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The basic objectives of this grant were:

1) Work with the previously developed NPSS tools and enhance their functionality.

2) Explore other similar AI systems for possible use within the NPSS framework.

3) Work with the K-12 HPCC effort.

Accomplishments:

l) Based on the previously developed NPSS tools, a team comprised of John Reed from the

University of Toledo, Patrick Homer from the University of Arizona and myself participated in

the Supercomputing '94 Supercomputing Challenge. The team demonstrated the system

successfully although failed to win the competition. In preparing for the competition,

significant effort was made to make the GUI function on platforms other than the original SUN

with limited success. Fortunately, we were able to borrow a SUN at the competition site.

2) A paper (attached) describing the system was presented at the 28th Annual Simulation

Symposium in Phoenix, AZ.

3) Another paper (draft attached) is being finalized for publication in a refereed journal.

4) Other AI systems were explored for possible use in the monitoring and/or steering of various

simulations. Through this effort, FALCON, the work of Jeffrey Vetter, a NASA GSRP recipient

and a grad student at Georgia Tech was uncovered. Falcon is a real time monitoring and control

system. FALCON was brought to the ACCL hoppers and an attempt was made to integrate it

into the NPSS system. Unfortunately, due to the prototypical state of FALCON, it was decided

that FALCON should be upgraded to a more mature product. At the time of this writing,
Mr.Vetter was scheduled to release this newest version within the month. At that time



significant progress will be possible. Various papers concerning FALCON are attached.

5) Another system, The Computational Steering Environment which was developed at the

Netherlands Energy Research Foundation (ECN) was also investigated. Unfortunately, that

system was also a prototype and ECN did not wish to release it yet.

6) In the K-12 area, presented "An Introduction to Maple" for the HPCC summer workshop for

teachers. In addition, I provided expertise on an as-needed basis.
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Abstract

The NASA Numerical Propulsion System Simulation (NPSS) project is exploring the use of

computer simulation to facilitate the design of new jet engines. Several key issues raised in this

research are being examined in an NPSS-related research project: zooming, monitoring and

control, and support for heterogeneity. The design and implementation of a simulation executive

that addresses each of these issues is described. In this work, the strategy of zooming, which

allows codes that model at different levels of fidelity to be integrated within a single simulation, is

applied to the fan component of a turbofan propulsion system. A prototype monitoring and control

system supports experimentation with expert system techniques for active control of the

simulation. An interconnection system provides a transparent means of connecting the

heterogeneous systems that comprise the prototype.

1. Introduction

Designing and implementing new propulsion technologies can be an expensive and time-

consuming process. The Numerical Propulsion System Simulation project, sponsored by NASA

Lewis Research Center, is applying new computer simulation techniques and parallel hardware to

this problem [5, 6]. Specifically, it is fostering the development of parallel simulations to improve

both the execution time and accuracy of the simulations. NPSS is also developing a simulation

executive to support complete engine simulations constructed from the improved component

simulations. Research on the simulation executive includes developing the monitoring and control

techniques needed to manage the simulation, and exploring the use of expert system techniques to

assist the user in controlling the simulation.

Several key issues must be addressed in the design of the propulsion system simulation. One

is the integration of simulation codes at different levels of fidelity. Low-fidelity (less detailed)

modeling requires empirical data that are not available at the preliminary design stage. On the

other hand, high-fidelity (more detailed) modeling overcomes this limitation, but at a substantial

computational cost. A concept being developed to overcome these limitations is zooming, which

allows selected components to be modeled in detail and integrated into a low-fidelity engine

simulation. Additionally, during a low-fidelity simulation, zooming provides a means of

selectively examining in detail the physical processes within components of the engine.

This work has been supported in part by NSF grant ASC-9204021 and NASA grants NGT-50966, NAG3-1560,
NCC-3-207, and NCC-3-452.
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A secondissueis monitoringand control.A monitoringtool allows theuserto observethe
progressof the simulationthroughdisplaysof its key parameters.An expertsystemcanfurther
improvethe simulationby continuouslymonitoringand actively steeringthe simulation.This
requiressupportin twoareas.Thefirst is thecollectionof knowledgeandtheformulationof rules
thatgovernthedesignandoperationofjet engines.Thesecondis the integrationof expertsystem
softwareinto thesimulationexecutiveto assisttheuserin executingthesimulation.

