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Abstract

The effect of spanwise-periodic mean-flow distortions (i.e. streamwise-vortex structures)
on the evolution of small-amplitude, single-frequency instability waves in an otherwise
two-dimensional shear flow is investigated. The streamwise-vortex structures are taken
to be just weak enough so that the spatially growing instability waves behave (locally)
like linear perturbations about a uni-directional transversely sheared mean flow. Nu-
merical solutions are computed and discussed for both the mean flow and the instability
waves. The influence of the streamwise-vortex wavelength on the properties of the most

rapidly growing instability wave is also discussed.

1. Introduction

The effect streamwise-vortex structures have on the development of otherwise two-
dimensional shear flows is of much interest for both theoretical and technological reasons.
The theoretical interest stems from the role steady streamwise vortices play in amplify-
ing three-dimensional disturbances in laminar shear flows. Transition to turbulence in rel-
atively two-dimensional shear flows is virtually always preceded by the rapid growth of
three-dimensional disturbances. The technological interest arises from the ability of steady
streamwise-vortex structures to significantly enhance the mixing process. Mixing enhance-

ment in shear flows has received renewed attention in recent years primarily due to the



current interest in supersonic combustion and noise reduction for the high-speed civil trans-
port. The efficiency of scramjet propulsion systems depends on the time required to achieve
a flammable (near-stoichiometric) mix of fuel and air within the combustor. Noise reduction
in the mixer/ejector nozzle concept is accomplished by mixing entrained ambient air with
high-speed exhaust plumes inside an acoustically treated ejector.

Steady streamwise-vortex structures can arise in laminar-turbulent transition experi-
ments due to wall roughness, free-stream disturbances and/or imperfections in the relatively
two-dimensional excitation devices. In technological applications, the vortex structures may
be produced by surface geometry or three-dimensional devices such as ramp injectors, tabs,
or trip wires. In either case, the resulting three-dimensional mean flow will usually have a
primary-flow direction — provided, of course, the cross flow associated with the streamwise-
vortex structure is not too strong. Since the mean velocity component in the primary-flow
direction is much larger than the velocity components in the cross-flow plane, the mean flow
is governed by a set of equations that become of nearly boundary-layer type in the high-
Reynolds-number limit (Davis & Rubin 1980). Small-amplitude disturbances propagating
on such flows will behave (at least locally) like linear perturbations about a uni-directional
transversely sheared mean flow. This paper is an attempt to provide a systematic first prin-
ciples analysis of the linear stability characteristics of such disturbances using a combination
of numerical techniques and high-Reynolds-number asymptotic methods.

It is well known that steady streamwise-vortex structures can strongly influence the de-
velopment of otherwise two-dimensional shear flows by amplifying three-dimensional distur-
bances through a kind of parametric-resonance or secondary-instability mechanism (Nayfeh

1981; Henningson 1987; Bennett & Hall 1988; Nayfeh & Al-Maaitah 1988; Hall & Seddougui



1989; and others). This phenomenon has most often been investigated in the context of the
secondary instability of Gértler vortices on curved-wall boundary layers (e.g. Hall & Horse-
man 1991 and Li & Malik 1995). These investigations have been primarily concerned with
determining the temporal amplification rates of the so-called fundamental secondary instabil-
ities, i.e. the instabilities having a spanwise wavelength equal to that of the Gértler vortices.
However, Li & Malik (1995) also investigated instabilities having spanwise wavelengths equal
to twice that of the Gortler vortices and found that the temporal growth rates of these so-
called subharmonic secondary instabilities can be comparable with the growth rates of the
fundamental instabilities.
Goldstein & Wundrow (1995, hereafter referred to as GW) analyzed the effect of intro-
ducing a small-amplitude spanwise-periodic cross flow into a Blasius boundary layer. The
“imposed cross flow produces a distortion in the streamwise velocity component that initially
grows with increasing downstream distance, reaches a maximum and then eventually decays
through the action of viscosity. This decay occurs slowly and allo'ws the distortion to desta-
bilize the flow to three-dimensional inviscid disturbances over a relatively long streamwise
distance. Goldstein & Wundrow concentrated on the limit where the spanwise wavelength
of the mean-flow distortion is large compared to the boundary-layer thickness. This long-
wavelength limit allows analytic solutions to be obtained for both the steady and unsteady
components of the flow and therefore elucidates the relevant physical mechanisms. The au-
thors also solved the spatial stability problem rather than the temporal one since it is the
spatial theory that correctly describes convectively unstable flows. They found that the most
amplified instability has a spanwise wavelength equal to twice that of the mean-flow distor-

tion (i.e. it is a subharmonic secondary instability) and, furthermore, that the fundamental



secondary instability remains damped in the long-wavelength limit.

The primary objective of the present paper is to extend the linear stability analysis
of GW to the case where the spanwise wavelength of the mean-flow distortion is of the
same order of magnitude as the shear-layer thickness. The linear stability analysis will also
be generalized to spatially growing disturbances having an arbitrary, bounded behavior in
the spanwise direction. This will enable an investigation of the effect of streamwise-vortex
wavelength on the spatial growth rate and spanwise wavelength of the most rapidly growing
secondary instability. The results of such an investigation should be of much technological
interest since they could help guide the development of more efficient mixing-enhancement
techniques. In order to carry out the investigation, numerical schemes must be developed for
computing the evolution of the steady three-dimensional base flow as well as for determining
the linear stability characteristics of a general time-periodic perturbation. These numerical
schemes will also permit an evaluation of the follow-on nonlinear stage in the development
of the most amplified instability wave analyzed in Wundrow & Goldstein (1994).

The paper is organized as follows. In §2, governing equations for the steady base flow
and the linear unsteady perturbation are derived in the high-Reynolds-number limit. The
numerical schemes used to solve these equations are described in §§3 and 4. In §5, a compari-
son of the results predicted by the long-wavelength solution developed in GW (and extended
in appendix B) to those determined by a numerical solution to the aforementioned governing
equations is presented. Numerical results for an order-one spanwise wavelength solution are

also presented and discussed in §5.



