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Abstract

Parallel input/output characterization studies and experiments with flexible resource

management algorithms indicate that adaptivity is crucial to file system performance. In

this paper we propose an automatic technique for selecting and refining file system policies

based on application access patterns and execution environment. An automatic

classification framework allows the file system to select appropriate caching and

prefetching policies, while performance sensors provide feedback used to tune policy

parameters for the specific system environment. To illustrate the potential performance

improvements possible using adaptive file system policies, we present results from

experiments involving classification-based and performance-based steering.

1. Introduction

Input/output performance is the primary performance bottleneck of an important class of

scientific applications (e.g., global climate modeling and satellite image processing).

Moreover, input/output characterization studies such as Crandall [1] and Smirni [2] have

revealed that parallel applications often have complex, irregular input/output access patterns

for which existing file systems are not well optimized. Experience has shown that a few

static file system policies are unlikely to bridge the growing gap between input/output and

computation performance. In this paper we propose an automatic technique for selecting

and refining file system policies based on application access patterns and execution

environment. Knowledge of the input/output access pattern allows the file system to select

appropriate caching and prefetching policies while the specific execution environment

determines what policy refinements are necessary to further improve performance. For

example, a sequential access pattem might benefit from sequential prefetching. The

available memory and access latencies determine the quantity of data that should be

prefetched. By being responsive to both application demands and system environment, this

approach can provide better performance than a single static file system policy.

Adaptive file system policy controls rely on continuously monitoring access patterns and

file system performance. We obtain a qualitative access pattern classification either through

automatic analysis of the input/output request stream or via user-supplied hints. We also
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continuouslymonitor file system performancesensors(e.g., cachehit ratios, access
latencies,andrequestqueuelengths).Thevaluesof thesesensors,togetherwith the access
pattern,are usedto selectandtunespecificfile systempolicies.For example,the file
systemcanenableprefetchingwhentheaccesspatternis sequential,usingtheinteraccess
delaysdeterminehow much datato prefetch. Updatedperformancesensorvaluesor
changingaccesspatternclassificationmayresult in additionalrefinementsto file system
policies.

Theremainderof thispaperis organizedasfollows. In B2wegiveahigh-leveloverviewof

the adaptive file system infrastructure. Validation of these concepts requires an

experimental framework; we have implemented adaptive file system policies within a

portable, user-level file system called the Portable Parallel File System (PPFS) Huber [3],

described in B3. Our system has two major components; in _ we discuss how one

automatically classifies user access patterns and uses this information to select fde system

policies. In B5 we describe how to use an input/output performance summary generated

from sensor values to select file system policies and parameters that should be modified to

improve performance. Finally, B6-1_7 place this work in context, summarize our results,
and outline directions for future research.

2. Adaptive Steering

Given the natural variation in input/output access patterns, it is unlikely that one, static,

system-wide set of file system policies will suffice to provide good performance for a

reasonable range of applications. Even in a configurable environment, a priori

identification of effective file system policies is difficult because application access patterns

are sometimes data dependent or simply unknown. Furthermore, input/output

requirements are a complex function of the interaction between system software and

executing applications and may change unpredictably during program execution. We

believe that integration of dynamic performance instrumentation and automatic access

pattern classification with configurable, malleable resource management algorithms

provides a solution to this performance optimization conundrum. Below, we describe the

two major components of this approach.

2.1. Classification-Based Policy Selection

Parallel file system research such as Patterson [4], Kotz [5], Krieger [6], and Grimshaw

[7] has demonstrated the importance of tuning file system policies (e.g., caching,

prefetching, writeback) to application access patterns. For example, access pattern

information can be used to guide prefetching, small input/output requests can be aggregated

and large requests can be streamed.

One intuitive way to provide the file system with access pattern information is via user

supplied hints, or qualitative access pattern descriptions, for each parallel file.

Unfortunately, this approach requires ongoing programmer effort to reconcile the hints

494



with codeevolution.Inaccuratehintscancauseperformanceproblemsif the file system
selectspoliciesthatareunsuitablefor theactualaccesspattern.

