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SUMMARY

This paper presents a survey of the effects of Reynolds number on the low-

speed lift characteristics of wings encountering separated flows at their leading

and side edges, with emphasis on the region near the stall. The influence of

leading-edge profile and Reynolds number on the stall characteristics of two-

dimensional airfoils are reviewed first to provide a basis for evaluating three-

dimensional effects associated with various wing planforms. This is followed by

examples of the effects of Reynolds number and geometry on the lift

characteristics near the stall for a series of three-dimensional wings typical of

those suitable for high-speed aircraft and missiles. Included are examples of

the effects of wing geometry on the onset and spanwise progression of turbulent

reseparation near the leading edge and illustrations of the degree to which

simplified theoretical approaches can be useful in defining the influence of the

various geometric parameters.

Also illustrated is the manner in which the Reynolds number and wing

geometry parameters influence whether the turbulent reseparation near the

leading edge results in a sudden loss of lift, as in the two-dimensional case, or

the formation of a leading-edge vortex with

gentle stall as in the highly swept wing case.

the strong influence of "induced camber"

reseparation.

its increase in lift followed by a

Particular emphasis is placed on

on the development of turbulent

It is believed that the examples selected for this report may be useful in

evaluating viscous flow solutions by the new computational methods based on

the Navier-Stokes equations as well as defining fruitful research areas for the

high-Reynolds-number wind tunnels.
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INTRODUCTION

While the geometric characteristics of wings for high-speed aircraft and missiles

are widely varied, they tend to have a common susceptibility to leading-edge and side-

edge separations which can play an important role with regard to their low speed lift in

the stall region. Because of their speed requirements they often utilize thin wings

having relatively sharp leading and side edges which, of course, tend to promote

Reynolds number dependent boundary-layer separations in the vicinity of these

edges. These edge separations are also influenced by planform through the

aerodynamic induction effects on the pressure gradients in the edge regions. The

planforms used for high speed applications include, for example, the low-aspect-ratio

rectangular planforms often used for missiles, the moderately sweptback moderate-

aspect-ratio wings of transonic aircraft, and the higher swept slender delta type often

applied to supersonic and hypersonic vehicles. These planform variations contribute

a variety of influences on the boundary-layer characteristics leading to separation as

well as influencing the type of overall wingflow produced by the separation. Thus, the

effects of Reynolds number, of primary interest in this paper, are greatly influenced by

these geometric parameters. For example, not only is the onset and spanwise

progression of turbulent reseparation aft of the leading-edge transitional bubble

dependent on these factors, but whether this separation results in a sudden loss of lift

or in the formation of a separation induced edge vortex with its resulting increase in lift

also depends on these factors.

Although the various types of edge separations are well documented in the

literature it is felt that a survey paper tying together the relation between two

dimensional and various three dimensional effects might be found useful. The

purpose of this paper is therefore to review examples from selected experimental

studies that provide parametric illustrations of the interacting effects of wing geometry

and Reynolds number on the lift characteristics in the low speed stall region for wings



encountering the above types of edge separations. Such a review should provide

some assistance in selecting critical viscous flow cases for use in evaluating new

design and analysis methods such as those based on the Navier-Stokes equations as

well as indicating areas needing additional research utilizing the relatively new high

Reynolds number wind tunnels. The experimental data selected and the simplified

prediction methods utilized provide a viscous flow analysis capability sometimes not

easily extracted from available experimental data or from a particular computational

code.

To accomplish the above purpose the paper is divided into sections dealing with

four classes of wing planform. First, a review of the influences of geometry and

Reynolds number on the types of separations encountered in the leading-edge region

and their influence on stalling for a parametric series of two-dimensional airfoils will be

made. This will be followed by two sections illustrating the influences of three-

dimensional effects associated with finite span and leading-edge sweep on turbulent

reseparation in the leading-edge region as well as examples of leading-edge and

side-edge vortex lift. In addition to experimental examples relatively simple theoretical

approaches are used to illustrate the influence of wing planform on induced camber

and its effect on turbulent reseparation and stall.

The final section deals primarily with slender delta planforms having vortex flow

originating at sharp leading-edges. In addition to parametric experimental results

several vortex-flow theories are utilized as a means of isolating various influences

such as the leading-edge vortex trajectory and breakdown on the stall.

It should be noted that the examples used are limited to planar wings and no

discussion of warped wings or flow control devices is included. Throughout the text,

brief mention is made of some of the early research in various areas which might be of

historical interest.
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1. LEADING-EDGE SEPARATION ON AIRFOILS

1.1Early Research

Lanchester (1907) discussed

associated with a leading-edge

the probability of a small pocket of "dead water"

separation on thin airfoils accompanying a small

increase in angle of attack beyond the design condition and a completely separated

region at some higher angle. However, it was not until the early 1930's that research

such as that by Jacobs (1931), Millikan and Klein (1933), and Jones (1933, 1934)

began to clearly identify the role of the boundary layer and Reynolds number on airfoil

stall characteristics. As a result of his research, Jones identified a trailing-edge stall

and two types of leading-edge stall - one associated with a round leading edge and

the other associated with a sharp leading edge.

Research on leading-edge separation began to accelerate in the late 1930's (see

Jacobs and Sherman (1937) for example) due to the interest in thin wings to alleviate

compressibility effects. Probably the earliest proposal of a mechanism for the

formation of a laminar separation bubble was that of von Doenhoff (1938). Systematic

experimental studies of leading-edge separation on airfoils began following World

War II with those of Loftin and Bursnall (1948) and McCullough and Gault (1951)

providing much of the basis for stall classification and a review of this research has

been made by Tani (1964).

1.2Classification of Stall Types

The types of leading-edge separation to be described here will, in general, be

identified by their influence on the airfoil stalling characteristics as classified by

McCullough and Gault (1951) and Gault (1957), but will be limited to symmetrical

airfoils to be consistent with the subsequent review of three-dimensional wing stalling

characteristics.

The three types of leading-edge separations are those leading to (a) thin-airfoil

stall, (b) leading-edge stall, and (c) combined trailing-edge and leading-edge stall,
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and are illustrated in figure 1.1. In the upper portion of the figure sketches of the

various boundary layer separation characteristics (not to scale) are presented for the

three stall classifications and the corresponding lift and stall characteristics are shown

in the lower part. Few details will be included here but will be discussed in connection

with subsequent detailed figures.

The thin-airfoil type of stall is illustrated in part (a) by a thin airfoil having a sharp

leading edge for which laminar separation occurs at the leading edge followed by

turbulent reattachment forming a separation bubble. The separation occurs as soon

as the angle of attack departs from zero and the reattachment point moves rearward

with increasing angle of attack. This expanding "long-type" bubble results in a rather

gentle stall as the reattachment point reaches the trailing-edge region. This type of

stall also occurs on round edge airfoils for certain combinations of leading-edge radius

and Reynolds number.

Part (b) of figure 1.1 illustrates the stall classified as a leading-edge stall which is

characterized by an abrupt loss of a large amount of lift occurring when an expanding

long bubble occurs at a relative high angle-of-attack such that its initial length is very

long. The long bubble is formed after a considerable contraction of the transitional

(short) bubble and in this paper its origin will be termed as the turbulent reseparation

point. Two mechanisms for this type of separation have been established. One is a

bursting of the transitional (short) bubble, for example, by Owen and Klanfer (1953),

Crabtree (1957), Gaster (1966), and Ingen (1975). The other is a turbulent separation

aft of the transitional (short) bubble attachment line, sometimes referred to as

"turbulent reseparation," with research by Wallis (1954), Hurley (1955), Evans and

Mort (1959), and Berg (1981) identifying this type as did studies on three-dimensional

wings by Poll (1983, 1986). Inasmuch as both of the above proposed mechanisms

involves the sudden formation of a long bubble subsequent to the turbulent attachment
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forming the short (transitional) bubble, the term "turbulent reseparation" will be used

herein in relation to this type of long bubble.

The third classification of stall type, illustrated in part (c) of figure 1.1, is the

combined trailing-edge/leading-edge encountered as the leading-edge radius or

Reynolds number increases. This is a result of the leading-edge separation being

delayed until some angle-of-attack higher than that at which trailing-edge separation

has begun. As the trailing-edge separation moves forward with angle of attack, there

is a gradual reduction in the rate of lift growth. With further increases in angle of attack,

the pressure gradient in the leading region becomes sufficient to cause the turbulent

reseparation with its sudden stall.

It should be noted there that a fourth type of stall classified as a trailing-edge stall

which involves essentially no pronounced separation the leading-edge region will

receive no detailed analysis in this paper except to define the upper Reynolds number

limits of the other stalls. The trailing-edge stall is a gradual stall associated with the

forward movement of trailing-edge separation.

1.3 Experimental Results Related to Stall

The purpose of this section is to describe in more detail the primary flow

mechanisms contributing to the various type of airfoil stall illustrated in figure 1.1 by the

use of some selected results of two-dimensional wind tunnel studies of boundary-layer

separation and lift characteristics in the stall region. The first subsection deals with

some effects of airfoils profile while the second presents two examples of Reynolds

number effect.

1.3.1 Effects of profile on separation and stall

Summarized here are some results of an extensive and systematic series of wind

tunnel studies of the boundary-layer separation and stall characteristics for a series of

airfoils tested in the same facility at a Reynolds number of 5.8 x 106 and a Mach

Number of 0.167 with free transition. This research covered a wide angle-of-attack



range and provided complete chordwise measurements of surface pressures and

boundary-layer velocity profiles in regions of the separation bubbles identified by the

liquid-film technique. The airfoils consisted of a sharp edge airfoil (double wedge)

with the data being published by Rose and Altman (1950) and three NACA 6-series

airfoils (64A006, 63-009, and 631-012) published by McCollough and Gault (1948,

1949) and by Gault (1949).

Using the data from the above studies figure 1.2 has been prepared to illustrate the

effect of angle of attack on the transitional (short) bubble turbulent reattachment

location, the angle of attack and chordwise location for turbulent reseparation, and the

variation with angle of attack of the location of the long-bubble reattachment. To

illustrate the influence of these effects on airfoil lift and stall characteristics figure, 1.3

presents the lift versus angle-of-attack data for the same airfoils obtained from the

above references. These two figures will be used together to describe the effects of

profile on separation and stall.

Turning to figure 1.2 the turbulent reattachment point, measured from leading edge

and normalized by the airfoil chord is shown in the bottom part of the figure at an

expanded scale to accurately cover the forward 2-percent of the airfoil chord and

provide details of the forward movement of transitional-bubble reattachment point with

increasing angle of attack. The vertical lines of arrows illustrate the rather sudden

transition from the contracted transitional bubble to the long bubble associated with

turbulent reseparation shown in the upper part of the figure. The upper part of the

figure covers the complete chord (note scale change) to allow total coverage of the

rearward travel of the subsequent long-bubble reattachment point with angle of attack.

Regarding the data for the double wedge (4.26-percent thick) it should be noted

that at angles of attack of 1° and 2° a separated flow region was observed, but no

accurate determination of its extent could be made. Beyond 3°, the long-bubble

reattachment point was reasonably well defined by boundary-layer profiles and
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surface flow studies indicating a rather rapidly expanding long bubble with the

reattachment point reaching the trailing edge at about 7.5 ° angle of attack. Beyond this

angle of attack a thin-airfoil (long-bubble) type of stall occurs and a maximum lift

coefficient of about 0.83 is reached as seen in figure 1.3.

Since the upper surface velocity gradients in the leading-edge region have a

strong influence on the transitional (short) bubble development and the subsequent

turbulent reseparation the airfoil contour in that region is important. With their effects

generally occurring close to the leading-edge the leading-edge radius is often used as

a convenient and fairly successful parameter for correlating leading-edge contour

effects. Therefore, the leading-edge radius will be identified with the airfoils being

discussed and used later as a parameter for a summary correlation.

The data for the round leading-edge NACA 64A006 and 63-009 airfoils, which

have leading-edge radii of 0.26 and 0.63-percent chord respectively, provide excellent

examples of the transition from the short (transitional) bubble at low angles of attack to

the long bubble at higher angles of attack. This is followed by a sudden turbulent

reseparation and conversion to a long bubble with the reattachment point moving aft

with further increases in angle of attack at a rate somewhat similar to that observed for

the sharp-edge airfoil. The bubbles are located very near the leading edge and have

negligible effect on the airfoil characteristics.

For the 64A006 the turbulent reseparation onset occurs at a sufficiently low angle

of attack that the initial length of the resulting long-type bubble is relatively short, and

only a very slight "jog" in the lift curve occurs at an angle of attack of 5 °. As seen in

figure 1.3 this is not sufficient to cause stalling and is followed by an expanding long

bubble and a thin-airfoil type of stall similar to that for the double-wedge airfoil but

generating a slightly higher maximum lift coefficient of about 0.90. More information

on the slight "jog" that can precede the thin-airfoil type of stall and the leading-edge

type of stall can be found in the paper by McCullough (1955) dealing with a series of
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symmetrical NACA 4-digit airfoils. The airfoils were relatively thin having thickness

ratios of 6 percent, 7 percent, 7.5 percent, and 8 percent and the angles-of-attack were

varied in small increments in the region of the jog and the stall. Briefly, the results

illustrate that as the thickness ratio and leading-edge radius increases the jog, or

discontinuity associated with turbulent reseparation, occurs at increasing lift coefficient

and becomes more pronounced until it produces a leading-edge type of stall as

illustrated by the NACA 63-009 airfoil in figure 1.3.

