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Executive Summary

The Applied Meteorology Unit (AMU) has evaluated the Emergency Response Dose
Assessment System (ERDAS) located in the Range Operations Control Center (ROCC) at
CCAS/KSC since its installation in March 1994. Before the Air Force’s 45th Space Wing
including Range Safety (45 SW) , the Weather Squadron (45 WS) and the Eastern Range
Program Office (SMC/CW-OLAK) accepts ERDAS as an operational emergency response
system, they must determine its value, accuracy and reliability. In support of this requirement,
the AMU has evaluated ERDAS in a near-operational environment. This will enable the 45th
Space Wing to determine if and how it should be transitioned to an operational environment.

ERDAS is a prototype software and hardware system configured to produce routine
mesoscale meteorological forecasts and enhanced dispersion estimates on an operational basis
for the KSC/CCAS region. ERDAS includes two major software systems run and accessed
through a graphical user interface. The first software system is the Regional Atmospheric
Modeling System (RAMS), a three-dimensional, multiple nested grid prognostic mesoscale
model. The second software system is the Hybrid Particle and Concentration Transport
(HYPACT) model, a pollutant trajectory and concentration model. ERDAS also runs the Rocket
Exhaust Effluent Diffusion Model (REEDM).

ASTeR, Inc. (now called Mission Research Corporation/ASTER division) developed
ERDAS for the Air Force for the purpose of providing emergency response guidance to operations
at KSC/CCAS in case of an accidental hazardous material release or an aborted vehicle
launch. The ERDAS development occurred during the period 1989 to 1994 under Phase I and II
Small Business Innovative Research contracts. ERDAS was delivered to the Air Force’s Range
Operations Control Center (ROCC) in March 1994. The AMU was tasked with keeping ERDAS
running and with evaluating ERDAS during the period March 1994 to December 1995. The
development and evaluation of ERDAS was funded by the Air Force Space and Missile Systems
Center, Los Angeles Air Force Base.

The evaluation of ERDAS included:
 Evaluation of the sea breeze predictions
e Comparison of launch plume location and concentration predictions.
* Case study of a toxic release.
* Evaluation of model sensitivity to varying input parameters.
» Evaluation of the user interface.
» Assessment of ERDAS's operational capabilities.
¢ Comparison of ERDAS models to Ocean Breeze Dry Gulch diffusion model.

Conclusions
1. Some of the principal conclusions of the ERDAS meteorological model evaluation were:

* RAMS predicted the 3-dimensional wind field reasonably well during non-
cloudy conditions but slightly overpredicted surface wind speeds due to the
height of lowest vertical grid point.

¢ RAMS did reasonably well at predicting wind direction shifts due to
passage of sea breeze fronts during non-cloudy conditions but not during
cloudy ones. This result is not surprising since the modules used for
predicting explicit cloud microphysics are disabled to allow the model to
run in a reasonable time on the current computer hardware.

xii



RAMS was very sensitive to the soil moisture parameter for predicting the
location and intensity of the sea breeze at KSC/CCAS.

For cases where RAMS predicted a sea breeze, it predicted passage of sea
breeze one to three hours earlier than observed in approximately 60% to
70% of the cases. Result may be due to parameterization of soil moisture,
sea surface temperatures and/or land use classification.

2. Some of the principal conclusions of the ERDAS diffusion model evaluation were:

HYPACT-predicted plume trajectory from 3 May 94 Titan launch closely
followed the observed trajectory with some variation over time. This
launch was the only launch that significant observed plume data was
available during the ERDAS evaluation.

Use of REEDM model to calculate the source term for HYPACT was very
promising for use in launch plume modeling but some modifications to
technique are needed. HYPACT should be modified to handle buoyant
plumes rather than treating the plumes as passive tracers.

Launch plumes predicted by HYPACT overlapped the observed deposition
patterns for 4 of 5 Space Shuttle launches analyzed in 1994-95. One
predicted plume did not overlap but was located within 35° of the observed
plume.

ERDAS did very well at predicting the trajectory of observed N,O, release
on 20 Aug 94 when modeled source was moved from LC-41 to center of Cape.
The modeled source was moved to compensate for the complex land /water
features which are difficult to resolve with the 3-km grid.

The 3-km grid spacing of current ERDAS configuration is too large to resolve
all of the detailed land /water features in the KSC/CCAS area. A smaller
grid spacing would improve the resolution but model run time prohibits a
smaller grid configuration on the current computer hardware.

A special study was conducted to compare the currently certified OBDG
model with the ERDAS models to determine if the ERDAS models changed
launch availability. The study was limited in that it looked at dispersion
during 30 two-hour periods over a 6-month period. These periods included
late afternoon periods similar to the original OBDG study but it also
included a higher percentage of late morning cases than the original OBDG
study and included nighttime cases which were not included in the original
OBDG study. The results of the study were:

* Cases where the winds shifted over time and space were the ones
where major differences existed between the OBDG model and the
ERDAS model. Currently certified OBDG model did not adequately
handle wind shifting situations while the ERDAS models provided a
more realistic picture of dispersion when wind shifts occurred.

* The ERDAS models could provide safety personnel with a better

understanding of the three-dimensional wind field causing plume
dispersion resulting from a potential toxic spill. Information on vertical
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plume development is not available from the OBDG model. This
information can help safety personnel in making evacuation decisions
and answer questions such as:

- Will potential toxic plumes which have lofted upward eventually
mix back down to surface? Are concentrations aloft large enough to
pose a threat to populated areas if they reach the surface?

- Will potential toxic plumes which have moved offshore
eventually move back onshore?

* Comparing diffusion model predictions made by the OBDG model and
the ERDAS models in this limited comparison study produced results
which showed that using the ERDAS models for non-continuous spill
scenarios improves launch processing availability in 19 of 29 cases. For
continuous spill scenarios, ERDAS improves launch processing
availability in 2 out of 29 cases. A non-continuous spill is one that has a
limited release duration (less than approximately one hour). The
OBDG model assumes a continuous release.

Recommended enhancements

ERDAS is a system which provides safety personnel with mesoscale and diffusion modeling
capabilities that are more advanced than the current models (e.g. OBDG). ERDAS, as it runs at
the end of the evaluation phase, performs as designed for the functions that are important for
dispersion prediction. Therefore, ERDAS is ready to begin the phased approach of
transitioning from the AMU to Range Safety Operations. Initially, ERDAS will provide
Safety with a system to assist them in day-to-day operations and decision-making. With
phased improvements and enhancements, ERDAS will become a system which will provide
Safety with a state-of-the-art dispersion forecast and analysis system for use in launch and
day-to-day operations The phased transition of ERDAS to operations has begun and we
recommend that it continue until ERDAS becomes a fully-functioning, certified dispersion
system.

The following enhancements will provide ERDAS with better capabilities to support
operations and can be implemented in a phased approach.

1. Immediate implementation requirements to transition system to operations:

e Documentation on software maintenance, hardware maintenance,
certification testing, and training needed to transition system to operations.

2. Short term technical enhancements:

* System should be moved to faster, more powerful computer to provide
results in less time than current platform.

s User interface needs minor revisions to provide users full capabilities of
system.

¢ The Observed Data/Forecast blending feature needs additional testing
since it is important for diffusion predictions.
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* Current data interface to MIDDS should be modified for operations to
provide smoother initialization data input.

* ERDAS should be validated against tracer data.

3. Intermediate and long term technical enhancements which should be studied and
possibly implemented include:

* Activating the explicit cloud microphysics modules.

* Reducing the finest RAMS grid resolutions from the currently-implemented
3-km resolution.

* Adding near real-time input parameters for RAMS initialization such as
soil moisture measurements and sea surface temperatures.

* Automate quality control of input data used to initialize RAMS.

Implement four-dimensional data assimilation (nudging) in RAMS along
with development of Local Analysis and Prediction System (LAPS). LAPS
is a system which ingests and displays near real-time 3-D meteorological
data from a variety of sources including wind profilers, rawinsondes,
surface observations, buoys, towers, WSR-88 Doppler radar, and GOES-8
visible and infrared radiance and sounding data. The LAPS data are used
to initialize and update models such as RAMS and to provide dispersion
models with observed 3-D data rather than predicted data.

* HYPACT should be modified to handle deposition of solid and liquid
plume particulates as well as plume rise due to bouyant plumes.

* HYPACT should be modified to allow for calculation of cumulative dosages
as well as instantaneous concentrations.

The Eastern Range has validated a requirement to transition ERDAS to operational status.
The results and recommendations presented here should assist in that process.
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1. Introduction

This document describes the evaluation of the Emergency Response Dose Assessment System
(ERDAS) conducted by the Applied Meteorology Unit’s (AMU) during the period March 1994 to
February 1996.

One AMU purpose is to evaluate selected new technologies and transition those which are
ready into operational use by forecasters providing weather support to Shuttle, military, and
commercial space flight operations (Ernst and Merceret 1995). The AMU also devises techniques
to use existing technologies more effectively, and advises on matters relating to technology
acquisition.

ERDAS is a prototype software and hardware system configured to produce routine
mesoscale meteorological forecasts and enhanced dispersion estimates on an operational basis
for the KSC/CCAS region. ERDAS includes two major software systems which are nn and
accessed through a graphical user interface. The first software system is the Regional
Atmospheric Modeling System (RAMS), a three-dimensional, multiple nested grid prognostic
mesoscale model. The second software system is the Hybrid Particle and Concentration
Transport (HYPACT) model, a pollutant trajectory and concentration model. ERDAS also runs
the Rocket Exhaust Effluent Diffusion Model (REEDM) to determine the source term for
modeling launch plume dispersion.

ASTeR Inc. (ASTeR, Inc. merged with Mission Research Corporation on 4 Jan 1994 and is now
called Mission Research Corporation/ASTER division; in this report they are referred to as
MRC/ASTER) developed ERDAS for the Air Force for the purpose of providing emergency
response guidance to operations at KSC/CCAS in case of an accidental hazardous material
release or an aborted vehicle launch. The ERDAS development occurred during the period 1989
to 1994. under Phase I and II Small Business Innovative Research contracts with the Air Force
Space and Missile Systems Center, Los Angeles AFB. ERDAS was delivered to the Air Force’s
Range Operations Control Center (ROCC) in March 1994. The AMU was tasked with keeping
ERDAS running and with evaluating ERDAS during the period March 1994 to December 1995.

Before safety personnel and weather forecasters accept ERDAS as an operational
emergency response system, they must determine its value, accuracy and reliability. In partial
fulfillment of this requirement, the AMU has evaluated ERDAS in a near-operational
environment to determine if and how it should be transitioned to an operational environment.
The evaluation of ERDAS has included:

* Evaluation of the sea breeze predictions

¢ Comparison of launch plume Jocation and concentration predictions.

e Case study of a toxic release.

* Evaluation of model sensitivity to varying input parameters.

* Evaluation of the user interface.

* Assessment of ERDAS's operational capabilities.

This document presents the results of the different facets of the AMU’s evaluation of the

system. The remainder of Section 1 presents an overview of ERDAS and an overview of the
AMU evaluation. Section 2 presents the AMU evaluation of the ERDAS system performance.

Sections 3 and 4 present the results of the meteorological model evaluation. Section 3 contains
an analysis of the sensitvity of RAMS to soil moisture variations while Section 4 presents the
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analysis of RAMS predictions of the sea breeze. Sections 5 through 8 present the results of the
diffusion model evaluation. Section 5 presents a case study of the diffusion of a Titan launch
plume while Section 6 presents case studies of the diffusion of several Shuttle launch plumes.
Section 7 presents a case study of ERDAS predcitons for an accidental release of nitrogen
tetroxide. Section 8 presents the results of comparing the ERDAS diffusion models and the
Ocean Breeze Dry Gulch model. Graphs comparing the observed and predicted winds for July-
August 1994 are presented in Appendix A.

1.1 Overview of ERDAS System

ERDAS is described in considerable detail in the Final Scientific and Technical Report
compiled by Lyons and Tremback (1994) of ASTeR, Inc. at the conclusion of Phase II of the SBIR
project. Much of the information in this section of this report describing ERDAS and its
development history was obtained from the ASTeR, Inc. report.

111 Development of ERDAS System by ASTeR, Inc.

The ERDAS concept evolved from the results of a Department of Defense SBIR Phase I
announcement for FY1989 (Lyons et al, 1991). A proposal, originally directed at modeling 3-D
wind fields at the Vandenberg AFB, was submitted by ASTeR, Inc. The proposal was funded by
the USAF Space System Division under contract F04701-89-C-0052 as a Phase I SBIR contract.
The modeling venue was changed by mutual agreement to the Cape Canaveral Air Station and
the adjacent Kennedy Space Center.

Phase I demonstrated that a mesoscale prognostic model, RAMS, could successfully
simulate the complex wind flow regimes over the CCAS/KSC region. The RAMS model and its
many applications have been fully described in numerous technical papers in the professional
literature (Pielke et al., 1992; Lyons et al, 1993). Data from the KABLE field experiment
(Taylor et al.,, 1990) were used to validate the model’s performance. RAMS revealed that
vertical motions in excess of 150 an/sec were associated with complex boundary convergence
zones (Lyons et al, 1992). A Lagrangian Particle Dispersion Model (LPDM) successfully
modeled 3-D, mesoscale transport patterns associated with the sea breeze.

The development of the prototype ERDAS was funded under a Department of Defense SBIR
Phase II, from the U.S. Air Force, Space and Missile Systems Center (SMC/CLN), Los Angeles
AFB, CA under contract number F04701-91-C-0058. Work began on the project in September 1991
and was completed on 30 June 1994.

Phase II goals included developing a prototype Emergency Response Dose Assessment
System (ERDAS) and testing the feasibility of using such a system in an operational forecasting
setting. RAMS was tested, optimized for a dedicated workstation and configured for selected
accident scenarios at CCAS/KSC. In order to obtain maximum use from the rich suite of
observational data in the area, RAMS can be used as the template for a hybrid wind flow
model incorporating both the prognostic model output and observations. A more advanced
dispersion model was configured for use at CCAS/KSC. Called the HYPACT (Hybrid Particle
and Concentration Transport) model, this code employs many advanced features of the
Lagrangian Particle Dispersion Model (LPDM) technique. It allows determination of the
impact of a source at long distances and/or wide areas. For very long ranges, it is possible to
extend HYPACT to emulate Eulerian dispersion models, thus reducing the number of particles
required. This reduces the computational requirements for the dispersion modeling for sources
impacting large geographic areas.
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The aim of the ERDAS development was defined as the design, development, evaluation
and delivery of the following:

(1) mesoscale prognostic wind flow model,
(2) advanced particle dispersion model,
(3) computer display graphics and

(4) associated computer hardware for predicting 3-D wind fields and
atmospheric dispersion patterns in the CCAS/KSC area

ASTeR, Inc. prepared a detailed discussion on the user needs and requirements of an ERDAS
which is in their Final Report.

1.1.2 ERDAS development since AMU installation: March 94-present

During the period the AMU evaluated ERDAS, MRC/ASTER (ASTeR, Inc. merged with
Mission Research Corporation on 4 Jan 1994) and the AMU were enhancing and modifying the
software to improve and fix problems that were found. A discussion of these modifications was

provided in the AMU Monthly Activity Reports. Some of the modifications/corrections
include:

¢ Configuring REEDM and HYPACT diffusion models to run and display as
designed.

e Changing the soil moisture parameter and analyzing the sensitivity.
e Modified code to allow for missing grids from NGM data.

* Modified ingest routine to correct wind speed speeds from rawinsondes and
surface sites. ‘

e MRC/ASTER installed new version of ERDAS software to fix deficiencies
on 23 January 1995.

e Modified ERDAS software to allow the blending of tower data with
forecast data for diffusion analysis.

1.1.3 System Description
1.1.3.1 General Features

The ERDAS is a turn-key software, hardware and graphics system. It is resident on a
dedicated IBM RS/6000-550 workstation. ERDAS is comprised of two key software systems: a
meteorological model to provide highly localized 24-hour forecasts for the KSC/CCAS area
(RAMS) and dispersion modules, REEDM and HYPACT, which can be employed in the event of
an emergency as well as for mission planning and research.

The RAMS code, as configured in this initial version of ERDAS, is suitable for preparing
forecasts on approximately 70% of the days in a typical year (Lyons and Fisher, 1988). The
model will be best suited for predicting "fair weather" mesoscale regimes such as land and sea
breezes, as well as conditions associated with large scale synoptic weather systems. Because of



computational speed limitations, during periods of tropical disturbances and general deep
convection, RAMS will not predict with skill the localized wind shifts that can accompany
such weather systems.

RAMS is initialized using the MIDDS data resident at the CCAS/KSC. It is nn twice
daily, out to 24 hours. The outer domain covers the southeastern U.S., but with finer grids
centered over the KSC/CCAS region in order to predict the details of such features as the land
breeze, the various river breezes and the Atlantic sea breeze. In its current configuration the

model runs in approximately 9 hours. A RAMS-generated forecast is always available for
immediate use.

The RAMS output drives the dispersion modules, with primary reliance on the HYPACT
code. It has been configured so that the REEDM module provides source terms for a suite of
nominal and abort vehicle scenarios as well as the cold spill source terms resident in MARSS.

The HYPACT code allows for dispersion estimates to be made using fully three-
dimensional, time-dependent wind and turbulent fields. Atmospheric phenomena such as wind
shear, vertical motion, subsidence, recirculation and thermal internal boundary layers (TIBLs)
can be accounted for directly. In simpler dispersion models, features such as TIBLs (Garratt,

1990; Lyons et al., 1981) have been ignored or very crudely parameterized, a short cut which can
now be avoided. ‘

ERDAS is designed to be straightforward to use. Operation of the ERDAS is via a
keyboard/mouse-driven Graphical User Interface (GUI). A Variety of dispersion predictions
are available, many within five minutes of request. Some more advanced dispersion estimates
using HYPACT require some additional computation time.

The RAMS model is initialized and run twice daily. The initialization data for RAMS
originates from the mainframe data processing system serving the RWO (MIDDS). It is
transferred from MIDDS to the AMU’s PS/2 machine which in turn is obtained by the ERDAS
RS/6000-550.

1.1.3.2. Software

The code of RAMS and HYPACT is written mostly in extended FORTRAN 77. RAMS has
successfully executed on a number of machines including a Cray Y/MP, Convex, Stardent, DEC
alpha, HP, Sun and SGI workstations and the IBM RS/6000 series workstations with little or no
modification. ERDAS was delivered installed on an IBM-RS/6000 series machine.

In addition, C was used to supplement the FORTRAN 77 standard and to provide the
functionality that FORTRAN 90 will contain. Small C routines are used for dynamic memory
allocation and file I/O. The IBM AIX (Advanced Interactive Executive) XL FORTRAN 77 and
ANSI C compiler are installed on the unit. The operating system for the ERDAS platform is a
variant of the UNIX operating system. Currently, IBM's AIX Version 3.2 for RS/6000 is
installed in the ERDAS. Also included is the IBM AIX Windows Environment/6000. Graphics is
provided using the NCAR Graphics visualization software package.

The programming standards currently used with the Department of Atmospheric Sciences,
Colorado State University were employed by ASTeR, Inc. in the RAMS and HYPACT code. The
core of the RAMS code, which is licensed exclusively from CSU to Mission Research
Corporation/ASTER Division, was developed within the university. ERDAS uses the

FORTRAN 77 standard. The IEEE standard for representation of floating point numbers is
implemented within AIX.
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The RAMS and HYPACT codes continue to undergo testing by a wide variety of users. As
many as 50 researchers are using various configurations of RAMS worldwide. This allows the
code to be highly stressed under a wide variety of conditions. When any bugs or deficiencies are
reported to MRC/ASTER and CSU, patches are made when necessary, or revisions are
scheduled for the next release of the software.

As part of the Lake Michigan Ozone Study, a detailed audit of the core RAMS software
was conducted by Richard Londergan and his staff of ENSR, Inc. No major problems were
discovered. The numerics faithfully represented the equations according to the tests conducted.