Our solutionto thisdilemma is to automaticallyclassifyaccesspatternsduring program
execution.This approachrequiresno programmerinterventionand is robustenoughto
handledynamically changingor data-dependentaccesspatterns.A classifier module
observestheapplication-levelaccessstreamand generatesqualitativedescriptions.These
descriptions,combinedwith quantitativeinput/outputstatistics,areusedto selectandtune
file systempoliciesaccordingto a system-dependentalgorithm.Hints can be used in
conjunctionwith thisapproachto provideaccesspatterninformationthatcannotbe intuited
from theaccessstream(e.g.,collectiveinput/output).

2.2. Performance-Based Policy Selection

Although application access pattern information is a prerequisite for selecting appropriate

file system policies, input/output performance ultimately determines the success of a

particular policy choice. Extrinsic (external) input/output phases that occur when other

applications compete for shared resources are equally important to file system policy

selection, yet are not evident from application access patterns alone. Using a basic feedback

system as a model, we can frame parallel file system policy optimization as a dynamic

steering problem that tracks performance to refine file system policy selection. This type

of computational steering framework has proven useful in other contexts (e.g. Vetter [8],

Wood [9], Gergeleit [10], and Gu [11].)

In our dynamic steering framework, we monitor performance sensors that encapsulate the

performance of critical file system features, consult access pattern dependent policy

selectors that map changes in input/output performance to potential policy changes, and

invoke system actuators to effect these policy changes. The resulting performance sensor
metrics reflect the influence of our policy reconfiguration. When coupled with automatic

access pattern detection, this closed loop steering infrastructure can adapt file system

policies to match application access patterns and then tune these policies to the dynamic

availability of system resources.

3. Portable Parallel File System (PPFS)

PPFS is a portable input/output library designed as an extensible testbed for file system

policies [3]. A rich interface for application control of data placement and file system

policies makes it exceptionally well-suited for our experiments. Below we describe the

PPFS design and extensions that facilitate adaptive file system policy experiments.
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3.1. PPFS Design

Input�Output Server(s)

rataser 

Application Client(s)

Figure 1: Basic PPFS Design

Figure 1 shows the PPFS components and their interactions. Application clients initiate

input/output via invocation of PPFS interface functions. To open a file, the PPFS library

first contacts the metadata server, which loads or creates information about the file layout

on remote disk servers (input/output nodes). With this information, the application is able

to issue input/output requests and specify caching and prefetching policies for all levels of

the system. Clients either satisfy the requests or forward them to servers (abstractions of

input/output devices). Clients and servers each have their own caches and prefetch engines.

All "physical" input/output is performed through underlying UNIX file systems on each
PPFS server.

In the PPFS input/output model, files are accessed by either fixed or variable length

records, and the PPFS library has an extensible set of interfaces for specifying file

distributions, expressing input/output parallelism, and tuning file system policies. For

example, the user can specify how file records are distributed across input/output nodes,

how and where they are cached, and when and where prefetch operations should be
initiated.
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3.2. PPFS Extensions

The original PPFS interface provides the application with a rich set of manual file system

policy controls and structured data access functions, but the rules guiding their use are ad

hoc. Ideally, the file system should automatically infer appropriate policies from low-level

application access patterns, lessening the application programming burden and the

likelihood of user misconfiguration. Dynamic performance data should be used to verify

and refine these policy decisions. Through automatic access pattern classification, used to

select file system policies, and performance-based policy refinement, we automate file

system policy control. This has motivated two basic extensions to the base PPFS design:

support for automatic access pattern classification and automatic policy refinement based

on monitoring input/output performance.

Policy configu_

I Policy I Access F ._ [
/Selection i_patternsl Classme_

-- -- _ -Access statistics -- -_ --

r --j i
II/O Statistics J

File accesses _

PPFS Interface

User

Code

Figure 2: PPFS Classification and Policy Selection Extension

We have replaced manual PPFS file system controls in our extension by an adaptive access

pattern classification and file system policy selection mechanism. During program

execution, an input/output statistics module monitors the file access stream (each access is

represented as a byte offset, read or write, and request size) and computes the statistics

needed by the classifier module. PPFS uses the classification to select and tune prefetching

and caching policies. Figure 2 illustrates the interaction of the classification extensions with

the original PPFS components.
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Figure 3: PPFS Performance Monitoring and Steering Extension

To refine policy selections using performance data, we instrumented the system

components to periodically provide sensor metrics and created sensor-driven selector tables

to automate invocation of the same native PPFS policy controls that a PPFS user could

invoke manually. Figure 3 shows how our performance based policy selection extension

interacts with the PPFS. Dynamically computed sensor metrics (e.g., input/output queue

lengths, cache hit ratios, inter-request latencies) are routed to local and global policy selector

tables, where they index appropriate file system policies and parameters for the system
environment.