Retuming to figure 1.3 it is seen that for the 63-009 airfoil the larger leading-edge

radius relative to the 64A006 airfoil reduces the adverse pressure gradient and

turbulent reseparation is delayed to about 8.5 ° resulting in a higher maximum lift

coefficient of about 1.15. However, the delay in turbulent reseparation results in a

more aft turbulent reattachment with the longer bubble resulting in a sudden stall of the

leading-edge type followed by some lift recovery.

The data for the 631-012 airfoil, with its large leading-edge radius of 1.09 illustrates

a case where turbulent reseparation is delayed to about 13 ° resulting in an even

higher maximum lift coefficient of 1.5, but the resulting long bubble does not reattach

and a very large and sudden loss of lift occurs as seen in figure 1.3. Careful

inspection of the lift indicated some trailing-edge separation just prior to the sudden

leading-edge stall, thus placing the stall in the combined trailing-edge/leading-edge

category of figure 1.1.

It should be mentioned here that for this moderate Reynolds number of 5.8 x 106

the transition from a combined trailing-edge/leading-edge type of stall to a pure

trailing-edge type does not occur until thickness ratios well beyond those of interest to

this paper are reached. However, as will be shown in the following sections this

situation changes at higher Reynolds numbers.
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1.3.2. Influence of Reynolds number on stall

The above results, illustrating the transition of stall types from thin airfoil to leading

edge to the combined trailing edge/leading edge as the airfoil thickness and leading-

edge radius increases, were for a constant Reynolds of 5.8 x 106. Similar transitions

can also occur with increasing Reynolds number for a given airfoil and examples are

presented in figure 1.4. Since there appears to be no data available for a single 6-

series airfoil that includes all of the types of stall two 9-percent thick 6-series airfoils

which differ only slightly in leading-edge radius will be used. These are the 66-009

having a leading-edge radius of 0.53-percent chord and the 64-009 having radius of

0.58-percent from the studies by Abbott et. al., (1945) and Loftin and Bursnall (1948)

respectively.

The data for the 66-009 airfoil is shown in part (a) and clearly illustrates the change

from a thin-airfoil type of stall at a Reynolds number of 3 x 106 to a leading-edge type

of stall for the Reynolds numbers of 6 x 106. Between the Reynolds number of 3 x 106

and 6 x 106, the transition to turbulent flow apparently moves forward sufficiently to

induce turbulent reattachment close to the leading edge resulting in a short bubble

followed, at an angle of attack of 10 °, by a turbulent reseparation. Since the

separation occurs at a relative high angle of attack, the bubble reattachment is

sufficiently far aft to cause a sudden leading-edge type of stall. Although not shown,

the resulting leading-edge stall is still evident at the highest test Reynolds number of 9

x 106 (see Abbott et. al., 1945). It should be noted that for these relatively sharp edged

airfoils any combined trailing-edge/leading-edge stall is probably confined to a rather

short range of Reynolds number if it occurs at all.

The high Reynolds number data in figure 1.4 (b) obtained with the NACA 64-009

airfoil which has a leading-edge radius, r/c, of 0.58-percent illustrates the transition

from a leading-edge to a trailing-edge type of stall. For a Reynolds number of 9 x 106,

the stall is of the leading-edge type as for the NACA 66-009. At some Reynolds
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number between 9 x 106 and 15 x 106, transition apparently occurs ahead of the

theoretical laminar separation point, thereby suppressing leading-edge separation,

and the stall becomes of the trailing-edge type.

For both of these airfoils, there is some evidence of a possible combined trailing

and leading-edge stall. However, for these relatively thin airfoils, trailing-edge

separation of sufficient chord extent to effect the lift does not occur until the angle of

attack has almost reached the condition for leading-edge stall. In this regard,

evidence will be seen in the next section that for the airfoils with larger values of

leading-edge radius the stall appears to the shift directly from the thin-airfoil type to the

combined trailing-edge/leading-edge type. This appears to be associated with the

forward movement of the transition to turbulent flow to the region ahead of the

theoretical laminar separation point, thereby delaying leading-edge separation until

trailing-edge separation has begun.

1.4Stall Boundaries

As a convenient way to summarize the influence of Reynolds number and airfoil

leading-edge contour on the type of stall experienced by a large number of

symmetrical NACA 6-series airfoils, a set of stall boundaries has been developed and

is presented in figure 1.5. This set of stall boundaries is similar to that developed

earlier by Gault (1957) for a large number of symmetrical and cambered airfoils

covering a wide range of thickness ratios. In an attempt to include thickness

distribution and camber into one velocity gradient parameter Gault selected, by trial

correlations, an upper surface ordinate (measured from the chord line) near the

leading-edge. Although the resulting correlation was fairly successful he pointed out

that the parameter has no apparent physical significance and that the correlation

seemed fortuitous. Due to this and the fact that the present study is limited to

uncambered airfoils the more physically significant, and often used, leading-edge

radius, which defines the surface curvature and therefore, is related to the upper
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surface velocity gradients is used in the present set of stall boundaries. Since, as

shown in figure 1.2, the turbulent reseparation generally occurs ahead of the one-half

percent chord station for the types of airfoils of interest here, the leading-edge radius

appears particularly suitable.

Turning now to the stall boundaries of figure 1.5 it is seen that the data used to

establish the boundaries is limited to numerous symmetrical airfoils of the NACA 6

series tested over a wide range of Reynolds numbers in the Langley two-dimensional

Low-Turbulence Pressure Tunnel. The results are for the transition free condition and

based on data in the stall region reported by Abbott et. al. (1945), Loftin (1947), Loftin

and Bursnall (1948), and Loftin and Smith (1949). The correlation covers a chord

Reynolds number range of 7 x 105 to 3 x 107 and a leading edge radius, r/c, range

from 0.24-percent to 1.56-percent.

The combinations of Reynolds numbers and leading-edge radii that define the

approximate boundaries (cross hatched bands) between the various types of stall

have been established from the above data references using symbol types to identify

the type of stall for each test Reynolds number. Also shown by the dashed lines are

the vertical cut and the two horizontal cuts through the boundaries that are related to

figures 1.3 and 1.4. The boundaries appear to be reasonably well established but it

must be recognized that boundaries for other airfoil series will probably vary

somewhat, in particular the one defining the onset of trailing-edge stall due to the

influence of trailing-edge closure angle. However, for the lower thickness range of

interest in this paper it may not be too significant.

Finally, the correlation illustrates that in the high Reynolds number range the

boundaries are converging rather rapidly indicating the possibility that at some

Reynolds number above 20 x 107 there may only be two types of stall; the thin-airfoil

type and the trailing-edge type. Both, of course, produce a gradual variation of lift in

the stall region, the first produced by the gradual aft expansion of the long bubble and
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the second associated with a gradual

separation.

1.5Airfoil Maximum Lift Coefficients

forward expansion of the trailing edge

The variation of the maximum lift coefficient of selected 6-series airfoils with

Reynolds number is summarized in figure 1.6. Again the data are limited to NACA 6-

series airfoils tested in the Langley two-dimensional Low-Turbulence Pressure Tunnel

and the maximum lift coefficients, for free transition are plotted against the chord

Reynolds number covering a range from 0.7 x 106 to 3 x 107 at Mach numbers no

greater than 0.15. Shown for reference are the thin-airfoil and the trailing-edge stall

regions taken from the stall boundaries of figure 1.5. For the purpose of this section

the leading-edge stall region and the trailing-edge/leading-edge stall region shown in

figure 1.5 are combined in figure 1.6 and fall, of course, between the two boundaries

shown.

As discussed earlier both the thin-airfoil type stall and the trailing-edge type stall

are similar in that the stall is rather gradual with the former associated with the gradual

downstream growth of the separation region and the latter with the gradual upstream

growth. However, there are several well-known differences in the magnitude of the

maximum lift coefficient in these two regions. In the thin-airfoil stall region where the

long separation bubble originates at a rather low angle of attack, the maximum lift

coefficients for this round-edge airfoil series are confined to a rather narrow range from

about 0.8 to about 1.0. In the trailing-edge stall region, which occurs in the high

Reynolds number range, the well known benefit of increasing leading-edge radius on

the maximum lift coefficient is observed. In this high Reynolds Number region

separation near the leading-edge is, of course, suppressed and as the leading-edge

radius increases the adverse pressure gradients decrease and reduce the turbulent

boundary-layer growth and the trailing-edge separation. The other characteristic of

interest is the lack of any appreciable increase in maximum lift with increasing
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Reynolds number in this stall region. In this regard the reader is referred to Loftin and

Bursnall (1948) who discuss a possible regenerative process, involving the mutual

influence of trailing edge separation and leading-edge separation.

It should be pointed out that in the high Reynolds number range where the two

boundaries appear to converge it is possible that the 64-006 airfoil may have

transitioned from a thin-airfoil stall to a trailing-edge stall. However, with both types

experiencing a gradual stall and in the absence of pressure and moment data in the

high Reynolds number range, no attempt at clarification will be made.

Turning to the region between the above two stall-type boundaries it is seen that in

this region the maximum lift coefficient is a strong function of both Reynolds number

and airfoil contour with, for this series, the leading-edge radius being the dominant

contour parameter. As mentioned above, this region contains both the pure leading-

edge stall type and the combined trailing-edge/leading-edge stall type. However,

since both types encounter the sudden stall associated with turbulent reseparation (aft

of the transitioned bubble) which is of major importance in the following sections on

three-dimensional wings, the two regions are combined in figure 1.6. It is in this region

that both increasing Reynolds number and increasing leading-edge radius delay the

turbulent reseparation and the accompanying sudden stall to higher angles of attack

thereby increasing the maximum lift coefficient.

Much of the remainder of this paper deals with the manner in which various three-

dimensional induced effects associated with aspect ratio and sweep angle influence

the onset of turbulent reseparation and control the type of wing flow and stalling that

results. However, in general, these studies deal with wings which utilize airfoils other

than the NACA 6-series. Therefore, figures 1.7 and 1.8 present the maximum lift

coefficient variation with Reynolds number for the NACA 0012 and the ONERA "D"

airfoils respectively to provide the two-dimensional baseline data for use in illustrating
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some of the three-dimensional effects involving Reynolds number variations to be

discussed later.

The NACA 0012 data in the low Reynolds number range was obtained in Langley

Two-Dimentional Low-Turbulence Tunnel and published by Loftin and Smith (1949)

while that above a Reynolds number of 2.0 x 106 is from tests in the Langley Low

Turbulence Pressure Tunnel published by Ladson (1988). The Mach number effects

are shown only as an aid in extrapolating the ONERA "D" data as will be discussed

below. The NACA 0012 airfoil, which has a leading-edge radius of 1.58-percent

chord, has a trend with Reynolds number consistent with the 12-percent thick 6-series

airfoils of figure 1.6.

The ONERA "D" r/c = 10.5% airfoil data shown in figure 1.8, published by Erlich

(1969), was obtained by variations in free stream Mach number rather than tunnel

pressure and therefore encounters "shock stall" between a free stream Mach number

of 0.12 and 0.18 which is similar to the constant tunnel pressure (dashed) lines drawn

through the NACA 0012 data of figure 1.7. Based on the NACA 0012 shock free data

the ONERA "D" data is extrapolated (dashed line) to cover the shock free range of the

subsequent three-dimensional data. Although somewhat conjectural, this small

extrapolation it is believed to be sufficiently accurate for the purpose of this paper.

It should be noted here that for both of the above airfoils the type of stall was

independent of Mach number and remained of the trailing-edge/leading-edge type

since the shock occured in the leading-edge region.

2. EDGE SEPARATIONS ON RECTANGULAR WINGS

2.1 Sources of Edge Separation

Two sources of edge separation flows encountered on

influence their lift and stall characteristics are illustrated

illustrates, for the attached flow case, the type of change

rectangular wings that

in figure 2.1. Part (a)

in chordwise pressure
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distribution that results from the chordwise variation of normal velocities induced on

the wing by the vortex wake associated with the three-dimensional flow. The resulting

changes are illustrated by comparing a typical upper surface pressure distribution at

the root section of a low aspect-ratio rectangular wing with that for a two dimensional

airfoil at the same section lift coefficient, cL. Of particular interest for this paper is the

increase in the adverse pressure gradient near the leading edge for the low aspect-

ratio wing, resulting from the fact that the downwash induced along the chord

increases in the downstream direction producing an effect analogous to "streamline

curvature" or "induced camber." This increase in the adverse pressure gradient

causes the three-dimensional wing to encounter leading-edge separation in the root

section at a lower section lift coefficient than in two dimensional flow. This effect of

induced camber increases with decreasing aspect ratio and is related to the well

known forward movement of the wing center-of-pressure which approaches the

leading-edge as the aspect ratio approaches zero.

Part (b) illustrates both the leading-edge separation bubble discussed above and

the side-edge separation which occurs for various combination of side-edge profile,

Reynolds number and lift coefficient. Associated with this side-edge separation is the

well known side-edge vortex flow and the resulting vortex-lift increment in the tip

region. The case illustrated is for the tip of revolution where the side-edge separation

origin is aft of the maximum span. The spanwise distribution of lifting pressure at an

x/c =0.8 shown in the lower sketch is representative of the vortex lift effect.

2.2 Prediction Methods

The primary purpose of this section is to develop approximate methods of including

the induced camber and vortex lift effects on the stall characteristics of rectangular

wings. In addition, comparisons with experimental results will be made for a range of

aspect ratio and Reynolds number. Because of the interest in this paper on Reynolds

number effects, only round leading-edge wings will be discussed in this section.
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2.2.1 Some early studies

Until the mid 1930's "lifting-line theory," which ignored the influence of induced

camber, was the primary wing design method. This was satisfactory, in general, for the

moderate to high aspect ratio wings of that period and avoided the time consuming

effort required at that time to perform completely three-dimensional solutions.