A third issuein theoverall designis heterogeneity.Theenginecomponentcodes,monitoring
tool, andexpertsystemtakeadvantageof a varietyof workstation,vectorandparallelplatforms.
Additionally, they employ a variety of programmingmodelsand languages.Combining these
results in a heterogeneous distributed program, or meta-computation [15]. A software

interconnection system addresses the heterogeneity issue and facilitates the construction of meta-

computations by providing connections among the software components and implementing a
configuration and control system.

This paper describes a prototype simulation system designed to address all three issues:

zooming, monitoring and control, and interconnection support. The prototype employs the

Turbofan Engine System Simulation (TESS) [18], which provides a low-fidelity model of a

complete jet engine. In this model, the operational characteristics of the individual engine

components are supplied in the form of performance maps that are constructed from experimental

data. To provide descriptions of the physical processes occurring in an engine component beyond

that supplied by a performance map, a high-fidelity component simulation is used. The simulation

executive uses a monitoring tool that provides information about the high-fidelity component

simulation to the user and the expert system. Based on this information, the expert system

currently provides warnings and errors to the user and will be able to actively steer the engine

simulation. The Schooner interconnection system [13, 14] provides the software framework to

connect the various tasks and solves the heterogeneity and configuration issues that arise. Figure 1

illustrates the software structure of the prototype simulation system implemented in this project.

This paper is organized as follows. Section two describes an engine model that demonstrates

zooming on the fan component of a turbofan engine. Section three describes the design of the

monitoring tool and expert system portions of the prototype. These assist the user in executing the

simulation and will be used to explore techniques for intelligent control. Section four describes

the Schooner interconnection system that integrates the components and gives details on the

construction of the prototype simulation system. Section five describes how a specific engine has

been implemented on the prototype system. Section six offers some future directions for this

project.

2. Simulation Strategy

Modern commercial aircraft use large turbofan jet engines as their main propulsion systems. In

these types of engines, air enters the engine, passes through a fan, and is accelerated to a velocity

slightly higher than the surrounding air. A small percentage of this airflow is diverted into the core

section of the engine which contains the compressor, combustor and turbine components, while

the remaining air is bypassed around the core and exits the engine. The resulting increase in

momentum of the bypass airstream accounts for a large percentage of the engines total thrust.

Over the last 25 years, turbofan engine size and performance have increased considerably. For

example, in 1970, the Pratt & Whitney JT9D, the first high-bypass commercial turbofan engine,
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Figure 1: Prototype simulation system
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had a 92 inch diameter fan and provided 43,600 pounds of thrust [2]. By way of comparison, the

1995 Pratt & Whitney PW4084 engine employs a 112 inch diameter fan and produces 84,600

pounds of thrust [16]. Enlarging the fan diameter to increase thrust, however, can introduce new

problems: as fan blades become longer, they are subject to more aerodynamic stresses which can

result in blade bending and twisting. This affects the aerodynamics of the fan blade and can cause

difficulties in fan-tip clearance with the surrounding cowling, possibly causing engine stall during

flight. To investigate these problems, engine designers must either build scale prototypes and test

these models, or perform numerical simulations of the fan. The first approach is becoming

increasingly expensive, making numerical simulations of engine components a frequently used

design tool. Often a component simulation of the fan is satisfactory in determining performance

characteristics in the component. However, because the effects of engine components down-

stream of the fan (compressor, bypass duct, etc.) can affect the flow conditions in the fan, effects

from these components must be considered.

For this reason, using an isolated simulation of the fan alone may not be sufficient. The

remaining engine components must be included in the simulation to account for inter-component

effects. In this section, we describe how an alternative simulation strategy known as component

zooming provides a methodology for investigating these inter-component effects. First, we

describe problems that arise in attempting to implement zooming, and outline the methods

adopted to overcome these problems. Then, we describe TESS and ADPAC. TESS is the low-

fidelity engine simulator, and the Advanced Ducted Propfan Analysis Code (ADPAC) [10] is the

high-fidelity fan flow-analysis package used in the prototype zooming system.

2.1 Zooming

Understanding the physical operation of a jet engine requires simulation analysis at a sufficient

level to fully reveal these processes. For example, a detailed analysis in the fan component of the

engine can help resolve fan tip clearance problems and compressor stall problems due to fan tip

rub. Because of the complex interactions between the various engine components, as well as

between disciplines (heat, fluid, structural, etc.), this often requires a high-fidelity (more detailed)

simulation. Three-dimensional (3-D), time-accurate computational fluid dynamics (CFD)

solutions are capable of providing the necessary detail but are computationally intensive. The

simulation of a complete engine at such a high level of fidelity requires computing resources that

are currently unavailable. Zooming, the integration of simulation codes that model at differing

levels of fidelity into a single simulation, provides the opportunity to reduce the overall computing

effort needed while retaining the desired level of analysis in specific engine components. This

idea is depicted in Figure 2. Here the fan component of a one-dimensional "baseline" engine

model has been "zoomed" to a three-dimensional analysis.