The local policy selector can only change local policies. For example, a client selector table

may decide to increase the client file cache space and the number of records to prefetch

ahead. It cannot change file system policies on other client nodes or on the PPFS servers.

As shown in Figure 3, sensor metrics are also routed to a global selector mechanism that

can select policy parameters for other nodes. For example, if the write throughput visible

to client nodes for large writes drops below a certain threshold, the clients may elect to

disable caching, and stream data directly to the PPFS servers. Rather than waiting for the

individual server metrics and selector tables to disable server caching and stream data to

disks, the global selector mechanism detects this input/output phase shift in the clients and

invokes the policy change on the servers.
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4. Automatic Classification and Policy Selection

As described in g3, we have replaced the manual file system controls in PPFS with an

adaptive access pattern classification and policy selection mechanism. Below we describe

in greater detail our classification and policy control methodology.

A file access pattern classification is useful if it describes the input/output features that are

most relevant to file system performance; it need not be perfectly accurate. For example,

one might classify an input/output pattern as "sequential and write only" even if there are
occasional small file seeks and reads - this would suffice to correctly choose a sequential

prefetching policy. Such a qualitative description is difficult to obtain based on heuristics

alone. Instead, one needs a general classification methodology capable of learning from

examples.

As a first step toward adaptive file system policies, we have implemented automatic access

classification to select file system policies, adapting to application requirements. This is

only half of the complete system; after making policy selections we rely upon performance

sensor data to refine policy parameters, adapting to the total system environment.

Performance-based steering is the subject of g5.

4.1. Classification Methodology

Within a parallel application, file input/output access patterns can be observed at two levels.

The first is at the local (e.g., per thread) level, and the second is at the global (e.g., per

parallel program) level. For example, a parallel file might be distributed across the threads

of a parallel program in such a way that each thread appears to be accessing the file locally

in strides, but the interleaved access stream is globally sequential. Global classifications are

formed from local classifications and input/output statistics. In IN.I.I we describe our

access pattern classification approach. In 134.1.2 we illustrate how global classification

works in a parallel application.

4.1.1. Access Pattern Classification

To accommodate a variety of underlying file structures and layouts, we describe access

pattern classifications assuming a byte stream file representation. File accesses are made

using UNIX style read, write, and seek operations, and file access patterns are determined

from this representation. Thus, an input/output trace of file accesses may be represented as

a stream of tuples of the form

_byte offset, request size, read / write I
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Figure 4: Access Pattern Space
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Patterns observed in each of the time-varying values of the tuple components form a three

dimensional access pattern space. Figure 4 shows certain categories along each axis that

can be used to influence file system policy selection and label all points in the access space.

Additional categories can be added as necessary to each axis to further refine the access

pattern space.

Many techniques can be used to classify and identify observed access patterns within the

space shown in Figure 4. Our approach is to train a feed-forward artificial neural network

as in Hinton [12] to classify patterns. Although neural networks are expensive to train

initially, once training is complete, classification is very efficient. To train the neural

network, we represent the access pattern in a compact, normalized form by computing
input/output statistics on a small fixed number of accesses, called the classification

window. For example, representative statistics might be the number of unique read request

sizes, or a transition matrix of the probabilities that one type of request (read/write) will
follow the other.

Table 1: Input/Output Trace Features

Catesory II
Read/Write

Sequentiality

Request Sizes

Read Only Write Only

Sequential 1-D Strided

Uniform

Category Features

Read-Update-Write Read/Write Nonupdate

2-D Strided Variably Strided
Variable

Table 1 shows the features recognized by our trained neural network. These features

correspond directly to planes or regions within the space shown in Figure 4. The neural
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network selects one and only one feature within each category; for example, a set of

accesses cannot be both read only and write only. Neural networks are inherently

imprecise, allowing us to train a network to identify patterns that are "close" to a well-

defined pattern in a more general way than specifying heuristics. For example, a pattern

might be treated as read-only if there is only one small write among very large reads, but

read/write if the single write is the same size as the reads. This allows us to train the file

system to classify new access patterns.

