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ABSTRACT

Purpose: The metabolic and environmental factors influencing renal stone formation before,

during, and after Space Shuttle flights were assessed. We established the contributing roles of

dietary factors in relationship to the urinary risk factors associated with renal stone formation.

Materials and Methods: 24-hr urine samples were collected prior to, during space flight, and

following landing. Urinary factors associated with renal stone formation were analyzed and the

relative urinary supersaturation ratios of calcium oxalate, calcium phosphate (brushite), sodium

urate, s_mvite and uric acid were calculated. Food and fluid consumption was recorded for a 48-

hr period ending with the urine collection•

Results: Urinary composition changed during flight to favor the crystallization of stone-forming

salts• Factors that contributed to increased potential for stone formation during space flight were

significant reductions in urinary pH, and increases in urinary calcium. Urinary output and citrate,

a potent inhibitor of calcium-containing stones, were slightly reduced during space flight. Dietary

intakes were significantly reduced for a number of variables, including fluid, energy, protein,

potassium, phosphorus and magnesium.

Conclusions: This is the first in-flight characterization of the renal stone forming potential in

astronauts. With the examination of urinary components and nutritional factors, it was possible to

determine the factors that contributed to increased risk or protected from risk. In spite of the

protective components, the negative contributions to renal stone risk predominated and resulted in

a urinary environment that favored the supersaturation of stone-forming salts. The importance of

the hypercalciuria was noted since renal excretion was high relative to the intake. Dietary and
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pharmacologic therapies need to be assessed to minimize the potential for renal stone formation in

astronauts during/after space flight.

\
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Characterizing the effects of space flight on renal-stone formation is important to the National

Aeronautics and Space Administration (NASA) because of the prevalence of this disease in the

general population (-20% worldwidel), the severity of the syTnptoms that would require a

mission abort, and the likelihood that certain physiologic reactions to space flight could increase

the risk of stone formation.

Renal stones can consist of calcium oxalate, calcium phosphate, uric acid, cystine, and

struvite; more than 75% of all formed stones contain calcium. Stone formation typically is the

result of hypercalciuria, hyperphosphaturia, hyperoxalauria or hypocitraturia. 2'3 Several

physiologic reactions to space flight affect urine composition in ways that influence the potential

for renal-stone formation. One such reaction is bone loss, manifested by increased calcium

excretion and negative calcium imbalance. 4"6 The high amounts of urinary calcium noted during

Gemini, Apollo, Skylab and Space Shuttle missions 4"8 logically would increase the risk of stone

formation even in the absence of other physiologic or environmental factors. Other factors also

present that would potentially enhance this risk include in-flight increases in urinary phosphate

concentrations,4-9; decreased fluid intake and vomiting, which will reduce urine volume, 4 and are

associated with space motion sickness (especially early in flight). 10 Citrate, a potent inhibitor of

calcium-containing stones, has never been quantified during space flight, but we found it to be

substantially decreased immediately after flight relative to before. 11 This same study showed that

astronauts are at greater risk of forming calcium-oxalate and uric-acid stones immediately atter

flight, 11 but the influences of readaptation to 1-g could not be ruled out without in-flight

measurements.

Dietary factors also play a key role in the development of renal stones. For example, high-

protein diets are known to increase urinary calcium and uric acid and decrease urinary, citrate. 12

Oxalate from dietary,, sources may, be even more lithogenic than dietary calcium, especially under
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conditions of calcium restriction. Reducing calcium intake enhances oxalate absorption by the

_astrointestinal tract, which increases calcium-oxalate supersaturatio n-13 Dietary sodium also

may pose risks for hypercalciuria, since high sodium intake leads to increases in urinary sodium

and calcium, which elevate the risk of sodium urate and calcium-containing stones. Because many

Space Shuttle foods are preserved with salt and each crewmember may select their own diet

menu, sodium intake could exceed 8 grams per day, and thus could potentially exacerbate the

renal-stone risk during flight. Another key factor in stone risk is low fluid intake, which is

associated with low urine volume and correspondingly high concentrations of stone-forming salts.