1.1.3.3. Computer Hardware

The ERDAS runs software in a configuration that runs (1) essentially on a quasi-continuous
basis for RAMS (two nine hour cycles daily), (2) on a demand basis in the event of required
response to an emergency, (3) on a platforrn with a considerable fraction of a mainframe
supercomputer’s throughput, and (4) with immediate access to results via advanced
visualization systems.

To meet the performance requirements as stated below, the platform required a speed on the
order of 25 megaflops (million floating point operations per second). Central memory
requirements mandate at least 64 megabytes of RAM.

External disk storage on the order of a gigabyte was required in order to handle an adequate
fraction of the very large output files produced by the several software systems comprising the
ERDAS. An external tape drive was not included in the hardware configuration to be delivered,
but is strongly recommended for archival activities. Table 1-1 lists several of the ERDAS
performance goals established by ASTeR, Inc. against which model configurations were tested.

Table 1-1. Performance Goals for the ERDAS System
Activity Time Goal Time Achieved
Access Initializing Data for RAMS 60 minutes 85 minutes
Initialize RAMS forecast model (ISAN) 15 minutes 28 minutes
Run 24-hour forecast 6.0 hours 9.5 hours
Time to prepare Hybrid analysis 3.0 minutes 10 minutes
Retrieve RAMS output for display 10 seconds 20 seconds
Compute single particle trajectory 1.0 seconds 1 second
Make OB/DG calculation 2.0 seconds OBDG not implemented
Make AFTOX calculation 3.0 seconds AFTOX not implemented
Run streak line of 1000 particles for 3 hours 1.0 minute Not Tested
Disperse 10,000 particles for 6 hours 5.0 minutes Not Tested




The amount of time required to execute RAMS is a function of a number of factors:
* the number of horizontal grid points (domain size)
* the size of the grid mesh (which strongly affects the time step)

¢ the number of vertical levels

* the frequency with which certain functions are iterated

¢ the duration of the simulation

* the complexity of the representation of cloud and precipitation processes
e the number of grid cells containing condensate

* the speed of the processors
* communication speed and bandwidth between processors

The computer system selected for the initial ERDAS was compliant with the various
requirements. The ERDAS hardware components are listed in Table 1-2.

The workstation meets the basic performance requirements for the initial version of
ERDAS. Based upon two years of testing and extensive use, ASTeR, Inc. selected the IBM
RS/6000, Model 550 as the ERDAS platform. It is equipped with 64 megabyte RAM, two 400
megabyte internal disk drives, a 2.0 gigabyte external disk, a quarter-inch cartridge tape,
operating under the IBM version of UNIX (AIX) and has a high-resolution (1280 x 1024) color
monitor. It has been rated at slightly better than 25 megaflops performance. Benchmarks of
RAMS against a single processor Cray X/MP show that the software can be executed on this
platform at between one-forth and one-third the speed of the mainframe supercomputer.

The IBM RS/6000-550 system is comprised of a number of components listed in Table 1-2. The
workstation CPU is compact and routinely situated as a desk side column. The ERDAS
hardware is comprised entirely of standard, commercial off-the-shelf components. Routine
maintenance can be provided under contract from the manufacturer after the end of the present
contract.

Not included in the system is a high capacity external tape drive suitable for archiving
large quantities of model output. The addition of a device, such as a 2.3 gigabyte capacity 8 mm
Exabyte tape drive, is recommended.

The ERDAS computer requires no special facilities such as additional air or power
conditioning. The RS/6000-550 draws about 1 kVA (110 V AC). The total heat output is
estimated at 810 watts (2750 BTU/hour). The CPU size (24” x 26.6” x 14”) allows it to be placed
desk side. The display terminal and keyboard fits on a normal size work table or desk. The unit

weighs approximately 117 pounds. There is no backup power source included other than that
available for the RWO.

The RS/6000 has appropriate hardware and software to allow communications over

Ethernet. The physical connection to the AMU Ethernet data line is via a standard connector
from the Ethernet card.



Table 1-2. ERDAS Hardware Components
IBM Part Description
7013-550 IBM RISC/6000-550 powerstation cpu
7013-2600 Internal CD-ROM drive
7013-2781 Hi performance 24 bit 3D color graphics
7013-2782 24 Bit Z Buffer Solid Rendering Option
7013-2980 Ethernet Hi Performance LAN adapter
7013-6010 Keyboard, USA 101 keys
7013-6041 Mouse, 3 button
7013-9220 SCSI 1/0 Controller
7013-9221 3.5" Diskette
7013-9235 32 MB HD3 Memory
7013-9245 800 MB SCSI Disk Drive
7013-9800 Line cord U.S./Canada
7207-001 150 MB Ext 1/4 inch Cartridge Tape Drive
7207-9119 SCSI Controller Cable
7207-9800 Line cord U.S./Canada
6091-019 Color Displa

1.1.3.4. Visualization Requirements

The ERDAS system has a high resolution (1280 x 1024 pixel) display, with 8 bit color,
double buffering capability to support relatively high speed playback and animation. The
RS/6000 is capable of driving a standard Postscript black & white laser printer and a color
hard copy device (for the latter, when using color Postscript output for NCAR Graphics, AVS
and savi3D visualizations). The RS/6000 is capable of writing data files to standard 1/4-inch
tape cartridges in UNIX tar format, as well as high density external tape device, for archival
or other purposes.



1.2 Overview of AMU Evaluation

1.2.1 Goals and Focal Points of Evaluation

The evaluation of ERDAS by the AMU has followed the AMU Task Plan. The ERDAS
tasks are described below:

System Configuration and Check-out

Perform a meteorological and performance evaluation of the ERDAS. As part of this effort,
perform the following tasks:

* Install, in conjunction with Mission Research Corporation (MRC), the
ERDAS hardware and software provided by MRC in the AMU laboratory.

* Connect the ERDAS hardware to the local area network (LAN) in the
AMU laboratory.

* Develop/modify (in conjunction with MRC) software to transfer data on a
scheduled basis from MIDDS to the ERDAS computer for mesoscale model
initialization. This subtask may also require modification of ERDAS data
ingestion software. Data to be extracted from MIDDS includes NGM model
output and observations from local data sources.

* Perform (in conjunction with MRC) a system functional check-out of the
ERDAS and develop a list of system deficiencies.

* Work (in conjunction with MRC) to resolve the items on the list of system
deficiencies.

* Develop, install, and initiate a run-time configuration for the mesoscale
model. The run-time configuration includes schedules for model
initialization and forecast products.

* Archive forecast products and observed data. This information will be used
to evaluate model results (e.g., case studies analyses and statistical
analyses).

ERDAS Performance Evaluation

* Conduct a performance evaluation of ERDAS to include:

- Evaluation of ERDAS graphics in terms of how well they facilitate
user input and user understanding of the output.

- Determination of the requirements that operation of ERDAS places
upon the user.

- Documentation of system response times based on actual system
operation.
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- Evaluation (in conjunction with range safety personnel) of the ability of
ERDAS to meet range requirements for the display of toxic hazard
corridor information.

- Evaluation of how successfully ERDAS can be integrated in an
operational environment at CCAS.

Range User Training

Provide user training for range personnel. The training will include
information regarding operation of the system and interpretation of ERDAS
output.

ERDAS Meteorological Evaluation

Perform an evaluation of ERDAS meteorological predictions.
Meteorological factors which will be included in the evaluation are wind
speed, wind direction, wind turbulence, and the movement of sea breeze
fronts. Part of the evaluation will focus on the examination of the relative
accuracy of a forecast three-dimensional wind field as compared to the
observed two-dimensional wind field in relation to use of the data for
dispersion predictions.

Document the results of the performance evaluation, meteorological
evaluation, and recommendations for operational use in a report to be
delivered within two weeks of the completion of the task.

ERDAS Dispersion Predictions

Evaluate the ability of ERDAS to predict cloud rise and plume dispersion.
Factors to be evaluated include cloud rise, bifurcation, trajectory, and
horizontal /vertical dispersion. To perform this task, ENSCO will use
available data to conduct the evaluation and will coordinate the
evaluation with ongoing range evaluation efforts.

ERDAS Model Comparison

Perform a comparison of Ocean Breeze Dry Gulch (OBDG) using the
standard operational two dimensional Barnes windfield versus using OBDG
with the three dimensional ERDAS windfield. Run OBDG for 30 selected
cases and produce hard copy of the resultant dispersion patterns. Input
data will be 5 minute averaged WINDS files. The cases will be selected for
launch scenarios.

Perform a comparison of OBDG using the standard operational two
dimensional Barnes windfield versus the ERDAS HYPACT “particle-in-
cell” dispersion algorithm with three dimensional windfield. Run OBDG
for the same 30 cases using temperature lapse and standard deviation of the
wind direction from the tower network and RAMS-produced wind field and
produce hard copy of the resultant dispersion patterns.

Compare the dispersion patterns from the two analyses and assess the
validity of each. The objective of this analysis will be to determine if
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launch availability would be increased and/or false alarms would be
reduced by the use of the three dimensional RAMS windfield.

¢ Run RAMS/HYPACT an ERDAS for the same 30 cases and produce hard
copy of the resultant dispersion patterns.

1.2.2 Accomplishments and Activities of Evaluation

The AMU completed the evaluation of ERDAS by accomplishing the tasks described in

Section 1.2.1. Some of the primary activities which were conducted during the evaluation are
listed below:

Documents produced during the ERDAS evaluation include the following:
* ERDAS System check-out Report - 26 April 1994
* Soil Moisture Sensitivity Analysis - 8 June 1994
* ERDAS System check-out Report (Addendum) - 8 July 1994
* ERDAS Model Evaluation Plan - 16 September 1994
* ERDAS Modeling of 20 August 94 N204 Release - 6 December 1994
* Sea Breeze Analysis Discussion - Quarterly Report - 30 April 1995
* Titan Launch Plume Comparison Study - Quarterly Report - 31 July 1995
¢ Comparison of OBDG and ERDAS models - In Review

Briefings presented during the ERDAS evaluation include the following:
* Toxic Release Assessment Group - June 94
* Mid Term Review Briefing - 12 Oct 94
* Toxic Release Assessment Group - Jan 95
* Briefing to Range Safety - Mar 95

* Briefing to JANNAF Safety and Environmental Protection Subcommittee -
Dec 95

Other activities for ERDAS involvement

e Titan launches

- K-10 3 May 94
- K-9 24 Aug %4
- K-14 22 Dec 94
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- K-23 14 May 95
- K-19 10Jul 95
- K-21 6 Nov 95

* Support for Model Validation Program
- July 95 (limited involvement)

-  Nov 95
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2.  ERDAS System Performance Evaluation

The AMU Technical Directive 5-006 listed five criteria for evaluating the system
performance of the ERDAS. In this section, we list each of the criteria for evaluating each of
them. The performance evaluation criteria were:

» Evaluate ERDAS graphics in terms of how well they facilitate user input

and user understanding of the output.

¢ Compile a list of new and remaining deficiencies discovered since the
initial check-out reports,

¢+ Compile and prioritize a list of recommended graphic improvements
determined after 9 to 12 months of operating the system on a daily
basis, nunning the RAMS model, and running and displaying
meteorological and diffusion model output, and

¢ Include comments and suggestions by Range Weather Operations and
Range Safety personnel into the lists of graphic deficiencies and
recommended improvements.

[ININEG € JUIICINEIN A A Qe JPON tNC LUISEC
After operating ERDAS on a daily basis and during launch operations for 9
to 12 months, compile a list of operator requirements. These requirements
focus on operator interaction required to run the system and to display the
various ERDAS products. Also address the training requirements.

* Document system response times based onactual operation. Document model
runtimes and display response times.

rsonnel

information. Compile a list of the general strengths and weaknesses
observed during the operation of the diffusion models. Query Range Safety
persornel to determine if the ERDAS outputs meet their requirements for
diffusion data products. Range Safety requirements are based on their use
of toxic hazard prediction models and displays to predict the launch
exhaust plume and accidental releases.

Eval ] fully ERDAS | L ional
environment at CCAS. Compile a list of items which must be completed to
make ERDAS operational. This list is based on system deficiencies as well
as requirements imposed by:

* 45th Space Wing,

* Eastern Range Program Office (SMC/CW-OLAK),

* Range Weather Operations, and

* Range Safety.



2.1 Requirements that Operation of ERDAS Places Upon User

The operation of ERDAS requires users to perform several tasks to maintain and operate
ERDAS. Maintaining ERDAS requires daily, weekly, and periodic monitoring of the software,
hardware, and the communication links of ERDAS. In addition, operating ERDAS to view the

displays and run dispersion scenarios requires operation of the user interface and entering of
certain data.

2.1.1 Maintenance requirements

During the AMU's evaluation of ERDAS over the past 20 months, maintenance of the
system was necessary. This maintenance covered three areas: software, hardware, and
communication links. Some of the maintenance required was:

Communication links

* Make sure Ethernet links to AMU’s LAN were functioning properly. Input and output
data are transmitted through this Ethernet. ERDAS obtains its input data from MIDDS
through the AMU’s Model 80. For output, ERDAS has access to the AMU’s color and black and
white printers and external hard disks through the network. The ERDAS operator must work
with the LAN system operator to make sure all links are up and operating properly.

A

ake sure 15 recerving all o expected 1 a_from the Model §
in the AMU. The ERDAS operator must monitor the input data ERDAS receives and notify the
Model 80 operator and/or the MIDDS operators of problems. Several times during the ERDAS
evaluation, problems with input data from MIDDS/Model 80 were observed after ERDAS did
not receive all of its input data. After notification, the MIDDS and Model 80 maintainers
worked to fix these problems.

Software

* Document any software bugs detected. These bugs include problems detected with the
user interface, the RAMS model, or with HYPACT/REEDM.

* Modjfy the software to fix bugs if possible. Some software problems can be fixed by

making software changes and recompiling the code while other changes require consultation
with the developers at MRC/ASTER.

Hardware

* The ERDAS hardware requires little maintenance by the operator. If the operator
detects any hardware problems they must contact a hardware service provider for repairs.

2.1.2 Operating requirements

The operation of ERDAS is described in the ERDAS Users’ Manual included in the ASTeR,
Inc. Final Report (Lyons and Tremback 1994). While the Users’ Manual does not contain all of
the details on the operation of the system, it describes many of the procedures required to
operate the ERDAS functions. The users should be trained to display and run the models within

ERDAS. Training will be provided to potential users during the transition of ERDAS to
operations in Room 148.
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Table 2-1 presents a list of some of the operations different users of ERDAS must perform to
operate the system. The table lists the group or groups most suited to perform each operation
along with the time and frequency of each of the tasks. The data in the list are estimates
determined by the AMU during the evaluation of the system over the past two years. Actual
requirements may vary depending on the user and the situation. The checklist mentioned in the
table is a checklist which a forecaster would use to check the validity of the RAMS model
based on conditions that the model is known not to perform well e.g. cloudy conditions with
precipitation.

Table 2-1. List of ERDAS operations along with requirements for personnel, time, and
frequency of operation.
Operation Who Performs? | Time How often, when?
Duration
Check RAMS Runs
Check if RAMS is automatically running | Ops & Maint 2 min 1-2 times per day
Check on MIDDS data Ops & Maint 2 min 1-2 times per day
Run data filter if data not there Ops & Maint 10 min* | as needed
Start RAMS script if not running Ops & Maint 10 min* | as needed
Check Model Validity
Check current conditions w/checklist Weather S5 min 1-2 times per day
Check forecast with checklist Weather 10 min 1-2 times per day
Verify winds and sea breeze Weather 10 min 1-2 times per day
Run HYPACT/REEDM
Verify met data is there and valid Safety /Wx 10 min as needed
Run hybrid if desired Safety /Wx 10 min* | as needed
Input spill/launch data Safety /Wx 5 min as needed
Verify run/output Safety /Wx 5-15min | as needed
Obtain hardcopy
RAMS Safety /Wx 5-15 min* | as needed
HYPACT Safety /Wx 5-15 min* | as needed
Archive data
Compress and backup RAMS data Ops & Maint 10 min* | 1 time per week
Save HYPACT/REEDM runs Safety/Wx/ Ops | 10 min* 1 time per week
& Maint
Check software problems
Document bugs or problems Safety /Wx 15 min as needed
Fix scripts Ops & Maint 20 min as needed
Fix Fortran code Ops & Maint 10 min-? | as needed
hrs
Discuss with vendor Ops & Maint 15 min as needed

* The times required for these operations would be reduced if ERDAS was hosted on faster
computer.



The RAMS model is automatically initialized and run twice daily. The initialization data
for RAMS originates from the mainframe data processing system serving the RWO (MIDDS).
Data are transferred from MIDDS to the AMU’s PS/2 (currently a Pentium) machine which
allows the information to be received by the ERDAS RS/6000-550. The operator's role in the
initialization will be primarily relegated to error checking the input, addressing the
suitability of the model for use during the upcoming period's weather regimes, and possibly
adjusting several parameters (such as soil moisture). The initializing of the dispersion models
is accomplished within several minutes, with initial results available in between 1 and 5
minutes (some more complex calculations will take longer). The interpretation of the output of
both the RAMS and dispersion models is aided by a variety of graphics and visualization
products. The users interact with the system at all times through a Graphical User Interface
(GUI). Most commands are by "point and click" operations. Typing is largely be limited to
entering numeric quantities.

2.2 ERDAS Deficiencies and Enhancements
2.2.1 Deficiency List

One of the primary tasks of the AMU’s ERDAS evaluation was to conduct a check-out of the
system. A list of deficiencies was developed following this check-out and these were reported
in the following documents submitted to SMC/CLN in 1994

* ERDAS System Check-out Report (26 April 94)
* ERDAS System Check-out Report Addendum (8 July 94).

Following these reports many of the deficiencies were corrected by MRC/ASTER. These
corrections were documented in the monthly reports. However, some of the deficiencies are still
part of the system. In addition, during the course of the evaluation, new deficiencies were
found. This section lists and briefly describes these deficiencies. At the conclusion of this final
report, recommendations for future enhancements to ERDAS to correct many of the remaining
deficiencies are presented.

ERDAS deficiencies found during the evaluation are listed in Table 2-2.

Table 2-2. List of defeciencies found within ERDAS along with suggested solutions to the
deficiency.

Deficiency Solution

1. The RAMS model produces erroneous initializations and An automated quality control
incorrect results when bad observed data from the CCAS/KSC procedure is needed to check
wind towers, surface observations, buoys, or rawinsondes are the data before it is ingested

input to the model. into the model.
2. Forecast Preparation function does not display The Forecast Preparation
meteorological data as designed. function was found to be

minimally useful.
Automated quality control of
data is needed.




3. ERDAS lacks complete documentation. Additional documentation

will be developed during
transition to operations.

4. The ERDAS user interfaces contain minor bugs.

a. In HYPACT, the Release Rate must be entered | Modify HYPACT /User
manually and is not computed automatically from Release | Interface software so program

Amount and Release Size . computes the Release Rate.
b. In Dispersion Control, there are no unit labels on the Modify user interface
Release Rate. software.

c. In HYPACT, the plots need date as well as time an Modify software.
them.

d. In HYPACT, users should be able to select their own | Modify software.
concentration isopleths rather than have the model
preselect them.

e. In HYPACT and RINGI, cross-sections (X-Z, Y-Z) need | Modify software.
some indication of geographical features and/or latitude
and longitude.

5. Some functions and operations in ERDAS are too slow and
need to be faster for operational system.

a. In its present configuration, ERDAS requires over 9 CPU | Transport the ERDAS
hours to produce a 24-hr forecast. software to a more powerful
computer. See discussion
below.

b. In HYPACT, plot saves take 1 to 2 minutes to save one Move ERDAS to faster
time period for later plotting. machine.

¢. InHYPACT and RING], producing and saving color and | Move ERDAS to faster
black and white prints is a slow process which takes over | machine. Modify print
20 steps to save and print 6 time periods of HYPACT plots. | routines.

d. Maps of CCAS (MARSS map) takes 40 to 75 seconds to | Move ERDAS to faster
draw on screen. machine.

