
NASA-CR-202_32

PIMs for Petaflops

/

Final Report:

Processor-ln-Memory (PIM) Based Architectures

for PetaFlops Potential

Massively Parallel Processing
NASA Grant NAG 5-2998

July 15,1996

Dr. Peter M. Kogge

McCourtney Professor of Computer Science and Engineering

IEEE Fellow, IBM Fellow (retired)

University of Notre Dame

Notre Dame, IN 46556

219-631-6763

fax: 219-631-9260

email: kogge@cse.nd.edu

PIMs for Petaflops

Final Report:

Processor-In-Memory (PIM) Based Architectures

for PetaFlops Potential

Massively Parallel Processing
NASA Grant NAG 5-2998

July 15, 1996

Dr. Peter M. Kogge

McCourtney Professor of Computer Science and Engineering

IEEE Fellow, IBM Fellow (retired)

University of Notre Dame

Notre Dame, IN 46556
219-631-6763

fax: 219-631-9260

email: kogge@cse.nd.edu

1. Introduction: ... Page 1

2. The Problem Addressed by this Study: Page 1

3. Study Objectives and Approach: Page 3

4. PIM Background ... Page 4

5. Overview of Results ... Page 6

5.1 Interactions with Petaflops community Page 6

5.2 Applications Requirements ... Page 7

5.3 PIM Technology Design Space Page 10

5.4 PIM Architectural Design Space Page 13

5.4.1 Processor Node General Architecture Page 14

5.4.2 Choice for Processing Logic Page 16

5.4.3 Floorplanning by Tiling .. Page 19

5.4,4 Adding Off Chip Interfaces Page 20

5.5 System Configurations ... Page 22

5.5.1 Chip Counts for a Petafiop System Page 23

5.5.2 Area and Logic Fraction ... Page 24

5.5.3 Internal Parallelism .. Page 24

5.5.4 Off Chip Contacts ... Page 25

5.5.5 3D Stacks ... Page 26

5.5.6 System Power .. Page 26

5.6 Comparisons to Current Practice Extended Page 26

5.7 Simplifying the Operating System Support Page 27

5.8 Other Key Results .. Page 28

6. Importance of the Findings and Future Directions Page 29

7. Relevant Publications: .. Page 31

Appendix A: Preprint "Pursuing a Petaflop..."

Appendix B: PAWS Draft Proceedings, Section 8.1, "Component Characterization"

PIMs for Petaflops

1. Introduction:

The report summarizes the work performed at the University of Notre Dame under NASA

Grant NAG 5-2998 from July 15, 1995 through July 14, 1996. Researchers involved in the work

included the PI, Dr. Peter M. Kogge, and three graduate students under his direction in the

Computer Science and Engineering Department: Stephen Dartt, Costin Iancu, and Lakshmi

Narayanaswany.

The organization of this report is as follows. Section 2 is a summary of the problem addressed

by this work. Section 3 is a summary of the project's objectives and approach. Section 4

summarizes PIM technology briefly. Section 5 overviews the main results of the work. Section 6

then discusses the importance of the results and future directions.

Also attached to this report are copies of several technical reports and publications whose

contents directly reflect results developed during this study. This includes a paper that will be

published in the Frontiers of Massively Parallel Computing Conference in Annapolis, MD in

October, 1996. Several other papers are under preparation for submission for formal publication.

All these published papers will acknowledge the support received from this grant.

2. The Problem Addressed by this Study:

With the achievement of real teraflops (1012 floating point operations per second, TF)

computers in sight, it is now time to begin focusing on the next major level of processing: a

petaflop (1015 operations PF) per second. Such machines could compute in 15 minutes what

would take a TF machine over 10 days, or a high end gigaflops (109 operations per second - GF)

machine over 30 years. As was shown in the 1994 Cal Tech Workshop on Petaflops Computing,

and the 1995 Petaflops Frontiers Workshop (both including sponsorship bv NASA, with

significant organizational responsibilities by Dr. Thomas Sterling, then of NASA CESDIS), there

are a great many applications of significant scientific and economic benefit that would be opened

up by such levels of computing. Further, the same technology that would enable these levels of

computing would also enable placing today's teraflops machine room in a desk environment, and

today's gigaflops rack of computers into handholdable packages. Both of these size reductions

have huge potential societal impacts, especially as we move to a more and more mobile society

Page 1

PIMs for Petaflops

where portable communications and information exchange of all sorts over gigabit networks will

become the bedrock of the business environment.

The major problem with achieving such levels of performance today is cost. Even using the

best of today's technology would require 10's of millions of chips and literally 10's of billions of

dollars to reach a petaflops machine. This is simply not a viable option. However, projecting

technology ahead, as was done in the 1994 Workshop, indicates that within approximately 20

years the state of the art in VLSI should make such machines feasible, with at least three different

computer architectures reasonable candidates.

Given the above result, why should any attention be paid in 1995 or 1996 to petaflops level

machines? The answer is two-fold. First, all the architectures proposed in the 1994 Workshop for

petaflops were truly Massively Parallel Processors (MPP), an approach becoming widespread at

the very high end of existing machines but proving tough to handle, and virtually unstudied for

lower level everyday applications, and not at the level of 10s to 100s of thousands of

semi-independent processors (non trivial non SIMD engines). Second, the architecture with the

greatest initial potential in terms of minimal chips, and thus cost, is one where multiple entire,

relatively simple but not trivial, computers are integrated onto single chips that combine the state

of the art in memory densiW with very significant amounts of high speed logic. For obvious

reasons the architecture of such chips is becoming known as Processing-In-Memory (PIM).

In today's world of superscalar, superpipelined, multiple execution unit, 10 million+ transistor

single CPU microprocessor designs, both of these observations are so far out of the mass

production norm that without a jump-start, neither will mature to the levels needed by the time the

technology is ready for a petaflops. Consequently, what is needed is a believable roadmap

projecting no only what appropriate PIM architectures might look like 20 years from now, but

what are the intermediate stops along the way. This includes what can be done with today's

technology, or the technology of 1998 or 2001, for example, to implement such PIM-based MPP

machines, and how does this compare with where the conventional trends will take us.

Very preliminary projections [8, 9, 10] based on the first real PIM chips such as EXECUBE [5,

7, 11] indicate that in terms of silicon usage, PIM offers at least an order of ma_itude better

advantage than other approaches. Given the potential simplicity of PIM designs versus modem

Page 2

PIMs for Petaflops

microprocessors(EXECUBE costlessthan$5M to developversushundredsof millions for the

very leadingedgeconventionalchips),this meansthat PIM-basedMPPshavethepotentialto not

only affectveryhigh endcomputing20yearsfrom now,but radically changethe wav we embed

very high levels of processing in the mobile world of the late 1990s'!

3. Study Objectives and Approach:

Given the above observations, the goal of this study was to develop an initial roadmap to

achieving petaflop using PIM-based MPPs, with a emphasis on early and continuing design points

that would identify both the technologies needed to achieve a petaflop, and intermediate

applications, including embedded ones of interest to NASA, that would provide the economic

impetus to fund more fully the development of those technologies.

In particular, as described in the original proposal this work was to consist of the following:

1.Interactions with applications experts and the developing petaflops research community (both

within and outside of NASA) to validate that architectural choices are not only chip-efficient, but

also are reasonable targets for real applications. Such applications will include not only petaflops

level ones, but lower performance, especially embedded, applications which max be uniquely

enabled by PIMs.

2.Use of existing CMOS VLSI technology trends to identify the design spaces, in terms of amount

of memory and logic, possible for PIM chips at regular intervals over the next 20 years.

Constraints such as off chip contacts, power dissipation, die size for economic production, etc.,

were all a part of this characterization.

3.Architectural tradeoffs to identify which type of individual processor node architectures best

utilize the silicon and memory bandwidth present on a VLSI chip at each of the above time

intervals. This included not only existing architectures (from the very simple to the more

complex), but also novel ones that more fully utilize chips with significant memor, and logic.

4.Development of candidate MPP system architectures using potential PIM chips identified above,

and derivation of key characteristics such as limits and ease of scalability, number of chips,

power, needed runtime and support software, etc.

Page 3

PIMsfor Petaflops

Thestatementof work alsoassumedparticipationattwo workshopsonpetaflopsovertheyear

of study.

4. PIM Background

The thesisbehind PIM is that manyof the problemsfacing very high performanceMPP

computersstemfrom the "traditional"vonNeumannbottleneck,andhow we haveapproachedit.

FortechnologyandcostreasonswehavehistoricallyseparatedmemorypartsandCPUlogic parts.

With theadventof CMOSmicroprocessorswith veryhighperformancepipelinedandsuperscalar

architectures,individual CPU core performancelevels have gone through rapid acceleration.

requiringeverincreasingamountsof bandwidthfrom thememorysubsystem.Theserateshavefar

exceededthe bandwidthcapabilitiesof ourdensestDRAM (DynamicRandomAccess/Viemory)

memory parts (needed to control system costs), and the gap will continue to widen over time. The

net result is architectural complexity: memory hierarchies are introduced to provide the bandwidth.

which in turn drives cost and the software complexity needed to address these hierarchies

efficiently, especially in an MPP environment.

The PIM technology is emerging to counter this fundamental defect - namely the combination

on one chip of both dense DRAM memory and very significant amounts of logic. This capabilit)'

permits new architectures to place computing either right next to, or even inside of. the memo_

macros, where there are huge amounts of raw memory bandwidth.

Many chips today combine logic with some form of memory. At one extreme most modern

microprocessors combine millions of transistors of logic with a few tens of KB (Kilo Bytes) of

SRAM (for caches). At the other extreme, most conventional DRAMs combine MBs (Mega Bytes)

of memory with a few thousands of transistors for address decoding for the internal arrays.

latching at the sense amps, and multiplexing to drive the data lines.

PIM chips fall in the middle. They combine large amounts of both memory and logic.

However, the key feature that distinguishes them from the conventional chips is that they represent

potentially self-contained designs where all the processing functions and all the memory for that

processing for one or more nodes are on the same chip. This self-contained characteristic has

several key consequences:

Page 4

PIMsfor Petaflops

• It is possible to conceive of a single part type scaleable MPP design where additional

computational resources are added by adding more of the same kind of chips (much as today we

add more memory to PCs via plug in SIMMs).

• This in turn permits consideration of novel 3D packaging techniques which both reduce overall

system costs and provide shorter chip to chip paths, reducing the other killer of MPP

performance - latency.

Placing the processing logic next to the memory permits a huge increase in the percent of raw

memory bandwidth that can be utilized from the memory arrays over today, where at best a few

percent of the total bandwidth is presented to the off chip pins. This can reduce or eliminate the

need for complex caching and other tricks in the design of the processing logic - again reducing

both cost and latency.

• Eliminating from the processing chips the need for often hundreds of pins to support a memory

hierarchy means that these same pins can be used to perform something computationally useful

- namely communication with other processing nodes.

• Moving multiple processing nodes to a single chip also allows consideration of new

architectural techniques such as mixed SIMD and MIMD processing, very high bandwidth

memory to memory transfers, and "in the memory array" processing, all of which in turn should

be useful to significantly reduce application program complexity.

• A combination of all these techniques offer the potential for greatly reduced power dissipation

per unit of performance. Simplicity in logic means that there is less logic to burn power;

reduced pin count to support memory hierarchies yields less power, and higher memory

bandwidth and lower latency next to the processing logic implies the potential for lower clock

rates - again lowering power.

The first such PIM chip to utilize state of the art dense DRAM, EXECUBE [5, 8, 11],

integrated onto a 4 Mbit DRAM chip 8 complete CPUs configured in a 3 dimensional bina_"

hypercube, and was used as a one chip type building block for MPPs of both MIMD and SIMD

organization. On a chip basis, it was up to 10 times more efficient than traditional techniques in

terms of performance per chip over an entire system. At 2.7 watts typical dissipation, it also

demonstrated extraordinary performance per watt (again on a system wide basis) for its time frame

and implementation technology.

Page 5

PIMsfor Petaflops

5.Overview of Results

Very significantprogresswasmadeon all of the topics listed in Section3. The following

subsectionsoverviewtheresults.In manycasesmore resultsareavailablein theattachedreports,

with other results to be reported in documents currently under preparation. The order of

presentation starts with a brief review of the interactions held with the petaflops community; these

meetings will then be referenced in later sections when outputs from them directly affected the

results of the study. Following this is a summary of what was learned about petaflops applications

requirements, the design space offered by the projected CMOS trends, the potential high level

architecture of a strawman PIM chip was investigated, and then how that architecture could

evolve into a complete system. This latter section also addresses some issues associated with

software: both tools and runtime.

5.1 Interactions with Petaflops community

As part of this effort, we participated in not two, but three different petaflops related

workshops:

1.Petaflops Summer Study on Algorithms in Bodega Bay, CA in August 1996. At this workshop

we presented some early results from the PIM projections spreadsheet model described later,

with emphasis on the significant advantages that PIM held, along with the characteristics that a

PIM-based petaflops machine might have, in particular a de_ee of parallelism in the 160,000+

range. Feedback from this study provided more insight into exactly how much primary and

secondary memory, I/O bandwidth, and expected running time were reasonable to assume for

petaflops applications.

2.Petaflops Architecture Workshop in Oxnard, CA, in April 1996. The results of this study were

used in two separate presentations at this workshop. First, the requirements learned from the

Bodega Bay workshop were presented early in the workshop to provide an overview of what was

required by an yvpetaflops capable machine, not just the PIM approach. Second, a more detailed

presentation was made on the PIM strawman architecture described above, with more realistic

CMOS technology constraints taken into account. Outputs to this study were a growth in the

architectural design space for PIM chips, and a recognition that PIM could be applied in much

more general fashions than had been earlier anticipated.

Page 6

PIMs for Petaflops

3.PetaflopsSystemSoftware Workshop in BodegaBay in June 1996. Although no formal

presentationson PIMs were made at the workshop, it becameclear that the PkM approach,

especiallywhencoupledwith its insertioninto a conventionalsystemas "smartmemory,"held

the promise of greatly simplified software (both tools and runtime support) over the more

traditionalapproachesdiscussedat theconference,andtheproblemsthatthoseapproachesfaced

whenscaledto thepetaflopsregion.

Finally, a meetingis plannedin earlyAugustwith interestedgovernmentagenciesasto the

nextstepfor thedevelopmentof petaflopsmachinesin general,andhow PIM mightplaya role in

that.

5.2ApplicationsRequirements

Beforeonecansizea machineof _ possiblearchitectureto reachapetaflop,onemusthave

first a set of approximaterequirementsto work with. The 1995SummerPetaflopsAlgorithm

Workshopin BodegaBay,CA providedjust sucha basisby summarizingfrom over30 possible

applicationsthat would profit from a petaflopmachinea varietyof characteristics,includingthe

runningtime for atypicalexecution(whenona petafloppersecondmachine),theprimarystorage

(memory)neededto supporttheapplication,thesecondarystorage(disk) needed,andtheI/O rate.

Giventhe costof memoo'evenin the 2010s,theprimarystoragefigureis mosttelling. Figure 1

diagramsthisasascatterplot whereeachdotcorrespondsto aparticularapplication,positionedon

thegraphasa function of its executiontime for a singlerun (in seconds,on x-axis) andprimal

memory(in GB, on y-axis).Threedifferent symbolsareusedhere:onefor applicationsrequiring

lessthan100seconds(about2 minutes),onefor applicationswith executiontimesbetween100

and10,000seconds(about3hours),andonefor in excessof that.

As can be seen, the execution time spanseight orders of magnitude,and the memorv

requirementsspansix ordersof magnitude(1E3GB is aterabyteTB; 1E6GB is a petabytePB).

Therearesignificantnumbersof applicationsin eachof thetime frames,but no clearcorrelation

betweenrunningtime andprimarymemory.

Figure 2 perhapsgives better insight into the questionof "how much primary memory is

enough?"Roughlyhalf theapplicationscouldbesatisfiedby aTB, and80%by 30TB. This latter

numberof 30TB alsocorrespondswell to anestimatemadeatthe 1994PetaflopsWorkshopthat

Page7

PIMsfor Petaflops

rn
(.9
v

O

E

&.,

E

13..