Increasing fluid intake --and thus urine volume-- has been shown to bring urinary risk factors

under the upper limit of metastability for solubility of stone-forming salts. 14,15

The study reported here is the first to characterize the risk of forming renal stones during

exposure to microgravily. Both urinary components and dietary factors were assessed in an

attempt to clarify which variables contribute to the increased risk of renal-stone formation, and

eventually to allow development of countermeasures that minimize this risk.

4
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MATERIALS AND METHODS

Subjects

This study was approved by the Johnson Space Center Human Research Policies and

Procedures Committee, and all subjects gave informed consent before participating. Six male

astronauts (mean age, 42.5 y, range 36-49; mean weight 76.8 kg, range 65.7-87.7), who flew on

Space Shuttle missions ranging from 11 to 16 days, volunteered for the study.

Urine Collection

Each crewmember collected urine during two 24-h periods before launch, the last within 10

day's of launch. During flight, void-by-void urine samples were collected early in the mission (on

flight days 3-4) and late in the flight (2-4 days before landing). After landing, urine again was

collected for two 24-h periods, once on landing day and once 7 to 10 days thereafter.

Urinary factors associated with renal-stone formation were analyzed by using the methods

listed in Table 1, which are described in detail elsewhere. 11 Briefly, preflight and postflight

samples were collected into containers and stored at about 4"C. At the end of each period, the

contents were mixed and decanted into a graduated cylinder for total volume and pH

measurements. A 10 ml aliquot was removed for biochemical analyses. A second 10 ml aliquot

was acidified with 6 M hydrochloric acid for the analysis &citrate, oxalate and sulfate. Two

additional aliquots were removed and thymol and thimerosal were added to serve as controls for

the room temperature storage of the in-flight controls.

During flight, crewmembers collected urine in specially designed collection devices that

contained 1.0 mL of 2.5 M lithium chloride as a volume marker• After mixing the contents well,

crewmembers withdrew -7-mL a}iquo',s, placing them into tubes containing 0.05% thymol or

0.1% thimerosal, and stored at ambient temperature for the remainder of the flight. Upon return

5
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to Earth, the aliquots were sent immediately to the Johnson Space Center Biochemistry

Laboratories and 24-h pools constructed.

Dietary Monitoring

Before and after flight, crewmembers maintained daily handwTitten logs of food and fluid

consumption for four 48-h periods, i.e, for 24 hours before and 24 hours during each urine-

collection period. During flight, consumption of food and fluid was monitored according to the

same schedule, but subjects used an automated bar-code scanning system in with each individually

packaged food item labeled.

The in-flight diet was designed to meet the Recommended Dietary Allowances (RDAs) as

established by the Food and Nutrition Board nutritional recommendations (Table 2). Neither diet

nor activity level wel:.e restricted from each individual's normal pattern (during any of the

sampling periods). In-flight consumption data were stored in the barcode reader and downloaded

after landing. Nutrient content &the preflight and postflight foods was calculated with the

Minnesota Nutrition Data System (NDS) soft-ware Program 2.8, developed by the Nutrition

Coordinating Center (NCC), University of Minnesota, Minneapolis, MN (Food Database version

10A Nutrient Database version 25). Nutrient content of the in-flight foods were calculated from

food chemical data generated by the Johnson Space Center Water and Food Analytical

Laboratory.

Fluid intake was ad lib during all sampling periods. However, all crewmembers consumed the

equivalent of normal saline (in the form of salt tablets swallowed with water) about 90 minutes

before landing as part of an established protocol to minimize orthostatic intolerance on re-

exposure to gravity.

<< Table 1 to be inserted about here >>
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Statistics

Statistical tests included one-way repeated analysis of variance, with significance located by

Dunnett's post hoc test. Statistical significance was accepted at the 0.05 level.

Statistical analyses was completed using SigmaStat statistical software (Jandel Scientific, San

Rafael, CA.). All data reported as means +/- SEM.
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RESULTS

Urinar-;y" variables for the 6 crewmembers studied are listed in Table 2. Despite the small

number of subjects, significant changes were noted in urinary pH, calcium, potassium, uric acid,

and the relative supersaturation ratio of calcium oxalate and brushite. Phosphate, magnesium,

oxalate and sulfate were unchanged during space flight. Slight but statistically nonsignificant

changes that contributed to the overall _;alculated relative urinary supersaturation ratios included

decreased urinary volume and decreased citrate.

