NASA-CR-202432

PIMs for Petaflops

Final Report:

Processor-In-Memory (PIM) Based Architectures
for PetaFlops Potential

Massively Parallel Processing
NASA Grant NAG 5-2998

July 15, 1996

Dr. Peter M. Kogge
McCourtney Professor of Computer Science and Engineering
IEEE Fellow, IBM Fellow (retired)
University of Notre Dame
Notre Dame, IN 46556
219-631-6763

fax: 219-631-9260

email: kogge@cse.nd.edu

PIMs for Petaflops

Final Report:

Processor-In-Memory (PIM) Based Architectures
for PetaFlops Potential

Massively Parallel Processing
NASA Grant NAG 5-2998

July 15, 1996

Dr. Peter M. Kogge
McCourtney Professor of Computer Science and Engineering
[EEE Fellow, IBM Fellow (retired)
University of Notre Dame
Notre Dame, IN 46556
219-631-6763

fax: 219-631-9260

email: kogge@cse.nd.edu

1. Introduction: Page 1

2. The Problem Addressed by this Study: Page 1
3. Study Objectives and Approach: Page 3
4. PIMBackground Page 4
5. OverviewofResults Page 6

5.1 Interactions with Petaflops community Page 6

5.2 Applications Requirements Page 7

5.3 PIM Technology Design Spacec.coiiiiiiiiiiina .. Page 10
5.4 PIM Architectural Design Space il Page 13
5.4.1 Processor Node General Architecture Page 14

5.4.2 Choice for Processing Logiccooviiiiii ... Page 16

5.4.3 Floorplanning by Tiling Page 19

5.4.4 Adding Off Chip Interfaces Page 20

5.5 System Configurations Page 22
5.5.1 Chip Counts for a Petaflop System Page 23
5.5.2Areaand Logic Fraction Page 24

5.53 Internal Parallelism Page 24

554 0ffChipContacts oo, Page 25
5.8.563D Stacks ... Page 26

5.5.8 System Power Page 26

5.6 Comparisons to Current Practice Extended Page 26
5.7 Simplifying the Operating System Support Page 27
9.8 0therKey Results Page 28

6. Importance of the Findings and Future Directions Page 29
7. Relevant Publications: Page 31

Appendix A: Preprint ""Pursuing a Petaflop..."
Appendix B: PAWS Draft Proceedings, Section 8.1, "Component Characterization"

PIMs for Petaflops

1. Introduction:

The report summarizes the work performed at the University of Notre Dame under NASA
Grant NAG 5-2998 from July 15, 1995 through July 14, 1996. Researchers involved in the work
included the PI, Dr. Peter M. Kogge, and three graduate students under his direction in the
Computer Science and Engineering Department: Stephen Dartt, Costin lancu, and Lakshmi

Narayanaswany.

The organization of this report is as follows. Section 2 is a summary of the problem addressed
by this work. Section 3 is a summary of the project's objectives and approach. Section 4
summarizes PIM technology briefly. Section 5 overviews the main results of the work. Section 6

then discusses the importance of the results and future directions.

Also attached to this report are copies of several technical reports and publications whose
contents directly reflect results developed during this study. This includes a paper that will be
published in the Frontiers of Massively Parallel Computing Conference in Annapolis, MD in
October, 1996. Several other papers are under preparation for submission for formal publication.

All these published papers will acknowledge the support received from this grant.
2. The Problem Addressed by this Study:

With the achievement of real teraflops (10" floating point operations per second, TF)
computers in sight, it is now time to begin focusing on the next major level of processing: a
petaflop (10" operations PF) per second. Such machines could compute in 15 minutes what
would take a TF machine over 10 days, or a high end gigaflops (10° operations per second - GF)
machine over 30 years. As was shown in the 1994 Cal Tech Workshop on Petaflops Computing,
and the 1995 Petaflops Frontiers Workshop (both including sponsorship by NASA, with
significant organizational responsibilities by Dr. Thomas Sterling, then of NASA CESDIS), there
are a great many applications of significant scientific and economic benefit that would be opened
up by such levels of computing. Further, the same technology that would enable these levels of
computing would also enable placing today's teraflops machine room in a desk environment, and
today's gigaflops rack of computers into handholdable packages. Both of these size reductions

have huge potential societal impacts, especially as we move to a more and more mobile society

Page 1

PIMs for Petaflops

where portable communications and information exchange of all sorts over gigabit networks will

become the bedrock of the business environment.

The major problem with achieving such levels of performance today is cost. Even using the
best of today's technology would require 10's of millions of chips and literally 10's of billions of
dollars to reach a petaflops machine. This is simply not a viable option. However, projecting
technology ahead, as was done in the 1994 Workshop, indicates that within approximately 20
years the state of the art in VLSI should make such machines feasible, with at least three different

computer architectures reasonable candidates.

Given the above result, why should any attention be paid in 1995 or 1996 to petaflops level
machines? The answer is two-fold. First, all the architectures proposed in the 1994 Workshop for
petaflops were truly Massively Parallel Processors (MPP), an approach becoming widespread at
the very high end of existing machines but proving tough to handle, and virtually unstudied for
lower level everyday applications, and not at the level of 10s to 100s of thousands of
semi-independent processors (non trivial non SIMD engines). Second, the architecture with the
greatest initial potential in terms of minimal chips, and thus cost, is one where multiple entire,
relatively simple but not trivial, computers are integrated onto single chips that combine the state
of the art in memory density with very significant amounts of high speed logic. For obvious

reasons the architecture of such chips is becoming known as Processing-In-Memory (PIM).

In today's world of superscalar, superpipelined, multiple execution unit, 10 million+ transistor
single CPU microprocessor designs, both of these observations are so far out of the mass
production norm that without a jump-start, neither will mature to the levels needed by the time the
technology is ready for a petaflops. Consequently, what is needed is a believable roadmap
projecting no only what appropriate PIM architectures might look like 20 vears from now, but
what are the intermediate stops along the way. This includes what can be done with today's
technology, or the technology of 1998 or 2001, for example, to implement such PIM-based MPP

machines, and how does this compare with where the conventional trends will take us.

Very preliminary projections [8, 9, 10] based on the first real PIM chips such as EXECUBE [3,
7, 11] indicate that in terms of silicon usage, PIM offers at least an order of magnitude better

advantage than other approaches. Given the potential simplicity of PIM designs versus modern

Page 2

PIMs for Petaflops

microprocessors (EXECUBE cost less than $5M to develop versus hundreds of millions for the
very leading edge conventional chips), this means that PIM-based MPPs have the potential to not
only affect very high end computing 20 years from now, but radically change the way we embed

very high levels of processing in the mobile world of the late 1990s'!
3. Study Objectives and Approach:

Given the above observations, the goal of this study was to develop an initial roadmap to
achieving petaflop using PIM-based MPPs, with a emphasis on early and continuing design points
that would identify both the technologies needed to achieve a petaflop, and intermediate
applications, including embedded ones of interest to NASA, that would provide the economic

impetus to fund more fully the development of those technologies.

In particular, as described in the original proposal this work was to consist of the following:

1.Interactions with applications experts and the developing petaflops research community (both
within and outside of NASA) to validate that architectural choices are not only chip-efficient, but
also are reasonable targets for real applications. Such applications will include not only petaflops

level ones, but lower performance, especially embedded, applications which mayv be uniquely

enabled by PIMs.

2.Use of existing CMOS VLSI technology trends to identify the design spaces, in terms of amount
of memory and logic, possible for PIM chips at regular intervals over the next 20 years.
Constraints such as off chip contacts, power dissipation, die size for economic production, etc.,

were all a part of this characterization.

3.Architectural tradeoffs to identify which type of individual processor node architectures best
utilize the silicon and memory bandwidth present on a VLSI chip at each of the above time
intervals. This included not only existing architectures (from the very simple to the more

complex), but also novel ones that more fully utilize chips with significant memory and logic.

4 Development of candidate MPP system architectures using potential PIM chips identified above,
and derivation of key characteristics such as limits and ease of scalability, number of chips,

power, needed runtime and support software, etc.

Page 3

PIMs for Petaflops

The statement of work also assumed participation at two workshops on petaflops over the year

of study.
4. PIM Background

The thesis behind PIM is that many of the problems facing very high performance MPP
computers stem from the "traditional" von Neumann bottleneck, and how we have ap‘proached it.
For technology and cost reasons we have historically separated memory parts and CPU logic parts.
With the advent of CMOS microprocessors with very high performance pipelined and superscalar
architectures, individual CPU core performance levels have gone through rapid acceleration.
requiring ever increasing amounts of bandwidth from the memory subsystem. These rates have far
exceeded the bandwidth capabilities of our densest DRAM (Dynamic Random Access Memory)
memory parts (needed to control system costs), and the gap will continue to widen over time. The
net result is architectural complexity: memory hierarchies are introduced to provide the bandwidth.
which in turn drives cost and the software complexity needed to address these hierarchies

efficiently, especially in an MPP environment.

The PIM technology is emerging to counter this fundamental defect - namely the combination
on one chip of both dense DRAM memory and very significant amounts of logic. This capability
permits new architectures to place computing either right next to, or even inside of. the memory

macros, where there are huge amounts of raw memory bandwidth.

Many chips today combine logic with some form of memory. At one extreme most modemn
microprocessors combine millions of transistors of logic with a few tens of KB (Kilo Bytes) of
SRAM (for caches). At the other extreme, most conventional DRAMs combine MBs (Mega Bytes)
of memory with a few thousands of transistors for address decoding for the internal arrays.

latching at the sense amps, and multiplexing to drive the data lines.

PIM chips fall in the middle. They combine large amounts of both memory and logic.
However, the key feature that distinguishes them from the conventional chips is that they represent
potentially self-contained designs where all the processing functions and all the memory for that
processing for one or more nodes are on the same chip. This self-contained characteristic has

several key consequences:

Page 4

PIMs for Petaflops

It is possible to conceive of a single part type scaleable MPP design where additional
computational resources are added by adding more of the same kind of chips (much as today we
add more memory to PCs via plug in SIMMs).

This in turn permits consideration of novel 3D packaging techniques which both reduce overall
system costs and provide shorter chip to chip paths, reducing the other killer of MPP
performance - latency.

Placing the processing logic next to the memory permits a huge increase in the percent of raw
memory bandwidth that can be utilized from the memory arrays over today, where at best a few
percent of the total bandwidth is presented to the off chip pins. This can reduce or eliminate the
need for complex caching and other tricks in the design of the processing logic - again reducing
both cost and latency.

Eliminating from the processing chips the need for often hundreds of pins to support a memory
hierarchy means that these same pins can be used to perform something computationally useful
- namely communication with other processing nodes.

Moving multiple processing nodes to a single chip also allows consideration of new
architectural techniques such as mixed SIMD and MIMD processing, very high bandwidth
memory to memory transfers, and "in the memory array" processing, all of which in turn should
be useful to significantly reduce application program complexity.

A combination of all these techniques offer the potential for greatly reduced power dissipation
per unit of performance. Simplicity in logic means that there is less logic to burn power;
reduced pin count to support memory hierarchies yields less power. and higher memory
bandwidth and lower latency next to the processing logic implies the potential for lower clock

rates - again lowering power.

The first such PIM chip to utilize state of the art dense DRAM, EXECUBE [5, 8, 11],

integrated onto a 4 Mbit DRAM chip 8 complete CPUs configured in a 3 dimensional binary

hypercube, and was used as a one chip type building block for MPPs of both MIMD and SIMD

organization. On a chip basis, it was up to 10 times more efficient than traditional techniques in

terms of performance per chip over an entire system. At 2.7 watts typical dissipation, it also

demonstrated extraordinary performance per watt (again on a system wide basis) for its time frame

and implementation technology.

Page 5

PIMs for Petaflops

5. Overview of Results

Very significant progress was made on all of the topics listed in Section 3. The following
subsections overview the results. In many cases more results are available in the attached reports,
with other results to be reported in documents currently under preparation. The order of
presentation starts with a brief review of the interactions held with the petaflops community; these
meetings will then be referenced in later sections when outputs from them directly affected the
results of the study. Following this is a summary of what was learned about petaflops applications
requirements, the design space offered by the projected CMOS trends, the potential high level
architecture of a strawman PIM chip was investigated, and then how that architecture could
evolve into a complete system. This latter section also addresses some issues associated with

software: both tools and runtime.

5.1 Interactions with Petaflops community

As part of this effort, we participated in not two, but three different petaflops related

workshops:

1.Petaflops Summer Study on Algorithms in Bodega Bay, CA in August 1996. At this workshop
we presented some early results from the PIM projections spreadsheet model described later,
with emphasis on the significant advantages that PIM held, along with the characteristics that a
PIM-based petaflops machine might have, in particular a degree of parallelism in the 160,000+
range. Feedback from this study provided more insight into exactly how much primary and
secondary memory, /O bandwidth, and expected running time were reasonable to assume for

petaflops applications.

2.Petaflops Architecture Workshop in Oxnard, CA, in April 1996. The results of this study were
used in two separate presentations at this workshop. First, the requirements learned from the
Bodega Bay workshop were presented early in the workshop to provide an overview of what was
required by any petaflops capable machine, not just the PIM approach. Second, a more detailed
presentation was made on the PIM strawman architecture described above, with more realistic
CMOS technology constraints taken into account. Outputs to this study were a growth in the
architectural design space for PIM chips, and a recognition that PIM could be applied in much

more general fashions than had been earlier anticipated.

Page 6

PIMs for Petaflops

3.Petaflops System Software Workshop in Bodega Bay in June 1996. Although no formal
presentations on PIMs were made at the workshop, it became clear that the PIM approach,
especially when coupled with its insertion into a conventional system as "smart memory,"” held
the promise of greatly simplified software (both tools and runtime support) over the more
traditional approaches discussed at the conference, and the problems that those approaches faced

when scaled to the petaflops region.

Finally, a meeting is planned in early August with interested government agencies as to the
next step for the development of petaflops machines in general, and how PIM might play a role in

that.

5.2 Applications Requirements

Before one can size a machine of any possible architecture to reach a petaflop, one must have
first a set of approximate requirements to work with. The 1995 Summer Petaflops Algorithm
Workshop in Bodega Bay, CA provided just such a basis by summarizing from over 30 possible
applications that would profit from a petaflop machine a variety of characteristics. including the
running time for a typical execution (when on a petaflop per second machine), the primary storage
(memory) needed to support the application, the secondary storage (disk) needed, and the I/O rate.
Given the cost of memory even in the 2010s, the primary storage figure is most telling. Figure 1
diagrams this as a scatter plot where each dot corresponds to a particular application. positioned on
the graph as a function of its execution time for a single run (in seconds, on x-axis) and primary
memory (in GB, on y-axis). Three different symbols are used here: one for applications requiring
less than 100 seconds (about 2 minutes), one for applications with execution times between 100

and 10,000 seconds (about 3 hours), and one for in excess of that.

As can be seen, the execution time spans eight orders of magnitude, and the memory
requirements span six orders of magnitude (1E3 GB is a terabyte TB; 1E6 GB is a petabyte PB).
There are significant numbers of applications in each of the time frames, but no clear correlation

between running time and primary memory.