2. Formulation

Attention is focused on an incompressible shear flow formed at the interface between
two parallel streams of differing velocity or, alternatively, between a single parallel stream
and a flat plate. The Cartesian coordinate system (z, y, z) is attached to the interface with
z in the direction of the external flow, y normal to the interface, and z in the spanwise
direction. The origin of the coordinate system is located a distance L. downstream of the
initial point of contact between the upper and lower streams or between the upper stream
and the plate. All lengths are non-dimensionalized by &, where 4. characterizes the local
shear-layer thickness at z = 0. The * subscript is used to indicate dimensional quantities.
The time ¢, velocity w = tu + jv + kw, and pressure p are non-dimensionalized by d./U.,
U. and p.UZ?, respectively, where U, characterizes the velocity of the external flow and p, is

the density. With this non-dimensionalization, the Navier-Stokes equations become
u; +u-Vu+ Vp= RV, (2.1)
V.u =0, (2.2)
where V = 18/0z + 30/3y + kd/0z is the gradient operator,
R=46U./v. > 1 (2.3)

is the local Reynolds number, v, is the kinematic viscosity and an independent variable used
as a subscript denotes differentiation with respect to that variable.
The solutions to (2.1) and (2.2) of interest here are expressed as the sum of a steady

base flow and a time-dependent perturbation,

v =U(z) + et(z, t), (2.4)



p = P(z) + ep(z, 1), (2.5)

where € < 1 characterizes the local amplitude of the perturbation at £ = 0. The steady,

spanwise-periodic, base flow {U, P} evolves over the long streamwise scale,

z2 = z/R, (2.6)

and expands like
U = tUs(z,y,2) + R 'Vo(z2,y,2) + -+, (2.7
P = P.(z3) + -+ R?Py(z2,9,2) + - -, (2.8)

for order one 4, y and z as R — oo, where V' denotes the base-flow velocity in the transverse
(or y-z) plane, P. denotes the pressure imposed on the shear layer by the external inviscid
flow and P, is the first term in the pressure expansion to have a transverse variation. The
unsteady flow {,p} also evolves on the z; scale, starting as a linear perturbation and
becoming nonlinear sufficiently far downstream (for details see Wundrow & Goldstein 1994).
However, the present analysis only considers the local linear solution (i.e. the linear solution

valid over streamwise distances of order d.) so {«, p} are expressed as

@ = Re ['&.(y,z)eix] +-, (2.9)

p =Re [ﬁ(y, z)eix] +---, (2.10)
for order one z, y, z and ¢, where

X=R / a(z2)de; — St, (2.11)
o is the local streamwise wavenumber, S = §.F./U., is the local Strouhal number (or non-

dimensional angular frequency) and the dots indicate higher-order terms in € as well as

R°L



It was shown in GW that the leading-order base-flow solution is determined by the

so-called boundary-region equations,

UoUoz, + Vo-V1Us + Pi = V2U, (2.12)
UoVosz, + V-V Vo + VB = VAV, (2.13)
Uoz, + V-V =0, (2.14)

(Davis & Rubin 1980) where V. = j3/0y+k0/0z is the gradient operator in the transverse
plane and a prime denotes differentiation with respect to the argument. The pressure fluc-
tuation associated with the local instability wave was shown in GW to satisfy a generalized

Rayleigh stability equation

Vip ] o?p
V- - =0, .
where ¢ = S/« is the local phase speed.
Equations (2.12)—(2.15) must be solved subject to
{Us, Vo, By} =0 at y=0
, (2.16)

{Us, Vo, B} = {Ue, 7VE, 0} as y— +o0

for wall-bounded flows, or
{Uo, Vo, p} = {(U221)'72, jV{ 0} as y— £oo, (2.17)
for unbounded flows, where U, (z2) satisfies
U.U = -F/, (2.18)

and V(](+) and VO(_) denote the scaled normal velocity components induced by the displace-

ment thickness at the upper and lower edges of the shear layer, respectively. It will be



assumed that the spanwise varying part of the base flow remains confined to the shear layer.
The external inviscid flow then remains two-dimensional to the required level of approxima-
tion and the functions Vo(*)(zg, y) are determined as part of the solution to (2.12)—(2.14).
In addition to the normal-boundary conditions given by (2.16) or (2.17), (2.12)-(2.15)
must be solved subject to boundary conditions in the spanwise direction. The steady base
flow is required to be periodic in the spanwise direction with period 27/3. The spanwise-
boundary condition for the unsteady perturbation is somewhat more general in that p need

only remain bounded as z — =%o0.

3. Steady base flow

The steady base flow is computed with a method similar to that used by Rubin, Khosla
& Saari (1977) to analyze laminar flow in rectangular channels. The transversely varying
component of the pressure is eliminated from the problem by applying the operator VX

to (2.13). This leads to

UoUoz, + Vo-V1Up + P. = ViU, (3.1)

UoSoz, + Vo- V80 — Uoz, 20 = Voz,Uoz + Wou, Uoy = Vaio, (3.2)
2 = Woy — Vo, (3.3)

Uts, + V-V =0, (3.4)

where 2 is the leading-order term in the large-R expansion of the streamwise component

of vorticity. In view of (2.16), (2.17) and the requirement that the spanwise varying part of



the base flow remain confined to the shear layer, (3.1)-(3.4) must be solved subject to

{Uo, Vo, Wy, 29 — Wy} =0 at y=0
: (3.5)
{Us, Vo, Woy, 0} = {Ue, V4, 0, 0} as y— +o0
for wall-bounded flows,
{Uo, Vo, Woy, 20} = {(U2£1)2, V¥ 0,0} as y— £oo, (3.6)

for unbounded flows, and, in either case, the solution must be periodic in 2 with period

2m/B.

In order to provide sufficient numerical resolution, the physical plane (z, y, z) is mapped

into a computational plane (£, 7, () using the coordinate transformations
22 =66, y=0Egm+v(E), z=57C (3.7)

where £° = L,/ RS, is the scaled distance to the virtual origin of the shear flow, 8 = \/€/U.
accounts for viscous spreading, ¢ is used to concentrate grid points near the dividing stream
surface and % allows for an arbitrary displacement of that surface. The specific forms of g
and ¥ used in the computations are given in §5. For now, it suffices to note that g(0) = 0 and
g(£o0) = £oo. Substituting (3.7) into (3.1)-(3.3) and introducing the rescaled dependent

variables
Uy=UU, W= 6V + yelo, Wo=pW, (= 6710 - veUo,, (3.8)

yields, after some manipulation,

1+3
DU = 26UT; + —=LU? — (3.9)
. 1-
DR =&US —§UVe + §UWW§ — 2(keg + ky)UU + —é,—uUn(, (3.10)

9



1
2= Wo =V, (3.11)

£U: + 1—;—EU + éV,, + W, =0, (3.12)
where
7} o 8 [0
D= (2 v)apl(Low) 13
g'0n \g'0n B ¢ \9¢ (3.13)

p = 02U! is the pressure-gradient parameter, B = 68 is the spanwise-wavenumber parame-
ter, and kg = 83U20” and ky = 3U24"” account for curvature effects associated with the
displacement thickness and dividing stream surface, respectively.

Since (3.9)—(3.12) are parabolic in &, the base flow can be computed with a marching
procedure starting at the streamwise position £ = €9, The solution is advanced in £ using a

combination of interpolation and finite-difference formulas,
fire = fE +eaEn, Q) =cf T + (1-¢)f' +O(AE?), (3.14)

FIe = fe(€ 28, n, Q) = AT (e + D - 2ef 4+ (e - FTIHO(AEY),  (3.15)

which reproduce most of the familiar second-order accurate explicit and implicit schemes
with appropriate choice of the parameter €. In particular, a semi-implicit Crank-Nicolson
scheme is obtained by setting ¢ = % and a strongly implicit three-point-backward scheme
results when € = 1. All the computations in the present investigation were done with ¢ = 1.