Faster computer test

System should be moved to faster, more powerful computer to provide results in less time
than current platform. During the ERDAS evaluation, a timing test was conducted to compare
the length of run time needed for RAMS on an IBM RISC/6000 Model 390 workstation compared
to its current platform, an IBM RISC /6000 Model 550. For the test, a 24-hour RAMS simulation
was run on both machines and the run times were compared. The RAMS code was not recompiled
on the Model 390. The results of the test were encouraging with regards to decreasing the
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runtime of RAMS. The times for a 24-hr simulation from the start of model initialization to the
finish of RAMS were:

e IBM 550 9:43 hours
¢ [BM 390 4:59 hours

The model ran almost twice as fast on the Model 390. Craig Tremback of MRC/ASTER
believes that we can obtain further decreases in nm time by actually recompiling the RAMS
code on the Model 390 which was not done for this test.

2.2.1 Recommended Enhancement list

The following discussion provides a list of enhancements which are recommended as a
result of the ERDAS evaluation. These enhancements will provide ERDAS with the
capabilities to support operations and can be implemented in a phased approach.

1. Immediate implementation requirements to transition systemn to operations:

* Documentation on software maintenance, hardware maintenance,
certification testing, and training needed to transition system to operations.

2. Short term technical enhancements:

* System should be moved to faster, more powerful computer to provide
results in less time than current platform.

* User interface needs minor revisions to provide users full capabilities of
system.

* The Observed Data/Forecast blending feature needs sufficient testing since
it is important for diffusion predictions.

* Current data interface to MIDDS should be modified for operations to
provide smoother initialization data input.

* ERDAS should be validated against tracer data.

3. Intermediate and long term technical enhancements which should be studied and
possibly implemented include:

* Activating the explicit cloud microphysics modules.

* Reducing the finest RAMS grid resolutions from the currently-implemented
3-km resolution.

* Adding near real-time input parameters for RAMS initialization such as
soil moisture measurements and sea surface temperatures.

* Automate quality control of input data used to initialize RAMS.

* Implement four-dimensional data assimilation (nudging) in RAMS along
with development of Local Analysis and Prediction System (LAPS). LAPS



is a system which ingests and displays near real-time 3-D meteorological
data from a variety of sources including wind profilers, rawinsondes,
surface observations, buoys, towers, WSR-88 Doppler radar, and GOES-8
visible and infrared radiance and sounding data. The LAPS data are used
to initialize and update models such as RAMS and to provide dispersion
models with observed 3-D data rather than predicted data.

HYPACT should be modified to handle deposition of solid and liquid
plume particulates as well as plume rise due to bouyant plumes.

HYPACT should be modified to allow for calculation of cumulative dosages
as well as instantaneous concentrations.
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3. RAMS Soil Moisture Sensitivity

A study was conducted to test the sensitivity of RAMS to soil moisture by varying the soil
moisture parameter in RAMS for one 24-hour simulation over the KSC/CCAS. The sensitivity
analysis was performed to provide information regarding the importance of soil moisture
measurements to mesoscale modeling efforts to those developing the meteorological support
instrumentation siting and modernization input to the Spacelift Range System Specifications.
Table 3-1 contains the test parameters used in the soil moisture sensitivity test.

Table 3-1. Soil Moisture Sensitivity Test Description

Test Parameter Parameter Value

Simulation Start: 1200 UTC, 17 May 1994

Length of Simulation: 24 hours

Input Data: Rawinsondes, surface data, buoy data, and tower data
from 1200 UTC
Nested Grid Model (NGM) forecast grids from 0000
UTC, 17 May 1994

RAMS Configuration: See Lyons and Tremback 1994

Output Frequency: Hourly

Experiment 1: RAMS run with lower soil moisture (LSM), soil

moisture parameter = 0.4

Experiment 2: RAMS run with higher soil moisture (HSM), soil
moisture parameter = 0.5

Note: Soil moisture is defined as the fraction of
moisture present in a volume of soil relative to the
total amount of moisture the soil can hold.

3.1 Description of Study

The RAMS model was run and hourly output of the predicted, surface (10 m) wind field was
produced. RAMS runs were made using low soil moisture (LSM) values of 0.4 and high soil
moisture (HSM) values of 0.5. Soil moisture is defined as the fraction of moisture present in a
volume of soil relative to the total amount of moisture the soil can hold. The hourly predictions
for the two different runs were then compared with each other and then also compared with
the observed winds for the corresponding time periods for the CCAS area. Model predictions of
upward vertical velocities at the 10-m level were also produced. The vertical velocities
increase when surface convergence of the wind increases.



The observed wind data were obtained from the CCAS/KSC tower network for the 54-ft
(16.5 m) level . These data were plotted on maps and are shown as wind barbs in the comparison

figures. Hourly comparisons with RAMS predictions were made for the period 1400 UTC to 2000
UTC for the Cape Canaveral area.

The hourly surface predicted wind fields and observed tower winds for 1400 UTC, 1500 UTC,
1700 UTC, 1900 UTC, and 2000 UTC are presented in Figures 3-1 to 3-5. The observed tower data
was not available for 1600 UTC and 1900 UTC so observed and modeled data for these hours are

not shown. The forecast maps also show contours of upward vertical velocities (cm-sec]) at the
10-meter level.

At 1400 UTC (Figure 3-1), RAMS predicted westerly flow across the KSC/CCAS region. There
was little difference between the LSM and HSM runs at this time. The observed wind barbs
showed west and northwest flow at 1400 UTC.

At 1500 UTC (Figure 3-2), the two runs start to show a difference as the LSM began generating a
sea breeze circulation while the HSM did not. The HSM produced weak southerly and
southwesterly flow over the land and westerly and southwesterly flow over the ocean. The
observed wind barbs showed west to northwest flow across the KSC/CCAS region.

At 1700 UTC (Figure 3-3), the LSM produced a well developed sea breeze with easterly winds
and large upward vertical velocities across most of KSC/CCAS. The HSM produced the
beginning of the sea breeze with easterly winds along the coast that did not penetrate very far
inland. The observed wind barbs showed the onset of the sea breeze as the winds at the tip of
the cape shifted around to easterly.

At 1800 UTC (Figure 3-4), the wind field produced by the LSM changed little from 1700 UTC.
The HSM showed easterly winds and large vertical velocities along most of the coast as it
predicted the sea breeze penetrating approximately 10 km inland at the areas to the north and
south of the Cape. The observed wind barbs showed a pattern similar to the LSM with the
easterly winds in the same areas to the north and south of the Cape.

At 2000 UTC (Figure 3-5), the LSM and HSM were similar but the LSM showed easterly winds
further inland and the vertical velocities slightly larger than the HSM. The observed winds
were easterly and northeasterly across all of the Cape and inland for approximately 30 km.

The observed and predicted wind speeds on this day were generally light with speeds of
approximately 5 kts. Therefore, slight differences between the observed and predicted wind
directions are not considered significant. However, wind shifts from westerly to easterly
direction over time are an indicator of the passage of the sea breeze front as it moves inland
during the day. This study compared the observed and predicted position and timing of the sea
breeze front. This study did not analyze in detail the differences between the southwesterly
predicted winds and northwesterly observed winds that existed in the light off-shore flow
before sea breeze passage. The differences were due primarily to slight differences in observed
and predicted pressure patterns in the central Florida and adjacent coastal region.

3.2 Soil Moisture Results

The results from this one case clearly show that the RAMS model is very sensitive to the soil
moisture parameter for predicting the location and intensity of the sea breeze at KSC/CCAS.
We recommended that soil moisture measurements be included in the meteorological support
input to the Spacelift Range System Specifications for KSC/CCAS.
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Figure 3-1. Illustrations of the hourly surface predicted wind fields and observed winds at
1400 UTC, 17 May 1994 for the Cape Canaveral area. Figure (a) shows the wind field for the
low soil moisture (LSM) run with the overlaying contours showing vertical velocities (cm-sec)
at 10 meters. Figure (b) shows the wind field for the high soil moisture (HSM) run with the
overlaying contours showing vertical velocities at 10 meters. Figure (c) shows the observed
winds at CCAS/KSC at the 54-ft tower level.
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Figure 3-4. Illustrations of the hourly surface predicted wind fields and observed winds at
1800 UTC, 17 May 1994 for the Cape Canaveral area. Figure (a) shows the wind field for the
low soil moisture (LSM) run with the overlaying contours showing vertical velocities (cm-secl)
at 10 meters. Figure (b) shows the wind field for the high soil moisture (HSM) run with the
overlaying contours showing vertical velocities at 10 meters. Figure (c) shows the observed

winds at CCAS/KSC at the 54-ft tower level.
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Figure 3-5. Illustrations of the hourly surface predicted wind fields and observed winds at
2000 UTC, 17 May 1994 for the Cape Canaveral area. Figure (a) shows the wind field for the
low soil moisture (LSM) run with the overlaying contours showing vertical velocities (cm-sec’l)
at 10 meters. Figure (b) shows the wind field for the high soil moisture (HSM) run with the
overlaying contours showing vertical velocities at 10 meters. Figure (c) shows the observed

winds at CCAS/KSC at the 54-ft tower level.
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4. Sea Breeze Predictions

RAMS’ predictions of the occurrence and movement of the sea breeze was evaluated for the

months of July and August 1994. The following paragraphs describe the results of the evaluation
and RAMS’ performance for a representative week.

The RAMS model configuration for ERDAS has been documented in several reports and
papers written by Lyons and Tremback. The ERDAS Final Report (Lyons and Tremback 1994)

presents details of the configuration (Section 2.1: Meteorological Modeling). Important features
of the model configuration are:

¢ The horizontal grid spacing of the three nested grids are 60 km (38 x 36
points), 15 km (34 x 38 points), and 3 km (37 x 37 points).

* In the vertical, there are 22 telescoping layers extending to a height of 13.5
km for the large and medium size domain grids and to a height of 3 km for
the small domain size grid.

* The model runs twice daily producing hourly forecasts for a total of 24 hours
beginning at 0000 UTC and 1200 UTC.

¢ The model physics selected for ERDAS do not include clouds, condensation,
or precipitation.

Dispersion models require accurate wind data to produce accurate concentration predictions.
Therefore, the evaluation focused on RAMS’ predictions of wind speed and wind direction. The
RAMS predictions were compared to the observed hourly wind speeds and directions from
several towers and surface observation sites in the Cape Canaveral area. Figure 4-1 presents
graphs showing observed and predicted wind speed and wind direction for a representative
seven-day period.

4.1 Case Study of One-Week: 15-21 July 1994

The analysis presented in this report compares the wind data collected at the 4-meter level of
Tower 110 with the RAMS wind data from the lowest grid height of 11 meters interpolated to the
Tower 110 location. Tower 110 is located between Launch Complexes 40 and 41, approximately 1

km west of the coastline. The example analysis period presented in this report is the seven-day
period 15-21 July 1994,

To determine the effect of clouds and precipitation on the RAMS predictions, graphs were
produced of hourly observed total sky cover and observed weather (thunder, rain, rain shower,
and/or thunderstorm) from the Shuttle Landing Facility. Graphs with this data are included in
Figure 4-1.

The graphs comparing observed and predicted winds are presented in Figure 4-1. The
primary goals of comparing the observed and predicted winds were to determine:

* How well RAMS predicted the sea breeze with regard to its timing and
location,

e  What effect did cloudy skies and thunderstorms have on RAMS predictions,
and



* How well did RAMS predict the diurnal variability of wind speed.

The typical sea breeze regime on Florida’s east coast is characterized by an early morning,
westerly, off-shore component wind (1200 UTC to approximately 1800 UTC) that switches to an
easterly, on-shore component wind during late morning or early afternoon (approximately 1600
UTC to 2000 UTC). Of the seven days shown in Figure 4-1, RAMS predicted a morning westerly
component wind that switched to an east wind on six of the days. Of these six days, Tower 110
observed a westerly wind that switched to an east wind on five of the days. On 15 July 1994, the
observed wind was easterly through the morning hours. RAMS consistently predicted a morning
westerly wind for only one hour before switching the winds to easterly as shown on the wind
direction graphs as gray spikes at 1300 or 1400 UTC on 15-19 July. On these days, the pressure
gradient was relatively weak, and the model was most likely detecting the early morning land
breeze sometimes referred to as a drainage flow.

Even though RAMS did a good job predicting the occurrence of the sea breeze for these seven
days, it predicted the switch from westerly to easterly flow earlier than it occurred on all but one
of the five days that it correctly predicted the sea breeze occurrence. Table 4-1 presents the times
of the predicted and observed sea breeze passage at Tower 110.

Table 4-1. Time of sea breeze passage at Tower 110 for 15-21 July 1994.

Date RAMS Observed Difference of
Predicted-Observed

15 July 94 1500 UTC Continuous easterly winds -

16 July 94 1400 UTC 1600 UTC -2 hours
17 July 94 1400 UTC 1600 UTC -2 hours
18 July 94 1400 UTC 1500 UTC | -1 hours
19 July 94 1400 UTC 1700 UTC -3 hours
20 July 94 No sea breeze predicted No sea breeze observed -

21 July 94 1500 UTC 1500 UTC 0 hours

In general, the graph comparing wind directions for the seven day period indicated that the
wind directions from RAMS agree reasonably well with the observed wind directions except on
19 and 20 July. The graph of the sky cover and weather events at the bottom of Figure 4-1 shows
that on 19 and 20 July there was significant cloud cover through the morning hours. The other
five days in the analysis period had minimal sky cover during the morning hours.

RAMS accurately predicted the wind direction on days that were not cloudy during the

morning hours but was unable to predict wind direction during the cloudy conditions of 19 and
20 July. This result is not surprising since the model is configured to run in the “dry mode”
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meaning the microphysics module in RAMS that generates clouds and precipitation is turned off
to reduce the model runtime. Therefore, the model was not expected to perform well during
these cloudy conditions and the results of this analysis confirm this.

Comparing the modeled and observed wind speeds (middle graph, Figure 4-1) indicates that
RAMS predicted the diurnal increase and decrease of the wind speed. However, the predicted
wind speeds were greater than the observed wind speeds during the afternoon hours. One
explanation for the over estimates of predicted wind speed is that the RAMS winds at 11 meters
are being compared with the observed winds at 4 meters. Wind speeds typically increase with
height near the surface due to less friction. Therefore, wind speeds at 4 meters would tend to be
less than those at 11 meters.

Figure 4-1. Graphs comparing the winds observed at Tower 110 (black) and predicted by
RAMS (gray) for 15-21 July 1994. The top graph shows wind direction (deg.), the
middle graph shows wind speed (ms™), and the bottom graph shows observed sky
cover in tenths (gray diamonds) and observed weather (black asterisks) at the SLF.
RAMS data were produced by daily RAMS runs which were initialized at 1200
UTC and which ran for 24 hours.
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4.2 Analysis of July and August 1994

Tables summarizing the analysis of the observed and predicted wind speed and directions at
Towers 303, 805, and 110 (Tables 4-2 to 4-7) are presented in this section. The Siler diffusion
classifications for each day are also included in each table (Siler 1980). The Siler diffusion classes
are the nine basic weather patterns associated with the different transport and diffusion patterns
typically observed at CCAS/KSC. These classifications were determined by Siler using
climatological data collected during 1968 through 1974.

The notations used in Tables 4-2 to 4-7 are as follows:

* Adash ”-” indicates that the predicted and/or observed data were not complete enough
to determine the sea breeze movement. Therfore, a comparison analysis was not conducted for
these days.

* A blank corresponds to a “no” answer to the question: “Sea breeze predicted?” or “Sea
breeze observed?” A comparison analysis was not conducted for these days.

* A “no(east)” with a time of 12 UTC indicates the winds were easterly at the start of the
simulation at 12 UTC and that there was no wind shift from westerly to easterly. Sea breeze
passage was determined by the wind direction shifting from westerly to easterly.

Graphs similar to Figure 4-1 above are presented in Appendix A.
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Table 4-2. RAMS-predicted versus observed sea breeze data for Tower 110, July 1994. RAMS
runs began at 1200 UTC.

Day [Seabreezel Time |Sea breezelTime Pred.- [Siler
predicted?l - ycy |observed?yrc)  |Obs timeldiffusion
(hours) |[class
1 yes 15 yes 16 -1 . 1Al
2 - - A2
3 - - E
4 - - A2
5 - - A2
6 no no A2
7 no no Al
8 no no Al
9 no no Al
10 no no Al
11 no no Al
12 yes 16 - A2
13 yes 16 yes 17 -1 Al
14 no no Al
15 yes 16 no(east) (12 +4 Al
16 |yes 15 yes 18 -3 A3
17 {yes 15 yes 17 -2 A3,LV
18 |yes 15 yes 16 -1 A3 LV
19  |yes 15 yes 18 -3 A3
20 No(east) 12 yes 16 -4 A3
21 yes 16 yes 16 0 A3
22 |yes 16 yes 16 0 Al
23 Jyes 16 yes 18 -2 A2
24 no(east) 12 yes 19 -7 A3
25 yes 18 yes 18 0 A2
26 NoO(east) 12 yes 17 -5 A3
27 yes 14 yes 18 -4 A2
28 |no yes 17 A2
29 |- - A2
30 no no Al
31 yes 16 no Al




Table 4-3. RAMS-predicted versus observed sea breeze data for Tower 110, August 1994. RAMS
runs began at 1200 UTC.

Day [Seabreezel Time |Sea breezel Time Pred~ [Siler
predicted?) sy [observed?| r1c)  |Obs timeldiffusion

(hours) |[class

1 no no Al

2 no no Al

3 no no Al

4 - - Al

5 yes 17 yes 17 0 A3

6 - - D1

7 yes 14 yes 17 -3 D1

8 yes 16 yes 16 0 D1

9 yes 16 yes 17 -1 B

10 no no B

11 no no Al

12 no no Al

13 no no Al

14 |no no A2

15 no no E

16 no no E

17 |yes 15 yes 18 -3 A2

18  |lyes 16 yes 17 -1 A2

19 nofeast) |12 yes 16 -4 LV,Al

20  [yes 16 yes 15 +1 Al

21 yes 16 yes 17 -1 A2

22 no no Al1,A3

23 }yes 16 yes 17 -1 D1

24 |fyes 16 no(east) |12 +4 D1,B

25 no no B

26 |- - B

27  |yes 15 no(east) |12 +3 Al

28 |- - Al

29  |yes 16 - Al

30 yes 16 - LV

31 |- - A2




Table 4-4. RAMS-predicted versus observed sea breeze data for Tower 303, July 1994. RAMS
runs began at 1200 UTC.

Day |Seabreezel Time [Sea breezelTime Pred.~ |[Siler
predicted?) ((ycy |observed?| ;) |Obs timeldiffusion
(hours) |class
1 yes 15 yes .16 -1 Al
2 - - A2
3 - - E
4 - - A2
5 - - A2
6 yes 17 yes 16 A2
7 no no Al
8 no no Al
9 no no Al
10 nofeast) |12 yes 20 -8 Al
11 no(east) |12 yes 19 -7 Al
12 |yes 16 - A2
13 |yes 16 yes 16 0 Al
14 nofeast) |12 yes 16 -4 Al
15 nofeast) |12 yes 14 -2 Al
16  }yes 15 yes 18 -3 A3
17  |yes 15 yes 15 0 A3 LV
18 |no yes 16 A3 LV
19  |yes 15 yes 18 -3 A3
20 no(east) {12 yes 15 -3 A3
21 Nnofeast) {12 yes 16 -4 A3
22 yes 15 yes 17 -2 Al
23 yes 16 yes 17 -1 A2
24 no(east) |12 yes 17 -5 A3
25 yes 17 yes 18 -1 A2
26 |yes 15 yes 17 -2 A3
27  |yes 14 yes 18 -4 A2
28 nofeast) {12 yes 18 -6 A2
29 |- - A2
30 noeast) |12 yes 17 -5 Al
31 no no Al




Table 4-5. RAMS-predicted versus observed sea breeze data for Tower 303, August 1994. RAMS
runs began at 1200 UTC.