1E+06

1E+05

1E+04

1E+03

1E+02

1E+01

1E+00

1E+00

i*

... _ ..._.................._,

i A i *

...-,,,,..._.!.....................-..................,_.................._

..................................e,.........................{................_ ...

...... •_ ..A....................."......._..

1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E*08

Individual Application Runtime @ 1 Petaflop (seconds)
Figure 1. Petaflops Applications: Runtime vs Primary Memory Requirements

100

¢-
._o

O

Q.
{3.

<

O

c-"

0

8O

60

4O

2O

0

1 E+O0

1 I I I

1E+01 1E+02 1E+03 1E+04 1E+05

Primary Memory Size (GB)

1E+06

Figure 2. Percent of Bodega Bay Petaflop applications requiring different memory sizes.

Page 8

PIMsfor Petaflops

10,000.000

1,000.000

100.000

0

10.000

1.000
0

0.100

0.010

0.001

................................. • ,..................................... _.................................... _ •i

i

... !.lB _ ...

.. i.................................... i ...

..i...................................._...

.............................. • +..................................... =.................................... + i..............................

................................. ÷ i...• i • i

1E+06

0.000

1E+02 1E+03 1E+04 1E+05

RuntimeatlPetaOp(sec)

Figure 3. Secondary Storage Needs vs Running Time

I

1E+07 1E+08

there were significant problems (especially 3D + time simulations) where primary memory needs

grew as N 3j+as performance grew as N (in GF). For 1 million GF (1 PF) this corresponds to 32 TB.

Another system requirement of real interest is the amount of secondary storage needed to

support an application. Here the 1995 Bodega Bay workshop was only able to estimate a need for

only a subset of the applications studied in Figure 1, with the results summarized in Figure 3, again

as a scatter diagram vs running time. A great many of the applications require upwards of a PB.

Figure 4 diagrams one other useful piece of information: I/O rate required by the application.

Again this is drawn vs running time. This comes in two parts: an internal I/O rate needed to

support the application, and an I/O to reload the memory for the next application execution

(labeled IPL in the diagram). The latter number was computed by this study, and assumed that the

next application required as much memo U as the current one, that all of this memory needed to be

loaded, and that it could be loaded concurrently with the current execution. This latter assumption

would also force us to approximately double the size of the memory, which mav be a costly

undertaking.

For the applications for which data was available, an application I/O rate of about 100 GB/sec

seemed to be satisfactory, as is an IPL rate of a few ten's of GB/sec.

Page 9

m
(.9
v

O

PIMs for Petaflops

1E+03

1E+02

1E+01

1E+O0

1E-01

1E-02

1E-03

1E-04

1E+02 1E+03

[]

...•• ...Ili..................................U+."..........................•

O i i
...an...in..!......................................:..............................

, i * i

QI
... ,_.-._...................0 ..0_

i . i

... _...!__......................................_...........................

o i i

*i
t i i t

1E+04 1E+05 1E+06 1E+07 1E+08

Figure 4. I/O Rate vs Runtime

Runtimeat 1 PetaOp(sec)

I • AIgorithmVO _ IPLI/0 I

5.3 PIM Technology Design Space

A major part of the study was to explore the use of CMOS VLSI to identi_' trends and

capabilities in the PIM Design Space. This was done primarily by developing several spreadsheets

based on the most well respected projection of CMOS technology available at the time, namely the

1994 National Technology Roadmap for Semiconductors published by the SLa, [13]. These

spreadsheets utilized the SIA numbers to perform "partitioning" experiments to determine how

much logic should be placed on a PIM chip in combination with how much memo_.

A fairly complete description of the major worksheet so developed as of April. 1996, is given

in Appendix B - a section of the Petaflops Systems Workshop draft proceedings from April, 1996

produced from this study's results.

Rather than repeat the spreadsheet descriptions here, an more instructive summary" would be to

go through the analysis logic that led to the spreadsheets and their detailed structure. We will start

this summary by assuming the following time dependent functions which affect PIM potential

designs:

• M(t) is the amount of memory (in MB per square centimeter) that can be placed on a chip as a

function of time. This comes from the SIA Roadmap.

Page 10

PIMs for Petaflops

• L(t) is the amount of logic (in millions of transistors per square centimeter) that can likewise be

placed on a CMOS chip as a function of time. This also comes from the SIA Roadmap.

• C(t) is the clock speed that the above logic can run at, again as a function of time. Again, this

comes from the SIA Roadmap.

The SIA roadmap includes many variations for each of these. For memory it can be DRAM or

SRAM; for logic it can be full custom or ASIC. For clock speed, the full custom can run at either

very high speeds such as might be found in the leading edge microprocessors or in very.' specialized

digital signal processors, at a lower rate more characteristic of commodity microprocessors, or at

lower speeds more characteristic of ASIC logic.

Likewise the roadmap discusses off chip pin contacts, and transmission speeds on such pins.

For the purposes of this discussion we will assume DRAM memory and ASIC logic together

on the same chip. This is to reflect the fact that at least for the foreseeable future, placing both

dense DRAM and the highest density logic on the same chip would require combinations of two

very distinct fabrication processes, greatly increasing the cost of the chip. By assuming ASIC style

logic, we are focusing on a lower cost technology which can be built on the basic DRAM process,

and which, given the volumes of parts needed for a petaflop, is probably necessary to control costs.

The spreadsheets developed as part of this study, however, allowed assuming almost anv of the

above combinations to be specified.

As an approximate reference, for the above choices the SIA Roadmap gives curves which

roughly follow the following equations (where t is uniformly the year of technology introduction):

• M(t) = 4* 1.4 (tq995) MB per square centimeter

• L(t) = 2* 1.22 ('_995/million transistors per square centimeter

• C(t) = 150"1.1Ct-1995) MHz clock rate for the logic

To a first order, the PIM chips assumed here will cover a chip with a multiplicity of some

standard processing logic (a "CPU" in the following discussion), with some amount of DRAM

memory available to each one. Further, although it is likely that the architecture chosen for anv

particular PIM implementation will evolve with time, we will assume for this analysis that it is

fixed, and that to implement one such CPU node will require P transistors at any point in time, and

Page 11

PIMs for Petaflops

thatat a clock rateof C o such a processor will achieve a "unit" level of performance, in whatever

measurement scheme is most appropriate.

Since it is infeasible to build a single chip at any time in the foreseeable future that could

contain both the memory and enough logic to support fully any of the applications of Figure 1, we

have to assume multiple identical chips arranged in some sort of a parallel system. This

assumption in turn requires that if we look at any single chip, the ratio of memory to processing

power provided by the logic must match that needed by the overall system. Otherwise, a system

that minimally meets either the memory or performance needs may be starved in the other

direction. (In reality, if we were to err, it should be on the side of extra memory, since parallelizing

functions are notorious for requiring extra buffers, array copies, thread contexts, etc. to keep the

processors humming).

With the above comments in mind, for this analysis we will assume this ratio of memory to

processing is R, in units of MB per unit performance, and that at time t, the fraction of a chip that

is implemented as logic rather than DRAM is F(t). For a 32 TB petaflop system such as sized in

the prior section, this means that R must correspond to a ratio of 32 MB per GF, when the

equivalent performance of a unit CPU is converted into flops.

Given all these variables, at time t the performance of a single CPU in standard units is C(t)/C 0,

and thus there are L(t)*F(t)/P such CPUs on an average square centimeter, with a peak

performance of F(t)*L(t)*C(t)/[P*C0] units of performance. This means that there are

M(t)*(1-F(t)) MB of memory on the same square of silicon. The rate of memory to performance is

thus M(t)*(1-F(t))/[(L(t)*F(t)/P)*(C(t)/C 0)]. If this is to be equal to R we must have:

R = P*C 0 *M(t)*(1-F(t))/[L(t)*F(t)*C(t)]

Solving for F(t) we get:

F(t) = P*C 0*M(t)/[R*L(t)*C(t)+P*C 0*M(t)]

= 1/[1 + (R/P*C 0)*L(t)*C(t)/M(t)] as an alternative representation.

Given this we can compute the peak performance p(t) and amount of memory re(t), per square

centimeter of PIM, as:

p(t) = F(t)*L(t)*C(t)/[P*C 0]

= M(t)*L(t)*C(t)/[R*L(t)* C(t)+P*C 0*M(t)]

Page 12

PIMsfor Petaflops

m(t) = M(t)*(1-F(t))

= R*M(t)*L(t)*C(t)/[R*L(t)*C(t)+P*C 0*M(t)]

= R*p(t)

Insertingtheapproximationsfrom above:

F(t) = P*Co*4* 1.4("1995_/[R'2 * 1.22 ('1995_* 150* 1.1 ('_995)+P*C o *4* 1.4 (t'1995)]

= P*C0/[75*R*0.96 a'1995)+p*c 0]

= 1/[1 + 75*(R/P'C0)*0.96 ('_995_]

p(t) = 300* 1.34 ('_995)/[75'R*0.96 ('_995)+P*C 0]

m(t) = R'300'1.34 ('-_99_/[75.R*0.96 ('_99s)+P*C0]

These fractions can vary all over the map, from almost 1 to astonishingly small, depending on

R, P, and Co, with R the most sensitive of the parameters The spreadsheets developed during the

study implemented extensions of them to take into account additional factors. The key results will

be given later.

5.4 PIM Architectural Design Space

PIM chips mix memory and logic on the same die, and use the logic to implement processing

functions. The F(t) measure defined above indicated what percent of a square of silicon, on the

average, was devoted to logic. Given this, plus our desire to keep to a primarily single part type

system, there were four potential generic ways that we deemed possible to use this capability.:

1.Pure Single Instruction Multiple Data (SIMD) PIMs where multiple relatively simple function

units nestled very close to the memories on chip, and performed more or less the same operation

simultaneously.

2.Single CPU chips where a single microprocessor is married directly to a large chunk of memory

on a single die.

3.Symmetric Multiprocessors (SMP) chips where multiple CPUs are placed on a single chip, with

memory, and with coherence logic to maintain identical internal memory representations.

4."Tiled" chips where a regular pattern of processing logic with associated separate memory

macros is laid down over the chip.

Page 13

PIMs for Petaflops

The first wasexcludedfrom our considerationbecauseof theperceiveddifficulty of finding

hugeamountsof SIMD-onlyparallelismin realapplications.

All of the latter threearereal possibilitiesfor potentialpetaflopsmachines,but only the last

receivedsignificantattentionin this study.Number2 in the list, asingleCPU,wasdeemedto bea

bad fit, especiallyas memory densitiesgrew quite large, and as our ability to gain more

performanceby simplereplicationthanby overdesigninga "super"CPU.Thediscussionin the

nextsectionwill alsoshowa disturbingtrendin CPUdesignswherewedonot believethe return

from ahugeincreasein transistorswarrantstheexpense.

The third approach,an SMP chip, is entirely feasible,but was not consideredbecauseof

concernsaboutthe complexityof the cachecoherencelogic, and the growing belief during the

studythat the hugebandwidthsandshort latencieswe werebeginningto seeaspossiblewould

maketheneedfor largecachehierarchieslargelyobsolete.Further,theapproachdevelopedduring

thestudyseemedto offer manyof thesameadvantageswithout complexcoherencymechanisms.

However,during the April PetaflopsWorkshoptherewassufficientnew thoughtsabout sucha

configuration,especiallyif the on chip memoryis usedto implementa C0_4 (Cache Only

Memory Architecture), that some variants here are worthy of future consideration.

5.4.1 Processor Node General Architecture

The bulk of the study effort was targeted at refining an overall PIM architecture that mirrored

bullet four in the above list, namely a "tiled" approach to placing logic and processing on a single

chip, with the goal of reaching a petaflop. By tiling we mean defining a single arrangement of

logic and memory, and then replication that arrangement in some very regular fashion over the

surface of the chip. The chip design then devolves to designing relatively small memory and

relatively small logic pieces, and then managing how they interconnect when placed next to each

other on an overall floorplan.

The PIM chip developed in this study had three separate characteristics worthy of discussion:

1.the processing node macro (memory + logic),

2.the "tiling" of a chip with these macros,

3.and the interfaces provided on the chip for communication with other chips.

Page 14

PIMsfor Petaflops

Figure5 diagramsanassumedprocessingnodemacro.It consistsof arectangularareaof logic

transistorssurroundedby 4 separatememorymacros,with eachmemorymacrohaving its own

decoding,senseamps,androw logic.

Thesememorymacrosare the smallestreplicable"slices"that arepossiblewith the DRAM

technologyat the time the chip is assumedfabricated.Todaysuchslices areon the order of

128-256rowsof a few hundredto perhapsathousandcolumns,with totaldensitiesin theorderof

32KB-128KB. For electrical reasons,the sizes of these slices is not expectedto change

significantlyoverthecomingyears.

Evenwith 4 memoriesper logicarea,therestill is a limitedamountof memory(perhapsonly a

MB at most).This is nowherenearenoughto balancethe performancepossiblefrom the CPU

logic, so we assumedthatjust as in ordinaryDRAMs, theseslicescould be "stacked"on top of

eachother,with eitheredgesenseampto senseamp,or a secondlevelof metal,usedto connect

themto the CPU. Sucha tiling not only reflectscurrentpractice,but allows somenice VLSI

designconsiderationsto occur,aswill bediscussedlater.

In total, the positioningof thesemacrostacksalso providesseveralvery key benefitsto the

designandselectionof theprocessinglogic:

Sense Amps Sense Amps

Memory "_
Array _ Memory Array _°°

a E3

Sense Amps Sense Amps

CPU Logic

Sense Amps Sense Amps

Memory Array oo Memory Array o°

Sense Amps Sense Amps

Figure 5. A Single Processing Node Consisting of 4 Memories and 1 CPU

PIMs for Petaflops

1.Thereare four of them, providing morememory for the logic, and thus making it easierto

providetheproperbalancebetweenmemoryandperformanceaswasdiscussedbefore.

2.TurningtheDRAM macros"sideways,"asshown,with thesenseampsfacingthelogic directly,

providesa hugeincreasein databits availablefrom eachaccessdirectlyto the CPU logic. It is

conceivablethatseveralhundredbitsmightbesoavailable.

3.Turningthe DRAM macros"sideways"also providesa very fast accesstime, most assuredly

under30ns.with today'sdesigns(in factthe 1991eratechnologyin EXECUBEhadabouta 12.5

nsaccesstime from theaddressdecodersto the senseamps).Somereductionin this time should

beexpectedovertime, notonly becauseof technologychanges,butalsobecausethereis noextra

logic in thewayto "demultiplex"all thebits from thememorymacrodownto thehandfulof bit

that gooff-chip in a normalDRAM. Thereis alsono needto "split" theaddressinto two parts,

RASandCAS,as is donetoday.All of theseaddto improvedaccesslatencyat thebasicmacro

level.

4.Having four separatestacksof such memorymodulesprovides four times the bandwidth,

yielding literally multiple gigabytesof bandwidthper secondfor eachCPU.Theyalso provide

theopportunityto haveup to four accessesto beconcurrent.Thiscould lower theaverageaccess

timeoverthatif wehadonlyonestackto significantlyunder10ns.

5.If we designthe individual memoryslicesproperly,namelyplaceanaddresslatchin each,we

could conceivablykeepasmanyconcurrentmemoryaccessesas thereareslicesactivewithin

each stack. This can multiply bandwidth and reduce average latency by another huge factor.

5.4.2 Choice for Processing Logic

Nothing in the discussion to date constrains the choice of what the processing logic looks like.

If we are going to make the PIMs more or less general purpose, then they should be programmable

CPUs. Since logic technology is providing more and more transistors, conventional wisdom is that

these CPUs should become more and more complex, i.e. super scalar, super pipelined, multiple

issue, with sophisticated branch prediction and out of order execution. All of this requires more

bandwidth, so of course this means deep cache support systems.

