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Abstract

The effect of spanwise-periodic mean-flow distortions (i.e. streamwise-vortex structures)

on the evolution of small-amplitude, single-frequency instability waves in an otherwise

two-dimensional shear flow is investigated. The streamwise-vortex structures are taken

to be just weak enough so that the spatially growing instability waves behave (locally)

like linear perturbations about a uni-directional transversely sheared mean flow. Nu-

merical solutions are computed and discussed for both the mean flow and the instability

waves. The influence of the streamwise-vortex wavelength on the properties of the most

rapidly growing instability wave is also discussed.

1. Introduction

The effect streamwise-vortex structures have on the development of otherwise two-

dimensional shear flows is of much interest for both theoretical and technological reasons.

The theoretical interest stems from the role steady streamwise vortices play in amplify-

ing three-dimensional disturbances in laminar shear flows. Transition to turbulence in rel-

atively two-dimensional shear flows is virtually always preceded by the rapid growth of

three-dimensional disturbances. The technological interest arises from the ability of steady

streamwise-vortex structures to significantly enhance the mixing process. Mixing enhance-

ment in shear flows has received renewed attention in recent years primarily due to the



current interest in supersonic combustion and noise reduction for the high-speed civil trans-

port. The efficiency of scramjet propulsion systems depends on the time required to achieve

a flammable (near-stoichiometric) mix of fuel and air within the combustor. Noise reduction

in the mixer/ejector nozzle concept is accomplished by mixing entrained ambient air with

high-speed exhaust plumes inside an acoustically treated ejector.

Steady streamwise-vortex structures can arise in laminar-turbulent transition experi-

ments due to wall roughness, free-stream disturbances and/or imperfections in the relatively

two-dimensional excitation devices. In technological applications, the vortex structures may

be produced by surface geometry or three-dimensional devices such as ramp injectors, tabs,

or trip wires. In either case, the resulting three-dimensional mean flow will usually have a

primary-flow direction - provided, of course, the cross flow associated with the streamwise-

vortex structure is not too strong. Since the mean velocity component in the primary-flow

direction is much larger than the velocity components in the cross-flow plane, the mean flow

is governed by a set of equations that become of nearly boundary-layer type in the high-

Reynolds-number limit (Davis & Rubin 1980). Small-amplitude disturbances propagating

on such flows will behave (at least locally) like linear perturbations about a uni-directional

transversely sheared mean flow. This paper is an attempt to provide a systematic first prin-

ciples analysis of the linear stability characteristics of such disturbances using a combination

of numerical techniques and high-Reynolds-number asymptotic methods.

It is well known that steady streamwise-vortex structures can strongly influence the de-

velopment of otherwise two-dimensional shear flows by amplifying three-dimensional distur-

bances through a kind of parametric-resonance or secondary-instability mechanism (Nayfeh

1981; Henningson 1987; Bennett & Hall 1988; Nayfeh & A1-Maaitah 1988; Hall & Seddougui



1989;andothers).This phenomenonhasmostoftenbeeninvestigatedin thecontextof the

secondaryinstabilityof GSrtlervorticeson curved-wallboundarylayers(e.g.Hall &:Horse-

man1991andLi & Malik 1995).Theseinvestigationshavebeenprimarily concernedwith

determiningthetemporalamplificationratesoftheso-calledfundamentalsecondaryinstabil-

ities, i.e.the instabilitieshavingaspanwisewavelengthequalto that of theG5rtlervortices.

However,Li &:Malik (1995)alsoinvestigatedinstabilitieshavingspanwisewavelengthsequal

to twicethat of the GSrtlervorticesand foundthat the temporalgrowth ratesof theseso-

calledsubharmonicsecondaryinstabilitiescanbecomparablewith the growth ratesof the

fundamentalinstabilities.

Goldstein& Wundrow(1995,hereafterreferredto asGW) analyzedtheeffectof intro-

ducinga small-amplitudespanwise-periodiccrossflow into a Blasiusboundarylayer. The

imposedcrossflowproducesadistortionin thestreamwisevelocitycomponentthat initially

growswith increasingdownstreamdistance,reachesa maximumandtheneventuallydecays

throughtheactionof viscosity.Thisdecayoccursslowlyandallowsthedistortionto desta-

bilizethe flow to three-dimensionalinvisciddisturbancesovera relativelylongstreamwise

distance.Coldstein& Wundrowconcentratedon the limit wherethe spanwisewavelength

of the mean-flowdistortion is largecomparedto the boundary-layerthickness.This long-

wavelengthlimit allowsanalyticsolutionsto beobtainedfor both the steadyand unsteady

componentsof the flowandthereforeelucidatesthe relevantphysicalmechanisms.Theau-

thorsalsosolvedthe spatialstability problemratherthan thetemporalonesinceit is the

spatialtheorythat correctlydescribesconvectivelyunstableflows.Theyfoundthat themost

amplifiedinstabilityhasa spanwisewavelengthequalto twicethat of the mean-flowdistor-

tion (i.e.it is a subharmonicsecondaryinstability) and,furthermore,that the fundamental



secondaryinstability remainsdampedin the long-wavelengthlimit.

The primary objectiveof the presentpaperis to extendthe linearstability analysis

of GW to the case where the spanwise wavelength of the mean-flow distortion is of the

same order of magnitude as the shear-layer thickness. The linear stability analysis will also

be generalized to spatially growing disturbances having an arbitrary, bounded behavior in

the spanwise direction. This will enable an investigation of the effect of streamwise-vortex

wavelength on the spatial growth rate and spanwise wavelength of the most rapidly growing

secondary instability. The results of such an investigation should be of much technological

interest since they could help guide the development of more efficient mixing-enhancement

techniques. In order to carry out the investigation, numerical schemes must be developed for

computing the evolution of the steady three-dimensional base flow as well as for determining

the linear stability characteristics of a general time-periodic perturbation. These numerical

schemes will also permit an evaluation of the follow-on nonlinear stage in the development

of the most amplified instability wave analyzed in Wundrow & Goldstein (1994).

The paper is organized as follows. In §2, governing equations for the steady base flow

and the linear unsteady perturbation are derived in the high-Reynolds-number limit. The

numerical schemes used to solve these equations are described in §§3 and 4. In §5, a compari-

son of the results predicted by the long-wavelength solution developed in GW (and extended

in appendix B) to those determined by a numerical solution to the aforementioned governing

equations is presented. Numerical results for an order-one spanwise wavelength solution are

also presented and discussed in §5.
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2. Formulation

Attention is focusedon an incompressibleshearflow formedat the interfacebetween

two parallelstreamsof differingvelocityor, alternatively,betweena singleparallelstream

anda flat plate.TheCartesian coordinate system (x, y, z) is attached to the interface with

x in the direction of the external flow, y normal to the interface, and z in the spanwise

direction. The origin of the coordinate system is located a distance L. downstream of the

initial point of contact between the upper and lower streams or between the upper stream

and the plate. All lengths are non-dimensionalized by 3. where 3. characterizes the local

shear-layer thickness at x = 0. The * subscript is used to indicate dimensional quantities.