Implementation of the zooming concept is difficult, due mainly to the inability to accurately

resolve high-fidelity data fields from a single value as supplied from the low-fidelity system

simulator. For the zooming to be accurate, the upstream and downstream boundary values (which

are single-valued), must be extrapolated to define a suitable three-dimensional distribution of field

variables such that when integrated over, the original single-valued boundary conditions are
recovered.

For the current work in which the fan component is zoomed, this process begins with the

single inlet boundary values for stagnation pressure, stagnation temperature, and Mach number,

and the exit boundary value of static pressure from the fan component of the one-dimensional

engine model. These are then extrapolated to appropriate three-dimensional field distributions and
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applied as boundary conditions to the fan simulation. The results of the fan 3-D simulation are

then integrated to determine the mass-flow rate, and the mass-averaged values of outlet/inlet ratios

for the stagnation pressure and stagnation temperature. The averaged stagnation pressure ratio is

then compared with the stagnation pressure ratio computed across the engine model. If the values

are identical, then the extrapolated field distributions are proved to be suitable representations and

the averaged values of mass-flow rate and stagnation temperature ratio may be used in the one-
dimensional simulation.

Typically, the averaged stagnation pressure ratio will not initially match the low-fidelity

simulator value. The three-dimensional boundary condition representations can then be redefined

and the above process repeated until the necessary match is found. In practice, this iterative

approach to boundary value matching was found to be computationally unstable, requiring many

iterations to achieve a balance. Worse, the iterative approach can lead to an oscillatory mode

where convergence is never achieved.

A solution which eliminates the iterative nature of the process is the construction of a

performance map from multiple runs of the three-dimensional component. A single-curve

performance map, such as that shown in Figure 3, is constructed and the appropriate value can

then be chosen from the map, interpolating as needed. To shorten the overall time for the

simulation, the multiple runs can be performed in parallel when the necessary computational
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resources are available.

2.2 Simulation Tools

Turbofan Engine System Simulator. TESS is an object-based, one-dimensional, transient,

thermodynamic aircraft engine simulator which runs under AVS [1]. This integrated system

provides the graphical user interface and operating environment for construction of arbitrary

engine configurations, selecting and controlling steady-state and transient engine operation, and

graphical display of simulation results.

The Network Editor of AVS provides a visual interface for creating dataflow programs. For

TESS, the dataflow is used to model the flow of air through the engine. Engine components (e.g.,

compressor, turbine, duct, etc.) are represented graphically as AVS module icons, or simply

modules. Each module has a control panel where the operational characteristics of the engine

component are defined by the user (e.g., the mass flow rate, design point performance data). An

engine is created by selecting the modules needed and placing them in the work space of the

Network Editor. The dataflow network is then created by connecting the modules to establish the

physical connections of the engine. The left side of Figure 1 shows a portion of the TESS network

used in testing the simulation system. Figure 4 shows a complete TESS engine network that

models a two spool, two stream turbofan engine.

Once all of the components have been connected and their operational parameters entered, the
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user selects the length of time for the transient, and defines how the governing equations are to be

solved numerically for both the steady-state and transient portions of the simulation. Currently,

for steady-state solutions, the user may choose either Newton-Raphson or Fourth-order Runge-

Kutta methods. For transient solutions, the user may choose either Modified Euler, Fourth-order

Runge-Kutta, Adams, or Gear methods. When simulation execution is begun, TESS first attempts

to balance the engine at the initial operating point using the steady-state balancing method. Once

the engine is balanced, the transient is begun and proceeds up to the number of simulation seconds

defined by the user.

Advanced Ducted Propfan Analysis Code. ADPAC is a three-dimensional Euler/Navier-Stokes

numerical analysis tool developed to study high-speed ducted propfan aircraft propulsion

systems. The program utilizes a three-dimensional, time-marching numerical procedure along

with a flexible, coupled 2-D/3-D multiple block geometric grid representation to predict the flow

field in and around the fan. Multiple runs of ADPAC are needed to create the single-curve

performance map used in the zooming strategy.