Page 16

PIMs for Petaflops

Conventionalwisdommay not, however,be so appropriatein the PIM environmentwhere

what we want is to maximizethetotal amountof performanceout of the logic, andwe aremore

thanwilling to do this with parallelismat theon-chipnodelevel.To investigatethis, wesurveyed

a widespectrumof modemmicroprocessors,andaccumulatedsuchinformationasthefeaturesize

of the technologyused,numberof transistorson the chip, the numberandcomplexityof the on

chip caches,the clock frequency,the supply voltage, as many benchmarknumbersas were

available,and as many other factors as were available.For thosemicroprocessorsthat had a

consistentset of benchmarkdata,namelySPECMARKs,we then translatedthe datausingthe

following process:

1.Toget to thetransistorcountfor theactualCPUcore,we tookthesizesof all onchipcachesand

otherdensememoryhierarchyrelatedstructures,andestimatedthetotal numberof transistorsin

them.This wasthensubtractedfrom the total chip transistorcountto get that for the CPUcore

alone.

2.Tonormalizeout theeffectsof technology(at leastto a first orderapproximation),thereported

SPECINTsand SPECFLOATsfor eachchip wasdivided by the clock rateof the chip. This

yields a "SPECSper machinecycle" - analogousto "instructionsissuedper machinecycle"

which is a modemmeasureof low level microprocessorperformance.Note that astechnology

improvedthereweremultiple caseswherethe samedesignwould havebeenimplementedin

severaldifferent clock rates,andeachwouldhavea separatesetof measurements.We included

all suchnumbersbecauseit oftengaveinsightinto secondordereffects.

3.Toget a handleon the "per transistor"effectivenessof thedesigns,eachof thenumbersfrom

step2 above,the clock normalizedperformance,weredividedby thenumbersfrom step 1,the

numberof transistorsin thecoreof theCPU.Theresultingnumbersrepresentanestimateof how

mucheachtransistorin theCPUcoreaddsto theoverallperformance

If onegraphsthe resultsfrom step2, normalizedSPECs,versusthe numbersfrom steps1,

CPU core transistor counts, the graphs are exactly what one would expect. If one adds more

transistors to a CPU design, then all else (especially clock) being equal, one ends up with more

performance.

Page 17

PIMs for Petaflops

10 10

O3

Z

¢0
tlJ
0..

"0

g
0
Z

l"t.n
¢'

¢/)
F-
.-I
LI.
¢0
UJ
II.

._N

0
Z

nun • nn •

i|

mR• ,

0.1 f 0.1 u

0.1 1 10 0.1 1 10

Millions of Transistors (CPU) Millions of Transistors (CPU)

Figure 6. SPECINT Transistor Efficiency. Figure 7. SPECFLOAT Transistor Efficiency

However, the story is different if we graph step 3 versus step 1. Figures 6 and 7 diagram these

results for SPECINT 92 and SPECFLOAT 92 respectively (we are still accumulating SPEC'95

data and will publish that shortly). Performance per transistor drops sharply for SPECINTs as the

number of transistors added to a CPU increases. This means that if one has a transistor budget to

spend on processing, and one is willing to consider parallel CPUs, then by far the most effective

designs are not the multi million transistor "leading edge" designs, but the simpler straightforward

designs with minimal complexity.

The effect is not so pronounced for SPECFLOATs (because a floating point function unit is

approximately the same regardless of the rest of a design), but it is still there, and there is no chip

design which is more efficient per transistor than the simplest.

The lesson we took from this result is that the processing logic to assume for our PIM macro

should represent a simple CPU design, with a minimum of frills. In fact, for the rest of the analysis

presented here we assumed the simplest (upper leftmost) of the designs in Figures 6 and 7, which

happened to be the same - a straightforward 5 stage pipelined CPU as is found in a MIPS R3000 or

similar chips. Based on the data from the survey, this design incorporates in about 250K transistors

both the integer pipeline and a simple but effective floating point unit.

Besides reducing design complexity, this choice has several other key attributes which are

particularly advantageous to PIMs:

Page 18

PIMsfor Petaflops

1.Simplerdesignsneedfewerconcurrentaccessesto memoryto maintainhigh performancethan

the more complex ones. In particular there are fewer "speculative"accesses(from branch

predictionandthe like) which arethenneverused.This reducesthe peakbandwidthneededout

of the memorysystem,meaningthat an organizationsuchasFigure 5, with its multiple wide

memorymacrostacks,canprovidethebulk of thebandwidthdirectly, without additional caches.

2.Fewer transistors (and simpler memory hierarchies) together result in fewer places where power

is dissipated, opening up the opportunity for lower power chips. This is critical if we are to build

systems with hundreds of thousands of parts.

3.A simpler, pipelined like, design also means the usage of the bulk of these transistors is in very

regular structures whose physical placement mirrors the feed forward nature of the organization.

This in turn opens up the possibility of still getting good logic packing density with fewer layers

of interconnection metal on the chip. In turn, this allows us to consider simpler DRAM-based

processes which normally do not offer as many wiring layers as pure logic processes.

5.4.3 Floorplanning by Tiling

Figure 8 now diagrams the way in which this study projected the bulk of a PIM chip ought be

floorplanned by the prior CPU and memory stacks. Alternating rows of memory stacks and CPUs

fill the chip from the top to the bottom, but with neighboring rows of CPUs offset from each other

by the width of one memory stack (i.e. one half their own width). All memory stacks in a single

row have the same height, as does all CPUs in the same row.

t F

I ;
!

!

I
= Shared

Memory

Link t !

Figure 8. Tiling a PIM Chip with Offset rows of Memory and CPUs

I
!i i

i

Page 19

PIMs for Petaflops

Given that by designeachmemorystack,regardlessof how manyslicesit is built from, has

senseampsatboth thetop andbottom,eachof theserowsof CPUsstill maintainsconnectivityto

four separatememorystacks,andeachstackis connectedto two separateCPUs.This resultsin a

true shared memory_ between two separate CPUs - the best of all possible configurations from a

programming perspective (In contrast, chips like EXECUBE did not support shared memory

between neighboring CPUs, meaning that all internode communication must be by explicit

message passing).

Further, because of the offset between rows of CPUs, the resulting design means that each

CPU is sharing memory with not one or two, but four other CPUs. This allows extraordinary

amounts of interconnectivity between processing nodes, at the highest possible bandwidths,

without complex programming or additional internode communication logic!

Finally, from the standpoint of VLSI chip fabrication, Figure 8 offers a very clear advantage.

All the DRAM is separated off into nice, well defined, rows, where it can be placed in its own

wells, with its own biases etc., and in general protected from the random signal excursions

generated in the logic rows. Further, by using the memory macros themselves for inter CPU

communication, there is no need for extensive long distance wires to run around the chip,

especially over the memories.

The one apparent drawback from this approach (in fact any PIM approach that uses DRAM in

large amounts) is that off chip contacts must be localized around either the periphe_ of the chip,

or in the logic areas. This means that real PIM chips will probably not be able to sustain the same

number of off chip contacts that a full blown microprocessor (or other logic intensive chip) of that

time might be able to support. It also means, however, that there will be less power dissipation for

off chip contacts. Also, given that we do not need contacts to support complex memo_ _

hierarchies, the net reduction in contacts useful for inter node communication may not in the end

be affected by all that much. Thus what appears to be a problem with a DRAM-based PIM might

actually turn out to be either a wash or a slight PIM advantage (lower power).

5.4.4 Adding Off Chip Interfaces

Tiling the surface of a chip with nodes as in Figure 8 not only gives us incredible internal

bandwidth for each CPU, but also directly implements a 2D mesh (as in Figure 9), with an

Page 20

PIMs for Petaflops

Cl_d P_ Ij_ic]liter

_,-,, Node Macro Node Macro Node Macro S ste,,

_ Processing Processing Processing

' _ _ I I I

So_eM_o LZ.Z'_'_ '''"INodeMacroINodeM_o I_"'°'

Process,og Proc s,og]P oces,,ng
'°'°' INod_M_o L22_--.L__'_ INod_M_o ISod__:_o

i

Figure 9. A PIM Chip with its Off Chip Interfaces at the Borders

absolute minimum of interconnection wiring. Further, assuming that the top and bottom rows of

the chip are memory stacks (so that each CPU has access to four of them), then assuming that

these edge stacks still have dual sense amps as in internal stacks, we find that there are "unused"

sense amp connections into the array all around the periphery of the array. This is an ideal place to

provide extra logic to provide very high speed I/O between this chip and others (labeled

"Node-Node" in Figure 9). This logic has direct access to high bandwidth ports on one side, and

the peripheral chip contacts on the other.

There are at least two candidate interfaces that this study considered. First, along the top and

bottom we might add a protocol for fast parallel row transfers which permit communication with

other chips of the same type. This would be of particular beneft if we were to utilize emerging

"chip stacking" technologies where cube of silicon chips are literally "glued" together, with wires

running down the sides. Fortuitously, such high density stacking technologies require peripheral

chip contacts - exactly what is most appropriate for a DRAM-based PIM as discussed earlier.

The second kind of interface may be a fast "intersystem" protocol, such as Myrinet. This not

only provides direct connectivity of the first type, but also permit connection to other arrays of

PIM chips (of the same or different organizations) over greater than direct chip-to-chip distances,

or to I/O devices. Having multiples of these per chip again provides basic bandwidth firepower

that is far beyond that found in modern designs. Again, this can only serve to help simplify the task

of configuring real applications.

Page 21

PIMsfor Petaflops

Finally, alsoasshownin Figure9, wealsoassumedathird typeof interfacebuilt into eachof

ourPIM chips,namelya simple"memorylike" interfacesuchasthePCI busprotocol.This single

interfaceis broadcastto all processingnodes,downthe centerof the logic rows, andpermitsa

processoroutsidethechipto directlyaddresstheonchip memoryassimplememoo'via loadsand

stores.Also, this sameinterfacewouldbeusedasin EXECUBEasabusoverwhich globalSIMD

instructionscanbe issued.Themajordifferencefrom EXECUBEis that theaddressbroadcaston

thisbuswouldbeusedto distinguishbetweendirectmemoryaccessandSIMD instructionsfor the

processingnode. It may also be appropriateto include commandsto set up and initiate I/O

transfersover theotherchip interfacesdiscussedabove.Together,this providesan extraordinary

amountof externalcontrol andinsight into the chip, without havinga hugeamountof complex

routingandwiring to interferewith chip functions.

5.5SystemConfigurations

Figure 10 illustrateshow this designapproachmight be combinedtogetherinto an MPP

system.Multiple chipsmight bestackedinto 3D cubesandmultiple cubesplacedon a "memory

card."Thenode-to-nodeinterfacesof thechipswouldbeusedfor chip - to - chip communication

in the stacks.Cube-to-cube,or off-card, transferswould utilize the secondstyle of interface.

Further,providing a native memory interfacepermits insertionof thesecardsdirectly into the

memorystructureof whateveris the "stateof the art" microprocessorworkstation,makingthe

entireon-chipmemory"look like memory"to themicroprocessor.Finally, by loadingandstoring

Parallel

File

System

Modem

High Performance

Microprocessor

Inter System
Interconnects

@@

S

il
@

PIM - Based Memory Card

Figure 10. A Potential PIM-based System Architecture

b

Standard I/O

Page 22

1E+09

1E+08

1E+07

"E 1E+06

1E+05

.J_
0 1E+04

1E+03

1E+02

1E+01

PIMs for Petaflops

I 1 I i

1995 1998 2001 2004 2007 2010

4- 1TB -,o-- 32 TB I1 PB 49- Memory Alone for 1 TB

Figure 11. Chip Count for a Petaflop at Different Memory Sizes

to other memory mapped locations this host can initiate SIMD operations in the array as is done

with the current EXECUBE chips, which in turn can either start up computational MIMD

programs in the array, perform fast global synchronization steps, or initiate transfers between chips

over the data interfaces.

5.5.1 Chip Counts for a Petaflop System

A first cut at the total system complexity needed to achieve 1 petaflop peak with configurations

such as in Figure 10 can be obtained by utilizing the spreadsheets described earlier. Figure 11

summarizes the results in terms of total chip count for three possible memory sizes: 1 TB, 32 TB.

and 1 PB. This data was run assuming a simple 250K transistor CPU as discussed previously. Also

as was discussed earlier, a 1 TB system would support perhaps 40% of the applications from

Bodega Bay, a 32 TB perhaps 80% (plus match the N 3j4 4D simulation problems), and 1 PB

representing a fully configured system.

If we assume for the final technology of our petaflop machine the end of the SIA CMOS curve.

year 2010, a 1 PB system requires 123,000 chips, the 32 TB system about 4,600 chips, and the 1

TB system around 840 chips. Given the current trends in the state of the art and how this has

played out into commercially available silicon, this means that in 2010 the technology would first

becomes available in prototype form; but realistically it may be 3 years later before the design and

fab processes have been able to design and manufacture enough parts to build a real machine,

especially for the larger configuration. This would put real machines in the 2014+ timeframe.

Page 23

5.5.2AreaandLogic Fraction

PIMsfor Petaflops

How big is this in area?For a 1 PB system,by the year2001technologywill just reacha

sufficientdensityto reducethetotal siliconareadownto theequivalentof aboutonefootball field.

It will be theyear2010beforetechnologywould reducethesmallestof theabovesystems,the 1

TB memory,to abouttheareaof anofficedesk.

Forboththe32TB andthe 1PBsystemsthecomputationof F(t), thepercentof eachchipthat

was logic, yieldsremarkablylow numbers.The 1 PB casereally is "all memory,"with lessthan

1%of theareaof all chipslogic.The 32TB systemsrun in the 10to 15%range.It isn't until we

get to "very memory light" systemssuchas a 1 TB configuration(0.001MB per MF), that a

majority of thechip is logic. As a reference,the lowestcurvein Figure 11 is the chip countfor

DRAM memorychips alone to meeta 1 TB memory.By 2010(whenwe have 8 GB memory

parts),only 128partsareneededfor 1TB, while integratingCPUsonto themspreadsthis out to

aboutan840chipsystem,eachabout14squarecentimetersin area.

5.5.3InternalParallelism

Another key datumthat canbe gleanedfrom the spreadsheetis the amountof parallelism

presentin thesystem.Assuminga machinethat "justpeaks"at a petaflop,thenumberof CPUsis

relativelyindependentof the systemarchitectureor of thememorycapacity,to performanceratio.

Figure12givesthis degreeof parallelismagainasafunctionof time. As canbeseen.parallelisms

of between6 million and2 million CPUsresult.Clearlyin reallife theremustbesomeallowance

for thedifferencebetweenpeakandsustainableperformance,soif a sustainablepetaflopis desired

we probably need to considerparallelismsbetween3X and 10X thesenumbers.Given the

commentsearlierabouttherelativelylow amountof siliconthatisactuallylogic, especiallyfor the

memoryrich systems,this mayhaveonly aminoreffectonoverallcost.

Clearly,however,programminganymachinewith two to twentymillion separateCPUsis'a

greatstretchin the stateof theart andmustbeconsideredcarefully.As a point in that direction,

the samespreadsheetwas run with a CPUat the oppositeend of the complexitycurve from a

single issuepipeline, namelya CPU core capable of 4 way issue and multiple floating point

function pipes. If such a CPU could be run at 100% efficiency (and this too is pushing the state of

the art with modem single CPU compiler technology), we assume that this might give 1 GF flops

Page 24

PIMsfor Petaflops

E
.m _.
-6 o 4

1E+07

!! !!
I [I

1E+06

1E+05

1E+04

0 1E+03

1995 1998 2001 2004 2007 2010

--II- _ Count System Power Due to CPUs I

Figure 12. Parallelism and Power Dissipation in a Petaflop System

no

E

¢.D

at 300 MHz, and require about 2 million transistors. While such a configuration does reduce the

parallelism to a mere half million CPUs by 2010, paradoxically the more complex logic noticeably

increases the chip count, especially at the low memory side where the count more than doubles!

5.5.4 Off Chip Contacts

In terms of off-chip bandwidth, if we assume peripheral contacts only (as was necessary in

EXECUBE to avoid disturbing the DRAM), then in 2004, we might assume 600 contacts.

