
(

A Note on Interfacing Object Warehouses and Mass Storage Systems

for Data Mining Applications*

Magnify, Inc.
815 Garfield Street

Oak Park, IL 60304

Email: rlg@opr.com
Tel: 708-383-7002

Fax: 708-383-7084

Robert L. Grossman

University of Illinois at Chicago

Laboratory for Advanced Computing

851 South Morgan Street

Chicago, IL 60607

Email: grossman@uic.edu
Tel: 312-413-2176

Fax: 312-996-1491

Dave Northcutt

Magnify, Inc.
815 Garfield Street

Oak Park, IL 60304

Tel: 708-383-7002

Fax: 708-383-7084

Abstract

Data mining is the automatic discovery of patterns, associations, and anomalies in data

sets. Data mining requires numerically and statistically intensive queries. Our

assumption is that data mining requires a specialized data management infrastructure to

support the aforementioned intensive queries, but because of the sizes of the data

involved, this infrastructure is layered over a hierarchical storage system. In this paper,

we discuss the architecture of a system which is layered for modularity, but exploits

specialized lightweight services to maintain efficiency. Rather than use a full functioned

database for example, we use light weight object services specialized for data mining. We

propose using information repositories between layers so that components on either side

of the layer can access information in the repositories to assist in making decisions about

data layout, the caching and migration of data, the scheduling of queries, and related

matters.

Introduction

Data mining is the automatic discovery of patterns, associations, and anomalies in data

sets. The data mining of large data sets is a special challenge because the process

requires numerically and statistically intensive queries on large amounts of data. Our

assumption is that data mining requires a specialized data management infrastructure, but

because of the sizes of the data involved, this infrastructure is layered over a hierarchical

storage system. Our concern in this paper is an appropriate open, layered architecture to

support this.

* This work was supported in part by the Massive Digital Data Systems Program.

421

A commonlayeredarchitecturefor this type of systemis illustratedin Figure 1. There
are threelayers:thestoragemanagementlayer, thedatamanagementlayer, andthedata
mining andanalysislayer. Unlessthesethreelayerscoordinatehow thedatais physically
laid out,how it is cachedandmigrated,andhowit is prefetched,theselayerscanwork at
crosspurposesanddrasticallyimpair theperformanceof theoverallsystem.

The traditional approachforgoesthe convenienceandmodularityof a layeredapproach
for efficiency: with this approach,the datamanagementsystemmanagesstorageitself,
while the datamining and dataanalysisapplicationsmanagethe data themselves. In
practice,thishasmeantthatgenerallydataminingapplicationssimply work with flat data
that fits into main memory. Of course,this datamay be obtainedby samplinglarge
databases,but the point is that the dataminingapplicationsthemselves work with small

amounts of relatively simple data. This may be thought of as a sample-based approach to
data mining.

In this paper, we are concerned with an alternative approach: the system is layered for

modularity, but exploits specialized lightweight services to maintain efficiency. Rather

than use a full functioned database for example, we use light weight object services

specialized for data mining. With this approach, the data mining applications can work

with large amounts of complex data. Another advantage of this approach is that the data

management services can be used to manage the internal data structures required by the

data mining algorithms. This may be thought of as a data-driven approach to data
mining.

One of our specific concerns in this note is how the different layers can share

information, especially in a heterogeneous environment. We propose using information

repositories between layers so that components on either side of the layer can access

information in the repositories to assist in making decisions about data layout, the

caching and migration of data, the scheduling of queries, and related matters.

This proposal generalizes and extends the proposal in Brown et. al. [1] for providing a

repository between a mass storage system and a relational database management system

and is a refinement of the architecture described in Grossman [2] and [3] for a scaleable

data mining system.

This work is preliminary. A fuller treatment is in preparation.

422

Web based

access to data

Data 7/ /" ,/ 1///- /

/
Data Mining Data Analysis Visualization ,,4

Data Management Layer

Storage Management Layer

,,4

/
Ncxles &

Services

Figure 1. In a layered approach to data mining, rather than manage their own data, data mining

applications use services from a data management layer, which in turn use storage services

from a lower layer.

Background and Related Work

Broadly speaking, there are two relevant traditions: one system-based and one service-

based. In the first, the essential question is how a database management system can

interface to a storage management system. In the second, the essential question is what

services are required so that data management, storage management, and application

services can interoperate in an open network environment.