Day |Seabreezel Time [Sea breezelTime Pred- [Siler
predicted?| (yyrc) [observed?| 157y |Obs time|diffusion

(hours) |[class

1 no no Al

2 no no Al

3 no no Al

4 - - Al

5 yes 19 yes 17 +2 A3

6 - - D1

7 yes 14 yes 18 -4 D1

8 no no D1

9 yes 16 yes 16 0 B

10 Ino no B

11 no yes 17 Al

12 |no no Al

13 no no Al

14 |no yes 15 A2

15 [{yes 14 yes 16 -2 E

16 |no no E

17 |yes 15 yes 19 -4 A2

18 yes 16 - A2

19 Nofeast) |12 yes 17 -5 LV,Al

20 |yes 15 yes 15 — 10 Al

21 |yes 16 yes 16 0 A2

22 nofeast) |12 yes 19 -7 Al,A3

23 yes 16 yes 15 +1 D1

24 |yes 16 no D1,B

25  |yes 15 yes 16 -1 B

26 |- - B

27 |yes 15 no Al

28 |- - Al

29 yes 16 yes 17 -1 Al

30 |[yes 16 - LV

31 |- - A2
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Table 4-6. RAMS-predicted versus observed sea breeze data for Tower 805, July 1994. RAMS
runs began at 1200 UTC.

Day |Seabreezel Time [Sea breezeTime Pred.— |[Siler
predicted?|  (ycy [observed?| (;rcy  |Obs timeldiffusion
(hours) |class
1 yes 15 no Al
2 - - A2
3 - - E
4 - - A2
5 - - A2
6 no no A2
7 no no Al
8 no no Al
9 no - Al
10 no no Al
11 no no Al
12 yes 18 - A2
13 Jyes 18 yes 18 0 Al
14 no no Al
15  lyes 18 yes 18 0 Al
16 |yes 15 yes 20 -5 A3
17 |yes 15 yes 16 -1 A3 LV
18 no yes 17 A3LV
19 yes 15 yes 19 -4 A3
20 No(east) 12 yes 15 -3 A3
21 yes 17 yes 16 +1 A3
22 |yes 16 yes 15 +1 Al
23 yes 16 yes 18 -2 A2
24 |yes 20 yes 20 0 A3
25 yes 18 yes 17 +1 A2
26 |yes 16 yes 20 -4 A3
27  |yes 16 yes 18 -2 A2
28 no yes 20 A2
29 |- - A2
30 no no Al
31 no no Al




Table 4-7. RAMS-predicted versus observed sea breeze data for Tower 805, August 1994. RAMS
runs began at 1200 UTC.

Day |Seabreeze] Time |Sea breeze|Time Pred.— |[Siler
predicted?} (;y7c) [observed? | (yrey  [Obs timeldiffusion

(hours) |class

1 no no Al

2 no no Al

3 no no Al

4 - - Al

5 no no A3

6 no no D1

7 yes 16 - D1

8 yes 16 yes 19 -3 D1

9 yes 18 yes 16 +2 B

10 no no B

11 no no Al

12 |no no Al

13 [no no Al

14 nofeast) (12 yes 15 -3 A2

15 |yes 14 - E

16 no no E

17 |yes 15 yes 20 -5 A2

18  |yes 17 - A2

19 no no LV,Al

20 |yes 16 yes 18 -2 Al

21  |yes 19 yes 18 +1 A2

22 yes 17 no Al,A3

23 |yes 20 yes 19 +1 D1

24 yes 16 no(east) |12 +4 D1,B

25  |yes 15 no(east) |12 +3 B

26 |- - B

27  |yes 15 - Al

28 |- - Al

29  |yes 18 yes 18 0 Al

30 [yes 18 - LV

31 |- - A2
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5. Titan Launch Plume Analysis - 3 May 94

Part of the ERDAS model evaluation included evaluation of the REEDM and HYPACT diffusion
models. The evaluation consisted of comparing model data with launch plume data collected since
March 1994 for Space Shuttle and Titan IV launches. The following paragraphs describe the AMU's
evaluation of the ERDAS diffusion models for the Titan IV Launch on 03 May 1994.

The Titan IV rocket was launched from Launch Complex 41 (LC-41) at Cape Canaveral Air
Station (CCAS) at 1555 UTC on 03 May 1994. The ERDAS meteorological model RAMS and diffusion
models REEDM and HYPACT were used to model the transport and diffusion of the exhaust plume
and to compare the modeled plume data with observed data collected by Aerospace Corporation’s
plume imaging cameras. The following is a discussion of the modeling analyses of this launch.

51 Meteorology

On the morning of 03 May, high pressure was located in the Middle Atlantic States with a weak
cold front extending westward from southern Georgia into the northern Gulf of Mexico.
Temperatures at the Shuttle Landing Facility (SLF) on 03 May ranged from a low of 66°F to high of
85°F. The winds were from the east and southeast across Florida. Weather observers at the SLF
reported scattered clouds during the morning before the launch and thunder and thunderstorms
three hours after the launch beginning at 1855 UTC.

5.2 RAMS Analyses

ERDAS runs the RAMS model twice daily beginning at 0000 UTC and 1200 UTC. Each
simulation runs for 24 hours and produces hourly output of meteorological data. The RAMS
simulation starting at 1200 UTC on 03 May was used for this analyses. At 1600 UTC, near the time of
the launch, RAMS predicted the surface winds at a height of 10.6 m to be from approximately 110°
and the winds aloft at a height of 1212 m to be from approximately 150°. The RAMS wind field for
these levels at 1600 UTC are shown in Figures 5-1 and 5-2.
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Figure 5-1.  RAMS wind field at the surface (10.6 m)at 1600 UTC on 03 May 1994.

To assess the accuracy of the RAMS wind predictions on the morning of 03 May, RAMS data
were compared with data measured at Tower 110, located less than 2 km from LC-41. The winds at
the lowest two tower levels (3.6 m and 16.4 m) and the winds in the lowest RAMS layer (10.6 m) for
1500 UTC, 1600 UTC, 1700 UTC are compared in Table 5-1. For these three times, the data show that
the RAMS wind directions at 10.6 m were more easterly than the observed southeasterly winds at 3.6
m and 16.4 m at Tower 110. The RAMS average wind direction was 87° while the average observed
wind directions were 122° at 3.6 m and 132° at 16.4 m. The RAMS wind speeds were slightly stronger
than the observed wind speeds at both tower levels. RAMS average wind speeds were 5.3 m s while
the observed wind speeds averaged 3.6 ms™ at 3.6 mand 44 ms” at 16.4 m.

5.3 ERDAS Diffusion Analyses

5.3.1 REEDM launch plume source term predictions

ERDAS uses REEDM to predict the initial source term for the Titan IV launch plume. The source
term is defined as the release rate (mass per unit time) of emitted material. REEDM generates the
source term by taking data stored for each launch vehicle and for each material emitted during a
launch and computing the total amount of material released. REEDM then distributes the material
into different vertical layers. For the launch analysis presented here, hydrogen chloride (HCl) was
selected because it is a chemical routinely modeled by Range Safety during pre-launch operations.
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Figure 5-2.  RAMS wind field aloft (1212 m) at 1600 UTC on 03 May 1994.

Table 5-1. Observed wind data at Tower 110 during the period 1500 UTC to 1700 UTC.

Observed Observed RAMS

3.6m 16.4 m 10.6 m
Time Wind Wind Wind Wind Wind Wind
direction speed direction speed direction speed
(GMT) (degrees) (ms™) (degrees) (ms™) (degrees) (ms™)
1500 134 3.6 142 4.6 106 4.3
1600 111 3.6 127 4.1 79 5.7
1700 121 3.6 128 4.6 77 5.9

For this case, REEDM generated 29 layers from the surface up to 3000 m and put material in 17 of
the highest layers beginning at 400 m (Table 5-2). The layers with the most material were layers 19 to
22 located at 1000 m to 1400 m. REEDM calculated the cloud stabilization height at 930 meters. The
cloud stabilization height is defined as the height of the center of the cloud at the point the cloud

temperature approaches the ambient temperature or the cloud buoyancy approaches zero (Bjorklund
1990).
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Table 5-2. REEDM exhaust cloud calculations for Titan IV launch on 03 May 1994.
Meteorological data were provided by RAMS predictions from 1200 UTC run.

-—--—-EXHAUST CLOUD-----
MET. TOP OF |LAYER SOURCE| CLOUD CLOUD STD.
LAYER NO. LAYER STRENGTH UPDRAFT RADIUS DEVIATION
VELOCITY MATERIAL
DIST.
ALONG WIND | CROSSWIND
(m) (grams) (ms™) (m) (m) (m)
1 10.1 0.00000E+00 7.6 .0 .0 0
2 20.1 0.00000E+00 9.3 0 .0 0
3 35.1 0.00000E+00 9.9 0 .0 0
4 50.0 0.00000E+00 9.7 .0 0 0
5 66.6 0.00000E+00 9.3 0 .0 .0
6 833 0.00000E+00 8.7 .0 0 .0
7 100.0 0.00000E+00 8.1 0 .0 0
8 133.3 0.00000E+00 7.2 0 .0 0
9 166.6 0.00000E+00 6.4 .0 0 .0
10 199.9 0.00000E+00 5.7 .0 .0 0
1 249.9 0.00000E+00 5.0 0 .0 0
12 299.9 0.00000E+00 45 0 0 .0
13 399.9 4.49427E+05 38 328.0 152.8 152.8
14 499.9 3.44982E+06 33 462.3 2154 2154
15 600.2 5.90615E+06 28 547.7 255.2 255.2
16 700.1 7.76001E+06 23 605.1 282.0 2820
17 800.1 9.06326E+06 1.7 642.1 299.2 299.2
18 900.1 9.80135E+06 0.8 662.1 308.5 308.5
19 1000.0 1.25856E+07 0 666.7 310.7 310.7
20 1100.0 1.31756E+07 0 656.2 305.8 305.8
21 1200.0 1.20427E+07 .0 629.9 293.5 293.5
22 1399.9 1.85109E+07 .0 555.4 258.8 258.8
23 1600.2 7 48185E+06 0 3474 161.9 161.9
24 1800.1 5.51435E+06 0 199.9 932 93.2
25 2000.1 5.18670E+06 0 199.9 93.2 93.2
26 2250.0 6.09702E+06 .0 199.9 93.2 93.2
27 2500.0 5.73472E+06 0 199.9 93.2 93.2
28 2750.1 5.43047E+06 0 199.9 93.2 93.2
29 3000.1 5.16506E+06 0 199.9 93.2 93.2
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5.3.2 HYPACT plume predictions

HYPACT is the advanced Lagrangian particle dispersion model in ERDAS. Dispersion in the
Lagrangian mode of HYPACT is simulated by tracking a large set of particles. Subsequent positions
of each particle are computed from the relation:

X[t +At] = X[t] + [u + u'] At
Y[t +At] = Y[t] + [v + v'] At
Z[t +At] = Z[t] + [w + w' + w, ] At

where u, v and w are the resolvable scale wind components which are derived from RAMS or the
hybrid (RAMS/tower observations) wind field, and w’, v/, and w’ are the subgrid turbulent wind
components deduced from RAMS. The w,, term is the terminal velocity resulting from external forces
such as gravitational settling.

For modeling launch scenarios, the HYPACT model obtains the source term data (release rate)
from the REEDM launch plume data. HYPACT then diffuses the plume using the RAMS-predicted
wind fields and potential temperature fields to advect and disperse the particles vertically and
horizontally downwind from the source.

5.3.3 Comparison with observations

To determine how well ERDAS modeled the launch plume, Mr. Evans compared the
REEDM/HYPACT predictions with observations made by Aerospace Corporation’s plume imaging
cameras (Aerospace 1995). Aerospace Corporation is collecting measurements of Titan IV launch
clouds using visible and infrared cameras as part of a project to validate models such as REEDM. A
description of the imaging project is provided in Aerospace (1995). Data from the 03 May 1994 Titan
1V launch were obtained from Heidner (1994).

Heidner (1994) provided a graph showing a plane view of the horizontal movement of the plume
as it moved away from LC-41. Figure 5 shows this plume centerline on a map of CCAS. Heidner
(1994) also showed a time-height cross section of the plume from the time of the launch to 45 minutes
after launch. This cross section is presented in Figure 5-3. For the first 5 minutes after launch, the
exhaust plume was very buoyant and rose until it stabilized in the layer between 900 m (2950 ft) and
1300 m (4270 ft). The plume was observed to stay close to this level for the remaining 20 minutes of
measurements. Data were missing for the period from 5 to 25 minutes after launch. The top of the
plume reached a peak of 1500 m (4920 ft) at 33 minutes and the bottom dropped to a minimum height
of 700 m (2300 ft) at 25 minutes. The centerline of the plume was also mapped to show the movement
of the plume away from the source. Figure 5-2 shows how the observed plume moved initially to the
west with the low-level easterly winds and then moved north as it rose upward reaching the level of
the southerly winds at approximately 1200 m.

For this Titan IV launch, HYPACT moved the lowest part of the plume (at a height of
approximately 400 m) to the west in response to the low-level easterly flow. HYPACT moved the
upper part of the plume (at a height of approximately 1300 m) to the north-northwest with the south-
southeasterly flow aloft.

To compare the REEDM/HYPACT modeled plume location to the observed location, HYPACT's
plume for the layer 1000 to 1500 meters was used for the comparison since this layer matched the
height of the observed plume. Figure 5-3 shows the paths of the observed and REEDM/HYPACT
modeled plumes. The HYPACT-predicted plume followed a very similar trajectory to the observed
plume but HYPACT moved it more to the west than observed. HYPACT predicted the northward



movement beginning at 15 minutes after launch as it moved the plume in a north-northwesterly
direction. The observed plume began moving north after approximately 5 minutes.

3 May 94 Titan IV K7

10 km

the layer at appfoximately 5 ab
as observed by

1000m to 1400m
Aerospace Corp.
k imaging system.

.

o /\!_> LC-41

Figure 5-3.  Centerline trajectories of observed plume and REEDM/HYPACT modeled plume for
Titan IV K7 launch on 03 May 1994.
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Figure5-4. Titan IV plume height versus time for launch on 03 May 1995 as measured by
Aerospace Corporation plume imaging cameras (Aerospace 1995).

5.4 Results and Conclusions

The analyses of this Titan IV launch case study indicate that the RAMS/REEDM/HYPACT
modeling system has promising potential for modeling launch exhaust plumes. However, the case
study also showed ERDAS needs improvements in some areas.

The promising results were:

¢ RAMS correctly predicted the 3-dimensional structure of the wind field,
although the directions differed by approximately 35° and RAMS slightly
overpredicted the wind speeds. The prevailing surface winds on 03 May were
southeasterly and the winds at approximately 1200 m were southerly. During
the period from the RAMS initialization at 1200 UTC to 1700 UTC, RAMS
predictions of the easterly surface winds followed the tower observations but
showed a trend of more easterly than southeasterly winds. RAMS overpredicted
the wind speeds by 1 to 2 ms™. RAMS predicted the winds at 1212 m to be from
the southeast. However, the plume observations indicated that the winds at the
1000 m to 1500 m level were more southerly than southeasterly.

e HYPACT-predicted plume trajectory closely followed bserved trajector
with some variation over time. Figure 5.3 shows the comparison of the predicted
versus observed plume trajectories. The predicted trajectory followed closely the
observed trajectory but went a little further west before rising into the
southeasterly flow aloft. The stronger wind speeds predicted by RAMS may
account for the initial movement further west than observed. Once reaching the




southeasterly flow aloft the RAMS winds moved the plume more to the
northwest than north because of the slight difference in the wind direction
discussed in the previous paragraph.

The improvements needed are:

HYPACT should be modified to handle buoyant plumes rather than treating the
plumes as passive tracers. The actual Titan IV rocket exhaust plumes are heated
and are quite buoyant initially after launch. Although REEDM considers
buoyancy effects in computing its source term properties, these are not all taken
into consideration by HYPACT. For example, REEDM computes buoyancy-
driven updraft velocities ranging from 0.8 to 3.8 m s™ for the layers between 400
and 900 m (Table 5-2). However, HYPACT does not use these REEDM-predicted
vertical velocities to move material vertically out of these layers. HYPACT does
not change the plume due to its own buoyant properties but moves and
disperses it due to environmental winds and turbulence.

HYPACT should be modified to handle deposition of solid and liquid plume
particulates since deposition from launch plumes is an important factor in the
diffusion. Also, because of the solid rocket motor exhaust, there is considerable
deposition of HCI particulates and other materials from a Titan IV launch. The
version of HYPACT in ERDAS does not model dry deposition effects but only
models passive tracer material.
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6. Space Shuttle Plume

The AMU conducted a study to compare the ERDAS launch plume preditions with the
ground footprint resulting from the hydrogen chloride (HCl) deposition of 5 Space Shuttle
plumes. The launches chosen for the study were those that occurred during the initial 18-month
ERDAS evaluation period (March 1994 to September 1995) for which complete ERDAS model
data were available. The locations of the observed and predicted and launch plumes for the 5
launches are presented in Figures 6-1 through 6-5.

6.1 Observed Launch Plume Data

Dynamac Corporation (Bionetics Corp.) collects HCl deposition data after each Space
Shuttle launch to determine the environmental effects on vegetation, fish, wildlife, and water
quality. The plume generated by a Shuttle launch contains HCl which falls to the ground at
distances up to 23 km downwind of the launch pad (Duncan and Schmalzer 1994). The depostion *
pattern on the ground is determined by a field survey of vegetation after each launch.
Following this survey maps are produced and included in reports issued by Dynamac
(Bionetics). These maps showed plume location only and did not provide plume concentration
data. These maps were compared with the maps generated by ERDAS.

6.2 ERDAS-Predicted Launch Plumes

The ERDAS diffusion models REEDM and HYPACT were run for each of the Space Shuttle
launches during the the ERDAS evaluation period in which meteorological data from RAMS
were availble. Data were available for 5 launches. Maps were generated by ERDAS which
showed the REEDM/HYPACT-predicted plume location. ERDAS uses REEDM to generate the
source term (release rate) to initialize HYPACT. HYPACT then diffuses the plume downwind.
Because observed concentration data were not available, only plume locations were compared.

6.3 Comparison Results

The data on the results of the comparison of the 5 plumes is presented in Table 6-1. Maps
comparing the model-predicted plumes with the observed plume are presented in Figures 1 to 5.
Some results of this comparison are:

* HYPACT/REEDM plume was wider than the observed plume because the modeled
plume stretched over 1000 meters vertically and therefore encountered significant directional
wind shear. The observed plume tended to concentrate near the plume stabilization height.

*  Plumes closely overlapped for part of their trajectories in 4 of 5 cases.

e RAMS surface wind direction was within 40° in 4 of 5 cases. For other levels not shown
in Table, RAMS did fairly well at predicting wind direction.

e ERDAS did fairly well at predicting plume path. However, depth of plume
initialization and depostion of launch plume particles in HYPACT needs some adjustment.
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Table 6-1. Data comparing Space Shuttle launch plumes predicted by ERDAS with ground

deposition footprints observed from Dynamac Corp.’s (Bionetics Corp.) vegetation survey.

Launch

STS-65

STS-64

STS-66

STS-63

STS-67

Date

8Jul9o4
9Sep94
3Nov94
3Feb95

2Mar95

Time

1243L

1823L

1200L

0022L

0138L

Launch  Plume

Complex ( direction

39A

39B

39B

39B

39A

NWwW

Nw

WSWwW

NE

ESE

Ob-
served
plume
distance

(k)

14
11
5

1+

1+

6-2

Model
time to
reach
plume
distance
(min)

37
32
10

~2

HYPACT/
REEDM
plume
spread
290°-325°
292°-020°
240°-305°
70°-100°

70°-160°

Observed
Plume
spread

300°-320°
297°-320°
230°-270°
40°-60°

90°-110°

Twr 110
speed/
irection

(dir/kts)
120°/6
118°/5
68° /7
251°/4

280°/5

RAMS sf
winds at
launch
complex

(dir/kts)

47°/8.7
71°/5.6
21°/15.5
227°/10.