Assuming 50 for power and ground, and 100 for the SIMD interface, there are about 450 contacts

for the others. Using today's technology, a single Myrinet protocol of 18 pins. would be capable of

160 MB/s. If we had only one such interface for each chip, given the total number of chips, the

total I/O bandwidth would greatly exceed the 20 GB/s requirement. This would leave something in

excess of 400 pins for chip-to-chip interfaces. Using SIA projections, in 2004, each such pin could

run at up to 350 MHz. Assuming a simple parallel transfer protocol, with perhaps 25% of the pins

for parity and handshaking, this would provide each chip with up to 13 GB/s of bandx_idth to other

chips. A square array of chips gives a system inter-chip bisection bandwidth in high fractions of a

terabyte per second. The same numbers for 2010 approximately double these rates.

The bottom line is that with PIM technology it appears that off chip bandwidth problems are

greatly alleviated.

Page 25

5.5.53DStacks

PIMsfor Petaflops

Todayat least one foundry is building 3D stacksof severaldozenmemorychips. If the

technologycontinuesto improve,andthe powerdissipationperchip is low enough thenin 20I0

we could assumestacksof 64 PIM chips for the arrangementof Figure 11. For the smallest

memoryconfigurationsthemeansthat the entire 1 PF PIM system could fit on 14 chip stacks -

or one memory card!

5.5.6 System Power

Finally, using the normal scaling rules of CMOS we can make a crude estimate of power

dissipation for such a system. Figure 12 includes a curve which extrapolates this for just the CPU

logic. This power is independent of memory density, and drops to about 8 KW with 2010

technology.

Memory power is a bit harder to estimate, but for EXECUBE (1992 technology) a 32 KB

memory module on a PIM chip dissipated about 0.1 W. Assuming the same scaling laws as with

logic, this yields a power of about 10 KW per TB in 2010. This gives a total on chip power of

about 20 KW for a 1 TB system, 330 KW for a 32 TB system, and 10 MW for a 1 PB system.

None of these numbers include power for chip-to-chip transfer.

5.6 Comparisons to Current Practice Extended

Today we have single chip microprocessors with peak performance approaching 1 GF.

Assuming that by 2010 we have 16 GF microprocessors, and that to support each in a system one

would need 8 L3 cache chips and a bus interface chip, then a 1 PF system would require 60,000

such nodes, for 600,000 chips. Assuming the densest DRAM chips of 0.5 GB each are added to

this chip set. For a 1:1 ratio this requires 2 chips per processor, for a total of 720.000 chips! This is

6 times more chips than the PIM approach!

Further, at 2 DRAM chips per processor, there may be extreme problems in obtaining enough

bandwidth. Using the run of thumb that each flop requires a data access of a full operand (8 bytes),

and that we are issuing 16 instructions per cycle, this means that the CPU core requires a

bandwidth of approximately 200 GB/second. Assuming that the cache hierarchy provides 100% of

instructions, and 95% of data references, this translates into a bandwidth demand on the two

Page 26

PIMs for Petaflops

memorypartsof about6 GB/second.This approachesa factorof 10morethanwhatcanbedone

today.

5.7SimplifyingtheOperatingSystemSupport

Making the PIM chips "look like memory"to a conventionalmicroprocessoras picturedin

Figure 11hassomesignificantsystemsoftwaresimplifying ramifications.Individual dataitems

canbeaccessedvia conventionalloadsandstoreswithout regardto wherein theprocessorarray

the data is. Since "memory is memory," the partitioning of data structuresto maximize

parallelizationcanbe donewithin the confinesof conventionalcompiler technoloTyby careful

memoryallocation.No speciallanguagesor languageextensionsareneededto do the mapping,

although it may be appropriateto considerpreprocessorsthat, given the desiredpartitioning

arrangement,will developthe datadeclarationsourcecodeto reflect that partitioning.Together

with initialization,overall systemmonitoring,anduserinterface,this permitsthe most complex,

but usuallyleastcomputationallystressing,partsof anapplicationto be written asconventional

scalarcoderunningin thehostmicroprocessor,utilizing whateveris thecurrentstateof theart in

tools.

It alsomeansthat we neednot keepafull blowncopyof anoperatingsystemin eachCPU in

the PIM. The host can handleall the complexproblemsassociatedwith users, file systems.

networkinterfaces,etc.,andleavethe"runtime"that is residentin eachPIM CPUthefar simpler

job of managingjust computations.

While simple, this approachstill requiressomeadditional featuresto be graftedonto the

underlyinghostoperatingsystem,with careas"devicedrivers"of variousflavors,including:

1.abilityto "pagefix" blocksof real memoryto virtual memory,sothat applicationsthat wish to

mapdatastructuresto differentchipsto supportparallelcomputationinternalto thosechipscan

doso.

2.supportfor "broadcasting"sequencesof SIMD instructionsto different groupsof processing

nodeswithin the PIM cardset,andfor testingfor globalconditions,suchasall processingnodes

in groupx havereachedacommonbarrierpoint.

Page27

PIMs for Petaflops

3.supportfor a parallel file systemwherethe disksareattachedto the interfaceswhich exit both

thechipsandthePIM cards.

4.supportfor a closelycouplednetwork of computenodesaspicturedin Figure 11, wherethe

interfacesexitingthePIM cardswould form averyhighspeedLAN interconnectfabric.

Note that the useof thesechip interfacesfor bothparallel file systemsand closelycoupled

network interfaceseliminatesa bottleneckthat severelyconstrainscurrent technology.The

multipleparalleldataportsare interfaceddireetly with different memories,and neednot either

contendeither for someinternalmemorybusor involvemultiple memory-to-memorycopiesto

position the datacorrectly.This shouldprovideboth a substantialreductionin real application

complexity,and permit achievementof muchhighersustainablelevelsof performanceover an

entireapplicationexecution.

5.8OtherKeyResults

In additionto investigatingPIM architecturesandthereVLSI implementations,this studyalso

lookedat awidevarietyof relatedsystem,benchmarking,andsoftwareissues.Follo_ing is abrief

list of their results:

1.A studyof the 5 kernelsselectedby GeoffreyFox at the June 1996BodegaBay Workshop

indicatesthat they canall benefit from 4 simultaneousmemoryaccessesfrom the 4 memory

macrosperCPU,that in mostcasestheaccessesfrom two separateCPUsto the samememory

stackcanbepartitionedinto differentslices(permittingconcurrencywithout a performancehit),

thatsomekind of a "testandset"is neededin thePIM CPUISA to managesynchronismwith a

neighbor,andthatthereneedsto betwo waysof specifyingmemoryaddresses:totally local to an

individualCPU,andglobally.

2.ParallelI/O will bea problemin termsof routingand(de)multiplexingdataon the fly, but that

internallyamessagepassingparadigmsuchasMPI shouldto straightforwardto implement.

3.Thereisaneedfor parallelglobalsynchronization(notjust betweentwo neighbors),andthatthis

needsto berelativelyefficient,with multiplesimultaneousrendezvousin actionat onetime.

Page28

PIMsfor Petaflops

4.Giventhe latencyandbandwidthinsidea CPU, it doesnot appearthat one needs to design an

overly complicated run time for each CPU. In particular, a multi threaded kernel may not be as

important for PIMs than for conventional machines.

5.A variety of parallel programming language models were studied: data parallel, task parallel, and

object parallel. The best of these were the data parallel ones such as HPF and C*. Functional

languages such as NESL and Concurrent ML (NESL in particular) had some advantages in their

ability to deal with prefix operators which yield "vector-like" operations, but that it looked

difficult to unfold recursions in these languages enough to provide the huge amounts of

parallelism we have observed in our designs. Other languages such a Lucid (an intensional

language) provided multidimensional syntax, but seemed to result in too high a _anularity to

match PIM's capabilities.

6.A database join function was implemented in parallel on the campus' SP-2 and experiments were

run with a variety of topologies of the supposed inter-node interconnects. This included the 3D

topology of EXECUBE. Because of limitations in the SP-2, parallelisms of at most 8 real CPUs

could be simulated. Results indicate that to get any real performance a very large number of

records are probably needed, with well in excess of a 1,000 records per CPU. Even then, only a

speedup of half of peak was observed, with little or no variation due to topology.

6. Importance of the Findings and Future Directions

The key result from this work has been that PIM not only represents a viable path to petaflops.

but is a key new trend in computer architecture that should be exploited across the board. The

importance of the work is shown in the reception it received when used as the technical basis for

proposals for several follow-on studies, all of which have been funded, started at about the time

this one completed, and will advance the work discussed here in several directions. These projects

include:

1.Participation in an NSF-sponsored "Point Design" study whose goal is to look at using PIM

technology to perform initial studies to advance to an intermediate level of performance, namelv

100 TF, within a shorter time frame that the 20 year outlook for the petaflop stud)'.

2.Design study No. 960587 entitled "Scaleable Spaceborne Computing using PIM Technology"

with the Jet Propulsion Laboratory (as a subcontract under their NASA prime contract Task

Page 29

PIMsfor Petaflops

Order RF-158) to investigate how the increased computing density of PIMs, especially as

configured as a memory accelerator as developed under this study, can be applied to a variety of

very high performance computing problems for deep space applications.

3.A study entitled "PIM Based Accelerator Technology Infrastructure Development" funded by

DARPA through the SPPDG Group at the Mayo Clinic into verifying the ability of commercial

VLSI fabricators to build PIM technology chips, the CAD tools needed to built them, and sample

applications of interest to DOD. Again the baseline architecture used in these investigations is

centered on the strawman PIM chip described above, with DOD applications assuming the

"smart memory" based accelerator format.

There are multiple other direct follow-on activities that will be considered in the near future

that owe their origins to the work done under this study. These include:

1. working with several research groups around the US to investigate PIM technoloD' as applied to

other problems. One example is a group at Cal Tech investigating achieving a petaflop through

the use of very high speed superconducting CPU technology, where there is a strong need for a

"smart memory" to do operations where the time delays needed to get data to or from the

superconducting CPU exceeds greatly the time spend by that CPU to do the work.

2.developing a prototype card using some newly announced PIM-like parts that will permit early

exploration of the memory mapped organization for PIMs, and demonstration of prototype

software to efficiently drive such an architecture from a conventional workstation.

3.Continued exploration of alternative CPU instruction sets that are both low power and that can

thrive on the latency and bandwidth environment presented by a PIM chip, but without the huge

complexity found in modern microprocessors.

Finally, at Notre Dame this study has laid the ground work for a rather large number of

additional graduate student projects which will push at different aspects of some of the problems

we encountered during the study. They should mature into thesis within a year or so.

In summary, this study has achieved some significant results both in achieving a petaflop and

in suggesting new directions in computer architecture. It has demonstrated the basic numerology

behind PIM technology, and shown that there are some huge architectural gains to be made by

Page 30

PIMsfor Petaflops

reconsideringthe waywe designsystems.Its resultshavestronglyinfluencedfurther work both

hereatNotreDameandat manyotherresearchestablishments.

7. RelevantPublications:

1.Kogge,P.M., "PursingaPetaflop:ArchitecturalRequirements,"in preparation.

2. Kogge,P.M., J.B. Brockman,"ThePIMDesignSpectrum,"in preparation.

3.Kogge,P.M., J.B. Brockman,"PursuingaPetaflop:theCasefor PIM," in preparation.

4. Kogge, P. M., et al, "Pursuinga Petaflop:Point designsfor 100 TF ComputersUsing PIM

Technologies,"to be publishedin 1996Frontiersof MassivelyParallelComputationConf.,

Annapolis,MD, Oct., 1996.

5.Kogge,P.M., T. Sunaga,et al, "A ParallelProcessingChipwith EmbeddedDRAM Macros,"to

bepublishedin IEEEJ.Solid StateCircuits,October,1996.

6. Kogge, P. M., "Computing ComponentCharacterization,"Section 8.1, Draft Proceedings,

PetaflopsArchitectureWorkshop,April, 1996

7. Kogge,P. M., T. Giambra,et al, "RTAIS: An EmbeddedParallelProcessorfor Real-Time

Decision Aiding," 1995National AerospaceConference(NAECON), Dayton, OH, May

1995.

8. Kogge, P. M., T. Sunaga,et al, "CombinedDRAM & Logic Chip for Massively Parallel

EmbeddedApplications," 1995Conf.on AdvancedResearchin VLSI, Raleio__h.NC, March

1995.

9. Kogge,P.M., "Processor-In-Memor3,ChipArchitecturesfor PetaFlopsComputing,"PetaFlops

FrontierWorkshop,Feb.,1995

10.Kogge,P. M., Contributor to Enabling Technologies for PetaFlops Computing. Cal Tech.

1995.

11. Kogge, P. M., "The EXECUBE Approach to Massively Parallel Processing," Int. Conf. on

Parallel Processing, August, 1994.

12. Kogge, P. M., J. Oldfield, et al, "VLSI and Rules Based Systems," VLSI for AI, Kluwer

Academic Press, 1990.

13. Semiconductor Association of America, The National Technology Roadmap for

Semiconductors, San Jose, CA

Page 31

PIMs for Petaflops

Appendix A

Preprint of

Pursuing a Petaflop: Point Designs for 100 TF Computers Using PIM Technologies

to be published in 1996 Frontiers of Massively Parallel Processing

Annapolis, MD Oct. 1996

Page 32

Preprint: To be published in Frontiers of Massively Parallel Computation, Oct. 1996

Pursuing a Petaflop: Point Designs for 100 TF Computers Using PIM Technologies

Peter M. Kogge, Steven C. Bass, Jay B. Brockman, Danny Z. Chen, Edwin Sha

Department of Computer Science & Engineering

University of Notre Dame, Notre Dame, IN 46556

Abstract

This paper is a summary of a proposal submitted to the

NSF 100 Tera Flops Point Design Study. Its main thesis is that

the use of Processing-In-Memory (PIM) technology can

provide an extremely dense and highly' e_cient base on which

such computing systems can be constructed The paper

describes a strawman organization of one potential PIM chip,
along with how multiple such chips might be organized into a

real system, what the software supporting such a system might

look like, and several applications which we will be attempting
to place onto such a system.

1 Introduction

Massive use of computer based simulation is rapidly

becoming a linchpin of science and engineering, largely because
of the explosive growth in the performance of modem

microprocessors. In terms of peak performance levels, the

newest massively parallel processors (MPPs), with tera(/l)ops

of performance, are now advertised as being capable of
attacking even the "Grand Challenges" of the 1980s. There are,

however, two major problems with the current state of the art:

first, the cost of the very highest end machines lies far beyond
the point where widespread deployment is feasible, and second
the software environments for these machines are awkward at

best, capable of eking out only fractions of the performance of
what the hardware is capable of supplying. Together, this signals

very severe problems if we are to consider climbing towards the

next major level of performance - peta(fljops.

The thesis of the proposal summarized in this paper is that
these problems stem from the "traditional" yon Neumann

bottleneck, and how we have approached it. For technology and

cost reasons we have historically separated memory parts and

CPU logic parts. With the advent of CMOS microprocessors

with very high performance pipelined and superscalar
architectures, individual CPU core performance levels have

gone through rapid acceleration, requiring ever increasing

amounts of bandwidth from the memory subsystem. These rates

have far exceeded the bandwidth capabilities of our densest

DRAM memory parts, and the gap will widen over time. The

net result is architectural complexity: memory hierarchies are

introduced to provide the bandwidth, which in turn drives cost

and the sottware complexity needed to address these hierarchies

efficiently, especially in an MPP environment.

A new technology is emerging to counter this fundamental
defect - the combination on one chip of both dense DRAM

memory and significant amounts of Io_c. This capability

permits new architectures termed Processing-In-Memory (P1M)
to place computing either right next to, or even inside of, the

memory macros, where there are huge amounts of raw memory

bandwidth. Projections out to the year 2014 laid the basis for

one of three potential peta(fl)ops architectures proposed at the
1994 Pasadena Workshop on Petaflops [15], and was further

amplified at followon workshops at the 1995 Frontiers

Conference [9], and then at Bodega Bay August 1995 [2].