Figure 2 perhaps gives better insight into the question of "how much primary memory is
enough?" Roughly half the applications could be satisfied by a TB, and 80% by 30 TB. This latter

number of 30 TB also corresponds well to an estimate made at the 1994 Petaflops Workshop that

Page 7

PIMs for Petaflops

1E+06 *-

»

T

1E+05 | A *

>
»*

1E+04

g
[
b

b <

1E+03 @ & USRNSSR SO

TE+Q2 e bl oot rrasecncisean o £ O PRRRREE: SO TR SOOI SOOI

Primary Memory (GB)

1E+01 p @i 7Y

-

1E+00 A
1E+00 1E+01 1E+02 1E+03 1E+D4 1E+05 1E+06 1E+07 1E+08

Individual Application Runtime @ 1 Petaflop (seconds)

Figure 1. Petaflops Applications: Runtime vs Primary Memory Requirements

100

80 |-

60 [-

40 |

Percent of Applications

20

0 l | | L I
1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06
Primary Memory Size (GB)

Figure 2. Percent of Bodega Bay Petaflop applications requiring different memory sizes.

Page 8

PIMs for Petaflops

10,000.000

a
1,000.000 =;
n

100.000 & n

10.000

1.000

0.100 a8

TB of Secondary Storage

0.010 &
[]

0.001

0.000
1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08
Runtime at 1 PetaOp (sec)

Figure 3. Secondary Storage Needs vs Running Time

there were significant problems (especially 3D + time simulations) where primary memory needs

grew as N** as performance grew as N (in GF). For 1 million GF (1 PF) this corresponds to 32 TB.

Another system requirement of real interest is the amount of secondary storage needed to
support an application. Here the 1995 Bodega Bay workshop was only able to estimate a need for
only a subset of the applications studied in Figure 1, with the results summarized in Figure 3, again

as a scatter diagram vs running time. A great many of the applications require upwards of a PB.

Figure 4 diagrams one other useful piece of information: I/O rate required by the application.
Again this is drawn vs running time. This comes in two parts: an internal /O rate needed to
support the application, and an /O to reload the memory for the next application execution
(labeled IPL in the diagram). The latter number was computed by this study, and assumed that the
next application required as much memory as the current one, that all of this memory needed to be
loaded, and that it could be loaded concurrently with the current execution. This latter assumption

would also force us to approximately double the size of the memory, which may be a costly

undertaking.

For the applications for which data was available, an application I/O rate of about 100 GB/sec

seemed to be satisfactory, as is an IPL rate of a few ten's of GB/sec.

Page 9

VO Rate (GB/sec)

1E+03 ¢

PIMs for Petaflops

1E+02

1E+01
.

1E+00

o

L4
1E-01

[+

1E-02

<

1E-03

<

1E-04
1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

Runtime at 1 PetaOp (sec)

m AlgorthmVO ¢ IPLVO

Figure 4. I/O Rate vs Runtime

5.3 PIM Technology Design Space

A major part of the study was to explore the use of CMOS VLSI to identify trends and
capabilities in the PIM Design Space. This was done primarily by developing several spreadsheets
based on the most well respected projection of CMOS technology available at the time, namely the
1994 National Technology Roadmap for Semiconductors published by the SIA [13]. These
spreadsheets utilized the SIA numbers to perform "partitioning" experiments to determine how

much logic should be placed on a PIM chip in combination with how much memory.

A fairly complete description of the major worksheet so developed as of April. 1996, is given
in Appendix B - a section of the Petaflops Systems Workshop draft proceedings from April, 1996

produced from this study's results.

Rather than repeat the spreadsheet descriptions here, an more instructive summary would be to
go through the analysis logic that led to the spreadsheets and their detailed structure. We will start
this summary by assuming the following time dependent functions which affect PIM potential
designs:
® M) is the amount of memory (in MB per square centimeter) that can be placed on a chip as a

function of time. This comes from the SIA Roadmap.

Page 10

PIMs for Petaflops

* L(1) is the amount of logic (in millions of transistors per square centimeter) that can likewise be
placed on a CMOS chip as a function of time. This also comes from the SIA Roadmap.
® (1) 1s the clock speed that the above logic can run at, again as a function of time. Again, this

comes from the SIA Roadmap.

The SIA roadmap includes many variations for each of these. For memory it can be DRAM or
SRAM,; for logic it can be full custom or ASIC. For clock speed, the full custom can run at either
very high speeds such as might be found in the leading edge microprocessors or in very specialized
digital signal processors, at a lower rate more characteristic of commodity microprocessors, or at

lower speeds more characteristic of ASIC logic.
Likewise the roadmap discusses off chip pin contacts, and transmission speeds on such pins.

For the purposes of this discussion we will assume DRAM memory and ASIC logic together
on the same chip. This is to reflect the fact that at least for the foreseeable future. placing both
dense DRAM and the highest density logic on the same chip would require combinations of two
very distinct fabrication processes, greatly increasing the cost of the chip. By assuming ASIC style
logic, we are focusing on a lower cost technology which can be built on the basic DRAM process.
and which, given the volumes of parts needed for a petaflop, is probably necessary to control costs.

The spreadsheets developed as part of this study, however, allowed assuming almost any of the

above combinations to be specified.

As an approximate reference, for the above choices the SIA Roadmap gives curves which
roughly follow the following equations (where t is uniformly the year of technology introduction):
* M(t) = 4*1.44"9 MB per square centimeter
* L(t)=2*1.22""" million transistors per square centimeter

* C(t) =150*1.1""" MHz clock rate for the logic

To a first order, the PIM chips assumed here will cover a chip with a multiplicity of some
standard processing logic (a "CPU" in the following discussion), with some amount of DRAM
memory available to each one. Further, although it is likely that the architecture chosen for anv
particular PIM implementation will evolve with time, we will assume for this analysis that it is

fixed, and that to implement one such CPU node will require P transistors at any point in time, and

Page 11

PIMs for Petaflops

that at a clock rate of C, such a processor will achieve a "unit" level of performance, in whatever

measurement scheme is most appropriate.

Since it is infeasible to build a single chip at any time in the foreseeable future that could
contain both the memory and enough logic to support fully any of the applications of Figure 1, we
have to assume multiple identical chips arranged in some sort of a parallel system. This
assumption in turn requires that if we look at any single chip, the ratio of memory to processing
power provided by the logic must match that needed by the overall system. Otherwise, a system
that minimally meets either the memory or performance needs may be starved in the other
direction. (In reality, if we were to err, it should be on the side of extra memory, since parallelizing
functions are notorious for requiring extra buffers, array copies, thread contexts, etc. to keep the

processors humming).

With the above comments in mind, for this analysis we will assume this ratio of memory to
processing is R, in units of MB per unit performance, and that at time t, the fraction of a chip that
1s implemented as logic rather than DRAM is F(t). For a 32 TB petaflop system such as sized in
the prior section, this means that R must correspond to a ratio of 32 MB per GF, when the

equivalent performance of a unit CPU is converted into flops.

Given all these variables, at time t the performance of a single CPU in standard units is C(t)/C,.
and thus there are L(t)*F(t)/P such CPUs on an average square centimeter. with a peak
performance of F(t)*L(t)*C(t)/[P*C,] units of performance. This means that there are
M(t)*(1-F(t)) MB of memory on the same square of silicon. The rate of memory to performance is
thus M()*(1-F(O))/[(L()*F(t)/P)*(C(t)/C,)]. If this is to be equal to R we must have:

R = P*C, *MO)*(1-F(O)/[L()*F()*C(1)]
Solving for F(t) we get:
F(t) = P*C,*M@Y/[R*L(t)*C(t)+P*C, *M(1)]
= 1/[1 + (R/P*C,)*L()*C(t)/M(t)] as an alternative representation.

Given this we can compute the peak performance p(t) and amount of memory m(t), per square

centimeter of PIM, as:
p) =FO*LA*C)/[P*C,]
=M()*L)*C(t)/[R*L{t)* C(t)+P*C, *M(1)]

Page 12

PIMs for Petaflops
m(t) = M()*(1-F(1))
= R*M@O)*L(t)*C(t)/[R*L()*C(t)+P*C, *M(1)]
=R*p(H)

Inserting the approximations from above:
F(t) = P*C, *4*] 4019)[R*2%] 2201994 [50%] [199 +P*C *4*1 4019)
P*C,/[75*R*0.96"'79 +P*C,]
= 1/[1 + 75*(R/P*C)*0.96" "]
300%1.34%1%9 /[75%R*0.961%%9) +P*C,]
R*300%1.34¢" /[75%R*0.96"1"°% +P*C,]

p(t)
m(t)

f

These fractions can vary all over the map, from almost 1 to astonishingly small. depending on
R, P, and C,, with R the most sensitive of the parameters The spreadsheets developed during the
study implemented extensions of them to take into account additional factors. The kev results will

be given later.

5.4 PIM Architectural Design Space

PIM chips mix memory and logic on the same die, and use the logic to implement processing
functions. The F(t) measure defined above indicated what percent of a square of silicon, on the
average, was devoted to logic. Given this, plus our desire to keep to a primarily single part type

system, there were four potential generic ways that we deemed possible to use this capability:

1.Pure Single Instruction Multiple Data (SIMD) PIMs where multiple relatively simple function
units nestled very close to the memories on chip, and performed more or less the same operation

simultaneously.

2.Single CPU chips where a single microprocessor is married directly to a large chunk of memory

on a single die.

3.Symmetric Multiprocessors (SMP) chips where multiple CPUs are placed on a single chip, with

memory, and with coherence logic to maintain identical internal memory representations.

4."Tiled" chips where a regular pattern of processing logic with associated separate memory

macros is laid down over the chip.

Page 13

PIMs for Petaflops

The first was excluded from our consideration because of the perceived difficulty of finding

huge amounts of SIMD-only parallelism in real applications.

All of the latter three are real possibilities for potential petaflops machines, but only the last
received significant attention in this study. Number 2 in the list, a single CPU, was deemed to be a
bad fit, especially as memory densities grew quite large, and as our ability to gain more
performance by simple replication than by over designing a "super” CPU. The discussion in the
next section will also show a disturbing trend in CPU designs where we do not believe the return

from a huge increase in transistors warrants the expense.

The third approach, an SMP chip, is entirely feasible, but was not considered because of
concerns about the complexity of the cache coherence logic, and the growing belief during the
study that the huge bandwidths and short latencies we were beginning to see as possible would
make the need for large cache hierarchies largely obsolete. Further, the approach developed during
the study seemed to offer many of the same advantages without complex coherency mechanisms.
However, during the April Petaflops Workshop there was sufficient new thoughts about such a
configuration, especially if the on chip memory is used to implement a COM4 (Cache Only

Memory Architecture), that some variants here are worthy of future consideration.

5.4.1 Processor Node General Architecture

The bulk of the study effort was targeted at refining an overall PIM architecture that mirrored
bullet four in the above list, namely a "tiled" approach to placing logic and processing on a single
chip, with the goal of reaching a petaflop. By tiling we mean defining a single arrangement of
logic and memory, and then replication that arrangement in some very regular fashion over the
surface of the chip. The chip design then devolves to designing relatively small memory and
relatively small logic pieces, and then managing how they interconnect when placed next to each

other on an overall floorplan.

The PIM chip developed in this study had three separate characteristics worthy of discussion:
1.the processing node macro (memory + logic),
2.the "tiling" of a chip with these macros,

3.and the interfaces provided on the chip for communication with other chips.

Page 14

PIMs for Petaflops

Figure 5 diagrams an assumed processing node macro. It consists of a rectangular area of logic
transistors surrounded by 4 separate memory macros, with each memory macro having its own

decoding, sense amps, and row logic.

These memory macros are the smallest replicable "slices" that are possible with the DRAM
technology at the time the chip is assumed fabricated. Today such slices are on the order of
128-256 rows of a few hundred to perhaps a thousand columns, with total densities in the order of
32KB-128KB. For electrical reasons, the sizes of these slices is not expected to change

significantly over the coming years.

Even with 4 memories per logic area, there still is a limited amount of memory (perhaps only a
MB at most). This is nowhere near enough to balance the performance possible from the CPU
logic, so we assumed that just as in ordinary DRAMs, these slices could be "stacked" on top of
each other, with either edge sense amp to sense amp, or a second level of metal, used to connect
them to the CPU. Such a tiling not only reflects current practice, but allows some nice VLSI

design considerations to occur, as will be discussed later.

In total, the positioning of these macro stacks also provides several very key benefits to the

design and selection of the processing logic:

Sense Amps Sense Amps
M 3 3
emory 3 3
Array 5 Memory Array s
o (=}

Sense Amps Sense Amps

CPU Logic

Sense Amps Sense Amps
1] LY
© k]
Memory Array | S| Memory Array |§
a a

Sense Amps Sense Amps

Figure 5. A Single Processing Node Consisting of 4 Memories and 1 CPU

PIMs for Petaflops

1.There are four of them, providing more memory for the logic, and thus making 1t easier to

provide the proper balance between memory and performance as was discussed before.

2.Turning the DRAM macros "sideways," as shown, with the sense amps facing the logic directly,
provides a huge increase in data bits available from each access directly to the CPU logic. It is

conceivable that several hundred bits might be so available.

3.Turning the DRAM macros "sideways" also provides a very fast access time, most assuredly
under 30 ns. with today's designs (in fact the 1991 era technology in EXECUBE had about a 12.5
ns access time from the address decoders to the sense amps). Some reduction in this time should
be expected over time, not only because of technology changes, but also because there is no extra
logic in the way to "demultiplex" all the bits from the memory macro down to the handful of bit
that go off-chip in a normal DRAM. There is also no need to "split" the address into two parts,
RAS and CAS, as is done today. All of these add to improved access latency at the basic macro

level.

4 Having four separate stacks of such memory modules provides four times the bandwidth,
yielding literally multiple gigabytes of bandwidth per second for each CPU. They also provide
the opportunity to have up to four accesses to be concurrent. This could lower the average access

time over that if we had only one stack to significantly under 10 ns.

5.]f we design the individual memory slices properly, namely place an address latch in each, we
could conceivably keep as many concurrent memory accesses as there are slices active within

each stack. This can multiply bandwidth and reduce average latency by another huge factor.

5.4.2 Choice for Processing Logic

Nothing in the discussion to date constrains the choice of what the processing logic looks like.
If we are going to make the PIMs more or less general purpose, then they should be programmable
CPUs. Since logic technology is providing more and more transistors, conventional wisdom is that
these CPUs should become more and more complex, i.e. super scalar, super pipelined, multiple
issue, with sophisticated branch prediction and out of order execution. All of this requires more

bandwidth, so of course this means deep cache support systems.

Page 16

PIMs for Petaflops

Conventional wisdom may not, however, be so appropriate in the PIM environment where
what we want is to maximize the total amount of performance out of the logic, and we are more
than willing to do this with parallelism at the on-chip node level. To investigate this, we surveyed
a wide spectrum of modern microprocessors, and accumulated such information as the feature size
of the technology used, number of transistors on the chip, the number and complexity of the on
chip caches, the clock frequency, the supply voltage, as many benchmark numbers as were
available, and as many other factors as were available. For those microprocessors that had a
consistent set of benchmark data, namely SPECMARKSs, we then translated the data using the

following process:

1.To get to the transistor count for the actual CPU core, we took the sizes of all on chip caches and
other dense memory hierarchy related structures, and estimated the total number of transistors in
them. This was then subtracted from the total chip transistor count to get that for the CPU core

alone.

2.To normalize out the effects of technology (at least to a first order approximation), the reported
SPECINTs and SPECFLOATS for each chip was divided by the clock rate of the chip. This
yields a "SPECS per machine cycle" - analogous to "instructions issued per machine cycle"
which is a modern measure of low level microprocessor performance. Note that as technology
improved there were multiple cases where the same design would have been implemented in
several different clock rates, and each would have a separate set of measurements. We included

all such numbers because it often gave insight into second order effects.