307°/9.C



8 July 94 STS-65

10 km

Figure 6-1. Comparison of observed and predicted launch plumes from STS-65 on 8 July 1994.
The location of the observed plumes was determined by a ground survey of HCI deposition on
vegetation (Bionetics 1994). The location of the predicted plumes was determined by the
ERDAS models: RAMS, REEDM, and HYPACT.
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9 Sep 94 STS-64

10 km
R
b d
doesssr;% RAMS/REEDM/HYPACT

Figure 6-2. Comparison of observed and predicted launch plumes from STS-64 on 9
September 1994. The location of the observed plumes was determined by a ground survey of HCl

deposition on vegetation (Bionetics 1994). The location of the predicted plumes was determined
by the ERDAS models: RAMS, REEDM, and HYPACT.




3 Nov 94 STS-66

10 km
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Figure 6-3. Comparison of observed and predicted launch plumes from STS-66 on 3
November 1994. The location of the observed plumes was determined by a ground survey of HCI
deposition on vegetation (Bionetics 1994). The location of the predicted plumes was determined
by the ERDAS models: RAMS, REEDM, and HYPACT.




3 Feb 95 STS-63

10 km

Figure 6-4. Comparison of observed and predicted launch plumes from STS-63 on 3 February
1995. The location of the observed plumes was determined by a ground survey of HCI deposition
on vegetation (Dynamac 1995). The observed plume does not extend over the water because no
ground survey of the plume was conducted when it moved offshore. The location of the
predicted plumes was determined by the ERDAS models: RAMS, REEDM, and HYPACT.
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2 Mar 95 STS-67

10 km

[K‘ — RAMS/REEDM/HYPACT
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Figure 6-5. Comparison of observed and predicted launch plumes from $TS-67 an 2 March
1995. The location of the observed plumes was determined by a ground survey of HCl deposition
on vegetation (Dynamac 1995). The observed plume does not extend over the water because no
ground survey of the plume was conducted when it moved offshore. The location of the
predicted plumes was determined by the ERDAS models: RAMS, REEDM, and HYPACT.
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7. N204 Release Case Study

At 1426 UTC on 20 August 1994, a nitrogen tetroxide (N2Oj) pipeline at Titan Complex 41 an
Cape Canaveral Air Station (CCAS) ruptured and released 200 to 400 gallons of N2O4 vapor
into the atmosphere. The AMU used the accident as a case study for evaluating ERDAS’
ability to model the release and accurately predict the location and concentration of the plume.
We evaluated output from both of the major models within ERDAS-the meteorological model,
RAMS (Regional Atmospheric Modeling System), and the diffusion model, HYPACT (Hybrid
Particle and Concentration Transport).

Although no measurements were taken of the concentrations within the plume, witnesses
observed the brownish-orange plume drift west, rise, and then drift northward offshore during
the one to two hour period after the release.

7.1 Model Configuration

The RAMS model configuration for ERDAS was discussed in Section 3.2 of this report. Land
use classification of the RAMS 3-km grid cells were derived from high resolution U. S.
Geological Survey digital data bases (Figure 7-1). Classes include water and 18 land
classifications along with percentage of land coverage.

7.2 Meteorology on 20 August 1994

On the morning of 20 August 1994, a large high pressure area stretched from the South
Carolina area eastward into the Atlantic (Figure 7-2). The pressure gradient over Florida was
very weak as was indicated by the light and variable surface winds which prevailed at most
Florida stations. At 1200 UTC, the WINDS system was reporting wind speeds less than 1.5 ms™
at all towers. Table 7-1 presents the tower data from three towers located near Complex 41
(Figure 7-3). The analyzed surface wind field from RAMS for 1200 UTC showed light
northeasterly flow over CCAS and light north and northwesterly flow over Merritt Island
(Figure 7-4a). Data from Tower 313 at 1200 UTC (Table 7-2) and from the rawinsonde at 0900
UTC (Table 7-3) showed that the winds above 150 meters were generally from the south at
speeds less than 4 ms1.

During the morning, there was sufficient warming of the surface with the clear skies to
produce a sea breeze. Surface winds at Tower 110, located south of Complex 41, were westerly at
1 ms1 at 1300 UTC and then switched to south-southeast at 0.5 ms™! at 1400 UTC. At tower 311,
located northwest of Complex 41, the winds went from calm at 1300 UTC to northeasterly at 1
ms?! at 1400 UTC. At tower 509, located southwest of Complex 41, the winds went from
southerly at 0.5 ms?! at 1300 UTC to southwesterly at 4 knots at 1425 UTC to south-
southeasterly at 1 ms! at 1505 UTC.
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Figure 7-1.

VOGN =

Crop/mixed farming
Short grass

Evergreen needleleaf tree
Deciduous needleleaf tree
Deciduous broadleaf tree
Evergreen broadleaf tree
Tall grass

Desert

Tundra

10
11
12
13
14
15
16
17
18

Land use classifications for the 3-km grid in ERDAS. Key to map above:

Irrigated crop
Semi-desert

Ice cap/glacier
Bog or marsh
Inland water
Ocean

Evergreen shrub
Deciduous shrub
Mixed woodland
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Figure 7-2. Surface map of southeast United States showing pressure (mb) and RAMS-

initialized wind vectors at 1200 UTC on 20 August 1994.
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Figure 7-3. Cape Canaveral map showing location of towers listed in Table 7-1.
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Table 7-2. Tower 313 winds at 1200 UTC.

Height Wind direction Wind speed

(m) (degrees) (m/sec)

3.7 - 0

16.5 178 1.0

494 190 0.5

62.2 175 1.0

90.0 217 0.5

120.1 173 1.5

150.0 169 1.5
Table 7-3. Cape Canaveral rawinsonde data at 900 UTC.
DAY TIME IDN 4 P T D DIR SPD

(UTC) (m) (mb) (°K) CK) (deg) (m/sec)
94232 900 74794 3 1016.0 29656 29536 170 1.0
94232 900 74794 153 1000.0  299.36  297.86 170 4.1
94232 900 74794 1572 850.0 291.36 285.36 175 2.5
94232 900 74794 796.0 287.36  283.86
94232 900 74794 3204 700.0 279.96 27556 80 3.6
94232 900 74794 5900 500.0 264.86  251.86 275 6.6
94232 900 74794 7590 400.0 254.26 238.26 255 9.2
94232 900 74794 9670 300.0 239.06  227.06 260 7.7
94232 900 74794 10920 250.0 229.26 260 9.2
94232 900 74794 12390 200.0 218.46 255 6.1
94232 900 74794 14180 150.0 209.46 320 7.7
94232 900 74794 109.0 203.06 115 1.5
94232 900 74794 16630 100.0 203.86 105 4.6
Table 7-4. Cape Canaveral rawinsonde data at 1500 UTC.
DAY TIME IDN V4 P T D DIR SPD
(UTC) (m) (mb) CK) CK) (deg) _ (m/sec)

94232 1500 74794 3 1018.0  303.16 296.16 180 3.6
94232 1500 74794 164 1000.0  301.36 29536 170 3.6
94232 1500 74794 1585 850.0 290.56 287.06 185 2.0
94232 1500 74794 3218 700.0 280.96 27496 185 3.0
94232 1500 74794 536.0 267.86  256.86
94232 1500 74794 5910 500.0 264.26 253.26 240 6.6
94232 1500 74794 7610 400.0 254.86 241.86 240 7.2
94232 1500 74794 9690 300.0 238.06  229.06 255 8.2
94232 1500 74794 10930 250.0 229.26 345 3.6
94232 1500 74794 12390 200.0 217.86 25 5.1
94232 1500 74794 164.0 209.86 355 7.2
94232 1500 74794 14190 150.0 210.46 335 4.1
94232 1500 74794 16650 100.0 206.86 150 2.0
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The tower data in Table 7-1 and the analyzed surface wind field presented in Figures 7-4a
to 7-4f were used to follow the progression of the sea breeze inland during the moming. The
analyzed surface wind field was obtained by performing a gridded Barnes analysis on the
tower, buoy and surface data. At 1300 UTC the sea breeze had not moved inland as indicated by
the westerly wind at Tower 110. Figure 7-4b shows th southerly and westerly winds which
prevailed over most of CCAS and Merritt Island. At 1410 UTC, the winds at Tower 110
switched to southeasterly as the sea breeze moved inland. The analyzed wind field at 1400
UTC (Figure 7-4c) shows weak easterly winds across most of CCAS but not over Merritt Island
where winds were from the west. The data from Tower 311 indicates that the sea breeze passed
this tower at 1535 UTC as the wind direction shifted from southwesterly to easterly and the
temperature dropped from 86°F to 83°F between 1530 and 1535 UTC. The analyzed wind field at
1500 UTC (Figure 7-4d) showed little difference from the 1400 UTC wind field, but by 1600 UTC
(Figure 7-4e) the winds were easterly over CCAS and most of Merritt Island. By 1600 and 1700
UTC the sea breeze had moved past Merritt Island to the Indian River as weak easterly flow
prevailed over all of KSC/CCAS through 1700 UTC (Figure 7-4f).

7.3 RAMS Results

We compared the observed data with the modeled data to determine the reliability of
RAMS for the day of the N2Oy release. The results from the RAMS model were obtained from
the run which began at 1200 UTC on 20 August. Figures 7-5a to 7-5f show the RAMS-predicted
wind field for 10.6 meters (surface) and 254.1 meters for the hours 1200 to 1700 UTC. We
compared RAMS’ three-dimensional meteorological fields with observed data from the
various tower levels, surface observation sites, and the 1500 UTC CCAS rawinsonde (Table 7-4).
The observed wind fields for the hours 1200 to 1700 UTC are presented in Figures 7-4a to 7-4f.

At 1300 UTC, RAMS predicted weak westerly and northwesterly flow over the CCAS area
at the surface and aloft as shown in the wind fields at 10.6 and 254.1 meters (Figure 7-5b).
There was no significant upward vertical motion over Merritt Island or CCAS except for a small
east-west oriented line of convergence located near the southern end of Merritt Island. The
direction of the observed wind vectors (Figure 7-4b) did not agree very well with the direction
of the RAMS-predicted surface wind vectors over most of the grid because the winds were very
light over most of the area. However, when winds are light, the directions tend to vary
considerably because of the lack of dominant prevailing wind. The wind vectors from the
observed and predicted wind fields did agree in the area of northern Merritt Island. Observed
winds in the north Merritt Island area were west-northwest at approximately 1 ms! while the
RAMS-predicted winds were northwest at approximately 2 ms1.

At 1400 UTC, RAMS did not show signs of a sea breeze circulation but decreased the
westerly flow over the CCAS land area and Merritt Island as the land surfaces warmed (Figure
7-5¢). RAMS predicted light northerly winds at the surface over CCAS while the winds at the
grid points on Merritt Island became almost calm. RAMS predicted easterly winds at the
height of 254.1 m over CCAS and Merritt Island. The light, near-calm winds predicted by
RAMS over CCAS and Merritt Island agreed with the observed winds shown in Figure 7-4c.

At 1500 UTC, RAMS predicted weak easterly flow over Merritt Island and northern CCAS
as it began to generate a sea breeze circulation (Figure 7-5d). Upward vertical motion increased
over CCAS and Merritt Island from 1400 UTC. The observed (Figure 7-4d) and predicted wind
fields showed good agreement over CCAS and Merritt Island where the winds were very light.

By 1600 UTC, RAMS predicted the winds to increase from the northeast at the 10.6-meter
level over northern Merritt Island and CCAS. RAMS did not strengthen the sea breeze
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circulation which was evident in the 1500 UTC RAMS output. The strength of the updrafts as
indicated by the vertical motion fields increased but remained centered over CCAS and Merritt
Island (Figure 7-5e). The observed wind field (Figure 7-4e)at this time showed that the sea
breeze had moved inland to near the Indian River.

At 1700 UTC, RAMS continued the northeasterly winds over the northern CCAS land area
and northern Merritt Island. The strength of the updrafts increased from the previous hour but -
remained located over the center of the CCAS land area and over the center of Merritt Island.
The model did not predict any upward motions over the Complex 41 area. RAMS continued to
under predict the strength of the surface wind flow compared to the observed wind field. The
observed wind field showed an increase in the easterly flow over CCAS.

The 3-km resolution of the land use in the ERDAS configuration significantly affected the
RAMS predicted wind fields at Complex 41. The narrow strip of land where Complex 41 is
located is approximately 14 to 4 km wide, bounded on the west by the Banana River and on the
east by the Atlantic Ocean. The land use in the area is very complex due to the oceans,
estuaries, swamps and vegetated land. RAMS attempts to apply a single land use class and
percent land area to each 3 km x 3 km grid square. RAMS classified the grid square where
Complex 41 is located as inland water or ocean (Classes 14 and 15) with a percent land fraction
of less than 40%. The grid squares surrounding the Complex 41 grid square were classified as bog
and marsh (Class 13), evergreen shrub (Class 16), and short grass (Class 2). This inaccurate
classification can lead to inaccurate modeling of horizontal and vertical velocities and
turbulence.

The narrow strip of land where Complex 41 is located showed no significant upward motion
because of the inaccurate land use classification due to the coarse resolution in this area. The
coarse resolution resulted in the model’s attempting to apply a single land use class (water) and
percent land area to the 3 km x 3 km grid area surrounding Complex 41.

7.4 HYPACT Results

We ran HYPACT for two different scenarios. The two scenarios were identical except for
the release point of each. The basic data input to HYPACT were the following:

Spill Amount: 400 gallons

Chemical: Nitrogen Tetroxide (N2Oy)
Pool Size: 500 square feet

Release Rate: 50.0 Ibs/min

Release Time: 1426 UTC

Release Duration: 14 minutes

Dispersion Simulation End: 1700 UTC

HYPACT produces predictions of the three-dimensional plume every 10 minutes as it
disperses over time. HYPACT models the plume by tracking a large set of particles released
from a designated point or area. HYPACT transports and disperses the particles using the
RAMS-predicted wind fields and displays the plume locations by overlaying the particles on
maps and vertical cross-sections. HYPACT calculates pollutant concentrations based on the
particle dispersion. The concentration calculation function, however, does not currently work in
ERDAS and is being corrected by ASTER/MRC.

For this release, the simulated plume behaved like a single puff rather than a continuous
plume because of the short 14-minute release time.



7.4.1 Complex 41 Release Point

For the first HYPACT simulation, we modeled the release from its actual release location
at Complex 41. The actual land use in the area is very complex due to the oceans, estuaries,
swamps and vegetated land in the area. However, the ERDAS configuration of RAMS sets the
finest grid spacing at 3 km and classifies the land use at the Complex 41 grid square as water
and surrounding grid squares as bog and marsh, evergreen shrub, and short grass. RAMS sets the
percent land fraction at Complex 41 to less than 40%. As mentioned earlier, this inaccurate

classification significantly affects the RAMS wind field predictions and thus the HYPACT
results.

Figures 7-6a to 7-6f show a series of maps and vertical cross-sections at 30 minute intervals
that track the HYPACT-predicted plume from just after its release at 1426 UTC to 1700 UTC.
The map and cross section at approximately 1.5 hours after the release are shown in Figure 7-
6d. Arrows on the map indicate the plume track from Complex 41.

For the first hour after the 1426 UTC release, HYPACT, guided by the light northerly
surface winds, moved the plume 3 km south of Complex 41 to a location just southwest of
Complex 40 (Figures 7-6a to 7-6¢c. Vertically, HYPACT kept the plume near the surface and in
the layer below 100 meters since RAMS had predicted very little upward motion in this area.

From 1530 to 1630 UTC, HYPACT moved the plume southwest to an area in the western
Banana River (Figure 7-6d and 7-6e). HYPACT predicted the plume would begin to rise but stay
below 400 meters through 1630 UTC. From 1630 to 1700, HYPACT moved the plume west to the
eastern part of Merritt Island where it encountered stronger convection and rose vertically
reaching a height of 500 meters (Figures 7-6f).

Comparing the modeled plume trajectory to the actual plume trajectory (based
observations of witnesses), HYPACT performed poorly when Complex 41 was input as the
release point. It predicted that the plume would remain close to the ground and move south and
west from Complex 41. Witnesses observed the actual plume drift slightly west, rise and then
move northward offshore during the one to two hour period after the release. Due to the coarse
grid resolution and the resulting inaccurate land use classification in this area, RAMS did not
predict significant upward motion thus causing poor HYPACT results.

7.4.2 10 km South of Complex 41 Release Point

For the second HYPACT simulation, we moved the release point 10 kilometers south of
Complex 41 to the Cape Canaveral Industrial Area. We picked this point to see how HYPACT
would model a release from a grid square where RAMS had not classified the land use as water.
The land use classification for the 3 km x 3 km grid square containing the Industrial Area is
crop/mixed farming with a percent land fraction of 100%. RAMS predicted strong upward
motion in this area.

For the first 30 minutes after the release, HYPACT moved the plume slightly to the
northwest to less than 1 km from its source (Figures 7-7a and 7-7b). It remained close to the
ground and was lifted to a height of 200 meters. At 1530 UTC, HYPACT began lifting the plume
vertically, extending it to a height of over 600 meters by 1600 UTC (Figures 7-7c and 7-7d).
Because of the predicted weak sea breeze in the area, HYPACT moved the plume to the north
and northwest. HYPACT split the plume as it moved the upper part of the plume faster and
more to the north than the lower part of the plume. From 1630 to 1700 HYPACT continued to
lift the plume lofting it up to over 700 meters (Figures 7-7e and 7-7f). The upper and lower parts
of the plume moved in different directions; the lower part of the plume drifted north-northwest



and the upper part moved to the north as the stronger southerly winds aloft began affecting the
plume.

Comparing the modeled plume trajectory to the actual plume trajectory (based on
observations of witnesses), HYPACT produced a more accurate trajectory when the release
location was moved to 10 km south of Complex 41 than it did with the release location at
Complex 41. The HYPACT trajectory from the Cape Canaveral Industrial Area was correct in
its northward movement and upward lofting. If the modeled plume were transposed to the
actual release point at Complex 41 its trajectory would look accurate.

7.5 Summary

When HYPACT was run with the release point at Complex 41, it modeled the plume by
moving it southwest and never lifted it higher than 400 meters above the surface for the first 2
hours after release. However, when the release point was moved south 10 km, HYPACT
handled the plume very differently. HYPACT predicted the plume to move initially to the
northwest, but then because of the strong upward vertical motion over the CCAS land area, it
lifted the plume to over 700 m above the surface during the 2 hours after the release. Once the
plume became elevated, the model’s light southerly winds aloft carried the plume to the north.
If the path of the plume in this second scenario could be transposed to the actual location of the
release at Complex 41, it would closely resemble the actual path of the plume as observed by
witnesses at the time of the release.

The difference between the two vastly different HYPACT runs was due to the difference
between the way the model characterizes the land use at the release points. Because of the 3
km grid resolution, the model classifies the narrow strip of land where Complex 41 is located
primarily as water with a percent land fraction of less than 40%. The model classifies the
CCAS land area to the south as crop land with a percent land fraction of 100%. This different
land use classification significantly affects RAMS’ predictions of surface convergence and
vertical motion and turbulence. Based on the results of our analysis, we believe that the model
showed promise in modeling the NyO4 release and would have produced good results if a
smaller grid spacing were used. The smaller grid spacing would better enable RAMS to resolve
the complex land use characteristics surrounding Complex 41.
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234, 236. 238.

232.
(km?)

230.
x

228.

226.
HYPACT results at 1700 UTC of N2O4 released from Complex 41 at 1426 UTC an 20 August 1994. Figure shows plan view (left) and west-facing

cross-section (right) of plume particles .