.Ml six crewmembers had lower in-flight 24-hour urine volumes than preflight although this

decrease was not statistically significant. Total urine volume decreased during the early in-flight

phase, from 1.676 L/d before flight to 0.797 L/d during the early in-flight sampling period.

Postflight urine volume was equivalent to preflight volume.

Although urinary pH seemed to decline during flight, the drop did not reach statistical

significance until landing day (preflight, 6.01 vs. landing-day, 5.14). pH had returned to the

preflight value by 7-10 days after landing.

Urinary calcium levels increased during the space flight for all crewmembers with a significant

increase at the end of the flight as compared to preflight. Individual variation among subjects was

large, with preflight concentrations ranging from 38 to 253 mg/d, and early in-flight values

ranging from 73 to 197 mg/d. (No data were available from one subject during the early in-flight

period.) Calcium excretion had increased slightly by the late in-flight period (222!34 rag/d, n.s.),

but the difference did not reach significance until landing day (245+70 mg/d). Urinary potassium

was significantly less during early flight than before (1439 +256 mg/d during vs. 2620-_308

before), and returned to preflight levels after landing. Urinary citrate during flight may have been

_ower than before flight, but the difference was not statistically significant

8
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<< Table 2 to be inserted about here >>

Relative urinary, supersaturation ratios were calculated from the results listed above (Table 2)

using the methods of Finlayson. 16 These ratios represent the difference from a normal non-stone-

forming population• Relative supersaturation ratios of calcium oxalate, brushite (calcium

phopshate), sodium urate and uric acid rose into the increased-risk range (> 2.0) for renal-stone

formation during the early in-flight period ('Figure 1). (Relative supersaturation values <2 for

calcium oxalate, brushite, sodium urate and uric acid saturation and <75 for struvite are in the

"low" risk category.) The ratio of calcium oxalate supersaturation significantly increased

compared to preflight (1.52-_:0.4) during the early in-flight period (2.95+0.65) and remained

significantly elevated throughout the remainder of the space flight (2.78+0.47). The ratio of

calcium oxalate supersaturation remained in the high risk range (> 2.0) on landing day but was not

statistically different than preflight. The risk ofbrushite stone formation was similar to the risk

observed for calcium oxalate with levels significantly rising during flight and returning to preflight

levels following space flight. The risk of sodium urate and uric acid stone formation increased

into the high risk range during the space flight, although the increase was not statistically

significant.

The dietary factors that most directly influence renal-stone risk factors are listed in Table 3.

Consumption of both fluid and energy (kcal/day) were substantially less during the in-flight

periods (45-48% decrease for fluid and 36-46% decrease for energy). A comparison of fluid

intake vs. urine output is illustrated in Figure 2. Significant differences in these parameters as

compared to before flight were noted for dietary fluid intake throughout the space flight. On

landing day, both fluid intake and energy intake still were lower than before flight. However,

interpretation of the landing day data should be viewed with caution considering diet records may

be incomplete due the hea_), schedule of activities associated with Shuttle landing procedures.

9
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Consumption of protein, potassium, phosphorus, and magnesium during flight also was lower

than before. No significant differences were noted among sampling periods in consumption of

oxalate, sodium, or calcium, although there tended to be a decrease in all of the parameters,

consistent with decreases in energy consumption. A comparison of ingested calcium vs. urinary

calcium excretion is illustrated in Figure 3. ]n this case, urinary calcium during the late in-flight

phase is elevated as compared to the preflight control, even though ingested calcium levels are

below preflight ingestion•

<< Table 3 to be inserted about here >>
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DISCUSSION

This study is the first to characterize renal stone-forming potential in astronauts during space

flight. In addition, the concurrent examination of the nutritional components allowed us to

establish the role of various environmental risk factors associated with space flight.