3.To get a handle on the "per transistor" effectiveness of the designs, each of the numbers from
step 2 above, the clock normalized performance, were divided by the numbers from step 1, the
number of transistors in the core of the CPU. The resulting numbers represent an estimate of how

much each transistor in the CPU core adds to the overall performance

If one graphs the results from step 2, normalized SPECs, versus the numbers from steps 1,
CPU core transistor counts, the graphs are exactly what one would expect. If one adds more

transistors to a CPU design, then all else (especially clock) being equal, one ends up with more

performance.

Page 17

PIMs for Petaflops

10 10
U) w
g ;
O nn n

LI |

2 1] Ly .t g
o " ‘f @ m =l
N N n] a
= . . = i P
E s E . I |
[<} u S | |
z Z

0.1 ¢ 0.1 :

0.1 1 10 0.1 1 10

Millions of Transistors (CPU) Millions of Transistors (CPU)

Figure 6. SPECINT Transistor Efficiency. Figure 7. SPECFLOAT Transistor Efficiency

However, the story is different if we graph step 3 versus step 1. Figures 6 and 7 diagram these
results for SPECINT 92 and SPECFLOAT 92 respectively (we are still accumulating SPEC'95
data and will publish that shortly). Performance per transistor drops sharply for SPECINTS as the
number of transistors added to a CPU increases. This means that if one has a transistor budget to
spend on processing, and one is willing to consider parallel CPUs, then by far the most effective

designs are not the multi million transistor "leading edge" designs, but the simpler straightforward

designs with minimal complexity.

The effect is not so pronounced for SPECFLOATS (because a floating point function unit is
approximately the same regardless of the rest of a design), but it is still there, and there is no chip

design which is more efficient per transistor than the simplest.

The lesson we took from this result is that the processing logic to assume for our PIM macro
should represent a simple CPU design, with a minimum of frills. In fact, for the rest of the analysis
presented here we assumed the simplest (upper leftmost) of the designs in Figures 6 and 7, which
happened to be the same - a straightforward 5 stage pipelined CPU as is found in a MIPS R3000 or
similar chips. Based on the data from the survey, this design incorporates in about 250K transistors

both the integer pipeline and a simple but effective floating point unit.

Besides reducing design complexity, this choice has several other key attributes which are

particularly advantageous to PIMs:

Page 18

PIMs for Petaflops

1.Simpler designs need fewer concurrent accesses to memory to maintain high performance than
the more complex ones. In particular there are fewer "speculative” accesses (from branch
prediction and the like) which are then never used. This reduces the peak bandwidth needed out
of the memory system, meaning that an organization such as Figure 5, with its multiple wide

memory macro stacks, can provide the bulk of the bandwidth directly. without additional caches.

2.Fewer transistors (and simpler memory hierarchies) together result in fewer places where power
is dissipated, opening up the opportunity for lower power chips. This is critical if we are to build

systems with hundreds of thousands of parts.

3.A simpler, pipelined like, design also means the usage of the bulk of these transistors is in very
regular structures whose physical placement mirrors the feed forward nature of the organization.
This in turn opens up the possibility of still getting good logic packing density with fewer layers
of interconnection metal on the chip. In turn, this allows us to consider simpler DRAM-based

processes which normally do not offer as many wiring layers as pure logic processes.

5.4.3 Floorplanning by Tiling

Figure 8 now diagrams the way in which this study projected the bulk of a PIM chip ought be
floorplanned by the prior CPU and memory stacks. Alternating rows of memory stacks and CPUs
fill the chip from the top to the bottom, but with neighboring rows of CPUs offset from each other
by the width of one memory stack (i.e. one half their own width). All memory stacks in a single

row have the same height, as does all CPUs in the same row.

11
11
11
11

1

il
|8
111

= Shared
Memory
Link

|
I

11
11
1

Figure 8. Tiling a PIM Chip with Offset rows of Memory and CPUs

Page 19

PIMs for Petaflops

Given that by design each memory stack, regardless of how many slices it is built from, has
sense amps at both the top and bottom, each of these rows of CPUs still maintains connectivity to
four separate memory stacks, and each stack is connected to two separate CPUs. This results in a

true shared memory between two separate CPUs - the best of all possible configurations from a

programming perspective (In contrast, chips like EXECUBE did not support shared memory
between neighboring CPUs, meaning that all internode communication must be by explicit

message passing).

Further, because of the offset between rows of CPUs, the resulting design means that each

CPU is sharing memory with not one or two, but four other CPUs. This allows extraordinary

amounts of interconnectivity between processing nodes, at the highest possible bandwidths,

without complex programming or additional internode communication logic!

Finally, from the standpoint of VLSI chip fabrication, Figure 8 offers a very clear advantage.
All the DRAM is separated off into nice, well defined, rows, where it can be placed in its own
wells, with its own biases etc., and in general protected from the random signal excursions
generated in the logic rows. Further, by using the memory macros themselves for inter CPU
communication, there is no need for extensive long distance wires to run around the chip,

especially over the memories.

The one apparent drawback from this approach (in fact any PIM approach that uses DRAM in
large amounts) is that off chip contacts must be localized around either the periphery of the chip,
or in the logic areas. This means that real PIM chips will probably not be able to sustain the same
number of off chip contacts that a full blown microprocessor (or other logic intensive chip) of that
time might be able to support. It also means, however, that there will be less power dissipation for
off chip contacts. Also, given that we do not need contacts to support complex memory
hierarchies, the net reduction in contacts useful for inter node communication may not in the end
be affected by all that much. Thus what appears to be a problem with a DRAM-based PIM might

actually turn out to be either a wash or a slight PIM advantage (lower power).

5.4.4 Adding Off Chip Interfaces

Tiling the surface of a chip with nodes as in Figure 8 not only gives us incredible internal

bandwidth for each CPU, but also directly implements a 2D mesh (as in Figure 9), with an

Page 20

PIMs for Petaflops

< MMON,*N,“L.;V rry v.:‘ulllbkk.LNxmel’e_m

Samry | | Sty
oy Aney

CPU Prooving logic

Processing | Processing | Processing PCr&
Node Macro | Node Macro | Node Macro |™

Mowry Moy Systemn:
Aoy Ay ok

b ot [ey,,1
PCl & | i

NN ir==irserpion Processing | Processing | Processing

Node Macro | Node Macro | Node Macro
Svstermy il ot
[NdeToE
svumnn Il vy FodoTol
Amey . .
Processing Processing | Processing |PC1 &
CRJ Pn [}
Node Macro >o1% 1 | Node Macro | Node Macro |!ter
prm— System
i — Frd
o Pod: \warn, Mamey l
R A sy Ay . .
PCL& | processing P —— Processing | Processing
comry Ligic
Inter | \jode Macro | Node Macro | Node Macro
Systemy [y Semey
Ane Aray
o ToE [exo Rk [Nk Fod Feale Nods Neate ok Jicile-Rod: [Node Nk st N

Figure 9. A PIM Chip with its Off Chip Interfaces at the Borders

absolute minimum of interconnection wiring. Further, assuming that the top and bottom rows of
the chip are memory stacks (so that each CPU has access to four of them), then assuming that
these edge stacks still have dual sense amps as in internal stacks, we find that there are "unused”
sense amp connections into the array all around the periphery of the array. This is an ideal place to
provide extra logic to provide very high speed I/O between this chip and others (labeled
"Node-Node" in Figure 9). This logic has direct access to high bandwidth ports on one side, and

the peripheral chip contacts on the other.

There are at least two candidate interfaces that this study considered. First, along the top and
bottom we might add a protocol for fast parallel row transfers which permit communication with
other chips of the same type. This would be of particular benefit if we were to utilize emerging
“chip stacking" technologies where cube of silicon chips are literally "glued" together, with wires
running down the sides. Fortuitously, such high density stacking technologies require peripheral

chip contacts - exactly what is most appropriate for a DRAM-based PIM as discussed earlier.

The second kind of interface may be a fast "intersystem" protocol, such as Myrinet. This not
only provides direct connectivity of the first type, but also permit connection to other arrays of
PIM chips (of the same or different organizations) over greater than direct chip-to-chip distances,
or to /O devices. Having multiples of these per chip again provides basic bandwidth firepower
that is far beyond that found in modern designs. Again, this can only serve to help simplify the task

of configuring real applications.

Page 21

PIMs for Petaflops

Finally, also as shown in Figure 9, we also assumed a third type of interface built into each of
our PIM chips, namely a simple "memory like" interface such as the PCI bus protocol. This single
interface is broadcast to all processing nodes, down the center of the logic rows, and permits a
processor outside the chip to directly address the on chip memory as simple memory via loads and
stores. Also, this same interface would be used as in EXECUBE as a bus over which global SIMD
instructions can be issued. The major difference from EXECUBE is that the address broadcast on
this bus would be used to distinguish between direct memory access and SIMD instructions for the
processing node. It may also be appropriate to include commands to set up and initiate /O
transfers over the other chip interfaces discussed above. Together, this provides an extraordinary
amount of external control and insight into the chip, without having a huge amount of complex

routing and wiring to interfere with chip functions.

5.5 System Configurations

Figure 10 illustrates how this design approach might be combined together into an MPP
system. Multiple chips might be stacked into 3D cubes and multiple cubes placed on a "memory
card." The node-to-node interfaces of the chips would be used for chip - to - chip communication
in the stacks. Cube-to-cube, or off-card, transfers would utilize the second style of interface.
Further, providing a native memory interface permits insertion of these cards directly into the
memory structure of whatever is the "state of the art" microprocessor workstation, making the

entire on-chip memory "look like memory" to the microprocessor. Finally, by loading and storing

z‘z‘b- ¢
X
Parallel »%QQ:L,O"
. Y \o
File | s X Y’%
—_— m
System nter Syste 9
Interconnects
[l
[} D Sk Y D Stauh 3 D Suma| 1D Stauk|
of PIM of PIM of PIM a1 PIM
MOdem Chps Chips Chup Chips
High Performance
Microprocessor VD) Susch 3 D Sl ¥ D Staca D Stauk
of PIM of PIM of PIM ol PIM
Chips Chups Chupe Chips
PIM - Based Memory Card

High Speed Memory Bus (PCI) l/ Standard /O

Figure 10. A Potential PIM-based System Architecture

Page 22

PIMs for Petaflops

1E+09

1E+08
1E+07
1E+06
1E+05

Chip Count

1E+04
1E+03
1E+02

1E+01 i i | 5
1995 1998 2001 2004 2007 2010

- 1TB -9 32 TB
& 1PB -g- Menory Alone for 1 TB

Figure 11. Chip Count for a Petaflop at Different Memory Sizes

to other memory mapped locations this host can initiate SIMD operations in the array as is done
with the current EXECUBE chips, which in turn can either start up computational MIMD
programs in the array, perform fast global synchronization steps, or initiate transfers between chips

over the data interfaces.

5.5.1 Chip Counts for a Petaflop System

A first cut at the total system complexity needed to achieve 1 petaflop peak with configurations
such as in Figure 10 can be obtained by utilizing the spreadsheets described earlier. Figure 11
summarizes the results in terms of total chip count for three possible memory sizes: 1 TB, 32 TB,
and 1 PB. This data was run assuming a simple 250K transistor CPU as discussed previously. Also
as was discussed earlier, a 1 TB system would support perhaps 40% of the applications from
Bodega Bay, a 32 TB perhaps 80% (plus match the N** 4D simulation problems). and 1 PB

representing a fully configured system.

If we assume for the final technology of our petaflop machine the end of the SIA CMOS curve,
year 2010, a 1 PB system requires 123,000 chips, the 32 TB system about 4,600 chips, and the 1
TB system around 840 chips. Given the current trends in the state of the art and how this has
played out into commercially available silicon, this means that in 2010 the technology would first
becomes available in prototype form; but realistically it may be 3 years later before the design and
fab processes have been able to design and manufacture enough parts to build a real machine,

especially for the larger configuration. This would put real machines in the 2014+ timeframe.

Page 23

PIMs for Petaflops
5.5.2 Area and Logic Fraction

How big is this in area? For a 1 PB system, by the year 2001 technology will just reach a
sufficient density to reduce the total silicon area down to the equivalent of about one football field.
It will be the year 2010 before technology would reduce the smallest of the above systems, the 1

TB memory, to about the area of an office desk.

For both the 32 TB and the 1 PB systems the computation of F(t), the percent of each chip that
was logic, yields remarkably low numbers. The 1 PB case really is "all memory," with less than
1% of the area of all chips logic. The 32 TB systems run in the 10 to 15% range. It isn't until we
get to "very memory light" systems such as a 1 TB configuration (0.001 MB per MF), that a
majority of the chip is logic. As a reference, the lowest curve in Figure 11 is the chip count for
DRAM memory chips alone to meet a 1 TB memory. By 2010 (when we have 8§ GB memory
parts), only 128 parts are needed for 1 TB, while integrating CPUs onto them spreads this out to

about an 840 chip system, each about 14 square centimeters in area.

5.5.3 Internal Parallelism

Another key datum that can be gleaned from the spreadsheet is the amount of parallelism
present in the system. Assuming a machine that "just peaks" at a petaflop, the number of CPUs is
relatively independent of the system architecture or of the memory capacity to performance ratio.
Figure 12 gives this degree of parallelism again as a function of time. As can be seen. parallelisms
of between 6 million and 2 million CPUs result. Clearly in real life there must be some allowance
for the difference between peak and sustainable performance, so if a sustainable petaflop is desired
we probably need to consider parallelisms between 3X and 10X these numbers. Given the
comments earlier about the relatively low amount of silicon that is actually logic, especially for the

memory rich systems, this may have only a minor effect on overall cost.

Clearly, however, programming any machine with two to twenty million separate CPUs isa
great stretch in the state of the art and must be considered carefully. As a point in that direction,
the same spreadsheet was run with a CPU at the opposite end of the complexity curve from a
single issue pipeline, namely a CPU core capable of 4 way issue and multiple floating point
function pipes. If such a CPU could be run at 100% efficiency (and this too is pushing the state of

the art with modern single CPU compiler technology), we assume that this might give 1 GF flops

Page 24

PIMs for Petaflops

8 4 1E+Q7
6 1E+06
[:5]
\< 3
5w &

B 3

s £ 4 1E+05 §
k; 5
w
@

2 1E+04

0 1E+03

1995 1998 2001 2004 2007 2010
- CPU Count -0 System Pow er Due to CPUs

Figure 12. Parallelism and Power Dissipation in a Petaflop System

at 300 MHz, and require about 2 million transistors. While such a configuration does reduce the
parallelism to a mere half million CPUs by 2010, paradoxically the more complex logic noticeably

increases the chip count, especially at the low memory side where the count more than doubles!

5.5.4 Off Chip Contacts

In terms of off-chip bandwidth, if we assume peripheral contacts only (as was necessary in
EXECUBE to avoid disturbing the DRAM), then in 2004, we might assume 600 contacts.
Assuming 50 for power and ground, and 100 for the SIMD interface, there are about 450 contacts
for the others. Using today's technology, a single Myrinet protocol of 18 pins, would be capable of
160 MB/s. If we had only one such interface for each chip, given the total number of chips, the
total I/0 bandwidth would greatly exceed the 20 GB/s requirement. This would leave something in
excess of 400 pins for chip-to-chip interfaces. Using SIA projections, in 2004, each such pin could
run at up to 350 MHz. Assuming a simple parallel transfer protocol, with perhaps 25% of the pins
for parity and handshaking, this would provide each chip with up to 13 GB/s of bandwidth to other
chips. A square array of chips gives a system inter-chip bisection bandwidth in high fractions of a

terabyte per second. The same numbers for 2010 approximately double these rates.

The bottom line is that with PIM technology it appears that off chip bandwidth problems are

greatly alleviated.