The objective of the proposal summarized in this paper is

thus to utilize P1M technology potentials over the next decade to

configure some "point design" MPPs with 100 tera(fl)op (TF)

potential for several interesting classes of problems, and chip
architectures that should permit greatly simplified programming

environments. The applications to be studied include: solutions

of nonlinear PDEs, multidisciplinary design problems, and

problems in massive image compression. These were chosen
both because they exhibit a representative range of granularit3,,

data structures, and need for internal communications, and we

have a variety of new computational and parallel program

construction techniques for them under current study.

This paper is organized as follows: Section 2 summarizes

characteristics of potential 100 TF problems. Section 3
discusses current PIM technology. Section 4 then presents a

"swawman" point design. Section 5 discusses different

applications, with descriptions in Section 6 on software

development. Section 7 then describes our study approach.

2 Hardware Constraints

As the community has learned, a commercially viable MPP

is more than just hardware whose functional units can be run at

huge clock rates. At the hardware level, mae sustainable

performance can only be achieved if there is:

1. sufficient bandwidth from the memory system, at low enou_
latencies, to support the function units,

Page I

Preprint:TobepublishedinFrontiersofMassivelyParallelComputation,Oct.1996

2.sufficientmemoryto holdenoughdatalongenoughto
processittocompletion,

3.sufficientbandwidthbetweendifferentcomputenodesofan
MPPtoavoiddelayswhilewaitingfordata,

4.sufficientI/Obandwidthforfastinitialdataload,intermediate
resultsandcheckpointingdata,andfinalresults,toavoid
bollleneckingthemaincomputation.

Whilealloftheseareimportant,perhapstheonewithmost
effectonsystemreplicationcostsismemory.Forexample,for
"classical"scientificcomputingaruleofthumbisthataMBof
memoryisneededforeachMFofperformance.Forapetaflop
thiswanslates into a petabyte of memory - which is a huge
amount even 20 years from now. The 1994 Pasadena

Conference revisited this rule for petaflop level systems, and
decided that there was a reasonable set of 4D simulation

problems where storage might grow as performance to the 3/4

power (after a GF). The result was that for such problems a ratio

of 0.03 MB per MF (30 TB) might be acceptable. The Bodega

Bay Workshop carried this analysis one step further and
estimated primary memory needs for about 36 different

applications with an average memory requirement about 3 TB.

This proposal addresses not a petaflop machine but one of

a 100 TF. For the 4D simulation case, this translates to about
5-10 TB. If one assumes that such a machine would not attack

problems which ran over a day in leng'th (i.e. around 3 hours =

10' seconds on a petaflop machine), then all the Bodega Bay

applications that at a petaflop would run in less than 3 hours
might take only a terabyte. Further, if one were interested in an

"entry level" machine, then 100 GB would permit attacking at
least a few applications. We will thus use the three numbers of

10 TB, 1 TB, and 100 GB as initial memory design points.
In terms of secondary storage, for the same subset of

applications, there are only two that require over 0.1 PB, with

the rest on the order of 100 GB. Since one would not expect this
to change with a downsize to 100 TF, we will assume 1 TB of

secondary memory - enough for data sets for I 0 applications.

For the same application suite, I/O requirements are
between I and 100 GB per second. We assume that these are for

continuous I/O during program execution, so that if the machine
is only a 100 TF one, then the 1/O would be one tenth - i.e. a

max of 10 GB/s. Initial program load, however, has to be

estimated separately. Assuming that all of primary memory has
to be loaded at stamap, and assuming that this is to be done in an

overlapped fashion with the prior application, derivation from

the Bodega Bay data indicates that an additional sustained rate

of 10GB/s is needed. Thus, a total I/O of 20 GB/s is baselined.

3 PIM State of the Art

Many chips today merge logic with some form of memory.
At one extreme most modem microprocessors combine millions

of Wansistors of logic with a few tens of KB of SRAM (for

caches). At the other ex_'eme, most conventional DRAMs

combine MBs of memory with a few thousands of transistors for

address decoding for the internal arrays, hatching at the sense

amps, and multiplexing to drive the data lines.

PIM chips fall in the middle. They combine large amounts

of both memory and logic. However, their key distinguishing

feature is that they represent potentially serf-contained desigrts
where all the processing functions and all the memory for that

processing for one or more nodes are on the same chip. This

self-contained characteristic has several key, consequences:

I. a single part type scaleable MPP is poss_le where additional

computational resources are added by adding more chips

(much as today we add more memory via plug in SIMMs).

2. This permits novel 3D packaging techniques which reduce

both overall system costs and chip to chip paths, reducing the
other killer of MPP performance - latency.

3. Placing the processing logic next to the memory permits a

huge increase in the percent of raw memory bandwidth that

can be utilized from the memory arrays over today, where at

best a few percent of the total bandwidth is presented to the
off-chip pins. This can reduce or eliminate the need for

complex caching and other wicks in the design of the

processing logic - again reducing both ccva and latency.

4. Eliminating fi'om the processing chips the pins to support a

memory hierarchy means that these same pins can be used to

perform something computationalty useful namely

communication with other processing nodes.
5. Moving multiple nodes to a single chip also allows new

architectural techniques such as mixed SIMD and MIMD

processing, very high bandwidth memory-to-memory

wansfers, and "in the memory" processing, all of which

significantly reduce application program complexity.

3.1 EXECUBE - The First True PIM

EXECUBE [8,9,10] was the first true PIM to be

architected as a single part type MPP building block with all the
above features. It is based on a 4 Mb DRAM, with a large

center circuit block for custom logic. The chip has 16 separate
DRAM memory macros, 8 on top and 8 on the bottom. As

pictured in Fig. 1, each chip utilizes the logic to implement 8

complete Processing Elements (PEs), each with its own 64 KB
memory, 16 bit CPU, and inter PE DMA link support logic. The

PEs are arranged on-chip in a 3D binary, h.xpercube, with each

PE having a separate full duplex link off-chip. These links can

tie directly to links on other chips in almost any topology.

To simplify parallel application pro m-amming, the PEs

were also designed to nan in either SIMD or MIMD mode. A

host controller can place on the SIMD Broadcast Bus any
instruction from the PE ISA to be broadcast to some or all of the

PE nodes in the EXECUBE array for execution at the same
time. Insmactions in the PE ISA include ones to switch from

SIMD to independent MIMD mode, permitting a single SIMD
instruction to initiate simultaneous MIMD program execution in

the array. Other instructions in the PE ISA signal that the PE is

to switch back to SIMD mode, and await new insmactions from

Page 2

Preprint:TobepublishedinFrontiersofMassivelyParallelComputation,Oct.1996

¢--.

= ,.

0;;Io o o o_0

Ill]; Ii11| tillill_l] _

p,q,1PE#oPE'_aiP_
Pe#_pz#, PE#etpE#_

E_TERN _ ERNAL

UNK _LINK

EXTERN_ ERNAL

NA_ INK

[.IN 4 ?_L

EIO'ER EIt"fENN Pd.

Lj NK'---_I_ -'_ --LINK

$1MO Imlbl_UOn
Broad¢ili BUS

Fig. 1. The EXECUBE PIM chip

the SIMD Broadcast Bus. A simple interlock mechanism on this
bus stalls transfer of additional SIMD instructions until all PEs

that are designated to respond to a SIMD instruction have

actually reached a SIMD mode. This provides an extremely fast
and inexpensive global synchronization mechanism.

3.2 Other PIMs

Since EXECUBE, several other chips PlM-like have

emerged. Table 1 lists these chips, their peak performance per
chip, the number of on chip processors, the overall chip storage

capacity, and the ratio of storage to performance. This latter

ratio is particularly key because the closer this is to the values

needed for real computation, the more viable the overall designs

are. What is key from this table is that even today, the only
design that come even close to the desired 100 TF ratios are

EXECUBE, SHARC, and M32R/D, and that is because they
both chose a very dense memory technology.

Note that this table includes neither current

microprocessors with on chip caches, or single CPU chips

which were designed for MPPs but with limited on chip

memoQ'.

Table 1. Current MPP PIM Chips

Chip

EXECUBE

Terasys

SHARC

TI MVP

MIT MAP

DAAM
i

IM32R/D

Year !# CPUs Perf. MB MB/Perf

1993 8 s 50 Mips 0.5 0.01

1993 256 lb 625 Mbops 0.02 2.6E-5

1994 1 32b 120 MF 0.5 0.005

1994 4+1 2K Mops 0.05 2.5E-5

1996 4 800 MF 0.13 1.6E-3

1996 1024 IB 862 Mops 0.5 6E-4

1996 1 51 Mips 2.0 0.02

4 A PIM-Based Generic Point Design

For this proposal we have taken the key ideas from the
current crop of PIM chips, especially EXECUBE, married it

with a variety of new architectural ideas, and extrapolated the

technology ahead 10 years. The resulting "swa_wnan" PLM

"point design" system is described here. It will be personalized
to specific applications during the study. This design is

discussed in several pieces: first, the chip, then configuring the

chip into systems, and then system software.

4.1 Strawman PIM Chip Architecture

The PIM chip assumed here has three separate

characteristics worthy of discussion: the processing node macro

(memory + logic), the "tiling" of a chip with these macros, and

the interfaces provided on the chip for communication x_ith
other chips. Fig. 2 diagrams an assumed processing node macro.

It consists ofa CPU surrounded by 4 separate memory macros,

with each memory macro having its own decoding sense amps,

and row logic. The choice of 4 macros was deh'berate, and

reflects the need to have sufficient memory per processing node

to be able to sustain the computational througho put_
While the actual choice of CPU architecture is somev_fiat

free, the EXECUBE experience and subsequent studies have
indicated that the most efficient choices in terms of units of

silicon per unit of performance are today, and _511continue to

remain, the simpler designs. Today's multi-million transistor

superscalar, super pipelined, designs use 5 to 30 times more

silicon per unit of performance than a veu' basic design with

125K transistors for a primarily fixed point engine and 250K

transistors for floating point intensive one. With such simpler
CPU designs, 4 separate memory macros provide not only the

density but also more than sufficient bandwidth, particularly if

the latches formed at the memory sense amps are visible to the

processor in some way. In practice the nature of these latches

could range from simply a fast single line cache, to actually
placing programmer visible registers and'or ALUs at the sense

amps. In any case, if future DRAM macros merely maintain

today's EXECUBE 12 ns page access time. the latency for a

memory access as seen by the node's processing logic is

measured in a handful of cycles - more than enou_ to support
simple CPUs at near 100% utilization.

_e_d_], Sense Aml_ S_.onex-. _ Am_

Memory _-_ Memory _

Array "_ _ _ "__< " Array < __

CPU Processing Logic

Se_leAral_ & Rm_ Lo_ S_icAm,I_ & R_,_ Lo_a_

Memory _ _ Memory _,

Array _ e _ _< _ Array <

$eeond_2. Sen_: Am_ S_.onda_ _ Am_

Fig. 2. Strawman PIN Processing Node Macro

Page 3

Preprint:TobepublishedinFrontiersofMassivelyParallelComputation,Oct.1996

Processing pl+ocessing P:ocessing Processing PC[&

.Node M Icro .Node M lcro Node M ac+o ,Node M acro lnle+
Sv slern

"<"J "_++ p,.4,m,r

PCI& l _+I_': :.""_I p g P in g P i ng

,I

Inter

i S,',,¢ m A'r'IM':rP_ '__]_l+::r_ N o de M N o de _.l N o de M

P...... ,n, ":':;'_!....._ P........ , P...... ,ng "+''+
Node Macro Node Macro Inter

l N 0 ' e M :"1"1 i"*':t +',_ot
;+,dr ",ktr

PCI & Processing Processing Processing Processing

lntc_ Node Macro Node Macro .Node Mmcro .Node Macro
_.. s te__,___m.m

s,+..,,.,,d.l_,,,+.._,.,J. ,+,,+J..:.;,,,+._+....,,+_+,,+.+'++,+.l..,_++'-..J+_,.+=..+,,++l-;,,d.+:..,,.].

Fig. 3. Generic PIM Chip Floorplan

Finally, one additional feature is a duplicme sets of sense

amps at either end of the bit lines (as shown in Fig. 2). This

enables the transfer of data on a row-by-row basis between

adjacent processors, providing a monumental advantage in

bandwidth over today's MPP designs.

Tiling the surface of a chip with nodes as in Fig. 3 not only
gives us this incredible bandwidth, but also directly implements

a 2D mesh (as in Fig. 4), with an absolute minimum of

interconnection wiring. Further, having access to the secondary

sense amps on the outside of the processing array permits logic

(labeled "Node-Node" in Fig. 2) to be added to provide fast
communication off-chip. There are at least two candidate

interfaces to consider here. First, along the top and bottom we

might add a protocol for fast parallel row transfers which permit
communication with other chips of the same type. This would

be of particular benefit if we were to utilize emerging "chip

stacking" technologies where cube of silicon chips are literally

"glued" together, with wires running down the sides.

The second kind of interface may be a fast "intersystem"

protocol, such as Myrinet [12]. This not only provides direct
connectivity of the first type, but also permit connection to other

arrays of PIM chips (of the same or different organizations) over

greater than direct chip-to-chip distances, or to I/O devices.

Having multiples of these per chip again provides basic

bandwidth fire,power that is far beyond that found in modem

.....1"'........t-'-t :
Fig. 4. Single Chip = Mesh MPP

designs. Again, this can only serve to help simplify the task of

configuring real applications.
Finally, also as shown in Fig. 3 and 4 we assume a third

type of interface built into each of our PIM chips, namely a

simple "memory like" interface such as the PCI bus protocol.

This single interface is broadcast to all processing nodes, and

permits a processor outside the chip to directly address the on

chip memory as simple memory via loads and stores. Also, this
same interface would be used as in EXECUBE as a bus over

which global SIMD instructions can be issued. The major
difference from EXECUBE is that the address broadcast on this

bus would be used to distinguish between direct memory access

and SIMD inslructions for the processing node. It may also be

appropriate to include commands to set up and initiate FO

transfers over the other chip interfaces discussed above.

4.2 System Configurations

Fig. 5 illustrates how multiple chips would be combined

together into an MPP system. Multiple chips might be stacked
into 3D cubes and multiple cubes placed on a "memory card."

The node-to-node interfaces of the chips would be used for chip

- to - chip communication in the stacks. Cube-to-cube, or

off-card, transfers would utilize the second style of interface.

Further, providing a native memory interface permits insertion

of these cards directly into the memory structure of the then

current "state of the art" microprocessor, making the entire

on-chip memory "look like memory" to the microprocessor.

Finally, by loading and storing to other memory mapped
locations this host can initiate SIMD operations in the array,

which in turn can either start up computational MIMD programs

in the array, perform fast global synchronization steps, or initiate

transfers between chips over the data interfaces.

4.3 Scaling to 100 Teraflops

A first cut at the total system complexib' needed to achieve
100 TF with configurations such as in Fig. 5 can be obtained by

interpolating from the 1994 SIA CMOS technology roadmap

Parallel

File

System

Modcrn

H_ ihcrPoeprrf::::: e

High Speed Memory. Bus (PC]) V

1 +_:__
] InterS>stem ,.._"

I IIl_n'erc°n°ects111

PIM - Based Memory. Card V

Standard FO

Fig. 5. Assumed System Organization

Page 4

Preprint: To be published in Frontiers of Massively Parallel Computation, Oct. 1996

[1]. Fig. 6 summarizes the results in terms of total silicon area

for each of the assumed memory sizes. If2004 is a technology

point for a 2006 machine, then the baseline PIM designs would

have the characteristics of Table 2. Besides the basic memory

and logic projections, these curves also assumed running the on
chip processing logic at the SIA's" High Performance, On Chip

Clock" rates. Other more conservative design points might result
in 2-3X more chips.

The earlier comment about the dominance of memory on

size is shown in the "Total Area" plot of Fig 6, where the lowest

curve indicates the amount of silicon needed for the processing

logic alone. It isn't until total memory size drops to 100 GB that

the logic area dominates.

