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Abstract

There are many aspects to consider when designing a Rosenbrock-Wanner-

Wolfbrandt (ROW) method for the numerical integration of ordinary differen-

tial equations (ODE's) solving initial value problems (IVP's). The process can

be simplified by constructing ROW methods around good Runge-Kutta (RK)
methods. The formulation of a new, simple, embedded, third-order, ROW

method demonstrates this design approach.

This paper outlines a recipe used by the author for developing ROW methods.

Being an engineer, my approach differs somewhat from that of the mathematician

(e.g., Halter and Wanner [8]). This engineer breaks down the complex problem or
ROW construction into two simpler problems; whereas, the mathematician typically

retains all complexity and solves a single problem. The objective, in either case, is

to be able to develop efficient and robust formulee for integrating systems of ODE's

that possess stiff regions in their solution paths.

Let us consider the numerical integration of an IVP described by the non-autonomous

system of ODE's

dy
_= ir = f(x,y(x)) with y(x0) = Y0, (1)

dx

where y is a vector composed of rn dependent variables {yl y2 ... ym}T with x

being the single independent variable.

1 Design

Selecting a good RK method first simplifies the overall process of ROW design. Specif-

ically, this author selects embedded methods to facilitate run-time error analysis, de-

veloped after the manner of Merson [10], but more commonly referred to as Fehlberg
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[3, 4] methods. Such methods advance a solution via the formulae

y_+l = y_ + h_ c_ki + O(h p+I)

i=0
s-1

Y,_÷I = Y,_ + h _ _i'ki + O(h q+l)

(2)

The order of accuracy belonging to approximation y (the solution advanced) is p,

while the order of the embedded approximation _ (used in error assessment via y - _)

is q, where q _ p. The summation limit s denotes the number of stages in the

integrator. Subscripts n and n+ 1 signify the n th and (n + 1) th integration steps.

Implied in Eqn. (2) is the relationship x,_+l = xn + h, where h is the size of the

integration step. Parameters c_ and _- are the weights of integration, typically lying

within the interval [0, 1].

The Runge-Kutta derivatives k_ are evaluated according to

i-1

k,=f(x +a,h,y +h Z A jkj), (3)
j=0

where vector components a_ are the quadrature points of integration, and matrix

components A_j are the explicit coupling coefficients. Our intuition and experiences

have taught us that these quadratures ought to lie within the interval [0, 1]; in other

words, all ki derivatives should be evaluated locally within the interval [xm xn+l] of

integration.

One does not have complete freedom in selecting the parameters of Eqns. (2 & 3).

They are constrained by a set of equations known as order conditions (e.g., see Hairer,

N0rsett and Wanner [7, pp. 143-155]). Even so, there remains an aspect of design in

RK construction, this because there are an insufficient number of order conditions to

uniquely determine all the unknowns. The author chooses to apply this flexibility to

specify good quadratures and weights, in the sense of classical integration theory. An

additional flexibility arises in the next stage of development, which the author has

used to minimize the error constants.

This completes my first stage in ROW design.

The second step of ROW construction is to fabricate a one-parameter family (in

d, the Calahan [1] stability parameter) of Rosenbrock [13] integrators of the Wanner-

Wolfbrandt [9, 16] 1 type, i.e., a ROW method, holding the RK parameters fixed.

Embedded ROW methods are described by the same formulae for the dependent

variables y,_+l and Y,_+I as are used by explicit RK methods, viz., Eqn. (2). What

distinguish ROW integrators from RK integrators are their derivative-like functions;

1Wanner was a visiting professor at Chalmers University of Technology in G6teborg, Sweden in

1975-1976 where he lectured on stiff methods. Wolfbrandt was a student there at that time.



specifically,

k,=f(xo+a h,y + A jkj)+h j__0
j=O

RK (exp_cit) part semi-implicit part

with semi-implicit coupling

(4)

Bi_ = d V i. (5)

The evolution of state residing in ki, i.e., function f, is the same here as it is in the RK

derivatives of Eqn. (3). It is the presence of the non-autonomous gradient Ofn/Ox with

quadrature-like coefficients b_, and the Jacobian 0fn/0y with semi-implicit coupling

coefficients B_j, that provide the additional contributions of a ROW method. Implicit

RK methods do not possess the semi-implicit part of Eqn. (4); rather, they extend

the upper limit of the summation (appearing in the argument of f) to i for the semi-

implicit case, or to s - 1 for the fully implicit case.