Possibly the earliest detailed theoretical studies of the effect of induce camber on

the pressure distributions of low aspect-ratio rectangular wings with attached flow

were the approximate calculations of Fuchs (1939) and Wieghardt (1939). These

studies and others such as those performed by Lawrence (1951), and Lomax and

Sluder (1952), illustrated the increased pressure gradient at the leading edge,

associated with induced camber, for the attached, inviscid flow condition. The early

researchers, however, were primarily interested in the effect induced camber played in

the overall wing aerodynamic center variation with regard to aircraft stability since the

relatively thick, moderate-to-high aspect ratio, wings of the period usually encountered

trailing-edge, rather than leading-edge separation. Later, with the advent of

supersonic aircraft with thinner wings of low aspect-ratio, the effect of induced camber

on leading-edge separation began to play a more prominent role.

2.2.2 Development of an Approximate Method

One of the purposes of this paper is to develop an approximate method of

combining experimental two-dimensional airfoil data, such as that reviewed in section

1, with an induced camber method to predict the turbulent reseparation characteristics

of three-dimensional wings. The method developed in this section utilized an

approach similar to one developed by Polhamus (1955) for predicting the approximate

effect of induced camber on the overall lift-dependent profile drag for low aspect ratio

rectangular wings. Basically, this concept utilized the effect of induced camber on the

adverse upper surface pressure gradient in the leading-edge region of the three-

dimensional wings to establish an "effective" two-dimensional airfoil lift coefficient
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having essentially this same adverse pressure gradient. The present method allows

this "effective" two-dimensional lift coefficient, Ct,cot,to be established at any spanwise

station desired, by utilizing lifting-surface theoretical solutions.

While any accurate lifting-surface solution could be used in the proposed method

by use of appropriate pressure gradient extraction techniques, the theory developed

by Multhopp (1950) uses an approach that is convenient for the present application.

The method developed herein can be described with the aid of figures 2.2 and 2.3.

Basically, the Multhopp method utilizes a series of continuous chordwise

distributions of circulation at discrete spanwise stations to satisfy the boundary

conditions. As shown in figure 2.2, these distributions include the so-called

"cotangent" loading that represents the pure angle-of-attack type (two-dimensional)

distribution and a series of "sine" Ioadings which represent various induced camber

distributions. The primary advantage of the Multhopp method lies in its use of the

"cotangent" loading term. However the same general approach could be applied to

other lifting surface methods.

As will be shown below, the pressure gradient associated with the cotangent

loading predominates in the leading-edge region where the turbulent reseparation, of

interest here, occurs. Therefore, it would be expected that the onset of turbulent

reseparation in the three-dimensional case would occur at the spanwise location

where the value of CL,cotreaches the value of the two-dimensional airfoil lift coefficient

corresponding to turbulent reseparation.

One of the simplifying assumptions in the method to be developed is that the

influence of induced camber on the upper surface adverse pressure gradient can be

approximated to sufficient accuracy by ignoring the effect of thickness. These "flat

plate" solutions for Ct,cotwill then be utilized in conjunction with the experimental data,

obtained with the appropriate airfoil section, at the desired Reynolds number, to

estimate the lift coefficient for the onset of turbulent reseparation in the three-
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dimensional case. This use of the experimental data provides the major effect of

thickness.

The concept will be illustrated in figures 2.2 and 2.3 by use of the resulting ACp

distributions contributed by the "cotangent" and various "sine" Ioadings calculated by

the Lan and Lamar (1977) version of the Multhopp (1950) approach. For the readers

convenience, the relationships between the chord-loading series of Multhopp (1950)

and those of Lan and Lamar (1977), used herein are presented in the appendix. The

ACp distribution was selected because of its more direct relationship to lift coefficient.

For these "flat plate" solutions, a match of the ACp gradients also signifies a match of

the upper surface adverse pressure gradients. The expression for ACp is given by:

2 qo(rl) @ =o q,(rl) .
ACp($,r/) = E[ c--_cot(_/_2)+ n_=l C"_-_ sln(n(P)]

where the q's are coefficients of the various chordwise Ioadings which are determined

by satisfying appropriate boundary conditions over the wing surface. The chordwise

station, x/c, is related to the angle _, as indicated in figure 2.2(a).

As an illustration of the types of chordwise Ioadings that are involved, figure 2.2(b)

presents the results obtained for a rectangular wing of aspect ratio 0.5. These results

are for the wing centerline at a section lift coefficient of 1.0. This very low aspect ratio

wing was selected because its large induced camber provides a clearer illustration of

the concept. The centerline location is chosen since that is where the turbulent

reseparation begins for rectangular wings.

For the solution shown in figure 2.2(b), four chordwise loading distributions were

utilized; the "cot _2" loading which represents the pure angle-of-attack loading, and

the first three "sine" Ioadings representing various induced camber Ioadings. It will be

noted that the cot _/2 and the sin _ Ioadings are, by far, the most prominent

contributors to the chordwise pressure distribution. The sin _ induced camber term

produces a large negative lift, due to the increasing downwash in the downstream

direction, which must be offset by an increase in the cot _/2 loading in order to
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maintain the section lift coefficient, ct, of 1.0. For the case shown, the ct, cot term

associated with the cot _/2 loading term is equal to 1.62 which represents a 62-percent

increase over the total section lift coefficient of 1.0. Thus, for this low aspect ratio wing,

turbulent reseparation near the leading edge would be expected to occur at a much

lower section lift coefficient than for the two-dimensional case.

The above effects are illustrated further in figure 2.3(a) where, for the total section

lift coefficient of 1.0, the summation of the four chordwise loading terms of figure 2.2(b),

labeled "total," is compared with the cot _/2 term. Also shown is the distribution of the

lifting pressure term of the two-dimensional case for a section lift coefficient of 1.0, to

illustrate the greater adverse pressure gradient near the leading-edge for the low

aspect ratio wing.

The total adverse pressure gradient near the leading edge can be accurately

represented by the cot _/2 term, as illustrated in figure 2.3(b), for the forward 2-percent

of the wing chord. The accuracy appears sufficient for the purpose of this paper and is

best defined by the ratio K in the upper part of the figure. This parameter indicated

less than 1-percent difference between the two Ioadings for a typical region of

turbulent reseparation taken from figure 1.2.

The variation of Ct,cot across the span of the A = 0.5 wing is shown in figure 2.4(a).

It should be noted that both the local values of Cl,cot and ct are normalized by the

overall wing lift coefficient, CL. The results illustrate that the magnitude of cl,cot is

considerably greater than the corresponding total sectional lift coefficient, cl at all

spanwise stations; and at the mid semi-span station, Ct,cot is approximately 60-percent

to 65-percent greater than the corresponding total section lift coefficient, ct. The

reader is reminded that the actual span load distribution across the wing is

represented by the usual c,/CL distribution and that the c, cot/CL distribution

represents an equivalent section lift coefficient having the same adverse chordwise

gradient in the leading-edge region as in the real three-dimensional flow.
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The formation of the transitional separation bubble and the subsequent turbulent

reseparation are, for a given Reynolds number, primarily dependent on the magnitude

of the adverse pressure gradient close to the leading-edge which is dominated by the

cotangent loading. As mentioned above, leading-edge stall, resulting from turbulent

reseparation, would be expected to occur when CL,cot rather than ct reaches a value

approximately equal to the two-dimensional airfoil lift coefficient corresponding to stall.

Thus, for the A = 0.5 wing example shown, leading-edge stall would begin at the root

station for a total section lift coefficient, ct, that is only about 62-percent of the two-

dimensional airfoil lift coefficient corresponding to stall in the two-dimensional case.

Since, for rectangular untwisted wings, leading-edge separation occurs first at the

root station (TI = 0) the variation of (Ct,cot/Cl), =o, with wing aspect-ratio is presented on

figure 2.4(b). The results illustrate the large increase in (Ct,cot/Ct) _ = 0, with decreasing

aspect ratio. This theoretical variation of Ct,cot/Ct TI = 0 will be used in the following

analysis of experimental data related to the leading-edge separation characteristics of

low aspect-ratio rectangular wings to illustrate the magnitude of induced camber

effects on root section stall.

2.3Comparison of Predictions and Experiments

This section will be devoted to predicted and experimental examples of the

influence of aspect ratio on root stall, on total wing stall, and some interacting effects of

aspect ratio and Reynolds number on overall wing stall.

2.3.1 Effect of aspect ratio on root stall

Inasmuch as the stall of uncambered and untwisted rectangular wings is initiated at

the wing root the induced camber effect at that station is of particular importance. To

illustrate its effect the experimental study by Brebner et. al. (1965) of five rectangular

wings having RAE 101 (10-percent) symmetrical airfoil sections and tips of revolution

will be used. The wings covered an aspect ratio range from 4.0 to 0.5 and the data to

be used here which, except for one case, reached the stall, was obtained at a chord
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Reynolds number of 1.6 x 106, and a Mach number of 0.11. The experimental two-

dimensional data for the RAE 101 (10-percent) airfoil, required for application of the

prediction method is obtained from Brebner and Bagley (1952). It was tested in the

same wind tunnel as the three dimensional wings at a Reynolds number of 1.7 x 106

and a Mach number of 0.09. For the convenience of the reader the theoretical values

of the induce camber parameter (Ct,cot/Ct) _ = ofrom figure 2.4(b) are listed here for the

five wings of the experimental series

parenthesis following each aspect ratio:

0.5(1.62). Figure 2.5 presents some

summarizes the lift data.

with the induced camber parameter in

4(1.03), 2.5(1.08), 1.4(1.23), 1.0(1.36) and

selected pressure data while figure 2.6

Figure 2.5 is presented to illustrate, with experimental upper surface pressure data,

the influence of induced camber on the pressure distribution in the leading-edge

region of the wing root section. The aspect ratio 1.4 and 1.0 wings were selected

because their high level of induced camber allows for a more critical evaluation of the

prediction method. The root section of the lowest aspect ratio wing (0.5) encounters

some strong effects induced by the separation - induced tip vortex flow which will be

discussed later. The tabular pressure data for the two wings were not included in the

paper by Brebner et. al. (1965) but were obtained from those authors. Inasmuch as

turbulent reseparation probably occurs forward of the one-percent chord station (see

figure 1.2) the data is limited to the forward 2-percent of the chord to allow for an

expanded scale.

Turning first to the wing of aspect ratio 1.4 it will be noted that three conditions are

presented. One is for the three dimensional wing at the root station for a section lift

coefficient of 0.78 which is slightly below the stall. The other two conditions are from

the two-dimensional airfoil data (A = ®) of Brebner and Bagley (1952) at two lift

coefficients, one being the same as that selected for the three-dimensional wing (0.78)

and the other for a cotangent lift coefficient of 0.96 obtained by applying the induced
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camber factor of 1.23. It should be noted here that only slight interpolations were

required to obtain the two-dimensional pressure distributions for the required lift

coefficients. Although the orifice locations for the three-dimensional wing are rather

sparce the orifice at the x/c of 0.005 is expected to be near the turbulent reseparation

point.

Regarding the results for the wing of aspect ratio 1.4 it will be noted first that the

suction pressures and adverse pressure gradients are much greater than for the two-

dimensional airfoil at the same lift coefficient (0.78) as would be expected due to the

induced camber effect. Secondly, it is seen that the two-dimensional airfoil pressures

for the lift coefficient of 0.96 that was obtained by applying the induced camber factor

are in much better agreement with the wing of aspect ratio 1.4. Despite the few

pressure orifices for the aspect ration 1.4 wing the results appear to at least

qualitatively confirm the accuracy of the prediction method.

The result for the wing of aspect ratio 1.0 which, of course, encounters an even

greater induced camber effect also appears to confirm the prediction method. The

wing of aspect ratio 0.5 has been omitted in figure 2.5 because strong effects of the

separation-induced side-edge (tip) vortex illustrated in figure 2.1(b) extend inward to

the wing root. This effect will be discussed subsequently.

Turning now to the lift and stall characteristics at the root section for the complete

aspect ratio series figure 2.6 presents the sectional lift coefficient, (cl) _1= o, obtained by

Brebner et. al. (1965) through integration of surface pressure measurements, as a

function of the wing angle of attack, a, for a chord Reynolds number of 1.6 x 106. Also

shown is the two-dimensional data on the same airfoil section as obtained at a

Reynolds number of 1.7 x 106 from the paper by Brebner and Bagley (1952). It should

be noted that the two-dimensional data indicates a sudden stall of the leading-edge

type resulting from turbulent reseparation and a Cl,max of 1.068. It is of interest that the

Reynolds number of 1.7 x 106 and the leading-edge radius of 0.76-percent of the
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chord places this airfoil about on the boundary between thin-airfoil and leading-edge

stall for the NACA 6-series airfoils of figure 1.5. The centerline lift data for the finite-

span wings also indicates a leading-edge type of stall and a pronounced reduction in

the centerline maximum lift coefficient with decreasing aspect ratio caused by the

influence of induced camber on the upper surface pressure gradient discussed above.

Regarding the maximum lift coefficient, it should be noted that experimental results

for inverted model test conditions is also presented in the stall region. Although the

two model conditions were used by Brebner et. al. (1965) to correct the angle-of-attack

for tunnel flow angularity, the differences in maximum lift coefficients indicate some

measurable flow curvature effects in the tunnel stream producing an effective camber.

In such a case, opposite, effects on Ct,m_ would be expected, with the true value lying

between the two results.