The renal-stone profile developed by Finlayson 16 to calculate ionic equilibria in urine is used

extensively to estimate the relative supersaturation ratio in urine 17 and was used in this study to

examine the effects ofmicrogravity on renal stone risk. This risk profile allows assessment of

urinary conditions that favor or inhibit crystal formation. Once a crystal has formed, growth and

aggregation may cause the formation of renal stones. Estimates of the degree of urinary

saturation ratios of calcium phosphate, calcium oxalate, and uric acid are used clinically with

patients with disorders of calcium metabolism to evaluate their probability of forming stones. 17

The relative urinary supersaturation ratios of the six subjects examined here was in the low-risk

range for renal-stone formation during the preflight period (Figure 1).

Our previous study of astronauts immediately after flight, 11 indicated that the ratios of

supersaturation for calcium oxalate and uric acid saturation were elevated alter flight as compared

to the preflight controls. However, the much lower subject number in this study (6 as compared

to 86) probably contributed to the nonsignificance of these increases immediately after landing.

Thus, even though these changes immediately after flight in this current study did not indicate a

significant change, the trend for elevated ratios of calcium oxalate and uric acid is similar to that

observed previously with a much larger study group.

The relative supersaturation ratios of calcium oxalate and brushite were greater during flight

.:han before even in this small stud), group. Factors that contributed to this risk included increased

u_nar)" calcium (late in flight and on landing day), decreased urine volume (early and late in

11
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flight), and decreased citrate (in flight and on landing day). Although urinary, calcium --and

perhaps phosphate-- had decreased by the initial in-flight phase, bmshite risk was significantly

elevated at that time, probably because of the combination of the diminished urine volume and

urinary citrate and the elevated calcium. Thus, even though the changes in urine volume and

citrate were not statistically significant in this small group during space flight, the decreases

contributed to the overall greater stone-forming potential. The relative supersaturation ratios of

calcium oxalate and brushite remained above the preflight levels during the late in-flight phase

Upon return to l-g, the relative supersaturation ratio of brushite declined to below preflight

levels, a finding consistent with our previous observations. 11

The uric acid saturation ratio may have increased during the early in-flight and the immediate

postflight phases, though not significantly. The reduction in urine volume (early in flight) and the

significant decrease..in urinary pH (on landing day) may have contributed to a relative increase in

risk, despite a drop in uric acid concentration early in fright. The trend toward higher relative

supersaturation of uric acid and the lower urinary pH immediately after flight are consistent with

the our previous observations in a much larger study group. 11

Energy for metabolism, growth, physical activity, excretory processes, and thermal regulation

is supplied by the diet; that which the body does not need is stored or excreted. Consumption of

fluid, protein, calcium, oxalate, and sodium may play important roles in developing or treating

renal stones. 18,19 Consuming large amounts of fluid increases urinary output, which decreases

the saturation of the stone-forming salts. For example, a daily urine volume of 2 L or more is

typically prescribed for those individuals who have previously formed stones, requiring the

ingestion of approximately 3 L of fluid. Although increasing urine volume decreases the risk of

stone formation, no evidence exists to support the idea that a high fluid intake would decrease the

urinary concentrations of renal-stone inhibitors. 12,15 In the present study, the substantial drops in

energy and fluid consumption during flight relative to before may reflect an association between

12
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meals and fluid intake and may suggest that little fluid was consumed between meals (Figure 2).

This relationship between meals and fluid ingestion is the result of the fact that most space flight

foods are rehydrated with water before consumption and this fluid accounts for a large percentage

of the total ingested fluid. Reductions in energy., protein, and fluid consumption early during

flight may have resulted from symptoms of space motion sickness (not reported), suppressed

appetite, or hea_2¢ work schedules. Fluid intake on landing day still was less than that before

flight, but had increased to preflight levels by 7-10 days after landing.

