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Summary 
The research work has advanced the inversion-based guidance theory for: 

systems with non-hyperbolic internal dynamics; 

0 systems with parameter jumps; and 

0 systems where a redesign of the output trajectory is desired. 

Non-hyperbolic Internal Dynamics 
A technique to achieve output tracking for nonminimum phase linear systems 
with non-hyperbolic and near non-hyperbolic internal dynamics was devel- 
oped [I]. This approach integrated stable inversion techniques, that achieve 
exact-tracking, with approximation techniques, that modify the internal dy- 
namics to achieve desirable performance. Such modification of the internal 
dynamics was used (a) to remove non-hyperbolicity which is an obstruction 
to applying stable inversion techniques and (b) to reduce large preactuation 
times needed to apply stable inversion for near non-hyperbolic cases. The 
method was applied to an example helicopter hover control problem with 
near non-hyperbolic internal dynamics for illustrating the trade-off between 
exact tracking and reduction of preactuation time. 
Future work will extend these results to guidance of nonlinear nonhyperbolic 
systems. 

Systems with Parameter Jumps 
The exact output tracking problem for systems with parameter jumps was 
considered [2]. Necessary and sufficient conditions were derived for the elim- 
ination of swit ching-introduced output transient. While previous wor.ks had 
studied this problem by developing a regulator that maintains exact track- 
ing through parameter jumps (switches), such techniques are, however, only 
applicable to minimum-phase systems. In contrast, our approach is also ap- 
plicable to nonminimum-phase systems and leads to bounded but possibly 
non-causal solutions. In addition, for the case when the reference trajecto- 
ries are generated by an exosystem, we developed an exact-tracking controller 
which could be written in a feedback form. As in standard regulator theory, 
we also obtained a linear map from the states of the exosystem to the de- 
sired system state, which was defined via a matrix differential equation. The 



constant solution of this differential equation provided asymptotic tracking, 
and coincided with the feedback law used in standard regulator theory. 
Future work will extend these results to nonlinear systems and generalize 
these results to hybrid systems. 

Out put Trajectory Redesign 
We studied the optimal redesign of output trajectory for linear invertible sys- 
tems [3,4]. The specified output trajectory uniquely determines the required 
input and state trajectories, that are found through inversion. These input- 
state trajectories exactly track the desired output, however, they might not 
meet accept able performance requirements. For example, the required in- 
puts might cause actuator-saturation during an exact tracking maneuver (as 
in the flight control of conventional take-off and landing aircraft). In such 
situations, a compromise is desired between the tracking requirement and 
other goals like reduction of internal vibrations and prevention of actuator 
saturation - i.e., the desired output trajectory needs to be redesigned. 
We posed the trajectory redesign problem as an optimization of a general 
quadratic cost function, and solved it in the context of linear systems. 
Future work will be aimed at extending these results to the nonlinear case 
and at developing algorithms for practical implementation. 
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Abstract - A technique to achieve output tracking for nonminimum phase linear sys- 

tems with non-hyperbolic and near non-hyperbolic internal dynamics is presented. This 

approach integrates stable inversion techniques, that achieve exact-tracking, with approx- 

imation techniques, that modify the internal dynamics to achieve desirable performance. 

Such modification of the internal dynamics is used (a) to remove non-hyperbolicity which is 

an obstruction to applying stable inversion techniques and (b) to reduce large preactuation 

times needed to apply stable inversion for near non-hyperbolic cases. The method is applied 

to an example helicopter hover control problem with near non-hyperbolic internal dynamics 

for illustrating the trade-off between exact tracking and reduction of preactuation time. 

1 Introduction 

Precision output tracking controllers are needed to meet increasingly stringent performance 

requirements in applications like flexible structures, aircraft and air traffic control, robotics, 

and manufacturing systems. While perfect tracking of minimum phase systems is relatively 

easy to achieve, output tracking of nonminimum phase systems tends to be more challenging 

due to fundamental limitations on transient tracking performance [I]. This poor transient 

performance has been mitigated by using preactuation in the stable-inversion based ap- 

proaches for nonminimum phase systems [2, 3, 4, 51. However, the required preactuation 

time (during which most of the preactuation control effort is required) is large if the zeros of 

a linear system that lie on the open right half of the complex plane are close to the imagi- 

nary axis. In the limiting case, with the zeros on the imaginary axis (non-hyperbolic internal 

dynamics), presently available inversion-based techniques fail because the preactuation time 



needed becomes infinite. In this paper we present a design technique for output tracking of 

linear non-minimum phase systems, which have non-hyperbolic and near non-hyperbolic non- 

minimum phase internal dynamics. This technique is then applied to an example helicopter 

hover control and simulation results are presented. 