The time t, velocity u = iu + jv + kw, and pressure p are non-dimensionalized by 3./U.,

U. and p.U2., respectively, where U. characterizes the velocity of the external flow and p. is

the density. With this non-dimensionalization, the Navier-Stokes equations become

ut -4-u.Vu -4-Vp = R-1V2u, (2.1)

where X7 _ iO/Ox + jO/Oy + kO/Oz is the gradient operator,

R - &u./,. >> 1 (2.3)

is the local Reynolds number, v. is the kinematic viscosity and an independent variable used

as a subscript denotes differentiation with respect to that variable.

The solutions to (2.1) and (2.2) of interest here are expressed as the sum of a steady

base flow and a time-dependent perturbation,

u = U(x) + eiL(a:,t), (2.4)

v.= = 0, (2.2)



p = + t), (2.5)

where e << 1 characterizes the local amplitude of the perturbation at x = 0. The steady,

spanwise-periodic, base flow {U, P} evolves over the long streamwise scale,

x2 = x/R, (2.6)

and expands like

V = iUo(x2,y,z) + R-1Vo(z2,y,z) +'", (2.7)

P = P_(x2) +...+ R-2Po(x2, y,z) +..., (2.8)

for order one x2, y and z as R --+ oo, where V denotes the base-flow velocity in the transverse

(or y-z) plane, Pe denotes the pressure imposed on the shear layer by the external inviscid

flow and P0 is the first term in the pressure expansion to have a transverse variation. The

unsteady flow {_2, i6} also evolves on the x2 scale, starting as a linear perturbation and

becoming nonlinear sufficiently far downstream (for details see Wundrow &5Goldstein 1994).

However, the present analysis only considers the local linear solution (i.e. the linear solution

valid over streamwise distances of order 6.) so {_2,16} are expressed as

= Re [_(y,z)e ix] +...,

16= Re [_(y,z)e iX] +...,

for order one x, y, z and t, where

X = R/c_(z2)dx2 - St,

(2.9)

(2.10)

(2.11)

is the local streamwise wavenumber, S - 5.F./U. is the local Strouhal number (or non-

dimensional angular frequency) and the dots indicate higher-order terms in e as well as

R-1.



It was shown in GW that the leading-order base-flow solution is determined by the

so-called boundary-region equations,

UoUo_:_+ Vo.V_v0 + p" = v_uo,

= VTV0 ,UoVo:_ + V0"VrVo + VTPo 2

(2.12)

(2.13)

Vr- O,
L(Uo- c)2J (Uo- c)2

where c - S/o_ is the local phase speed.

Equations (2.12)-(2.15) must be solved subject to

{Uo, Vo, /Sy}=0 at y=0

{u0, v0, _} -* {g_, jVo(+), 0} as V-* +oo

for wall-bounded flows, or

(2.15)

(2.16)

{Uo, Vo, /_}--+{(Ue2+l) 1/2, jVo (+), 0} as y--++oo, (2.17)

for unbounded flows, where U_(x2) satisfies

UeUe' = --Pe', (2.18)

and V(+) and V(-) denote the scaled normal velocity components induced by the displace-

ment thickness at the upper and lower edges of the shear layer, respectively. It will be

Rayleigh stability equation

Uo_:2+ VT'Vo = 0, (2.14)

(Davis & Rubin 1980) where Vr = jO/Oy + kO/Oz is the gradient operator in the transverse

plane and a prime denotes differentiation with respect to the argument. The pressure fluc-

tuation associated with the local instability wave was shown in GW to satisfy a generalized



assumedthat thespanwisevaryingpart of thebaseflowremainsconfinedto theshearlayer.

Theexternalinviscidflow then remainstwo-dimensionalto therequiredlevelof approxima-

tion andthefunctionsVo(+)(x2, y) are determined as part of the solution to (2.12)-(2.14).

In addition to the normal-boundary conditions given by (2.16) or (2.17), (2.12)-(2.15)

must be solved subject to boundary conditions in the spanwise direction. The steady base

flow is required to be periodic in the spanwise direction with period 2rc//_. The spanwise-

boundary condition for the unsteady perturbation is somewhat more general in that i5 need

only remain bounded as z --_ -}-oc.

3. Steady base flow

The steady base flow is computed with a method similar to that used by Rubin, Khosla

& Saari (1977) to analyze laminar flow in rectangular channels. The transversely varying

component of the pressure is eliminated from the problem by applying the operator Vr ×

to (2.13). This leads to

UoUo::2 + VO'VTUo + _ = V2TU0, (3.1)

Uo_0_ + v0-vT_0 - g0_ _0 - vo_:_Uo_+ Wo_:_Uo_= V ao, (3.2)

120=W0_ -V0_, (3.3)

U0_: + Vr'V0 = 0, (3.4)

where/20 is the leading-order term in the large-R expansion of the streamwise component

of vorticity. In view of (2.16), (2.17) and the requirement that the spanwise varying part of



the baseflow remainconfinedto theshearlayer,(3.1)-(3.4)mustbesolvedsubjectto

{Uo, Y0, w0, Y2o-Wo_}=0

{Uo, Vo, Wo_, _o}-+ {u_, vo(+), o, o}

for wall-bounded flows,

at y=O }_a_ y --+ +oc

(3.5)

{Uo, Vo, Woy, _2o} --+ {(U} + 1) 1/2, V(+), O, O} as y --+ 4-oo, (3.6)

for unbounded flows, and, in either case, the solution must be periodic in z with period

2_/_.

In order to provide sufficient numerical resolution, the physical plane (x_, y, z) is mapped

into a computational plane (_, 7, _) using the coordinate transformations

x2 = _ - _0 y = 0(_)g(?_) -_-¢(_), z _--_-1_ (3.7)

where _0 _- L./RS. is the scaled distance to the virtual origin of the shear flow, 6 = v/--(/U_

accounts for viscous spreading, g is used to concentrate grid points near the dividing stream

surface and _ allows for an arbitrary displacement of that surface. The specific forms of g

and _ used in the computations are given in §5. For now, it suffices to note that g(0) = 0 and

g(-t-co) = -t-co. Substituting (3.7) into (3.1)-(3.3) and introducing the rescaled dependent

variables

Uo=UeU, Vo=O-1V+y_Uo, Wo=i3W, t'-2o=/3tg-lI2-y_Uoz, (3.8)

yields, after some manipulation,

1 + 3# U2
DU = 2_UU¢ + 2 - It' (3.9)

1-#D_ = _U_2_ - (UiV_ + U,TW_ - 2(,_og + ,%)UUI + --_--Un¢, (3.10)



where

1W

1+# U 11/:,

(3.11)

=0, (3.12)

D= O ( 0 V)+/3-20 (0 _W) (3.13)

# _= 02U-' is the pressure-gradient parameter, _ - 8_3 is the spanwise-wavenumber parame-

ter, and _0 -= 83U_ 8" and _¢ = 83U_#/' account for curvature effects associated with the

displacement thickness and dividing stream surface, respectively.