In terms of off-chip bandwidth, if we assume peripheral

contacts only (as was necessary in EXECUBE to avoid

disturbing the DRAM), then in 2004, we mi_t assume 600

contacts. Assuming 50 for power and ground, and 100 for the
SIMD interface, there are about 450 contacts for the others.

Using today's technology, a single Myrinet protocol of 18 pins,

would be capable of 160 MB/s. If we had only one such

interface for each chip, given the total number of chips, the total
FO bandwidth would greatly exceed the 20 GB/s requirement.

This would leave something in excess of 400 pins for

chip-to-chip interfaces. Using SIA projections, in 2004, each

such pin could run at up to 350 MHz. Assuming a simple

parallel transfer protocol, with perhaps 25% of the pins for

parity and handshaking, this would provide each chip with up to

13 GB/s of bandwidth to other chips. A square army of chips

gives a system inter-chip bisection bandwidth in high fractions
ofa terab_e per second.

Today at least one foundry is building 3D stacks of several

dozen memory chips. If the technology continues to improve,

and the power dissipation per chip is low enough then in 2004

we could assume stacks of 64 PIM chips for the arrangement of
Fig. 5. For the smaller memory configurations the means that

the entire 100 TF PIM system couid lqt on 1 to 2 cards, t

E_.,._ _

1995 2000 2(X)5 2O 13

ll0 TB ,O1 TB_rl00 GB CPU Logic on

Fig. 6 SIA Projections For a 100 TF

4.4 Comparisons to Current Practice

Today we have single chip microprocessors with peak

performance approaching I GF. Assuming that by 2004 we
have 10 GF microprocessors, and that to support each in a

system one would need 8 L3 cache chips and a bus interface

chip, then a 100 TF system would require 10,000 such nodes,

for 100,000 chips. Assuming the densest DRAM chips of 0.5

GB each, we would need 120,000 total chips for the largest 10

TB configuration, 102,000 for 1 TB, and 100,200 for 100 GB

configurations. The PIM approach is superior by up to alm_t

two orders of magnitude!

4.5 Simplifying the Operating System Support

As pictured in Fig. 5, making the PIM chips "look like

memory" to a conventional microprocessor has some significant

system software simplifying ramifications. Individual data items
can be accessed via conventional loads and stores without

regard to where in the processor an'ay the data is. Since
"memory is memory," the partitioning of data structures to

maximize parallelization can be done within the confines of

conventional compiler by careful memou, allocation. No special

languages or language extensions are needed to do the mapping,

although it may be appropriate to consider preprocessors that,

given the desired partitioning arrangement, will develop the data

declaration source code to reflect that partitioning. Together
with initialization, overall system monitoring, and user interface,

this permits the most complex, but usually least computationally
stressing, parts of an application to be _witten as conventional

scalar code running in the host microprocessor, utilizing
whatever is the current state of the art in tools.

While simple, this approach still requires some additional
features to be grafted onto the underlying operating system, with

care as "device drivers" of various flavors, including:

1. ability to "page fix" blocks of real memory to virtual memory,

so that applications that wish to map data structures to

different chips to support parallel computation internal to
those chips can do so.

Table 2. 2004 PIM Desi_n Characteristics

MB/MF Ratios

0.1:=10 TB 0.01 = 1TB 0.001=I00GB

Total Chips 33,119 3,686 742

3D Stacks 517 58

Bisection BW

#Nodes/Chip

MB/Chip

MF/Chip

796

5

302

3,019

266

48

271

27,132

12

119

241

135

134,713

Page 5

Preprint:TobepublishedinFrontiersofMassivelyParallelComputation,Oct.1996

2.supportfor"broadcasting"sequencesofSIMDinstructionsto

different groups of processing nodes within the PIM card set,

and for testing for global conditions, such as all processing

nodes in group x have reached a common barrier point.
3. support for a parallel file system where the disks are attached

to the interfaces which exit both the chips and the PIM cards.

4. support for a closely coupled network of compute nodes as

pictured in Fig. 5, where the interfaces exiting the PIM cards

would form a very high speed LAN interconnect fabric.

Note that the use of these chip interfaces for both parallel
file systems and closely coupled network interfaces eliminates a

bottleneck that severely constrains current technology. The

multiple parallel data ports are interfaced directly with
different memories, and need not either contend either for

some internal memory bus or involve multiple

memory-to-memory copies to position the data correctly. This

should provide both a substantial reduction in real application
complexity, and permit achievement of much higher sustainable

levels of performance over an entire application execution.

4.6 Minimal Runtime

If the processing logic inside each processing node in the

PIM chips is general purpose, then it is probably necessary to
provide some sort ofnmtime system. Unlike current MPPs, this

runtime need not approach the complexity of a complete

"operating system kernel." There are several reasons for this:

1. use of a host microprocessor with access to the PIM chips
means that most system management and user functions can

be done in the host, with conventional OS support.
2. the individual units of computation are smaller than the host

microprocessor designs, and thus it is nowhere near as critical

to keep each and every one busy 100% of the time. This

reduces the need for local sophisticated task schedulers.
3. the assumed ability to run in SIMD and MIMD mode off

loads a lot of the application code global synchronization and

set up to the host microprocessor, where it can be done

largely in parallel with on going computations in the array.
4. the huge amount of low latency bandwidth available between

nodes on the PIM chips means that very sophisticated
messaging protocols may not be needed, and that it ought be

possible to graft on simple but high performance "virtual

shared memory" protocols onto a systems which is inherently

a mix between a physically locally shared and globally

distributed memory design.

At this time, it appears that the key features that must be

designed into a runtime for the generic PIM chips of Fig. 4

include: a basic library of inter node message passing, support
for a virtual shared memory system, a "Remote Procedure Call"

like mechanism that permits SIMD code to set up and initiate a

MIMD program on some selected set of node, and fault

tolerance and rerouting in case a chip goes down.

5 Applications

Three applications were chosen for study as targets for

variations of the above point design: solutions of nonlinear

partial differential equations (PDEs), mulfidisciplinary design

problems, and some problems in massive image compression.

These problems were chosen because: (I) they exhibit a

representative range of variation in granularity, data structures,
and need for internal communications, and (2) we have a variety

of new computational and parallel program construction

techniques for them under current study.

5.1 Wave Digital Solution of Nonlinear PDEs

Simulating systems of PDEs is a classical problem v_hich

has driven the development of many prior generations of

supercomputers. Looking to the future, besides obvious

extensions such as more and varying grid points, there will be a
real need to attack more complex PDEs, such as ones with non

linearities. Given this, one of our chosen applications is the

solution utilizing a new finite difference technique for

transcribing such systems into discrete space-time

representations. This "wave digital" technique was originated by

Alfred Fettweis (a recent Visiting Professor at Notre Dame)

from earlier work in signal processing, where it was known as
"wave digital filtering."

Briefly, the steps involved in transcribing a continuous

system of PDE's into a discrete algorithm begin with a special

transformation of the coordinate system within which the

equations were originally elaborated. This results in the

time-domain attributes of causality and passivity being
automatically acquired by all the dimensions in the new system,

not just time [5]. Next, a multidimensional "reference circuit" is

constructed for these equations. Elements in such circuits are

typically resistors, transformers, independent sources, as well as

so-called multidimensional inductors and capacitor [6]. This
reference circuit is designed such that if one were to write a

certain complete set of equations of motion for the circuit (as

Kirchhoff loop and/or node equations), the set of transformed

partial differential equations would result. Finally, this reference

circuit may be transcribed into a _ave digital flowgraph

representing the simulation calculations required to be

performed at each discrete-space grid point [7].

There are four major properties of wave digStal
formulations which make them especially good candidates for
MPPs such as described here:

1. If the original system is multidimensionally stable (i.e..

passive from an energy conservation view, and most real

systems are), then the wave digital formulations are also. This
leads to stable finite difference systems even for difficult non

linear PDEs operating on the edge of instability.

2. As a consequence of both the stability and the simulation of

wave quantities rather than the original problem variables,

Page 6

Preprint:Tobe published in Frontiers of Massively Parallel Computation, Oct. 1996

there is a potential for reduced dependent variable word
lengths and dynamic ranges. This leads to reduced memory

requirements and simplified arithmetic units, both of which
would minimize total silicon utilization.

3. Communication between computations is strictly "nearest

neighbor." In fact, wave digital is the only known second

order difference method we know of that has this property.

This fits neatly in with the natural structure that grows out of

tiling chips with PIM macros as pictured in Fig. 3.

4. Finally, the approach accommodates naturally parameters that
vary over space and time, increasing further the range of

applicability.

As a simple example, Fig. 7 diagrams the grid structure and

inter grid point dependencies for a sample wave digital

formulation of the electrical behavior of a pair of parallel plates.
While this problem is not exotic by current standards, the

resulting solution pictured here is still very characteristic of

more complex non linear PDEs. Each grid point involves

internal storage of 3 changing wave parameters and 18 grid

point-dependent terms, transfers of 6 parameters to and from

three neighbors, 29 add/subtracts, 5 constant multiplies, and 10
multiplies by grid point & time-dependent parameters. If each

parameter were 32 bits (because of the inherent stability

properties of the wave digital approach), this translates into a

grid point which needs 84 bytes, and in the time required to do

44 arithmetic operation an inter grid point I/O bandwidth of 24

bytes. If one postulated a problem with 104x 104grid points, 106

time steps, where parameter values were changed every 1000

steps from in core tables and wave values sampled every 1000
steps, a 100 TF per second MPP with perhaps 105 processing

nodes, would need about a minute of execution time, with a

primary storage requirement of about 10 TB (for a ratio of 0.1

MB per MF), about 50 MB/sec bandwidth between neighboring
processing nodes, and about 20 GB/s of system I/O to archive

the wave quantities. This is an ideal match to a PIM based MPP
such as described earlier.

In terms of software development for such problems, the

process of developing the actual code for each grid poinfs

computation does not appear particularly complex. What is
difficult, especially when grids may change dynamically during

a computation, or when we wish to group multiple sets of grid

0 0 (0

0 0

) 0
Fig. 7 Wave Digital Solution of a Typical PDE

points into single computational nodes, is to partition regions of

grid points together, and then schedule the computations in an
optimal fashion. Much of the ongoing work at Notre Dame

discussed below for transformation, partitioning, and scheduling

has proven directly applicable.

5.2 Multi Disciplinary Design Problems

Already one of the heaviest consumers of computing
cycles, engineering design will motivate the need for increased

growth to teraflop levels and beyond over the next decade. A

first trend, apparent in many industries, is the drive to reduce the

duration of design cycles. This becomes all the more difficult in

light of the second trend, which is the need to perform more
detailed computer-based analyses during each cycle, allowing

engineers to evaluate the quality, reliability, and

manufacturability of designs before release to production. This

in turn is further complicated by a third trend, which is an

increasing focus on simulating and optimizing not only.

individual components, but also complex, coupled.

mukidisciplinary systems.
Although the demand for high-performance computing in

engineering design is clear, the mechanisms for best providing

and utilizing the necessary computing capacity are not. While

significant work has been invested in applying MPPs to

single-discipline analyses, less is known about its application to

multidisciplinary analysis and optimization (MIX)). In the

research proposed here, we plan to investigate methodologies

for massively-parallel MDO on a PIM-based architecture.
Specifically, we plan to perform an assessment of the computing

requirements of current MDO algorithms on a given large-scale

design problem, to identify the bottlenecks and limitations to

applying MPPs to MDO, and to develop and size a Irial

problem. Because of the impact that MIX) technology can have
on the development of PIMs themselves, we will focus our

examples on CAD for VLSI.

One of the major results of the Notre Dame MDO effort

has been the development, implementation, and testing of the

Concurrent Subspace Optimization (CSSO) algorithm [18]. In
this CSSO algorithm, a global optimization problem is divided

into subdisciplines, each of which is optimized independently.

with tradeoffs negotiated by a system-level coordination

procedure. In order for the subspaces to be able to perform their

local optimizations in parallel, each must have a means for

accurately computing its own system states and performance, as
well as a means for approximating the non-local information

that is generated in the other subspaces. For computing local

system states, each discipline provides a contributing analysis.

which may themselves embody highly-complex systems of

equations, requiring intensive processing for solution. Non-local

approximations are required because in a coupled system.

changes in a local design variable not only have a direct impact

on the performances of that subsystem, but also have an indirect

impact that result from the influence of changes on other parts of

Page 7

Preprint:TobepublishedinFrontiersofMassivelyParallelComputation,Oct. 1996

the system. During each subspace optimization, the design

points that are visited are stored in a design database. At the end

of the subspace optimizations, this data is used to approximate a

system-level optimization problem that is solved to trade-offthe

subspace-optimal design moves in order to make a global design

move. After the global coordination procedure is performed, a
new design point is produced. The CSSO algorithm iterates until

convergence is achieved, as measured by relative changes in
both the design vector and the system objective function

following the global coordination procedure.

A variety of small-scale problems have been used to test
the performance of the CSSO algorithm thus far. These test

problems have fallen basically into two categories: problems

with a moderate number of disciplines (-10) yet simple
contributing analyses, and those with only two or three

disciplines yet highly-complex contributing analyses. An

example of the former is an aircraft concept sizing problem, that

considers the geometry of the aircraft, propulsion,

aerodynamics, and flight regime [19]. As an example of the
latter, in an ongoing project, we are developing methods for

concurrent optimization of integrated circuit fabrication

processes and cell libraries [11]. This particular technology will

be particularly important in the development of PIM chips,

where different circuit modules such as memory, logic, and I/O
may wish to "push" the process in different directions in order to

improve their own local performance. Through the use of the

CSSO algorithm, it should be possible to find a process

specification that is maximally beneficial to the whole product.

There are several features of multidisciplinary design
optimization problems that make them a particularly interesting

test case for PIM-based architectures and massively-parallel
computing in general. Foremost is the hierarchical nature of the

problem that is well-suited to the varying degrees of locality that

PIM architectures offer. At the lowest levels, fine-grain

parallelism may be used to accelerate computation of individual

contributing analyses, while coarser levels of granularity may be

applied to the subspace optimizations or system-level
coordination. A second issue that will need to be addressed for

MDO is how to automate tasks that currently require extensive

human intervention. In particular, a great deal of expertise is

often required in order to run individual contributing analyses

and to interpret their results. Such interpretation is required
because the numerical models used in many analyses can and do

converge to solutions that are physically infeasible, which will

mislead an optimizer. Robust analysis methods will have to be

developed for both optimization and analyses in order to take

advantage of the available computing bandwidth.

In order to apply massively-parallel MDO techniques to

large-scale problems-with many disciplines and complex

contributing analyses-it will be necessary, to revisit many of the

assumptions upon which the CSSO algorithm is founded. In

particular, the current CSSO implementation employs a

sequential quadratic programming algorithm, using local first-

and second-order sensitivity information to guide the search for

optimal designs. This approach may la'ove ineffective for

large-scale problems that could produce a highly multi-modal

design space. New techniques that use parallel search methods
will have to be developed to address such problems.

5.3 Massive Image Data Compression

Another of the proposed applications is compressing and
decompressing sequences of image data using new geometric

techniques under development at Notre Dame. Problems

involving sequences of images occur in many important

applications, such as computer animation, satellite data process
and analysis, flight simulation, medical data analysis, and data

visualization. Further, it is often the case that the volume of

image data (e.g., in an image database) is substantially large. For

example, NASA Goddard Space Flight Center currently has 60

million images (with about a megapixel per image), spanning

about 20 years. As technology advances, b?, the year 2010, the

NASA image repository could hold 25 billion images. Irnage

maintenance and retrieval is therefore a problem of great
significance. However, in spite of the fact that data compression

research has already produced highly sophisticated techniques

for text data retrieval, the study on image data compression and

retrieval has lagged far behind.

Our research at Notre Dame on compressing images has

been based on the following fact: Image dam is often organized

and presented in the form of similar image sequences. In a

typical sequence of picture frames (e.g., in a movie), often there
is only small change from one flame to the next frame, and it is

possible to describe the differences between one image and the

following in the sequence by several elementary, operations

(such as adding, deleting, or substituting some new features,

translating along a direction, rotating by a small angle, etc.).