Output tracking has a long history marked by the development of regulator theory for 

linear systems by Francis and Wonham [6] and generalized to the nonlinear case by Byrnes 

and Isidori [7]. These approaches asymptotically track an output from a class of exosystem- 

generated outputs. Further, the Byrnes-Isidori regulator has been extended in [8, 91 and 

computational issues have been studied in [lo, 111. Although nonlinear regulator design is 

computationally difficult, the linear regulator is easily designed by solving a manageable set 

of linear equations. A problem, however, with the regulator approach is that the exosystem 

states are often switched to describe the desired output - this leads to transient tracking- 

errors after the switching instants. Such switching caused transient errors can be avoided by 

using inversion-based approaches to output tracking [4, 121. Thus, it is advantageous to use 

inversion-based output tracking when precision tracking of a particular output trajectory is 

required. 

Inversion, which is key to our approach, was restricted to causal inverses of minimum 

phase systems in the early works by Silverman and Hirschorn (e.g., [13, 141) because they 

lead to unbounded inverses in the nonminimum phase case. Di Benedetto and Lucibello [15] 

considered the inversion of time varying nonminimum phase systems with a choice of the 

system's initial conditions. Instead of choosing initial conditions, preactuation was used by 

noncausal stable inversion techniques developed in [2, 3, 4, 16, 51. Such noncausal inverses, 

which require preactuation, have been successfully applied to  the output tracking of flexible 

2 



structures [17, 181 and aircraft and air traffic control 119, 201. However, the fundamental 

limitation of presently available inversion- schemes is that they fail if the internal dynamics 

is non-hyperbolic. Even when the internal dynamics is hyperbolic, if the right-half-plane 

zeros of the system are close to the imaginary axis (the near non-hyperbolic case) then 

the required preactuation time tends to become unacceptably large. In summary, output 

tracking remains a challenge for-nonminimum phase systems with non-hyperbolic or near 

non-hyperbolic internal dynamics. 

There are several approximation based output tracking techniques, where the central 

philosophy is to replace the internal dynamics with a dynamics that provides satisfactory 

behavior, and then to develop the controller based on the altered system [21, 22, 231. The 

technique most relevant to this paper is developed by Gopalswamy and Hedrick [23] - where 

trajectory modifications are considered to stabilize the internal dynamics. This technique, 

however, requires hyperbolicity of the internal dynamics for computational purposes. The de- 

velopment of computational techniques for stable inversion (e.g., [16]) motivates the present 

integration of the stable inversion scheme with approximation techniques - especially for sys- 

tems with non-hyperbolic internal dynamics where the existing stable-inversion techniques 

fail. However, instead of stabilizing the unstable internal dynamics, we only aim to modify 

the non-hyperbolic behavior with a small perturbation of the internal dynamics. Addition- 

ally, in nonminimum phase systems with near non-hyperbolic internal dynamics the present 

approach allows a tradeoff between the precision tracking requirement and the amount of 

. preactuation time, needed to apply the stable inversion based output tracking technique. 

The approximate inversion-based technique is developed in Section 2 and the technique 

is applied to a helicopter hover control example in Section 3, where simulation results are 
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discussed. Our conclusions are in Section 4. 

2 Stable Inversion 

2.1 Inversion-Based Output Tracking Scheme 

Here we describe how the inversion approach is used to develop output tracking controllers. 

Consider a linear system described by 

x(t) = A x(t) + B u(t) 

~ ( t )  = C x(t) 

which has the same number of inputs as outputs, u(t), y(t) E % p ,  and x(t) E ?Rn. Let yd(.) be 

the desired output trajectory to be tracked. Then in the inversion-based approach we, first, 

find a nominal input-state trajectory, [uff(-), xref (-)I  that satisfies the system equations (1) 

and yields the desired output exactly, i.e., 

r e )  = Axref(t) + B u f f ( t )  I v t  E (-oo, oo) 

~ d ( t )  = C  ref (t) 

and, second, we stabilize the exact-output yielding state trajectory, xref(-), by using state 

feedback (see Figure 1). Thus x(t) 3 xref (t) and y(t) + yd(t) as t -+ and output tracking 

is achieved. It is noted that in this output tracking scheme, the reference state trajectory 

xref (-) and the feedforward input u (-) are computed off-line. While stabilization of the 

reference state trajectory can be easily achieved through standard techniques [24] like state 

feedback of the form K[x(t) - xre (t)], the main challenge is to find the inverse input-state 

trajectory [u (-), xref (- ) I  - especially for systems with nonminimum phase dynamics. This 



paper addresses the off-line computation of the inverse input-state trajectory for a given 

desired trajectory, id (-) . 