Since (3.9)-(3.12) are parabolic in _, the base flow can be computed with a marching

procedure starting at the streamwise position _ = _0. The solution is advanced in _ using a

combination of interpolation and finite-difference formulas,

(3.14)

1)= _)f - 2¢f _+ _ f ] +O(A_2), (3.15)J_ f_ (c/+ _-A_, r/, ¢)= A_C-I [(_. + 1 i+1

which reproduce most of the familiar second-order accurate explicit and implicit schemes

with appropriate choice of the parameter _. In particular, a semi-implicit Crank-Nicolson

scheme is obtained by setting _ = ½ and a strongly implicit three-point-backward scheme

results when v = 1. All the computations in the present investigation were done with e = 1.

The coupled set of nonlinear equations that determine {Ui+I,V i+1, W i÷1, j_i+1} are

linearized using a Newton-Raphson procedure,

U i+_,n+l = U i+_''_ + 6U,

V/+_,,_+I = Vi+_, ,_ + 164_,_ + 32_+_6 _¢,
9'

(3.16)

(3.17)

I0



]

Wi+_,n+ 1 = Wi+_,n + _¢- _P,,

_?i+_,n+l = f2i+_,n + (fY2,

(3.1s)

(3.19)

where the superscript n indicates the iteration number and, following Rubin et al. (1977),

corrections to the velocity components in the transverse plane are expressed in terms of a

velocity potential _ and a stream function _P. Introducing (3.14)-(3.19) into (3.9)-(3.12)

and linearizing about {_U, _, _P, _S?} = 0 gives

A_

• 2_ + 1 .i+_Ui+_'_
zx_(m'+_ _S#_ ) an = r_ _+_, (3.21)

+ = (3.22)

A{L i+_ _ _ = F _i+_, (3.23)

where

0(0)L - +/_2 _-_' (3.24)

and the forcing functions FU, FI2, FO and F_ are given in appendix A. The components

of the transverse velocity, V i+` and W i+`, in (3.20) and (3.21) have been lagged in the

iteration (i.e. the 6_ and 60 terms have been omitted) so that these equations decouple

from (3.22) and (3.23). This allows an updated result for U i+e to be computed from (3.20)

prior to solving (3.21)-(3.23). Consequently, the (_U terms in (3.21) and (3.23) have been

omitted. The _X? term in (3.22) has been retained because solving (3.21) and (3.22) as a

coupled system greatly improves the convergence of the Newton-Raphson procedure for wall-

bounded flows (Briley & McDonald 1984). In view of these considerations, the superscript n
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has been dropped with the understanding that the latest iterates are used to evaluate terms

at _ = _i+_.

Substituting (3.16)-(3.19) into (3.8) and the result together with (3.7) into the boundary

conditions (3.5) and (3.6) shows that (3.20)-(3.23) must be solved subject to

{U, V, W, gt/2-Wv} =0 at r/--0
(3.25a)

{U, V, W,, f2}--+ {1, V (+), 0, 0} as 77-++cx)

and

and

(3.2Sb)

{5U, _,¢, _i_, M2} --+ 0 as r1 -+ =t=_, (3.26b)

for unbounded flows, and, in either case, {U, V, W,/2} and {SU, _45, (f_, (f/2} must be peri-

odic in _ with period 2n. The functions V(±)(_, 7?) appearing in these equations denote the

rescaled normal-velocity components induced by the displacement thickness and are deter-

mined as part of the solution to (3.20)-(3.23) (see appendix A).

In view of the spanwise periodicity of the mean flow, the dependent variables in (3.20)-

(3.23) are approximated by truncated Fourier series of the form

+M

1f(_*, rl, () _ 7 _ f,_ ((i, r/)eim¢ (3.27)
m=-M

where

fm --=- /e-imCd( • (3.28)
7"1:

12



Derivatives in the normal direction are approximated with second-order-accurate central

differences so,

= = (f_,,j+l ) + ,, 5A_7 - f_,j-1 0(A_72) • (3.29)

fnnm,j = fvnm (_i, r/j) = Ar/-z(f_,/+l - 2f_,j + f_,j-1) + O(Ar/2), (3.30)

where r/j = jar/. By introducing these approximations into (3.20)-(3.23), one obtains a

system of algebraic equations that are expressed in matrix form as

BDjSUj_I + DUjSUj + ADjSUj+I = FU_ +_, (3.31)

BDjSf)j_I + DJ'-)jdY)j + ADjSI2j+I = FY2_ +_, (3.32)

BLj5 _j-1 "[- DLj5 _i + ALj5 qrj+_ + A_Sf2j = F $(+_ (3.33)

BLjS_j_I + DLjS_j + ALjSq_j+_ = F_} +_, (3.34)

where 5Uj =_ {SU,_,j), FU i =_ {FUm,j},... are column vectors of length N = 2M + 1 and

the non-zero elements of the order-N band matrices, BDj, DUj, DY2j, ADj, BLj, DLj

and ALj, are given in appendix A.

The LAPACK subroutine CGBSV is used to solve (3.31)-(3.34) subject to the boundary

conditions obtained by introducing (3.27) and (3.29) into (3.25b) or (3.26b) (see appendix A).

As mentioned above, (3.31) is solved first so that an updated result for U/m+_can be computed

from (3.16) and used in the remaining equations. Equation (3.34) is solved next. For wall-

bounded flows, this provides the result for 5 q_needed to evaluate the 5 _ boundary conditions

and so enables the solution of the coupled system (3.32) and (3.33). For unbounded flows,

the _ • boundary conditions do not couple (3.32) to (3.33) so these equations can be solved

seriatum. Updated results for V/+/, W/+; and _2_+; are then computed from (3.17)-(3.19)

13



andthe solutionprocedureis repeated until the corrections {6U, 64_, 6 _, 6_} become less

than a preset tolerance.