The coupled set of nonlinear equations that determine {U'*!, Vi+1 Wi+l Qi+1} are

linearized using a Newton—Raphson procedure,

yitentl = giten 45U, (3.16)

yitent+l — yiten + 55@7 + 52i+55 WC’ (3.17)

10



: . 1
Wt+s,n+1 — W:+£.n + 5@( _ ?5 Wm (318)

Qi+e,n+1 — Qi+€,n +5,Q, (319)

where the superscript n indicates the iteration number and, following Rubin et al. (1977),
corrections to the velocity components in the transverse plane are expressed in terms of a
velocity potential §& and a stream function é ¥. Introducing (3.14)—(3.19) into (3.9)-(3.12)

and linearizing about {§U,8®,6¥, 482} = 0 gives

A€ [Di+f - (2;—;—15”5 +1+ 3uf+5> Uite - 2§f+€Ug+€] §U = FU'*, (3.20)
At (Di+€ - %giﬁvt’ﬁ) 50 = Foite, (3.21)
AL (60 +60) = FU'e, (3.22)
AELFe 5P = Fgire, (3.23)
where
L= ggn (5’?9_17) +523%’ (3-24)

and the forcing functions FU, F2, F¥ and F'® are given in appendix A. The components
of the transverse velocity, Vit and Wit%, in (3.20) and (3.21) have been lagged in the
iteration (i.e. the §& and §¥ terms have been omitted) so that these equations decouple
from (3.22) and (3.23). This allows an updated result for U'** to be computed from (3.20)
prior to solving (3.21)—(3.23). Consequently, the U terms in (3.21) and (3.23) have been
omitted. The 6f2 term in (3.22) has been retained because solving (3.21) and (3.22) as a
coupled system greatly improves the convergence of the Newton-Raphson procedure for wall-

bounded flows (Briley & McDonald 1984). In view of these considerations, the superscript n

11



has been dropped with the understanding that the latest iterates are used to evaluate terms
at £ = £ite,
Substituting (3.16)—(3.19) into (3.8) and the result together with (3.7) into the boundary

conditions (3.5) and (3.6) shows that (3.20)-(3.23) must be solved subject to

{U, V, W, ¢ -W,;} =0 at =0

, (3.25q)
{Ua V7 W’h 'Q}—_) {11 V(+), 01 0} as "7'_)+OO
and
{8U, 6&,, ¢'6&; -6V, 6¥} =0 at n=0
) (3.25b)
{8U, §&,¢, 69, 602} =0 as 7 = 400
for wall-bounded flows,
(U, V, W, 2} > {12 UHY2 V¥ 0,0} as - Loo, (3.26a)
and
{6U, 6Py, 0¥, 62} -0 as n— oo, (3.26b)

for unbounded flows, and, in either case, {U,V, W, 2} and {éU,8$,6¥,52} must be peri-
odic in ¢ with period 27. The functions V(2)(¢,n) appearing in these equations denote the
rescaled normal-velocity components induced by the displacement thickness and are deter-
mined as part of the solution to (3.20)-(3.23) (see appendix A).

In view of the spanwise periodicity of the mean flow, the dependent variables in (3.20)-

(3.23) are approximated by truncated Fourier series of the form

N +M . .
FENO=Y D fal(€ me™, (3.27)
m=-M
where
= % /_ +: femimedc. (3.28)

12



Derivatives in the normal direction are approximated with second-order-accurate central

differences so,

= for (€,1;) = YA fL iy = frnjor) £ O(ARDY), (3.29)

1
T)maj

= fon (€ m5) = AT i1 = 2+ i) + O(ARY), (3.30)

mMm,;
where n; = jAn. By introducing these approximations into (3.20)-(3.23), one obtains a

system of algebraic equations that are expressed in matrix form as

BD;8U;_, + DU;6U; + AD;8U ;4 = FU*", (3.31)
BD;602;_1+ DQ;6Q; + AD;892,4, = F2*, (3.32)
BL;j§W; 1+ DL;§W; + AL;8¥;4y + ALSQ2; = FUST, (3.33)
BL;§&;_+ DL;§%; + AL;6$;4, = F&:*, (3.34)

where 8U; = {8Upm ;}, FU; = {FUp,;}, ... are column vectors of length N = 2M + 1 and
the non-zero elements of the order-N band matrices, BD;, DU;, D2;, AD;, BL;, DL;
and AL,, are given in appendix A.

The LAPACK subroutine CGBSV is used to solve (3.31)—(3.34) subject to the boundary
conditions obtained by introducing (3.27) and (3.29) into (3.25b) or (3.265) (see appendix A).
As mentioned above, (3.31) is solved first so that an updated result for UT'::J‘ can be computed
from (3.16) and used in the remaining equations. Equation (3.34) is solved next. For wall-
bounded flows, this provides the result for § & needed to evaluate the § ¥ boundary conditions
and so enables the solution of the coupled system (3.32) and (3.33). For unbounded flows,
the 5 ¥ boundary conditions do not couple (3.32) to (3.33) so these equations can be solved

serigtum. Updated results for Vit¢, WiT* and 2:% are then computed from (3.17)-(3.19)

mj T myg

13



and the solution procedure is repeated until the corrections {6U,6&,8¥,82} become less

than a preset tolerance.

4. Unsteady perturbation

The rescaled equation that governs the shape function p is obtained by substituting the
coordinate transformation (3.7) together with the rescaled variables (3.8) into (2.15) to get

171, =0 a9 2 R = N
(U-29 [E (?pn) + ﬂzpcc - 0‘21’:| - 97 nPn — 2ﬁ2ng( =0, (4.1)
7

where @ = Ao and ¢ = ¢/U, are the rescaled streamwise wavenumber and phase speed,

respectively. In view of (2.16) and (2.17), (4.1) must be solved subject to
ppr=0 at n=0, p—=0 as n— +4oo, (4.2)

for wall-bounded flows, or

p—=0 as n— too, (4.3)

for unbounded flows.
Since interest here is in disturbances that remain bounded as z — *co and since the
mean flow is periodic in the spanwise direction, Floquet theory can be used to express the

relevant solutions to (4.1) as a summation of solutions of the form
p = B(n,¢1 7)™, (4.4)

where p is periodic in { with period 27 and 7 is a real characteristic exponent. Substituting
(4.4) into (4.1), approximating U and p by truncated Fourier series of the form (3.27) and

equating the coefficients of like powers of ei¢ yields

min(M,m+M)