Figure 7-6f.
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8. Comparison of Dispersion from the Ocean Breeze Dry
Gulch Model and the RAMS/HYPACT model

8.1 Introduction
8.1.1 Background

The Ocean Breeze Dry Gulch (OBDG) model is the model currently certified by the Air
Force for predicting downwind toxic corridors resulting from accidental spills of hazardous
materials at Cape Canaveral Air Station/Kennedy Space Center (CCAS/KSC). Range Safety

personnel run the OBDG model using the Meteorological and Range Safety Support (MARSS)
system.

Recent studies have determined that the OBDG model is deficient for use as the primary
model for modeling accidental hazardous releases. Hosker et al. (1993) determined:

* “The review team believes that the OBDG model is both limited in
applicability and outdated, and recommends that it be replaced with a
more capable model.”

* “Given recent advances in dispersion modeling and computer technology,
the NOAA review team considers the empirical/statistical OB/DG model
to be obsolete. The model has only a rudimentary ability to take
advantage of the extensive meteorological data available at KSC, and no
ability to account for vertical variations in the wind. Moreover, its
applicability is limited to daytime periods of unstable onshore flow. Also,
OBDG is unable to deal with elevated releases of effluents, for operational
uses such as launch vehicle fueling.

¢ “The OBDG equation does quite well for those situations which fall within
the range of atmospheric conditions covered by the measurement program.”

* “The OB tracer data were collected under on-shore flow situations, which
are a common occurrence at KSC.”

¢ “Dispersion was measured only for near-surface releases; elevated releases
may behave differently, especially at night.”

* “The influences of convection and sea breeze convergence on vertical plume
displacements and recirculations were not determined [during the Ocean
Breeze experiment].”

* “The Regional Atmospheric Modeling System (RAMS) model should be
made operational, and used to help understand KSC conditions.”

In an evaluation of the OBDG model, Kunkel (1984) found:
* “The major disadvantage of the OBDG model is in its limited application.
It is limited to ground level, point source, continuous spills of neutral

density gases, or if used in combination with a evaporative source strength
model, instantaneous liquid spills. It is not suitable for buoyant, heavy, or
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liquefied gases, and does not take into account the height of the inversion
layer. The presence of such an inversion could greatly increase the hazard
distance of a large spill. The model is also designed specifically for spills
over surfaces with a roughness length of about 10 cm.”

In a review of the OBDG equations, Ohmstede et al (1983) found:

* “The most serious shortcoming of the OBDG model appears to be its
unconservative estimates of the downwind hazard distance in smooth, very
stable conditions.”

8.1.2 Purpose

The Applied Meteorology Unit (AMU) has been evaluating the Emergency Response Dose
Assessment System (ERDAS) since it was installed in the AMU in March 1994. The evaluation
has focused on the assessment of:

* The meteorological predictions made by the RAMS mesoscale model.

* The diffusion predictions made by the Hybrid Particle and Concentration Model
(HYPACT) and Rocket Exhaust Effluent Dispersion Model (REEDM) dispersion models.

¢ The overall ERDAS system performance.

As part of the evaluation of the diffusion models, the AMU was tasked to compare the
diffusion predictions made by the ERDAS models with those made by the OBDG model.
While the OBDG model and the HYPACT model both produce maps with concentration

isopleths, they are extremely different in the methodology they each employ to compute them.
The primary differences are summarized in Table 8-1.

To compare the predictions made by OBDG and HYPACT, the AMU designed a study for
comparing OBDG model predictions with HYPACT model predictions. Ideally, the models’
predictions should be compared with actual concentration data collected during a field
program. However, no tracer data for the KSC/CCAS was available at this time. Tracer
experiments conducted in July and November 1995 as part of the Model Validation Program
(Lundblad 1995) will provide an extremely valuable data set for model evaluation.

This OBDG/HYPACT comparison study consisted of selecting ten case days to compare and
then producing maps of ground level concentrations. These maps were analyzed and the
different runs were compared. The following model configurations were used in this study:

e  OBDG-Observed. The OBDG model was rnin in its normal
configuration. Meteorological input data was provided by Weather

Information Network Display System (WINDS) 5-minute average
tower data.

* OBDG-RAMS. The OBDG model was run with RAMS wind speed and
direction data and WINDS tower data. Varying-level wind data
obtained from RAMS was substituted for the observed winds in the
tower data files. Wind levels were chosen based on model-predicted
vertical motion.



Table 8-1.

Comparison of OBDG and HYPACT models.

OBDG

HYPACT

Diffusion Technique

Basis

Empirically based, Eulerian

Lagrangian scheme

Derivation method

Least squares fit of tracer
data

Turbulence parameter derived
from first-order Markov
scheme

Plume representation

Distance to peak downwind
concentration

Aggregate of particles

Plume distribution Gaussian Plume scatter determined by
wind, turbulence

Source data

Release type Continuous Continuous, Instantaneous

Vertical plume description

Passive, no buoyancy

Passive, no buoyancy

Meteorological Input Data

Data Source

WINDS towers

RAMS model

Input variables

wind direction,

temperature lapse rate

6 ft.),

wind direction standard
deviation

(54 ~

wind velocity components (u, v,
w),

potential temperature
profiles,

turbulent kinetic energy

Horizontal data distribution

tower locations, grid

Grid: 37 x 37 points at 3 km
spacing

Vertical data distribution

single level winds: 54 ft.

21 sigma layers (11-2824 m)

Qutput

Concentrations Normal distribution of Gridded, interpolated
centerline concentration isopleths

Display 2-dimensional 3-dimensional
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¢ HYPACT-RAMS. The HYPACT model was nm in its normal
ERDAS configuration. RAMS provided HYPACT with the required
meteorological input data. HYPACT produced maps showing 3-
dimensional plume locations and predicted surface concentrations.

Another goal of this study was to determine if launch processing availability would be
increased or decreased if the OBDG-RAMS model or the HYPACT-RAMS model were used
instead of the currently certified OBDG-Observed model. If launch processing availability
was different, under what meteorological conditions would it change and how would it change?
Also, if safety personnel used the HYPACT-RAMS model, would they have more information
to make safety decisions than with the currently certified OBDG-Observed model.

In this report, Section 8.2 describes the procedures used to conduct the comparison of the
three different model configurations. The description includes the criteria and selection of the
ten cases along with the procedures used to prepare the meteorological data base and the
diffusion analysis. The results of the comparison along with case study descriptions are
presented in Section 8.3. Conclusions and recommendations are presented in Section 8.4.

8.2. Procedures

The Applied Meteorology Unit conducted this comparison study by following several steps
to select, process and analyze the meteorological and diffusion data. A description of these
steps is provided in this section.

8.2.1 Data and Selection of Case Studies

Ten case study days for the comparison were chosen using the Shuttle Landing Facility
observations. For ERDAS, the RAMS model is n with the precipitation and cloud formation
microphysics inactive. Therefore, for this study, days were chosen which had no occurrence of
precipitation and very little cloud cover. At least one day from each month between January
and July 1995 was chosen. A sea breeze occurred on six of the ten days (Table 8-2). Each ‘day’

Table 8-2. Classification of the 10 days
analyzed in this study.

Sea Breeze Days Non-sea Breeze Days
April 13-14 January 31- February 1
May 29-30 February 6-7

June 9-10 March 26-27

June 19-20 May 7-8

July 5-6

July 15-16
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covers the 24-hour period from 1200 UTC to 1200 UTC. In order to analyze how the models
perform during certain times of the day, three 2-hour periods were chosen for each day: 0500 -
0700 UTC (early morning), 1500 - 1700 UTC (midday), and 2100 - 2300 UTC (late afternoon).

8.2.2 Diffusion analyses

Three different diffusion analyses were conducted for this study and each one is described in
the following sections. Figure 8-1 presents a block diagram of the configuration of the three
different diffusion runs and their input and output.

RUN TYPE METEOROLOGICAL DATA MODEL OUTPUT
OBDG-Observed: WINDS — | OBDG Model |—m{ 2-d plume
Tower Data maps
WINDS
Tower Data \ o.d plume
/ OBDG Model {m{ maps
OBDG-RAMS:
RAMS wind speed

& wind direction

/

RAMS
verical velocities

2-d plume

HYPACT-RAMS: RAMS »| HYPACT | Maps,
cross-sections

Figure 8-1. Configuration of the three different runs in this study.
8.2.2.1 OBDG with WINDS tower observations (OBDG-Observed)

The AMU generated the OBDG analyses using the standard Meteorological and Range
Safety Support (MARSS) configuration. The OBDG model depends on the OBDG diffusion
prediction equation, a purely empirical statistical best fit (least-squares multiple linear
regression) to tracer data collected in the Ocean Breeze, Dry Gulch and Prairie Grass
experiments. The equation as implemented in MARSS is:
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X = SN(CP/Q)-OSI(AT + 10)2.210.0-0.258
where

SN is a pollutant specific constant

Cp = concentration of pollutant (g m'3)

Q = source strength (g sec'l)

X = downwind distance (m)
AT = 54 - 6 ft temperature difference (°F)

O = standard deviation of wind (degrees)

Users must input basic spill information such as type of material, amount of material
released, location point of release, and desired concentration isopleths. For input data, the
OBDG model in MARSS requires AT and og data obtained from WINDS. These data are
interpolated to the release point using the Barnes interpolation scheme. The OBDG equation
computes the downwind distance of a particular concentration. MARSS produces maps showing
the plume location. The plume location and shape are determined by the wind direction and

the wind direction standard deviation measured at the 54-ft level on towers surrounding the
plume.

To conduct the analyses for this study, the AMU used the OBDG function of the
Meteorological Monitoring System (MMS) at ENSCO’s Melbourne office. Five-minute data
obtained from the WINDS system for the periods of interest were input into the MMS and plots
were produced. These plots showed the predicted plume with two levels of isopleths and two

levels of toxic corridor sectors. The plots were used for comparison with the other diffusion
analyses.

The data in Table 8-3 were input into the OBDG model for the OBDG-observed simulations
made with the observed tower data.

Table 8-3. Input data for OBDG-observed model run

Spill Amount 4100 gallons

Chemical Nitrogen Tetroxide

Pool Size 66042 square feet

Release Rate 6604.2 pounds/minute

Release Time Continuous: 1500-1700 UTC, 2100-2300 UTC,
0500-0700 UTC

Plume Update Interval 5 minutes

Release Location Launch Complex 40 (lat.: 28.55864; lon.: 80.58012)

Release Height 0.0 feet

Concentration Isopleths 5 ppm, 1 ppm

The meteorological data obtained from the WINDS towers at 5-minute intervals was input
into OBDG. These data had been stored in MIDDS format and were converted back to WINDS
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format using AMU conversion software. Only tower data used by OBDG were converted back to
the WINDS format. These data include the following parameters:

* Wind speed

*  Wind direction

e  Wind direction standard deviation (og)

¢ Temperature difference between 54 feet and 6 feet (AT)

Launch Complex 40 was chosen as the source of the release because it is a Titan IV launch
complex and represents a location where toxic material are stored and could therefore be a
potential source of a release.

OBDG with RAMS wind predictions (OBDG-RAMS)

The AMU generated OBDG analyses using winds extracted from RAMS forecasts. The
RAMS winds replaced the wind speeds and directions at the 54-ft level of the WINDS tower
files. The RAMS winds which were inserted in place of the observed winds were obtained from
different levels of the RAMS model.

This new data set provided the OBDG model with a two-dimensional wind field that
contained some characteristics of the three dimensional wind structure. For cases where the
wind direction varied with height and there was upward vertical motion above the release
point, this new data set would cause OBDG plume directions to follow the the RAMS-predicted
upper level winds. The plume width and length would not change however since the OBDG
model with RAMS winds was still nun with the same observed oy and AT as in the OBDG-obs
runs.

Plots showing the OBDG predicted plume were produced for the same times as the OBDG-
obs times. These plots were compared with the OBDG-Observed plots and with the plume
predictions of HYPACT.

The RAMS meteorological model was run for all 10 days and produced 3-km gridded data
every 5 minutes. These data were used in both the HYPACT and OBDG model runs. OBDG
requires tower site wind speeds and directions in its calculations but RAMS only produces the
horizontal wind components, u and v, at grid point locations. Therefore, post-processing of the

RAMS data was necessary to format it for input into OBDG. Vertical velocity calculations from
RAMS were also used.

In addition, the 3-D RAMS calculations allow for a plume to rise or sink based on the
vertical velocity, w. A review of several HYPACT nuns shows that plumes rarely rise above 1
km in the 2 hour period following a release. This height corresponds closely to model level 15
(1053 m) in the finest grid. In order to save computer time and memory with minimal
degradation of the scientific results, the horizontal winds in the first 15 model levels were
processed for input to OBDG. The vertical velocities at the grid points closest to the three
chosen release sites were also output during each run. These were used to determine which
model level winds would be input to OBDG.

RAMS horizontal wind data were converted from the u and v components (m s1) at the grid
points to wind speed (kt) and direction (degrees) at the 61 tower locations for use in OBDG. The
interpolated horizontal wind components were then used to calculate the wind speed and



direction at each tower location for model levels 1-15, and the wind speeds were converted from
meters per second to knots.

8.2.2.3 HYPACT with RAMS predictions (HYPACT-RAMS)

The primary model used for computing dispersion estimates is HYPACT. HYPACT is the
advanced Lagrangian particle dispersion model in ERDAS. Dispersion in the Lagrangian mode
of HYPACT is simulated by tracking a large set of particles. Subsequent positions of each
particle are computed from the relation:

X[t +Dt] = X[t] + [u + u’] Dt
Y[t +Dt] = Y{[t] + [v + v'] Dt
Z[t+Dt] = Z[t] + [w + W' + w,] Dt

where u, v and w are the resolvable scale wind components which are derived from RAMS or
the hybrid (RAMS/tower observations) wind field, and «’, v/, and w’ are the random subgrid
turbulent wind components deduced from RAMS. The w, term is the terminal velocity resulting
from external forces such as gravitational settling. Dt is the model time step. HYPACT uses the
RAMS-predicted wind fields and potential temperature fields to advect and disperse the plume
particles vertically and horizontally downwind from the source.

HYPACT can model any number of sources which are specified anywhere in the domain and
configured as point, line, area, or volume sources. The emissions from these sources can be
instantaneous, intermittent, or continuous and the pollutants can be treated as gases or aerosols.
A primary release scenario which ERDAS will model is a cold spill of toxic chemicals at
launch pads and storage facilities, in which evaporation takes place from pools. Using both
small or large numbers of particles, HYPACT produces plumes which are viewed on a map
background and then calculates detailed concentrations and dosage estimates.

For this study, HYPACT was run to simulate a cold spill at a Titan launch complex resulting
from the release of nitrogen tetroxide (N;Oy) from a fueled Titan IV rocket. This scenario was
chosen because an accidental release of NoOy from the Titan IV is potentially one of the most

dangerous due to the amount NyO4 and the concentration levels which are of concem to safety
personnel.

The release data entered into HYPACT is listed in Table 8-4.

Table 8-4. Input data for HYPACT runs.

Spill Amount 4100 gallons

Chemical Nitrogen Tetroxide (N;Oy4)
Pool Size 66042 square feet

Release Rate 6604.2 pounds/minute

Release Time 1500 UTC, 2100 UTC, 0500 UTC
Dispersion Simulation End 1700 UTC, 2300 UTC, 0700 UTC
Release Duration 90 minutes

Release Location Launch Complex 40 (lat.: 28.55864; lon.: 80.58012)
Release Height 0.0 feet

Concentration Isopleths 5 ppm, 1 ppm




8.3. Results

The results of the analysis and comparison of the diffusion model runs ~ the OBDG-
observed, the OBDG-RAMS and HYPACT-RAMS - for the 10 selected days are presented in
this section. Tables summarizing each models’ performance for each time period are presented
in Tables 8-7 to 8-16. A detailed discussion of the models’ performance during two case study
days is presented in Section 8.3.2. Maps and cross-sections showing the results of the models’
runs are presented in Figures 8-2 to 8-32.

8.3.1 Comparison Summaries

Summary tables were compiled for each of the three different model runs for the three
different time periods of the ten case days selected (Tables 8-7 to 8-16). These summaries
provide information on the model results for the OBDG-Obs, the OBDG-RAMS, and the
HYPACT-RAMS runs. Information on plume direction during the two-hour period was compiled
at 15-minute intervals for the OBDG runs and at 20 minute intervals for the HYPACT runs. The
release point for all of the model runs was LC-40. A one-page table showing the key data from
each of the 30 cases is presented in Table 8-5.

For the OBDG-RAMS runs, data on the height of the RAMS sigma-level are provided. The
sigma levels are the vertical grid points in RAMS where winds are computed. The sigma levels
were selected for the OBDG-RAMS runs based on the vertical velocities as described in 8.2.2.
For the OBDG-RAMS runs, the RAMS winds replaced the observed winds.

The direction of the plume predicted by the OBDG models was assessed by determining the
direction from the LC-40 source. OBDG computes a new plume location every five minutes as
new meteorological data are received. The location of each plume is independent of the plumes
produced five-minute before or after. Therefore, if the wind direction at the source location
shifted from one five-minute period to the next, then the plume location would also shift.
During conditions of light and variable winds, shifts of wind directions and resulting plume
directions may be frequent.

In contrast to the OBDG models, the direction of the plume predicted by the HYPACT
model is dependent on the wind field from one time to another. HYPACT plumes are emitted
and are then advected with the RAMS-predicted wind field which can change with time and
space. Therefore, sudden changes in wind direction do not make a dramatic difference in the
location of the HYPACT plume from one time period to the next. HYPACT plumes can stretch
and diffuse in horizontal and vertical directions.

The plume directions listed in Tables 8-7 to 8-16 for the OBDG models were determined by
analyzing the maps of the OBDG output for a given five-minute period at 15-minute intervals.
The plume directions listed for the HYPACT model were determined by analyzing maps
produced at 20-minute intervals.