2.2 The Internal Dynamics 

In this subsection, it is shown that finding the inverse input-state trajectory is equivalent to 

finding bounded solutions to the system's internal dynamics. Let the linear system (1) have 

a well defined vector relative degree, r := [rl, r2, . . . , rp]. Then the output's derivatives are 

given as 1251 

where Ck is the Eth row of C, and 1 5 E 5 p. In vector notation let equation (3) be rewritten 

as 

where 

and By is invertible because of the well-defined relative degree assumption. Equation (4) 

motivates the choice of the control law of the form 



for all t E (--a7 a). Substituting this control law in equation (4), it is seen that exact 

tracking is maintained, i.e., 

To study the effect of this control law consider a change of coordinates T such that [25] 

where [(t) consists of the output and its time-derivatives 

The system equation (1) can then be re-written in the new-coordinates as 

where 

In the new co-ordinates, the control law for maintaining exact tracking (Equation (5)) can 

be written as 

~ ( t )  = B;' [yd@)(t) - A&(t) - ~ ~ p ( t ) ]  

where 

Note that the desired <(-) is known when the desired output trajectory yd(.) and the output's 

time derivatives are specified. This desired [(-) is defined as &(a). Since the control law was 



chosen such that exact tracking is maintained, y(r)(t) = y!)(t) we also have i ( t )  = &(t) ,  and 

Equations (6) and (7) become 

This is the inverse system, and in particular, Equation (10) is the internal dynamics. Solving 

the internal dynamics is key to finding the inverse input-state trajectories. If a bounded 

solution, vd(*), to the internal dynamics (10) can be found then the feedforward input can 

be found through equation (8) as 

and the reference trajectory can be found as 

Thus a bounded solution to the internal dynamics (10) is required to find the inverse and to 

apply the output tracking scheme shown in Figure 1. 

2.3 Modified Internal Dynamics 

Standard inversion schemes [13, 141 that integrate (forward in time) the internal dynam- 

ics (10) lead to unbounded solutions since the internal dynamics is unstable for nonmini- 

mum phase systems. Noncausal inversion (e.g., [4]) leads to bounded but noncausal solution 

to the internal dynamics. Such stable-inversion techniques are, however, not applicable to 

systems with non-hyperbolic internal dynamics. In this subsection a compromise between 
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stable inversion and approximation based inversion schemes is proposed. The key is to 

modify the internal dynamics by giving up exact output tracking - enough to remove the 

non-hyperbolicity, and then to apply stable-inversion. The difference between the proposed 

technique and other approximation techniques is that the internal dynamics is perturbed 

only to remove the non-hyperbolicity, and not to stabilize the entire internal dynamics. 

To change the non-hyperbolicity of the internal dynamics an extra term, v(t), is added 

to the control law (8) as follows 

With this modified control law the inverse system (Equations (9) and (10)) become 

where eC(t) := [(t) - b(t) is the error in the output and the output's derivatives, 

0 0 

A, (A, + $B;~A,) 

Assuming that the original system (A, B) is controllable, we also have (9, G,) controllable 

and hence a there exists a feedback of the form 

such that the modified inverse system (13) is hyperbolic - i.e., all poles on the imaginary axis 

are moved. Note that this change to an hyperbolic system can be achieved through arbitrarily 



small F since non-hyperbolicity is not structurally st able property. The hyperbolic system 

I is the modified inverse system. This modification of the internal dynamics can also be 

used to move unstable poles of the inverse system that may be close to the imaginary axis 

for reducing the required preactuation time. Next, st able inversion of the modified inverse 

system is carried out [4]. 

2.4 Computation of the Inverse 

We begin by decoupling the modified internal dynamics (15) into stable (2,) and unstable (2,) 

subsystems. Since the modified internal dynamics is hyperbolic, there exits a decoupling 

transformation U such that the modified inverse system (15) can be written as 

where 

To find bounded solutions to the unstable inverse systems, the boundary conditions that 

zs(-oo) = 0 and zu(oo) = 0 are applied to Equation (16). This leads to unique bounded 

solutions to the modified internal dynamics by flowing the stable subsystem forward in time 



and flowing the unstable system backward in time - as 

zU,d(t) = - eSu(t-T)~uY,(T)dr Vt E (-00, co). 

This completes the technique. To summarize, the bounded solution (18) is used to find the 

reference state trajectory as xref (t) = T-lU-'zd(t), and to find the feedforward input, 

u (-) from equation (12). This inverse, [u (-), xref(-)], is then used in the control scheme 

shown in Figure 1 to obtain output tracking. 

2.5 Preactuation Time and Unstable Poles of Inverse System 

The connection between the amount of preactuation time required to apply the inversion- 

based feedforward input and the unstable poles of the modified inverse is established in the 

following Lemma. Lemma Let 

1. the support of Yd (a) be contained in [to, oo) for some to, 

2. all the unstable poles of internal dynamics represented by the eigenvalues of S, lie to 

the right, in the complex plane, of the line Re(s) = a for some positive a, and 

3- IlGuYd(-) 11, < P. 

Then there exists M such that llu ( t )  11, < ~ e ~ ( ~ - ~ ~ )  for all time before the start of the 

maneuver, t < to. 

