and N2 atmos- 
phere. The reactive AIN sputtering process involves feedback control of the N2 flow to 
maintain constant current at constant nressure. The AIN mecl iical and optical proper- 
tics. as well as thickness miformitt . critically important for the performance of the 
disk. Preparation of low strcss ar,.: + . A  ..-free AIN layers is essential for providing long- 
term corrosion protection of the oxidation susc2ptible MO laycr. AIN films with opti- 
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mum propcrtics were obtained by controlling the sputtering power. Ar:N2 pressure ratio 
and total sputtering prcssurc. A radial thickness variation of less than +5% was obtained. 
The measured refractive index at 680 nm for AIN is n + ili = 2.06 + i0.01. The low coef- 
ficient of absorption k = 0.01 is desirable for efficient optical performaace. 

Reflector Layer. Ti metal was used as a reflecting layer. Ti metal has low thermal cot)- 
ductivity so in addition it acts as a thermal barrier betwecn the MO layer and the surface 
smoothed aluminum substrate, thus improving the writing sensitivity of the disk. The Ti 
layer also piovides corrosion protection for the MO media from the organic surface 
smoothing materiaf. Its thickness uniformity was within 55%. similar to the MO and di- 
electric layers. An additional beneficial effect of the Ti underlayer was to enhance the 
coercivity and squilreness of the Kerr hysteresis loop. advantageous for low disk record- 
ing noise. 

0ptimi:ation of Optical Stock. The multilayer stack was designed to obtain adequate fig- 
ure-of-rnerit treflect,vity times Kerr rotation) subject to practical constraints on reflectiv- 
ity and corrosion protection. Several small coupons were made with varying thickness of 
AlN MO, and Ti layers. Figure 5 show variations of reflectivity R, KCK rotation 4, 
and figure-of-merit R8k, plotted as a function of AIN layer thickness. The optimal com- 
bination of figure-of-merit. reflectivity, and passivation was obtained for 50 nm Ti I 4 5  
nm MO / 80 nm AIN. Several full structure disks were fabricated. A lower thickness for 
the MO and Ti layers was found to give highcr writing sensitivity if desired. Also, it was 
found that the CNR performance was quite insensitive to AIN thickness, demonstraiinc 
the robustness of the optical stack design. 

& J J ?  [r Kerr rotation, and figure-of-merit on AIN 
layer thickness. 

r 7 
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The return peth is designed to maximize the data and tracking detection signal-to- 
noise ratio. The return beam is reflectedbythe partial p o k h t i m  kamsplitterlil. The 
dual half spernwe focus decec&rreceives = zotk ofthe ppohmatm cxmpxtentofthe 
return beam. The reflected t i t  from beams@ittm# 2 is directedthough a waveplate that 
cortectsfoo mxbrrnd bead phirpe shifts a d  d t s  in a p p m x i ~ ~ ~ l y  equal intensity frorrt 
dretwobearasfn#n$re- beanlsplirter(rmalyter). T l E t W o ~ a r e ~ c  
to line foci (elongated in the ccoss track direction) cm a pair ofbicell detectors that pre 
vide signals A. B.C. and D for t r a d r i n g m  rrnd data detection. lhese s i p l s  itre proc- 
essed by the multifunction dataha& *ng electronics as shown in Figwe 7. The push pull 
cracking signals are given by: 

. .  

WORMTES=(A+C)-(B+D) ( 1 )  

MOTES = (A + 0) - (B + C) (2) 

where the tracking errof signal is sampled from the diffraction effects over servo written 
tracking pads (long data marks). The data signals are given by: 

WORM DATA =(A + B) + (C +D) (3) 

MODATA= (A+B)-(C+D) (4) 

The signal balancer electronics utilize variable gain amplifiers tc :nimize the effects of 
birefringence and laser power fluctuations on the data signals N .Fad RF B before the 
final sum (WORM) and difference (MO) 8fe generated according ; equations 3 and 4. 
This additional step is required with a bi-refringent coversheel in a multifunction system. 