Our approach for compressing sequences of similar

images, mainly based on data structure and algorithmic
techniques from computational geometry, is substantially

different from others, with the following advantages:

I. It achieves both fast retrieval time and efficient memory

usage. For example, let n be the number of images in a given
sequence, and D be the total number of "'differences"

between adjacent image pairs over the sequence. Then the

retrieval time of our approach is that of generating one image

(without having to generate the previous image first) plus an

additive (3(log D) overhead per pixel column, and the
memory for storing the whole image sequence would be that

of storing one image plus O(D).

2. While our image sequence compression scheme is virtually

lossless, it avoids costly computations needed by performing
transforms such as Fourier or Discrete Cosine. The basic

operations involved in our compressing and decompressing

processes are just usual operations on search trees like data
structures, such as search, insertion, deletion, etc. This is

especially significant to applications like image query

systems (e.g., an image library). Often in such a system,

Page 8

Preprint:TobepublishedinFrontiersofMassivelyParallelComputation,Oct. 1996

decompression either takes place very frequently, or takes

place at the receiving end of data transmission where
computational resources may not be the state of the art.

A key to our image sequence compression technique is the

use of persistent data slructures [4,t4]. Note that ordinary data
structures are ephemeral, namely, a change to the structure

destroys the old data version (e.g., a deleted item is gone). In

contrast, a persistent data structure supports fast access to

multiple versions of dynamically changing data. Previously,

persistent data structures have only been used to maintain
multiple (similar) versions of one-dimensional information. In

our case, a sequence of "similar" images can be viewed as a

series of varying versions of an image that are generated by

performing a sequence of elementary operations. However, to

use persistent data su'uctures to compress an image sequence

(each image naturally contains two-dimensional data), several

extensions must be made, including: (1) Partition the first image

into a number of "slim _ regions (for example, each such slim
region initially may contain pixels in several adjacent columns),

with each region being viewed almost as if it contains

one-dimensional data. (2) Use a set of closely coupled persistent

data structures to maintain subsequent versions of the regions of

the image, with one data structure per region. (3) Maintain a

"descriptoff data structure for describing certain special

operations (e.g., translations and rotations) performed on the

contents of the image along the image sequence.

Although our image sequence compression technique
appears to be quite useful, we believe the prospects of extending

this technique to our PIM based MPP systems is even more
interesting. One important reason is that the volumes of image

databases are often enormous. For example, a 10-million image

library holds 10 terapixels (at 1 megapixel per image).

Therefore, a great deal of computing, 1/O, and storage power is

needed to process compression and retrieval of image data of

that kind of size. Our proposed MPP certainly has the potential

for this kind of computational capability. Another important

reason is that our compression technique seems to be quite
readily extensible to the PIM based MPPs. For example, we can

store several adjacent regions of the image at one processing

node. This processing node then handles the computation of

maintaining the persistent data structures for those regions. The

interfaces between the processing nodes/chips of the PIM based
MPP can then be used to accommodate the

couplin_communications between data structures across the

boundaries of their represented image regions.

6 Program Development Tools

Even though the systems addressed in this proposal are

"point designs," they will exhibit most of the soRware

development problems to be faced in a complete "general

purpose" petaflops machine. While some are greatly alleviated

by the organization pictured in Fig. 5 others still remain, in
particular dealing with the massive amount of parallelism that

naturally comes in a PIM design (upwards of a 100,000

processing nodes). Ongoing projects at Notre Dame are

addressing a new set of techniques and tools applicable to the
point design applications, including transformation of the basic

equations or code, optimization of the scheduling of the tasks,
and partitioning of the problem to reduce the communication

between processors.

Transformation techniques are usually applied to get

optimal execution rates in parallel and/or pipelined systems. The

retiming (or loop pipelining) technique is a common and

valuable tool in one-dimensional problems, represented by data

flow graphs, which can maximize the parallelism of a loop body

by regrouping the operations in iterations to produce a new

iteration structure with higher embedded parallelism [3]. In this
study, we will use new techniques to model loop bodies

representing greater than one-dimensional problems by

multi-dimensional data flow graphs [13]. The loop body. is

transformed, i.e., the existing delays are redistributed, preserving

the original data dependencies. This technique has been
successfully applied to several problems that have grown out of

the wave digital PDEs discussed above

Once large amounts of parallelism has been extracted, such

as by the above techniques, an additional problem is the need to

map the solution to a fixed number of equal processing

elements, such that all of them are able to execute

simultaneously, with a minimum communication between

processors. To solve this problem, the solution must be
partitioned in blocks where the boundaries of such blocks will

determine the amount of data to be transmitted. By using

multi-dimensional retiming techniques the partitioning and

mapping problems can be solved for hi_ parallelism. The data

communication, however, requires a data scheduling technique,

in order to improve the use of data available locally at each
PIM. A method called carrot hole data scheduling has been

developed at Notre Dame to solve this problem [17]. This

research proposes consideration of the incorporation of such a

technique into a tool set, with a expected significant

performance improvement in complex problems where there are
hi_ numbers of data dependencies between tasks.

Finally, even considering the reduction on the data transfer

between processors obtained by the carrot-hole data scheduling,

a more important optimization is to hide the overhead (or time

consumed) caused by the remaining data transmissions. This

problem has been target of the preliminary, studies, resulting in a

technique known as communication-sensitive rotation

scheduling [16]. This study will extent such a methodology
expressly for the candidate PIM configurations, particularly for

multiple chip configurations.

7 Proposed Study

The overall objective of this study is to quantify the degree

to which PIM-based MPPs can be built and programmed over

the next 10 years that would provide effective performances of

Page 9

Preprint: To be published in Frontiers of Massively Parallel Computation, Oct. 1996

the lO0+ tera(fl)op range against some real applications. This

translates into two specific objectives: refining the generic point

design for each application (both PIM chip and system), and

developing a coherent view of all the software needed to

implement each of the algorithms on its specific point design. In

keeping with the objectives of NSFs call for proposals, the

emphasis is on the latter, particularly on identifying areas of

commonality and/or areas that offer the potential to grow into

more "general purpose" software for PIM-based MPPs.

Given thus, the study's approach takes the following steps:

1. For each of the chosen applications a more careful estimation

will be made of the overall computational flow, and the

expected computational demands (memory, (fl)ops, I/O).

2. These characterizations will be used to define a most

appropriate processing logic to fit within the confines of a

PIM node macro as diagrammed in Fig. 2. It is expected that

there may be three such definitions, one for each application.

3. Each of these macros will then be grown into revised point

design chips (as in Fig. 4) and systems (as in Fig. 5), backed

up with revised versions of Table 2.

4. For the three systems, a more careful analysis will be made of

the modifications needed to be made to the system software

running in the host microprocessor. At this point, we expect

to see a very high degree of commonality among all three.

5. Each application will then be revisited with its specific point

design (chip and system) in mind. The goal here is to

construct a scenario for how the application would be

transformed into real code, with emphasis on what real

development tools would be needed at each step of the way.

The emphasis here is on completeness - at each step from

application definition to code debug, what needs to be done,

what tools are needed to perform them, and do those tools (or

the algorithms embedded in the tools) exist.

6. Finally, all three point designs (both hardware and software)

will be revisited with the goal of abstracting out those parts

which are common to all, and those which represent

application-specific needs. For the latter, an initial

determination will be made as to how much of an impact on

overall effectiveness the lack of that feature or tool would be

for that specific application.

The results will be summarized in a final report to be

delivered at the Petaflops Workshop at the Frontiers of

Massively Parallel Computation, Oct 1996 (this conference).

8 Acknowledgments

The work reported in this paper was partially funded by

NASA grants NAG5-2998/Sl and NAG-l-1561, and by the

National Science Foundation under grants CCR-9623585, and

MIPS-9501006. Further funding will be from the NSF Point

Design Study.

References

1.-, The ?,rational Technology Roadmap for Semiconductors: 1994,

Semiconductor Industry Association, San Jose. CA.

2.-, Workshop on the Application and Algorithmic Challenges for

PetaFIops Computing Bodega Bay., CA. Aug 1995.

3. Chao, L.F. and E. H.-M Sha. "" Retiming and Unfolding Data-Flow

Graphs", Int. Conf. on Parallel Proc., AumJ.st 1992, pp. I133-40.

4. DdscolI, J. R., N. Samak, D. Sleator, and R. E. Tarjan, "'Making

Data Structures Persistent," J of Congnaer and S, stern Science,

Vol. 38, pp. 86--124, 1989.

5. Fettweis, A.. "'Wave Digital Filters: Theory and Practice," Proc.

IEEE, Vol. 74, No. 2, pp. 270-327, February 1986.

6. Fettweis, A. and G. Nitsche. "'Transformation Approach to

Numerically Integrating PDE's by Means of WDF Principles."

MultidimemionalSys.andSignalProc., Vol. 2, pp. 127-159, 1991.

7. Fettweis, A. and G. Nitsche, 'Numerical Integration of Partial

Differential Equations Using Principles of Multidimensional Wave

Digital Filters," J ofVLSISignalProc., VoL 3. pp. 7-24, 1991.

8. Kogge, Peter M., "EXECUBE - A New Architecture for Scaleable

MPPs," Int. Conf. on Parallel Proc., St Charles, I1_ Penn State

Press, Aug. 1994

9. Kogge, Peter M. "Processors-in-Memory (PIM) Chip Architectures

for Peta(Fl)ops Computing"Petatlops Workshop, 1995 Frontiers

of Massively Parallel Computation, McLean. Va., Feb., 1995.

10. Kogge, Peter M., Toshio Sunagm Histada Mi?ataka. Koji Kitamu_

and Eric Retter, "Combined DRAM and Logic Chip for Massively

Parallel Systems," 6th Conf. on Adv_d Research in I'LS1.

Raleigh, NC, IEEE Press, March 1995, pp. 4--13.

I1.Lokanathan, A.N.J.B. Brockman, and J. E. Renaud, "A

Methodology for Concurrent Fabrication Process/ Cell Library

Optimization", 33rd ACM/IEEE Design Auto. Conf. June 1996.

12. Myricom, http://www.myri.com

13. Passos, N. L. and E. H.-M Sha "" Full Parallelism in Uniform

Nested Loops using Multi-Dimensional Retiming", Proc. Int. Conf.

on Parallel Proc., Aug. 1994. vol. II. pp. 130-133.

14. Samak, N. and R. E. Tarjan. "'Planar Point Location Using

Persistent Search Trees," Comr_ of d_e .4CAL Vol. 29, pp.

669-679, 1986.

15. Sterling, T., P. Messina. and P. Smith. E,nabling Technologies for

Peta(FL)ops Computing. MIT Press, Cambridge, MA. 1995.

16.Tongsima. S., N. L. Passos and E. H-M. Sha. "" Architecture

Dependent Loop Scheduling via Communication Sensitixe

Remapping", Int. Conf. on Parallel Proc.. Aug. 1995, II. pp.
97-104.

17. Wang J. Q, N. L. Passos and E. H.-M. Sha. "" Opdrnal Data

Scheduling for Uniform Multi-Dimensional Applications." to

appear in 1EEE Tram. on Computers, 1996.

18. Wujek, B.A., J. E. Renaud. S. M. Batilk and J. B. Brockman.

"Concurrent Subspace Optimization Using Design Variable

Sharing in a Distributed Computing Environment`" Proceedings of

the 1995 Design Engineering Technical Contbrences. Advances in

Design Automation, ASME DE-Vol. 82. pp. 181-188.

19. Wujek, B.A., E. W. Johnson, J. E. Renaud. and J. B. Brockman.

"Design Flow Management and Mulfidisciplinary Design

Optimization in Application to Aircraft Concept Sizing" 34th

AIAA Aerospace Sciences Meeting and Exhibit. January, 1996.

Page 10

PIMs for Petaflops

Appendix B

Computing Component Characterization

a portion of the draft proceedings of

The Petaflops Architecture Workshop

Oxnard, CA, April 1996

Page 33

Chapter 8

Architecture Working Group

8.1 Computing Component Characterization

The NSF point design studies by their very nature must assume computing

and memory components that do not exist today, and will not for the better

part of a decade. Given the array of architectural choices avMlable today,

and the difficulty for even the expert to fully understand all of them and how

they will look in tomorrow's technology, it is clear that without some sort

of rational and common projections, it will be difficult to validly compare

and contrast the alternative point design approaches as they develop.

To help provide such a common baseline, at least for the mainstream

CMOS technology, this chapter will summarize a series of projections based

on the Semiconductor Industry Association's (SL_) 1994 National Technol-

ogy Roadmap. This section is orgaaizedis as follows: a quick summary of

the technology trends, a projection of commodity memory components; and

then a projection of how those trends may result in high performance Sym-

metric Multiprocessors (SMP) chips. A spreadsheet program is described

that will allow exploration of alternative scenarios. This spreadsheet is used

to give some projections for future DEC ALPHA 21164-1ike chips.

8.1.1 Basic Technology

Table 8.1.1 summarizes some of the key CMOS characteristics listed in

the SL4. l_oadmap (as distributed at the Peta_ops Architecture WorkShop,

PAWS-96), in three-year intervals from 1995 through 2010. The number in

"(_)" after many of the characteristics reference the page in the SIA docu-

ment where these data originated. The other rows were derived by simple

327

Table8.1:BasicSIA Roadmap
Characteristic

(SI.A Pg. #)

Feature Size(ll)

Vdd(14)

Chip Capacity

Chip Size(12)

Density

Chip Cost

$/MB

Units 1995

_m 0.35

i volts 3.3
DRAM

i MB 8

! 1-m-n2 190

MB/cra _ 4
Rel. to 1995 1

Rel. to 1995 1

High PeHormance Microprocessor

Tra.nmstors / Chip(16)

Chip Size(B2)

) MT

Clock: DSP(46)

] I_D_n2

Density] MT/cm _

Clock: uP(12) I MHz

MHz

SRAM Cache Density(ll)

Cost/Transistor (B2)

MB/cm 2

millicents

Chip Cost I Rel. to 1995

12

25O

5

300

400

2

1

1

CMOS Trends

1998 2001

0.25 0.18

2.5 1.8

32 128

280 420

11 30

1.65 2.82

0.41 _ 0.18

Logic Based

28 64

300 360

9 18

450 600

600 800

6 20

0.5 0.2

1.17 1.07

ASIC Logic Chips

Transistors/Chip MT 9 26 53

Chip Size(B2) man _ 450 660 750

Logic Density(B2) MT/cm 2 2 4 7

Clock(B2) MHz 150 200 300

Minimum Chip Cost Rel. to 1995 uP 0.75 1.1 0.88

NRE Chip Cost S/volume 27 26 26

2004 2007 2010

0.13 0.1 i 0.07

1.5 1.2 I 0.9

512 2,048 ! 8.192

640 960 ! 1400
80 213 585

3.76 7.53 12.05

0.06 0.03 0.01

Chips

150 350 I 800

430 520 J 62035 67 129

800 1000 I 1100

1100 1500 I 1900

50 100 ! 3X)0

0.I 0.05 f 0.02

1.25 1.46 I 1.33

108 275 [560

900 1100 I 1400

12 25 40

400 ! 500 625

0.9 11.15 0.93
32 !55) 56

arithmetic computation from the provided numbers.

Under the "Units" column, "MT" means "Millions of transistors, "MHz"

stands for "Megahertz," "NRE" is "Non-recurring Expense,"

For logic, it should be stressed that there are at least three distinct trends

that one can assume. First is the full custom, maximum density, very high

design cost, but high volume, "Microprocessor" logic family. Two sets of

clock rates are given for such designs: a "high performance microprocessor':

clock (listed as "#P clock"), and an even higher clock rate "digital signal

processor" (DSP) that might be achieved for specialized designs. The third

set of logic is Application Specific Integrated Circuit (ASIC), which has lower

transistor density and lower clock rate, but is more amenable to relatively

inexpensive specialized designs. Note that the largest ASIC chips are almost

uniformly twice the size of the custom microprocessor chips, making up in

area what they lose in density. Note also that we will assume that SRAM

cache density is the same for both ASIC and microprocessor logic, since in

either case it would be a custom macro.