Proof: From Condition 2 of the Lemma, there exists a positive constant iMs, such that 



Then for all t < to , 

( )  1 1  = 1 1 ~ ; '  [yd(')(t) - A&(t) - A,q(t) + ~ ( t ) ]  (1 00 from Equation (12) 

= (1 B;' [-A,q(t) + v(t)] 11 _ from Condition 1 of the Lemma 

= llAo 1lmllU-' II,IIJP e su( t -T)~u&(r)dr  1) from Equation (18) 
00 

from Equation (14) 

00 

= 

= llAu II,IIU-' ~ l ~ l l h r  esu ( t - r )Gu&(~)d~  11 03 from Condition 1 of Lemma 

( [ - ] + ) [ ] 

from Equation (1 7) 

00 

5 IIAu ~ ~ w ~ ~ ~ - l  IIm 

from Equation (19) and Condition 3 of Lemma. Integrating the above expression we get 

PMsu 
I l ~ f j ( t )  \ I C O  < -1IAu l l C O I l ~ - '  llm 

eff(t-to) 

CY 

., . - Me4t-to) 

[ ~~~~~ ] 

- which concludes the proof. rn 

The above Lemma states that the preactuation input tends to zero exponentially, as we 

go back in time from the start of the maneuver at to. The rate at which the preactation 
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becomes zero can be increased by moving the unstable poles of the modified inverse away 

from the imaginary axis - at the expense of exact output tracking. The trade-off between 

exact-tracking of the desired output and reduction of the pre-actuation time is illustrated in 

the following example. - 

3 Example: Helicopter Hover Control 

Here, we apply the output-tracking technique to the hover control of a Bell 205 Helicopter, 

which has near non-hyperbolic unstable internal dynamics. We consider one of the cases 

studied previously in [26], wherein the aircraft dynamics was trimmed at a nominal 5' pitch 

attitude, with a mid-range weight, a mid-position center of gravity and operating in-ground 

effect at near sea level. The linearized model is given as [26, 271 

where 



and 

forward velocity 

vertical velocity 

pitch rate 

lateral velocity 

roll rate 

yaw rate 

roll rate 

pitch attitude 

roll attitude 

i collective 

[ tail rotor collective 

- - 
longitudinal cyclic 

lateral cyclic 



It is noted that the helicopter's actual dynamic behavior differs because of modeling er- 

rors like nonlineari t ies and unmodeled dynamics. In out put tracking control schemes that 

depend on the model, such modeling errors need to be corrected through feedback in the 

control scheme (see Figure 1). In particular, modeling errors can be compensated by robust 

stabilization of the reference state-trajectory, see for example [26]. The goal of the present 

paper is to develop inversion-based feedforward and reference state trajectories for use in 

the control scheme shown in Figure 1. In the following, we apply the inversion technique to 

control the helicopters forward, lateral and vertical velocities and its yaw rate. The forward 

velocity and the yaw rate are to be kept at zero and the desired profiles of lateral and vertical 

velocities and accelerations are as shown in Figures 2 and 3. 

3.1 Internal Dynamics 

To find the internal dynamics we begin with a change in the co-ordinates. Let, ( be defined 

as the outputs 

and let r ]  be the remaining states, 



In the (c, 7) co-ordinate system, given by 

the system equations can be re-written as 

Given a desired output trajectory and the desired output's time derivatives, [Q(.), &(.)I, the 

exact output tracking control law (see Section 2.4) is found from equation (28) as 

With this control law the inverse system becomes (from equation (28)) 



The problem is solved by finding a bounded solution to the internal dynamics (31). However, 

the bounded solution found through stable-inversion is noncausal and could require a large 

preactuation time if the poles of the internal dynamics are unstable and lie close to the 

imaginary axis in the complex plane. For this particular example, there are two such complex 

conjugate poles near the imaginary axis, 0.0425 f 4.30552. We modify the exact-tracking 

control law (29) to shift these poles away from the imaginary axis to 2 f 4.30552. This is 

described next. 

3.2 Modified Inverse System 

Following the approach described in Sections 2.3, we modify the internal dynamics by adding 

a term v(t) to the control law (29) to obtain 

Substituting this control law into Equations 30 and 31, the modified inverse system is ob- 

tained as 



where ec(t) := ((t) - Cd(t). The poles of the inverse system can be moved to any desired 

location by using the control u(t) because (3, G,) is controllable. However, such modifica- 

tions, aimed at reducing preactuation time, will also lead to a loss of precision in output 

tracking. This tradeoff between the reduction of preactuation time and the loss of precision 

in tracking is illustrated through simulation. 

3.3 Sirnulation Results and Discussion 

Two sets of simulations were performed. First, stable inversion was applied to the orig- 

inal system which lead to exact output-tracking inverse input-state trajectories. Second, 

simulations were performed when the unstable poles of the inverse system are moved from 

0.0425 f 4.30552' to 2 f 4.3055i for reducing the amount of preactuation time required. 

Further, the inverse system also has four poles at the origin - corresponding to four pure 

integrators for (ec(-)) dynamics - which were moved to -1, -2, -3 and -4 for stability of 

the numerical integration scheme. 

Figures 2 and 3 show the desired output trajectories for the lateral and vertical motions 

(corresponding to unit displacements in the two directions), while the forward velocity and 

yaw rate were to be maintained at zero - the maneuver starts at time t = 0. Figures 4 and 5 

show the output trajectories achieved by the inverse state-trajectory, x , , ~ ( . ) ,  which is to be 

used as a reference trajectory in the feedback scheme shown in Figure 1. The corresponding 

feedforward inputs are shown in figures 6 and 7. Note here that the feedforward inputs 



are non-zero before the start of the maneuver, i.e., time t < 0, and hence preactuation is 

required. 