Like RK methods, one does not have complete freedom in selecting the additional

parameters of Eqn. (4), viz., the b_, Bij and d. They too must satisfy a set of order

conditions (e.g., see Hairer and Wanner [8, pp. 110-127]), some of which will have

been satisfied a priori when adopting this design approach because the ai, Aij, c_ and

c"_are considered known and satisfy the RK order conditions. It is useful to express

the b_ and B_j as functions of d at this stage of development. For methods with

four or more stages, there are insufficient order conditions to uniquely determine all

remaining unknowns. This extra flexibility, when it occurs, has been used by the

author to design for a more optimal performance by reducing the error constants.

This completes my second stage in ROW design.

The final aspect of constructing a ROW method is the selection of d. This pa-

rameter governs the stability characteristics of the method. Also affecting stability

are the orders of the method's integrators and the number of stages the method con-

tains (e.g., see Hairer and Wanner [8, pp. 103-107]). Ideally, one would like both

integrators in an embedded ROW method to be L-stable, although seldom will this

be possible. As a minimum requirement, both integrators should be no less than A-

stable. Some stability has been sacrificed by designers "since, roughly, smaller values

of d give better error constants but increase instability, there is no optimal choice

which optimizes simultaneously error constant and stability" [9].

One may want to iterate on steps two and three to seek an optimal compromise

between performance and stability. The library of IVP's cataloged by Enright and

Pryce [2] is a useful proving ground for this purpose. This author encourages devel-

opers to utilize stiff and non-stiff problem sets when assessing ROW performance.



2 Implementation

Direct implementation of the semi-implicit equations in (4) is not very practical. For-

tunately, a change in variable introduced by Wolfbrandt [16, pp. 106-107] removes

the diagonal contribution from the right-hand side of Eqn. (4) resulting in the trans-

formed formulm

s_1 1
Y,_+I = Y,_ + h E X_i + O(h p+I)

i=O

s-I

i=O

(6)

and

_-I 0fn i-i
(1__i - h-_y /Of'_'_. _z_ = f(x,_+a_h,y,+h E aij_O + hbi-5-_x + El3q_ j . (7)

j =o 3=o

These equations contain the change in variables: /3 = _I - B -1, _ -- A- B -1,

X T = cT. B -1 and _T = _T. B_I. Because of the constraints Bii = d > 0 V i and

Bq = 0 V i < j, matrix B has an inverse.

There are several aspects worthy of comment that help transform a ROW method

into an efficient and robust algorithm suitable for code implementation, which we have

discussed more fully in [5]. In summary: use LU-factorization with full pivoting to

decompose the matrix [_I-h(Ofn/Oy)]; employ a local interpolater, made popular by

Shampine [15], to permit dense output without requiring step-size reductions; use a

stable step-size controller, like the proportional-integral (PI) controller of Gustafsson

et al. [6], to monitor step size; estimate the initial step-size internally; construct an

error estimate using some blend, e.g., 50/50, of relative and absolute errors, where

the weights of absolute error are dynamically updated; and finally, utilize numerical

evaluations for the non-autonomous gradient and Jacobian, thereby reducing the

potential for programming errors, plus significantly simplifying the client module one

must write to make use of such integrators. When combined with a ROW method,

these various procedures will produce an efficient and robust algorithm for numerical

integration.

3 Example

The first stage in my recipe is to choose or construct an embedded RK method

with good quadrature and weights of integration. As a means for demonstration,

consider the simple, 3 stage, third-order method given in Table 1, which has good
2 1 T

quadrature, i.e., {0 51 1}T plus Simpson's weights of integration, viz., {_ -3 _} •

The coefficients listed in this table satisfy the order conditions of a 3(2) RK method--

a third-order solution with an embedded second-order integrator for error assessment.
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Table 1: A 3(2) Runge-Kutta method.
a_ A_3

0 0

1 1 0

1 -1 2 0
A

cj

cj

0 1 0
1 2 1
-g -g -g

ai

0
1

2

1

Xj

Table 2: A 3(2) Rosenbrock-Wanner-Wolfbrandt method.