High calcium intake has long been thought to contribute to the formation of calcium-

containing stones: in fact, restrictions on calcium have been prescribed to lower urinary calcium

concentrations. However, recent evidence reveals that a diet low in calcium may increase the risk

of calcium oxalate stones through increased gastrointestinal absorption of oxalate. 21 If dietary

calcium is excessive, healthy individuals excrete the excess in urine. Because space flight induces

both bone loss and the resultant hypercalciuria, astronauts are assumed to be at higher risk for

renal stones. In this study, large individual differences in calcium intake may have obscured a

general tendency for intake to decline during flight. However, urinary calcium concentration

seemed to be independent of intake during the late in flight phase in this study (Figure 3). This is

consistent with expectations of urinary calcium increases resulting from the space flight-induced

bone loss, independent of dietary ingestion of calcium.

Diets high in animal protein also are known to increase urinary concentrations of calcium,

oxalate, and uric acid, as well as decreasing the urinary excretion of citrate and lowering the pH

of the urine. These changes increase the risk of calcium-oxalate and uric-acid stone

formation. 12,22,23 .Although the putative decline in in-flight calcium consumption in the

crewmembers studied here was not statistically significant, their energy intake was far below the

recommended 1000-1200 rag/d, with a correspondingly low protein ingestion. Thus, in this

study, it does not appear that dietary protein and oxalate were significant factors in renal stone

13
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risk. However. in the future, with the potential resolution of the energy intake (increasing to the

recommended daily average) there may be an increase in the stone forming-potential caused by

higher protein/oxalate diets.

Dietary sodium also promotes renal-stone development. Dietary sodium intake has been

correlated in several studies with increased urinary, calcium, sodium and reducing urinary

citrate. 12,24 Sodium intake during the preflight period was over the upper limit established by

NASA for the astronauts and tended to decrease during flight similar to enerm,.' intake. However,

the correlation between urinary and dietary sodium is not consistent on landing day. Even though

dietary' sodium is equivlaent to preflight, there is a tendency for urinary sodium to decrease in this

group of 6 subjects. Previous studies have demonstrated a significant sodium retention during

landing day and the early phases of recovery. 4,11 In this study, urinary sodium was statistically

greater 7 to 10 days after landing as compared to preflight levels. Recovery results after previous

space flights have varied; however, the 9 Skylab crewmembers and 4 subjects on the SLS-1

mission demonstrated a similar pattern, decreasing initially and then increasing above preflight

values.4, 9 On the other hand, urinary sodium in 3 subjects on SLS-2 did not decrease on landing

day nor increase thereafter, although postflight concentrations were higher than preflight ones. 9

By contrast, diets high in potassium or magnesium may provide beneficial effects with regard

to stone formation. Potassium generally indicates that a subject is ingesting more alkali (e.g.

citrus fruits), which would typically result in increased urinary citrate. 20 Magnesium has been

shown to inhibit renal-stone formation by directly complexing with oxalate, reducing the risk of

calcium oxalate stones. 25 In our study, dietary potassium and magnesium were significantly less

during flight and immediately after as compared to before flight, but returned to preflight levels by

7 days after landing. A parallel decrease in the urinary potassium concentration was noted,

however, urinary magnesium did not change over the course of the study. Thus, lower potassium

levels, but not magnesium, contributed to the stone-forming potential exhibited by the astronauts

14
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during short-term space flight. Longer duration impacts of decreased ingestion of dietary

magnesium may further exacerbate risk assessments on extended duration space flights since the

magnesium stores in the bone may be altered/depleted

Probably the key dietary, influence on renal-stone risk during flight was the very low fluid

intake, which resulted in correspondingly low urine volumes. Urinary output decreased by 22-

52% during space flight. In fact, immediate postflight results indicate those crewmembers voiding

2 L or more of urine on landing day are all within the low risk range for stone-forming potential

(\x&itson et al., unpublished data). While fluid intake prescriptions could potentially

alleviate/minimize the in-flight risk as well, there are considerably more physiologic changes that

have a negative impact which occur during space flight, as compared to postflight, including

metabolic changes that result in hypercalciuria and hypocitraturia. Thus, hydration alone may not

be completely effective at eliminating the renal stone-forming risk associated with space flight.