4. Unsteady perturbation

The rescated equation that governs the shape function i6 is obtained by substituting the

coordinate transformation (3.7) together with the rescaled variables (3.8) into (2.15) to get

/_-_/ (_)_+_-_- S_-_ =o, /4.,_
where & - _?(_and _ __ c/Ue are the rescaled streamwise wavenumber and phase speed,

respectively. In view of (2.16) and (2.17), (4.1) must be solved subject to

i6_=0 at 7/=0 , i5_0 as r/--++oe, (4.2)

for wall-bounded flows, or

_r unbounded flows.

i5 --+ 0 as r/-+ -I-oo, (4.3)

Since interest here is in disturbances that remain bounded as z --+ -t-oc and since the

mean flow is periodic in the spanwise direction, Floquet theory can be used to express the

relevant solutions to (4.1) as a summation of solutions of the form

= i_(rl, ¢l_)e lee, (4.4)

where/3 is periodic in _ with period 2 rr and _ is a real characteristic exponent. Substituting

(4.4) into (4.1), approximating U and p by truncated Fourier series of the form (3.27) and

equating the coefficients of like powers of e i¢ yields

minim+M) 1 1 ]
14



2 }g,2 Um-nnP, n + 2_( n + 9)(m - n)Um-_ = O, (4.5)

for -M _<m _< +M, where

, Ream > 0, (4.6)

and 5m,, denotes the Kronecker delta. It follows from (3.25a), (3.26a), (4.2) and (4.3) that

(4.5) must be solved subject to

pm, = O at 77=0, Pm, + _mg'Pm --+ O as rl-+ +oo, (4.7)

for wall-bounded flows, or

p_, 4- £_g'p,_ -+ 0 as 77-_ +oc, (4.8)

for unbounded flows, where these expressions are obtained by using the exponential behavior

of Pm in the free stream.

Introducing the central-difference approximations (3.29) and (3.30) into (4.5) leads to

a system of algebraic equations that can be written in matrix form as

bjpj_ 1 -k djpj -t- ajpj+ 1 -_ 0, (4.9)

where _Sj - {/Sin,j} is a column vector of length N -- 2M + 1 and bj, dj and aj are band

matrices of order N. Away from the boundaries, the non-zero elements of bj, dj and aj are

given by

Arlgj/' _ 1 1 1 U (4.10),x,72 2 g;
gj gj

/ 2 1

dm,n,j -- |/_2 72\ gj
+ _) (Um-nd - 2_5m,,_) + 2/32(n + "_)(rn - n)Um-n,j, (4.11)

15



2 1
am,n,j - A_fi g}2 (Um-n,j - 2_(_m,n) - bm,n,j, (4.12)

where -M _< m _< +M and max(-M,m- M) _< n _< min(M,m + M). Expressions for

b_,,_,j, dm,,_,j and a,.n,,_,j at the boundaries are obtained from (4.7) or (4.8) by using (3.29)

to approximate the _ derivatives.

For a given base-flow profile U, Strouhal number S and characteristic exponent 9, the

rescaled wavenumber 6 is determined by solving the eigenvalue problem (4.9). This is done

with an iterative method similar to that used by Hughes (1972) to solve the Orr-Sommerfeld

equation. The method is most easily applied when (4.9) is rewritten as

Aa_ =0, (4.13)

where Xm+Nj : Pm,j and the non-zero elements of A are given by

Am+Nj, n+Nj-N = bm,n,j, Am+Nj, n+Nj = dm,n,j, Am+Nd, n+Nj+N = a_,n,j. (4.14)

A normalization condition, xk = 1 at k = k,, is imposed on x and the k,-th equation in

(4.13) is relaxed by allowing

Ak,,kzk = A _ O. (4.15)
k

Equation (4.13) is then recast as an inhomogeneous problem by moving the terms involving

xk, to the right-hand side and replacing the k,-th equation with the identity xk. = 1. This

yields

Boc = f, (4.16)

where

Bk,t -- 6k.,16k,k. + (1 - 6k.,t)(1 - 6k,k.)Ak,l, fk -- _k,k. -- (1 -- 6k,k.)Ak,k.. (4.17)

16



Givenanestimatefor &, • isdeterminedbysolvingthesparselinearsystem(4.16)with the

LAPACKsubroutineCGBSV.Theeigenvalue& is then foundby locatingthe zerosof A

using Newton's method.

5. Results and discussion

The generalized Rayleigh stability problem defined by (4.1)-(4.4)or equivalently (4.1)-

(4.3) and the spanwise-boundary condition,

_(_, _+ 2_ ]_) = e_=_(_, ¢1_), (:.1)

has a number symmetries with respect to the characteristic exponent _ that are used to sim-

plify the numerical computations. Let {/5(77,_ 17), 6(9) } denote an eigenfunction/eigenvalue

pair determined for a particular value of _, it then follows from (5.1) that there exists an

infinite sequence of eigenpairs {/5(r?, _]_ + k), &(_ + k)} such that

/_(r], (I7 + k) =/5(r/, _17) and &(9 + k) = &('_), (5.2)

where k = 0, 4-1,-t-2, .... If the base-flow profile U is an even function of _ as it will now be

assumed, there also exists an eigenpair {iS(r/, _] - _), &(-_)} such that

:5(r/,-_t - 7) = ih(r/,_17) and _(-_) = _i(_). (5.3)

Combining this result with (5.2) leads to

_(_, -(I 1- _) = _(_, (I 9) and _(1 - 9) = _(_)- (5.4)

Therefore, only solutions for _ in the range 0 to ½ need be computed since solutions outside

this range can be easily obtained from (5.2)-(5.4).
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The_symmetriesof thesolutionsto thegeneralizedRayleighstability problemarealso

of interest.Let the eigenfunction/_(r/,(I 7) beexpressedas

P(m(19) = _o(m(19) +Po(_,¢J_), (5.5)

where/_o and/Se are odd and even functions of (, respectively. Then, since U is an even func-

tion of (,/3o and/Se satisfy (4.1)-(4.3) independently but are coupled through the spanwise-

boundary condition (5.1). This coupling becomes clear when (5.5) is used to rewrite (5.1)

as

/_o(Zl,( + 2 7r ]_) = cos(2 _r_)ifo(r/, ([ _) + i sin(2 7r_)/Se(_, ( [_), (5.6a)

and

_(W,(+ 27r I_ ) = isin(27_)_o(W, (I _) + cos(2_r_)9_(r/,(I _ ). (5.6b)

It follows that the coupling terms in (5.6) drop out whenever _ = ½k. /_o and/_e are then

independent solutions to the generalized Rayleigh stability problem which (together with

their corresponding eigenvalues) are termed odd- and even-mode solutions.

The numerical computations discussed below are for wall-bounded flows so the func-

tion ¢(_) introduced in (3.7) is identically zero. The stretching function g(r/) used in the

computations is given as

("A_sinh Arl iB) tanh(CArlsinhArl_ (5.7)9 = \ _nhA'A---_ + sinh AAr / ]'

where A, B, and C are real constants. Typical values for these constants are A _ 5.5 ×

10-6At/-1, B = --0.4 and C = 10 when the computation is done off the real axis and

A _ 5.5 × 10-6At/-1, B = 0 and C = oo when it is done on the real axis.