. 1 /1. o
3 {(Um_n — 286mn) [? (571),1,,)” - /\ipn]

n=max(—M,m-M)

14



2 = _
- FUm""Tlﬁnn + 2)82(" + ’7) (m - n)Um—npn} =0, (45)

for —-M < m < +M, where

_ - 1/2 -
Am = [62 + B (m + 7)) /2 Redm >0, (4.6)

and 8,, , denotes the Kronecker delta. It follows from (3.25a), (3.26a), (4.2) and (4.3) that

(4.5) must be solved subject to

Py =0 at 7=0, Ppy+IngPn =0 as n— +oo, (4.7)

for wall-bounded flows, or
Prp £ Amg' Py =0 as n— oo, (4.8)

for unbounded flows, where these expressions are obtained by using the exponential behavior
of p,,, in the free stream.
Introducing the central-difference approximations (3.29) and (3.30) into (4.5) leads to

a system of algebraic equations that can be written in matrix form as
b;p;_1 +d;p; +a;p; =0, (4.9)

where p; = {P,;} is a column vector of length N = 2M + 1 and b;, d; and a; are band
matrices of order N. Away from the boundaries, the non-zero elements of b;, d; and a; are

given by

1 Angi\ 1 ) 11
bm,n,j = ———2 (1 + 73]7' E‘z‘(Um—n,j - 2C(sm,n) + 'A_ng,ij—nnjs (410)
J J

7

2 1 - _
dm,n,j = — (———— )\%) (Um—n,j - 255m,n) —+ 2,@2(72 + ’-7) (m - n)Um_n,j, (4.11)

15



2 1 _
Amm,j = _A?g—’.i(Um—n'j bl 2C6m,n) - bm,n,jv (412)
2

where —M < m < +M and max(-M,m — M) < n < min(M,m + M). Expressions for
bm.n.;» @mon,; 2a0d Gmn; at the boundaries are obtained from (4.7) or (4.8) by using (3.29)
to approximate the 7 derivatives.

For a given base-flow profile U, Strouhal number S and characteristic exponent 7, the
rescaled wavenumber & is determined by solving the eigenvalue problem (4.9). This is done

with an iterative method similar to that used by Hughes (1972) to solve the Orr~Sommerfeld

equation. The method is most easily applied when (4.9) is rewritten as
Az =0, (4.13)
where Zm4N;j = D ; and the non-zero elements of A are given by

AmiN; ntNi=N = bmnjs  AmiNjntN;j = Gmnjy  Am+NjintNi+N = Gmnj.  (4.14)

A normalization condition, zx = 1 at k = k,, is imposed on z and the k.-th equation in

(4.13) is relaxed by allowing
ZAk*,kmk =A#0. (4.15)
k

Equation (4.13) is then recast as an inhomogeneous problem by moving the terms involving
z}, to the right-hand side and replacing the k,-th equation with the identity z, = 1. This
yields

Bz = f, (4.16)

where
Bii = 6k, 0k k, + (1= Sk, ) (1 = Sk k) Ak ity S = Ok, — (1= Okk) Ak k- (4.17)

16



Given an estimate for &,  is determined by solving the sparse linear system (4.16) with the
LAPACK subroutine CGBSV. The eigenvalue @ is then found by locating the zeros of A

using Newton’s method.

5. Results and discussion

The generalized Rayleigh stability problem defined by (4.1)-{4.4) or equivalently (4.1)-

(4.3) and the spanwise-boundary condition,

B(n, ¢+ 27 |7) = 2™ p(n,C17), (3.1)

has a number symmetries with respect to the characteristic exponent ¥ that are used to sim-
plify the numerical computations. Let {p(n,¢|%),a(7)} denote an eigenfunction/eigenvalue
pair determined for a particular value of 7, it then follows from (5.1) that there exists an

infinite sequence of eigenpairs {p(n, (| ¥ + k), &(¥ + k)} such that

1l
QI

Bn,Cl7+k) =5(nC|7) and &(¥+k)=a?), (5:2)

where k = 0, 1,12, .... If the base-flow profile U is an even function of { as it will now be

assumed, there also exists an eigenpair {(7,{| — %), &@(—7)} such that
B, —¢l =) =5, ¢l%) and a(-7) = &) (5.3)
Combining this result with (5.2) leads to
B(n,—¢11-7)=p(n,¢l¥) and a(l-%)=a(¥). (5.4)

Therefore, only solutions for 7 in the range 0 to % need be computed since solutions outside

this range can be easily obtained from (5.2)-(5.4).

17



The ¢ symmetries of the solutions to the generalized Rayleigh stability problem are also

of interest. Let the eigenfunction p(7n, (| %) be expressed as

B(m,C1%) = Bo(n, 1) + Be(n, €1 7), (5.5)

where p, and p. are odd and even functions of (, respectively. Then, since U is an even func-
tion of ¢, po and p. satisfy (4.1)~(4.3) independently but are coupled through the spanwise-
boundary condition (5.1). This coupling becomes clear when (5.5) is used to rewrite (5.1)
as

Po(m, ¢ + 27 | ¥) = cos(27¥)po(m, {1 7) + isin(277)pe(n, €| %), (5-69)
and

Pe(n ¢+ 2m | %) =isin{27Y)po(n, (1 7) + cos(277)Pe(n, {1 7). (5.60)
It follows that the coupling terms in (5.6) drop out whenevef ¥ = %k. po and p. are then
independent solutions to the generalized Rayleigh stability problem which (together with
their corresponding eigenvalues) are termed odd- and even-mode solutions.

The numerical computations discussed below are for wall-bounded flows so the func-

tion (&) introduced in (3.7) is identically zero. The stretching function g(n) used in the
computations is given as

Ansinh An
g= <______ (5.7)

. Ansinh An
sinh AAn t IB) tanh (C ) ’

sinh AAn
where A, B, and C are real constants. Typical values for these constants are A = 5.5 X
107%An~!, B = —-0.4 and C = 10 when the computation is done off the real axis and
A=x55x107%An"!, B =0 and C = oo when it is done on the real axis.

Figure 1 is a comparison of the scaled growth rate —6a;/c* predicated by the long-

wavelength solution developed in GW (and extended in appendix B) to that determined
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Figure 1: Scaled growth rate vs. scaled Strouhal number for U given by (5.8), 88/0 = 3
3 = 1 and various values of ¢. Solid lines, exact numerical solution; dashed lines, long-
wavelength asymptotic solution. (a) odd mode; (b) even mode.
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from a corresponding numerical solution to the generalized Rayleigh stability problem for

the analytic base-flow profile
U=Us(g)— a3ge'93/5“3 cos(, (5.8)
where 0 < 0 € 1 is a scale factor and Up is the Blasius profile determined by
Up—VgUp=0 and iUz+Vy=0, (5.9)

with Ug(0) = V(0) = 0 and Ug(oo) = 1. The computations were performed with the grid
parameters An = 0.001, J = 1500 and N = 27. The curves are plotted for both odd- and
even-mode solutions at ¥ = % At the largest value of o, the exact and asymptotic results
appear quite different. The exact solutions show a relatively fast growing odd mode and
a weakly unstable even mode whereas the asymptotic results predict a completely damped
odd mode and a rapidly growing even mode. However, this disparity diminishes and the
exact solutions approach their respective asymptotes as o — 0.