Page 25

PIMs for Petaflops
5.5.5 3D Stacks

Today at least one foundry is building 3D stacks of several dozen memory chips. If the
technology continues to improve, and the power dissipation per chip is low enough then in 2010
we could assume stacks of 64 PIM chips for the arrangement of Figure 11. For the smallest

memory configurations the means that the entire 1 PF PIM system could fit on 14 chip stacks -

or one memory card!

5.5.6 System Power

Finally, using the normal scaling rules of CMOS we can make a crude estimate of power
dissipation for such a system. Figure 12 includes a curve which extrapolates this for just the CPU

logic. This power is independent of memory density, and drops to about 8 KW with 2010
technology.

Memory power is a bit harder to estimate, but for EXECUBE (1992 technology) a 32 KB
memory module on a PIM chip dissipated about 0.1 W. Assuming the same scaling laws as with
logic, this yields a power of about 10 KW per TB in 2010. This gives a total on chip power of
about 20 KW for a 1 TB system, 330 KW for a 32 TB system, and 10 MW for a 1 PB system.

None of these numbers include power for chip-to-chip transfer.

5.6 Comparisons to Current Practice Extended

Today we have single chip microprocessors with peak performance approaching 1 GF.
Assuming that by 2010 we have 16 GF microprocessors, and that to support each in a system one
would need 8 L3 cache chips and a bus interface chip, then a 1 PF system would require 60,000
such nodes, for 600,000 chips. Assuming the densest DRAM chips of 0.5 GB each are added to

this chip set. For a 1:1 ratio this requires 2 chips per processor, for a total of 720.000 chips! This is

6 times more chips than the PIM approach!

Further, at 2 DRAM chips per processor, there may be extreme problems in obtaining enough
bandwidth. Using the run of thumb that each flop requires a data access of a full operand (8 bytes),
and that we are issuing 16 instructions per cycle, this means that the CPU core requires a
bandwidth of approximately 200 GB/second. Assuming that the cache hierarchy provides 100% of

instructions, and 95% of data references, this translates into a bandwidth demand on the two

Page 26

PIMs for Petaflops

memory parts of about 6 GB/second. This approaches a factor of 10 more than what can be done

today.

5.7 Simplifying the Operating System Support

Making the PIM chips "look like memory" to a conventional microprocessor as pictured in
Figure 11 has some significant system software simplifying ramifications. Individual data items
can be accessed via conventional loads and stores without regard to where in the processor array
the data is. Since "memory is memory," the partitioning of data structures to maximize
parallelization can be done within the confines of conventional compiler technology by careful
memory allocation. No special languages or language extensions are needed to do the mapping,
although it may be appropriate to consider preprocessors that, given the desired partitioning
arrangement, will develop the data declaration source code to reflect that partitioning. Together
with initialization, overall system monitoring, and user interface, this permits the most complex,
but usually least computationally stressing, parts of an application to be written as conventional
scalar code running in the host microprocessor, utilizing whatever is the current state of the art in

tools.

It also means that we need not keep a full blown copy of an operating system in each CPU in
the PIM. The host can handle all the complex problems associated with users. file systems.
network interfaces, etc., and leave the "runtime" that is resident in each PIM CPU the far simpler

job of managing just computations.

While simple, this approach still requires some additional features to be grafted onto the

underlying host operating system, with care as "device drivers" of various flavors, including:

1.ability to "page fix" blocks of real memory to virtual memory, so that applications that wish to
map data structures to different chips to support parallel computation internal to those chips can

do so.

2.support for "broadcasting” sequences of SIMD instructions to different groups of processing
nodes within the PIM card set, and for testing for global conditions, such as all processing nodes

in group x have reached a common barrier point.

Page 27

PIMs for Petaflops

3.support for a parallel file system where the disks are attached to the interfaces which exit both

the chips and the PIM cards.

4.support for a closely coupled network of compute nodes as pictured in Figure 11, where the

interfaces exiting the PIM cards would form a very high speed LAN interconnect fabric.

Note that the use of these chip interfaces for both parallel file systems and closely coupled
network interfaces eliminates a bottleneck that severely constrains current technology. The
multiple parallel data ports are interfaced directly with different memories, and need not either
contend either for some internal memory bus or involve multiple memory-to-memory copies to
position the data correctly. This should provide both a substantial reduction in real application
complexity, and permit achievement of much higher sustainable levels of performance over an

entire application execution.

5.8 Other Key Results

In addition to investigating PIM architectures and there VLSI implementations, this study also
looked at a wide variety of related system, benchmarking, and software issues. Following is a brief

list of their results:

1.A study of the 5 kernels selected by Geoffrey Fox at the June 1996 Bodega Bay Workshop
indicates that they can all benefit from 4 simultaneous memory accesses from the 4 memory
macros per CPU, that in most cases the accesses from two separate CPUs to the same memory
stack can be partitioned into different slices (permitting concurrency without a performance hit).
that some kind of a "test and set" is needed in the PIM CPU ISA to manage synchronism with a
neighbor, and that there needs to be two ways of specifying memory addresses: totally local to an

individual CPU, and globally.

2.Parallel /O will be a problem in terms of routing and (de)multiplexing data on the fly, but that

internally a message passing paradigm such as MPI should to straightforward to implement.

3.There is a need for parallel global synchronization (not just between two neighbors), and that this

needs to be relatively efficient, with multiple simultaneous rendezvous in action at one time.

Page 28

PIMs for Petaflops

4.Given the latency and bandwidth inside a CPU, it does not appear that one needs to design an
overly complicated run time for each CPU. In particular, a multi threaded kernel may not be as

important for PIMs than for conventional machines.

5.A variety of parallel programming language models were studied: data parallel, task parallel, and
object parallel. The best of these were the data parallel ones such as HPF and C*. Functional
languages such as NESL and Concurrent ML (NESL in particular) had some advantages in their
ability to deal with prefix operators which yield "vector-like" operations, but that it looked
difficult to unfold recursions in these languages enough to provide the huge amounts of
parallelism we have observed in our designs. Other languages such a Lucid (an intensional
language) provided multidimensional syntax, but seemed to result in too high a granularity to

match PIM's capabilities.

6.A database join function was implemented in parallel on the campus' SP-2 and experiments were
run with a variety of topologies of the supposed inter-node interconnects. This included the 3D
topology of EXECUBE. Because of limitations in the SP-2, parallelisms of at most 8 real CPUs
could be simulated. Results indicate that to get any real performance a very large number of
records are probably needed, with well in excess of a 1,000 records per CPU. Even then, only a

speedup of half of peak was observed, with little or no variation due to topology.
6. Importance of the Findings and Future Directions

The key result from this work has been that PIM not only represents a viable path to petaflops.
but is a key new trend in computer architecture that should be exploited across the board. The
importance of the work is shown in the reception it received when used as the technical basis for
proposals for several follow-on studies, all of which have been funded, started at about the time

this one completed, and will advance the work discussed here in several directions. These projects

include:

1.Participation in an NSF-sponsored "Point Design" study whose goal is to look at using PIM
technology to perform initial studies to advance to an intermediate level of performance, namely

100 TF, within a shorter time frame that the 20 year outlook for the petaflop study.

2.Design study No. 960587 entitled "Scaleable Spaceborne Computing using PIM Technology"

with the Jet Propulsion Laboratory (as a subcontract under their NASA prime contract Task

Page 29

PIMs for Petaflops

Order RF-158) to investigate how the increased computing density of PIMs, especially as
configured as a memory accelerator as developed under this study, can be applied to a variety of

very high performance computing problems for deep space applications.

3.A study entitled "PIM Based Accelerator Technology Infrastructure Development" funded by
DARPA through the SPPDG Group at the Mayo Clinic into verifying the ability of commercial
VLSI fabricators to build PIM technology chips, the CAD tools needed to built them, and sample
applications of interest to DOD. Again the baseline architecture used in these investigations 1s
centered on the strawman PIM chip described above, with DOD applications assuming the

"smart memory" based accelerator format.

There are multiple other direct follow-on activities that will be considered in the near future

that owe their origins to the work done under this study. These include:

1. working with several research groups around the US to investigate PIM technology as applied to
other problems. One example is a group at Cal Tech investigating achieving a petaflop through
the use of very high speed superconducting CPU technology, where there is a strong need for a
"smart memory" to do operations where the time delays needed to get data to or from the

superconducting CPU exceeds greatly the time spend by that CPU to do the work.

2.developing a prototype card using some newly announced PIM-like parts that will permit early
exploration of the memory mapped organization for PIMs, and demonstration of prototype

software to efficiently drive such an architecture from a conventional workstation.

3.Continued exploration of alternative CPU instruction sets that are both low power and that can
thrive on the latency and bandwidth environment presented by a PIM chip. but without the huge

complexity found in modern microprocessors.

Finally, at Notre Dame this study has laid the ground work for a rather large number of
additional graduate student projects which will push at different aspects of some of the problems

we encountered during the study. They should mature into thesis within a year or so.

In summary, this study has achieved some significant results both in achieving a petaflop and
in suggesting new directions in computer architecture. It has demonstrated the basic numerology

behind PIM technology, and shown that there are some huge architectural gains to be made by

Page 30

PIMs for Petaflops

reconsidering the way we design systems. Its results have strongly influenced further work both

here at Notre Dame and at many other research establishments.

7. Relevant Publications:

1. Kogge, P. M., "Pursing a Petaflop: Architectural Requirements," in preparation.

2. Kogge, P. M., I. B. Brockman, "The PIM Design Spectrum," in preparation.

3. Kogge, P. M., I. B. Brockman, "Pursuing a Petaflop: the Case for PIM," in preparation.

4. Kogge, P. M., et al, "Pursuing a Petaflop: Point designs for 100 TF Computers Using PIM
Technologies,” to be published in 1996 Frontiers of Massively Parallel Computation Conf.,
Annapolis, MD, Oct., 1996.

5. Kogge, P. M., T. Sunaga, et al, "A Parallel Processing Chip with Embedded DRAM Macros," to
be published in IEEE J. Solid State Circuits, October, 1996.

6. Kogge, P. M., "Computing Component Characterization,” Section 8.1, Draft Proceedings,
Petaflops Architecture Workshop, April, 1996

7. Kogge, P. M., T. Giambra, et al, "RTAIS: An Embedded Parallel Processor for Real-Time
Decision Aiding," 1995 National Aerospace Conference (NAECON), Dayton, OH, May
1995.

8. Kogge, P. M., T. Sunaga, et al, "Combined DRAM & Logic Chip for Massively Parallel
Embedded Applications,” 1995 Conf. on Advanced Research in VLSI, Raleigh. NC, March
1995.

9. Kogge, P. M., "Processor-In-Memory Chip Architectures for PetaFlops Computing." PetaFlops
Frontier Workshop, Feb., 1995

10. Kogge, P. M., Contributor to Enabling Technologies for PetaFlops Computing. Cal Tech,
1995S.

11. Kogge, P. M., "The EXECUBE Approach to Massively Parallel Processing." Int. Conf. on
Parallel Processing, August, 1994.

12. Kogge, P. M., J. Oldfield, et al, "VLSI and Rules Based Systems," VLSI for Al Kluwer
Academic Press, 1990.

13. Semiconductor Association of America, The National Technology Roadmap for

Semiconductors, San Jose, CA

Page 31

PIMs for Petaflops

Appendix A
Preprint of
Pursuing a Petaflop: Point Designs for 100 TF Computers Using PIM Technologies
to be published in 1996 Frontiers of Massively Parallel Processing

Annapolis, MD Oct. 1996

Page 32

Preprint: To be published in Frontiers of Massively Parallel Computation, Oct. 1996

Pursuing a Petaflop: Point Designs for 100 TF Computers Using PIM Technologies

Peter M. Kogge, Steven C. Bass, Jay B. Brockman, Danny 7. Chen, Edwin Sha
Department of Computer Science & Engineering
University of Notre Dame, Notre Dame, IN 46556

Abstract

This paper is a summary of a proposal submitted to the
NSF 100 Tera Flops Point Design Study. Its main thesis is that
the wse of Processing-In-Memory (PIM) technology can
provide an extremely dense and highly efficient base on which
such computing systems can be constructed The paper
describes a strawman organization of one potential PIM chip,
along with how multiple such chips might be organized into a
real system, what the software supporting such a system might
look like, and several applications which we will be attempting
to place onto such a system.

1 Introduction

Massive use of computer based simulation is rapidly
becoming a linchpin of science and engineering, largely because
of the explosive growth in the performance of modemn
microprocessors. In terms of peak performance levels, the
newest massively parallel processors (MPPs), with tera(fl)ops
of performance, are now advertised as being capable of
attacking even the "Grand Challenges” of the 1980s. There are,
however, two major problems with the current state of the art:
first, the cost of the very highest end machines lies far beyond
the point where widespread deployment is feasible, and second
the software environments for these machines are awkward at
best, capable of eking out only fractions of the performance of
what the hardware is capable of supplying. Together, this signals
very severe problems if we are to consider climbing towards the
next major level of performance - peta(fljops.

The thesis of the proposal summarized in this paper is that
these problems stem from the "traditional” von Neumann
bottleneck, and how we have approached it. For technology and
cost reasons we have historically separated memory parts and
CPU logic parts. With the advent of CMOS microprocessors
with very high performance pipelined and superscalar
architectures, individual CPU core performance levels have
gone through rapid acceleration, requiring ever increasing
amounts of bandwidth from the memory subsystem. These rates
have far exceeded the bandwidth capabilities of our densest
DRAM memory parts, and the gap will widen over time. The

net result is architectural complexity: memory hierarchies are
introduced to provide the bandwidth, which in turn drives cost
and the software complexity needed to address these hierarchies
efficiently, especially in an MPP environment.

A new technology is emerging to counter this fundamental
defect - the combination on one chip of both dense DRAM
memory and significant amounts of logic. This capability
permits new architectures termed Processing-In-Memory (PIM)
to place computing either right next to, or even inside of, the
memory macros, where there are huge amounts of raw memory
bandwidth. Projections out to the year 2014 laid the basis for
one of three potential peta(fl}ops architectures proposed at the
1994 Pasadena Workshop on Petaflops [15], and was further
amplified at followon workshops at the 1995 Frontiers
Conference [9], and then at Bodega Bay August 1995 [2].

The objective of the proposal summarized in this paper is
thus to utilize PIM technology potentials over the next decade to
configure some "point design" MPPs with 100 tera(fl)op (TF)
potential for several interesting classes of problems, and chip
architectures that should permit greatly simplified programming
environments. The applications to be studied include: solutions
of nonlinear PDEs, multidisciplinary design problems, and
problems in massive image compression. These were chosen
both because they exhibit a representative range of granularity,
data structures, and need for intemal communications, and we
have a variety of new computational and parallel program
construction techniques for them under current study.

This paper is organized as follows: Section 2 summarizes
characteristics of potential 100 TF problems. Section 3
discusses current PIM technology. Section 4 then presents a
"strawman” point design. Section 5 discusses different
applications, with descriptions in Section 6 on software
development. Section 7 then describes our study approach .

2 Hardware Constraints

As the community has learned, a commercially viable MPP
is more than just hardware whose functional units can be run at
huge clock rates. At the hardware level, tue sustainable
performance can only be achieved if there is:

1. sufficient bandwidth from the memory system, at low enough
latencies, to support the function units,

Page 1

Preprint: To be published in Frontiers of Massively Parallel Computation, Oct. 1996

2. sufficient memory to hold enough data long enough to
process it to completion,

3. sufficient bandwidth between different compute nodes of an
MPP to avoid delays while waiting for data,

4. sufficient O bandwidth for fast initial data load, intermediate
results and checkpointing data, and final results, to avoid
bottlenecking the main computation.