3. Intelligent Monitoring and Control

A complete engine simulation that includes high-fidelity components is characterized by a

corresponding high degree of complexity. In addition, the presence of high-fidelity components

can greatly increase the running time of simulations. The user of such a system needs a high

degree of control over the simulation to manage the complexity. At the same time, the user should

not be forced to constantly monitor simulations that, at a minimum, span hours of real time. This

section describes an overall approach to providing monitoring and control of the simulation. It

then gives descriptions of the monitoring tool, developed with the Transportable Application

Environment (TAE+) GU! toolkit [21], and the control component, developed using the C-

Language Integrated Production System (CLIPS) [7].

3.1 Control Strategy

A large number of variables can affect the outcome of a simulation and monitoring them can place

a severe burden on the user. Two types of problems that can arise are physically unrealistic

boundary conditions imposed on a component and numerical instabilities that arise within a

component. Examples of the first type are the rise in air pressure that should occur at the outlet of

the fan component, and the rise in temperature through the combustor that should result from the

addition of fuel. Both examples would be relatively easy for an expert system to check, requiring

only a test to determine if the desired quantity had increased. Correcting such problems would

require appropriate rules to modify the boundary values and/or modify the parameters of the

governing equations

More complicated examples arise from instabilities introduced by the numerical methods used

to solve the problem. One example occurs when the flow equations fail to converge to a solution,

falling instead into an oscillatory pattern. The fan component provides another example.

Artificial, numerically-induced vortices in the air flow can form, reducing the effective area for

flow through the fan and causing pre-mature choked flow. An expert system needs more

complicated rules to detect such problems and implement the series of corrective steps

The immediate goal of this research is to build a monitoring and control system that gives the
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usera meansof monitoring the high-fidelity components,and that can detectsome typesof
problemsandwarn the userwhenthey arise.The longer-rangegoalsareto give the userdirect
controlovermoreof thesimulationparameters,andto developmorecomplexrulesfor theexpert
systemto allow it to activelysteerthesimulation.

3.2 Control System Components

TAE+. This package supports the rapid prototyping and construction of X-windows graphical

user interfaces. It provides a workbench that facilitates the design and layout of the application's

windows, allowing easy placement of the various objects within each window. A programming

tools package allows the user to add code to the interface to provide program control over the

various objects that make up the interface. Finally, a code generator automatically produces code,

in a number of languages, that creates the interface and builds the main event loop for the

application.

There are three basic building blocks available for use in designing windows for a TAE+

application. The first is a set of user-entry objects that allow the user to interact with the

application through buttons, pull-down menus, and text fields. Second, there are data-driven

objects that graphically display information from the application in real time through dials, strip-

charts, thermometers, etc. The third category is information objects, such as text displays and help

screens that provide the user with information or instructions about the application. The data-

driven objects are particularly useful in a monitoring tool as they easily support receiving and

reporting of continuous data during execution. A set of pre-defined objects are available that can

be used to create vertical and horizontal scales, rotating dials, strip charts, etc. The user can also

build objects specific to the application by creating custom objects using the supplied drawing

tools in TAE+ and defining the type data -- rotational, sliding, stretching, etc. -- that will be

supplied to the object. The data-driven object was a major reason for selecting TAE+ for this

project, as it easily supports the type of monitoring needed for ADPAC.

To accomplish the immediate research goals, the monitoring tool allows the user to observe

the progress of ADPAC runs and provides information to the expert system. The monitoring tool

consists of windows for each instance of ADPAC. The right side of Figure 1 shows a snapshot of

one such window taken at the end of an ADPAC run. The name of the machine executing this

instance of ADPAC is shown at the top center of the window. The chart on the lower-right portion

is a strip-chart and plots the residual on a log scale over the most recent 100 iterations. The

residual provides a measure of how well ADPAC is approaching convergence. Convergence is

generally achieved when the residual has dropped four orders of magnitude, while an oscillating

residual is a symptom of a problem within ADPAC. Experience with TESS-ADPAC indicates that

convergence is reached in most cases in 500 to 800 iterations. When a computation is finished, the

strip-chart on the upper-right shows the pressure ratio plot at 52 points along a slice through the

fan. The vertical scales on the upper left report the flow rate of air into and out of the fan. The

vertical scale on the lower left shows the final pressure ratio (outlet/inlet) computed by ADPAC.

Each of the vertical scales also shows the design point provided by the one-dimensional TESS
model.