Figure 2 is a plot of the scaled growth rate —fa;/ ot as a function of the characteristic
exponent ¥ for the analytic base-flow profile (5.8). The curves are plotted for a scaled
Strouhal number 8S/0%U, = 0.06 which is near the peak in the asymptotic growth rate of
the even mode at ¥ = % Also shown are the growth rates predicted by the long-wavelength
solutions (B 46) and (B47) which have been evaluated with o = 0.1. The results plotted
in parts a and b of the figure correspond to solutions that become, respectively, odd and
even functions of ( when ¥ = -;— As noted above, the odd and even mode designations
apply only when 4 = %k. Indeed, these designations change as % is decreased from % to 0,

i.e. the solution that corresponds to an odd mode at ¥ = % becomes an even function of ¢

when ¥ = 0 and wvice versa for the solution that corresponds to an even mode at ¥ = %

20



0.5 (a)

10
__1' i i L J
50 0.25 0.5 0.75 1.0
.‘9
051 (6)

0.0

—ba; /ot 0.5

—-10F

=15

0 0.25 0.5 0.75 1.0

Figure 2: Scaled growth rate vs. characteristic exponent for U given by (5.8), 8/0 = %,
8S/0%U, = 0.06 and various values of 0. Solid lines, exact numerical solution; dashed lines,
long-wavelength asymptotic solution. (a) solution that is odd mode at ¥ = 3; (b) solution

that is even mode at ¥ = 1.
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As in figure 1, the exact and asymptotic solutions in figure 2 appear quite different at the
largest value of ¢ but come into agreement as o decreases. It is interesting to note that the
solution for ¢ = 0.2 shown in figure 2a is damped at ¥ = 0 and % but is unstable when
% is near 0.35. This points out the need for investigating more than just the fundamental
and subharmonic solutions to the generalized Rayleigh stability problem. Figure 2 also
shows that the effect of the streamwise-vortex structure on the instability waves becomes
concentrated near y = % as ¢ becomes small which is consistent with the conclusions in GW.
This means that, once ¢ becomes sufficiently small, the base flow is inviscidly unstable only
to subharmonic disturbances.

Figures 1 and 2 are plotted for a scaled spanwise wavenumber §3/0 = 3. In order to
demonstrate the effect of this parameter on the linear-stability results, the neutral (or zero-
growth) values of the scaled Strouhal number 65/ 02U, predicted by the long-wavelength
solution are plotted against 83/c in figure 3 for both odd- and even-mode solutions at
¥ = % The figure shows that there are multiple ranges of §3/c over which the profile (5.8)
is inviscidly unstable. However, each range is finite so above a certain value of 83/0 (5.8)
becomes inviscidly stable even though it remains inflexional over a portion of the spanwise
domain. This is consistent with the experimental observations of Hamilton & Abernathy
(1994) who investigated the conditions under which transition to turbulence can be caused
by introducing streamwise vortices into an otherwise two-dimensional, non-transitional shear
flow. Figure 3 suggests that growing solutions exist when 63/c = 0. This result must be
disregarded because the analysis of GW shows that the long-wavelength asymptotic solution
breaks down as 3 — 0 with o > 0 held constant. In order to show that the above conclusions

apply to other base-flow profiles, a plot of the neutral Strouhal number versus the spanwise
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Figure 3: Scaled neutral Strouhal number vs. scaled spanwise wavenumber for the long-
wavelength asymptotic solution with U given by (5.8) and ¥ = 1. (a) odd mode; (b) even
mode.
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24



wavenumber is shown in figure 4 for the base-flow profile derived in GW.

The time needed to compute curves corresponding to figure 3 for the exact solutions
to the generalized Rayleigh equation would be prohibitive. However, the results in figures 1
and 2 suggest that, at small values of o, qualitatively similar curves would be obtained.
It is unlikely that this similarity would persist as o increases but it is interesting to note
that, in their numerical investigation of the secondary instability of Gdrtler vortices, Li &
Malik (1995) found that the relative growth rates of the odd and even modes are strongly
influenced by the Gortler-vortex wavelength (i.e. the spanwise wavelength of the base flow).

The influence of non-parallel-flow effects is demonstrated by computing the local sta-
bility characteristics of a base-flow profile U that satisfies the boundary-region equations

(3.9)-(3.12). The computation is done for a wall-bounded flow with U, = 1 and
U=Us, V=Vp+BUsH;, W=-UsH, £2=-(UsH,),—B*UpHe, (5.10)
at £ = €% =1, where Uy and Vj satisfy (5.9), 8 = /€, and the function H(7,() is given as
H = )3;*UsUygsin(, (5.11)

with Ap = U%(0). The form of the ‘initial’ condition (5.10) has been chosen so that U, V,
and W satisfy the equation obtained by eliminating the Us terms between (3.9) and (3.12).
Equations (3.9)—(3.12) are solved subject to (3.25) and (5.10) using the method described in
§3 with A€ = 0.001, Anp =0.005, J =900 and N = 17.

Figure 5 shows lines of constant streamwise velocity U in the g—( plane at various
streamwise stations. The contours at £ = 1 are not shown but, in view of (5.10), they
would be straight lines parallel to the ¢ axis. The contours in parts a—e of figure 5 reveal

a rapid departure from the initial two-dimensional state as the distortion in U produced
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Figure 5: Streamwise velocity contours in the g—( plane. Thick lines, U contours; thin lines,
inflexion points. (a) £ = 1.1; () £ = 1.15; (c) € = 1.2; (d) £ = 1.3; (e) £ = 1.5; (f) £ = 1.8.
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by the imposed cross flow grows with increasing . This type of disturbance growth is
similar to the algebraic growth proposed by Ellingsen & Palm (1975), Hultgren & Gustavsson
(1981) and Landahl (1990) as an alternative or ‘bypass’ transition mechanism. However,
only the base-flow distortion undergoes this type of growth in the present study and the
follow-on secondary instability (discussed below) exhibits the more conventional exponential
growth. The wavy appearance of the contours in figure 5 is similar that observed in the early
stages of Gortler-vortex development (Swearingen & Blackwelder 1987). The ‘mushroom-
like’ structures characteristic of the later stages of that development do not appear in figure 5
because the vortex structure shown there is not sustained by wall-curvature effects. The
growth of the U distortion in the present study is eventually reversed by viscous-diffusion
effects and the base flow tends towards its two-dimensional undisturbed state as £ becomes
large (cf. figure 5f).

