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An unprecedented microgravity observation of maximal shape oscillations of a surfactant-bearing

water drop the size of a ping pong ball was observed during a mission of Space Shuttle Columbia as part

of the second United States Microgravity Laboratory-USML-2 (STS-73, October 20-November 5, 1995).

The observation was precipitated by the action of an intense sound field which produced a deforming force

on the drop. When this deforming force was suddenly reduced, the drop executed nearly free and

axisymmetric oscillations for several cycles, demonstrating a remarkable amplitude of nonlinear motion.

Whether arising from the discussion of modes of oscillation of the atomic nucleus, or the explosion of

stars, or how rain forms, the complex processes influencing the motion, fission, and coalescence of drops

have fascinated scientists for centuries. Therefore, the axisymmetric oscillations of a maximally deformed

liquid drop are noteworthy, not only for their scientific value but also for their aesthetic character.

Scientists from Yale University, the Jet Propulsion Laboratory (JPL) and Vanderbilt University

conducted liquid drop experiments in microgravity using the acoustic positioning/manipulation

environment of the Drop Physics Module (DPM). The Yale/JPL group's objectives were to study the

rheological properties of liquid drop surfaces on which are adsorbed surfactant molecules, and to infer

surface properties such as surface tension, Gibb's elasticity, and surface dilatational viscosity by using a

theory which relies on spherical symmetry to solve the momentum and mass transport equations [1]. The

technique involves the acoustic squeezing and releasing of the liquid drop, and the measurement of the

subsequent free decay frequency and damping constant [2]. For small amplitude motion, it is desirable to

excite only the lowest-order (energy) normal mode of the drop, the axisymmetric quadrupole mode, in
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which the drop oscillates between an oblate and prolate shape. In our chamber this oblate-prolate

alternation is seen in the X-view of the DPM, while in the Z view one observes a simple circular shape.

The Drop Physics Module (DPM) facility was designed bythe Jet Propulsion Laboratory and built

by Loral Corporation's Eleclro-Optical Sensors Division. This module is essentially an air-filled box at

one atmosphere pressure with inner dimensions (X, Y, and Z) of 12.4 cm, 12.4 cm, and 15.2 cm,

respectively. Four custom high-amplitude, titanium-dome acoustic loudspeakers were placed in the box

along the intersections of the bottom and side panels. A pair of stepper-motor-controlled injectors are used

to inject and retrieve drops, ranging from 1-14 cc in our experiments. A common configuration for drop

manipulation consists of opposing driving speakers 1 and 3 in the (100) X mode, speakers 2 and 4 in the

degenerate (010) Y mode, and all four speakers in the (001) Z mode, typically 1350, 1350, and 1130 Hz,

respectively.

The payload crew scientists on board Columbia operated the DPM via an interactive software

interface, allowing the alteration of the acoustical environment by changing speaker drive voltages,

frequencies and phases. They were supported on the ground by the payload operations team of the

Marshall Space Flight Center (Huntsville, A1.) and the DPM Science Team, which included the scientific

investigators, development engineers and support personnel. Almost continuous real-time communication

between the Spacelab team and the ground team via voice, telemetry, and video was available. These links

enabled results to be immediately evaluated, allowing for parameter adjustments over the course of the

experiments which could not be defined before the mission, and which were absolutely essential for the

carefully timed sequences that led to our observations.

From that oscillation data both the frequency of oscillation and the decay constant can be retrieved.

The oscillation is considered a "good one" if the Z view of the oscillation displays a circular outline for the

drop which changes in size during the oscillation. This confirms the axisymmetric character of the

oscillation. This aspect of the motion, along with the idealized spherical shape made possible by

microgravity, makes data analysis su'aightforward.

The drop oscillation sequence reviewed here involved the oscillation of a 6.6 cc drop (2.33 cm

diameter) water drop containing the non-ionic surfactant Triton-X-100, which is commonly used in

detergents and mixing agents. The chemical formula is CH3C(CH3)2CH2C(CH3)2C6H4E(n)OH, where

E---OCH2CH2, and ranges from 9 to 10. It was saturated in the water at the critical micelle concentration
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(CMC)-- thatis,theconcentrationbeyondwhichsmallaggregatesof thematerialwill form in thebulk of

theliquid andnegligibleloweringof thesurfacetensionwill occur. TheCMC for Triton is aminuscule

1.4x 10-4g/ml,at whichtheapproximatestaticsurfacetensionof thisaqueoussolutionis 0.03

Newtons/m(lessthanhalf thatof purewater). It is thusreadilyapparentwhy thesetypesof materialsare

of interestto scientistsandengineers-- tiny concentrationsleavebulk propertiesunchanged,butresultin

markedsurfaceviscoelasticproperties,andthusalterthesurfaceandbulk motiondramatically.