• I
0 a I 0

1/2d 0 0 I-1/d 0

1/d 2/d 0 -d l -2/d -4(2- 3d)/d(1- 2d) 0

1/d 1/d 0 II XJ i 7/6d 2(3-5d)/3d(1- 2d) 1/6d

For a 3(2) ROW method in 3 stages, where the ai and Aij are specified a priori,

the number of remaining order conditions happens to be one less than the number of

unknowns to be solved for. Consequently, the bi and Bij can be uniquely expressed

as a one-parameter family of Calahan's [1] stability parameter d. Their values, after

transformation, are listed in Table 2. This completes my second stage of ROW design.

The final stage of design is to select a stability parameter d. This example is

a rare exception where both integrators in a ROW method can be L-stable. A

second-order integrator in 3 stages (the embedded integrator) will be L-stable if

d e [0.18042531,2.18560010] (see Hairer and Wanner [8, Table 6.4]). A third-order

integrator in 3 stages will be L-stable if d = 0.43586652, which is the reciprocal of

the second zero in the third-order Laguerre polynomial; therefore, selecting

d = 0.43586652

could, arguably, complete the design.

Not yet addressed is the issue of the error constants. Requiring the integrator to

be at least A-stable leads to the constraint that d E [1/3, 1.06857902] (see Hairer and

Wanner [8, Table 6.3]). The embedded integrator is L-stable over this region. One now

seeks an answer to the question: Is there an A-stable value for d whose selection would

result in a significant performance gain over its L-stable value, thereby warranting a

compromise in the integrator's stability properties?

In most developments of ROW methods there are an insufficient number of order

conditions to uniquely define the bi and Bij as functions of d alone. When this is

the case, the designer should make attempts to minimize the error constants. Error

constants are nothing more than the order conditions for that order which is one

greater than the actual integrator. For example, in the 3(2) ROW method of Table
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2, the embeddedintegrator fails to satisfy the third-order order conditions,which are
two in number, resulting in the two error constants

e 2)=-1/12 and (8)

Likewise, the approximation advanced as the solution arises from a third-order inte-

grator that fails to satisfy the fourth-order order conditions, which are four in number,

resulting in the four error constants

= (1+ 8d)/24 = -(1 - + 36d - 24  )/24j"
(9)

These are the error constants for the integrator of Table 2 that one would want to

minimize in an attempt to optimize performance. Figure 1 presents the norm for

these error constants, calculated according to

He(P) n (_--_ (e_)) 2) 1/2-- (i0)

Viewing Fig. 1, it is immediately apparent that there is no advantage to considering

values for d larger than the L-stable value. Choosing d = 2/5 leads to a 29% improve-

ment in the norm for the error constants with only a minimal sacrifice in stability,

while choosing d = 1/3 gives a 48% improvement but places stability at the boundary

of the A-stable region. The compromise value of d = 2/5 seems, at first glance, to be

a good design selection, but as we'll see, this is premature.

3.1 Numerical Exercise

As a demonstration of capability, the performance of this new, 3-stage, 3(2) ROW

method is compared against the performances of two, 4-stage, ROW methods of

higher order--the 3(4) method Wolfbrandt [16, 11], MROS3, and the 4(3) method

of Shampine [14], S-ROW, which is the Rosenbrock integrator promoted by Press et

al. [12, pp. 738-742]. These constitute tough competitors. Also compared are the

performances of the RK methods contained within these three ROW methods.

The Brusselator from chemical kinetics [7, pp. 115-116] serves as a good example

problem, i.e.,

_)o = Co + Y_Yl - (cI ÷ l)yo } (i 1)_]1 = clyo - Y_Yl

which, by varying the values for constants Co and cl, varies its stiffness properties.

This is illustrated in Table 3, wherein A denotes an eigenvalue from the Jacobian of

Eqn. 11. Case i has a periodic solution; it is not stiff. Cases ii, iii and iv successively

increase in stiffness, and have monotonic solutions over the interval x E [0, 100], which

is the interval of integration for all reported results, with initial condition y0(0) -- 1.5

and Yl (0) --- 3.1.
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Figure 1" Error constant norms belonging to second- and third-order integrators in

3(2) ROW method of Table 2.