Figure 5 also shows the location of the inflection points in the U—g plane, i.e. the points
where Uy = 0. Wundrow & Goldstein (1994) showed that the éonnection between the in-
flexions in U and the stability of the base flow is much more complicated for a transversely
sheared base flow of the kind being considered here than for a plane flow for which Rayleigh’s
inflexion-point theorem applies. Nevertheless the inflexions in U do indicate a redistribu-
tion in momentum produced by the streamwise-vortex structure that does play a role in
determining the local stability of the flow.

Figure 6 is a plot of the local instability-wave growth rate —fc; against the local Strouhal
number 8S/U, for the base-flow profile U shown in figure 5. Growth rate curves are shown
for odd-fundamental (7 = 0, odd-mode) and even-subharmonic (3 = 3, even-mode) solu-

tions. Curves for even-fundamental and odd-subharmonic solutions are not shown since only
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damped forms of these solutions were found. It should be noted that the shooting method
used here does not determine all the eigenvalues of the generalized Rayleigh stability problem
and a global method must be applied to show that there are no unstable even-fundamental
or odd-subharmonic solutions. In figure 64, only the even-subharmonic solution is shown be-
cause the odd-fundamental solution is damped at this streamwise station. This suggests that
at short distances (on the z5 scale) downstream of the point where the cross flow is introduced
the linear instability of the flow is dominated by a subharmonic rather than a fundamental
solution. This is also the case in the long-wavelength analysis considered in GW. Further
downstream, as the U distortion becomes larger, the odd-fundamental solution becomes
unstable and soon exhibits a peak growth rate larger than that of the even-subharmonic
solution. The growth rates of both solutions continue to increase until £ ~ 1.3 after which
point they decrease with increasing £. It is interesting to note that the streamwise position
of peak growth precedes the position were the U distortion is a maximum. This behavior is
also evident in the long-wavelength asymptotic solution developed by GW.

Figures 5 and 6 show that the imposed cross flow (5.10) produces a streamwise region in
which the boundary layer is inviscidly unstable. In order to show that this region of instability
can significantly affect the boundary-layer development, an estimate of its streamwise extent
is made using the flow parameters reported in Swearingen & Blackwelder (1987). In their
experimental investigation of the evolution of Gortler vortices, Swearingen & Blackwelder
introduced a small-amplitude acoustic disturbance 60 cm downstream of the leading edge
of a concave plate and observed vortex breakdown leading to laminar-turbulent transition
at downstream distances between 100 and 110 cm. Taking L. = 60 cm and using £° =

L./R3, = 1 together with (2.6) and (3.7), the dimensional distance from the leading edge
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in the present investigation is
.+ L. = Ré,€§ =60€ cm.

Therefore, since £ ranges between 1.1 and 1.8 in figures 5 and 6, the distance over which the
imposed cross flow (5.10) destabilizes the boundary layer is the same as the distance over
which the secondary instability of Gortler vortices leads to laminar—turbulent transition in
the Swearingen & Blackwelder (1987) experiment.

The ability of a given streamwise-vortex structure to significantly affect the development
of an otherwise two-dimensional shear flow will, of course, depend on the vortex strength.

The strength of the streamwise-vortex structure can be characterized by its circulation,

1/R/B/°°Qd dz——i/m[wl(l- gU]"_d (5.12)
] odyds=-— | $(1-w)gU| _ dg, :

=2n
where use has been made of (3.3), (3.5), (3.7) and (3.8). The non-dimensional circulation
(or vortex Reynolds number) I' of the imposed cross flow (5.10) is approximately 9 — well
within the range of vortex strength considered in the experimental investigation of Hamilton
& Abernathy (1994). Vortex structures of lesser strength were also found to destabilize the
boundary layer but the streamwise distance over which this occured tended to be smaller.
Concentrating the imposed cross flow near the wall was found to reduce the streamwise
distance needed to achieve an inflexional U profile but again the resulting vortex structures
tended to damp out sooner. Changing the spanwise wavelength of the vortex structure was
found to alter the linear stability characteristics however further investigation is need to
verify if behavior such as that shown in figures 3 and 4 occurs in the order-one wavelength

case.
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The results presented here show that the introduction of even a very weak streamwise-
vortex structure into an otherwise two-dimensional boundary layer can lead to the ampli-
fication of certain three-dimensional disturbances through a kind of parametric-resonance
or secondary-instability mechanism. The amplification rates of these secondary instabilities
are strongly dependent on their spanwise wavelength as well as the strength and spanwise
wavelength of the streamwise-vortex structure. Nevertheless, at sufficiently high Reynolds
numbers, the secondary instabilities can grow at a rate much faster than that of the Tollmien—
Schlichting waves which would otherwise dominate the initial stages of laminar-turbulent
transition. Viscous effects eventually damp out the base-flow distortion and consequently
any instability wave amplified by it. However, the damping process occurs over the relatively
long x; scale so an initially linear instability wave can easily become nonlinear before this
process is complete.

Nonlinear effects will become important first within a thin critical layer located at the
transverse position where the phase speed ¢ of the instability wave equals the base-flow
velocity U (once the instability-wave amplitude and growth rate become sufficiently large
and small, respectively). The unsteady flow outside the critical layer remains essentially
linear but the instability-wave amplitude is then completely determined by the nonlinear
motion inside the critical layer. An analysis of this stage of evolution is given in GW for
the long wavelength limit and in Wundrow & Goldstein (1994) for the order-one wavelength
problem considered here. It is worth noting (as pointed out by Hultgren 1992) that the near-
neutral approximation used in the order-one-wavelength critical-layer analysis will remain
accurate even at frequencies close to the peak growth because the slope of the growth rate

curve between that point and the upper branch is nearly constant (cf. figure 6).
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Appendix A. Coefficients and boundary conditions for (3.31)—(3.34)

In this appendix, expressions are given for the forcing terms, matrix elements and bound-
ary conditions associated with the algebraic equations (3.31)~(3.34). The forcing terms are
defined as

FU = —A¢ (DU - 26UU; — 1—+23ﬁU2 + u) : (A1)

FQ = -Af [DQ _EUQ + €UV - §U,,W5 + 2(rag + Kg)UUc — 3}’,—“U,,<] . (A2)
FWE—A{(.Q—&W,,—{—Vg), (A3)