While all of these are important, perhaps the one with most
effect on system replication costs is memory. For example, for
"classical” scientific computing a rule of thumb is that a MB of
memory is needed for each MF of performance. For a petaflop
this translates into a petabyte of memory - which is a huge
amount even 20 years from now. The 1994 Pasadena
Conference revisited this rule for petaflop level systems, and
decided that there was a reasonable set of 4D simulation
problems where storage might grow as performance to the 3/4
power (after a GF). The result was that for such problems a ratio
0f 0.03 MB per MF (30 TB) might be acceptable. The Bodega
Bay Workshop carried this analysis one step further and
estimated primary memory needs for about 36 different
applications with an average memory requirement about 3 TB.

This proposal addresses not a petaflop machine but one of
a 100 TF. For the 4D simulation case, this translates to about
5-10 TB. If one assumes that such a machine would not attack
problems which ran over a day in length (i.e. around 3 hours =
10* seconds on a petaflop machine), then all the Bodega Bay
applications that at a petaflop would run in less than 3 hours
might take only a terabyte. Further, if one were interested in an
"entry level” machine, then 100 GB would permit attacking at
least a few applications. We will thus use the three numbers of
10 TB, | TB, and 100 GB as initial memory design points.

In terms of secondary storage, for the same subset of
applications, there are only two that require over 0.1 PB, with
the rest on the order of 100 GB. Since one would not expect this
to change with a downsize to 100 TF, we will assume 1 TB of
secondary memory - enough for data sets for 10 applications.

For the same application suite, /O requirements are
between | and 100 GB per second. We assume that these are for
continuous /O during program execution, so that if the machine
is only a 100 TF one, then the /O would be one tenth - ie. a
max of 10 GB/s. Initial program load, however, has to be
estimated separately. Assuming that all of primary memory has
to be loaded at startup, and assuming that this is to be done in an
overlapped fashion with the prior application, derivation from
the Bodega Bay data indicates that an additional sustained rate
of 10 GB/s is needed. Thus, a total I/O of 20 GB/s is baselined.

3 PIM State of the Art

Many chips today merge logic with some form of memory.
At one extreme most modemn microprocessors combine millions
of transistors of logic with a few tens of KB of SRAM (for
caches). At the other extreme, most conventional DRAMs
combine MBs of memory with a few thousands of transistors for

address decoding for the internal arrays, latching at the sense

amps, and multiplexing to drive the data lines.

PIM chips fall in the middle. They combine large amounts
of both memory and logic. However, their key distinguishing
feature is that they represent potentially self-contained designs
where all the processing functions and all the memory for that
processing for one or more nodes are on the same chip. This
self-contained characteristic has several key consequences:

1. a single part type scaleable MPP is possible where additional
computational resources are added by adding more chips
(much as today we add more memory via plug in SIMMs).

2. This permits novel 3D packaging techniques which reduce
both overall system costs and chip to chip paths, reducing the
other killer of MPP performance - latency.

3. Placing the processing logic next to the memory permits a
huge increase in the percent of raw memory bandwidth that
can be utilized from the memory arrays over today, where at
best a few percent of the total bandwidth is presented to the
off-chip pins. This can reduce or eliminate the need for
complex caching and other tricks in the design of the
processing logic - again reducing both cost and latency.

4. Eliminating from the processing chips the pins to support a
memory hierarchy means that these same pins can be used to
perform something computationally useful - namely
communication with other processing nodes.

5. Moving multiple nodes to a single chip also allows new
architectural techniques such as mixed SIMD and MIMD
processing, very high bandwidth memory-to-memory
transfers, and "in the memory" processing, all of which
significantly reduce application program complexity.

3.1 EXECUBE - The First True PIM

EXECUBE [8,9,10] was the first true PIM to be
architected as a single part type MPP building block with all the
above features. It is based on a 4 Mb DRAM, with a large
center circuit block for custom logic. The chip has 16 separate
DRAM memory macros, 8 on top and 8 on the bottom. As
pictured in Fig. 1, each chip utilizes the logic to implement 8
complete Processing Elements (PEs), each with its own 64 KB
memory, 16 bit CPU, and inter PE DMA link support logic. The
PEs are arranged on-chip in a 3D binary hyvpercube, with each
PE having a separate full duplex link off-chip. These links can
tie directly to links on other chips in almost any topology.

To simplify parallel application programming, the PEs
were also designed to run in either SIMD or MIMD mode. A
host controller can place on the SIMD Broadcast Bus any
instruction from the PE ISA to be broadcast to some or all of the
PE nodes in the EXECUBE array for execution at the same
time. Instructions in the PE ISA include ones to switch from
SIMD to independent MIMD mode, permitting a single SIMD
instruction to initiate simultaneous MIMD program execution in
the array. Other instructions in the PE ISA signal that the PE is
to switch back to SIMD mode, and await new instructions from

Page 2

Preprint: To be published in Frontiers of Massively Parallel Computation, Oct. 1996

O
&

H
E]

2
3;3 E

§2§2 gls2
g?g%%%%i

SIMD Instruction
Brosdcast Bus

Fig. 1. The EXECUBE PIM chip

the SIMD Broadcast Bus. A simple interlock mechanism on this
bus stalls transfer of additional SIMD instructions until all PEs
that are designated to respond to a SIMD instruction have
actually reached a SIMD mode. This provides an extremely fast
and inexpensive global synchronization mechanism.

3.2 Other PIMs

Since EXECUBE, several other chips PIM-like have
emerged. Table 1 lists these chips, their peak performance per
chip, the number of on chip processors, the overall chip storage
capacity, and the ratio of storage to performance. This latter
ratio is particularly key because the closer this is to the values
needed for real computation, the more viable the overall designs
are. What is key from this table is that even today, the only
design that come even close to the desired 100 TF ratios are
EXECUBE, SHARC, and M32R/D, and that is because they
both chose a very dense memory technology.

Note that this table includes neither current
microprocessors with on chip caches, or single CPU chips
which were designed for MPPs but with limited on chip
memory.

Table 1. Current MPP PIM Chips
Chip Year | # CPUs Perf. MB

MB/Perf

EXECUBE| 1993 8s 50 Mips 0.5 0.01

Terasys 19931 256 1b |625 Mbops| 0.02 2.6E-5

SHARC | 19941 132b 120 MF 0.5 0.005

TIMVP | 19941 4+1 2K Mops | 0.05 2.5E-5

MIT MAP | 1996 4 800 MF 0.13 1.6E-3

DAAM 1996 11024 1B} 862 Mops| 0.5 6E-4

M32R/D | 1996 1 51 Mips 2.0 0.02

4 A PIM-Based Generic Point Design

For this proposal we have taken the key ideas from the
current crop of PIM chips, especially EXECUBE, married it
with a variety of new architectural ideas, and extrapolated the

technology ahead 10 years. The resuling “strawman” PIM
"point design” system is described here. It will be personalized
to specific applications during the swdy. This design is
discussed in several pieces: first, the chip, then configuring the
chip into systems, and then systern software.

4.1 Strawman PIM Chip Architecture

The PIM chip assumed here has three separate
characteristics worthy of discussion: the processing node macro
{memory + logic), the "tiling" of a chip with these macros, and
the interfaces provided on the chip for communication with
other chips. Fig. 2 diagrams an assumed processing node macro.
It consists of a CPU surrounded by 4 separate memory macros,
with each memory macro having its own decoding, sense amps,
and row logic. The choice of 4 macros was deliberate, and
reflects the need to have sufficient memory per processing node
to be able to sustain the computational throughput.

While the actual choice of CPU architecture is somewhat
free, the EXECUBE experience and subsequent studies have
indicated that the most efficient choices in terms of units of
silicon per unit of performance are todav. and will continue to
remain, the simpler designs. Today’s multi-million transistor
superscalar, super pipelined, designs use 3 to 30 times more
silicon per unit of performance than a very basic design with
125K transistors for a primarily fixed pomnt engine and 250K
transistors for floating point intensive one. With such simpler
CPU designs, 4 separate memory macros provide not only the
density but also more than sufficient bandwidth, particularly if
the latches formed at the memory sense amps are visible to the
processor in some way. In practice the nature of these latches
could range from simply a fast single line cache. to actually
placing programmer visible registers and’'or ALUs at the sense
amps. In any case, if future DRAM macros merely maintain
today's EXECUBE 12 ns page access time. the latency for a
memory access as seen by the node’s processing logic is
measured in a handful of cycles - more than enough to support
simple CPUs at near 100% utilization.

Secondary Sense Amy | Seconcx: Semse Amps |

Memory
Array

Memory
Array

Address
Decoder
Address
Decoder

Sonsc Amps & Row Logie Scnse Amps & Row Loex

CPU Processing Logic

Scensc Amps & Row Logic Sensc Amps & Row Logx
Memory |32| Memory |53
¥ S
Array 22| Array 22
Sccondary Sense Amps Secondan Sense Amps

Fig. 2. Strawman PIM Processing Node Macro

Page 3

Preprint: To be published in Frontiers of Massively Parallel Computation, Oct. 1996

[Node Sodefiode Node NodeNndeJiode-Rode Jonde. S nde Jide- mae Sode-Node inde-Node

Processing Processing Processing Processing :’Cl &

Node Macro [Node Macro [Node Macro [Node Macro snvl::em
ode- N e

jadg Nods 4 Munov_vl

PCl& L 2r l Arrey Processing Processing Processing

ray
Inter

System “""!1
ode. Sode | AT

Node Macro |Node Macro [Node Macro

Areny

Processing dreyplarer] L Processing Processing PCl &

Node Macro Node Macro |Node Macro ['M%f
M.-.',I M --uy[Svstem
Array Aresy T

e ncae]

PCl& fProcessing Processing Processing Processing

Inter INogde Macro [Node Macro [Node Macro |Node Macro
Svsiem

N ode- Mande Node-Node [Nide-Node B ode-Node | de- N we Jote-Node [Nide-Node Jode-Node

Fig. 3. Generic PIM Chip Floorplan

Finally, one additional feature is a duplicate sets of sense
amps at either end of the bit lines (as shown in Fig. 2). This
enables the transfer of data on a row-by-row basis between
adjacent processors, providing a monumental advantage in
bandwidth over today's MPP designs.

Tiling the surface of a chip with nodes as in Fig. 3 not only
gives us this incredible bandwidth, but also directly implements
a 2D mesh (as in Fig. 4), with an absolute minimum of
interconnection wiring. Further, having access to the secondary
sense amps on the outside of the processing array permits logic
(labeled "Node-Node" in Fig. 2) to be added to provide fast
communication off-chip. There are at least two candidate
interfaces to consider here. First, along the top and bottom we
might add a protocol for fast parallel row transfers which permit
communication with other chips of the same type. This would
be of particular benefit if we were to utilize emerging "chip
stacking” technologies where cube of silicon chips are literally
“glued” together, with wires running down the sides.

The second kind of interface may be a fast "intersystem”
protocol, such as Myrinet [12]. This not only provides direct
connectivity of the first type, but also permit connection to other
arrays of PIM chips (of the same or different organizations) over
greater than direct chip-to-chip distances, or to /O devices.
Having multiples of these per chip again provides basic
bandwidth firepower that is far beyond that found in modem

Fig. 4. Single Chip = Mesh MPP

designs. Again, this can only serve to help simplify the task of
configuring real applications.

Finally, also as shown in Fig. 3 and 4 we assume a third
type of interface built into each of our PIM chips, namely a
simple "memory like" interface such as the PCI bus protocol.
This single interface is broadcast to all processing nodes, and
permits a processor outside the chip to directly address the on
chip memory as simple memory via loads and stores. Also, this
same interface would be used as in EXECUBE as a bus over
which global SIMD instructions can be issued. The major
difference from EXECUBE is that the address broadcast on this
bus would be used to distinguish between direct memory access
and SIMD instructions for the processing node. It may also be
appropriate to include commands to set up and initiate IO
transfers over the other chip interfaces discussed above.

4.2 System Configurations

Fig. 5 illustrates how multiple chips would be combined
together into an MPP system. Multiple chips might be stacked
into 3D cubes and multiple cubes placed on a "memory card.”
The node-to-node interfaces of the chips would be used for chip
- to - chip communication in the stacks. Cube-to-cube, or
off-card, transfers would utilize the second style of interface.
Further, providing a native memory interface permits insertion
of these cards directly into the memory structure of the then
current "state of the art” microprocessor, making the entire
on-chip memory "look like memory” to the microprocessor.
Finally, by loading and storing to other memory mapped
locations this host can initiate SIMD operations in the array,
which in turn can either start up computational MIMD programs
in the array, perform fast global synchronization steps, or initiate
transfers between chips over the data interfaces.

4.3 Scaling to 100 Teraflops
A first cut at the total system complexity needed to achieve

100 TF with configurations such as in Fig. 5 can be obtained by
interpolating from the 1994 SIA CMOS technology roadmap

l’-b o

Parallel ‘ Nc_g: §’¢

File —] | - ¥ ‘S\
System nter System N
Interconnects
{
L
Modemn

High Performance
Microprocessor

PiM - Memory Card
| High Speed Memory Bus (PC1) |/

Standard V'O

Fig. 5. Assumed System Organization

Page 4

Preprint: To be published in Frontiers of Massively Parallel Computation, Oct. 1996

{1]. Fig. 6 summarizes the results in terms of total silicon area
for each of the assumed memory sizes. If 2004 is a technology
point for a 2006 machine, then the baseline PIM designs would
have the characteristics of Table 2. Besides the basic memory
and logic projections, these curves also assumed running the on
chip processing logic at the SIA's " High Performance, On Chip
Clock" rates. Other more conservative design points might result
in 2-3X more chips.

The earlier comment about the dominance of memory on
size is shown in the "Total Area" plot of Fig 6, where the lowest
curve indicates the amount of silicon needed for the processing
logic alone. It isn't until total memory size drops to 100 GB that
the logic area dominates.

In terms of off-chip bandwidth, if we assume peripheral
contacts only (as was necessary in EXECUBE to avoid
disturbing the DRAM), then in 2004, we might assume 600
contacts. Assurmning 50 for power and ground, and 100 for the
SIMD interface, there are about 450 contacts for the others.
Using today’s technology, a single Myrinet protocol of 18 pins,
would be capable of 160 MB/s. If we had only one such
interface for each chip, given the total number of chips, the total
/O bandwidth would greatly exceed the 20 GB/s requirement.
This would leave something in excess of 400 pins for
chip-to-chip interfaces. Using SIA projections, in 2004, each
such pin could run at up to 350 MHz. Assuming a simple
parallel transfer protocol, with perhaps 25% of the pins for
parity and handshaking, this would provide each chip with up to
13 GB/s of bandwidth to other chips. A square array of chips
gives a system inter-chip bisection bandwidth in high fractions
of a terabyte per second.

Today at least one foundry is building 3D stacks of several
dozen memory chips. If the technology continues to improve,
and the power dissipation per chip is low enough then in 2004
we could assume stacks of 64 PIM chips for the arrangement of
Fig. 5. For the smaller memory configurations the means that

he entire 100 TF PIM m could fit on 1 to 2 cards!