Table 3: Stiffness Ratios of the Brusselator.

case Co

i 1

ii I

iii 1

iv 1

C1 _m_/_min

5 7

50 2500

500 250000

5000 25000000



Table 4: Performanceof Three RK Methods.
RK 3(2) RK in MROS3 RK in S-ROW

e = 0.01

i 363/588 491/569 333/1 090

ii 1 955/2 441 2 723/3 256 980/1 129

iii 19 941/24 927 32 451/163 073 9 875/12 339

iv 198791/248493 321204/1616498 98522/123151

e = 0.001

i 638/1563 696/1650 763/4883

ii 1969/1984 2675/2762 1004/1016

iii 19955/24942 31921/161 011 9899/12370

iv 198803/248497 311520/1420202 98544/123174

c = 0.0001

i 1188/3613 1589/10889 1881/16996

ii 1 992/2007 2715/2 773 1 060/1 071

iii 19979/24965 28370/73977 9963/13587

iv 198828/248520 316566/1 545963 98602/123235

The performance of the three, contained, RK methods is tabulated in Table 4.

Reported are the number of steps required over the number of attempts made, each

at three different accuracies for step control, i.e., 0.01, 0.001 and 0.0001. RK 3(2) out

performs the other two RK methods for the non-stiff ODE's of case i, which should

not be a surprise since neither of the other two constructions gave consideration to

the RK method within. When the ODE's of Eqn. (11) become stiff, the RK method

in S-ROW is superior, although one would not normally use an RK method for such

stiff problems. Accuracy of solution, e, has little influence on the solution time in any

of the stiff cases. Stability controls the solution time here.

The performance of the three ROW methods is listed in Table 5. Without ex-

ception, all three ROW methods were more efficient then their embedded RK coun-

terparts for all four cases, as measured by the number of integration steps required.

There are slight improvements in the non-stiff case where accuracy controls step size,

and dramatic improvements in the three stiff cases where stability controls step size,

as one would expect for both situations. At the tighter tolerance of e = 0.0001, the

fourth-order integrators MROS3 and S-ROW begin to out perform my third-order

method, also an expected result. Since the 3(2) integrator of Table 2 has one less

stage in it, it can make up for slight performance losses (as measured by the number

of steps taken) due to the smaller system required for LU decomposition and the for-

ward/backward substitution process accompanying it. The very slight performance

gain obtained in an effort to minimize the error constants, as reported in Table 5,

does not warrant compromising stability in this case, answering the question posed

in the previous section.

8



case

Table 5: Performance of Three ROW Methods.

ROW 3(2) MROS3 S-ROW

d = 1/3 d = 2/5 L-stable

e = 0.01

i 289/344 249/367 315/403 231/268 287/347

ii 25/25 25/25 25/25 21/21 24/24

iii 28/28 27/27 27/27 24/24 29/29

iv 30/30 30/30 30/30 26/26 31/31

e = 0.001

i 481/880 516/1220 544/999

ii 36/36 37/37 37/37

iii 40/40 40/40 41/41

iv 42/42 43/43 43/43
E = 0.0001

324/424

27/27

31/31

33/33

441/554

34/34

39/39

42/42

i 897/2576 976/3059 1021/3 159

ii 57/57 59/59 60/60

iii 62/62 64/64 64/64

iv 65/65 68/68 68/68

494/632

38/38

43/43

46/46

714/1318

49/49

56/56

61/61

4 Remarks

The author finds it much simpler to follow the design approach outlined in this paper

when constructing ROW methods than to use the more brute force approach of his

predecessors.

The 3(2) ROW method presented herein is L-stable and computationally efficient.

It was designed for use in simulation and optimization codes, where robust perfor-

mance matters and the accuracy of solution can oftentimes be relaxed, hence the

lower order. It is an excellent integrator for these purposes.

Because of the linear system of equations that must be solved, more CPU work

is required per step from a ROW method than from a RK method of comparable

size. RK methods are therefore still preferred for non-stiff ODE's. For stiff ODE's,

however, ROW methods are clearly superior. If one is uncertain about the stiffness

properties belonging to a system of ODE's, then selecting a ROW method should

not excessively increase the cost of computation whenever the problem turns out to

be non-stiff, but whenever it ends up being stiff, it will likely save on cost, and this

savings can be significant.
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