Fo=-A¢ (EUQ + HT“U + %v,, + [32W<) : (A4)

where it should be noted that these terms vanish when {U, V, W, 2} satisfy (3.9)-(3.12). The

non-zero matrix elements are given by

AL 1 Ag Angi 1
mmn,;] — Dmn' V1+5 mn T~ .o 1 = y
BL 1] B ROy 4A,’7gl m—-n,j—1 — 5 y AT]2 ( + 5 2 g] glz (A 5)
L DD —5 B MWt = 6, A G2t m2 A
D mmn,j — mn,]+ ﬁ m-nj — m,n f 2,2+IB m y ( 6)
An*g;
/_\g 1 A€ Angi\ 1
minyg = ADm o j V‘+€ = 1= =
26 +1 1+ 3u‘te
DUp ;= DDnj ~ ( g+ —2"——A£) Ui, - ALETURE L (A8)
26 + 1 T E (2 of
D‘Qm»nvj = DDmanyj f + m+ n,j°? (A 9)

where —M < m < +M, max(-M,m — M) < n € min(M,m + M), dp» denotes the
Kronecker delta and dependent variables with superscript i + ¢ are evaluated using (3.14)

and (3.15).
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Setting A% = Nmax/J and introducing (3.27) and (3.29) into (3.25) and (3.26) shows

that, in algebraic form, the normal-boundary conditions read

Uno=VYmo=Wno=0, Wpn_1=Wn1—2An9:%2m0,

Um,J = 26,,1’0, me,J = 0, Wm,J.H = Wm,J-1, -Qm,.] = 0) (A loa)

and

6Umyo =46 Wm,() = 0, 6¢m,—1 = 5¢m,11 5!pm‘_1 = 5Wm’1 - 21mAng65 ¢m,03
U, g =06¥m = 082m.5 =0, mé Py 41 = MO D g1, (A 10b)
for wall-bounded flows, and

UntJ= Wmo(1£UHYY2 mVpss =0, Wpniss1 =Wnrirt, Omzs=0, (Allg)

and

Umts =0V 37 =060m17=0, méPmyya1 =méPm 1iz1, (A 110)

for unbounded flows. The normalization condition
§%p0 =0, (A12)
and, in the case of unbounded flows, the kinematic condition
8®p,1=0%o 1, (A13)

must also be imposed on the solution in order to uniquely determine 6 & ;. These conditions
allow the m = 0 component of (3.34) to be solved as an initial-value problem. With § & ;
so determined, the normal-velocity components V(%) induced by the displacement thickness

can be found from (3.17).
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By substituting (3.27), (3.29) and (3.30) into (3.18) and the 7-derivative of (3.17) and
combining the results with (A 10) and (A 11), the following supplemental expressions are
obtained,

Vm,—-l = Vm,la (A 14)

5Vm,J+1 = 6Vm,J—1 + fJ(éém,J—l - 5¢m,]) - thEI((S@m,J—l - 6¢m,J+1)
— imBP Y hy 8 ¥ g, (A 15)
Wy =im8Pm g+ §f1hg8¥m j_1, (A 16)
for wall-bounded flows, and
Vi zis1 = Vmsiz1 £ fr7(6Pm szt — 6Pma) F frshTi(0®m rig1 — 0Pm 2711)
— imB Y hy g6V 231, (A 17)
Wmag =im8Pm 17 £ § feshss8¥m 1151, (A18)
for unbounded flows, where
1 721+ 1
8V = 80+ G, SW = 60— 8u,
4 4q'
fiJ = A—;—, and h:hJ = giJ

N9+ 7 294, F Angl '

These expressions are used when computing updated results for V,;fj‘ and W,’:; at the 7

boundaries.

Appendix B. Long-wavelength solution to (4.1) and (4.2)

In this appendix, an asymptotic solution to the generalized Rayleigh stability problem

(4.1) and (4.2) that applies in the limit as 3 — 0 is constructed. The analysis closely parallels
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that given in GW but is carried out here for shape functions p having the general Floquet
form (4.4). The relevant wavenumber and phase speed scalings for the long-wavelength limit
are

B=0fB, &=ca=oda +icta, ¢=0é=0é +i0%é, (B1)
where 0 < ¢ < 1is a scale factor, § is an order-one real constant and the real quantities &,

&;, & and & have expansions of the form
dr=&r0+0dr1+"') (BQ)

as o — 0.
As in GW, the present analysis is restricted to wall-bounded flows that behave like
small perturbations about the Blasius solution. In the streamwise region of interest, the

streamwise velocity of the base flow is then expressed as
U-_—UB+0'4UD, (B3)

where Ug corresponds to the Blasius solution determined by (5.9) and Up is a spanwise-

periodic distortion. Introducing (B 1) into (4.1) and (4.2) leads to

[ R o

and

pg=0 at ¢g=0, p—=0 as g— +oo, (B5)

where, for convenience, g is treated as an independent variable.
Since much of the analysis in GW carries over directly, only the final results are presented

here. In the inviscid wall layer described by § = 071g = O(1), the base flow is given as
U=osg+0* (U - 5225%) +--, (B6)

39



where Ap = UL(0) and U(§,(;0) = Up(0§,(;0) = O(1). The shape function p is given by

p=0cA+0(c° (B7q)
and
__&___fpr—i—ﬂ+ka+1&—dﬁ-—ﬁz—-w~ (B7b)
U-o0&)? 22 |a@-g01" 23 # 32 - 5.)? ’

where A is an arbitrary function of ¢ that has an expansion in ¢ containing terms up to but
. . ~2 ~ ces .-
not including order o*, D = 8°(4.8/8¢ + A¢c) — &*A, the normal position of the critical

level, g. = ¢ g., is determined by the condition
U(gc:Gi0) = oy, (B8)

the + superscript indicates different values for § 2 g., a subscript ¢ denotes evaluation at

G = g, P is a real function of § and ¢ defined as

G0 — U, — 2A2(5* - g
2= o ik 2N (B9)
0 33— 3c)

F denotes the Cauchy principal value, and

i = Ugge — 32552 (B 10)

is the scaled normal derivative of the base-flow vorticity at the critical level. The constant
¢t — ¢~ is set equal to i7 which corresponds to a logarithmic phase shift of 7 across the
linear critical layer.

In order to obtain solutions for p of the form (4.4) that are valid for all ¥, it is necessary
to retain some intermediate terms (which were not needed in the GW analysis) in the main-

boundary-layer and outer-layer solutions. In the main boundary layer described by ¢ = O(1),
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the solution for p is given, to the required order of accuracy, by

g

p=oA+ 02/ (Us - 08)2 [(1 - WIL)DB ~ o(I - *KL)LA|dg +-+,  (B1D)

0
where B is a function of ¢ that has an expansion in o containing terms up to but not including

order o, £L = 3°9?/8¢? — &% and 1, J and K are the real functions of g determined by
(Up - 0&) ' =1, and [(Us - 0&){J, K} = (Us — 0&)*{1, 1}, (B12)

with {I,J,J’, K, K'} = 0 at g = 0. Matching (B 11) with the wall-layer solution (B7) shows
that

B =31 + dPw, (B 13)

where w is a complex function of ¢ defined as

w= A3 lim [ds +I02(5° 4+ 325G+ G2 lnog) +ima — 31553] + 210, - i), (B14)

j—o0
and use has been made of the small-o expansion
Ge = 25'6 — 30 - A% + -, (B 15)

which is easily obtained from (B 6) and (B 8).