Figure 1 is a comparison of the scaled growth rate -Oai/a 4 predicated by the long-

wavelength solution developed in GW (and extended in appendix B) to that determined
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Figure 1: Scaled growth rate vs. scaled Strouhal number for U given by (5.8), O_/a - 1

1 and various values of a. Solid lines, exact numerical solution; dashed lines, long-9=7
wavelength asymptotic solution. (a) odd mode; (b) even mode.
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from a correspondingnumericalsolutionto the generalizedRayleighstability problemfor

theanalyticbase-flowprofile

U = Us(g) - a3ge -g3/sa3 cos_', (5.8)

where 0 < a <:< 1 is a scale factor and Us is the Blasius profile determined by

U'_-VaU_=O and ½UB+V_=0, (5.9)

with Us(0) = VB(0) = 0 and UB(oo) = 1. The computations were performed with the grid

parameters At/= 0.001, J = 1500 and N = 27. The curves are plotted for both odd- and

1 At the largest value of a, the exact and asymptotic resultseven-mode solutions at _ = 3"

appear quite different. The exact solutions show a relatively fast growing odd mode and

a weakly unstable even mode whereas the asymptotic results predict a completely damped

odd mode and a rapidly growing even mode. However, this disparity diminishes and the

exact solutions approach their respective asymptotes as a --+ 0.

Figure 2 is a plot of the scaled growth rate --OO_i/a 4 as a function of the characteristic

exponent _ for the analytic base-flow profile (5.8). The curves are plotted for a scaled

Strouhal number 8S/a2Ue = 0.06 which is near the peak in the asymptotic growth rate of

the even mode at _ = ½. Also shown are the growth rates predicted by the long-wavelength

solutions (B 46) and (B 47) which have been evaluated with a = 0.1. The results plotted

in parts a and b of the figure correspond to solutions that become, respectively, odd and

1 As noted above, the odd and even mode designationseven functions of _ when q = 3"

1 Indeed, these designations change as _ is decreased from ½ to 0,apply only when q = _k.

i.e. the solution that corresponds to an odd mode at _ = ½ becomes an even function of

when _ -- 0 and vice versa for the solution that corresponds to an even mode at _ = ½.
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As in figure1, the exactand asymptoticsolutionsin figure2 appearquite differentat the

largestvalueof a but come into agreement as a decreases. It is interesting to note that the

1 but is unstable whensolution for a = 0.2 shown in figure 2a is damped at _ = 0 and

is near 0.35. This points out the need for investigating more than just the fundamental

and subharmonic solutions to the generalized Rayleigh stability problem. Figure 2 also

shows that the effect of the streamwise-vortex structure on the instability waves becomes

concentrated near q = 1 as a becomes small which is consistent with the conclusions in GW.

This means that, once a becomes sufficiently small, the base flow is inviscidly unstable only

to subharmonic disturbances.

Figures 1 and 2 are plotted for a scaled spanwise wavenumber _13/a = ½. In order to

demonstrate the effect of this parameter on the linear-stability results, the neutral (or zero-

growth) values of the scaled Strouhal number OS/a2Ue predicted by the long-wavelength

solution are plotted against 8_3/a in figure 3 for both odd- and even-mode solutions at

1 The figure shows that there are multiple ranges of 0/3/a over which the profile (5.8)q=_.

is inviscidly unstable. However, each range is finite so above a certain value of Oj3/a (5.8)

becomes inviscidly stable even though it remains inflexional over a portion of the spanwise

domain. This is consistent with the experimental observations of Hamilton & Abernathy

(1994) who investigated the conditions under which transition to turbulence can be caused

by introducing streamwise vortices into an otherwise two-dimensional, non-transitional shear

flow. Figure 3 suggests that growing solutions exist when Oj3/a = 0. This result must be

disregarded because the analysis of GW shows that the long-wavelength asymptotic solution

breaks down as/3 --+ 0 with a > 0 held constant. In order to show that the above conclusions

apply to other base-flow profiles, a plot of the neutral Strouhal number versus the spanwise

22



0.36
(a)

OS/o_U_

0.27

0.18

0,09

0.36

0.25

stable

0 0 ' , '.0.5 0.75 1 0

0/3/_

(b)

0.27

OS/o2U_ 0.18

stable

eZ/_

o. 5 1:0

Figure 3: Scaled neutral Strouhal number vs. scaled spanwise wavenumber for the long-

wavelength asymptotic solution with U given by (5.8) and _ = ½. (a) odd mode; (b) even
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wavenumber is shown in figure 4 for the base-flow profile derived in GW.

The time needed to compute curves corresponding to figure 3 for the exact solutions

to the generalized Rayleigh equation would be prohibitive. However, the results in figures 1

and 2 suggest that, at small values of a, qualitatively similar curves would be obtained.

It is unlikely that this similarity would persist as a increases but it is interesting to note

that, in their numerical investigation of the secondary instability of Ghrtler vortices, Li &

Malik (1995) found that the relative growth rates of the odd and even modes are strongly

influenced by the Ghrtler-vortex wavelength (i.e. the spanwise wavelength of the base flow).

The influence of non-parallel-flow effects is demonstrated by computing the local sta-

bility characteristics of a base-flow profile U that satisfies the boundary-region equations

(3.9)-(3.12). The computation is done for a wall-bounded flow with Ue = 1 and

u = uB, = VB +  2UBH , W = -UBHg, 9 = -  2UBH ¢, (5.10)

at _ = _0 _ 1, where UB and VB satisfy (5.9), _ = v_, and the function H(77, _) is given as

H = f-_4UsU_ sin _', (5.11)

with fib --- U_(0). The form of the 'initial' condition (5.10) has been chosen so that U, V,

and W satisfy the equation obtained by eliminating the U_ terms between (3.9) and (3.12).

Equations (3.9)-(3.12) are solved subject to (3.25) and (5.10) using the method described in

§3 with /k_ = 0.001,/k_ = 0.005, J = 900 and N = 17.

Figure 5 shows lines of constant streamwise velocity U in the g-_ plane at various

streamwise stations. The contours at _ = 1 are not shown but, in view of (5.10), they

would be straight lines parallel to the _ axis. The contours in parts a-e of figure 5 reveal

a rapid departure from the initial two-dimensional state as the distortion in U produced
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by the imposedcrossflow growswith increasing_. This type of disturbancegrowth is

similarto thealgebraicgrowthproposedbyEllingsen&:Palm(1975),Hultgren& Gustavsson

(1981)and Landahl (1990)as analternativeor 'bypass'transitionmechanism.However,

only the base-flowdistortionundergoesthis type of growthin the presentstudy andthe

follow-onsecondaryinstability (discussedbelow)exhibitsthemoreconventionalexponential

growth.Thewavyappearanceofthecontoursin figure5issimilarthat observedin theearly

stagesof GSrtler-vortex development (Swearingen &: Blackwelder 1987). The 'mushroom-

like' structures characteristic of the later stages of that development do not appear in figure 5

because the vortex structure shown there is not sustained by wall-curvature effects. The

growth of the U distortion in the present study is eventually reversed by viscous-diffusion

effects and the base flow tends towards its two-dimensional undisturbed state as _ becomes

large (cf. figure 5]').