Toal Sg. mm of Silicon
/
/
¢
/
/
/
4

06 - -
\ e -
~o
E05 \
3

E+04
BYs 2000 2005 200
m!0 TB ol TB
4100 GB CPU Logic Mone

'Fig. 6 S!A Projections For a 100 TF

4.4 Comparisons to Current Practice

Today we have single chip microprocessors with peak
performance approaching 1 GF. Assuming that by 2004 we
have 10 GF microprocessors, and that to support each in a
system one would need 8 L3 cache chips and a bus interface
chip, then a 100 TF system would require 10,000 such nodes,
for 100,000 chips. Assuming the densest DRAM chips of 0.5
GB each, we would need 120,000 total chips for the Jargest 10
TB configuration, 102,000 for 1 TB, and 100,200 for 100 GB
configurations. The PIM approach is superior by up to almost
two orders of magnitude!

4.5 Simplifying the Operating System Support

As pictured in Fig. 5, making the PIM chips "look like
memory" to a conventional microprocessor has some significant
system software simplifying ramifications. Individual data items
can be accessed via conventional loads and stores without
regard to where in the processor array the data is. Since
"memory is memory," the partitioning of data structures to
maximize parallelization can be done within the confines of
conventional compiler by careful memory allocation. No special
languages or language extensions are needed to do the mapping,
although it may be appropriate to consider preprocessors that,
given the desired partitioning arrangement, will develop the data
declaration source code to reflect that partitioning. Together
with initialization, overall system monitoring, and user interface,
this permits the most complex, but usually least computationally
stressing, parts of an application to be written as conventional
scalar code running in the host microprocessor, utilizing
whatever is the current state of the art in tools.

While simple, this approach still requires some additional
features to be grafted onto the underlying operating system, with
care as "device drivers” of various flavors. including:

1. ability to "page fix" blocks of real memory to virtual memory,
so that applications that wish to map data structures to
different chips to support parallel computation internal to
those chips can do so.

Table 2. 2004 PIM Design Characteristics
MB/MF Ratios
0.1:=10TB | 0.01=1TB | 0.001=100GB

Total Chips 33,119 3,686 742
3D Stacks 517 58 12
Bisection BW | - 796 266 119
#Nodes/Chip 5 43 241
MB/Chip 302 271 135

MF/Chip 3,019 27,132 134,713

Page 5

Preprint: To be published in Frontiers of Massively Parallel Computation, Oct. 1996

2. support for "broadcasting” sequences of SIMD instructions to
different groups of processing nodes within the PIM card set,
and for testing for global conditions, such as all processing
nodes in group x have reached a common barrier point.

3. support for a parallel file system where the disks are attached
to the interfaces which exit both the chips and the PIM cards.

4. support for a closely coupled network of compute nodes as
pictured in Fig. 5, where the interfaces exiting the PIM cards
would form a very high speed LAN interconnect fabric.

Note that the use of these chip interfaces for both parallel

file systems and closely coupled network interfaces eliminates a
bottleneck that severely constrains current technology. The
multiple parallel data ports are interfaced directly with
different memories, and need not either contend either for
some intemal memory bus or involve multiple
memory-to-memory copies to position the data correctly. This
should provide both a substantial reduction in real application
complexity, and permit achievement of much higher sustainable
levels of performance over an entire application execution.

4.6 Minimal Runtime

If the processing logic inside each processing node in the
PIM chips is general purpose, then it is probably necessary to
provide some sort of runtime system. Unlike current MPPs , this
runtime need not approach the complexity of a complete
"operating system kemel." There are several reasons for this:

1. use of a host microprocessor with access to the PIM chips
means that most system management and user functions can
be done in the host, with conventional OS support.

. the individual units of computation are smaller than the host
microprocessor designs, and thus it is nowhere near as critical
to keep each and every one busy 100% of the time. This
reduces the need for local sophisticated task schedulers.

.the assumed ability to run in SIMD and MIMD mode off
loads a lot of the application code global synchronization and
set up to the host microprocessor, where it can be done
largely in parallel with on going computations in the array.

4. the huge amount of low latency bandwidth available between
nodes on the PIM chips means that very sophisticated
messaging protocols may not be needed, and that it ought be
possible to graft on simple but high performance “virtual
shared memory" protocols onto a systems which is inherently
a mix between a physically locally shared and globally
distributed memory design.

At this time, it appears that the key features that must be
designed into a runtime for the generic PIM chips of Fig. 4
include: a basic library of inter node message passing, support
for a virtual shared memory system, a "Remote Procedure Call"
like mechanism that permits SIMD code to set up and initiate a
MIMD program on some selected set of node, and fault
tolerance and rerouting in case a chip goes down.

8]

(99

S Applications

Three applications were chosen for study as targets for
variations of the above point design: solutions of nonlinear
partial differential equations (PDEs), multidisciplinary design
problems, and some problems in massive image compression.
These problems were chosen because: (1) they exhibit a
representative range of variation in granularity, data structures,
and need for internal communications, and (2) we have a variety
of new computational and parallel program construction
techniques for them under current study.

5.1 Wave Digital Solution of Nonlinear PDEs

Simulating systems of PDEs is a classical problem which
has driven the development of many prior generations of
supercomputers. Looking to the future, besides obvious
extensions such as more and varying grid points, there will be a
real need to attack more complex PDEs, such as ones with non
linearities. Given this, one of our chosen applications is the
solution utilizing a new finite difference technique for
transcribing such systems into discrete space-time
representations. This "wave digital" technique was originated by
Alfred Fettweis (a recent Visiting Professor at Notre Dame)
from earlier work in signal processing, where it was known as
"wave digital filtering."
Briefly, the steps involved in transcribing a continuous
system of PDE's into a discrete algorithm begin with a special
transformation of the coordinate system within which the
equations were originally elaborated. This results in the
time-domain attributes of causality and passivity being
automatically acquired by all the dimensions in the new system,
not just time [5]. Next, a multidimensional ""reference circuit” is
constructed for these equations. Elements in such circuits are
typically resistors, transformers, independent sources, as well as
so-called mudtidimensional inductors and capacitor [6]. This
reference circuit is designed such that if one were to write a
certain complete set of equations of motion for the circuit (as
Kirchhoff loop and/or node equations). the set of transformed
partial differential equations would result. Finally, this reference
circuit may be transcribed into a wave digital flowgraph
representing the simulation calculations required to be
performed at each discrete-space grid point [7].
There are four major properties of wave digital
formulations which make them especially good candidates for
MPPs such as described here:
1.If the original system is multidimensionally stable (i.e..
passive from an energy conservation view, and most real
systems are), then the wave digital formulations are also. This
leads to stable finite difference systems even for difficult non
linear PDEs operating on the edge of instability.

2. As a consequence of both the stability and the simulation of
wave quantities rather than the original problem variables,

Page 6

Preprint: To be published in Frontiers of Massively Parallel Computation, Oct. 1996

there is a potential for reduced dependent variable word
lengths and dynamic ranges. This leads to reduced memory
requirements and simplified arithmetic units, both of which
would minimize total silicon utilization.

3. Communication between computations is strictly "nearest
neighbor.” In fact, wave digital is the only known second
order difference method we know of that has this property.
This fits neatly in with the natural structure that grows out of
tiling chips with PIM macros as pictured in Fig. 3.

4. Finally, the approach accommodates naturally parameters that
vary over space and time, increasing further the range of
applicability.

As a simple example, Fig. 7 diagrams the grid structure and
inter grid point dependencies for a sample wave digital
formulation of the electrical behavior of a pair of parallel plates.
While this problem is not exotic by current standards, the
resulting solution pictured here is still very characteristic of
more complex non linear PDEs. Each grid point involves
intemnal storage of 3 changing wave parameters and 18 grid
point-dependent terms, transfers of 6 parameters to and from
three neighbors, 29 add/subtracts, 5 constant multiplies, and 10
multiplies by grid point & time-dependent parameters. If each
parameter were 32 bits (because of the inherent stability
properties of the wave digital approach), this translates into a
grid point which needs 84 bytes, and in the time required to do
44 arithmetic operation an inter grid point /O bandwidth of 24
bytes. If one postulated a problem with 10" x 10* grid points, 10°
time steps, where parameter values were changed every 1000
steps from in core tables and wave values sampled every 1000
steps, a 100 TF per second MPP with perhaps 10° processing
nodes, would need about a minute of execution time, with a
primary storage requirement of about 10 TB (for a ratio of 0.1
MB per MF), about 50 MB/sec bandwidth between neighboring
processing nodes, and about 20 GB/s of system /O to archive
the wave quantities. This is an ideal match to a PIM based MPP
such as described earlier.

In terms of software development for such problems, the
process of developing the actual code for each grid point's
computation does not appear particularly complex. What is
difficult, especially when grids may change dynamically during
a computation, or when we wish to group multiple sets of grid

O Q
\
ol o O
O O |0
O

Fig. 7 Wave Digital Solution of a Typical PDE

points into single computational nodes, is to partition regions of
grid points together, and then schedule the computations in an
optimal fashion. Much of the ongoing work at Notre Dame
discussed below for transformation, partitioning, and scheduling
has proven directly applicable.

5.2 Multi Disciplinary Design Problems

Already one of the heaviest consumers of computing
cycles, engineering design will motivate the need for increased
growth to teraflop levels and beyond over the next decade. A
first trend, apparent in many industries, is the drive to reduce the
duration of design cycles. This becomes all the more difficult in
light of the second trend, which is the need to perform more
detailed computer-based analyses during each cycle, allowing
engineers to evaluate the quality, reliability, and
manufacturability of designs before release to production. This
in tum is further complicated by a third trend, which is an
increasing focus on simulating and optimizing not only
individual components, but also complex, coupled
multidisciplinary systems.

Although the demand for high-performance computing in
engineering design is clear, the mechanisms for best providing
and utilizing the necessary computing capacity are not. While
significant work has been invested in applying MPPs to
single-discipline analyses, less is known about its application to
multidisciplinary analysis and optimization (MDQO). In the
research proposed here, we plan to investigate methodologies
for massively-parallel MDO on a PIM-based architecture.
Specifically, we plan to perform an assessment of the computing
requirements of current MDO algorithms on a given large-scale
design problem, to identify the bottlenecks and limitations to
applying MPPs to MDO, and to develop and size a tmal
problem. Because of the impact that MDO technology can have
on the development of PIMs themselves. we will focus our
examples on CAD for VLSI.

One of the major results of the Notre Dame MDO effort
has been the development, implementation, and testing of the
Concurrent Subspace Optimization (CSSO) algorithm [18]. In
this CSSO algorithm, a global optimization problem is divided
into subdisciplines, each of which is optimized independently.
with tradeoffs negotiated by a system-level coordination
procedure. In order for the subspaces to be able to perform their
local optimizations in parallel, each must have a means for
accurately computing its own system states and performance. as
well as a means for approximating the non-local information
that is generated in the other subspaces. For computing local
system states, each discipline provides a contributing analysis.
which may themselves embody highly-complex systems of
equations, requiring intensive processing for solution. Non-local
approximations are required because in a coupled system.
changes in a local design variable not only have a direct impact
on the performances of that subsystem, but also have an indirect
impact that result from the influence of changes on other parts of

Page 7

Preprint: To be published in Frontiers of Massively Parallel Computation, Oct. 1996

the system. During each subspace optimization, the design
points that are visited are stored in a design database. At the end
of the subspace optimizations, this data is used to approximate a
system-level optimization problem that is solved to trade-off the
subspace-optimal design moves in order to make a global design
move. After the global coordination procedure is performed, a
new design point is produced. The CSSO algorithm iterates until
convergence is achieved, as measured by relative changes in
both the design vector and the system objective function
following the global coordination procedure.

A variety of small-scale problems have been used to test
the performance of the CSSO algorithm thus far. These test
problems have fallen basically into two categories: problems
with a moderate number of disciplines (~10) yet simple
contributing analyses, and those with only two or three
disciplines yet highly-complex contributing analyses. An
example of the former is an aircraft concept sizing problem, that
considers the geometry of the aircraft, propulsion,
aerodynamics, and flight regime [19]. As an example of the
latter, in an ongoing project, we are developing methods for
concurrent optimization of integrated circuit fabrication
processes and cell libraries [11]. This particular technology will
be particularly important in the development of PIM chips,
where different circuit modules such as memory, logic, and /O
may wish to "push" the process in different directions in order to
improve their own local performance. Through the use of the
CSSO algorithm, it should be possible to find a process
specification that is maximally beneficial to the whole product.

There are several features of multidisciplinary design
optimization problems that make them a particularly interesting
test case for PIM-based architectures and massively-parallel
computing in general. Foremost is the hierarchical nature of the
problem that is well-suited to the varying degrees of locality that
PIM architectures offer. At the lowest levels, fine-grain
parallelism may be used to accelerate computation of individual
contributing analyses, while coarser levels of granularity may be
applied to the subspace optimizations or system-level
coordination. A second issue that will need to be addressed for
MDO is how to automate tasks that currently require extensive
human intervention. In particular, a great deal of expertise is
often required in order to run individual contributing analyses
and to interpret their results. Such interpretation is required
because the numerical models used in many analyses can and do
converge to solutions that are physicallv infeasible, which will
mislead an optimizer. Robust analysis methods will have to be
developed for both optimization and analyses in order to take
advantage of the available computing bandwidth.

In order to apply massively-parallel MDO techniques to
large-scale problems-with many disciplines and complex
contributing analyses-it will be necessary to revisit many of the
assumptions upon which the CSSO algorithm is founded. In
particular, the current CSSO implementation employs a
sequential quadratic programming algorithm, using local first-
and second-order sensitivity information to guide the search for

optimal designs. This approach may prove ineffective for
large-scale problems that could produce a highly multi-modal
design space. New techniques that use parallel search methods
will have to be developed to address such problems.

5.3 Massive Image Data Compression

Another of the proposed applications is compressing and
decompressing sequences of image data using new geometric
techniques under development at Notre Dame. Problems
involving sequences of images occur in many important
applications, such as computer animation, satellite data process
and analysis, flight simulation, medical data analysis, and data
visualization. Further, it is often the case that the volume of
image data (e.g., in an image database) is substantially large. For
example, NASA Goddard Space Flight Center currently has 60
million images (with about a megapixel per image), spanning
about 20 years. As technology advances, by the year 2010, the
NASA image repository could hold 25 billion images. Image
maintenance and retrieval is therefore a problem of great
significance. However, in spite of the fact that data compression
research has already produced highly sophisticated techniques
for text data retrieval, the study on image data compression and
retrieval has lagged far behind.

Our research at Notre Dame on compressing images has
been based on the following fact: Image data is often organized
and presented in the form of similar image sequences. In a
typical sequence of picture frames (e.g., in a movie), often there
is only small change from one frame to the next frame, and it is
possible to describe the differences between one image and the
following in the sequence by several elementary operations
(such as adding, deleting, or substituting some new features,
translating along a direction, rotating by a small angle, etc.).

Our approach for compressing sequences of similar
images, mainly based on data structure and algorithmic
techniques from computational geomewy, is substantially
different from others, with the following advantages:
1.1t achieves both fast retrieval time and efficient memory

usage. For example, let n be the number of images in a given
sequence, and D be the total number of differences”
between adjacent image pairs over the sequence. Then the
retrieval time of our approach is that of generating one image
(without having to generate the previous image first) plus an
additive O(log D) overhead per pixel column, and the
memory for storing the whole image sequence would be that
of storing one image plus O(D).

2. While our image sequence compression scheme is virtualty
lossless, it avoids costly computations needed by performing
transforms such as Fourier or Discrete Cosine. The basic
operations involved in our compressing and decompressing
processes are just usual operations on search trees like data
structures, such as search, insertion, deletion, etc. This is
especially significant to applications like image query
systems (e.g., an image library). Often in such a system,

Page 8

Preprint: To be published in Frontiers of Massively Paralle] Computation, Oct. 1996

decompression either takes place very frequently, or takes
place at the receiving end of data transmission where
computational resources may not be the state of the art.