To illustrate the degree to which the induced camber concept predicts this

reduction in centerline maximum lift, predicted values of ct corresponding to the onset

of turbulent reseparation have been made by the method of this paper. For the

leading-edge type of stall, the prediction also corresponds to the maximum lift

coefficient. Using the theoretical ratio of cotangent lift to total lift, (Ct,cot/ct) 11= 0, from

figure 2.4(b), the value of total ct required to provide a ct,cot equal to the measured

two-dimensional Ct,m_ of 1.068 was determined for each of the aspect ratios. The

predicted values of the root-section lift coefficients for which turbulent reseparation

onset and the accompanying leading-edge stall, occurs is indicated by the horizontal

arrows for each aspect ratio except for the 0.5. The predicted values define rather

accurately the reduction of the root-section maximum lift coefficient with decreasing

aspect ratio. Since, as mentioned earlier, the stall of the complete wing is initiated at

the root section the prediction of root section stall is, of course, an important ingredient

in the complete wing stall.
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Returning for a moment to the wing of aspect ratio 0.5 it seems apparent from the

increasing slope of the lift versus angle-of-attack that a strong influence of the

separation induced side-edge (tip) vortex extends to the root section contributing

directly to the maximum lift and modifying the pressure gradients. Thus the prediction

method developed for the root section does not apply for this very low aspect ratio

wing and the resulting calculation which provides a fairly accurate but fortuitous value

is not shown. This very low aspect ratio is of little practical importance and does not

represent a serious shortcoming of the method.

2.3.2. Effect of aspect ratio on overall wing stall

This section describes the additional consideration required to predict the overall

wing stall and makes comparisons with experimental results on rectangular wings

including both aspect ratio and Reynolds number effects.

As in the previous section on root stall this section deals with wings encountering

turbulent reseparation in the leading-edge region. The prediction of the overall stall

for the complete wing involves the prediction of the root section stall as in the previous

section except that the induced camber term must now be related to the total wing lift

coefficient, C L. The variation of this parameter, (c,, cot)_=o / CL, with aspect ratio has

been calculated by the Lan and Lamar (1977) method described earlier and is

presented in figure 2.7(a). Also shown is the variation of the total root section lift

coefficient parameter as an aid in establishing the magnitude of the induced camber

effect. The reader is reminded that the (c,, cot),=o/C, term does not imply that the

induced camber increases the root section lift coefficient. It only indicates the value of

an equivalent two-dimensional airfoil lift coefficient that has a comparable upper

surface pressure gradient in the leading-edge region, where turbulent reseparation

occurs, as does the three-dimensional wing with its induced camber.

The overall wing stall is influenced not only by the turbulent reseparation in the root

region but by the vortex lift produced by side-edge (tip) separation. This non-linear lift
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becomes rather large in the low aspect ratio range and was observed rather early by

several researchers such as, for example, Knight and Loeser (1927), Zimmerman

(1932) and Winter (1936) and became the subject of continuing experimental research

as the interest in moderate to low aspect ratio wings increased. Chosen here to

predict this side-edge vortex lift is the side-edge suction analogy method developed by

Lamar (1974) as an extension of the leading-edge suction analogy developed earlier

for the vortex lift of slender delta wings. Lamar's method has proven to give accurate

predictions of the vortex lift for the case of sharp side edges where all of the inviscid

side-edge suction is converted to vortex normal force from which the lift can be

calculated. The resulting vortex lift represents the "upper bound" associated with

complete side-edge separation. Values of the constant of proportionality, Kv,se, in the

vortex lift equation, to be discussed subsequently, have been taken from Lamar (1974)

and are presented in figure 2.7(b) as a function of aspect ratio. Also shown is the

variation of Kp, the theoretical inviscid lift curve slope to be used later.

Turning now to some experimental data, the effect of aspect ratio on the total lift

and stall characteristics is illustrated in figure 2.8 for a series of rectangular wings

having NACA 0012 airfoil sections and no tip fairings. Also presented is the data for

the two dimensional 0012 airfoil obtained from the study by Loftin et. al. (1949). The

data for the wing of aspect ratio 6 is from Muse (1943) and that for the wings of aspect

ratio 3 and 2 from Jones (1952). All the tests were for Mach numbers less than 0.10

and a chord Reynolds number of 3.0 x 106 with all but the wing of aspect ratio 6 being

tested in the Langley two-dimensional low-turbulence pressure tunnel. In addition to

the experimental data two theoretical variations are shown for the finite aspect ratio

wings; the inviscid attached flow theory given by Kp sin o_, the full side-edge vortex lift

theory given by adding the vortex lift increment Kv,se sin2oc cos e_ to the attached flow

theory. The values of Kp and Kv,se were obtained from figure 2.7(b).
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From figure 2.8 it is seen that for these square-edge wings prior to the stall the

experimental lift (shown by the data points) is in good agreement with the solid line

which represents the sum of the theoretical inviscid lift and the theoretical side-edge

vortex-lift theory. Also the large increase in the vortex lift as aspect ratio is reduced is

clearly evident. It should be pointed out, however, that for wings with the usual tips-of-

revolution complete separation would not be expected and less side-edge vortex-lift

would be produced.

With regard to the total wing stall characteristics it is seen that while there is a 16-

percent reduction in maximum lift coefficient between the two-dimensional case and

the aspect ratio 3.0 case there is a recovery of some of that loss by the wing of aspect

ratio 2.0. This of course is due to the increase in vortex lift which counteracts a

considerable portion of the loss of maximum lift coefficient associated with the

influence of induced camber on the turbulent reseparation at the root section. To

further illustrate these influences, predictions of these effects using the two-

dimensional airfoil maximum lift coefficient corrected for induced camber and adding

the theoretical vortex lift increment are made in the following section.

The two-dimensional NACA 0012 airfoil with its rather large leading-edge radius

(1.58-percent c) experiences the combined trailing-edge/leading-edge type of stall

illustrated in figure 1.1(c) in which some trailing-edge separation occurs prior to the

sudden leading-edge stall. For the total wing lift of the three-dimensional wings the

combination of non-linear side-edge vortex-lift and delay in trailing-edge separation

on their outer portions tend to offset the influence of the trailing-edge separation in

their root regions. However, with the sudden stall of the three-dimensional wings

being initiated in the root region it is assumed that the two-dimensional data can be

used in predicting the three-dimensional total wing maximum lift-coefficient in a used

in predicting the three-dimensional wing maximum lift-coefficient in a manner similar to

that used in section 2.3.1 for the root section. The vortex lift must, of course, be
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included and these two primary influences are combined in the following equation with

the assumption that, for the purpose of this paper, their interactions can be ignored in

the aspect ratio range considered. This results in:

The calculation preformed in the first set of brackets establishes the contributions of

the root section stall to the total wing maximum lift coefficient by dividing the

experimental two-dimensional C,,_x by the theoretical induced camber term at 11 = 0

which as noted earlier is normalized by the total wing lift coefficient, neglecting the

vortex lift, and is obtained from figure 2.7(a). This component of the total maximum lift

coefficient corresponds to the onset of turbulent reseparation and decreases with

decreasing aspect ratio similar to the decrease shown in figure 2.6 for the root section

of the RAE 101 (10 percent) wings.

The calculation performed within the second set of brackets in the above equation

predicts the magnitude of the side-edge vortex lift at the angle of attack, e(crit, for which

the predicted sudden root-stall associated with turbulent reseparation onset occurs.

The variation of Kv,se with aspect ratio, obtained by the side-edge suction analogy

method of Lamar (1974), is presented in figure 2.7(b) for rectangular wings. The

values of (Zcrit are obtained from:

OCc,t=arcsin[C,,r,_///(c''=')'7=°1C L K,

where Kp is the theoretical inviscid three-dimensional lift curve slope, obtained from

figure 2.7(b).

The results of the application of the above prediction method are indicated in figure

2.8. The three predicted parameters are defined for the wing of aspect ratio 2.0. The
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horizontal arrow labeled "turbulent reseparation onset" defines the total wing inviscid

lift coefficient corresponding to leading-edge stall at the root as calculated by the first

bracketed term in equation (2.1) and also defines "(Xcrit" which is used in the second

bracketed term in equation (2.1) to predict the vortex-lift contribution to the total wing

maximum lift coefficient. The sum of the predicted lift coefficient corresponding to

leading-edge stall at the root and the predicted vortex-lift increment at (Xcrit represents

the predicted total wing maximum lift coefficient and is shown by the solid horizontal

arrow labeled "CL_x."

The above labeling of the predicted parameters is used for all three of the finite

span wings and it is seen that the methods used result in reasonably good agreement

with the experimental results. From these comparisons it is seen that the effect of

induced camber on the root stall contribution to the total wing maximum lift-coefficient

results in a rather large decrease with decreasing aspect ratio. This decrease

amounts to 29-percent for the aspect ratio 2.0 wing relative to the two-dimensional

airfoils and for a wing with no side-edge (tip) separation it would represent the

reduction in the total wing maximum lift coefficient. However, for these wings with

complete side-edge separation the increase in vortex-lift contribution with decreasing

aspect ratio offsets a sizable portion of the induced camber effect.

2.3.3. Reynolds number influence on wing stall

Turning now to the influence of Reynolds number, the prediction method

developed above for combining the leading-edge stall and side-edge vortex lift will be

used as a analysis aid. Although the primary effect of Reynolds number on CLmax is

expected to be similar to that encountered in two-dimensional flow, as discussed in

section 1.5, the above method indicated several three-dimensional effects that can

alter the magnitude of the Reynolds number effects encountered by low aspect-ratio

rectangular wings. For example, the increase in O_cdt with increasing Reynolds
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number, due to the delay in leading-edge root stall, results in an increase in the

magnitude of the side-edge vortex lift. Inasmuch as the vortex-lift effect increases with

decreasing aspect ratio, it would be expected that the influence of Reynolds number

would be dependent on the aspect ratio.

The most extensive experimental data base available for evaluating the effects of

Reynolds number over a range of aspect ratios appears to be that associated with

investigations utilizing the NACA 0012 airfoil section on rectangular wings having

square side edges used in the previous section and reported by Muse (1943) and

Jones (1952). The data was obtained in tunnels having relatively low turbulence

levels, and the models were tested in the "free transition" condition. For the data

presented here the Mach number was no greater than 0.13.

Evaluating first the aspect-ratio 6 case, figure 2.9 presents CL, max as a function of

Reynolds number as predicted by the present method and as obtained from the

experimental study by Muse (1943). Shown for comparison are the two-dimensional

results from figure 1.7. The two predicted curves were determined with the present

three-dimensional prediction methods. The dashed line represents the prediction

neglecting the side-edge vortex lift and the difference between it and the two-

dimensional results represents the influence of the three-dimensional effects on the

turbulent reseparation in the leading-edge region. The solid line represents the

predicted total CL, max resulting from the inclusion of the side-edge vortex lift. It will be

noted that the increment associated with the side-edge vortex lift increases slightly

with increasing Reynolds number. The results indicate the prediction method to be

reasonably accurate.

Figures 2.10 and 2.11 present the same type of comparisons as in figure 2.9 but

extends them to the low aspect ratio range with the aid of the experimental data for

aspect ratios of 3 and 2 from the study by Jones (1952). In both cases, there is good

agreement between the experimental results and the present prediction method.
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There are several items of interest illustrated by figures 2.9 through 2.11. First, it is

noted that as the aspect ratio is reduced, the vortex lift contributed by the side-edge

vortex flow increases; in addition, this vortex lift increment increases as Reynolds

number is increased. This increase in the vortex lift results from the increase with

Reynolds number of the angle of attack, (_crit, at which the leading-edge stall (turbulent

reseparation) at the root occurs, thereby resulting in a stronger side-edge separation

vortex. A second item of interest is seen by comparing figures 2.10 and 2.11. This

comparison indicates that due to the compensating effects of induced camber and

side-edge vortex-lift illustrated in figure 2.8, the values of CL,max are essentially equal

for the wings of aspect ratio 3 and 2 over the Reynolds number range studied.

However for lower aspect ratios the vortex flow would be expected to dominate and an

increase in CL,max would occur. However, as mentioned earlier, it should be stated

that for the more usual practice of utilizing a tip of revolution some reduction in the

vortex lift occurs which will modify the above trade-off.

In concluding this section it should be pointed out that for wing-fuselage

combinations the additional influence of the fuselage-induced upwash over the

inboard portion of the wing must be considered with regard to root stall. Also, of

course, the use of wing warp to optimize various design requirements will modify the

above results as well as those in the following sections, but are beyond the scope this

paper.

3. SWEPTBACK WINGS

3.1 Some Early Research

By the mid-1940's a great deal of interest in sweptback wings for high speed

aircraft was developing because of their advantage in delaying the onset of adverse

compressibility effects. This interest was generated first in Germany where it can be

traced to the supersonic sweptback wing theory of Buseman (1935), and later in the

United States as a result of the independent development of the theory by Jones
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(1945) who, in addition, extended the supersonic theory to include the important

subsonic edge case associated with highly swept wings. Both demonstrated that it

was the component of Mach number normal to the isobars that was critical.