4.1.2. Global Access Pattern Classification

Local access pattern classification is only part of a larger classification problem. Local

classifications are made per parallel program thread; however, the local access patterns

within a parallel program merge during execution, creating a global access pattern. Global

knowledge is especially important for tuning file system policies. For example, if all

processors access a single file sequentially, one could potentially improve performance by

employing a caching policy that does not evict a cached block until every processor has

read it.

Our global classification infrastructure is based on an access pattern algebra. We combine

local classifications and other local information to make global classifications. For

example, if all local access patterns are read only, the global access pattern is read only. The

number of processors contributing to the global access pattern is called the cardinality of

the classification. Generally, we attempt to make global classifications with cardinality p,

where p is the number of processors involved in the global input/output. However, a global

classification involving a subset of the these processors is still useful for policy selection.

A partial global classification may even be preferable, if it more accurately represents the

temporal characteristics of the global access pattern.

Global access pattern classification cannot be useful for influencing file system policies

unless we recognize common global access patterns in time to effect policy changes. To

demonstrate that this is feasible, we have examined parallel applications from the Scalable

Input/Output (SIO) application suite [1,2]. These applications exhibit a variety of global

access patterns, including global sequential, partitioned sequential (processors sequentially

access disjoint partitions), and interleaved sequential (individual strided access patterns are

globally interleaved). The patterns are primarily read-only or write-only with regular and

irregular request sizes. All of these patterns can be recognized by our classification
infrastructure.

One specific application area we have examined is computational fluid dynamics. PRISM

is a parallel implementation of a 3-D numerical simulation of the Navier-Stokes equations

from Henderson [ 13,14]. The parallelization is implemented by apportioning slides of the

periodic domain to the processors, with a combination of spectral elements and Fourier

modes used to investigate the dynamics and transport properties of turbulent flow.

Figure 5 shows a file access timeline for PRISM on a 64 processor Intel Paragon XP/S

running OSF/1 version 1.4. This code exhibits three distinct input/output phases. During
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the first phase,every processorreads three initialization files (ml6.rst, ml6.rea and
ml6.mor). Eachfile is accessedwith aglobal sequentialaccesspattern;ml6.rst is also
accessedwith an interleavedsequentialaccesspattern. In the secondinput/outputphase,
nodezeroperforms input/outputon behalfof all thenodes,writing checkpointsand data
(accessto files ml6.Rstat, ml6.Qstat, ml6.Vstat, ml6.mea and ml6.his). In the final
phase,theresultfile iswritten to disk by all processorsin an interleavedsequentialaccess
patternm16.fld.Phasestwo andthreeoccuriterativelythroughoutprogramexecution.

Whenaccessesareadjacentandverysmall,localclassificationwindows(thetime to make
teninput/outputaccesses)areshort,andwemustobservemorewindows to detectoverlap
amongprocessorsandglobalbehavior.Forexample,Figure5aandFigure5b show local
classificationtimesfor a globally sequentiallyaccessedinitializationfile (ml6.rea). The
readsarevery small (most arelessthan50 bytes)andwe reclassifythepatterneveryten
accesses.We canmakea globalsequentialclassificationwhensequentialaccesspatterns
with overlappingbytes have beendetectedon every processor.Despite initial startup
asynchronicity,theslowestprocessor(number31)completesits tenthaccessto this file at
7.79 seconds. Becausethis initializationinput/outputphaseaccountsfor approximately
125 secondsof executiontime, adaptingfile system policiesto the accesspattern is
fundamentalto improvingperlbrmance.

m16.Rstat

ml6.Qstat

ml6.Vstat

_ ml6.mea
Z
N ml6.his
. ....q

ml6.fld

m 16.mor

ml6.rst

m 16.rea

m

0

0

I I I I I I I

0 <> <> 0 0
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i i I I I I I

1000 2000 3000 4000 5000 6000 7000
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Figure 5: PRISM: File Access Timeline
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4.2. Intelligent Policy Selection

A file access pattern classification as described above is platform-independent and unique

to a particular application execution. However, an optimal choice of file system policies for

a particular access pattern is system-dependent. A file system uses the classification to

tune file system policies for each input/output platform. By making policy decisions to suit

the application requirements and the system architecture, not only is input/output

performance portable over a variety of platforms, but the file system can provide better

performance over a range of applications than it could by enforcing a single system-wide

policy. This adaptivity should occur transparently, without application hints or user level

optimizations.

Abstractly, PPFS continuously monitors and classifies the input/output request stream.