A key to our image sequence compression technique is the
use of persistent data structures [4,14]. Note that ordinary data
structures are ephemeral, namely, a change to the structure
destroys the old data version (e.g., a deleted item is gone). In
contrast, a persistent data structure supports fast access to
multiple versions of dynamically changing data. Previously,
persistent data structures have only been used to maintain
multiple (similar) versions of one-dimensional information. In
our case, a sequence of "similar” images can be viewed as a
series of varying versions of an image that are generated by
performing a sequence of elementary operations. However, to
use persistent data structures to compress an image sequence
(each image naturally contains two-dimensional data), several
extensions must be made, including: (1) Partition the first image
into a number of "slim" regions (for example, each such slim
region initially may contain pixels in several adjacent columns),
with each region being viewed almost as if it contains
one-dimensional data. (2) Use a set of closely coupled persistent
data structures to maintain subsequent versions of the regions of
the image, with one data structure per region. (3) Maintain a
"descriptor” data structure for describing certain special
operations (e.g., translations and rotations) performed on the
contents of the image along the image sequence.

Although our image sequence compression technique
appears to be quite useful, we believe the prospects of extending
this technique to our PIM based MPP systems is even more
interesting. One important reason is that the volumes of image
databases are often enormous. For example, a 10-million image
library holds 10 terapixels (at 1 megapixel per image).
Therefore, a great deal of computing, /O, and storage power is
needed to process compression and retrieval of image data of
that kind of size. Our proposed MPP certainly has the potential
for this kind of computational capability. Another important
reason is that our compression technique seems to be quite
readily extensible to the PIM based MPPs. For example, we can
store several adjacent regions of the image at one processing
node. This processing node then handles the computation of
maintaining the persistent data structures for those regions. The
interfaces between the processing nodes/chips of the PIM based
MPP can then be wused to accommodate the
coupling/communications between data structures across the
boundaries of their represented image regions.

6 Program Development Tools

Even though the systems addressed in this proposal are
“point designs,” they will exhibit most of the software
development problems to be faced in a complete "general
purpose” petaflops machine. While some are greatly alleviated
by the organization pictured in Fig. 5 others still remain, in
particular dealing with the massive amount of parallelism that

naturally comes in a PIM design (upwards of a 100,000
processing nodes). Ongoing projects at Notre Dame are
addressing a new set of techniques and tools applicable to the
point design applications, including transformation of the basic
equations or code, optimization of the scheduling of the tasks,
and partitioning of the problem to reduce the communication
between processors.

Transformation techniques are usually applied to get
optimal execution rates in parallel and/or pipelined systems. The
retiming (or loop pipelining) technique is a common and
valuable tool in one-dimensional problems, represented by data
flow graphs, which can maximize the parallelism of a loop body
by regrouping the operations in iterations to produce a new
iteration structure with higher embedded parallelism [3]. In this
study, we will use new techniques to model loop bodies
representing greater than one-dimensional problems by
muldti-dimensional data flow graphs [13]. The loop body is
transformed, i.e., the existing delays are redistributed, preserving
the onginal data dependencies. This technique has been
successfully applied to several problems that have grown out of
the wave digital PDEs discussed above

Once large amounts of parallelism has been extracted, such
as by the above techniques, an additional problem is the need to
map the solution to a fixed number of equal processing
elements, such that all of them are able to execute
simultaneously, with a minimum communication between
processors. To solve this problem, the solution must be
partitioned in blocks where the boundaries of such blocks will
determine the amount of data to be transmitted. By using
multi-dimensional retiming techniques the partitioning and
mapping problems can be solved for high parallelism. The data
communication, however, requires a data scheduling technique,
in order to improve the use of data available locally at each
PIM. A method called carrot hole data scheduling has been
developed at Notre Dame to soive this problem [17]. This
research proposes consideration of the incorporation of such a
technique into a tool set, with a expected significant
performance improvement in complex problems where there are
high numbers of data dependencies between tasks.

Finally, even considering the reduction on the data transfer
between processors obtained by the carrot-hole data scheduling,
a more important optimization is to hide the overhead (or time
consumed) caused by the remaining data transmissions. This
problem has been target of the preliminary studies, resulting in a
technique known as communication-sensitive rotation
scheduling [16]. This study will extent such a methodology
expressly for the candidate PIM configurations, particularly for
multiple chip configurations.

7 Proposed Study
The overall abjective of this study is to quantify the degree

to which PIM-based MPPs can be built and programmed over
the next 10 years that would provide effective performances of

Page 9

Preprint: To be published in Frontiers of Massively Paralle] Computation, Oct. 1996

the 100+ tera(fljop range against some real applications. This

translates into two specific objectives: refining the generic point

design for each application (both PIM chip and system), and
developing a coherent view of all the software needed to
implement each of the algorithms on its specific point design. In
keeping with the objectives of NSF's call for proposals, the
emphasis is on the latter, particularly on identifying areas of
commonality and/or areas that offer the potential to grow into
more "general purpose" software for PIM-based MPPs.

Given thus, the study’s approach takes the following steps:

1. For each of the chosen applications a more careful estimation
will be made of the overall computational flow, and the
expected computational demands (memory, (fl)ops, [/0).

2. These characterizations will be used to define a most
appropriate processing logic to fit within the confines of a
PIM node macro as diagrammed in Fig. 2. It is expected that
there may be three such definitions, one for each application.

3. Each of these macros will then be grown into revised point
design chips (as in Fig. 4) and systems (as in Fig. 5), backed
up with revised versions of Table 2.

4. For the three systems, a more careful analysis will be made of
the modifications needed to be made to the system software
running in the host microprocessor. At this point, we expect
to see a very high degree of commonality among all three.

5. Each application will then be revisited with its specific point
design (chip and system) in mind. The goal here is to
construct a scenario for how the application would be
transformed into real code, with emphasis on what real
development tools would be needed at each step of the way.
The emphasis here is on completeness - at each step from
application definition to code debug, what needs to be done,
what tools are needed to perform them, and do those tools (or
the algorithms embedded in the tools) exist.

6. Finally, all three point designs (both hardware and software)
will be revisited with the goal of abstracting out those parts
which are common to all, and those which represent
application-specific needs. For the latter, an initial
determination will be made as to how much of an impact on
overall effectiveness the lack of that feature or tool would be
for that specific application.

The results will be summarized in a final report to be
delivered at the Petaflops Workshop at the Frontiers of

Massively Parallel Computation, Oct. 1996 (this conference).

8 Acknowledgments

The work reported in this paper was partially funded by
NASA grants NAGS-2998/S1 and NAG-1-1561, and by the
National Science Foundation under grants CCR-9623585, and
MIPS-9501006 . Further funding will be from the NSF Point
Design Study.

References

1.-, The National Technology Roadmap for Semiconductors: 1994,
Semiconductor Industry Association, San Jose. CA.

2. -, Workshop on the Application and Algorithmic Challenges for
PetaFlops Computing, Bodega Bay, CA. Aug. 1995.

3. Chao, LF. and E. H.-M. Sha. ™" Retiming and Unfolding Data-Flow
Graphs", Int. Conf. on Parallel Proc.. August 1992, pp. 11 33-40.

4. Driscoll, J. R,, N. Samak, D. Sleator, and R E. Tarjan, “"Making
Data Structures Persistent,” J. of Computer and System Science,
Vol. 38, pp. 86—124, 1989.

5. Fettweis, A., "Wave Digital Fiiters: Theory' and Practice," Proc.
IEEE, Vol. 74, No. 2, pp. 270-327. February 1986.

6. Fettweis, A. and G. Nitsche, “Transformation Approach 1w
Numerically Integrating PDE's by Means of WDF Principles.”
Multidimensional Sys.and Signal Proc., Vol. 2, pp. 127-159, 1991

7. Fettweis, A. and G. Nitsche, "Numerical Integration of Partial
Differential Equations Using Principles of Multidimensional Wave
Digital Filters," J. of VLSI Signal Proc., Vol. 3. pp. 7-24, 1991.

8. Kogge, Peter M., "EXECUBE - A New Architecture for Scaleable
MPPs." Int. Conf on Parallel Proc., St Charles, IL. Penn State
Press, Aug. 1994

9. Kogge, Peter M. "Processors-in-Memory (PIM) Chip Architectures
for Peta(Fl)ops Computing,”Petaflops Workshop, /995 Frontiers
of Massively Parallel Computation. McLean. Va, Feb., 1995.

10. Kogge, Peter M., Toshio Sunaga. Histada Mivataka. Koji Kitamura,
and Eric Retter, " Combined DRAM and Logic Chip for Massively
Parallel Systems," 6th Conf on Advanced Research in 1'LSI.
Raleigh, NC, IEEE Press, March 1995, pp. 4-13.

11. Lokanathan, AN. J. B. Brockman, and J. E. Renaud, "A
Methodology for Concurrent Fabrication Process/ Cell Library
Optimization”, 33rd ACM/IEEE Design Auto. Conf. June 1996.

12. Myricom, http//www.myri.com

13. Passos, N. L. and E. H.-M. Sha = Full Parallelism in Uniform
Nested Loops using Multi-Dimensional Retiming”, Proc. Int. Conf
on Parallel Proc., Aug. 1994, vol. I1. pp. 130-133.

14.Samak, N. and R. E. Tafan. “Planar Point Location Using
Persistent Search Trees." Comm. of the ACM. Vol 29, pp.
669679, 1986.

15. Sterling, T., P. Messina, and P. Smith. Enabling Technologies for
Peta(FL)ops Computing, MIT Press, Cambridge. MA. 1995.

16. Tongsima. S.. N. L. Passos and E. H.-M. Sha ™ Architecture
Dependent Loop Scheduling via Communication Sensitive
Remapping”, /nt. Conf on Parallel Proc. Aug. 1995, Il pp.
97-104.

17. Wang, J. Q, N. L. Passos and E. H-M. Sha. = Optimal Data
Scheduling for Uniform Mult-Dimensional Applications,” 10
appear in /EEE Trans. on Computers. 1996.

18. Wujek, B.A,, J. E. Renaud. S. M. Batill. and J. B. Brockman.
"Concurrent Subspace Optimization Using Design Variable
Sharing in a Distributed Computing Environment,” Proceedings of
the 1995 Design Engineering Technical Conferences. Advances in
Design Automation, ASME DE-Vol. 82. pp. 181-188.

19. Wujek, B.A., E. W. Johnson, J. E. Renaud. and J. B. Brockman.
“Design Flow Management and Muludisciplinary Design
Optimization in Application to Aircraft Concept Sizing," 34th
AlAA Aerospace Sciences Meeting and Exhibit, January, 1996.

Page 10

PIMs for Petaflops

Appendix B

Computing Component Characterization
a portion of the draft proceedings of
The Petaflops Architecture Workshop

Oxnard, CA, April 1996

Page 33

Chapter 8

Architecture Working Group

8.1 Computing Component Characterization

The NSF point design studies by their very nature must assume computing
and memory components that do not exist today, and will not for the better
part of a decade. Given the array of architectural choices available today,
and the difficulty for even the expert to fully understand all of them and how
they will look in tomorrow’s technology, it is clear that without some sort
of rational and common projections, it will be difficult to validly compare
and contrast the alternative point design approaches as they develop.

To help provide such a common baseline, at least for the mainstream
CMOS technology, this chapter will summarize a series of projections based
on the Semiconductor Industry Association’s (SIA) 1994 National Technol-
ogy Roadmap. This section is organizedis as follows: a quick summary of
the technology trends, a projection of commodity memory components. and
then a projection of how those trends may result in high performance Sym-
metric Multiprocessors (SMP) chips. A spreadsheet program is described
that will allow exploration of alternative scenarios. This spreadsheet is used
to give some projections for future DEC ALPHA 21164-like chips.

8.1.1 Basic Technology

Table 8.1.1 summarizes some of the key CMOS characteristics listed in
the SIA Roadmap (as distributed at the Petaflops Architecture WorkShop,
PAWS-96), in three-year intervals from 1995 through 2010. The number in
“(#)” after many of the characteristics reference the page in the SIA docu-
ment where these data originated. The other rows were derived by simple

327

Table 8.1: Basic SIA Roadmap CMOS Trends

Characteristic

(SIA Pg. #) Units 1995 1998 | 2001 | 2004 | 2007 | 2010
Feature Size{11) sm 0.35 0.25 0.18 0.13 0.1 Q.07
vdd(14) volts 3.3 2.5 1.8 1.5 1.2 0.9

DRAM
Chip Capacity MB 8 32 128 512 2,048 | 8.192
Chip Size(12) mm? 190 280 420 640 960 1400
Density MB/cm* 4 11 30 80 213 385
Chip Cost Rel. to 1995 1 1.65 2.82 3.76 7.53 12.05
$/MB Rel. to 1995 1 0.41 | 0.18 0.06 0.03 0.01
High Performance Microprocessor Logic Based Chips
Transistors/Chip(16) MT 12 28 64 150 350 200
Chip Size(B2) mm?* 250 300 360 430 520 620
Density MT/cm* 5 9 18 35 67 129
Clock: pP(12) MHz 300 | 450 | 600 | 800 | 1000 | 1100
Clock: DSP(46) MHz 400 600 800 1100 1500 1900
SRAM Cache Density(11) MB/cm? 2 6 20 50 100 300
Cost /Transistor (B2) millicents 1 0.5 0.2 0.1 0.05 0.02
Chip Cost Rel. to 1995 1 1.17 1.07 1.25 1.46 1.33
ASIC Logic Chips

Transistors/Chip MT 9 26 53 108 275 360
Chip Size(B2) mm* 450 660 750 900 | 1100 | 1400
Logic Density(B2) MT/cm? 2 4 7 12 25 40
Clock(B2) MHz 150 200 300 400 500 6235
Minimum Chip Cost Rel. to 1995 uP 0.75 1.1 0.88 0.9 1.15 0.93
NRE Chip Cost $/volume 27 26 26 32 55 36

arithmetic computation from the provided numbers.

Under the “Units” column, “MT” means “Millions of transistors, “MHz"
stands for “Megahertz,” “NRE” is "Non-recurring Expense,”

For logic, it should be stressed that there are at least three distinct trends
that one can assume. First is the full custom, maximum density, very high
design cost, but high volume, “Microprocessor” logic family. Two sets of
clock rates are given for such designs: a “high performance microprocessor”
clock (listed as “uP clock™), and an even higher clock rate “digital signal
processor” (DSP) that might be achieved for specialized designs. The third
set of logic is Application Specific Integrated Circuit (ASIC), which has lower
transistor density and lower clock rate, but is more amenable to relatively
inexpensive specialized designs. Note that the largest ASIC chips are almost
uniformly twice the size of the custom microprocessor chips, making up in
area what they lose in density. Note also that we will assume that SRAM
cache density is the same for both ASIC and microprocessor logic, since in
either case it would be a custom macro.

Given the difficulty in interpreting the cost numbers in the SIA Roadmap,

328

Table 8.2: Basic SIA Off-Chip Signaling Trends

Characteristic Units | 1995 | 1998 | 2001 | 2004 [2007 | 2010
;P Package Pins(12) 512 | 512 | 512 | 512 | 800 | 1024
uP Signal Pins 410 410 410 410 640 819
ASIC Package Pins {12) 750 | 1100 | 1700 | 2200 | 3000 | 4000
ASIC Signal Pins 600 880 1360 1760 2400 3200
Chip-To-Board Rate MHz 150 200 250 300 375 4735
Aggregate uP SIA Bandwidth GB/s 6.1 8.2 10.2 12.3 24 38.9
Aggregate ASIC SIA Bandwidth | GB/s 9 17.6 34 52.8 90 15.2
Aggregate uP 2-Wire Rate GB/s | 205 20.5 20.5 20.5 32 41

Aggregate ASIC 2-Wire Rate GB/s 30 44 _68 88 120 160

the chip costs listed here have all been normalized to the SIA 1995 basis,
and assume high volume production. Lower volume specialized chips will
cost more. In particular, the “Minimum Chip Cost” for the ASIC chips
assumes no allocation for the design NRE. The last row in the table gives a
“per chip” estimate of this for volumes from 10,000 to 100,000.