However, with regard to the effect of sweepback on the low speed lift and stalling

characteristics, of interest in this paper, it appears that the first related work appeared

much earlier in a paper published by Munk (1923). In connection with the effect of

sweep on lateral stability, Munk stated that "in straight flight only the component of the

velocity, V cos A, is effective for the creation of the lift." Possibly the first published

work directly related to the stalling of swept wings was that of Betz (1935) who, in

discussing the stall of rectangular wings in oblique (yawed) flow stated that "the

decrease in maximum lift for varying angles of approach (yaw) might be expected to

be proportional to cos2_, but the assumption that the superposition of a transverse

velocity does not materially affect the separation phenomena is somewhat

uncertain ..... " Betz also pointed out that the meager data available at the time indicted

the decrease in maximum lift to be somewhat less than suggested by the "cosine

squared" rule. Since, in the mid-1930's, the interest in wing sweep was confined

primarily to very modest degrees of sweepback, related primarily to the stability and

controllability of tailless aircraft, little research was carried out on the effect of moderate

and high sweep angles on wing stalling until, as mentioned earlier, the benefits to the

high speed performance were recognized. With the interest turning to highly

sweptback wings to provide efficient supersonic capability and with separation

occurring at lower lift coefficients as predicted by the Betz cosine-squared rule, there

was an acceleration of research related to the take-off and landing capabilities and the

low speed stability and control characteristics.
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3.2 Some Types of Flow

While it is beyond the scope of this paper to review in detail this early research, a

brief mention of some of the primary flow phenomena which influence the separation

and stalling of sweptback wings would be useful for the review of combined sweep

and Reynolds number effects to follow. To this end figure 3.1 presents, in simplified

form, three of the primary phenomena to be dealt with in this section.

3.2.1 Tip stall

The sketch in the upper left illustrates the type of change in the attached flow upper

surface chordwise and spanwise pressure distribution across the span that occurs on

unwarped sweptback wings. Early wind tunnel tests and "lifting line" theories

demonstrated the occurrence of tip stall due to an increasing upwash angle induced

towards the wing tip. Soon "lifting surface" theory and detailed pressure

measurements demonstrated that, near the wing root, the chordwise distribution of

induced angle (induced camber) is such as to reduce the adverse chordwise pressure

gradient near the leading-edge while the opposite effect occurs in the tip region. Thus,

only in the mid-semispan region of the wing does the simple infinite span oblique wing

theory tend to apply. This is also seen from the fact that in the regions of the tip and

root the streamlines, in plan view, cannot curve to satisfy the oblique wing theory but

are forced to remain in the free-stream direction. This so-called "kink" effect requires

that the isobars cross the plane of symmetry at a right angle as indicated in the sketch.

A similar effect occurs at the wingtip. These effects shear the chordwise pressure

distributions across the span such as to create the changes in induced camber and

pressure gradients near the leading edge in the manner described above and

illustrated in the upper left of figure 3.1 thereby creating tip stall. For a more detailed

discussion of these effects the reader is referred to Kuchemann (1978).
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3.2.2 Leading-edge separation bubble

The sketch in the upper right of figure 3.1 illustrates in simplified form the primary

influence of the spanwise variation of the adverse chordwise pressure gradient in the

leading edge region as it applies to this paper. In contrast to the rectangular wings of

section 2, the turbulent reseparation and resulting expanding long bubble begins

outboard on the wing and its rate of inboard progression with angle-of-attack reduces

as sweepback increases.

The induced camber effects associated with sweepback, as discussed with the

above two sketches, will subsequently be analyzed using the cotangent loading

concept in a manner similar to that used for the rectangular wings of section 2.

3.2.3 Leading-edge vortex lift

Another phenomenon of interest in this section is illustrated, again in simplified

form, in the lower sketch of figure 3.1. For wings of moderate-to-high sweepback the

spanwise pressure gradients on the upper surface can induce spanwise velocities in

the leading-edge region of sufficient magnitude to convert the expanding long bubble

flow described above into the vortex flow illustrated in the sketch. This, of course, is

the well known, highly stable, leading-edge separation induced vortex flow. This

vortex flow entrains an additional mass of air and provides a downward deflection

thereby producing an increase in lift above that expected from inviscid theory and

referred to as "vortex lift." This appears to have first been demonstrated at Langley in

1946 and reported by Wilson and Lovell (1946) who demonstrated that the poor

maximum lift of a highly swept delta wing was greatly improved when the round

leading edge was made sharp thereby creating the now well-known leading-edge

vortex. A "cross flow separation" model of the vortex flow was also proposed in this

early paper. This research remained classified for 4 years but stimulated additional
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studies in the United States. International interest in vortex lift appears to stem from its

independent discovery in France during 1951 and 1952 as reviewed by Legendre

(1981).

Also influenced by sweep is the spanwise flow of the boundary layer induced by

spanwise pressure gradients. The resulting increase in boundary layer thickness in

the aft outboard region can, for thick wings in particular, produce earlier trailing edge

separation with the accompanying adverse effects on the stall characteristics including

stability and controllability problems. However, for the thin wings with turbulent

reseparation at the leading-edge of interest in this paper, this is not a major factor and

will not discussed.

By the late 1940's and early 1950's the major influences of the above phenomena

were fairly widely recognized as demonstrated in review papers such as, for example,

those published by Furlong and McHugh (1952) and by Kuchemann (1953). Much of

the low speed, swept wing research that followed was directed towards the

development of a data base covering effects of planform, airfoil section and Reynolds

number as well as the development of warped wings and passive and adjustable

devices to provide some control of the separation. However, consistent with the

previous parts of this paper, the following discussion will deal only with the influence of

wing geometry and Reynolds number on leading-edge separation and its influence on

the stalling of unwarped wings without flow control devices.

3.3 General Effects of Sweep and Reynolds Number

This section will review some of the general effects of sweepback and Reynolds

number on the overall lift and stalling characteristics. To provide continuity with the

prior section on rectangular wings, experimental results for constant-chord-length

wings will be used as illustrations. The influence of taper will however be discussed in

later sections of the paper.
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3.3.1 Prediction of turbulent reseparation

Many studies of the flow about sweptback wings, dating back to the late 1940's have

indicated that, for symmetrical airfoil sections in the thickness range of interest for high

speed aircraft, the most prevalent type of separation affecting the lift is that which

occurs near the leading edge. Also studies such as those by Poll (1983, 1986), for

example, demonstrated that in general the leading-edge flow on sweptback wings

often was quite similar to that on upswept wings in that a transitional bubble near the

leading edge occurs first followed by a turbulent reseparation. However depending on

the sweepback angle and Reynolds number this can result in a leading-edge vortex

flow.

In view of the above, an attempt to relate the effect of Reynolds number on the

onset of turbulent reseparation for sweptback wings to those observed on two-

dimensional airfoils in section 1.3.2 will be made by use of a simple extension of the

method developed for rectangular wings in section 2.2.1.

To extend the method developed in section 2.2.1, the following modifications are

made:

1. The effect of sweep is, of course, included in the calculation of the variation of the

inviscid values of the flat plate cotangent lift coefficients across the span, and

2. the maximum value of the section cotangent lift coefficient across the span is

equated to an appropriate value of the two-dimensional lift coefficient at the onset of

turbulent reseparation corrected to an infinite span swept wing by the Betz cosine

squared rule. It must be remembered that the section cotangent lift coefficient is an

equivalent flat plate section lift coefficient that provides the same pressure gradient at

the leading edge as occurs on the wing due to the three-dimensional induced angle of

attack and induced camber.

With regard to item (1), the major influences of sweepback on the induced camber

effects are illustrated in figure 3.2, which presents spanwise distribution of the total
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section lift coefficient, ct, and the cotangent type section lift coefficient, C_,cot (both

normalized by the total wing lift coefficient, CL). These constant-chord wings are of

aspect ratio 3 and have sweepback angles of 0 °, 30 °, and 55 °, and the solutions used

the first three chordwise pressure modes (see section 2.2.1).

For the unswept wing, the lift loss associated with the negative induced camber

must be offset by an increase in angle of attack which causes an increase in the

adverse pressure gradient in the leading-edge region. This is indicated by the fact that

the angle-of-attack type chord load, as measured by C_,cot, is greater than the total

chord load as measured by ct. Although it causes an earlier stall, as discussed in

section 2.1, the stall originates at the root and, based on the spanwise distributions,

the induced camber would be expected to have a relatively small influence on the stall

progression towards the tip.

For the 30 ° sweptback wing, however, the induced camber is positive in the root

region, thereby reducing the adverse pressure gradient at the leading edge for the

inboard region as indicated by the reduced level of the CL,cotterm. Through its effect in

delaying the onset of turbulent reseparation for wings with airfoil sections exhibiting

"thin airfoil" or "leading edge" classes of separation (see section 1.2), the induced

camber is the primary contributor to the delayed stall of the root region. Over the

outboard region the induced camber is negative, thereby increasing the adverse

pressure gradient and causing the turbulent reseparation to begin in the mid-

semispan region rather than the root region that might be expected if only the total

section lift coefficient, _, distribution is considered. For wings in this range a leading-

edge sweepback, the turbulent reseparation combined with the spanwise flow can

cause partial span leading-edge separation-induced vortex flow depending on the

leading-edge radius and Reynolds number. An example of a flow study illustrating this

dependency is that made by Poll (1983 and 1986).
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Turning to the 55 ° sweptback wing example, it is seen that the general effects of

induced camber on the distribution of the angle-of-attack type chordwise loading

parameter, Ct,cot/CL, are similar to those for the 30 ° sweptback wing. However, the

peak value is shifted much closer to the wing tip and the reduction in the root region is

greater. This implies, of course, that the onset of turbulent reseparation will occur

much closer to the tip than implied by the total section lift coefficient and the inboard

progression will be slower than for the 30 ° sweptback wing, thereby further delaying

the root stall.

Regarding item (2) above the following assumptions are made relative to the

2-dimensional data selection. First, the airfoil section in the plane normal to the

leading edge (plane of maximum adverse pressure gradient) will be used in

accordance with the Betz (1935) theory applicable to the inviscid pressure for an

infinite span oblique wing. The most serious problem is the selection of a Reynolds

number which in the 2-dimensional airfoil flow at the equivalent lift coefficient,

c, cos 2 A, will at least approximately correspond to the condition of the onset of

turbulent reseparation in the swept case.

For a pure laminar boundary-layer case the "independence principle" of Jones

(1947) would apply for the infinite span oblique wing and the Reynolds number normal

to the leading-edge would be appropriate. However, as suspected by Betz (1935), it

was determined in the 1950's that the development of the transitional and turbulent

boundary-layer is influenced by both the flow normal and the flow parallel to the

leading-edge. Of particular importance is the influence of crossflow (spanwise)

instability which produces attachment line transition. For two of the more recent

summaries of the various effects, the reader is referred to Kuchemann (1978) and

Amal (1987). Since the "independence principle" cannot be applied in the selection of

an equivalent Reynolds number for application of the 2-dimensional data to turbulent-

reseparation the streamwise Reynolds number for sweptback wing in question will be
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used herein. While this is arbitrary, there appears to be no practical alternative to this

approach for the present purpose. Some related experimental justification can be

found in the studies of yawed circular cylinders, such as that by Bursnall and Loftin

(1951). The reader must keep in mind, however, that this approach is only an attempt

to relate the general trends with regard to the effects of Reynolds number on the

turbulent reseparation between the 2-dimensional and 3-dimensional flows. This

represents one of the areas where turbulent-flow Navier-Stokes theoretical studies

should be very helpful.

3.3.2 Overall lift characteristics

An illustration of some experimentally determined effects of wing sweepback angle

and Reynolds number on the overall lift characteristics is presented in figure 3.3. The

sweptback wings had ONERA "D" airfoil sections placed perpendicular to the leading

edge and two-dimensional unswept airfoil data for this section are presented on the

left for reference.

The airfoil data is from Erlich (1969) and section lift results for root chord Reynolds

numbers of 0.8 and 2.1 million are presented as a function of angle of attack. The

ONERA "D" airfoil, a symmetrical "peaky" type, has a thickness ratio of 10.5-percent

and a leading-edge radius of 1.4-percent chord. For the lower Reynolds number a

gradual stall of the "thin-airfoil" type occurs, while at the higher Reynolds number the

"trailing-edge followed by leading-edge" type of stall occurs. This trend with Reynolds

number is consistent with the stall boundaries of figure 1.5 for the NACA 6-series

airfoils. For the variation of C_,rnax with Reynolds number the reader is referred to

figure 1.8.

The two sweptback wing cases are taken from a variable-sweep study carried out

in several ONERA wind tunnels. This experimental study was selected because of its

systematic coverage of both sweepback angle and Reynolds number, and the use of

40



raked tips which tend to confine the separation-induced vortex flow to the wing leading

edge.

For the 30 ° sweep case, the Rcr = 0.9 x 106 data was extracted from the data in

figure 44 of Poisson-Quinton (1978) and the Rcr = 2.2 x 106 data from the data in figure

9 of Manie, et. al. (1978). For this low sweep case, the effect of Reynolds number on

the type of stall is quite similar to that observed for the two-dimensional airfoil. The

most obvious effect is, of course, the well-known influence of the cos2A rule in

reducing the maximum lift coefficient with the three-dimensional effects being rather

small for this relatively high aspect ratio of 6.86. However, it is of interest here to

examine the degree to which the simplified approach of this paper predicts the effect of

sweep and aspect ratio on the onset of turbulent reseparation.

Turning first to the high-Reynolds-number case and taking the airfoil maximum lift

coefficient of 1.53 as the onset of turbulent reseparation for the two-dimensional case,

converting to the two-dimensional oblique wing by the "cosine squared" rule and

applying the correction for induced camber by the method of this paper results in a

value of 1.02 for the three-dimensional lift coefficient corresponding to the onset of

turbulent reseparation. This is shown in figure 3.3 by the horizontal arrow and is seen

to closely predict the stall. This implies that for this relatively low sweep angle, the

level of spanwise flow is insufficient to create a leading-edge vortex flow of sufficient

strength to alter the type of stall. There may be at least a "part span" vortex influence

beyond the stall as observed, for example, by the flow studies on a similar wing by Poll

(1983, 1986).