Given the difficulty in interpreting the cost numbers in the SIA Roadmap,

328

Table 8.2: Basic SIA Off-Chip
Characteristic

#P Package Pins(12)

_P Signal Pins

ASIC Package Pins (12)

ASIC Signal Pins

Chlp-To-Board Rate

Aggregate/_P SIA Bandwidth

Aggregate ASIC SIA Bandwidth

Aggregate/JP 2-Wire Rate

Aggregate ASIC 2-Wire Rate

Si
Units 1995 1998

512 512

410 410

I 750 1100
600 880

MHz 1S0 200

GB/s 6.1 8.2

GB/s 9 17.6

GB/s 20.5 20.5

GB/s 30 44

Trends
2001 2004 2007 2010

512 512 800 1024

410 410 640 819

1700 2200 3000 4000

1360 1760 2400 3200

250 300 375 475

10.2 12.3 24 38.9

34 52.8 90 15.2

20.5 20.5 32 41

68 88 120 1 160
I

the chip costs listed here have all been normalized to the SIA 1995 basis,

and assume high volume production. Lower volume specialized chips will

cost more. In particular, the "Minimum Chip Cost" for the ASIC chips

assumes no allocation for the design NRE. The last row in the table gives a

"per chip" estimate of this for volumes from 10,000 to 100,000.

The SIA trends assume two separate types of chips: logic and D1L-kM.

As several recent experimental chips have demonstrated, such as the IBM

EXECUBE chip, it should be a possible in the future to mix both on the

same die. To do this may require special consideration in several areas such

as off-chip contacts and speed of on-chip logic. These are discussed later.

Off-Chip Signaling Potential

Table 8.1.1 totals some basic off-chip bandwidth numbers derivable from

the SIA data. It includes the number of available packaged pins, and an

estimate of the pins available for data (by allocating 20% of the total to

power and ground). Also, two different signaling protocols are assumed:

the "Chip-to-Board" rates described in the SL4. Roadmap; and a two-pin

differential scheme discussed at PAWS-96 that might allow a signaling rate
of 1 GHz.

The aggregate signaling rates come from the product of the number of

pins on the package, times the signaling rate, divided by 10 to conver_ to

bytes per second (10 was used instead of 8 to allow something for parity

and for protocol). Note that in terms of off-chip communications, such as

to memories, the real transfer rate must take into account both bandwidth

for data and bandwidth for the address or other control information needed

to instigate the transfers.

One serious caveat to using these numbers blindly may occur if chips

contain very significant amounts of both logic and DRAM. Reaching the

329

largenumberof pins listed in Table 8.1.1 assumes area contacts on the chip,

and when there are significant amounts of DRAM present, it may not be

possible to place such contacts over the DRAM ceils. In such cases, it may

be necessary either to reduce the area pins by the percent of area that is

DRAM, or to assume peripheral arrays only.

8.1.2 Commodity Memory

From Table 8.1.1, one can develop a scenario of potential commodity DRAM

chips. From that, one might want to assume that for example, for a 2007

time frame machine a 2-GB chip would be available. However, from his-

torical observations of the 64-Mbit (8 MB) chip, the capacities listed here

seem to correspond to the year of first limited production. Thus, the real

cost savings listed are probably not apparent until perhaps three years later.

This means that while one might want to assume in 2007 a 2-GB chip for

reducing parts count, the cost per MB is probably more appropriately taken
as the 2004 numbers.

In terms of absolute price, in 1995 the street price of packaged and tested

DRAM was in the $20 to $40 per megabyte. Given the above discussion,

this would translate into 2007 prices of $1 to $2 per MB, or $1M to $2M
per terabyte.

SMP CPU Chip Projections Spreadsheet

Taking the above, and related, technology numbers and projecting what

commodity microprocessors might be is much more difficult than for DI_4.M.

Technology will have passed the point where entire computers (CPUs, caches,

and at least some memory) are on one chip, In fact technology will allow

multiple such machines. Each vendor will be making a separate set of de-

sign decisions, based on perceived marketplace needs. Consequently, it is

irrational to select a single part type as the building block for all point de-

signs. Instead a spreadsheet has been constructed to allow specifying a set

of architectural parameters, and from that deriving the capabilities of chips
that have those parameters, over the same time frame as described above.

The spreadsheet takes the specified architectural characteristics, and as-
sembles an estimate of chip size based on all the SIA numbers discussed

above. Table 8.1.2 lists the basic input area for the spreadsheet. The num-

bers in the larger bold font are the ones input by the user. Those shown in

the table are for a trial run assuming the DEC ALPHA 21164 microproces-

330

Table8.3: Im)ut Parametersfor theSMPChipEstimator
File:Petatech

05/24/96 ...

ALPHA 21164 Ll:Instr Ll:Data L2

Block Length Bytes 32 64 64

Entries # 256 256 512

Associativity _ 1 1 3

Tag(Adr+Status) Bits 36 72 36

Ports # 1 1 1

Note: L1-Data Cache assumes 2xthe tag

SMP Chip Design Projections Worksheet

Enter Design Choices Here I ---

CPU Core(MT)= I 2

Logic Type(am,d}= I d

CPUs/Chip= t 4

On-chip DRAM {MB)= ! 0

Reference Clock Rate(MHz)= i 300

Reference Feature Size(u)= ! I

L2 Replicated{r) or Shared(s) I r

& 2xthe Block to reflect the duplication to get 2 ports

sor, which is discussed later. They assume numbers for an on-chip two-level

cache hierarchy, with and without potential on chip DRAM for memory.

The L1 cache is assumed to have two parts, a data cache and an instruction
cache.

It is worth discussing the terms in Table 8.1.2 because they would help

others use the spreadsheet, and because they represent some of the key

characteristics that influence both chip size and performance characteristics.

1. The "Block Length" (in bytes) is the number of bytes read out of the

cache on a single access in a single associative set.

2. The "Entries" is the number of cache rows present in the cache array.

3. The "Associativity" is the number of associative sets in the cache (use

1 for a direct mapped cache for a decent approximation).

4. The "Tag" is the number of bits from the address used in the com-

parison from each set, along with LRU, status, etc. bits. A useful

approximation is the number of bits in the virtual address, minus the

number needed to represent a page, plus 6 to 8.

5. The "#Ports" is the number of separate ports available from the cache

for simultaneous access. Numbers greater than 1 for L1 data caches

wi]] become more frequent in the future as microprocessors with mul-

tiple load store units become more common. Shared L2 data caches

might also have multiple ports.

6. The "CPU CORE" is the number of transistors of logic involved with

the CPU itself, exclusive of caches, but including all processing logic,

TLBs, write back buffers, etc.

331

. The "Logic type" specifies what kind of logic to assume. Three sepa-

rate values are permitted. "u" selects the custom microprocessor chip

size, transistor density, and clock rate. "d" selects the same as for "u,"
but assumes the higher DSP clock rate. "a" assumes the ASIC size

and speed chip.

. The "#CPUs/Chip" indicates how many of the above CPUs (each

with its own L1 cache set) are to be placed on the chip. Any positive

number will result in the spreadsheet attempting to fit that number

(and no more or less) on the chip of the size specified by the "Logic

Type" entry. A "0" here will tell the spreadsheet to jam as many

CPU+L1 combinations as possible onto the chip.

o The "OnChip DRAM" allows specification that a certain number of

MB of DRAM are to be attempted to be placed on the chip, along with

the CPUs discussed above. Given the current state of technology, it

may be appropriate to assume the "a" model of logic in order to get a

cost effective chip if DRAM is included. If either "u" or "d" is selected,

the cost of the chip might be estimated as some multiple of the sum of

the costs of DRAM and logic chips of the same siie, since both DtL-kM

and logic fabrication processes might need to be run against the same
wafer.

10. The "Reference Clock Rate" is what clock rate the CPU used in the

modeling exists at today. This number is used to provide a relative

performance multiple for our resulting chip vs known current bench-
marks.

11. The "L2 Replicated or Shared" entry allows specification of either

"r" or "s." For the former, each CPU+L1 combination on the chip

receives in addition its own, separate, L2 cache. For the "s" entry, the

spreadsheet assumes exactly one L2 cache for all the on chip CPUs.

In the latter case, the user might want to assume multiple L2 ports to
reflect the multiple usage.

A snapshot of the output is shown in Table 8.1.2, with the rows defined
as follows:

1. "Feature Size" is the number selected by the SIA as representative of

the leading edge technology of the time.

332

.

.

.

.

.

.

.

.

"Clock Rate" is the clock rate selected by the "Logic Type" entry

above.

"CPUs/Chip" is either the number of CPUs that the user specified as

being on chip, or the maximum number of CPUs that would fit (if the

user parameter was 0 as discussed above).

"Occupied Area" is the square millimeters taken up by the CPUs,

their associated Lls, the L2 (or replicated L2s), and specified on chip

DRAM. Again, this is computed by the sprea.dsheet from the technol-

ogy densities projected from the SIA numbers.

"Spare Area" is area on the chip that is unused. Note that the size of

the chip assumed is based on the "Logic Type" entry described above.

A negative number here corresponds to an overflow on the chip (the

specified number of CPUs won't fit).

"If Spaxe=DRAM" lists how many extra MB of DRAM could be placed

on the chip if all the spare area from row 5 was converted into DtU-YM

at the best density of the day.

"Relative Perf." is the product of the number of CPUs on the chip

and the clock rate specified by the "Logic Type" choice, all divided by

the "Reference Clock Rate." Thus it represents a peak performance

multiple that might be achieved over the current baseline design. If

"Occupied Area" is greater than the assumed chip size, then this mul-

tiple is listed as "NoFit" to indicate the chip design is infeasible at

this point in time.

"Total Transistors" simply represents all the logic, SRAM, and DP,.AM

transistors that went into the area described in item 4, Occupied .a_rea.

"-If DRAM filled" adds onto Total Transistors (item 8) one transistor

for each DRAM bit that was added to fill up the remaining space

specified in item 6, If Spare=DRAM.

Representative Output: the DEC Alpha

As a test case, and one that might actually be representative of a natural

design point, the appropriate parameters for the DEC Alpha 21164 chip were

placed in the worksheet, with the logic type varied through all three types

333

Table 8.4: Sam ltput of Computed Chi Characteristics
Units 1995 1998 2001 2004 2007 2010

Feature Size /_m 0.35 0.25 0.18 0.13 0.1 0.07

Clock Bate MHz 400 600 800 1100 1500 1900

CPUs/Chip 4 4 4 4 4 4

Occupied Area m.m s 450 200 89 43 22 11

Spare Area rnJm -_ -200 100 271 387 498 609

If Spaxe=DRAM MB {7} 9 66 248 851 2.851

Relative Perf. Multiple NoFit 8 11 15 20 25

Total Transistors MT 37 37 37 37 37 37

-if DRAM filled MT (23.3) 120 633 2,265.2 7,692.7 25,697.4

"a,", "u," and _d," and a combination of different numbers of CPUs placed

on chip. This chip was a representative choice since it is a performance

leader, is well documented, and already has a two level memory hierarchy

(L1 and L2) on the current chip. Chip clock rates as of 1995 were 300

MHz (in agreement with the SL_ projections), with up to four instructions

issued per cycle, of which two could be floating point multiply accumulates--

providing a peak performance of 1,200 MF at 300 MHz. We will use these

peak numbers as a baseline, knowing that in reality sustainable performance

will be several multiples less than this.

As a verification exercise for the known 21164 parameters, the work-

sheet computed that a chip with a single CPU would contain 9.3 million

transistors---exactly what the real one does today. Also, the area at 0.35

micron feature size is 165 sq. mm. The current chip, when built out of

0.5 micron technology, is 299 sq. ram, which if everything scaled according

to the linear scaling laws, would convert to 299x(0.35/0.5)2= 146 sq. ram.

This is within 13% agreement, well close enough for estimation. We suspect

that the difference may be due to how the SIA computed cache density by

including an overhead term from the tag arrays, whereas we computed that

term separately from the provided information.

This spreadsheet estimation technique allows computation, as a function

of time, of a range of potential SMP chips; their relative performance, on chip

DRAM potential, and the ratio between storage (in MB) and performance
(in MF). The latter is of particular interest, because if the ratio matches any

particular application, then a point design can be made out of only one part

type. Tables 8.1.2, 8.1.2,and 8.1.2 are summaries of these three values from

the spreadsheet, again assuming an ALPHA 21164 as a baseline. The three

CPU counts run include a single CPU per chip, a 16-CPU chip configuration,

and one where the chip is packed with as many CPUs as possible, with no

334

Table8.5: PeakPerformancein MF perChip
Year Max DRAM: 1 CPU

ASIC _P DSP ASIC _P

1995 1,200 1,200 1,200

1998 1,200 2,400 2,400

2001 1,200 2,400 3,600 19,200 38,400

2004 1,200 3,600 4,800 25,200 51,600

2007 2,400 3,600 6,000 32,400 63,600

2010 2,400 4,800 7,200 39,600 70,800

16 CPUs No DRAM: Max CPUs

DSP ASIC uP DSP

1,200 2,400 3.600

7,200 10,800 14.4OO

51,600 24,000 38,400 51.600

70,800 t 72,000 124,800 171.600

96,000] 228,000 384.000 576.000

121,200 I 618,000 994,8OO 1,717,200

extra onboard DRAM. In all cases, we assume that each CPU has its own

96 KB L2, as is present today (it may be reasonable to assume larger L2s).

Note that the technology is not dense enough for 16 CPUs until 2001. Note
also that in Table 8.1.2, the columns for Max CPUs list the number of CPUs

on chip and not the extra DRAM (since there isn't any).

Given these numbers, there is a variety of potential chips that might

make for suitable point design basis. For purposes of discussion we will

assume 2004 technology for a 2007 point design system.

For a single CPU per chip, but stuffed with DRAM, we can get chips

with 1 GF to almost 5 GF of performance, and sufficient DRAM to give

a memory ratio of from 0.06 to 0.47--serious numSers that would allow

construction of a single part type machine of from 20,000 to 100,000 chips.

For a 16-way SMP on chip, peak performance would run from 25 to

70 GF, with perhaps a 100 MB of DRAM for an L3, meaning that a few

thousand CPU chips would be suitable, but with external DRAM a necessity.

At 2 GB per chip, this might require upwards of 50,000 DRAMs for a full

100 TF of memory. Bandwidth for this external memory also needs to be

investigated.

Stuffing a chip with CPUs only, would reduce the total number of CPU

chips to under a thousand, but with no on chip DRAM for L3, and zhus

more bandwidth needed off chip.

In all cases we are talking about a machine with on the order of 50.000

to 100,000 separate CPUs all running concurrently. System software must

be capable of managing this level of parallelism efficiently if any meanin_ul

fraction of the system's peak is to be utilized.

In all cases, power needs to be more carefully estimated to ensure that

the chips have not exceeded maximum thermal limits.

335

Table 8.6: DR_4.M on Chip at Peak Performance (in MB) per Chip
Year Max DRAM: 1 CPU 16 CPUs No DRAM: Max CPUs

ASIC uP DSP ASIC uP DSP ASIC uP DSP

1995 I0 5 5 2 2 2

1998 54 23 23 9 6 6

2001 174 82 82 " 42 1 1 20 16 16

2004 563 268 268 372 165 165 45 39 39

2007 1861 878 878 1615 740 740 114 96 96

2010 6527 2890 2890 6130 2698 2698 247 226 226

Table 8.7: Ratio of DRAM to MF per Chip
Year Max DRAM: 1 CPU 16 CPUs No DRAM: Max CPUs

ASIC, uP DSP ASIC uP DSP ASIC _P , DSP

I I1995 0.01 0.00 0.00

1998 o.o51o.o,O.Ol
2001 0.15 0.03 0.02 0.00 0.00 0.00

2004 0.47 0.07 0.06 0.01 0.00 0.00

2007 0.78 0.24 0.15 0.05 0.01 0.01 I

i2010 2.72 0.60 0.40 0.15 0.04 0.02

336