The main thrust of the dynamic testing is to ensure that the WORA4 jmfommce is simi- 
lar to the production WORM system and that the MO system exceeds the contract re- 
quirements for data integrity. capacity (> 10 GigabytelDisk), and data rate (>1 Mega- 
bytedsec). The fundamental performance of the system with the two media types is il- 
lustrated in Figure 8. The readout spectrum of the WORM system shows a carrier-to- 
noise ratio in a 30 KHz bandwidth (CNR) of 57.0 dB. This was recofded at the second 
harmonic minimum, with an optimum recording power (OW) of 5.1 mW. By compari- 
son, the MO system shows a CNR of 56.5 dB at an ORP of 5.0 mW. The WORM system 
is dominated by media noise at low frequencies and Iaser noise at higher frequencies, 
while the MO system is dominated by electronic and shot noise. Thus the MO has a 
whiter noise signature and a lower integrated signal-to-noise ratio. The similarity of the 
ORP and CNR for WORM and MO is important to a multifunction system design. 
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Fqure 8. Tbe readout spectrum is shown for WORM and MO readout for a 2.5 
M& tom at a medh velocity of 12 ds. The recording power is 5.1 mW for 
WORM and 5.8 mW for MO. Ths read powers are 1.8 and 1.5 mW for WORM and 

This system has also been integrated with the System 2000E read channel. The figure of 
merit percent phase margin (96 PM) indicates the amount of the bit window remaining 
after noise and mark length errors are considered for a raw bit error rate of IO6. Com- 
mercial goals are typically 20-5096 PM depending on the systems error budget. For the 
multifunction drive with a worst case pattern at the conditions of 12 m/sec, MFM encod- 
ing, and a raw data rate of 10 Megabitdsec, the WORM system has a Q PM of 7W' /# COD 
sistent with our future 25 GigabyteiDisk commercial product and the MO system has a % 
PM of 458, which will allow the contract specifications to be met. 

Ultrahigh Capacity Optical Disk (UCOD) Program 

The National Storage Industry Consortium (NSIC) is leading an Advanced Technology 
R&D project with the Department of Commerce for the development of an optical data 
storage systnm that will place U.S. technology at the forefront of commercial data storage 
markets thrcwghout the remainder of this century and well into the next century. The 
program team Eastman Kodak Company, a leading supplier of high-end optical data 
storage libraries, SDL, lnc., the world-wide leader in high-power laser diode manufac- 
turing. and Carncgie-Mellon University, a leading research facility in optical storage in a 
highly focuscd program to produce an optical data storage system with the following at- 
tributes: 

0 1 Tcrabyte storage capacity, a 40 x incrcase over current technology 

30 Megabytekc data transfer rate, a 10 x increase 
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The technology developed will be rapidly incorporated into products at both Kodak and 
SDL throughout the program, such that the program will serve to strengthen and solidify 
the technical position of many U.S. industries, including high-definition television 
(HDTV), medical and library data storage systems, biotechnology, and visible laser diode 
systems. 

A four-year research and development program (Fiscal Year 1996- 1999) with four major 
technologies is underway. The four technology mas are: ( I )  advanced laser sources, (2) 
multilayer media technology, (3) advanced cbnnel coding techniques, and (4) high nu- 
merical aperture optics development. The development is being pursued in three major 
phases. An assessment phase will concentrate on gathering data and building integrated 
models. The experimental p h w  will include ta-geted work on the four technology ele- 
ments discussed above using refined goals from the assessment. The final stage is the 
design, fabrication, and testing of the II prototype system. The technical challenges in 
this development me listed in the Table 2. 

Table 2: Research Tdz/Barrier/Appmacb Nlatrhv 

I 

While the Rome Labomoiy (RL) pmpm will provide the fint Beta version of Mag- 
neto-optic recotding subsystems integrated in a commercial drive platform, the UCOD 
jmgmm will leverage the RL program and advance state-of-the-art in write-once and 
erasable optical recording. 

A key component of the "platform approach" of the ODW25 was to provide the capabil- 
ity to implement future enhancements with reduced resources and cycle times. The 
Rome Laboratory erasable optical project has utilized the platform effectively. The direct 
compatibility of the multifunction optical head, media substrate and cartridge, and im- 
plementation of featureless servo written formatted media will provide the capability to 
commercialize a multifunction drive in the hrture. The UCOD program will develop new 
technology which will continue to efirciently add significant performance improvements 
to the ODW25 platform. 
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