Figures 4 and 5 show that exact-output tracking reference state trajectories can be found, 

even when the internal dynamics is unstable, through the stable inversion approach. The 

stable-inversion technique yields bounded solutions to the unstable internal dynamics, i.e., 

the pitch and roll motions are bounded as shown in Figure 8. However, the feedforward input 

found through exact-inversion requires substantial preactuation time as shown in Figures 6 

and 7, i.e., the preactuation remains non-zero for a significant time before the start of the 

maneuver at t = 0. Figure 9 shows that about 30 seconds of preactuation is needed to 

apply the inverse of the original system for output tracking - in contrast, modification of the 

internal dynamics reduces the preactuation needed from 30 seconds to 1 second (see Figure 

9). As seen in Figures 4 and 5 the output trajectories are still tracked well by the modified 

inverse. Further, this substantial reduction in preactuation time is achieved with similar 

control efforts and with similar roll and pitch motions (see Figures 6-8). Thus the approach 

presented here, allows a trade-off between precision tracking and the amount of preactuation 

that is acceptable. Future work will generalize the results to nonlinear nonminimum phase 

systems with non-hyperbolic internal dynamics. 

4 Conclusions 

A technique to achieve output tracking for nonminimum phase linear systems with non- 

hyperbolic and near non-hyperbolic internal dynamics was presented. This approach is an 

integration of the stable inversion technique that aims at exact tracking with the approxi- 



mation approach that modifies the internal dynamics to achieve desirable performance. The 

method was applied to an example helicopter hover control problem to illustrate the effects 

of modifying the internal dynamics. It was shown that substantial reduction in preactuation 

time is possible by giving up some of the precision in tracking - thus making the stable 

inversion approach viable for practical application. 
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Figure 1. The Control Scheme 



Figure 2. Desired Lateral and Vertical Velocity Profile. 
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Figure 3. Desired Lateral and Vertical Acceleration Profile. 
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Figure 4. Lateral and Vertical Velocity achieved by the Inverse Reference State Trajectory. 

The dotted line is for the exact-tracking case without modification of the internal dynamics 

and the dashed line is with modification. 
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Figure 5. Forward Velocity and Yaw Rate achieved by the Inverse Reference State 

Trajectory - the desired value is zero. The dotted line is for the exact-tracking case 

without modification of the internal dynamics and the dashed line is with modification. 
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Abstract - In this paper we consider the exact output tracking problem 
for systems with parameter jumps. Necessary and sufficient conditions are 
derived for the elimination of switching-introduced output transient. Previ- 
ous works have studied this problem by.developing a regulator that main- 
tains exact tracking through parameter jumps (switches). Such techniques 
are, however, only applicable to minimum-phase systems. In contrast, our 
approach is applicable to nonminimum-phase systems and obtains bounded 
but possibly non-causal solutions. If the reference trajectories are generated 
by an exosystem, then we develop an exact-tracking controller in a feedback 
form. As in standard regulator theory, we obtain a linear map from the 
states of the exosystem to the desired system state which is defined via a 
matrix differential equation. The constant solution of this differential equa- 
tion provides asymptotic tracking, and coincides with the feedback law used 
in standard regulator theory. The obtained results are applied to a simple 
flexible manipulator with jumps in the pay-load mass. 

We study the exact-output tracking of systems, which are described by 

where x E Rn, with same number of inputs as outputs u(t), y(t) E RP. The 
system matrices A(k), B(k), C(k) are constant over time intervals Ik, where 
k belongs to a finite index set K: a [0, . . . , N], and the parameter change 
(switch) at times t = tl, t2, ... tr, ( g e  Figure 1). Here, the switching time 
are known, in contrast to systems where the switches may be signal driven. 

For constant linear systems, the asymptotic output-tracking problems for 
constant linear systems has received much attention in the past. In particu- 
lar, the regulator theory (Francis (1977); Basile and Marro (1992); Wonham 
(1985)) provides a general framework in which the asymptotic output track- 
ing can be solved when the reference trajectory is generated through a linear 
exosystem. In the presence of switches in the system, one technique for 
achieving output regulation is to switch the regulator. Note that regulation 
can be recovered between two consecutive switches (due to asymptotic prop  
erties) - especially if the switching occurs far apart in time. However, this 
technique also tends to induce transients in the output during the switches. 
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Figure 1: The Switching Times 

In order to eliminate these switching-caused transients, a regulation scheme 
that maintains exact trajectory tracking across system switches must be used. 
This fairly new problem has been studied in (Marro and Piazzi (1993)), for 
minimum-phase systems. In this work, a feedforward action is used in con- 
junction with the feedback defined by the regulator in order to cancel the 
output transients across the switches. 