15
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CONCLUSIONS

The complexity, expense, and visibility of the human space flight program necessitates that

every effort be made to ensure the success of each mission and protect the crewmembers from

unwarranted risk. Having a better understanding of the risk factors involved in stone formation

during space flight will allow the development of a means to alleviate/minimize some of these

risks. Our results clearly indicate that exposure to microgravity changes the urinary chemical

environment so as to favor supersaturation of stone-forming salts, including calcium oxalate and

bmshite. The increased risk seems to take place quickly upon exposure to microgravity, and to

continue throughout space flights of 11-16 days.

Because dietary factors, especially fluid intake, or pharmacologic intervention can significantly

influence the urinary chemical composition, countermeasures to minimize the risks of renal-stone

development during space flight should be pursued. In addition, correcting the low dietary intake

of crewmembers to recommended levels will have to take into account the potential negative

effects on the urinary chemical composition and the potential increased risk for renal stone

formation. Hydration therapy should be proposed to all crewmembers as a means to reduce the

urinary concentration of the stone-forming salts. Potassium citrate also could be used to raise the

urinary pH and increase the urinary citrate concentration for short duration missions. For long

space missions (>30 days), consideration should be given to bisphosphonate therapies to alleviate

hypercalciuria and to minimize microgravity-induced bone loss.
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Table 12. Nutritional Recorrunendations (RDAs*) for Cre,alnembers During Space Flight

Energy':

Protein:

Men (30-60 y): 1.7(11.6W+879) kcalJday

Women (30---40 ?): 1.6(8.7W + 829) k"cal/d

,.,,here W = v,eight in kg; e.g., a 70-kg man would need 2875 kcal/d

12-15% of total calories; e.g., a ?0-kg crewanember would need 86-108 g;d

Short-Term Missions * Missions > 30 days **

Fluid: At least 2000 mL/d At least 2000 mL/d

Calcium: 800 mg/d 1000-1200 mg/d

Sodium: < 3500 mg/d < 3500 mg/d

Potassium: 3500 mg/d 3500 mg/d

Magnesium: 350 mg/d (.males) 350 mg/d

280 mg/d (females)

¢

* RDA, Recommended Daily Allowances as determined by National Research Council, Food and Nutrition Board,

10 ta Edition, 1989.

** NASA Nutritional Advisory Committee, 1995.
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Table 2. Renal-Stone Risk-Assessment Profile for Six Male Astronauts Before, During, and After 11- 1o 16-Day

Space Shmlle Missions

Before Earl)' In Late in Landing 7-10 Days Signif-

Flight Flight Flight Day .after Landing icance

Total volume (L/d) 1.676 (0.09) 0.797 (0.08) 1.303 (0.17) 1.524 (0.35) 1.572 (0.31) ns

pH 6.01 (0.18) 5.95 (0.19) 5.92 (0.13) 5.14 (0.05)* 6.09 (0.14) p < 0.05

Calcium (rag:d) 166.2 (32.7) 131.8 (22.0) 221.8 (34.4) 245.2 (70.2: 227.1 (50.0) p < 0.05

Phosphate (rng/d) 884.8 (110) 822.8 (170) 920.5 (104) 678.0 (165) 933.2 (166) ns

Oxalate (mg/d) 32.1 (4.6) 27.2 (2.7) 31.0 (2.4) 23.4 (3.6) 28.5 (5.4) ns

Sodium (rag/d) 2597 (443) 1807 (104) 2127 (285) 1704 (410) 4029 (654)* p < 0.05

Potassium (rag/d) 2620 (308) 1439 (256)* 1675 (177)* 1713 (395) 2157 (331) p < 0.05

Magnesium (m_d) 93.5 (6.6) 89.2 (6.0) 101.8 (10.3) 71.2 (13.3) 97.8 (9.7) ns

Citrate (mg/d) 717.7 (115) 468.8 (109) 522.3 (66) 456.3 (82) 671.3 (148) ns

Sulfate (mmol/d) 20.8 (1.7) 13.3 (1.8) 20.7 (2.4) 21.9 (3.9) 17.0 (2.2) ns

Uric Acid (mg/d) 593.5 (49.0) 321.6 (32.3) 454.3 (72.4) 267.2 (74.2)* 556.2 (63.7) p < 0.05