In the outer layer described by § = 0g = 0(1), the solution for p expands like
p=op+0(c%), (B16)
where the function p of § and ( is determined by the Helmholtz equation,
b3 + B Bec - 6% =0, (B17)
which must be solved subject to
p=(1+oml — LA, Py =Ll -o* LA+ o3Dw, at g=0, (B18a)
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in order for (B 16) to match with the main-boundary-layer solution (B 11) and
p—0 as §— 4o (B 18d)

in order to satisfy the free-stream boundary condition. The v, appearing in (B 18a) are real

constants defined as

Agér.[éo{l/]_, Vo, V3, 1/4} = { 1- O'ABErIooy J(;O - UABE,-I({)O, Joo — CT)\BE‘rI{oo, Loo}, (B 19)

where
loo = Jim (I = Ig), Ioo=(1-08)7 (B20)
Joo = lim (J = 30° = Jiog),  Jio = lim (J' - g), (B21)

Ko = gli_)rgo(K -1 - 1lg* - Klg), KL= glergo(I" -1l ¢* —I.g), (B22)

and

Lo, = / [(Us = 08)? 1L ~ Lg% = Jlog — Joo)dg. (B23)
0

The relevant solutions to (B 17) and (B 18) have the form

+w I -~ . —
{p,A} = % Z {ﬁme‘*’"g,Am}e‘(’””)C, (B 24)

m=—0o0

where 7 is the real characteristic exponent. It follows from (B 14), (B17), (B 18) and (B 24)

that
- 2 ~2 2 1/2 -
S = |a +8(m+7? ", Redn >0, (B 25)
Pm = (1 — 002 A2 — 0Pugdd ) A, (B 26)
and
bnAm_1 +dmAp, + amAm+1 =0, (B 27)
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where

dm = An — (11 + %oswo)j\fn — o3 — oAt — oS8, (B29)
Am = —0'3%0.)1 (5\3,1 + 4:\.?”,*,1 - 5\3,1_,,2), (B 30)

+ 7 .
wm = 7—11:/ wemdc, (B 31)

and, in order to fix ideas, it has been assumed that U, is proportional to cos¢. Equations

(B 25)-(B 27) together with the definition of the scaled Strouhal number,

0

S 0_—2(};5, ImS = 0, (B 32)

G =

form the eigenvalue problem that determines & as a function of S, B and 7.
The small-o behavior of & is determined by using the method of cyclic reduction to

express (B27) as

“bm-lbmdm+1Am—2 + (dm—ldmdm+1 - am—lbmdm+1 - dm—lambm+1)Am

— dm-18mam414m42 =0, (B 33)

and then imposing the normalization condition Ap = 1 so that attention is restricted to
instability waves having the bulk of their energy in the m = 0 mode. Equations (B 28)-

(B 30) together with (B 33) show that A1, = O(c®) and therefore that
d_1d0d1 - a_1b0d1 - d_laobl = O(O’g), (B 34)

which, to the required level of approximation, is the characteristic equation for (B 27).
The solutions for & that are of most interest here are those corresponding to instability

waves having spanwise wavelengths nearly twice that of the base flow since it is in this
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parameter range that the waves exhibit their most rapid growth. Substituting
3 =1+, (B 35)

into (B 25) and the result into (B 28)-(B 30) yields

2

b = —0° Sy [K2, - B (m + H]+0(, (B 36)

dm = km — (11 + a wo)lc2 - crugk -0 1/3Ic‘1 -0 1/4k5

— o®(2m+ 1) (1 - 3k, 1§°h + 0(aY), (B 37)

am = —0*Swr [B2, + B (m + )] + O(0), (B38)

where

2]1/2 .

bn=[a+5 (m+1?", Rekn>0. (B 39)

Then, since k_; = ko and the m = 0 component of (B 27) implies dg = O(0?), substitution
of (B 36)-(B 38) into (B 34) leads to
[l.cg —(n + cr wo)k2 - oz/zko -0 1/3/0 -0 1/4k'0]2 =
31, (k2 _ 13 3. 1i-1y732 2 7
(041 (8 - 38°)]” + [0 - 3551)°] +0(0).  (B40)
Substituting (B 1) and (B 2) into (B 39) and the result into (B 40) and equating like powers

of o shows that
~a\1/2
(a% + %1-52) = Ao (B41a)

and

4 ~ ~ 2
-) bip = T 4 Im [( LX2 320wy cos28)? 4 (Bhsin 6‘)2]1/ ; (B41b)

6 +
(COS cosf 4Ap
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where 6 = arctan(8/2é0) is the obliqueness angle of the instability wave and it follows from

(B9), (B14) and (B31) that

1 gt [ U ~
o =25 f_,, []([] TG g0 17U 40 (B42)
Setting h = 0 shows that, apart from differences in notation, (B 41) reproduces the results
given in GW, i.e. their (5.30) and (5.34). In the present analysis, the & in (B 41b) correspond
to solutions for p that are either odd or even functions of { depending on the particular choice

for U.

Away from ¥ = , (B 40) reduces to
d_1d0d1 + O(O’G) =0. (B 43)

The solutions to (B 43) that match onto (B41) as ¥ — 3 are

..(1)4
) &) = 0 (B44)

. 1/2 -
6%+ B -1 =288, (cos g
4

cos 60

and
~(rn4

_t Vaun T
cosé‘”’) io 4rp (B45)

( (,{)”2 + ,@ ) = /\Béf.g , (cosé(”) +
By including the next-order corrections to (B44) and (B45) and then introducing (B 35),
one can show that, when the minus sign is taken in (B415), (B 41) matches onto (B 44) as
h — —oc and onto (B45) as h — +00 or vice versa when the plus sign is taken in (B41b).
It follows that (B41), (B44) and (B45) can be combined to form a set of (multiplicative)

composite equations that are uniformly valid for 0 < ¥ < % These equations read

]1/2

(622 + 57— 17" = 253, (B6a)
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()4
(cosO“ ) 540 ﬁ
cos@n ) ° 4)p
1 ‘E(r{))4 1.3 72 L (As 1y e g2 2
55 Im {[ o3 A2 e wy cos26)” + [B(¥ — §) sinf] } , (B46b)
and
2 ~
(&% + 55 ) = Apé5, (B47a)
..(11)4
(n s(n _ o
(cos() * cos U1 > o 4Ap
L (e i
+t3 ( 5:)0 Im { (30222001 cos26) + [B(F — 7) sin 9]2} , (B47b)

where & and w; are determined from (B 41a) and (B 42), respectively. The results predicted

by (B 46) and (B 47) are easily extended to the range 1 < % <1 by using the relation (5.4).
8¢ 3
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