This classification is passed to the file system policy suite for policy selection and

configuration. For example, when the access pattern classification is sequential, the file

system can assume that file access will continue to be sequential. If the classification is read

only, the file system can prefetch aggressively; if it is write only, a write-behind policy

might be efficient. When the classification is regularly (1-D or 2-D) strided, the file

system can take advantage of this information to adjust the cache size and prefetch

anticipated blocks according to the access and stride sizes.

As described in B4.1.2, we can combine local classifications to make global classifications,

which we use to adjust policies at all system levels with global knowledge. For example,

when all processors read the same file sequentially (global sequential) we can select a

caching policy at input/output nodes that prefetches file blocks sequentially but does not

flush cache blocks until every processor has accessed them. In contrast, if we detect an

interleaved sequential global pattern, each input/output node could prefetch file blocks

sequentially, retaining them only until each has been accessed in its entirety once.
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Figure 7 shows a simple, parameterized example of a policy selection algorithm that selects

PPFS policies for a uniprocessor UNIX workstation. Its default behavior is to favor small

sequential reads, typical of UNIX workloads. However, when the classifier detects other

access patterns, the algorithm adjusts policies to provide potential performance

improvements. Quantitative values for the parameters of Figure 7 (e.g.

LARGE_REQUEST) depend on the particular hardware configuration and must be
determined experimentally.

The algorithm of Figure 7 is but one simple possibility for policy control. Richer control

structures can be built upon more accurate models of input/output costs. However, in 1,4.3

we show that even this simple policy suite suffices to yield large performance increases

over that possible with standard UNIX file policies. In I]5 we describe our methodology

for tuning automatically selected policies in response to overall system performance,

closing the classification and performance feedback loop.

if

}

if

(sequential) {

if(write only) {

enable caching

use MRU replacement policy

] else if (read only && average request size > LARGE_REQUEST)
disable caching

} else {

enable caching

use LRU replacement policy
}

(variably strided II I-D strided II 2-D strided (
if (regular request sizes) {

if (average request size > SMALL_REQUEST) {

disable caching
} else {

enable caching

increase cache size to MAX_CACHE_SIZE

use LRU replacement policy
]

} else {

enable caching

use LRU replacement policy
}

Figure 7: Dynamic File Policy Selection (Example)

4.3. Experimental Results

As a validation of automatic behavioral classification and dynamic adaptation, we used the

enhanced PPFS to improve the input/output performance of Pathfinder, a single processor
satellite data processing code. Pathfinder is from the NOAA/NASA Pathfinder AVHRR

(Advanced Very High Resolution Radiometer) data processing project described in Agbu
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[15]. Pathfinderprocessingis typicalof low-levelsatellitedataprocessingapplications-
fourteenlargefilesof AVHRR orbitaldataareprocessedto producealargeoutputdataset.
It is anextremelyinput/outputintensiveapplication;over seventypercentof Pathfinder
executiontimeis spentin UNIX input/outputsystemcalls.

4.3.1. Pathfinder

The goal of the Pathfinder project is to process existing data to create global, long-term
time series remote-sensed data sets that can be used to study global climate change. There

are four types of Pathfinder AVHRR Land data sets (daily, composite, climate, and browse

images); we consider the creation of the daily data sets. Each day, fourteen files of

AVHRR orbital data, approximately 42 megabytes each, in Pathfinder format are

processed to produce an output data set that is approximately 228 megabytes in

Hierarchical Data Format (HDF) from NCSA [16]. For simplicity, we examine the

processing of a single orbital data file.

During Pathfinder execution, ancillary data files and the orbital data file are opened, and an

orbit is processed 120 scans at a time. Although the orbit file is accessed sequentially, the

access patterns for other ancillary data files range from sequential to irregularly strided.

The result of this processing is written to a temporary output file using a combination of

sequential and two-dimensionally strided accesses. Finally, the temporary file is re-written
in HDF format to create three 8-bit and nine 16-bit layers.

Table 2 shows the relative execution times for Pathfinder using UNIX buffered

input/output and PPFS with adaptive policies on a Sun SPARC 670. The dynamic

adaptation of PPFS yields a speedup of approximately 1.87 with the policies Figure 7. _ The

PPFS automatic classifier could detect that the output file access pattern was initially write

only and sequential, with large accesses, and that the pattern later changed to write only,

strided, with very small accesses. Adapting to the first access pattern phase, PPFS selected

an MRU cache block replacement policy. In the second phase it enlarged the cache,

retaining the working set of blocks.