CLIPS. Building an expert system with CLIPS begins with a user-defined set of rules. The rules

are written in a functional language and describe actions to take when specified conditions occur
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in theapplication.Typically,CLIPSsuppliesastatuswindowthatdisplaysinformationto theuser
aboutthe applicationandshowsthe progressof the knowledgeengineas the packageworks
throughtherules.A C languageinterfaceis alsoavailablethatbypassestheCLIPSstatuswindow
andallowsanapplicationto betied directly to theknowledgeengine.This latter featureis being
usedin this currentproject.TheC interfaceconsistsof functioncallsthatpassdatato CLIPSand
return results from the rules.Callbacksthroughthe C interfaceallow CLIPS to passcontrol
commandsto othercomponentsin thesystem.

Theprototypeexpertsystemcreatedfor this projectreceivesdatafrom themonitoringtool via
theC interface.Thesystemthenprovidesappropriatewarningmessagesthataresentbycallbacks
to themonitoringtool wheretheyaredisplayedto theuserin theform of pop-upwindows.When
a typeof warningcanoccurmorethanoncein eachADPACinstance,theexpertsystemwill only
reportthefirst instanceto theappropriateADPACmonitoringwindow.

4. Assembling the Simulation System

The pieces of the prototype simulation system -- the low-fidelity engine model TESS, the

multiple instances of the high-fidelity fan component ADPAC, and the monitoring tool and expert

system -- are combined to create a distributed, heterogeneous recta-computation. This is a new

model of scientific computing that requires support for interconnection and configuration.

Interconnection support allows the transfer of data and control among the component

applications. Configuration support allows the user to start and manage the various applications,

and allows component applications to join and leave the meta-computation as needed. This

section describes an interconnection system that realizes this model of computing and then

provides implementation details on the construction of the prototype simulation system.

4.1 Interconnection System

The Schooner interconnection system realizes the scientific meta-computation model, providing

solutions to the interconnection and configuration problems. To solve the interconnection

problem, each application becomes one component in the meta-computation and consists of a

code block and an interface. The code block contains the user's code and implements one or more

computations that accomplish a specific set of tasks. In developing the code block, the scientific

programmer can use the combination of programming language, programming model, and

architecture that is most suitable. The interface for each component is automatically generated

and advertises that components available services to other components, as well as handling the

job of locating and accessing the external services needed by the component. Figure 1 illustrates

this idea. Schooner provides both static and dynamic configuration control for the user. Static

control allows the user to select the components and hosts that will be needed for the execution,

and to start and execute the meta-computation. Once execution has begun, dynamic control allows

components to be added or removed as needed by the user or through Schooner library calls

issued by the components themselves.

Schooner provides its interconnection services through four, mostly orthogonal, parts:

• a specification language,

• an intermediate data representation and accompanying data exchange library,

• a set of stub compilers, and
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• aruntimesupportsystem.
The UniversalTypeSystem(UTS) providesboth thespecificationlanguageandthe intermediate
datarepresentation[11]. Thespecificationlanguageis machine-andlanguage-independentandis
usedto describetheinterfacefor eachcomponentapplication.Thelanguagesupportsthestandard
basetypesinteger,float, double,char,etc. It alsosupportsarrayandrecordstructuretypesand
procedure parameters.Specific examplesof the languageare shown in Section4.2 and
Section4.3 below. At runtime, the UTS specificationsare also usedto type-checkarguments
betweenthe userof a computationandthe providerof thecomputation.The UTS intermediate
data representationprovidesa mediumfor exchangingdataacrossmachinearchitecturesand
handlingdatastructuredifferencesamonglanguages.

The stub compilers,one for eachsupportedlanguage,read the UTS specificationsfor a
componentandgeneratethe interfacefor thecomponent.The interfacecontainsthe calls to the
UTS data conversion library. It also provides the communication interface, allowing the
componentto exchangedataandcontrolwith othercomponents.

The runtime system implementsapplication-levelremote procedurecall (RPC) control
transferbetweencomponents,aswell asconfigurationandcontrol features.Eachcomponentin
themeta-computationis implementedasaprocesson its respectivehost.In addition,therearetwo
othertypesof processespresent.Oneinstanceof theSchoonerManageris executedononeof the
hostsandan instanceof theSchoonerServeris executedoneachhost.The Manageractsasthe
central coordinator. It is responsiblefor startup of the various componentsin the meta-
computation,cooperatingwith the Serveron eachhost to accomplishthis. The Manageralso
maintainsa databaseof the computationalroutines each componentmakesavailable. The
databaseis updatedthrougharegistrationprocedureeachtime anewcomponentis started.When
acomponentneedsto call acomputationnotpresentlocally, it first contactstheManagerto locate
the neededresource.The Managerprovidesthe locationafter matchingand type-checkingthe
UTSspecifications.