For the low-Reynolds-number condition the predicted turbulent reseparation

appears to be reasonable and there is evidence of some influence of vortex flow in

providing a further softening of the stall relative to the two-dimensional case.

Results shown in figure 3.3 for the 50 ° sweptback wing are quite different. For this

case, the predicted overall lift coefficient corresponding to the onset of turbulent
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reseparation is 0.54. As shown by the horizontal arrow, this prediction corresponds

closely to the measured onset of an increase in lift gradient with angle of attack rather

than the loss of lift shown for the 30 ° wing. This, of course, is associated with the well-

known vortex lift effect resulting from the combination of the turbulent reseparation and

the strong spanwise flow present on this more highly sweptback wing.

As will be discussed subsequently, the vortex flow on this wing becomes the

predominate factor in determining the high-lift characteristics with the inboard

progression of the vortex origin and the vortex breakdown development establishing

the type of stall. As can be seen, the stall associated with the vortex flow is rather

gentle and is due to the inboard progression of the vortex breakdown with increasing

angle-of-attack.

Some additional details of the effect of Reynolds number on the vortex lift

characteristics of the 50 ° sweptback wing are given in figure 3.4. Where the total lift

coefficient is presented as a function of angle of attack for chord Reynolds numbers, in

millions, of 1.2, 2.3, and 3.0. Shown by the two dashed lines are the theoretical results

for attached flow and for full vortex flow. The vortex flow theory is based on the

leading-edge suction analogy of Polhamus (1966) for a sharp leading edge and

therefore represents the probable "upper bound." Additional description of the

analogy is presented in section 4.1.2. The experimental results illustrate the increase

in the lift coefficient corresponding to the onset of vortex lift as the Reynolds number

increases. The predicted lift coefficients for the onset of turbulent reseparation are

indicated, as in the previous figure, by the horizontal arrows for the three Reynolds

numbers (identified by the symbols) based on the maximum lift coefficients for the

ONERA "D" airfoil presented in figure 1.8. The results indicate a reasonably good

prediction of the delay in the onset of vortex flow as the Reynolds number is increased.

However it should be noted that for the Reynolds number of 3.0 x 106 the two-
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dimensional data presented in figure 1.8 involved a small extrapolation to eliminate a

shock effect as discussed in section 1.5.

Some pressure data for this same wing is presented in figure 3.5 where the effect

of Reynolds number on the upper surface chordwise pressure distributions is shown,

for the four spanwise stations (A through D) shown in the sketch, at an angle of attack

of 12°. For the Reynolds number of 3.0 x 106, it is seen that the flow is essentially

attached over the entire region of the wing shown while for the Reynolds number of 2.0

x 106vortex flow, resulting from turbulent reseparation, has been established over the

entire region. The rearward movement of the vortex-induced reattachment point as the

wing tip is approached is evident and illustrates the growth of the vortex.

3.3.3 Summary of maximum lift

The data for the variable-sweep wing series described in the previous section were

obtained in the ONERA S1Ca and S2Ca low-speed atmospheric wind tunnels. To

provide data over a wider range of Reynolds numbers, tests were later made in the

relatively new ONERA F1 tunnel which operates up to 4 atmospheres pressure. A

brief summary, without analysis, of the effect of Reynolds number on the maximum lift

coefficient from these tests, at sweep angles ranging from 0 ° to 50 °, has been

published by Carrara and Masson (1980). No source for the basic data was cited.

These data and that for the 60 ° wing from Manie (1978) and Brocard and Manie

(1979) for the same wing series are summarized in figure 3.6 as a function of Rcr. To

be consistent with this paper, the reference length, for Reynolds number has been

converted to the streamwise chord. Shown for reference is a portion of the two-

dimensional airfoil data for the ONERA "D" airfoil taken from figure 1.8.

While Carrara and Masson (1980) present the maximum lift coefficients, they do not

present the lift versus angle of attack needed to definitely classify the type of stall.

However, with the aid of the lift versus angle of attack data of Manie, et. al. (1978),

some observations from figure 3.6 can be made. Regarding the 30 ° sweptback wing,
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the strong increase of CL, max with Reynolds number in figure 3.6 and the lift data of

figure 3.3 indicate that for this modest sweep angle the stall characteristics with angle

of attack and Reynolds number are similar to those observed in two-dimensional flow

for the ONERA "D" airfoil (Edich 1969). This, of course, does not preclude some part-

span vortex flow occurring beyond the stall or of insufficient vortex strength to change

the type of stall. For the 50 ° sweptback wing, the data of figure 3.6 indicate that the

strong vortex flow observed in figure 3.3 exists over the entire Reynolds number range

tested and that the maximum lift developed decreases slightly with Reynolds number

in this range transition from a trailing-edge/leading-edge stall to the vortex-flow stall.

The results for the 40 ° and 60 ° wings will be discussed subsequently.

A somewhat more informative way of illustrating the combined effects of sweep

angle and Reynolds number on the maximum lift coefficient is presented in figure 3.7

for three Reynolds numbers using the experimental data of figure 3.6. As an analysis

aid, the predicted turbulent reseparation onset is shown by the dashed curves as

obtained from the maximum lift coefficient data for the ONERA "D" airfoil presented in

figure 1.8, corrected for the two-dimensional sweep effect and the three-dimensional

induced angle of attack and camber effects according to the method presented herein.

The results of these calculations illustrate the effect of sweep and Reynolds number on

the maximum lift coefficient that would be expected due to turbulent reseparation if no

vortex lift was encountered.

The experimental data for the 30 ° sweptback wing is in reasonably good

agreement with the predicted values for all three Reynolds numbers, tending to

confirm the previous conclusion that the maximum lift for this wing is associated with a

sudden "trailing-edge/leading-edge" type stall with little vortex lift being developed

(see fig. 3.3).

Between sweep angles of 30 ° and 40 °, the vortex flow, resulting from the turbulent

reseparation and the crossflow, begins to dominate the stall characteristics as
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discussed above. The associated vortex lift provides increases in maximum lift

coefficient above those predicted for turbulent reseparation without vortex

development, as shown by the dashed lines. The increment in CL,max associated with

the vortex flow decreases with increasing Reynolds number, resulting in a

convergence such that for the A = 50 ° condition, maximum lift coefficient is relatively

independent of Reynolds number over the range tested. Although only the 3.5 x 106

Reynolds number of maximum lift coefficient data for the 60 ° wing is included in the

above cited references, earlier data by Cahill and Gottlieb (1950) for a tapered wing in

the same leading-edge sweep and leading-edge radius range indicated a relative

insensitivity to Reynolds number. This insensitivity is associated with the fact that for

the high sweep angles the flow at the higher angles of attack is dominated by the

leading-edge vortex flow and maximum lift is controlled primarily by vortex breakdown

as will be discussed in section 4.2.3.

Also shown in figure 3.7 (by the flagged symbols) are the measured values of the

inflection lift coefficient, CL,_nf, for the 50 ° sweptback wing. The inflection lift coefficient

is that at which a change in the lift and moment gradient with angle of attack occurs. It

is associated with leading-edge turbulent reseparation and initiation of vortex lift, as

was illustrated in figure 3.4. From this result, it appears that the inflection lift

coefficients correspond reasonably close to the predicted onset of turbulent

reseparation conditions. For the 30 ° sweptback wing, which exhibits a sudden

leading-edge stall, the inflection lift coefficient corresponds to the maximum lift

coefficient. Regarding the 40 ° sweptback wing, only the maximum lift coefficients were

reported by Carrara and Masson (1980), but the indication from figure 3.7 is that the

stall is influenced by vortex flow.

In summary, figure 3.7 illustrates the transition from the sudden leading-edge type

of stall that occurs for sweep angles up to about 30 ° to the gentle stall at the higher

sweep angles which, as a result of vortex flow, occurs well beyond the turbulent
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reseparation lift coefficient and tends to be dictated by the spanwise progression of

vortex breakdown. It is of historical interest to note that these general trends had been

observed by various researchers in the late 1940's and early 1950's and the reader is

referred to the summary paper by Furlong and McHugh (1952) as an example.

3.4 Influence of Reynolds Number on Local Flow

In this section, some examples of the measured section lift characteristics at

various spanwise stations on a tapered sweptback wing will be shown to illustrate

some of the primary effects of Reynolds number and angle of attack on the local flow.

An attempt will also be made to relate the local conditions to those encountered in two-

dimensional flow as a means of illustrating various three-dimensional influences on a

local stalling which may be of value in evaluating the ability of Navier-Stokes methods

to predict local viscous effects.

The wing selected for this section is one for which Kolbe and Boltz (1951)

performed detailed pressure and force tests over a Reynolds number range. The wing

leading-edge sweep is 49 ° , the aspect ratio is 3.0, the taper ratio is 0.5, and the airfoil

is a NACA 64A010 placed normal to the quarter-chord line.

3.4.1 Prediction of turbulent reseparation

The same general approach as in section 3.2.1 will be used to predict the influence

of the three-dimensional induced flow effects on turbulent reseparation. However,

since these influences will be examined at local spanwise stations and related to two-

dimensional flow, it is necessary to relate the section cotangent lift coefficient, C_,cot, to

the total section lift coefficient, ct, as was done in the case of the rectangular

unswept wings in section 2. Figure 3.8 presents the theoretical results for the various

lift coefficient parameters as a function of spanwise location, q, for the above wing. As

in figure 3.2 for constant chord sweptback wings, the left part of figure 3.8 presents the

section lift parameters normalized by the total wing lift coefficient, CL. Since the
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analysis in this section also requires the Ct,cotparameter normalized by the local

section lift coefficient, ct, that parameter is presented on the right of figure 3.8.

As will be shown subsequently, this airfoil, in two-dimensional flow has a trailing-

edge/leading-edge type of stall over the Reynolds number range of interest here.

Therefore, the onset of turbulent reseparation corresponds to the maximum section lift

coefficient. Thus, the predicted section lift coefficients corresponding to turbulent

reseparation, Ct,sep,on the three-dimensional wing are determined at each span

station as

(c,,,_)(cos _A)

cr'seP = //(c_,_o t / cz)

where A corresponds to the sweep angle of the wing leading-edge (since it is a

leading-edge separation condition), Ct,rnax is obtained by experimental two-

dimensional airfoil data at a Reynolds number based on the local streamwise chord

and the induced camber term, Ct,cot/Ct from figure 3.8.

3.3.2 Section normal-force characteristics

The section normal-force coefficient characteristics at the various span stations for

R _ = 4 x 106 are shown in figure 3.9 adapted from figure 7 of the paper by Kolbe and

Boltz (1951). Also shown are the two-dimensional data for the NACA 64A010 airfoil

from Loftin (1948) for chord Reynolds numbers of 3 x 106, 6 x 106, and 9 x 106. The

two-dimensional results indicate a combined trailing-edge/leading-edge type of stall

consistent with the two-dimensional stall-type boundaries of figure 1.5 for this

Reynolds number and leading-edge radius combination. The notable differences in

the region of the local stall between the two-dimensional flow and the three-

dimensional flow is readily apparent at all spanwise stations, consisting of a rapid

increase in the slope of the Cn vs o_ curves prior to the attainment of the maximum

value. This increase occurs at all spanwise stations and is, of course, associated with

leading-edge separation-induced vortex flow discussed earlier. The dashed lines are
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extensions of the linear portion of the data to aid in illistrating the approximate vortex

lift effect.

The predicted values of Cn for the onset of turbulent reseparation are shown by the

horizontal arrows. Due to the fact that the wing is highly tapered, the local chord

Reynolds numbers across the span were included in the predictions. The prediction of

reseparation onset appears reasonably good at the wing tip where the separation

originates and in the root region where the tip separation induced vortex flow

produces little influence. However, in the mid semispan region where vortex flow

interactions occur, that are not included in this simplified method, the agreement is not

good.

It will be noted that the effect of induced camber in delaying the onset of turbulent

reseparation is quite large in the inboard region. With regard to stall progression, it is

assumed that the maximum local lift coefficient is established primarily by vortex

breakdown. At present there appears to be no adequate method of predicting the

influence of vortex breakdown on the local maximum lift of wings of this type having

moderate sweep and a round leading edge. Some success has been obtained for the

overall maximum lift for the special case of very slender delta wings having sharp

leading-edges, and this will be discussed in section 4.2.3.

Turning now to the effect of Reynolds number on the section normal-force

characteristics across the span, figure 3.10 compares the results from figure 3.9 with

those obtained at the higher Reynolds number of 8 x 106. Again, the result are from

the paper by Kolbe and Boltz (1951). The results illustrate a delay in turbulent

reseparation and vortex formation in the outer region of the wing which results in

higher local maximum normal forces. The results indicate the expected delay in the

formation of vortex flow as the Reynolds number is increased and over the outboard

half of the wing higher values of maximum normal force coefficient are developed.

Over the inboard region of the wing, the maximum normal force coefficient was not
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reached for either Reynolds number. Although these effects would lead to the

expectation of an increase in the overall maximum lift coefficient for the wing, the

results obtained by Kolbe and Boltz (1951) indicate only minor effects of Reynolds

number (consistent with the 50 ° wing data of figure 3.6). Since the overall maximum

lift coefficient occurs at an angle of attack of about 25 °, it is possible that compensating

effects over the inboard region might occur at angles of attack beyond those reached

for the data of figure 3.10.

Before leaving this section, it should be mentioned that secondary and tertiary

separations and accompanying vortex flow can be formed under the primary vortex

and may have had some influence on the data presented. Studies of their effects will

be discussed in the following section on delta wings.