In the present paper we propose an alternative approach for exact output- 
tracking of switched-systems, which is also applicable to nonminimum-phase 
systems. In the nonminimum-phase case, a bounded non-causal solution 
is obtained (Deuasia et al. (1996)) that requires the preknowledge of the 
reference trajectory and of all the switching times. Such exact tracking 
schemes based on noncausal schemes is useful in problems like aircraft guid- 
ance (Meyer et al. (1995) and Hunt et al. (1996)). 

We present necessary and sufficient conditions for the solvability of the in- 
version problem for linear systems with switches; the inverse is used to track 
the desired output. We consider two kinds of desired output trajectories: 
(a) a single pre-specified trajectory or (b) belonging to a class of outputs gen- 
erated by a given linear exosystem, that could undergo parameter changes 
as well. In this latter case, we obtain the solution in a time-varying feed- 
back form, where the feedback matrix satisfies a matrix ordinary differential 
equation. The equilibrium solution of this differential equation solves the 
asymptotic output tracking problem, and coincides with the feedback ma- 
trix resulting from the standard regulator. This establishes an interesting 
connection between our approach and the traditional regulator theory. 

The paper is organized as follows: in Section 2 the exact tracking of a 
single prescribed output trajectory is considered, and necessary and sufficient 
conditions are presented. A geometric version of the obtained conditions is 



also provided. In Section 3, the case of reference trajectory obtained through 
a linear exosystem will be treated. The conditions of the previous section 
when rearranged establish a close relationship with the traditional theory of 
output regulation. Section 4 focuses on the additional problem of stability 
of the closed loop system. Finally, section 5 presents the application of the 
developed theory to a simple nonminimum-phase switched system, given by 
a flexible beam subjected to step variation of the pay-load mass. Conclusions 
end the paper. 

2. TRACKING A PRESCRIBED OUTPUT TRAJECTORY 

Below we formulate the exact tracking problem for a prescribed output tra- 
jectory, and establish necessary and sufficient conditions for its solvability. 
Geometric interpretations of these conditions are also provided. 
The Inversion Problem 

Given a desired output trajectory yd, find a pair of state and input tra- 
jectories xd, ud such that 

1. xd, ud satisfy the system equation (1): 

2. exact output tracking is achieved (even across switches): 

3. and the inputs and state are bounded: 

Using the Inverse for Exact-Output Tracking 
The existence of an inverse (ud, xd) implies that there are input-state 

trajectories that yield the desired output - exact output tracking is easily 
achieved by stabilizing the desired state trajectory. For example, use ud as 
feedforward and use the error x - xd for feedback (see Figure 2). Stabilization 
is not the central issue in this paper, and any scheme for feedback design can 



Figure 2: The Control Scheme 

be used. For example, given (A(k), B(k)) controllable for all k, the system 
may be stabilized through pole placement with all the closed loop poles in 
the same locations for all k. 

Note that typically, the initial conditions of the system are different from 
the initial conditions of the desired'state trajectory leading to  initial transient 
errors typical of all tracking controllers. However, once the desired level of 
tracking is achieved (due to exponential reduction in error) our technique will 
maintain tracking across parameter switches. In contrast, switching standard 
regulators when the system parameters change will cause transient errors at 
the switching instants - tracking will not be maintained across switches. 

Exact- Tracking Maintaining Input 
We will assume the following: 

Assumption 1 System A(k), B(k), C(k) has well defined vector relative de- 
gree (Isidori (1989)) for each k E K. 

Then we can find a co-ordinate transformation gk such that (Isidori (1989)) 

where 

and rk = [rk,l, rk,2, . . . , rk,p] is the systems vector relative degree for tk 5 
t 5 tk+l (where we assume to = -00). Here, Cg maps the system states into 



the outputs and its time derivatives and Zk maps the states into the internal 
dynamics, zk. . 

Note that a necessary condition for exact output tracking in the interval 
Ik is that the system state at time tk is such that 

In addition, to maintain exact tracking we need to ensure that 

Let 
d('k,l) d(rk,~) 

Yd*17 dt(rk,2) Yd,27 . dt(rk,~) Yd,p 1' 7 

then we can find the following unique control law (provided assumption 1 is 
satisfied) (Isidori (1989)) 

such that the time derivatives of the output is the same as that of the de- 
sired output trajectory yd (this is also a necessary condition for exact output 
tracking). This exact-tracking control is completely determined by the state 
x(tk), and by the desired output along with its derivatives up to the order 
Pk. 

Substituting control law (3) in (2) we obtain for t E Ik: 

where Ay(k) = A(k) + B(k) F k ,  B,(k) = B(k)Gk. In the transformed co- 
ordinates the system equations for t E Ik are of the form 

Our objective is to define under which conditions it is possible to define a 
feasible state trajectory xd(t) such that exact trajectory tracking is preserved 
through all the time intervals, There are two main hurdles. Firstly, the 
existence of at least a state trajectory which maintains exact output tracking 
has to  be determined. This depends on compatibility of the desired output 



with the given system. Secondly, the state trajectories have to be bounded. 
In systems with unstable internal-dynamics (nonminimum phase systems) 
generic solutions tend to be unbounded. In this case, we need to establish 
additional conditions for the existence of bounded solutions to the internal 
dynamics. 