Multiple threadsof controlareprovidedin Schoonerthroughlines. Each line contains one or

more components, with a single thread of control passing among those components through the

procedure call chain. Dynamic configuration allows lines to be created and components to join

lines as needed during execution. One type of cross-line synchronization is provided through the

use of a distinguished shared line. This line contains components whose exported computations

are available to components in any line.

4.2 Prototype Zooming System

The prototype zooming system is defined by two suites of codes. The first suite, residing on the
user's workstation, runs AVS and TESS. The second suite consists of ADPAC and associated

codes [17]. One instance of this second suite exists for each of the multiple fan simulations used

in the zooming strategy.

A new TESS engine component module, fan Multi-ADPAC, was created to provide the user

interface and functionality for the zooming system. The module

• Handles the basic AVS data transfer for the fan component within TESS,

• Spawns the remote ADPAC tasks through Schooner library calls, and
• Controls the data transfer between TESS and the ADPAC simulations.

To utilize the fan Multi-ADPAC module in a TESS engine simulation, the user defines the ADPAC
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Figure 5: fan Multi-ADPAC module control panels

control parameters and the remote machines on which to spawn the ADPAC simulations. Figure 5

shows the AVS pop-up windows used to accept this input from the user.

Each time TESS needs fan performance data during a simulation, fan Multi-ADPAC creates

the needed remote instances of ADPAC on a user-definable suite of remote machines. Boundary

condition parameters are then supplied in response to queries from each ADPAC instance. As

each ADPAC completes its run, it sends its results to fan Multi-ADPAC. Results are matched with

boundary conditions, then used to create data points on the performance curve (see Figure 3).

Once all the values have been received, the performance curve is interpolated to match the

stagnation pressure ratio across the fan, provided by the TESS simulation, to determine the

stagnation temperature ratio and mass flow rate. These values are then used by TESS to continue

the complete propulsion system simulation.

A suite of codes has been developed to work with ADPAC and handle the beginning and

ending boundary value computations. This allows experimentation with ADPAC as the high-

fidelity component without the need to continually update ADPAC's source code during

development. This approach also allows the substitution of different fan simulations without the
initial need to involve the authors of each simulation. These codes are illustrated in the flow chart

in Figure 6. The first program, makeinpu t, creates the ADPAC input data file from the boundary

parameters. Then, ADPAC executes, reading its grid data file and the input data file. The output file

produced by aDPaC is then read by the third program, mbave. This is a multi-block averaging

program and integrates the three-dimensional flow solution to give the single (space-averaged)

flow values which are needed by TESS. The adpacs_ave program coordinates the execution of

the other three programs, and handles the Schooner communications with fan Multi-ADPAC. The

UTS specification file for adpacslave is shown in Figure 7. The specification file for fan Multi-

ADPAC is analogous, fan Multi-ADPAC starts the ADPAC instances by creating a line for each

instance and starting adpacslave within each line, using the Schooner dynamic configuration

library. Each adpacslave uses the get_fannumber procedure to determine its fan id for the run.
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The adpac_init procedure is then used to obtain the initial values for makeinput. After mbave

has returned, adpacslave calls adpac_results tO give the results for this ADPAC instance to fan
Multi-ADPA C.

A new performance curve is created by fan Multi-ADPAC each time fan performance data is

needed by TESS. To reduce the overall simulation time, the space-averaged values are retained

and used to create an overall fan performance map. Before running flow solutions, this data is

checked to see if the current operating conditions are within the data range. If so, the data is

interpolated and used in the system simulation. In this manner, the simulation time may be

significantly reduced. This also has the added benefit of creating an overall fan performance map

which can be used in subsequent, non-zooming TESS simulations.

4.3 Prototype Monitoring and Control System

Since the source code for ADPAC is not available for this project, the output data files are

monitored instead. One of the data files is updated by ADPAC on each iteration during a run to

report a number of quantities, including the desired residual and several types of warnings. One

limitation of this approach is an inability to affect ADPAC once execution has started. Thus, the

expert system is currently limited to displaying warnings and errors in the monitoring tool, rather

than being able to actively steer ADPAC.