8.3.1.1 OBDG-Observed / OBDG-RAMS Comparison

The comparison of the OBDG-Observed plume directions with the OBDG-RAMS plume
directions indicates that for the 252 comparison times, the directions agree 34% of the time.
The plume directions were within 90° of each other for all of the 252 comparison times. These
results indicate the wind directions predicted by RAMS agreed fairly well with the observed
wind directions. RAMS did fairly well at predicting wind direction shifts from one two-hour
period to the next. For example, on 13 April 1995 (Table 8-10) the OBDG-RAMS plume
direction was modeled to move offshore during the midday runs, onshore during the late
afternoon runs.
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Table 8-5. Summary of the Comparison Summaries which were com
this study. The Plume Direction columns show the observed versus
minute interval during one of the indicated time periods. The colu

piled for each of the 30 time periods analyzed in
predicted plume direction determined at each 15-

mn showing degrees converts the cardinal directions

to degrees. For example, during the midday period of 31 Jan, a period of 2 hours, the largest difference at any one 15-
minute period occured when the plume direction from the OBDG-Observed was ESE and from the OBDG-RAMS was
SE, leadPln to a difference in degrees of 22.5°.
Date Time period Plume Direction Wind | Wind Maximum | HYPACT Maximum
OBDG-Observed vs. OBDG-RAMS spd. av|spd. av| height of plume height of
Largest Difference | Smallest Difference obs |RAMS| RAMS direction | HYPACT
Direction De- Direction De- |(knots) {(knots)] winds plume
grees grees (m) (m)
31Jan 95 midday ESE-SE 22.5 |SE-SE 0 7.2 9.7 11 SE 200
late afternoon | E-S 90 E-E 0 8.0 11.0 {910 S—>E 500
nighttime E-ESE 22.5 | ESE-ESE 0 6.3 10.0 |11 ESE 100
6 Feb 95 midday SE-ESE 225 |SE-SE 0 83 100 |11 SE->SSE 200
late afternoon | S-SW 45 SSW-SSW 0 5.1 106 |320 SW->§ 600
nighttime ESE-NE 67.5 | ENE-NE 25 |69 7.0 11 NE 100
26 Mar 95 | midday W-SSW 675 |W-W 0 72 10.8 }910 SW->W 1000
late afternoon | W-WNW 225 |WNW-WNW |0 6.3 158 |142 WNW 300
nighttime - - - -~ - - - - -
13 Apr95 | midday ENE-ENE 0 ENE-ENE 0 64 7.0 1053 E 600
late afternoon | WNW-WSW 45 NW-WNW 22.5 7.0 14.1 94 w 200
nighttime ESE-SE 225 |SE-SE 0 7.9 8.3 11 SE 200
7May 95 | midday WSW-SW 225 |SW-SW 0 7.7 8.1 94 SW->W 150
late afternoon | WSW-W 225 | WSW-wsw 0 8.8 16.8 |94 W 300
nighttime WSW-NW 675 | W-Nw 45 5.6 9.9 60 NWwW 100
29 May 95 | midday NW-SW 90 WNW-WSW 45 8.1 103 | 142 SW->W 900
late afternoon | WNW-W 225 |WNW-WNW |0 8. 162 | 142 w 200
nighttime NNW-NW 225 |NNW-NNwW |0 5. 9.1 34 NW 200
9 Jun 95 midday SSW-W 675 |SW-SW 0 58 8.2 60 W->SW 1300
late afternoon | W-WSwW 22.5 | WSW-WSwW 0 438 17.7 1196 WsSwW 400
nighttime ENE-NNE 45 NNE-NNE 0 5.0 4.7 11 NNE 100
19Jun95 | midday SSE-SW 675 | SSW-sw 225 |61 9.4 142 SW 1500
late afternoon | SW-W 45 SW-Sw 0 6.3 129 |142 Wsw 400
nighttime ENE-NNE 45 NNE-NNE 0 5.1 8.3 11 NwW 100
5Jul 95 midday W-Wsw 225 |W-W 0 4.3 6.3 34 WSwW 900
late afternoon | WNW-W 225 |W-W 0 6.7 16.0 142 w 300
nighttime NW-NNE 675 |NNW-N 225 |32 5.0 11 N 100
15Jul 95 midday W-SW 45 WSW-SwW 25 |56 9.4 60 Sw 1100
late afternoon | WNW-W 225 |W-w 0 8.2 14.7 ]142 w 300
nighttime N-NE 45 NNW-NwW 225 |51 5.9 11 N->NE 200
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with the sea breeze, and then offshore again during the nighttime runs. The OBDG-RAMS
plume directions followed the same pattern as the OBDG-Observed runs which showed
offshore flow during the midday, onshore flow with the sea breeze during the late afternoon,
and then back to offshore flow during the nighttime.

The vertical velocity algorithm which was used to select the height of the RAMS winds
used in the OBDG-RAMS runs was not a significant factor in determining plume direction in
most of the runs. Table 8-6 shows the RAMS layers where winds were computed which were
available for selection by the algorithm. This vertical velocity algorithm caused the RAMS
winds in layers above 300 meters to be used in only four of the 29 different periods. During these
four periods, RAMS predicted enough heating over the land to produce upward vertical motions
in the vicinity of LC-40. In these four cases, the upper level winds did not differ significantly
from the low level winds. Therefore, as vertical velocities increased, the upper level winds
caused OBDG-RAMS to move the plume in the same direction as OBDG-Observed.

Table 8-6. Sigma levels in RAMS available for OBDG-RAMS wind selection.

Sigma 1 2 3 4 5 6 7 8 9 10 |11 |12 }13 |14 |15
level

Height |11 134 |60 |94 |142 |196 | 254 | 320 | 393 |474 | 566 | 668 | 782 | 910 | 1053
(m)

8.3.1.2 OBDG / HYPACT-RAMS Comparison

The direction of the HYPACT plumes were analyzed to see how they compared with the
OBDG plumes and to determine if launch processing availability would be increased or
decreased if the HYPACT model was used instead of the OBDG model. Of the 26 cases
analyzed launch processing availability would have increased for 2 of the cases, decreased for
1 of the cases, and stayed the same on the rest. A change in launch processing availability was
determined by comparing the length and location of the ground level plume as indicated by the
5 and 25 ppm isopleths. If there was a significant change in the length or location (in relation
to populated areas), then it was inferred that there was a change in the launch processing
availability.

Even though most of the cases showed no change in launch processing availability, the
HYPACT analyses provided valuable information on the 3-dimensional structure of the plume
for 15 of the 26 cases. For these 15 cases, which were all from the midday and late afternoon
runs, the plumes were lofted up above 300 meters at some point along its trajectory causing
material to be transported upward. This material could eventually mix downward to the
surface under the right conditions although the two-hour simulations nun for this study did not
show downward plume mixing. Of the 15 cases in which plumes were lofted upward, 13 of them
occurred with on-shore easterly flow. RAMS accounts for the heating over the land and
generates the strongest upward motions over the inland areas.

8.3.2 Case studies

Two case studies were selected for detailed analysis and are discussed in this section. These
two cases were selected because of the complex dynamic meteoroclogical conditions which
occurred locally on these days. On 13 April 95, a typical sea breeze developed and moved
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westward across CCAS/KSC. RAMS predicted the formation and passage of the sea breeze. On
9 June 1995, the diffusion was significantly affected by the convection and vertical motion
which occurred over the CCAS/KSC land areas. The 3-dimensional meteorological structure of
the lJower atmosphere played an important role in modeling the plume diffusion.

8.3.2.1 13 April 95

The modeling analyses of the midday runs on 13 April 95 provided a case study of the onset
of the sea breeze during the late moming and early afternoon. During the two-hour period from
1500 to 1700 UTC, the OBDG-Observed and OBDG-RAMS runs agreed closely with each other
(Figures 8-2 through 8-9). The observed winds during this entire period were generally light
and from the west at all the tower locations across CCAS/KSC and the RAMS-predicted winds
agreed. Therefore, the plumes predicted by both OBDG runs extend eastward into the Atlantic
Ocean and showed no threat to any populated areas resulting from a potential toxic spill of
N0y at Launch Complex 40.

The HYPACT-predicted plume was very similar to the OBDG plumes for this period since
HYPACT moved the plume eastward over the ocean and did not indicate that it would affect
any populated areas during the two-hour period (Figures 8-10 through 8-15). However, the
HYPACT runs clearly showed the start of the sea breeze that moved onshore after 1700 UTC.
The start of the sea breeze is shown in the 1610 UTC (Figure 8-13), 1630 UTC (Figure 8-14), and
1650 UTC (Figure 8-15) horizontal maps and vertical cross-sections of the HYPACT plume.
HYPACT moved the plume approximately 6 km offshore until 1610 UTC when the plume
encountered low level flow from the east. The opposing flow produced a line of convergence
which produced upward vertical motion and forced the plume upward. By 1650 UTC, HYPACT
lifted the plume upward to 600 meters. HYPACT also began moving the plume westward back

toward the coastline after it had originally moved the plume eastward at the beginning of the
simulation.

The value the HYPACT analyses provides to safety personnel is the forecast of the wind
shift. HYPACT correctly predicted that the plume shown by OBDG to be located offshore
would move back onshore and that the offshore flow present during the morming would change.
Figure 8-16 shows the OBDG-observed and OBDG-RAMS plumes at 2145 UTC and Figure 8-17
shows the HYPACT plume at 2150 UTC. The sea breeze moved westward across the Cape prior
to the time of these maps resulting in easterly flow which moved the plumes to the west.

Figure 8-18 shows the OBDG-observed and OBDG-RAMS plumes at 0530 UTC and Figure 8-
19 shows the HYPACT plume at 0530 UTC. During the nighttime hours the offshore flow re-

established itself and the plumes were predicted to move to the southeast. The plume direction
is the same for all three models.

8.3.2.2 9 June 1995

The modeling analyses of the midday runs on 9 June provided a case where the HYPACT
model provided information on the 3-dimensional nature of the plume that was not available
from the 2-dimensional output produced by the OBDG models. The HYPACT plume extended

upward to 1300 meters during a period that the OBDG model only shows a surface-based 2-
dimensional plumne.

At 1515 UTC, near the beginning of the midday run, RAMS predicted easterly winds and
moved the OBDG plume to the west while the observed winds were from the northeast and the
OBDG-Observed runs moved the plume to the southwest (Figures 8-20 and 8-21). During the
midday period RAMS gradually shifted the easterly winds around to northeasterly (Figures 8-
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22, 8-23, and 8-24) and at 1630 UTC, the RAMS-predicted northeasterly winds agreed with the
observed northeasterly winds (Figure 8-25). The OBDG plumes were located southwest of the
source over Merritt Island (Figure 8-26).

During the early part of the midday period, HYPACT predicted a plume that was similar
to the OBDG models (8- 27 through 8-32). Using the RAMS winds which were easterly during
the early part of the period, HYPACT moved the plume westward and kept it contained below
100 meters (Figures 8-27 through 8-28). However, beginning at 1550 UTC (Figure 8-29), the
leading edge of the plume was over the center of Merritt Island where RAMS predicted strong
upward convective motion. This strong upward vertical motion continued through the midday
period and caused HYPACT to lift the plume upward (Figure 8-30). From 1550 to 1650 UTC,
HYPACT lifted the top of the plume from 500 to 1300 meters (Figures 8-31 and 8-32) where the
cross sections show the pronounced vertical plume development predicted by HYPACT.

8.4 Conclusions

A special study was conducted to compare the currently certified OBDG model with the
ERDAS models to determine if the ERDAS models changed launch availability. The study
was limited in that it looked at dispersion during 30 two-hour periods over a 6-month period.
These periods included late afternoon periods similar to the original OBDG study but it also
included a higher percentage of late morning cases than the original OBDG study and included
nighttime cases which were not included in the original OBDG study. The results of the study
were:

* Cases where the winds shifted over time and space were the ones where
major differences existed between the OBDG model and the ERDAS model.
Currently certified OBDG model did not adequately handle wind shifting
situations while the ERDAS models provided a more realistic picture of
dispersion when wind shifts occurred.

* The ERDAS models could provide safety personnel with a better
understanding of the three-dimensional wind field causing plume
dispersion resulting from a potential toxic spill. Information on vertical
plume development is not available from the OBDG model. This
information can help safety personnel in making evacuation decisions and
answer questions such as:

- Will potential toxic plumes which have lofted upward eventually
mix back down to surface? Are concentrations aloft large enough to
pose a threat to populated areas if they reach the surface?

- Will potential toxic plumes which have moved offshore
eventually move back onshore?

* Comparing diffusion model predictions made by the OBDG model and the
ERDAS models in this limited comparison study produced results which
showed that using the ERDAS models for non-continuous spill scenarios
improves launch processing availability in 19 of 29 cases. For continuous
spill scenarios, ERDAS improves launch processing availability in 2 out of
29 cases. A non-continuous spill is one that has a limited release duration
(less than approximately one hour). The OBDG model assumes a continuous
release.
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Figure 8-2. OBDG plumes computed using observed data (top) and RAMS wind speed and
direction data (bottom) for 13 April 1995 at 1515 UTC.
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Figure 8-3. OBDG plumes computed using observed data (top) and RAMS wind speed and
direction data (bottom) for 13 April 1995 at 1530 UTC.
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Figure 8-4. OBDG plumes computed using observed data (top) and RAMS wind speed and
direction data (bottom) for 13 April 1995 at 1545 UTC.
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Figure 8-5. OBDG plumes computed using observed data (top) and RAMS wind speed and
direction data (bottom) for 13 April 1995 at 1600 UTC.
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Figure 8-6. OBDG plumes computed using observed data (top) and RAMS wind speed and
direction data (bottom) for 13 April 1995 at 1615 UTC.
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Figure 8-7. OBDG plumes computed using observed data (top) and RAMS wind speed and
direction data (bottom) for 13 April 1995 at 1630 UTC.
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Figure 8-8. OBDG plumes computed using observed data (top) and RAMS wind speed and
direction data (bottom) for 13 April 1995 at 1645 UTC.
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Figure 8-9. OBDG plumes computed using observed data (top) and RAMS wind speed and
direction data (bottom) for 13 April 1995 at 1700 UTC.
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Figure 8-10. Cross-section (top) and map (bottom) of HYPACT plume computed using RAMS
data for 13 April 1995 at 1510 UTC.
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Figure 8-11. Cross-section (top) and map (bottom) of HYPACT plume computed using RAMS
data for 13 April 1995 at 1530 UTC.
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Figure 8-12. Cross-section (top) and map (bottom) of HYPACT plume computed using RAMS
data for 13 April 1995 at 1550 UTC.
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Figure 8-13. Cross-section (top) and map (bottom) of HYPACT plume computed using RAMS
data for 13 April 1995 at 1610 UTC.
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Figure 8-14. Cross-section (top) and map (bottom) of HYPACT plume computed using RAMS
data for 13 April 1995 at 1630 UTC.
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Figure 8-15. Cross-section (top) and map (bottom) of HYPACT plume computed using RAMS
data for 13 April 1995 at 1650 UTC.
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Figure 8-16. OBDG plumes computed using observed data (top) and RAMS wind speed and
direction data (bottom) for 13 April 1995 at 2145 UTC. Sea breeze has moved inland producing
easterly flow at Cape Canaveral for this time.
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Figure 8-17. Cross-section (top) and map (bottom) of HYPACT plume computed using RAMS
data for 13 April 1995 at 2150 UTC.
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Figure 8-18. OBDG plumes computed using observed data (top) and RAMS wind speed and
direction data (bottom) for 14 April 1995 at 0530 UTC. Winds returned to off-shore flow during
nighttime.
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Figure 8-19. Cross-section (top) and map (bottom) of HYPACT plume computed using RAMS
data for 14 April 1995 at 0530 UTC.
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Figure 8-20. OBDG plumes computed using observed data (top) and RAMS wind speed and
direction data (bottom) for 9 June 1995 at 1515 UTC.
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Figure 8-21. OBDG plumes computed using observed data (top) and RAMS wind speed and
direction data (bottom) for 9 June 1995 at 1530 UTC.
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Figure 8-22. OBDG plumes computed using observed data (top) and RAMS wind speed and
direction data (bottom) for 9 June 1995 at 1545 UTC.
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Figure 8-23. OBDG plumes computed using observed data (top) and RAMS wind speed and
direction data (bottom) for 9 June 1995 at 1600 UTC.
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Figure 8-24. OBDG plumes computed using observed data (top) and RAMS wind speed and
direction data (bottom) for 9 June 1995 at 1615 UTC.
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Figure 8-25. OBDG plumes computed using observed data (top) and RAMS wind speed and
direction data (bottom) for 9 June 1995 at 1630 UTC.
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Figure 8-26. OBDG plumes computed using observed data (top) and RAMS wind speed and
direction data (bottom) for 9 June 1995 at 1645 UTC.
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Figure 8-27. Cross-section (top) and map (bottom) of HYPACT plume computed using RAMS
data for 9 June 1995 at 1510 UTC.
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Figure 8-28. Cross-section (top) and map (bottom) of HYPACT plume computed using RAMS
data for 9 June 1995 at 1530 UTC.
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Figure 8-29. Cross-section (top) and map (bottom) of HYPACT plume computed using RAMS
data for 9 June 1995 at 1550 UTC.
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Figure 8-30. Cross-section (top) and map (bottom) of HYPACT plume computed using RAMS
data for 9 June 1995 at 1610 UTC.
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Figure 8-31. Cross-section (top) and map (bottom) of HYPACT plume computed using RAMS
data for 9 June 1995 at 1630 UTC.
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Figure 8-32. Cross-section (top) and map (bottom) of HYPACT plume computed using RAMS
data for 9 June 1995 at 1650 UTC.
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OBDG-|OBDG-RAMS |HYPACT-RAMS
Obs 31Jan 95

Time |Plume {Plume [Sigma |Time |Plume |Maxi-
(UTC) direc- |direc- [Level (UTC) direc- |mun

ti tion tion lume
on e eight e e
(m) OBDG-Obs. Consistent NW winds.
1500 |SE SE 11 OBDG-RAMS. Consistent NW  flow
1515 |SE SE 11 1510 |SE 0 matches obs.
1530 |SE SE 11 1530 0 HYPACT. Stable flow as the plume
pushes offshore.
1545 |SE SE 11 1550 100
1600 |SE SE 11 The three models are similar with
1615 |SE SE 11 1610 150 stable conditions and persistent wind
flow.
1630 |SE |sE |11 |ie30 150 ow
1645 |SE SE 11 1650 200 No change in launch availability.
1700 |ESE |[SE 11
OBDG-Obs.  Fairly persistent W'ly
2100 |E S 11 offshore flow.
OBDG-RAMS. RAMS uses N'ly lower
2115 |E 5 e 2110 IS 0 winds while upper winds late in period
2130 |E S-SSE |60 2130 100 agree w/ W obs winds.
2145 |E SSE [142 |2150 200 HYPACT. Plume moved south initially
then east over water.
2200 |ESE |SSE |320 Model differs from observations because
2215 |E ESE |668 [2210 |E 400 of wind direction difference in first
2230 |E ESE |782 2230 400 hour. OBDG-RAMS and HYPACT
predicted plume to south producing less
2245 |E E 010 122%0 500 launch availability. However, model
2300 |E E 910

shows the area of concern to the south.

OBDG-Obs. Persistent W’ly offshore

0500 |ESE |ESE [i1

flow.
0515 |E ESE |11 0510 |ESE |0 OBDG-RAMS. Persistent WNW flow.
0530 |E ESE |11 0530 50 HYPACT. Persistent offshore flow
0545 |E ESE |11 0550 50 No difference between all models with
0600 |E ESE |11 stable , persistent flow. No change in
0615 |E ESE 1 0610 50 launch availability.
0630 ({ESE |ESE |11 0630 50
0645 |E ESE |11 1650 100

0700 |E ESE |11

Table 8-7. Comparison summary of three different model runs for
January 31-February 1.
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OBDG-]JOBDG-RAMS |HYPACT-RAMS
Obs 6 Feb 95
Time [Plume |Plume [Sigma [Time [Plme [Maxi-
(UTC) |direc- |direc- [Level (UTC) |direc- [mm
tion [tion (m) tion lume
eight
= OBDGGbS phame _stays S5 SE,
1500 ISE ESE_ |11 centerlining the coastline.
1515 |[SE SE 11 1510 |SE & [0 OBDG-RAMS. RAMS produces light
1530 |SE|SE [11  [1530 [sSE [100 NW WindS'STifting NNW. ol
HYPACT. plume over water, stable
1545 [SSE |SE |11 1550 200 conditions.
1600 [SSE [SE 11 All models agree fairly well . No
1615 |SSE |SE 11 1610 200 change in launch availability.
1630 |SSE |SE 11 1630 200
1645 |SSE |SSE |11 1650 200
1700 |SSE |SSE |11
OBDG-Obs. Sea breeze pushed inland
2100 |S SW |11 ~9 km and stopped. Flow from N and
NE pushed plume S and slightly W.
2115 IS SW_ 11 2110 ISW 10 OBDG-RAMS. RAMS moved sea breeze
2130 IS SW_ |34 2130 | S 50 a little more than observed.
2145 |S SW |34 2150 200 HYPACT. With sea breeze, plume
2200 |s SW |60 moved SW then S. Lift to 600 over land
not too strong with minimum Feb.
2215 |S SW |94 2210 400 heating.
2230 |s SW |142 2230 500 All models agree relatively well.
2245 |SSSW [SW  [196 12250 600 RAMS models show plume further west
with stronger sea breeze.
2300 [SSW _|SSW [320 No change in launch availability.
0500 |[ENE |INE 11 OBDG-0Obs. OBDG-RAMS. Persistent ,
light winds, stable flow plume offshore.
0515 [ENE INE 11 0510 INE 0 OBDG-Qbs. Persistent light winds, w/
0530 |[ENE |NE |11 0530 0 stable conditions moves plume offshore.
0545 [E  [NE i1 Joss0 0 HYPACT. Plume to NE.
0600 |E NE 11 RAMS predicted SW winds when
0615 |E NE |11 0610 50 WSW, W, and WNW observed.
0630 |ESE INE |11 0630 50 However, plume offshore and no change
in launch availability.
0645 |ESE [NE |11 1650 100
0700 |ESE |[NE |11
Table 8-8. Comparison summary of three different model runs for