Themicrogravitysequence(blackbackground)shownin Figure1involvedadropthatwasslowly

squeezedsothatin theZ-view thecircularoutlinegrewandtheX-view appearedinitially asa narrow

ellipseof aspectratioof 4.5. Onecompletecycleis shownhere,bothin X andZ views,althoughthe

completevideoshowsabout20cycles(in about17seconds)beforetheoscillationrevertsto thelowest

energyquadrupolemode.A WorldWideWebanimatedvideosequencecanbefoundat

<http://www.yale.edu/engineering/fac-info/apfel-data/drop.mpg>.Thecigar-shapedimageof 6thframe

hasanaspectratioapproaching3, which,in theparlanceof nuclearmodelingis called"hyperdeformed"

[3]. A secondremarkablefeatureis thatthedropdid not fission. Thelowersurfacetensionthatallowed

for thelargedeformationsalsoprobablypreventedtheelongatedsectionsfrom pinchingoff.

Theseobservationsareborneoutby numericalcomputationsof theevolutionof theshapeof

greatlydeformeddropsusingtheboundaryintegralmethodasadaptedbyTaoetal. to thecaseof drop

motionin thepresenceof anintenseacousticfield whichcanbeusedto causebothstaticanddynamic

shapechanges.4,5 Thismethodpermitsthestudyof largefreeor forcedshapeoscillationsof

axisymmetricdrops,includingtheeffectsof viscosity,butnot includingthepresenceof surfactantsor

surfacedamping.We wonderedwhethersuchananalysiswouldproducedropshapescomparableto our

observations.If so,theywouldpermitustoextractdatasuchasthedynamicsurfacetension,whichcan

differ from thestaticallymeasuredvalue. Suchdifferencescanprovideimportantinformationontherate

of processesoccurringassurfactanttransfersbackandforth betweenthesurfaceandits sublayer.

Figure 1alsoshowsthepredictionsof theshapeoscillationsusingtheboundaryintegralmethod

(X-view). Theseframesaredisplayedabovethecorrespondingobservations.Thenumbersindicatedin

eachframeshowthenondimensionaltimegivenbytheratioof therealtimeto thefactorT = ao/vo,where

Vo= (2o/pao)lt2,which is thecapillarywavespeed.Hereo is thesurfacetension,p is the liquid density,

andaois thedropradius.Thecomputationwascarriedout for aReynoldsnumber(pvoao/I.t)of 600,
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where I.t is the shear viscosity, taken to be about 1.5 times that of water to account for the presence of the

surfactant which increases the surface layer damping. The capillary wave speed is taken to be about 7.5

cm/s, which is estimated from the surface tension of Triton X-100 at this concentration. Note that when

we also carded out the same calculation for zero viscosity, the predictions indicated that the drop would

bifurcate, whereas in the case shown, the image tracks closely the experimental observations.

Analysis of the real time measurements from USML-2 and the non-dimensional time from the

predictions of the boundary integral method allows one to compute a dynamic surface tension of

approximately 33.5+1.0 dyne/cm (0.0335 N/m), which is slightly higher than the statically measured

value for a 1 CMC solution of Triton X- 100 of 31 dyne/cm. A higher dynamic surface tension might be

expected, because surfactant transport to the surface is a rate-limited process, and the equilibrium

concentration of surfactant is not fully achieved during the period of oscillation. While surfactant

molecules in a thin boundary layer near the surface can reach the surface as it rapidly expands, diffusion

from the bulk will be too slow to fully replenish the boundary layer. Yet, in the present case the drop

begins in the statically deformed shape (maximum surface area), and therefore the surfactant does not have

to diffuse to the surface, but only redistribute itself on the surface, which evidently happens on a time scale

that is short compared to the drop motion.

It is truly remarkable that the shapes predicted correspond closely to the data. Such a

correspondence through a complete cycle not only validates for the fh'st time the use of the theoretical

methodology of the boundary integral method for this special and unprecedent maximum oscillation

observation, but also enables the prediction of dynamic surface tension. Future work will concentrate on

the analysis of the decaying oscillation for this and one other surfactant material, which should permit the

deduction of the surface viscosity coefficient and Gibbs elasticity, in addition to the dynamic surface tension.
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FIGURE CAPTION

Figure 1: Sequence of 14 frames showing single complete oscillation of a 6.6 cc drop that begins in a

highly deformed (oblate) shape owing to a high intensity acoustic field, and which then oscillates after the

acoustic field intensity is suddenly reduced. The top images in each row are the X (side) view, and the

bottom images are the Z (top) view demonstrating the axisymmetric nature of the oscillation. The time of

each frame is marked. Shown above the X view observations are a sequence of frames computed using

the boundary integral method, assuming a Reynolds number of 600. The non-dimensional time, T,

shown with each frame is defined in the text. Note that the last two frames of the predictions differ from

the observations, because the prediction are showing the center plane of the drop (which is dimpled in),

whereas the observations are showing the front view image which cannot show the inward dimpling

effect.
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