Figure 8a and Figure 8b illustrate the dramatic benefits of dynamic policy adaptation for

Pathfinder's execution. Both graphs represent the same amount of input/output; however,

in Figure 8a we use the same static policies for all access patterns. The first cluster of

accesses in each graph is the write only sequential phase. Performance for the first phase is

roughly equivalent using either MRU or the default, non-adaptive LRU replacement policy.

However, enlarging the cache in the second phase substantially decreases the average write

duration. PPFS successfully retains the working set of blocks (the overall cache hit ratio

exceeds 0.99), while UNIX buffered input/output forces a write of 8 KB for every one or

two byte access.

J However, due to limited physical memory, we disabled caching for small, variably strided reads.
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Table 2: Pathfinder Execution Times (seconds)

Experimental
Environment

UNIX

PPFS

System

Time

1578.2

400.4

User Time Total

1781.1 4299.3

1270.4 2300.8

5. Performance-Based Steering

Although file system policy selection is partially a function of application input/output

access patterns, system performance ultimately determines the success of a particular

policy choice. Performance sensors provide feedback on file system behavior that can be

used to optimize the parameters of policy decisions.

Below, we describe a complement to qualitative access pattern classification: sensor based,

closed loop policy selection and configuration. As described in B2.2 and shown in Figure

3, our framework partitions the steering problem into three components. The sensor

metrics in 135.1 provide input for policy selectors of 135.2 which, based on system and

application performance history, select policy parameters and activate them via the policy
actuators of 135.3.

5.1. Performance Sensors

Dimension

Operation Count

Table 3: PPFS Sensor Metrics

Description

Total number of input/output requests
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Operation Time

Read Count

Read Byte Count

Read Time

Write Count

Write Time

Cache Hits

Server Cache Hits

Cache Check Time

Server Time

Server Queue Time

Server Queue Lengths

Prefetch Byte Count

Prefetch Cache Check Time

Prefetch Off Node Time

Hit Miss-Time

Mean operation service time

Number of read requests

Number of bytes read

Mean read service time

Number of write requests

Mean write service time

Number of requests serviced by caches

Number of requests serviced by offnode caches

Time to check local cache

Time spend on input/output servers

Time spend in disk queue

Length of disk queue

Number of bytes prefetched

Time to scan cache on prefetch initiation

Time spent offnode for prefetch operations

Time spent waiting for overlapped prefetch

complete

tO

To capture input/output performance data, we augmented PPFS with a set of performance

sensors that are periodically sampled using the Pablo instrumentation library of Reed [ 17].

Table 3 shows the current PPFS sensor metrics. We chose these particular metrics

because they are inexpensive to calculate, and we believe they are broad enough to reflect

the performance of malleable file system policies within PPFS. In practice, many metrics

are strongly correlated with others, magnifying or validating trends detected via other

metrics.

5.2. Policy Selectors

Table 4: Sample Sequential Access Selectors

Sensor Conditions Policy Options

(poor_read_service_times) &

(many_read_requests) &

(managable_byte_throughput) &

(NOT high_hit ratio)

(NOT managable_byte_throughput)

&

(low hit ratio)

Increase Cache Size

Increase Prefetch

Amount

Decrease Cache Size

Disable Prefetch

Given detailed performance sensor metrics and an access pattern classification, our

framework tunes file system policies using the sensor metrics as the indices to a selector

table containing policy parameters for that set of sensor metrics. The dashed lines of

Figure 1 show the flow of sensor data from PPFS modules to the policy selectors. Table 4

shows some sample selectors that a system might provide, given a sequential access
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pattern classification. For example, if the sensor metrics indicate that relatively small read

requests take a long time and the cache hit ratio is low, we might increase the cache size

and the number of blocks prefetched to anticipate the request stream. If the sensors

indicate that too much data is being requested to effectively cache and prefetch, we may

disable caching and prefetching altogether to avoid t.hrashing the cache.

The sensor rules shown in Table 4 are qualitative rather than quantitative. We quantify the

selector table rules when we calibrate them with the specific sensor metrics for a given

platform. For example, on an IBM SP/2 with 128 MB of memory per node

manageable_byte_thruput may calibrate to (Read_Byte_Count 2 < 100 MB/second).