To simulate the type of monitoring desired given the constraints, a watch-dog process is

created on each machine executing ADPAC. This process continuously checks ADPAC's output

file for new data. As the file changes, the watch-dog examines it for values of interest, specifically

the residual values from each iteration and warnings of interest to the expert system. It also reads

the average results from the mbave program at the completion of the ADPAC run.
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import tess_get_fan_number prog/(

"line_id" val integer) returns ("fan_id" integer)

import tess_adpac_init prog(

"fan_id" val integer, "nproc"

"ndata" var integer, "xmn"

"tin" var float, "pin"

"xspool" var float, "exitpnd"

"ilenc" var integer, "cname"

"niter" var integer, "ilenssf"

"ssfname" var string[80],

"iusessf" var integer,

var integer,

var float,

var float,

var float,

var string[80],

var integer,

"niterssf" var integer,

"initcall" var integer)

import tess_adpac_results prog(

"fan_id" val integer,

"ierrflag" val integer,

"ndata"

"results"

val integer,

val array[10] of float)

Figure 7: ADPAC specification file

# called to get fan id to monitor and pathname to ADPAC output files

import mon_get_fan_number prog(

"line_id" val integer, "path_name" res string[-])

returns ("fan_id" integer)

# residual error reports, i0 results reported on each call

import mon_residual_report prog(

"fan_number" val integer, "residual_count" val integer,

"cycle" val array[10] of integer,

"max_err" val array[10] of float)

# warning reports

import mon_warning_reportl prog(

"fan_number" val integer, "message"

import mon_warning_report2 prog(

"fan_number" val integer, "message"

val string[-])

val string[-])

# reports at end of run showing ADPAC results

import mon mass in report prog(

"fan_number" val integer, "mass_in" val float)

import mon_mass_out_report prog(

"fan_number" val integer, "mass_out" val float)

import mon_pressure_report prog(

"fan_number" val integer, "pressure_ratio" val float)

import mon_pressure__plot_report prog(

"fan_number" val integer, "pressure" val array[52] of float)

Figure 8: ADPAC Watch-dog UTS Specification

The specification file for the watch-dog process is shown in Figure 8. An analogous

specification file is used with the monitoring tool. Execution of the watch-dog process is started
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Figure 9: NASA's Energy Efficient Engine

after the monitoring tool receives from TESS the list of machines on which ADPAC is executing,

and the corresponding list of output file names. In a manner similar to that used by fan Multi-

ADPAC, the monitoring tool creates new lines, one for each watch-dog process. The watch-dog

process uses the get_fan_number procedure to obtain the fan id it is monitoring and the

pathname to ADPAC's output files. During execution, the watch-dog process makes repeated use

of the residual_report and warning_report procedure calls to pass information back to the

monitoring tool. At the end of the ADPAC run, the final results are read from files created by

mbave and reported to the monitoring tool using the appropriate procedure calls.

5. Using the Prototype

A model of the NASA/General Electric Energy Efficient Engine (E 3) [8] has been implemented

using the prototype simulation system. A cross-sectional view of the E 3 is shown in Figure 9. Air

enters the engine, passes through the fan where the air flow is split into two streams. One stream

passes into the core components of the engine and the other enters the bypass duct. The core flow

passes through a high-pressure compressor, combustor, high-pressure turbine, and low-pressure

turbine. After passing through the low-pressure turbine, the core flow is mixed with the bypass

flow. The combined flow then passes through the nozzle and exits the engine. The E 3 was chosen

for this project for two reasons. First, the E 3 design is a direct predecessor of modern turbofan

engines such as the GE-90 [9]. Second, E 3 geometry and performance data is non-proprietary and

readily available.

The E 3 fan consists of a number of individual hardware components. The major components

are identified in the cross-sectional view of the E 3 fan geometry shown in Figure 10a. In addition

to the fan blades that are attached to the rotating hub, a quarter-stage booster is used to provide

additional super-charging for the core components. The quarter-stage island splits the total fan

flow so that a portion of the total flow is supercharged by the quarter-stage rotor. Downstream of

the booster rotor, the flow is further split with some booster flow re-entering the bypass stream

and the remaining flow directed through the core outlet guide vanes (OGVs) and S-duct into the
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Inlet

i

(a) (b)

Figure 10: E 3 fan component (a) physical geometry; (b) computational grid

core.

This section describes how the prototype simulation system is used to model the E 3 engine

with zooming on the fan component, and gives the machine configurations used in building and
demonstrating the E 3 simulation.

5.1 Engine Model

The TESS E 3 engine model represents each major engine component with a comparable TESS

module. The configuration shown in Figure 4 is for the E 3 engine. Steady-state overall

performance maps for the operation of the fan, high-pressure compressor, high-pressure turbine,

and low-pressure turbine were constructed from engine design and test-stand data [3, 4, 12, 19].

Individual component design-point data, based on design and cycle-deck data, are used to define

the operational parameters in each component. The TESS E 3 engine model can be executed in

both zooming and non-zooming modes; the choice is made by selecting the appropriate fan

component. Figure 4 shows the zooming mode with the fan Multi-ADPAC module in the engine.