In this paper, we restrict ourselves to  the case where (a) Yk,d, the output 
along with its time derivatives, has a compact support [Ti, Tf] E (-my m) ,  
(b) the switching occurs within this compact set, and (c) the internal-dynamics 
is hyperbolic. More formally 

Assumption 2 The desired output trajectory yd(.) and its time derivatives 
are bounded and have compact support S(ya) = [Ti, Tf] . The switching in the 
system parameters are at fixed times tk E (T;, Tf) for every k E [I,. . . , N ] .  

Assumption 3 System (1) has hyperbolic internal dynamics, i.e. the eigen- 
values of Az(k) have non-zero real parts (no centers) for k = 0 and k = N .  
This is equivalent to requiring that the original system (1) have no zeros 
which lie on the imaginary axis (Isidori (1989)) for k = 0 and k = N .  

The last assumption implies the existence of transformations Qo, QN such 
that system state can be partitioned into 

where z S k  and z,k are the coordinates for the stable and the unstable sub- 
spaces of the system's internal-dynamics. 
Notations 

Towards establishing conditions for the existence of solutions to  the ex- 
act tracking problem for a prescribed output, we first study the dynamic 
evolution of the system for a given initial condition. 

Given an initial condition in an interval Ik the system's evolution for 
tk -< t 5 tk+l is described by 



In a more compact form 

where 
(Pk(t, tk) = eAu(k)(t-tk) 

and 
t 

hk(t ,  t k )  = 1 eAu(k)(t-') ~ , ( k ) ~ p ) ( r ) d r .  
t k  

The above equations describe the flow in an interval where the system 
doesn't undergo switches. In order to obtain a representation of the system 
state in terms of an initial state that does not belong to the same interval, 
we define flow compositions as follows: 

* k , i ( t ,  t i)  = @ k ( t ,  tk) 0 @ k - l ( t k ,  t k -1)  O . O @i(ti+l, ti) 

where 
*i,i(t, ti) = @;(t, ti) 

and 
Hi,; ( t  , ti) = hi(& ti) 

The system evolution for an initial condition x ( z )  can be rewritten as: 

Necessary and Suficient Conditions 
We first formally state the result. 

Lemma 1 Under assumptions 1-3, the exact output tracking problem is solv- 
able with bounded solution if and only if the system of equations: 

Yddtk) = C;Qk\E'k-l,o(tk, T;)Q;~ 
zu,o (Ti) 

Ck*&kHk-l,o(tk,~) Vk = 1,. . ., N 



admits solution in zUto(Ti).  

Proof. System trajectories outside [Ti, Ti],  the compact support of Yd, are 
bounded if and only if z , ~ ,  the unstable component of the internal-dynamics, 
is zero at the end of the motion Tf and similarly the stable component z,o is 
zero before time T;. Formally: 

Substituting the previous expressions in ( 7 )  computed at t = Tf 

z ( T f )  = Q N , o ( T ~ ,  Ti)x(Ti) + H N , o ( T ~ ,  T i )  

gives (9). In addition, exact tracking in every interval Ik is possible if it is 
possible to find state trajectories that are continuous and such that C i x ( t k )  = 
Ydk( tk ) .  By using again ( 7 )  that gives the state at t = t k  as a function of the 
initial state and the constraint on x ( z ) ,  ( 8 )  easily follows. H 

Equation ( 8 )  will be referred in the following as compatibility conditions, 
while equation ( 9 )  will be referred to as stability condition. The compatibility 
conditions ensure that 6 does not jump across switches (else unbounded 
inputs will be required)! The stability condition ensures that the autonomous 
system dynamics for t +- f w is bounded. 

The algebraic conditions expressed by lemma 1 can also be interpreted in 
a geometric coordinate-free framework. To this end, let 

LI, = ( x  : Yk = & , k ( t k ) )  k E [0, . . . , N ]  

represents the set of the admissible system states at  time t k  in order to 
achieve exact tracking in the time interval tk  5 t < tk+l .  LClC is in general 



a linear variety in the state space, that reduces to a linear subspace (the 
system internal dynamics) for k = 0. 

A necessary condition for achieving exact tracking when t < Ti is xd(Ti) E 
Lo. Further, to maintain a bounded solution for all t < Ti it is necessary 
that the initial state belong to the unstable subspace of the system internal 
dynamics xd(Ti) E CutO. 

Note that every xd(z )  determines a unique xd(tl), given by 

xd(t1) = @0(tl, z ) x d ( z )  + h ~ ( t l ,  Ti) 
Hence, we can define the image of the subspace LU,o as: 

@o(t1,to) 0 t u t o  = (x : x = @o(t,,to)y + ho(t1,to);Y E Lu,0) 

which represents the linear variety composed by the points reachable at time 
t l  with the constraint of y(t) = yd(t) for all t E [to,tl). 