Similarly on an Intel Paragon with only 32 MB of memory per input/output node, the
calibration may be (Read_Byte_Count < 25 MB/second).

To create selector tables for a given access pattern, we need to know how different file

system policies perform for this access pattern. By executing access pattern benchmarks

with a variety of policies and under a variety of load conditions, we can develop a set of

selector rules such as those shown in Table 4. We calibrate the qualitative rules on a given

platform by storing the quantitative performance sensors with the qualitative rules. Our

portable, dynamic steering infrastructure can then adapt to a system's resource constraints

by simply loading selector tables calibrated for that system.

5.3. Policy Actuators

After the policy selector mechanism determines what file system policy parameters

should be used, actuators provide the mechanism to instantiate policies and configure

parameters. Currently, PPFS supports actuators that allow dynamic reconfiguration of

cache sizes, replacement policies, and prefetch and write behind parameters on each client

and server node. These actuators provide a rich variety of controls to our dynamic

steering infrastructure. We have tested these controls by interactively steering application

behavior based on a virtual reality display of the sensor metrics as in Reed [ 18].

5.4. Experimental Results

To demonstrate the efficacy of sensor-based adaptive control when coupled with behavioral

assertions, we used an input/output benchmark to conduct a set of simple experiments on

several parallel architectures. We had several fundamental goals for the benchmark study.

First, we wanted to verify that sensor metrics help us make improved PPFS policy

decisions. We also wanted to determine how long we have to wait between policy changes

to allow the sensor metrics to settle to their new steady state values.

In our benchmark, a group of tasks reads disjoint interleaved portions of a shared file.

Task i reads all blocks, i modulo the number of tasks (e.g., task 0 of p tasks reads file

2 Note that Read_Byte_Count is a sensor metric from Table 3.
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blocks 0, 2p, p .... ) Between accesses, a processor computes for a uniform random

interval with a parametric mean. We executed this benchmark on several parallel

architectures with a variety of request sizes, prefetching options, and computation

overheads for varying numbers of reader tasks.
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Figure 9: Sensor Variation for Different Workloads

Figure 9 shows the effect on server request overhead 3 of varying the inter-access

computation interval and the number of nodes reading a file. This experiment was

performed on an Intel Paragon XP/S using a single input/output server controlling a

RAID-3 disk array with a throughput of 3.1 MB/second. In Figure 9a, eight processors

read the file and the PPFS server prefetches only sixteen KB ahead of the access stream.

In Figure 9b, on the other hand, the PPFS server prefetches 256 KB ahead and clients wait

on average 175 milliseconds in between each access. The PPFS server performance

depends on the number of requests arriving at the server each second. In Figure 9a, the

arrival rate varies from 27 to 54 requests per second. Similarly, in Figure 9b, the request

arrival rate varies from 6 to 92 requests per second.

The sensors values in Figure 9 fall into three basic categories. As shown in the top of

Figure 9a, most of the requests could result in cache misses coupled with long queuing

delays where the server time exceeds ten milliseconds. A substantial increase in the

amount of prefetching is required to alleviate this problem. When some of the requests

result in cache misses, we see that the server time is between four and six milliseconds. 4 A

3 Server request overhead is the time that a request spends on the PPFS server node. It includes

cache check time, buffer copy overhead, and disk queuing times if the request is not in the server

cache.

4 In Figure 9b, the startup transient lasts about sixty seconds before these cache misses occur

regularly.
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moderate increase in the number of blocks prefetched should result in improved

performance. Finally, at the bottom of Figure 9b, we see that when "allof the requests can

be serviced from the cache, the mean time spent on the PPFS server is less than one
millisecond.

Table 5: Benchmark Selector Rules

Sensor Conditions Policy Options

Quantitative Rules

(large_server_times) &

/man]c_read_requests)

(moderate_server times) &

(man__read_requests)

Substantially Increase

Prefetch Amount

Moderately Increase

Prefetch Amount

Quantitative Calibration

(MEAN_SERVER_TIME > 8 MS) d_.