Relational database-mass storage system interfaces

Historically, databases have managed the storage of single disks; more recently, they

have managed the storage of distributed disks. For some applications though much of the

data is distributed on a storage hierarchy, including tape and other tertiary storage, which

is managed by a mass storage system. One of the most important interfaces effecting

performance is the interface between a relational database client and the mass storage

system. A group at Lawrence Livermore National Laboratory has proposed an interface

between a client of a relational database management system and a mass storage system

Brown et. al. [1]. This interface which they call an Information Data Repository (IDR)

would serve as the home for several relational tables, including: one for relational tables

from the client database (called the bundle table), one for instances of the various

components in the storage hierarchy (called the store table), one for mapping regular sub-

components of bundles to stores (called the block table), and one for a list of pending

requests for moving data between stores (called the movement table). In addition, the

proposal [1] suggests using a standard relational database management system to manage
the various tables in the IDR. The IDR would be external to both the database and the

storage system and all interactions between the database and the mass storage system

would be required to go through the IDR.

423

Light Weight Object Management Using Network Services

Another approach is to develop a data management system specifically designed for the

mining and analysis of data. This type of system does not require the full functionality of

a database, but instead is optimized to provide low overhead, high performance access to

data which is read often, occasionally appended, but infrequently updated. In addition,

data may be pre-computed and specialized indices may be provided. This can be thought

of as providing specialized lightweight application specific data management services

Grossman et. al. [4]; or alternatively, as providing an object warehouse specialized lor

data mining applications Grossman [3].

As usual with databases, with this approach there is a manager for physical collections of

objects (called segments). In addition, to achieve scalability, physical collections of

segments are themselves gathered into larger physical units called folios. There is also a

folio manager which interacts with file and storage services, including mass storage

systems. Just. as the segment manager can query the tblio manager, so can the mass

storage system. The folio manager maintains a table of tblios and their physical
locations. In some sense, the tblio manager can be viewed as the interface between a

database and a (hierarchical) storage system. See [3] and [4] for more information about

this approach.

Distributed Object Services

The Object Management Group's Common Object Request Broker Architecture

(CORBA) is an industry standard for the development of distributed object-oriented

applications across heterogeneous platforms. The OASIS environment developed at

UCLA by Mesrobian et. al. [5] is an open environment for working with scientific

information based upon CORBA. CORBA is optimized for working with relatively

large-grained objects in heterogeneous environments in contrast to the use of lightweight

data management and data warehousing described above. In some sense, CORBA is

pessimistic about the physical layout of data and provides the infrastructure to support

this in order to work in heterogeneous environments, while a lightweight approach is

optimistic and only translates the physical format of data when necessary.

Requirements and Objectives

Our over all objective was to design an open system for data mining and data analysis

which scales as the amount of data and the numerical complexity of the query increases.

More specifically, we had the following requirements:

Large data sets. Our most important goal was to support the mining and

analysis of very large data sets, including data sets large enough to require

multiple disks or tertiary storage.

424

Numerically intensive queries. Our second most important goal was to provide

very low overhead, high performance access to the data. In some sense

databases are optimized to provide safe access to data which is expected to

change; our goal was to provide high performance access to data which is

relatively static.

TranJparent access to data. Because of the size of the data sets, much of the

data is expected to be either on tertiary storage or on large arrays of disks. An

important goal was to provide transparent access to the data, independent of

its location or media type.

Architectural Description

Our architectural framework consists of a storage management layer, a data management

layer, and an application layer consisting of clients of the data management services. We

are primarily concerned with data mining and data analysis clients. Between each of the

layers is a repository for information: a Storage Interface Repository (SIR) between the

storage management and data management layers and a Data Interface Repository (DIR)

between the data mining applications and the data management layer.

Data Interface Repository (DIR)

Traditionally, data mining has looked for patterns in small amounts of flat file-based data

or sampled small amounts of data from relational databases using SQL queries. Data-

driven data mining requires working with large amounts of complex data, much of which

has to be warehoused because of performance considerations. The DIR has several roles,

including:

The data required for data mining and data analysis queries may be distributed

in several data management systems, including data warehouses and

operational and archival data management systems. The DIR provides a

uniform interface for data mining and data analysis queries. The DIR

maintains a list of logical data sets and the systems which are maintaining

them.

For performance reasons, some of the data for data mining applications may

be warehoused, and specialized index and access structures may be provided.

This requires periodically refreshing the data from the operational and archival

databases. The DIR maintains the information required for this to take place.

• The DIR can also maintain the information for the optimization of data mining

queries using information obtained from the results of previous queries.

425

Storage Interface Repository (SIR)

Data management systems by necessity divide the data they manage into regular sized

extents. For example, access to file-based data is through blocks of equal length, while a

common type of object-oriented database provides access to objects through extents of

equal length called segments. These extents can then be managed by the data

management systems themselves or by file or storage systems. In particular, they may be

managed by hierarchical storage systems. The SIR has several roles, including:

The demands upon extents imposed by the database management system are

not necessarily those imposed by the hierarchical storage system. Not all

extents are treated the same by the data management system: for example,

some may contain directory or index information, which it would prefer

remain pinned to secondary storage, even if infrequently accessed. The SIR

provides a mechanism for a database and a hierarchical storage system to

exchange information about desired movements of extents or sequences of
extents.