4. SLENDER DELTA WINGS

The stall of highly-swept (slender) delta wings, of interest for supersonic and

hypersonic aircraft, are highly dependent on vortex lift and, as discussed in section

3.2.3, it was a 1946 study of a delta wing that uncovered and explained this

phenomenon. This section will discuss some flow details in the stall region that were

not covered in the section on swept-back wings such as, for example, the secondary

separations induced by the flow beneath the primary (leading-edge) vortex, reversals

in vortex paths, and prediction of vortex breakdown. In addition the suction analogy

and free-vortex-sheet theories of leading-edge vortex flow will be described and

applied.

4.1 Analysis Methods

4.1.1 Induced camber distributions

As in the previous sections the spanwise distributions of the cotangent chord-

loading section lift parameter has been determined and is presented in figure 4.1 to

illustrate the influence of induced camber on the leading-edge pressure gradient for
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delta wings. All of the examples shown were obtained from calculations using the first

three chordwise pressure modes described in section 2.1. For comparison purposes,

the results from figure 3.2 for a 55 ° constant chord sweptback wing of aspect ratio 3.0

are shown on the left. Results for a 55 ° delta wing (A = 2.8) are shown in the center

section of figure 4.1. The most obvious difference between the swept wing and the

delta wing is the well-known highly-loaded tip region on the delta wing, which occurs

for both the total section lift parameter and the cotangent section lift parameter. Also

apparent is the fact that for the delta wing the influence of induced camber in reducing

the adverse pressure gradient at the leading-edge is extensive, covering essentially

the complete semispan.

On the right of figure 4.1 the variation of the cotangent loading parameter is

presented for a series of three delta wings covering the sweep range to be discussed

in this section of the paper. The results indicate a reduction of the cotangent loading

with increasing leading-edge sweep angle over the entire semispan.

For delta wings having round leading edges an indication of the influence of

induced camber on the progression of turbulent reseparation aft of the transitional

bubble can be extracted from the theoretical variation of the cotangent loading thus

providing information regarding the origin of the vortex sheet. However, a major

portion of the discussion of delta wings will deal with sharp leading-edge cases where

separation occurs all along the edge at a very low angle-of-attack and, for the sweep

angles involved, a resulting vortex sheet is attached to the sharp leading-edge. Since

this type of flow is the dominant one for these wings the cotangent lift concept is not

applicable to the prediction of the lift characteristic for the sharp edge case and vortex

flow methods will be used. These methods are also useful in providing upper bounds

of lift for the round edge cases to be discussed subsequently.
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4.1.2 Vortex-flow theories

Considerable progress is being made in the application of Navier-Stokes solutions

to the viscous flow about slender delta wings having leading-edge vortex flow.

However, parametric solutions covering the planforms and combined laminar and

turbulent boundary-layer flows in the Reynolds number range of interest here do not

appear to be available in the literature. Since the development of the specific

solutions required to cover the Reynolds number range and wing geometries covered

here is beyond the scope of this study, two existing vortex flow theories based on

inviscid modeling will be used. These methods are often useful in establishing certain

limits for the viscous flow and provide assistance in evaluating some of the vortex

interactions. This approach is particularly applicable for the sharp leading-edge case,

since the separation is fixed at the leading edge, and two theoretical methods have

been chosen for use in this paper.

At subsonic speeds, the three-dimensional effects are significant and there is no

region, even near the apex, that the flow is conical for either attached or vortex flow.

For some discussion of this fact, the reader is referred, for example, to Thwaites

(1960), and to Luckring (1985b). Therefore, completely three-dimensional theories

will be used herein. However, conical flow solutions can be useful as a base for

evaluating the magnitude of three-dimensional effects and for qualitative studies

where their reduced computational requirements become attractive. The two non-

conical flow theories selected for use in this paper are the leading-edge suction

analogy and the free-vortex sheet method. These methods have been used

extensively, particularly for delta wings, and contribute to the hierarchy of flow

modeling that is useful in establishing the magnitude of some of the vortex flow effects.

The leading-edge suction analogy, developed by Polhamus (1966), is illustrated in

part (a) of figure 4.2. This analogy equates the attached flow leading-edge suction

force to the normal force produced by the separation-induced vortex flow, thereby
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allowing linearized flow theory to be used for this nonlinear flow phenomenon. As a

consequence, theoretical complexity and numerical run time, as well as cost, are

greatly reduced and the limitations of slender-wing conical-flow theories are

overcome. Briefly, this analogy assumes that the normal force associated with the

vortex-induced reattachment of the flow is equal to the leading-edge suction force lost

due to the separation. For detailed descriptions and evaluations of the method, the

reader is referred to Polhamus (1969, 1986), and Lamar and Luckring (1979). This

method provides accurate values of the overall forces and moments until vortex

breakdown or strong interactions between the vortices are encountered.

The free-vortex-sheet theory (FVS) provides, in addition to overall forces and

moments, detailed pressure distributions and accurately accounts for the vortex

interactions. The wing and vortex sheets are modeled with biquadratically varying

doublet panels; thickness effects can be represented with bilinear source panels.

Salient features of this formulation are illustrated in part (b) of figure 4.2 and include:

(1) the free-vortex-sheet which is locally force free and is a stream surface, (2) the fed

sheet which approximates the physics of the vortex core region in a far field sense, (3)

a higher-order near wake which accurately satisfies the trailing-edge kutta condition

by accounting for the effects of nonplanar vorticity, and (4) a trailing wake. Neither the

shape of the three-dimensional vortex sheets nor the distribution of vorticity strength

on them is known a priori, which results in a nonlinear problem requiring iteration

schemes. The initial development work and some early applications are described by

Gloss and Johnson (1976), and a current form of the computer program is documented

by Johnson, et. al. (1980). Extensive validation and application studies have been

carried out, and some are reviewed in the paper by Luckring, et. al. (1982). Additional

improvements to the convergence properties of this method and listings of published

solutions have been presented by Luckring, et. al. (1986).
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Figure 4.3 compares both the suction analogy and free-vortex sheet theoretical

results with the experimental lift of two highly swept delta wings having sharp leading-

edges. The wings selected have leading-edge sweep angles of 70° and 80° and the

experimental data are from Wentz and Kohlman (1971). For clarity the identification of

the various calculated results is split between the two figures. The lift calculated by

the suction analogy is believed to provide the "upper bound" of lift corresponding to an

assumed condition where the cores of the vortices remain essentially along the wing-

leading edges. In addition, the analogy does not account for vortex breakdown effects.

The shaded region between the two theoretical results represents the loss of lift

associated with the actual vortex core trajectories which are modeled in the free-

vortex-sheet theory. There are two major features of these trajectories. First, and

believed foremost, are the vortex-core trajectories in a cross flow plane which, with

increasing angle of attack are in the upward and inward directions until their mutual

interaction forces a spanwise reversal. This condition, defined as "diverging cores," is

taken as a crude measure of the onset of strong vortex interactions or "crowding,"

which hinder flow reattachment to the wing surface thereby causing incomplete

recovery of leading-edge suction as vortex-induced normal force in the context of the

suction analogy. The lift coefficient for which the free-vortex-sheet theory predicts that

the vortex cores begin to reverse their paths and move outboard with increasing angle

of attack is indicated in figure 4.3 by the solid arrows. This "diverging cores" condition

appears to reasonably predict the onset of incomplete suction recovery for both wings

as illustrated in figure 4.3 by the cross-hatched regions representing the loss of lift

relative to the suction analogy predictions.

The second trajectory feature modeled in the free-vortex-sheet theory is the upward

curvature of the vortex cores as they approach the trailing edge. It is believed that its

influence is primarily concentrated near the trailing edge and is secondary to the

"diverging cores" effect. Shown on figure 4.3 by the half-solid arrows are the
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theoretical values of lift coefficient for which vortex instability occurs as defined by the

theory for the critical swirl condition developed by Luckring (1985). It is seen that for

both wings this prediction, which relates to the onset of vortex breakdown, is in good

agreement with the experimental maximum lift coefficient which was shown by Wentz

and Kohlman (1971) to correspond to the condition where vortex breakdown in the

wake has progressed forward to the trailing edge of the wing. With regard to the

maximum lift, the free-vortex sheet theory results shown for the 80 ° delta indicate that

little increase would be expected by eliminating vortex breakdown. However, for the

70 ° delta, which is of more practical interest for supersonic aircraft, the free-vortex

sheet solutions indicate that sizable increases in maximum lift might be attainable

by delaying vortex breakdown. A review of some effects of Reynolds number, sweep

and profile on the lift characteristics of delta wings in the stall region will be presented

in the following sections.

4.2Sharp Leading-Edge Delta Wing Reynolds Number Studies

Because of the interest in delta-type wings for supersonic cruise aircraft where

wave drag tends to dictate relatively sharp wing leading-edges, the sharp leading-

edge delta wing has been selected to be discussed first. In addition, both the

experimental and theoretical results for the sharp edge cases provide informative

"upper bounds" of vortex lift which will also be used in the analysis of the round

leading edge cases in a subsequent section.

4.2.1 Overall lift characteristics

For the sharp leading-edge case separation is, of course, fixed at the leading edge

and little Reynolds number effect on the overall lift would be expected, except for

possible effects of the secondary separation occurring in the outboard directed flow

induced under the primary vortex. It was found in early studies of the vortex flow on

slender, sharp-edge wings that the overall lift was, indeed, essentially independent of

Reynolds number despite the existence of Reynolds number effects associated with
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secondary separation on the surface pressure distributions. This Reynolds number

independence for overall lift is illustrated in figure 4.4 for two leading-edge sweep

angles. The data for the 70° wing was obtained from Gould and Cowdrey (1958), and

for the 76° wing from Lemaire (1965). From these results, which were obtained with

free transition, it is apparent that Reynolds number plays an insignificant role with

regard to overall lift and stall, at least over the Reynolds number and wing sweep

ranges investigated. Inasmuch as transition to turbulent flow along the primary

reattachment line moves forward with both increasing angle of attack (see Hummel

and Redeker (1972) for example), a rather wide variation in transition locations would

be expected to be associated with these results. Pressure data at e_= 25° for the 76°

delta wing, to be discussed subsequently, illustrate these effects and the resulting

sizable redistribution of pressures with Reynolds number in a manner that maintains

essentially constant total lift. Additional total lift data illustrating the insensitivity of the

overall lift to Reynolds number has been published by Peckham (1961).

Also shown in figure 4.4 are the theoretical calculations using the previously

described suction analogy and free-vortex sheet methods. The comparisons of the

two theories with the experimental results in figure 4.4 indicate that they are in

excellent agreement and predict rather accurately the experimental results up to the lift

coefficient corresponding to the theoretical critical swirl discussed above. The low

values of lift predicted by attached flow theory provides a base for illustrating the well

known large increase in lift associated with the vortex flow.

As the angle-of-attack increases beyond the lift coefficient for critical swirl the vortex

breakdown point moves forward resulting in a gentle stall somewhat analogous to the

trailing-edge class of stall which occurs on round edge airfoils as trailing-edge

separation migrates forward from the trailing edge. However, the vortex breakdown

type of stall is independent of Reynolds number over the range studied for these sharp

leading-edge delta wings. As can be seen from figures 4.3 and 4.4 the leading-edge
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vortex flow provides an increase in maximum lift relative to attached flow for these

slender wings.

4.2.2 Secondary-vortex flow

As discussed above, the overall lift of thin, sharp-edge delta wings is essentially

invariant with Reynolds number. For these wings, where the primary separation is

fixed at the sharp leading-edge, regardless of the state of the boundary layer

approaching the sharp-edge from the stagnation line, this invariance is not totally

unexpected. However, flow details associated with the state of the boundary layer on

the wing upper surface can cause rather large variations in the pressure distributions

through effects on the location and strength of secondary vortices and their

subsequent influence on the primary vortices. These vortices occur when the flow

under the primary vortex is swept toward the wing leading-edge by the action of the

primary vortex encounters the adverse pressure gradient near the leading edge, then

separates and rolls up into the so-called secondary vortex. This secondary vortex lies

under, and outboard of the primary vortex core and has vorticity of the opposite sign

relative to the primary vortex. This is illustrated in figure 4.5 by flow sketches and

measured characteristics. The sketch on the left represents, generically, the vortex

flow encountered on a slender sharp-edged delta wing. The primary and secondary

vortices are illustrated on the right hand panel of the wing but are omitted on the left

hand panel in order to facilitate the illustration of a typical transition of the secondary

separation line from a laminar condition in the forward region of the wing to a turbulent

condition (over the rear portion of the wing) which is further outboard. It should be

noted that the size of the secondary vortex is exaggerated for illustrative purposes.

The longitudinal location of this transition is, of course, a function of Reynolds number,

angle of attack, and surface condition and will move forward as the Reynolds number

or angle of attack is increased.
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Shown on the right of figure 4.5 are the results of Lemaire (1965) illustrating the

measured spanwise pressure distributions on the sharp edge 76° delta wing of figure

4.4. The wing has a 5-percent thick biconvex airfoil in the stream direction and the

data was taken at an angle-of-attack of 25° which, as seen from figure 4.4, is well

below the angle for critical swirl which defines the onset of vortex breakdown. For

slender delta wings, spanwise distributions tend to be more informative than

chordwise Ioadings and are used here. The upper surface pressures are plotted in the

spanwise direction at the 25 percent root chord longitudinal location, as seen in the

sketch, for the same Reynolds numbers as for the force data of figure 4.4. Also shown

is the inviscid pressure distribution from the free-vortex-sheet method, described

earlier, to illustrate the general character of the adverse pressure gradient

encountered during the development of the secondary separation under the primary

vortex.