The SIA trends assume two separate types of chips: logic and DRAM.
As several recent experimental chips have demonstrated, such as the IBM
EXECUBE chip, it should be a possible in the future to mix both on the
same die. To do this may require special consideration in several areas such
as off-chip contacts and speed of on-chip logic. These are discussed later.

Off-Chip Signaling Potential

Table 8.1.1 totals some basic off-chip bandwidth numbers derivable from
the SIA data. It includes the number of available packaged pins, and an
estimate of the pins available for data (by allocating 20% of the total to
power and ground). Also, two different signaling protocols are assumed:
the “Chip-to-Board” rates described in the SIA Roadmap; and a two-pin
differential scheme discussed at PAWS-96 that might allow a signaling rate
of 1 GHz.

The aggregate signaling rates come from the product of the number of
pins on the package, times the signaling rate, divided by 10 to convert to
bytes per second (10 was used instead of 8 to allow something for parity
and for protocol). Note that in terms of off-chip communications, such as
to memories, the real transfer rate must take into account both bandwidth
for data and bandwidth for the address or other control information needed
to instigate the transfers.

One serious caveat to using these numbers blindly may occur if chips
contain very significant amounts of both logic and DRAM. Reaching the

329

large number of pins listed in Table 8.1.1 assumes area contacts on the chip,
and when there are significant amounts of DRAM present, it may not be
possible to place such contacts over the DRAM cells. In such cases, it may
be necessary either to reduce the area pins by the percent of area that is
DRAM, or to assume peripheral arrays only.

8.1.2 Commodity Memory

From Table 8.1.1, one can develop a scenario of potential commodity DRAM
chips. From that, one might want to assume that for example, for a 2007
time frame machine a 2-GB chip would be available. However, from his-
torical observations of the 64-Mbit (8 MB) chip, the capacities listed here
seem to correspond to the year of first limited production. Thus, the real
cost savings listed are probably not apparent until perhaps three years later.
This means that while one might want to assume in 2007 a 2-GB chip for
reducing parts count, the cost per MB is probably more appropriately taken
as the 2004 numbers.

In terms of absolute price, in 1995 the street price of packaged and tested
DRAM was in the $20 to $40 per megabyte. Given the above discussion,
this would translate into 2007 prices of $1 to $2 per MB, or $1M to $2M
per terabyte.

SMP CPU Chip Projections Spreadsheet

Taking the above, and related, technology numbers and projecting what
commodity microprocessors might be is much more difficult than for DRAM.
Technology will have passed the point where entire computers (CPUs, caches,
and at least some memory) are on one chip, In fact technology will allow
multiple such machines. Each vendor will be making a separate set of de-
sign decisions, based on perceived marketplace needs. Consequently, it is
irrational to select a single part type as the building block for all point de-
signs. Instead a spreadsheet has been constructed to allow specifying a set
of architectural parameters, and from that deriving the capabilities of chips
that have those parameters, over the same time frame as described above.
The spreadsheet takes the specified architectural characteristics, and as-
sembles an estimate of chip size based on all the SIA numbers discussed
above. Table 8.1.2 lists the basic input area for the spreadsheet. The num-
bers in the larger bold font are the ones input by the user. Those shown in
the table are for a trial run assuming the DEC ALPHA 21164 microproces-

330

Table 8.3: Input Parameters for the SMP Chip Estimator

File:Petatech SMP Chip Design Projections Worksheet
05/24/96 e Enter Design Choices Here | -
ALPHA 21164 Ll:Instr | L1:Data | L2 CPU Core(MT)= | 2
Block Length Bytes 32 64 64 Logic Type(aud)= | d
Entries # 256 256 512 # CPUs/Chip= | 4
Associativity #* 1 1 3 On-chip DRAM (MB)= | 0
Tag(Adr+Status) Bits 36 72 36 | Reference Clock Rate(MHz)= { 300
Ports # 1 1 1 Reference Feature Size(u)= | 1
L2 Replicated(r) or Shared(s) | r

Note: L1-Data Cache assumes 2xthe tag -
& 2xthe Block to reflect the duplication to get 2 ports

sor, which is discussed later. They assume numbers for an on-chip two-level
cache hierarchy, with and without potential on chip DRAM for memory.
The L1 cache is assumed to have two parts, a data cache and an instruction
cache.

It is worth discussing the terms in Table 8.1.2 because they would help
others use the spreadsheet, and because they represent some of the key
characteristics that influence both chip size and performance characteristics.

1.

The “Block Length” (in bytes) is the number of bytes read out of the
cache on a single access in a single associative set.

. The “Entries” is the number of cache rows present in the cache array.

. The “Associativity” is the number of associative sets in the cache (use

1 for a direct mapped cache for a decent approximation).

. The “Tag™ is the number of bits from the address used in the com-

parison from each set, along with LRU, status, etc. bits. A useful
approximation is the number of bits in the virtual address, minus the
number needed to represent a page, plus 6 to 8.

. The “#Ports” is the number of separate ports available from the cache

for simultaneous access. Numbers greater than 1 for L1 data caches
will become more frequent in the future as microprocessors with mul-
tiple load store units become more common. Shared L2 data caches
might also have multiple ports.

. The “CPU CORE™ is the number of transistors of logic involved with

the CPU itself, exclusive of caches, but including all processing logic,
TLBs, write back buffers, etc.

331

7. The “Logic type” specifies what kind of logic to assume. Three sepa-
rate values are permitted. “u” selects the custom microprocessor chip
size, transistor density, and clock rate. “d” selects the same as for “u,”

@&.on

but assumes the higher DSP clock rate. “a” assumes the ASIC size
and speed chip.

8. The “4#CPUs/Chip” indicates how many of the above CPUs (each
with its own L1 cache set) are to be placed on the chip. Any positive
number will result in the spreadsheet attempting to fit that number
(and no more or less) on the chip of the size specified by the “Logic
Type” entry. A “0” here will tell the spreadsheet to jam as many
CPU+L1 combinations as possible onto the chip.

9. The “OnChip DRAM?” allows specification that a certain number of
MB of DRAM are to be attempted to be placed on the chip, along with
the CPUs discussed above. Given the current state of technology, it
may be appropriate to assume the “a” model of logic in order to get a
cost effective chip if DRAM is included. If either “u” or “d” is selected,
the cost of the chip might be estimated as some multiple of the sum of
the costs of DRAM and logic chips of the same size, since both DRAM
and logic fabrication processes might need to be run against the same
wafer.

10. The “Reference Clock Rate” is what clock rate the CPU used in the
modeling exists at today. This number is used to provide a relative
performance multiple for our resulting chip vs known current bench-
marks.

11. The “L2 Replicated or Shared” entry allows specification of either
“r” or “s.” For the former, each CPU+L1 combination on the chip
receives in addition its own, separate, L2 cache. For the “s” entry, the
spreadsheet assumes exactly one L2 cache for all the on chip CPUs.
In the latter case, the user might want to assume multiple L2 ports to
reflect the multiple usage.

A snapshot of the output is shown in Table 8.1.2, with the rows defined
as follows:

1. “Feature Size” is the number selected by the SIA as representative of
the leading edge technology of the time.

332

. “Clock Rate” is the clock rate selected by the “Logic Type” entry
above.

. “CPUs/Chip” is either the number of CPUs that the user specified as
being on chip, or the maximum number of CPUs that would fit (if the
user parameter was 0 as discussed above).

. “Occupied Area” is the square millimeters taken up by the CPUs,
their associated Lls, the L2 (or replicated L2s), and specified on chip
DRAM. Again, this is computed by the spreadsheet from the technol-
ogy densities projected from the SIA numbers.

. “Spare Area” is area on the chip that is unused. Note that the size of
the chip assumed is based on the “Logic Type” entry described above.
A negative number here corresponds to an overflow on the chip (the
specified number of CPUs won'’t fit).

. “If Spare=DRAM?” lists how many extra MB of DRAM could be placed
on the chip if all the spare area from row 5 was converted into DRAM
at the best demnsity of the day.

. “Relative Perf.” is the product of the number of CPUs on the chip
and the clock rate specified by the “Logic Type” choice, all divided by
the “Reference Clock Rate.” Thus it represents a peak performance
multiple that might be achieved over the current baseline design. If
“Occupied Area” is greater than the assumed chip size, then this mul-
tiple is listed as “NoFit” to indicate the chip design is infeasible at
this point in time.

. “Total Transistors” simply represents all the logic. SRAM, and DRAM
transistors that went into the area described in item 4, Occupied Area.

. “If DRAM filled” adds onto Total Transistors (item 8) one transistor
for each DRAM bit that was added to fill up the remaining space
specified in item 6, If Spare=DRAM.

Representative Output: the DEC Alpha

As a test case, and one that might actually be representative of a natural
design point, the appropriate parameters for the DEC Alpha 21164 chip were
placed in the worksheet, with the logic type varied through all three types

333

Table 8.4: Sample Output of Computed Chip Characteristics

Units | 1995 | 1998 | 2001 | 2004 2007 2010
Feature Size pum 0.35 0.25 0.18 0.13 0.1 0.07
Clock Rate MHz 200 600 | 800 1100 1500 1900
CPUs/Chip 4 4 4 4 4 4
Occupied Area mm? 450 200 89 43 22 11
Spare Area mm? -200 100 271 387 498 609
If Spare=DRAM MB (k4] 9 66 248 851 2,851
Relative Perf. Multiple | NoFit 8 11 15 20 25
Total Transistors MT 37 37 37 37 37 37
-if DRAM filled MT (23.3) | 120 | 633 | 2,265.2 | 7.692.7 | 25.697.4

“a,”, “u,” and “d,” and a combination of different numbers of CPUs placed

on cth. This chip was a representative choice since it is a performance
leader, is well documented, and already has a two level memory hierarchy
(L1 and L2) on the current chip. Chip clock rates as of 1995 were 300
MHz (in agreement with the SIA projections), with up to four instructions
issued per cycle, of which two could be floating point multiply accumulates—
providing a peak performance of 1,200 MF at 300 MHz. We will use these
peak numbers as a baseline, knowing that in reality susta.xna,ble performance
will be several multiples less than this.

As a verification exercise for the known 21164 parameters, the work-
sheet computed that a chip with a single CPU would contain 9.3 million
transistors—exactly what the real one does today. Also, the area at 0.35
micron feature size is 165 sq. mm. The current chip, when built out of
0.5 micron technology, is 299 sq. mm, which if everything scaled according
to the linear scaling laws, would convert to 299x(0.35/0.5)?= 146 sq. mm.
This is within 13% agreement, well close enough for estimation. We suspect
that the difference may be due to how the SIA computed cache density by
including an overhead term from the tag arrays, whereas we computed that
term separately from the provided information.

This spreadsheet estimation technique allows computation, as a function
of time, of a range of potential SMP chips; their relative performance, on chip
DRAM potential, and the ratio between storage (in MB) and performance
(in MF). The latter is of particular interest, because if the ratio matches any
particular application, then a point design can be made out of only one part
type. Tables 8.1.2, 8.1.2,and 8.1.2 are summaries of these three values from
the spreadsheet, again assuming an ALPHA 21164 as a baseline. The three
CPU counts run include a single CPU per chip, a 16-CPU chip configuration,
and one where the chip is packed with as many CPUs as possible, with no

334

Table 8.5: Peak Performance in MF per Chip

Year Max DRAM: 1 CPU 16 CPUs No DRAM: Max CPUs

ASIC uP DSP ASIC uP DSP ASIC uP DSP
1895 | 1,200 | 1,200 | 1,200 1,200 2,400 3.600
1998 | 1,200 | 2,400 | 2,400 7,200 10,800 14,400
2001 | 1,200 | 2,400 ; 3,600 | 19,200 | 38,400 51,600 24,000 38,400 51.600

2004 | 1,200 | 3,600 § 4,800 | 25,200 | 51,600 70,800 72,000 | 124.800 171.600

2007 | 2,400 | 3,600 | 6,000 | 32,400 | 63,600 96,000 | 228,000 | 384.000 576.000

2010 | 2,400 | 4,800 | 7,200 | 39,600 | 70,800 | 121,200 | 618,000 | 994,800 { 1,717,200

extra onboard DRAM. In all cases, we assume that each CPU has its own
96 KB L2, as is present today (it may be reasonable to assume larger L2s).
Note that the technology is not dense enough for 16 CPUs until 2001. Note
also that in Table 8.1.2, the columns for Max CPUs list the number of CPUs
on chip and not the extra DRAM (since there isn’t any).

Given these numbers, there is a variety of potential chips that might
make for suitable point design basis. For purposes of discussion we will
assume 2004 technology for a 2007 point design system:.

For a single CPU per chip, but stuffed with DRAM, we can get chips
with 1 GF to almost 5 GF of performance, and sufficient DRAM to give
a memory ratio of from 0.06 to 0.47—serious numbers that would allow
construction of a single part type machine of from 20,000 to 100,000 chips.

For a 16-way SMP on chip, peak performance would run from 25 to
70 GF, with perhaps a 100 MB of DRAM for an L3, meaning that a few
thousand CPU chips would be suitable, but with external DRAM a necessity.
At 2 GB per chip, this might require upwards of 50,000 DRAMs for a full
100 TF of memory. Bandwidth for this external memory also needs to be
investigated.

Stuffing a chip with CPUs only, would reduce the total number of CPU
chips to under a thousand, but with no on chip DRAM for L3, and thus
more bandwidth needed off chip.

In all cases we are talking about a machine with on the order of 50.000
to 100,000 separate CPUs all running concurrently. System software must
be capable of managing this level of parallelism efficiently if any meaningful
fraction of the system’s peak is to be utilized.

In all cases, power needs to be more carefully estimated to ensure that
the chips have not exceeded maximum thermal limits.

335

Table 8.6: DRAM on Chip at Peak Performance (in MB) per Chip

Year | Max DRAM: 1 CPU 16 CPUs | No DRAM: Max CPUs

ASIC uP | DSP | ASIC uP | DSP | ASIC | uP DSP
19935 10 5 3 2 2 2
1998 54 23 23 9 6 6
2001 174 82 82" 42 1 1 20 16 16
2004 563 268 268 372 165 165 45 39 39
2007 1861 878 878 1615 740 740 114 96 96
2010 6327 | 2890 | 2890 6130 | 2698 | 2698 247 | 226 226

Table 8.7: Ratio of DRAM to MF per Chip
Year | Max DRAM: 1 CPU 16 CPUs | No DRAM: Max CPUs
ASIC uP [DSP | ASIC uP | DSP | ASIC | uP DSP
1995 | 0.01 | 0.00 | 0.00
1998 | 0.05 | 0.01 | 0.01
7001 | ©0.15 | 0.03 | 0.02 | 0.00 | 0.00 | 0.00
7004 | 0.47 | 0.07 | 0.06 | 0.01 | 0.00 | 0.00
2007 | 0.78 | 0.24 | 0.15 | 0.05 | 0.01 | 0.01
2010 | 2.72 | 0.60 | 0.40 | 0.15 | 0.04 | 0.02

336