February 6-7.
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OBDG-JOBDG-RAMS |HYPACT-RAMS
Obs 26 Mar 95
Time (Plume [Plume |[Sigma [Time |Plume [Maxi-
(UTC) direc- |direc- |Level (UTC) direc- |mm
tion tion () tion lume
eight
m i |
1500 |W SSW |11 OBDG-Obs. Plume extends 30 km then down
to 7 km with easterly flow.
I W SW 134 {1510 |SW 0 OBDG-RAMS, Low-level winds from NE.
1530 W SW |60 1530 50 E[%i‘égrvel ;vinds fror‘r;d E.SW
. plume mov w/ low level
1545 |W SW__|196 1550 200 flow. Strong uplift at 1610 UTC as plume
1600 |w W 474 ) Lxxf‘tsdw S%@e extend 15 km downwind to W
782 800 OBDG-Obs at 1500 UTC extends too far.
1615_[W W 1610 | W HYPACT would increase launch availability.
1630 (W W 910 {1630 | WSW]|900 Qt 16302‘j plurrl\é] to W, launch ?/railability
ecreased. owever, HYPA shows
1645 |W 910 1650 1000 vertical extent of plume.
1700 |W W 910
OBDG-Obs. Persistent E flow
2100 |w WNW |11 w/reinforced sea breeze pushed plumell
2115 |w fwnw i 1o [waw fo km inland.
2130 |w WNW |34 2130 100 OBDG-RAMS. Good match of observed
WNW with ESE flow.
2145 |W 34 2150 150 HYPACT. Plume exends 40 km to
2200 |WNW [WNW {60 WNW.
2215 [WNW [WNW |60 2210 200 RAMS ind H?{l;f‘:rg;d lshow gogd
agreement. ume extends
2230 [WNW [WNW o4 12230 300 rfuch further inland. ’
2245 [WNW [WNW Jlo4 2250 300
2300 |[NW [WNW |142
0500 No obs data.
0515 0510
0530 0530
0545 0550
0600
0615 0610
0630 0630
0645 1650
0700
Table 8-9. Comparison summary of three different model runs for

March 26-27.
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OBDG-|OBDG-RAMS HYPACT-RAMS
Obs 13 Apr 95
Time [Plume [Plume Sigma |Time [Plume |Maxi-
(UTC) direc- |direc- |Level (UTC) direc- [mum
tion tion () tion lume
eight
m | e
1500 [ENE JENE |11 OBDG-Obs. The WSW fow was persistent as
sea breeze had not formed vyet,
1515 |ENE |ENE |34 1510_[E 0 RAMS. RAMS matched ob);erved winds with
1530 |ENE |ENE |60 1530 50 strolg\ Wuprjl)er level winds}.s /W
HYPACT. Plume moved w ow.
1545 |ENE [ENE [142 1550 100 However, the begi 1‘ g of the sea breez was
just offshore an ume went up there and
1600 |ENE |ENE |320 ]sto ped movli“ easF;. fP ’
act picked u beginning of sea reeze
1615 |ENE |ENE |566 1610 300 wh)i?h wguld sta?t soon atter 1700 UTC.
1630 [ENE [ENE {910 |1630 400 ]C\;Iooﬁ sea breelze prf\dictio?b | ,
! ilability si
1645 |ENE [ENE [1053 |1650 600 was offehore, e availability since plume
1700 |ENE |ENE 1053
OBDG-Obs. Sea breeze in w/ESE winds
2100 [WNW |WSW |1 shifting to SE.
2115 [WNW |Wsw (11 2110 |W 0 OBDG-RAMS. Sea breeze in w/ E winds
2130 |WNwW |w 11 2130 50 stronger than observed.
] ) HYPACT. With sea breeze in,
2145 w 34 2150 200 conditions are somewhat stable. Plume
2200 |WNW |w 34 travels over 30 km west and rises a
2215 [NW W 34 o 200 lLit“e-h bl bout th
aunch availability is about the same
2230 |NW W 60 2230 200 with sea breeze already established.
2245 [NW W 60 2250 200 Model adds value during sea breeze
2300 [NW [|WNW [ggq onset.
0500 |ESE SE 11 QBDG-ng. WNW flow with stable
persistent  condition pushed plume
0515 [ESE |SE 11 0510 |SE 0 offshore.
0530 [ESE (SE 11 0530 OBDG-RAMS.  Similar to obs with
0545 |ESE |IsE 11 0550 winds shifted slightly more NW'ly.
HYPACT. Plume offshore in stable
0600 [ESE |[SE 11 conditions.
0615 |ESE |[SE 11 0610 50 No change in launch availability with
0630 [SE |SE |11 |o630 100 offshore flow.
0645 |SE SE 11 1650 200
0700 |[SE - 11
Table 8-10. Comparison summar

April 13-14,
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OBDG-|OBDG-RAMS |HYPACT-RAMS
Obs 7 May 95
Time |Plume [Plume [Sigma |Time |Plume {Maxi-
(UTC) direc- |direc- |[Level (UTC) direc- |mum
tion tion (m) tion lume
eight
m | e I
1500 |[WSWIWSWI11 OBDG-Obs. NE flow pushced plume SW/
Persistent E flow; no sea breeze this day.
1515 JWSWISW 111 1510 JSwW |0 RAMS. Close match to obs , with con};istent
1530 |[WSWISW |11 1530 | W 0 NE wigs. P ai
1545 lsw SW |34 1550 ggg‘é : - Plume distance nearly same as
1600 |SW_ISW |34 No change in launch availability with stable
1615 [SW [SW |34 1610 50 conditions.
1630 |SW [SW |60 1630 100
1645 |SW [SW |60 1650 150
1700 |SW |SW |94
e T T R —
OBDG-Obs. Persistent ENE flow.
WSW |[WSW
2100 1 OBDG:-RAMS. Very strong (>25 kts) E
2115 |WSW [WSW |34 2110 W 0 winds by end of period.
2130 |WSW |WSW [0 2130 50 HYPACT. Strong E winds, stable
conditions, plume stays narrow and
2145 |WSW [WSW |60 2150 200 stretches to W 40 km.
2200 [WSW JWSW |60 Launch availability is unchanged with
2215 IWSW |w 60 2210 300 stable conditions.
2230 |WSW W 94 2230 300
2245 |[WSW W 94 2250 300
2300 |[WSW({W 94
0500 Iw Nw 11 IQLD%I Persistez;t E4 éllczx Very
ong wide plume extends ~ .
0515 [W __INW [11 10510 |[NW |0 OBDG-RAMS. SE flow instead of E as
0530 W NW (34 0530 0 observed.
0545 |W NW (|34 0550 100 HYPACT. Long narrow plume to NW
with stable conditions .
0600 |W NW |34
0615 |W NwW |34 0610 100 No change in launch availability.
0630 |W NW [34 0630 100
0645 |[WSWINW |60 1650 100
0700 |[WSWINW |60
Table 8-11. Comparison summary of three different model runs for

May 7-8.

8-49




OBDG-|OBDG-RAMS HYPACT-RAMS
Obs 29 May 95
Time {Plume |Plume Sigma |Time |Plume |[Maxi-
(UTC) |direc- |direc- [Level (UTC) {direc- |mm
tion tion () tion lurme
eight
m | e
1500 |JWNW Isw |11 OBDG-Obs. Sea breeze in early this day. SE
Nw oW prevailed.
1515 Sw_ i1 10 JSW [0 RANFS. RAMS had sea breeze in to Indian R.
1530 (NW sy |34 1530 |W |o w/ NE flowa fo 1615 U'{\C f,‘“ winds E'ly.
Approx. 45° difference with obs.
1545 INW  Isw |34 [1550 300 ACTPlume moved SW and W, hit sea
WNW reeze front , lifted to 600 at 1610 UTC then
1600 SW__[60 to 900 m at 1650 UTC.
WNW lwswio4  |1610 0
1615 WSW L 600 Hypact plume extends further than OBDg
1630 |WNW |Jw 142 (1630 700 pll‘umes butl HYPI,;\CI' ' lux"x{g is narrower. No
1645 |WNW [wswloa 1650 900 change in launch availability.
1700 |WNW lwsw|o4
%
OBDG-Obs. Persistent ESE flow.
2100 w 1 OBDG-RAMS. Strong, persistent (~20
2115 |WNW W 34 2110 W |o kts) E and ESE winds. Good agreement
2130 [WNW [W  [34  [p130 50 ﬁiﬁl}{bs Stable cond
WNW [wNw CT. Stable conditions , persistent
2145 34 2150 100 winds. Narrow plume.
2200 |WNW [WNW [g0
2215 |WNW [WNW |g0 2210 150 Launch availability s unchanged.
f t .
2230 |[NW  [WNW Jog 2230 200 RAMS forecasts good
2245 |WNW |[WNW |ogq 2250 200
2300 |WNW [WNW (142
0500 |INNW [Nw |11 OBDG-Obs. Persistent stable flow from
SSE flow.
15 [NWW INW_ 11 [0510_[NW o OBDG-RAMS. RAMS winds are good
0530 |NNW INw [34 0530 50 match with obs.
0545 |NNW INNWI34 0550 100 HYPACT. All plumes very similar.
0600 NNWI34 No change in launch availability.
0615 |NNW INNW|34 0610 200
0630 |NNW IN-NNW |34 0630 200
0645 |NNW |N-NNW |34 1650 200
0700 |N - 34
Table 8-12. Comparison summary of three different model runs for

May 29-30.
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|
OBDG-Obs. Persistent ENE flow.

9Jun 95

OBDG-Obs. NE flow fairly persistent thru
€rio
AMS. RAMS had persistent E & NE flow
over area. There is a hint that sea breeze
extends to west of Indian R.
HYPACTPlume moved W and then SW, hit sea
breeze front at Indian R, lifted to 1200 m at
1630 UTC.

Good model agreement. OBDG models do not
detect sea breeze and significant lifting Plume
extent is the same and there is no change in
launch availability. However, lifting
information is missing from OBDG runs.

OBDG-RAMS. Strong, E flow. Good
agreement with obs

HYPACT. Narrow plume to WSW
extending 40 km.

Launch availability is unchanged. All
models agree.

OBDG-Obs. Wind shifted from S to SW
during period with light offshore flow.
OBDG-RAMS. RAMS showed shift
from SSW to SW flow and closely
matched obs .

HYPACT. Stable flow offshore from
SSW.

All model agree. No change in launch
availability.

OBDG-[{OBDG-RAMS |HYPACT-RAMS

Obs
Time |Plume |Plume [Sigma |Time |[Plume [Maxi-
(UTC) direc- direc- |Level (UTC) direc- lmum

tion tion () tion lume

eight
(m)
1500 [SSW |w 11
1515 [SW w 11 1510 W 0
1530 |SW W 11 1530 [ SW |0
1545 [SW  |Jwsw]11 1550 500
1600 |SW WSW11
1615 [SW WSW|34 1610 1100
1630 [SW SW |34 1630 1300
1645 |[SW SW |34 1650 1300
1700 [SW 60
2100 |WSW [WSW {11
2115 |WSW |WSW (34 2110 |[WSW|0
2130 |WSW [WSW |34 2130 100
2145 |WSW [WSW [g0 2150 200
2200 |WSW [WSW logg
2215 |W WSW 194 2210 300
2230 |WSW [WSW 1142 |2230 400
2245 |WSW [WSW |142  |2250 400
2300 (WSW |w 196
0500 |N NNE |11
0515 [NNE |NNE |11 0510 |NNE |0
0530 |NNE |[NNE |11 0530 0
0545 |NE NNE |11 0550 0
0600 [ENE INNE |11
0615 |ENE |INNE |11 0610 50
0630 [ENENE INE |11 0630 100
0645 NE |11 1650 100
0700 |ENE | 11 ‘
Table 8-13.

Comparison summary of three different model runs for

June 9-10.
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OBDG-Obs. A sea breeze but not a strong one
EusEes p]ume to S and eventually to SSW.
ine of convergence at Indian R.
RAMS. RAMS predicts sea breeze and NE
flow stronger than observed. Convergence
line over Merritt Island at 1530.
HYPACTPlume moved SW and then W, hits
convergence line at 1550 and rises to 1200 m|
at 1610 and 1500 mat 1630. Return flow
starts then and upper part of plume moves E.

Good example of 3-d situation with return
flow and upward vertical motion at sea
breeze front. Model shows value since sea
breeze convergence line was really there.

No change in launch availability.

——————

OBDG-Obs. Sea breeze E flow
established earlier persisted w/ NE flo.

OBDG-RAMS. Like obs, the E flow

continued and upper level winds more
from E than NE. Wind direct. off ~ 30°.
HYPACT. Plume moves WSW  and
extends 40 km and stays narrow.

All models in pretty good agreement w/
wind direction off slightly . Using
upper winds w/ OBDG makes more
sense. No change in launch availability

OBDG-Obs. Weak SW flow, stable
conditions, plume extends 32 km.

OBDG-RAMS. RAMS predicted SE
flow which differed by 45°.

HYPACT. Stable conditions, plume
moves NW and stays below 100m

OBDG-|OBDG-RAMS |HYPACT-RAMS

Obs
Time |Plume |Plume |Sigma |Time |Plume |Maxi-
(UTC) direc- |direc- |Level (UTC) direc- |mm

tion tion () tion lume

eight
(m)
1500 [SSE [sw |11
1515 |[SSE [Sw |34 1510 |SW |0
1530 |[S SW |34 1530 0
1545 |5 SW |34 1550 250
1600 |SSE |sw |34
1615 |5 SW {60 1610 1200
1630 SW 194 1630 1500
1645 [S SW |142 1650 1500
1700 |SSW |sw [142
2100 [sw [SW 11
2115 |SW |WSW |34 2110 |[WSWJ}o
2130 |SW |WSW |34 2130 50
2145 [SW JWSW [g0 2150 200
2200 |SW |[WSW |60
2215 |SW |[WSW |04 2210 300
2230 |sw W 94 2230 300
2245 |Sw W 142 2250 400
2300 [|SW w 142
0500 [N NNE |11
0515 |NNE |NNE |11 0510 [INW |0
0530 |NNE [NNE {11 0530 0
0545 |NE  INNE J11 0550 100
0600 [ENE |NNE |11
0615 |ENE INNE |11 0610 100
0630 |[ENENE INE |11 0630 100
0645 NE 11 1650 100
0700 |ENE | 11
Table 8-14.

Comparison summary of three different model runs for
June 19-20.
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OBDG-|OBDG-RAMS {HYPACT-RAMS
Obs 5Jul 95
Time [Plume [Plume {Sigma |Time |Plume |Maxi-
(UTC) |direc- [direc- |Level (UTC) direc- |mm _ L _
tion tion () tion lume
cight OBDG-Obs. E flow with sea breeze. Plume
() extends 16 km as E winds prevail over Cape.
1500 W Wswii1 RAMS. RAMS winds matched obs w/ shift
from ESE to E. Sea breeze already in.
1515 W WSWI{34 1510 [WSW|0 HYPACTPlume moved WSW and ‘then W, hits
sea breeze at 1610 at Indian R. and lifts to
1530 |W WSWi34 1530 0 1000 m. No return flow.
w
1545 WSWi34 1550 50 Pretty good model agreement. Hypact shows
1600 |W WSW|34 the lifting that occurs.
1615 (W W [34 1610 600
1630 [|W w 34 1630 800
1645 |WSW |w 34 1650 900
1700 |W W 34
OBDG-Obs. Steady E flow , plume
2100 |w w 11 extends 18 km.
2115 |wW w 34 2110 |W |O OBDG-RAMS. Very steady, strong E
2130 W W 34 [2130 50 VHvi?I‘jZC G E winds ored
I. ong winds produce
2145 W w 34 2150 200 straight lijne plume w/ some diffusion
2200 |wW w 60 vetically and horizontally.  Plume
2215 (W [W 0 [2210 300 extends 40 km.
2230 i 94 2230 300 Good model agreement . No change in
2245 |WNW |W 94 2250 300 launch availability Hypact plume
2300 |WNwW |w 142 extends farther.
0500 INNWIN 11 OBDG-Obs.  Steady flow from SE
w/winds getting very light. Plume
-NN
0515 [NNW [N-NNW)11 0510 IN 0 extends over 50 km.
0530 N 11 0530 0 OBDG-RAMS. RAMS wind direction
0545 |INW |N 11 0550 0 off by -30° but winds light .
NW HYPACT. Hypact plume extends 25-30
0600 N 11 km to N , stays narrow w/ little
0615 |NW N 11 0610 50 diffusion.
0630 INW |N 11 0630 100 Launch availability increased as model
0635 INNW 1IN 11 1650 100 Zlg;).ws plume offshore and not as far as
0700 [NW |NNE [11
Table 8-15. Comparison summary of three different model runs for

July 5-6.
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15 Jul 95

OBDG-Obs. ENE flow persists.  Plume
extends 18.

RAMS. RAMS predicts river breezes which
bend plume. Strong NE flow along coast.
HYPACTPlume moved SW, hits sea breeze and
is forcefi up. No further horizontal push, only
vertical.

Good 3d effects are seen b
RAMS/HYPACT. No change in launc
availability

e ——
OBDG-Obs. Steady E and ESE flow ,

plume extends 19 km.

OBDG-RAMS. RAMS matches closely
to obs wind direction. Speeds higher
with upper level winds.
HYPACT. Typical 21Z plume which
spreads little,rises to 300 m and moves
W. Plume extends 40 km.

Good example of RAMS model verifying
since it picked up subtle wind shifts . No
change in launch availability.

OBDG-Obs. Typical nighttime, stable
conditions with plume offshore. Plume
extends over 50 km.

OBDG-RAMS. RAMS  predicts
offshore, steady, light, winds.
HYPACT. String plume to N then NE.
Launch availability increased as model
shows plume offshore.

OBDG-|OBDG-RAMS |HYPACT-RAMS

Obs
Time |Plume |[Plume [Sigma [Time [Plume [Manxi-
(UTC) direc- |direc- |Level (UTC) direc- |mm

tion tion | tion Ei:pugn}i

(m)
1500 [WSW |sw |11
1515 [WSW |sw |11 1510 {SW |0
1530 |WSW [sw |34 1530 0
1545 |WSW [sw  [34 1550 50
1600 |WSW |sw |60
1615 [W SW 160 1610 500
1630 |WSW [Sw [34  |1630 1000
1645 |WSW Isw |34 1650 1100
1700 |WSW [sw |34
2100 {WSWIWSW (17
2115 [WSW|WSW (11 2110 |W 0
2130 W w 34 2130 50
2145 W W B4 J2150 200
2200 W w 60
2215 |W w 60 2210 300
2230 |WNW W 94 2230 300
2245 |WNW W 94 2250 300
2300 [WNW W 142
0500 INNWI|NNW/(11
0515 |NNW N 11 0510 |N 0
0530 |NNW IN 11 0530 |NE |50
0545 [NNW IN 11 0550 100
0600 |NNW IN 11
0615 [NNW INNE |11 0610 100
0630 [N NNE |11 0630 200
0645 [N NE 11 1650 200
0700 [N NE 11
Table 8-16.

Comparison summary of three different model runs for
July 15-16.
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APPENDIX A

Graphs comparing the winds observed at three towers (black) with winds predicted by
RAMS (gray) for July and August 1994. The top graph shows wind direction (deg.), the middle
graph shows wind speed (ms™), and the bottom graph shows observed sky cover in tenths (gray
diamonds) and observed weather (black asterisks) at the SLF. RAMS data were produced by
daily RAMS runs which were initialized at 1200 UTC and which ran for 24 hours. The towers
presented in the Appendix are Tower 110, Tower 805, and Tower 303.
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Mention of a copyrighted, trademarked or proprietary product, service, or document does
not constitute endorsement thereof by the author, ENSCO, Inc., the Applied Meteorology Unit,
the National Aeronautics and Space Administration, or the United States Government. Any

such mention is solely for the purpose of fully informing the reader of the resources used to
conduct the work reported herein.
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