Figure 5 also shows the location of the inflection points in the U-g plane, i.e. the points

where Ugg = 0. Wundrow &: Goldstein (1994) showed that the connection between the in-

flexions in U and the stability of the base flow is much more complicated for a transversely

sheared base flow of the kind being considered here than for a plane flow for which Rayleigh's

inflexion-point theorem applies. Nevertheless the inflexions in U do indicate a redistribu-

tion in momentum produced by the streamwise-vortex structure that does play a role in

determining the local stability of the flow.

Figure 6 is a plot of the local instability-wave growth rate -_ai against the local Strouhal

number _S/U_ for the base-flow profile U shown in figure 5. Growth rate curves are shown

for odd-fundamental (_ = 0, odd-mode) and even-subharmonic (_ = ½, even-mode) solu-

tions. Curves for even-fundamental and odd-subharmonic solutions are not shown since only
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damped forms of these solutions were found. It should be noted that the shooting method

used here does not determine all the eigenvalues of the generalized Rayleigh stability problem

and a global method must be applied to show that there are no unstable even-fundamental

or odd-subharmonic solutions. In figure 6a, only the even-subharmonic solution is shown be-

cause the odd-fundamental solution is damped at this streamwise station. This suggests that

at short distances (on the x2 scale) downstream of the point where the cross flow is introduced

the linear instability of the flow is dominated by a subharmonic rather than a fundamental

solution. This is also the case in the long-wavelength analysis considered in GW. Further

downstream, as the U distortion becomes larger, the odd-fundamental solution becomes

unstable and soon exhibits a peak growth rate larger than that of the even-subharmonic

solution. The growth rates of both solutions continue to increase until _ _ 1.3 after which

point they decrease with increasing _. It is interesting to note that the streamwise position

of peak growth precedes the position were the U distortion is a maximum. This behavior is

also evident in the long-wavelength asymptotic solution developed by GW.

Figures 5 and 6 show that the imposed cross flow (5.10) produces a streamwise region in

which the boundary layer is inviscidly unstable. In order to show that this region of instability

can significantly affect the boundary-layer development, an estimate of its streamwise extent

is made using the flow parameters reported in Swearingen _ Blackwelder (1987). In their

experimental investigation of the evolution of GSrtler vortices, Swearingen _z Blackwelder

introduced a small-amplitude acoustic disturbance 60 cm downstream of the leading edge

of a concave plate and observed vortex breakdown leading to laminar-turbulent transition

at downstream distances between 100 and 110 cm. Taking L, = 60 cm and using _0 _-_

L,/RS, = 1 together with (2.6) and (3.7), the dimensional distance from the leading edge
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in the presentinvestigationis

x, + L, = RS,_ = 60_ cm.

Therefore, since _ ranges between 1.1 and 1.8 in figures 5 and 6, the distance over which the

imposed cross flow (5.10) destabilizes the boundary layer is the same as the distance over

which the secondary instability of GSrtler vortices leads to laminar-turbulent transition in

the Swearingen _z Blackwelder (1987) experiment.

The ability of a given streamwise-vortex structure to significantly affect the development

of an otherwise two-dimensional shear flow will, of course, depend on the vortex strength.

The strength of the streamwise-vortex structure can be characterized by its circulation,

= --- ½(1 - dg, (5.12)F - _ J0 J0 f20dydz 2_ V + tt)gU (=0

where use has been made of (3.3), (3.5), (3.7) and (3.8). The non-dimensional circulation

(or vortex Reynolds number) F of the imposed cross flow (5.10) is approximately 9 - well

within the range of vortex strength considered in the experimental investigation of Hamilton

_: Abernathy (1994). Vortex structures of lesser strength were also found to destabilize the

boundary layer but the streamwise distance over which this occured tended to be smaller.

Concentrating the imposed cross flow near the wall was found to reduce the streamwise

distance needed to achieve an inflexional U profile but again the resulting vortex structures

tended to damp out sooner. Changing the spanwise wavelength of the vortex structure was

found to alter the linear stability characteristics however further investigation is need to

verify if behavior such as that shown in figures 3 and 4 occurs in the order-one wavelength

case.
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Theresultspresentedhereshowthat the introductionof evena veryweakstreamwise-

vortexstructure into anotherwisetwo-dimensionalboundarylayercan leadto the ampli-

fication of certainthree-dimensionaldisturbancesthrougha kind of parametric-resonance

or secondary-instabilitymechanism.Theamplificationratesof thesesecondaryinstabilities

arestronglydependenton their spanwisewavelengthaswellasthe strengthandspanwise

wavelengthof the streamwise-vortexstructure. Nevertheless,at sufficientlyhighReynolds

numbers,thesecondaryinstabilitiescangrowat aratemuchfasterthanthat of theTollmien-

Schlichtingwaveswhichwouldotherwisedominatethe initial stagesof laminar-turbulent

transition. Viscouseffectseventuallydampout the base-flowdistortionandconsequently

anyinstabilitywaveamplifiedby it. However,thedampingprocessoccursovertherelatively

long x2 scale so an initially linear instability wave can easily become nonlinear before this

process is complete.

Nonlinear effects will become important first within a thin critical layer located at the

transverse position where the phase speed _ of the instability wave equals the base-flow

velocity U (once the instability-wave amplitude and growth rate become sufficiently large

and small, respectively). The unsteady flow outside the critical layer remains essentially

linear but the instability-wave amplitude is then completely determined by the nonlinear

motion inside the critical layer. An analysis of this stage of evolution is given in GW for

the long wavelength limit and in Wundrow & Goldstein (1994) for the order-one wavelength

problem considered here. It is worth noting (as pointed out by Hultgren 1992) that the near-

neutral approximation used in the order-one-wavelength critical-layer analysis will remain

accurate even at frequencies close to the peak growth because the slope of the growth rate

curve between that point and the upper branch is nearly constant (cf. figure 6).
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Appendix A. Coefficients and boundary conditions for (3.31)-(3.34)

In this appendix, expressions are given for the forcing terms, matrix elements and bound-

ary conditions associated with the algebraic equations (3.31)-(3.34). The forcing terms are

defined as

FU=-A_(DU-2_UU_ 1-_3#U2 + #) ,

r 6
F_? = -_ [D_-_v&+eu<v_- _v_w_+ 2(tcog +

gt

F_ - -a_ _U_+-- 7- + -_ _+ _W¢ ,

(A 1)

1-. ]g, u,¢, (A2)

(A 3)

(A4)

where it should be noted that these terms vanish when {U, V, W, Y)} satisfy (3.9)-(3.12). The

non-zero matrix elements are given by

_- A( lvi+_ =6m, A( ( Ar/g_!_ 1,2, (A5)

A_+_.m,,,,+_ ( 2 )DL,,,,,_,j= DDm,n,j+ Z-" , ,_v,__,_,_= -,_,,_/",_ /,,_gt_+ _=_+_2 , (A6)J

A_ 1 Vi+_ A_ ( Ar/g_' _ 1 (A7)---"f " rn-n,jTl : _m,n 1 - -- ,2 '
ALm,,_,] : ADm,n,j + 4At1 gj Ar] 2 2 g_ .J gj