(READREQUEST_COUNT >40)

(READ_REQUEST_COUNT > 40 &

(MEANSERVERTIME > 2 MS) &

(MEAN_SERVER_TIME < 8 MS)

Substantially Increase

Prefetch Amount

Moderately Increase

Prefetch Amount

Based on the figure, we can develop the two simple selector rules shown in Table 5 for this

benchmark access pattern. One rule detects when the prefetch parameters should be

increased considerably while the other detects when the prefetch parameters should be

increased slightly. To calibrate these rules for the Intel Paragon with a single RAID-3 disk

array, we simply augment the selector table with the appropriate sensor values as shown at

the bottom of the Table 5. When the calibrated selector table is used for an application that

exhibits this access pattern, the steering infrastructure can detect poor PPFS server

performance and increase the prefetch parameters appropriately. _

6. Related Work

Current work in parallel file systems centers on understanding application input/output

requirements and determining how to consistently deliver close to peak input/output

performance. This challenge necessitates re-examining the traditional interface between the

file system and application.

5 The rules in Table 5 are examples of a subset of the needed rules for this benchmark. A complete

set of rules could also reduce the amount of prefetching performed when the sensors indicate that

resources were being wasted.
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Characterizationstudieshave revealeda large naturalvariation in input/output access

patterns. During the past two years, our group and others have used the Pablo input/output

analysis software to study the behavior of a wide variety of parallel applications on the Intel

Paragon XP/S [1,2] and IBM SP/2. We have determined from these application studies

that high performance applications exhibit a wide variety of input/output request patterns,

with both very small and very large request sizes, reads and writes, sequential and non-

sequential access, and a variety of temporal variations.

Given the natural variation in parallel input/output patterns, tailoring file system policies to

application requirements can provide better performance than a uniformly imposed set of

strategies. Many studies have shown this under different workloads and environments

[5,6,7]. Small input/output requests are best managed by aggregation, prefetching,

caching, and write-behind, though large requests are better served by streaming data

directly to or from storage devices and application buffers. There are several approaches to

application policy control; these can be grouped into systems that offer explicit policy

control (e.g. SPIN from Bershad [19], exokernel from Engler [20], the Hurricane File

System from Krieger [21], and Galley from Nieuwejaar [22]), and implicit policy control,

via hints [4], expressive user interfaces (e.g., ELFS [7] and collective input/output as in del

Rosario [23] and Kotz [24]), or intelligent modeling of file access (e.g., Fido from Palmer

[25] and knowlege based caching from Korner [26]). Fido is an example of a predictive

cache that prefetches by using an associative memory to recognize access patterns over

time. Knowledge based caching has been proposed to enhance cache performance of

remote file servers.

The second component of our research, dynamic performance based steering, has been

used successfully in many contexts. A natural analog to explicit policy control is interactive

steering, where the steering infrastructure extracts run time sensor information from an

application, presents this information to the user who selects system or application policies,

and actuates these policies to change application behavior. Falcon as in Gu [27] and

SciChem from Parker [28] are two representative examples of this interactive approach.

In contrast to interactive steering environments, automatic steering environments do not

require continuing user involvement. Instead, steering decisions are made automatically
without user intervention. DIRECT [10], Falcon [29,30] and the Meta Toolkit [9] all

provide automatic steering interfaces. DIRECT targets real time applications, a domain

where the primary concern is validating that the system meets real-time constraints. This

goal is different from run-time performance improvement, but the steering infrastructure is
similar. Automated run-time steering is used in Falcon to select different mutual exclusion

lock configurations based on the number of threads blocked on the lock [30]. The Meta

Toolkit provides a framework for performing dynamic steering and provides special

guards that help to maintain mutual exclusion of critical state variables [9] that may be

changed during actuator execution. When an actuator is invoked, the appropriate guards

are executed before the system module is modified.
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7. Conclusions

The wide variety of irregular access patterns displayed by important input/output bound

scientific applications suggests that optimizing application performance requires a judicious

match of resource management policies to resource request patterns. Because the

interactions between dynamic, irregular applications and system software change during

application execution, we believe that the solution to this performance problem is adaptive

file system policies that are controlled by user-level access patterns and by system-level
performance metrics.

In this paper, we described a prototype of an adaptive file system and presented the results

of experiments demonstrating the viability of this approach. This prototype, built upon on

our PPFS user-level parallel file system, selects and configures file caching and prefetching

policies using both qualitative classifications of access patterns and performance sensor

data on file system responses.

In the coming months, we plan to more tightly couple automatic access pattern

classification with performance steering. We are currently rounding out the prototype by

extending PPFS to perform run time global access pattern classification and enhancing the

performance-driven steering infrastructure.
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