A database must be able to estimate the time to access data. If the physical

management of the data is delegated to the hierarchical storage system, then

the SIR must contain enough information so that the database can still make

these estimates.

To work with very large data sets, a hierarchy of extents, as described above,

must be supported by the SIR. For example, for terabyte size data sets, there

are simply too many segments to be managed directly by the database.

Instead, it is important to group objects into segments, and segments into

larger units.

The SIR discussed here is an extension of the IDR proposed in Brown et. al. [1].

426

Data Mining Data Analysis Visualization

Data InterfaceDIR Repository (DIR)

Object
Warehouse

Object-Relational
Data Management
System

Relational

Data Management
System

I Storage InterfaceSIR Repository (SIR)

Hierarchical

Storage System

File System Wide Area

File System

Figure 2. The role of the Data Interface Repository (DIR) and the Storage Interface Repository (SIR) is to
maintain information so that services and applications in different layers can interoperate.

Discussion

In this section, we discuss some issues regarding the architecture.

Is the interface mandatory or advisory? Systems can be built either way. If

the interface is mandatory, then performance may suffer, since some of a

component's essential services may have to be accessed externally. On the

other hand, if the service is advisory, inefficiencies are likely and deadlocks

are possible because different components accessing the service may make

conflicting choices.

Is the interface part of one of the components' or independent? Traditionally,

for example, the management of table information, block information, and the

mapping from tables to blocks has been a component of the data management

system. The role of the SIR is to provide this information through a separate
service. Alternatively, the SIR could be incorporated into one of the layers

and accessed from the other layer.

427

How should the DIR and SIR be implemented? A variety of implementations

are possible: The DIR and SIR could simply be implemented as a network

service. Alternatively, a relational database can be used as proposed in Brown

et. al. [1], or a CORBA Object Request Broker (ORB) could be used.

What is the granularity of access? For this approach to succeed, it is

important to be able to adjust the granularity of the objects referenced in the

SIR and DIR so that performance is not adversely effected.

Status

This approach arose out of work with a system for data mining developed by Magnify,

Inc. called PATTERN. PATTERN currently consists of beta versions of an object

warehouse [3] and data mining modules for classification, prediction, and optimization

Grossman et. al. [6]. A demonstration of the system mining and analyzing high encrgy

physics data took place at Supercomputing 95. A performance evaluation of the system

is currently being prepared and will appear elsewhere.

Currently, the SIR is part of the object warehouse and interfaces to the High Performance

Storage System (HPPS) Teaff [7], while the functionality proposed by the DIR is

currently shared between the different data mining modules.

Summary

In this paper, we propose a layered approach to a data mining system. Data mining

applications exploit specialized data management services from a lower level, which in

turn exploit specialized storage management services. We propose providing information

repositories between each level so that services on either side can efficiently exchange

information, To maintain performance, we use specialized lightweight data management

services instead of a full functioned database, and adjust the granularity of the data passed

between the layers to lower the cost of accessing the information repositories.

References

[1] P. Brown, D. Fisher, S. Louis, J. R. McGraw, R. Musick and R. Troy, "The Design of

a DBMS/MSS Interface," Lawrence Livermore National Laboratory Technical Report,

1995.

[2] R. L. Grosman, H. Hulen, X. Qin, T. Tyler, W. Xu, "An Architecture for a Scalable,

High Performance Digital Library," Proceedings of the 14mIEEE Computer Society Mass

Storage Systems Symposium, S. Coleman, editor, IEEE, Los Alamites, CA, 1995, pages

89-98.

[3] R. L. Grossman, "Early Experience with a System for Mining, Estimating, and

Optimizing Large Collections of Objects Managed Using an Object Warehouse ,"

428

Proceedings of the Workshop on Research Issues on Data Mining and Knowledge

Discovery, Montreal, Canada, June 2, 1996.

[4] R. L. Grossman, S. Bailey, and D. Hanley, "Data Mining Using Light Weight Object

Management in Clustered Computing Environments," Proceedings of the Seventh

International Workshop on Persistent Object Systems, Morgan-Kauffmann, 1996.

[5] E. Mesrobian, R. Muntz, E. Shek, S. Nittel, M. LaRouche, and M. Krieger, "OASIS:

An Open Architecture Scientific Information System," 64 International Workshop on

Research Issues in Data Engineering, New Orleans, La. February, 1996.

[6] R. L. Grossman and H. V. Poor, "Optimization Driven Data Mining and Credit

Scoring, Proceedings of the IEEE/IAFE 1996 Conference on Computational Intelligence

for Financial Engineering (CIFEr), IEEE, Piscataway, 1996, pages 104-110.

[7] D. Teaff, R. W. Watson, and R. A. Coyne, "The Architecture of the High Performance

Storage System (HPSS)," Proceedings of the Goddard Conference on Mass Storage and

Technologies, College Park, MD, March, 1995.

429