/2¢+1 i+_ I+3#i+_A()U i+_ .-Arci+_Ui+_ (A8)DUm,n,j = DDm,,_j - _---_-e ( + 2 ,_-,_,s '_ _m-,_,j'

Df2,_ ,_,j = DDm,,_,j 2¢ + 1;i+_Ui+_ . (A 9)
' 4¢ "_ m--n,3

where -M _< m _< +M, max(-M,m- M) <_ n _< min(M,m+M), 5m,_ denotes the

Kronecker delta and dependent variables with superscript i + _ are evaluated using (3.14)

and (3.15).
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SettingAt} -- rTm_x/J and introducing (3.27) and (3.29)into (3.25) and (3.26) shows

that, in algebraic form, the normal-boundary conditions read

Um,o = Vm,o = Wm,o = 0,

Um,d -- 26m,0, rnVm,j = O,

Wrn,-I = Win,1 - 2ATlg_m,O,

Wrn,J+l "-- Win,J-l, ff2rn,d --" O, (A 10a)

and

(_Vm,o = (_ _'rn,0 = 0, _irn,-1 = (_m,1, (_ _'m,--1 = (_ _'rn,1 -- 2imAr}g_)54_m,o,

(_Urn,J = _ _m,J = _ J_rn,J -- O, m_ _m,g-I-1 = ?_2_ _m,J-1, (A lob)

for wall-bounded flows, and

Um,+j = 26,_,0(1 ± U_-2) 1/2, mYm,:t:J : O, Wm,:hJ:t=l = Wm,+J_l, _m,+J = O, (A lla)

and

6gm,:i=J = 6 _m,:hJ = (_rn,:t=J = O, m6_m,_J+l = rrt(_qbm,-t-JTl, (A llb)

for unbounded flows. The normalization condition

6450,0 = 0, (A 12)

and, in the case of unbounded flows, the kinematic condition

5_i0,1 = 5_0,_1, (A 13)

must also be imposed on the solution in order to uniquely determine 64_o,j. These conditions

allow the m = 0 component of (3.34) to be solved as an initial-value problem. With 64_0,j

so determined, the normal-velocity components V (+) induced by the displacement thickness

can be found from (3.17).
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By substituting(3.27),(3.29)and (3.30)into (3.18)andthe r]-derivative of (3.17) and

combining the results with (A 10) and (A 11), the following supplemental expressions are

obtained,

vm,-I = Vm,1, (A 14)

6Vm,j+l -- 6Vm,J-1 + fJ(6qSm,J-1 -- 6_m,J) -- fJh'ji(6q_m,J-1 -- 64im,J+l)

-- im#2'+_ h.]6 @,_,y_, ,

_Wm,J -- irnSC_m,j + _fjhjS _m,j-1,

for wall-bounded flows, and

- irn_2i+'h+j6 _rn,iJ::(=l,

6Wm,±J = im6_rn,±j ± l f±jh±J6 @m,±J_l,

for unbounded flows, where

_V-_ ¢_+#2,+_6_¢, 6W-6_- 6_,,

4 4g_:j
f±j _-- ! , and h±j ---- _ , .

Ar]g±j 2g±j _= Arlg±j

(A 15)

(A 16)

(A 17)

(A18)

These expressions are used when computing updated results for V_"+_ and W_,+_ at the 7/

boundaries.

Appendix B. Long-wavelength solution to (4.1) and (4.2)

In this appendix, an asymptotic solution to the generalized Rayleigh stability problem

(4.1) and (4.2) that applies in the limit as _ -_ 0 is constructed. The analysis closely parallels
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that givenin GW but is carriedout here for shape functions i5 having the general Floquet

form (4.4). The relevant wavenumber and phase speed scalings for the long-wavelength limit

are

(8 1)

where 0 < a << 1 is a scale factor,/_ is an order-one real constant and the real quantities mr,

&i, Cr and ci have expansions of the form

(B2)

as a --+ 0.

&," = &,'o + o'&,-t + • • ",

As in GW, the present analysis is restricted to wall-bounded flows that behave like

small perturbations about the Blasius solution. In the streamwise region of interest, the

streamwise velocity of the base flow is then expressed as

U = UB + a4U_, (B 3)

where UB corresponds to the Blasius solution determined by (5.9) and Up is a spanwise-

periodic distortion. Introducing (B 1) into (4.1) and (4.2) leads to

/_¢ (U - a_) 2 O, (84)

and

15g=0 at g=0, 15--+0 as g--++cc, (B5)

where, for convenience, g is treated as an independent variable.

Since much of the analysis in GW carries over directly, only the final results are presented

here. In the inviscid wall layer described by 9 - a-lg = O(1), the base flow is given as

U o/_.O + a 4 (0" t -2 -4'_ (B 6)= - _aBg ) +'",
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whereAs - U_(0) and U(_, (; a) = Up (a_, (; a) = O(1). The shape function 15is given by

= aA +O(a s) (B7a)

and

where A is an arbitrary function of _ that has an expansion in a containing terms up to but

not including order a 4, 79 = _(A¢O/O_ + Ai¢) - &2A, the normal position of the critical

level, gc = a_c, is determined by the condition

u(g , ¢; = (B8)

the + superscript indicates different values for _ <>Oc, a subscript c denotes evaluation at

0 = gc, ¢ is a real function of _ and _ defined as

[_ 0 - _?c - AA_(O 4 - O_).d_,

denotes the Cauchy principal value, and

(B 9)

S Dg.qC -- 4_Bgcl--2-2 (B 10)

is the scaled normal derivative of the base-flow vorticity at the critical level. The constant

¢+ - ¢- is set equal to i rr which corresponds to a logarithmic phase shift of _r across the

linear critical layer.

In order to obtain solutions for i5 of the form (4.4) that are valid for all _, it is necessary

to retain some intermediate terms (which were not needed in the GW analysis) in the main-

boundary-layer and outer-layer solutions. In the main boundary layer described by g = O(1),
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the solutionfor ;5is given,to the requiredorderof accuracy,by

_og _ - (BI1);5 = aA + a 2 (UB - aar) 2 [(1 cr2J£)lgB a(I - a2Kf-.)Z.A] dg +...,

where B is a function of ( that has an expansion in a containing terms up to but not including

order a 4, Z: - _202/0(2 - &2 and I, J and K are the real functions of g determined by

(U, - crSr)2I ' = 1, and [(UB - ac_)2{J, K}']' = (UB - ac_)2{1, I}, (B 12)

with {I, J, J', K, K'} = 0 at g = 0. Matching (B 11) with the wall-layer solution (B 7) shows

that

B _--- ABlCr 1 -[- O'3W, (B 13)

where w is a complex function of _ defined as

I--2/ I -2 -21n a#)-F ilr/i- T_c_] ÷ -w--A_ 3 lim [¢÷_'_-(i7g ÷½.qcg÷gc 1-2 /_Bl_r2(Oc i6"i),

and use has been made of the small-a expansion

(B 14)

.._c _Bl_r __ 0.3(,_BI_Tc 1 --3-4'= - -_AB cr) +'", (B 15)

which is easily obtained from (B 6) and (B 8).