5.2 High-fidelity fan

A grid geometry model representing the engine cowl, fan, bypass, and S-duct regions was

developed from the E 3 fan geometry data. An axisymmetric view of the grid is shown in

Figure 10b. Booster rotor and stator, core outlet guide vanes, and bypass outlet guide vane

geometry were not included in order to reduce computing times. Experience modeling the E 3 fan

with complete geometry has shown that computing time increases by approximately a factor of

four when these components are included. For this work, overall simulation time is highly

dependent on the ADPAC simulations; the increased time of computation outweighs the marginal

improvement in predicted values when the additional geometry is included. The structured, multi-

blocked, three-dimensional grid represents a single blade passage and consists of 16,380 grid

points. The steady flow field in the fan is analyzed using the ADPAC solver and the given

geometry to solve the inviscid Euler equations. To determine the single-valued flow parameters

for the exit boundary condition, the mass-averaging process is applied at a location approximately

one and one-half fan diameters downstream of the fan trailing-edge.
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Development and

testing

SC'94

Washington, D.C.

SC'95

San Diego, Ca.

TESS

SGI 4D/480, or

Sun Sparc 10
NASA Lewis

SGI 4D/440

University of Toledo

SGI Onyx
Conference floor

SGI Indy
Conference floor

Monitoring tool

Sun Sparc I0
NASA Lewis Research

Center

Sun Sparc 10

University of Arizona

Sun Sparcl0
Conference floor

Sun Sparc 10
Conference floor

ADPAC watch-dog

Nodes on a cluster of

IBM RS-6000

workstations, or
nodes on an

IBM SP-2

NASA Lewis

Research Center,

Cleveland, OH

Table 1: Configurations used to test prototype simulation system

5.3 System Configuration

The prototype simulation system has been tested in several configurations. The following list

shows the platforms that each part of the system can currently use:

• TESS executes within AVS version 5, and has been tested on SGI and Sun architectures,

• The Monitoring tool uses TAE+ version 5.2 and has been tested on Sun workstations, and

• The ADPAC binaries available for this project are compiled for the IBM RS-6000 and SP-2
architectures.

An early version of the system was demonstrated at Supercomputing '94 and the current version

was demonstrated at Supercomputing '95. Table 1 summarizes these configurations and two

development versions that are in use for testing zooming strategies and expert system techniques.

6. Future Work

The prototype simulation system described here provides a framework for developing and

evaluating new zooming strategies, implementing monitoring and control system techniques, and

addressing interconnection and configuration problems. The major need in the prototype is for

expansion of the role of the expert system to allow long unsupervised simulation runs. The system

as it currently exists has been tested and works well for simulation runs of up to several hours. To

achieve longer, more realistic simulation runs requires expert system assistance in two broad

areas. First, the expert system needs to detect and handle convergence problems that arise in the

zooming strategy. For example, these include numerical inconsistencies between solvers used in

the high- and low-fidelity simulations, and the ill-defined boundary condition problem described

in Section 3. I. The second area is machine availability. This can range from dealing with short

duration network outages to machine downtime schedules. For example, when a network outage

occurs, the expert system may decide that enough ADPAC results are available to build the

performance map, or that the simulation should wait until the network connection is restored, or

that new ADPAC runs should be started on other accessible machines.

Another direction is to modify the source code of ADPAC to allow it to communicate directly
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with TESS and the monitoring and control system, rather than through its output files. A principal

reason for not modifying the source initially is the desire to prove the feasibility of this approach

and identify the specific changes needed. Another positive feature associated with using the

output files is that it would be relatively straight-forward to substitute a different high-fidelity fan

simulation and provide a similar level of monitoring through its output files. This technique

allows for easy testing of different fan simulations without the initial need to involve the authors
of the simulation.

Another zooming approach being studied is to use an intermediate fan simulation, specifically

a two-dimensional, axisymmetric simulation. This has the advantage of not requiring as much

execution time as the three-dimensional ADPAC simulation when less accuracy is needed. In

addition, it will be possible in some cases to use the solution from the medium-fidelity simulation

to jump-start the three-dimensional solution, thus shortening the execution time of the high-
fidelity simulation.

The Schooner system is being extended to include better fault detection techniques and

provide information about failures to the expert system and to the user. Schooner is also being

extended to work with batch queueing systems which will provide greater access to machine

resources. This will facilitate longer simulation runs by providing ADPAC platforms during more
hours each day.
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