Creatinine (mg/d) 1621 (159) 1237 (182) 1408 (61) 1598 (195) 1710 (152) ns

CALCULATED RELATIVE SUPERSATURATION

Calcium Oxalate 1.52 (0.40) 2.95 (0.65)* 2.78 (0.47)* 2.07 (0.40) 1.60 (0.28) p < 0.05

Brushite 1.11 (0.32) 2.20 (0.32)* 2.10 (0.43)* 0.32 (0.07) 1.92 (0.31) p < 0.05

Sodium Urate 1.83 (0.47) 2.66 (0.50) 1.77 (0.42) 0.66 (0.42) 3.59 (0.88) ns

Struvite 1.29 (0.78) 3.46 (1.44) 0.99 (0.28) 0.05 (0.04) 1.05 (0.32) ns

Uric Acid Saturation 1.96 (0.69) 2.31 (0.75) 1.68 (0.31) 2.84 (0.76) 1.21 (0.38) ns

Aslensk denoles significant differences from before flighk p<0.05.

23

............. .. .._:. ....... . . "'"-': .". ......777" : ?'777:7'"_ S'2.",7--"7"'I 7"77............................................. '_



U.S. Gov t

Values for before flight are the means (± SEM) from _'o separate preflight urine-collection sessions. All othcr values are

the average of 6 subjects tcxcepl early in-fiight, n=5).
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Table 3 Nutrient Consumption in Six Male Cre,_anembers Before, During, and After 11- to 16-Da.v

Space Shuttle Missions

Before Earl)' In Late in Landing 7-10 Days

Flight Flight Flight Day After Landing

Fluid (,g/d) 3127 (211.1) 1632 (91.3)* 1704 (219.1)* 2499 (265.5) 2403 (236.5)

Ener_' (kcal/d) 2752 (278.6) 1485 (179.2)* 1754 (187.4)* 1733 (306)* 2323 (316)

Prolein (b,'d) I10 (13.3) 41.9 (6.3)* 67.1 (11.9) 51.8 (7.5)* 9(I.9 (10.9)

Oxalate (mg/d) 193.6 (62.1) 138.8 (37.5) 164.8 (53.4) 133.4 (66.7) 156.5 (50.1)

Sodium (rag/d) 3666 (374.4) 2292 (414) 2714 (405.8) 3501 (286.1) 3711 (623)

Potassium (rag/d) 3644 (407.7) 1101 (155.4)* 1536 (225.8)* 1859 (208.2)* 3003 (368.9)

Calcium (mg/d) 905 (207.2) 450 (67.9) 523 (37.5) 705 (105.5) 918 (232.9)

Phosphorus (rag/d) 1572 (284.9) 616 (112.1)* 887 (102.1)* 1043 (43.8) 1386 (210.0)

Magnesium (rag/d) 398 (70.3) 161 (35.5)* 215 (32.4)* 205 (8.7)* 312 (22.7)

Data shown are the 48-h mean (+ gEM) dietary intake for 24 hours before and during the 24-h urine-collection

period. Asterisk indicates significantly different than before flight (p < 0.05).
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FIGURE LEGENDS

Figa_re 1. Urinary. supersaturation of calcium-containing stone-forming salts in 6 male Space

Shuttle crewmembers before flight (PRE), early (E-FLT) and late (L-FLT) in

flight, on landing day (R+0), and 7-10 days aker landing (R+7-10). Data are

means vdth standard error bars. * Significantly different from before flight, p <

0.05. The horizontal line indicates the transition from low risk stone forming

potential to high risk.

Figure 2. Fluid intake and urine output in 6 male Space Shuttle astronauts before flight

(PRE), early (E-FLT) and late (L-FLT) in flight, on landing day (R+0), and 7-10

days alter landing (R+7-10). Data are means with standard error bars.

*Significantly different from before flight, p < 0.05.

Figure 3. Calcium intake and urinary excretion in 6 male Space Shuttle astronauts before

flight (PRE), early (E-FLT) and late (L-FLT) in flight, on landing day (R+0), and

7-10 days after landing (R+7-10). Data are means with standard error bars.

*Significantly different from before flight, p < 0.05.
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