In the outer layer described by # - ag = O(1), the solution for ;5 expands like

;5 = a# + O(aS), (B 16)

where the function/5 of # and _ is determined by the Helmholtz equation,

(B

which must be solved subject to

15= (1 + au2g - _3_4/:2)A, ;5_ = (/Yl/_ - a2u3f-.2) A + a3/)w, at ._ = 0, (B 18a)
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in order for (B 16) to match with the main-boundary-layer solution (B 11) and

/5-+0 as _--+-+-oo (B18b)

in order to satisfy the free-stream boundary condition. The un appearing in (B 18a) are real

constants defined as

ABSrI:{Ul, U2, U3, V4} = { 1 -- aABS.rIoo, J_ - aABSrK L, Jo¢ - aABSrK_, L_), (B 19)

where

Ko¢- lim (K 1 , _3_ 1 -K_g),- gI_9 "_I¢¢g2
g.-.-)._

and

I_- lim(I-I_g), l_-(1-a_'_) -_, (B20)
9--_ oo

!

79J_-Jim(J- _ _-J'_9), J_-2i_(J'-g), (B21)

K'_ - li_(K' '" _-5_g -I_g), (B22)

Loo - [(UB aSr)2i_j_ 1 2 ,- _g - Jo_g - J_]dg. (B 23)

The relevant solutions to (B 17) and (B 18) have the form

+oo

{i5, A} = ½ _ {/_r_e-i"g,A,_}e i(m+#)¢, (B24)

where _ is the real characteristic exponent. It follows from (B 14), (B 17), (B 18) and (B 24)

that

and

= , Re A._ > 0, (B25)

(B26)

breAm-1 + dreAm + a,_A,.,,+x = 0, (B27)
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where

(B28)

(B29)

(B30)

(B31)

and, in order to fix ideas, it has been assumed that Up is proportional to cos C. Equations

(B 25)-(B 27) together with the definition of the scaled Strouhal number,

,__&__ 0 S, ImS=0, (B32)
a2Ue

~ ~

form the eigenvalue problem that determines _ as a function of S, fl and 9-

The small-a behavior of & is determined by using the method of cyclic reduction to

express (B 27) as

-bm_lbmdm+lAm-2 + (dm-ldmdm+x - am-lbmdm+l - dm-lambm+t)Am

- dm-lamam+lAm+2 = 0, (B 33)

and then imposing the normalization condition A0 = 1 so that attention is restricted to

instability waves having the bulk of their energy in the m = 0 mode. Equations (B 28)-

(B 30) together with (B 33) show that A+2 = O(c r3) and therefore that

d-ldodl - a-tbodl - d-t aobt = O(a9), (B 34)

which, to the required level of approximation, is the characteristic equation for (B 27).

The solutions for _ that are of most interest here are those corresponding to instability

waves having spanwise wavelengths nearly twice that of the base flow since it is in this
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parameterrangethat thewavesexhibit their mostrapidgrowth.Substituting

= ½+ o3h, (B35)

into (B 25) and the result into (B 28)-(B 30) yields

(B36)

= 1 3 -2dm km- (_'_+ _,_'-'o)km- ,:,v_k_- o_'_k_ - o3_,,,k_

-- Cr3(2_Tt + 1) (l]l -- l_ml)_2 h + O(6r4), (B37)

am = -aS½w, [k2m+ a2(rn+ ½)]+0(°'6), (B38)

where

_m : [_2 +/_2(m _[_ ½)2] 1/2 , Rekm > 0. (B39)

Then, since _:__ = I¢oand the m = 0 component of (B27) implies do - O(a3), substitution

of (B 36)-(B 38) into (B 34) leads to

1 3 -2 CT/j2 f_3 _r2/j3 _4 Cr3_4 _}] 2[ko - (_1+ _a _0)k0 - - - =

- _ )] +[O'3½0.11(k 2 1 "2 2 [O'3Q.]I ½_O1)/02h]2-.}-O(o'7). (B40)

Substituting (B 1) and (B 2) into (B 39) and the result into (B 40) and equating like powers

of a shows that

(_2r 0 "q- ¼/_2)1/2 : ABCrO (B41a)

and

( ) -'- 1 _ -2 (_h sin _)2] 1121 rtc_° + Im [(TABC_owl cos20) 2 +cosO+c-_s _ _io- 4AB
(B41b)
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where0 - arctan(fl/2&r0) is the obliqueness angle of the instability wave and it follows from

(B9), (B 14)and (B31)that

..- ,.4.,
Setting h -- 0 shows that, apart from differences in notation, (B 41) reproduces the results

given in GW, i.e. their (5.30) and (5.34). In the present analysis, the q- in (B 41b) correspond

to solutions for t5 that are either odd or even functions of _ depending on the particular choice

for r2.

Away from _ = ½, (B 40) reduces to

d_ldodl + 0(6 6) m 0. (B 43)

The solutions to (B 43) that match onto (B 41) as _ -+ ½ are

_o +/_2(_, 1) 2 1/2 1 w7"(I)4
-- = ,'_B_.rO , COS -1"- uci0 -- -_B 'cosOIS) (B44)

and

.".o + ="-",0 , + cos0(") ui0 = 4"_--B" (B45)

By including the next-order corrections to (B 44) and (B 45) and then introducing (B 35),

one can show that, when the minus sign is taken in (B41b), (B41) matches onto (B44) as

h --+ -oo and onto (B45) as h --+ +oo or vice versa when the plus sign is taken in (B41b).

It follows that (B 41), (B 44) and (B 45) can be combined to form a set of (multiplicative)

composite equations that are uniformly valid for 0 _<_ _< 1. These equations read

=(02 ] _ _,n (B 46a)+32( 1)2
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and

cos_t_)+ 7.(1)4

I x (_) _ "to
cos _) _io -" -4AB

I 1 3 2-2
|___o} Im {[_a ABC.oWl cos20] 2 + [/_(_ - _)sin0]2) I/2

G3 \c_o/

(= (i/)2 2_2 ) 1/2tXrO + _ _ 7.(H)-_ t_Bt, rO ,

(B 46b)

(B 47 a)

cos #(m +

,rr7,(II)4
1 _ : (ii) ""tO

cos_(2_)) _io - 4XB

t¢ 7,(1i) "_ 41 1 3 2-2
|_o| Im {[_a z_BCrO_d 1\  - Tgo/

cos20] 2 + [/_(-_- ½)sin0]2} 1/2 , (B47b)

where cr0 and wl are determined from (B 41a) and (B 42), respectively. The results predicted

by (B 46) and (B 47) are easily extended to the range ½ _<q _< 1 by using the relation (5.4).
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