It will be noted that for all the Reynolds numbers tested the deviations from the

pressures calculated by the inviscid free-vortex-sheet theory, which includes only the

primary vortex, indicate two pressure peaks; one inboard, which is under the primary

vortex, and one outboard, under the secondary vortex.

It appears that the results for the Reynolds numbers (based on root chord) of 1.6 x

106 and 3.2 x 106 represent the laminar secondary separation condition with the

suction peaks under both the primary and secondary vortices clearly evident and of

similar magnitude. This is probably due to the fact that the laminar separation occurs

in a high velocity region since it has difficulty penetrating the adverse gradient

(represented by the FVS theory). Thus the secondary vortex strength is greater than it

would be for turbulent separation.

The data for the Reynolds numbers of 4.8 x 106 and 6.4 x 106 illustrate that the

transition to a turbulent secondary separation results in a reduced strength of the

secondary vortex and a corresponding increased strength of the primary vortex. Thus
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the pressure distribution approaches that of the inviscid free-vortex-sheet solution as

Reynolds number increases. It is important to notice that while Reynolds number has

a pronounced effect on the spanwise distribution of the upper surface pressures the

change in lift under the two vortices is such as to maintain a relatively constant upper

surface lift. This is consistent with the results of figure 4.4 which shows the total lift to

be essentially independent of Reynolds number. Thus there seems to be a

conservation of lift, possibly related to the suction analogy, that might be worth further

study. From the lift data it appears that this conservation extends into the stall region.

In connection with the natural transition along the secondary separation line it is of

interest that in a study on a similar delta wing Hummel (1965) concluded that transition

from laminar to turbulent secondary separation, for o_= 25 ° occurred at a constant local

Reynolds number of about 0.75 x 106 based on x. Converting to the model size in

Lemaire's study a value of 3.0 x 106 results which is in relatively good agreement with

figure 4.5. Lemaire (1965) provided a considerable amount of additional data, which

has been utilized by Polhamus (1986) to illustrate, at a more aft station, the non-

conical flow effects, the conservation of lift, etc. Some Reynolds number studies have

also been made by Carcaillet, et. al. (1986) on a 75 ° delta wing.

Finally, it should be mentioned that with regard to the strong effects of secondary

separation on the surface pressure distributions, some evidence that the boundary

layer displacement effects may be important has been generated in a study by Wai et.

al. (1985).

4.2.3 Maximum lift coefficient

This section presents a brief summary of the measured maximum lift coefficients of

slender sharp-edged delta wings along with some of the related information that can

be extracted from the suction analogy and the free-vortex-sheet theory. The results

are presented in figure 4.6 as a function of leading-edge sweep angle.
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Shown by the dashed line is a variation of the maximum lift coefficient as predicted

by the suction analogy which is believed to represent the condition that would occur if

the leading-edge vortex were to remain near the wing surface. Comparison with the

free-vortex-sheet results (solid line) provides an indication of the loss in maximum lift

coefficient, associated with the actual vortex trajectory that occurs above a sweep

angle of about 65°.

The free-vortex-sheet solution for CL,max represents the case where vortex

interactions, with regard to vortex strength, size, and path, are included but where

vortex breakdown and secondary separation is neglected. In order to provide a

"bench mark" relative to vortex breakdown, the dash-dot curve represents the lift

coefficient corresponding to the occurrence of the critical value of the swirl parameter

at the trailing edge which precipitates vortex breakdown. This result was obtained by

Luckring (1985) using the free-vortex-sheet theory and a concept of a critical swirl

angle which defines the vortex instability condition. Above this critical swirl boundary,

the forward migration of vortex breakdown causes reductions in the growth of lift with

angle of attack to occur. It is of particular interest to note that above a leading-edge

sweep angle of about 75° a rather narrow "corridor" is formed between the free-vortex-

sheet solution for CL,maxand the critical swirl boundary. This implies that vortex

breakdown will have a relatively small effect on CL,maxfor these highly swept delta

wings since it occurs very near to the theoretical value of CL,maxwithout breakdown.

The significance of the above observation can been seen from the experimental

values of CL,maxobtained by Wentz (1968) for sharp edged delta wings as shown by

the circular symbols. The experimental values fall within the narrow theoretical

"corridor" in the high-sweep-angle range and the rapid loss of CL,maxwith increasing

sweep in this range can be well predicted with the combination of the two theories.

It appears that in this high sweep range, the presence of secondary separation has

little effect on the maximum lift. In the lower sweep range, the increase in CL,maxwith
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increasing sweep reflects the similar trend in the theoretical values of the lift coefficient

corresponding to the trailing-edge location of the cdtical swirl parameter. In this region

of sweep angles, the theory indicates that large increases in CL, max are available if

design techniques for the delay in vortex breakdown can be developed.

It is important to keep in mind that while the overall lift for these sharp-edged wings

are relatively insensitive to Reynolds number, the aerodynamic load distribution

characteristics are sensitive to Reynolds number through the effects of secondary

separation. Also, it should be pointed out that the secondary separation and resulting

secondary vortex flow can have an influence when designing the planform and

camber lines to optimize a particular aspect of the vortex flow. This, of course, applies

to either fixed geometry wings or for devices such as "vortex flaps." It is important

therefore, that theoretical methods be extended to include high Reynolds number

secondary separation and that consideration be given to obtaining experimental data

at higher Reynolds numbers.

4.3 Round Leading-Edge Delta Wings

It appears that there is insufficient data in the literature to adequately illustrate the

effects of Reynolds number on the lift characteristics in the stall region for delta wings

having round leading-edge airfoil sections and the reader is referred to section 3.3.3

dealing with constant chord sweptback wings. However, data is available which

allows a brief analysis of the effect of wing profile on the stall characteristics of slender

delta wings which will be used to conclude this section on slender delta wings.

4.3.1 Effect of profile

The effects of wing profile for a 76 ° delta planform are shown in figure 4.7. This

figure is similar to one published much earlier by Weber (1955) but has been updated

for the purposes of this paper by using the sharp edge data of Lemaire (1965)

discussed earlier, and by using the suction analogy and free vortex sheet solutions for

the vortex flow upper bound. Results for three profiles (parallel to the plane of
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symmetry) are shown; the 5-percent thick biconvex from Lemaire (1965), and two

round leading edge profiles, an FFA 104-5106 (10-percent thick) from Bemdt (1949),

and an NACA 0012 from Lange/Wacke (1948). The leading-edge radius is indicated

for each airfoil in percentage of the local streamwise chord. It should be noted that the

results shown in figure 4.7 include some relatively small differences in Reynolds

number with the biconvex data being obtained at a root-chord Reynolds number of 1.6

x 106, the FFA 104 at 2.0 x 106, and the 0012 at 2.3 x 106. However, since the sharp-

edge case has been shown to be essentially insensitive to Reynolds number in this

range (see figure 4.4) comparisons of the round-edge cases with the sharp-edge case

represent the profile effect for the Reynolds number associated with the particular

round-edge wing. The comparison of the two round edge wing cases, while

containing some possible Reynolds number effects, at least qualatatively illustrate the

type of effect on vortex lift associated with leading-edge radius.

The reduction in lift as the leading-edge radius is increases is due, of course, to the

reduced magnitude of the adverse pressure gradient at the leading-edge which delays

the turbulent reseparation near the leading-edge thereby delaying the formation of the

leading-edge vortex. This results in a reduction of vortex lift in accordance with the

"conservation of suction" concept discussed by Polhamus (1986).

During the early period of the development and application of the "suction analogy"

to delta wings the possibility, for the round edge case, that the portion of the theoretical

leading-edge suction lost would be recovered as vortex-induced normal force was

explored. It was found that when the experimental values of the vortex-induced

normal force and the remaining leading-edge suction were added, they were

essentially equal to the full theoretical leading-edge suction. This provided an

indication that the conservation of suction implied by the suction analogy for the sharp-

edge wings also applied to the round-edge case. This initial study was not published

at the time but was published several years later, with permission, by Kulfan (1979).
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The first application of the concept to be published was that of Henderson (1976), who

demonstrated experimentally that it applied to a variety of wing planforms.

From the distribution of the theoretical cotangent loading shown in figure 4.1 it is

apparent that the onset of turbulent reseparation for these round edge delta wings and

the resulting vortex expands inboard rather slowly with increasing angle-of-attack.

This, of course, differs greatly from the sharp edge case, discussed earlier, where

separation and loss of leading-edge suction, occurs all along the edge at a very low

angle of attack. Any attempt to apply the various concepts noted in this section

regarding the influence of turbulent reseparation or to extend the "critical swirl" theory

of vortex breakdown to the round edge wings, etc., in order to predict the stall

characteristics is beyond the scope of this paper. However, it should be noted that in

contrast to the two-dimensional airfoil cases discussed in section 1.5 the maximum lift

coefficient for these delta wings is reduced with increasing leading-edge radius due, of

course, to the reduced magnitude of the vortex lift.

5. CONCLUDING REMARKS

This paper presented some selected examples of the effect of Reynolds number on

the low-speed lift characteristics of wings encountering separated flows at their

leading and side edges, with emphasis on the region near the stall. The influence of

leading-edge profile and Reynolds number on the stall characteristics of two-

dimensional airfoils was briefly reviewed, followed by examples of the effects of

Reynolds number and geometry on the lift characteristics near the stall for a series of

three-dimensional wings typical of those suitable for high-speed aircraft and missiles.

Included were examples of the onset and spanwise progression of turbulent

reseparation near the leading edge and illustrations of the degree to which simplified

theoretical approaches are useful in defining the influence of the various geometric

parameters.
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The examples selected and methods of presentation are believed to provide a

convenient source of information useful in the selection of fruitful test cases for the

evaluation of the capabilities of theoretical viscous flow methods based on the Navier-

Stokes equations. Of particular interest in this regard are the Reynolds number effects

on leading-edge turbulent reseparation and the subsequent transition to vortex flow on

swept back and delta planforms. The strong role played by induced camber was

demonstrated and simplified prediction methods were developed which might be

found useful in evaluating its influence on the lift and stall characteristics predicted by

the developing Navier-Stokes type solutions. Finally it should be noted that the

influences of Reynolds number shown may be helpful in designing research programs

for the high Reynolds number wind tunnels.
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6. APPENDIX

The functional representation of the chordwise loading used by Multhopp (1950) is
given by

ACp(_,71)= _,,Lrq°(rl)ctrl)cot(_ / 2)+ n=l_"c--_q"(r/)sin(nO)l

with

¢ = cos-l(1 - 2_)

rl = 2y/b

This functional form was utilized for the modified Multhopp method published by
Lamar (1968). The nondimensional longitudinal gradient for this distribution is

d,_C,,(¢,_)_ d,_C,,(¢,_) de
d(x / c) de d(x / c)

4 _ -qo(rl) _., q,,(rl) ]- zsin¢ Lc(7/)(1---C-_s¢)+ _ cff/) ncos(n@)

Near the leading edge, the dominant contribution to this gradient is due to the
cotangent loading.

The chord-loading series implemented by Lan and Lamar (1977) in the method
used for the present computations is

with
2 _ p,,(r/)ACp((p,r/) = _- = _(_)h n cos(n¢)

hn(_ ) = cos(n(_) + cos((n + 1)_)
sin_

This representation is based upon Chebyshev polynomials as shown by

1 _[Tn(1- 2_) + T,+1(1- 2_) 1hn(_)= 2 :1-_
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where Tn denotes the nth Chebyshev polynomial of the first kind with the argument
1-23. This formulation has been utilized by others and was selected by Lan and
Lamar for certain advantages in resolving a logarithmic singularity correction over the
conventional Multhopp series.

The cotangent loading coefficient, qo, can be extracted from the present loading
form by recognizing

cos(ne) + cos((n + 1)¢)

sine
= cot(e / 2)- 2 _ sin(je)

j=l

from which follows

n=0

q,, = _., - 2pj; n > 1
j=n

The inverse relations are given by

Po = qo + (1/2)q 1

Pn = (1/2)(qn+, - qn); n > 1
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Cr
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Cl,max

q

CL,inf

L,max

CLvse

Cs
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FVS

Kp

Kv,le

Kv,se

F_cr

S

X

xle

7. SYMBOLS

wing aspect ratio, b2/s

wing span

streamwise chord

inflection in profile drag versus o_

chord at wing root (q=0)

average chord

section lift coefficient, lift/qc

section lift coefficient produced by contangent type chord loading

maximum c_

three-dimensional-wing lift coefficient, lift/qs

CL for inflection from attached flow theory

maximum CL

side-edge vortex contribution to CL

vortex-flow induced wing normal force coefficient

leading-edge suction coefficient

minimum pressure coefficient on wing upper surface

free vortex sheet

factor in attached flow lift equation

factor in leading-edge vortex lift equation

factor in side-edge vortex lift equation

leading-edge radius

Reynolds number based on root chord

wing semi-span

wing thickness

longitudinal distance from wing leading edge

leading-edge coordinate
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Xr,I

Xr, s

Y

yc

(_

_crit

A

qo

qn

Z

Cp

distance from L.E. to long bubble reattachment

distance from L.E. to short bubble reattachment

lateral distance from wing centerline

lateral distance from vortex core

angle of attack

angle of attack for turbulent reseparation

leading-edge sweep angle

see figure 2.2(a)

cotangent chordwise loading coefficient

chord-loading coefficient

spanwise station

pressure coefficient, (P-Poo)/qoo

lifting pressure coeffient, Cp, lower - Cp, upper
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