To maintain exact tracking in the next interval t E [tl, t2), it is necessary 
that xd(tl) E C1. The compatibility condition at time t = tl states that 

which is possible if and only if the linear variety: 

Sl = L1 n @o(t1, T;) 0 Lu,o 

is not empty, i.e. if and only if L1 intersects the image of under the 
system flow. The same procedure can be repeated for the switching time 
t = tz. Starting from Sl, we can flow forward in time. In order to achieve 
exact tracking in the interval [t2, t3), the image of Sl must intersect L2, i.e. 
the set 

S 2  = L2 fl Ql(t2,tl) 0 Sl 
must be not empty and more generally, the exact tracking in t E [Ti, tk+1) is 
possible if and only if the image of S k - 1  under the system flow @k-l (tk, tk-l) 
intersects Lk, i.e. the set: 

S k  = Ck n @k-l(tk,tk-1) 0 S k - 1  (lo) 
is not empty for every k = 1,. . . , N. However, in order to obtain a bounded 
solution for t > Tf , the final state at time t = Tf must belong to the stable 
subspace of the system internal dynamics LStN. Let 

ST, L,N n @ N ( T ~ ,  t ~ )  0 SN. 
Hence, we have proved an analogue of lemma 1 in geometric terms 



Lemma 2 The exact output tracking problem is solvable if and only if ST, 
is non-empty, i-e., 

#0. (11) 

Since the flow of a linear system is a homeomorphism, the dimension of 
a linear variety and that of its image are equal, and hence: 

This means that at each iteration (10) the set of possible solutions could 
reduce at each K and that no solution is possible if it becomes the empty set 
for some k - i.e., it is empty for every j > k. 

Switched systems with invariant internal-dynamics subspace 
We present below a particular case in which the given conditions consid- 

erably simplify. This exemplifies the obtained results and will be illustrated 
with an example in section 5. Let 

Assumption 4 System (1)  has constant relative degree r = r k  for every k 
and matrix Cl = C* is constant for every k. 

It follows from the previous assumption that the coordinates outside the 
internal dynamics Yk are the same for every k, and thus the internal dynamics 
subspace is the same for every k. Note that the stable and unstable subspaces 
may still be different, and may switch around, but are constrained to belong 
to the same subspace! 

Since Yk = C*x, the continuity of x implies that the compatibility condi- 
tions are always satisfied. Formally. 

Lemma 3 If assumption 4 is satisfied, then the compatibility conditions are 
satisfied for every smooth enough (C') desired output trajectory y d ( t ) .  

In addition, @k(tk+1,tlc) o Sk C Ck+1 implies that 

is nonempty since 0 t i  So. Further dim(&) = dim(&). 



The additional condition for boundedness of solutions for t > Tf is met 
if and only if SN intersects C s , ~ .  The linear variety SN can be expressed as 

while the stable subspace of the internal dynamics can be expressed as 

It immediately follows from the previous considerations: 

Lemma 4 If assumptions 1-4 hold, then the exact output tracking problem 
with bounded solution is solvable if 

rank [ SN LN,. ] = nz 

where n, is the dimension of the system internal dynamics at t = Tf. 

As a last remark to this section, note that if not only the internal dynamics 
subspace remains constant across the switchings as ensured by Assumption 
4, but also its stable and unstable subspaces do, then condition (12) is always 
satisfied and the problem has a solution for every admissible yd( t ) .  Moreover, 
this solution is unique for every given yd(t) .  This implies that the exact- 
tracking problem for a system without switches is always solvable. 

3. Y d  GIVEN THROUGH AN EXOSYSTEM 

In this section we consider how the previous results can be specified when 
the reference trajectory is not completely general but it is generated through 
a known linear exosystem, given by: 

First we solve the tracking problem when the initial state of the exosystem 
(at time T i )  is known in advance, hence the obtained result will be valid for 
the particular reference trajectory determined by the initial condition. Later, 
we will extend the approach to the case of unknown initial conditions. In 



this case, we look for asymptotic tracking of the reference trajectories for 
arbitrary initial conditions of the exosystem. 

We begin by studying the case where the state of the exosystem x,(z) is 
known. The system equation (4) becomes 

with Y p ) ( t )  A - Ct(k)xe(t) since all the time derivatives of the output can be 
written in terms of x, by using equation 13. 
The system evolution can then be rewritten as 

where 

and $~,o(T,  Ti) is the evolution of the exosystem (analogous to equation 7). 
A solution to the exact tracking problem exists if lemma 2 is satisfied. The 
compatibility condition is satisfied for all initial conditions xa(Ti) E Lo if 
C,* = C*. The stability condition becomes 

where 

s2 = &N HN,O(T~, Ti) 
In what is to follow, we will assume that the above equation has a unique 

solution (iff sl is invertible). This yields a one to one relationship between 
the plant's state and the exosystem as follows 

0 
xd (Ti) 

0 



What is interesting is that we can also write the desired exact tracking 
state trajectory .in terms of the exosystem state. Substituting the above 
expression in equation (15) we get 

where 

It may be verified that G(t) satisfies the differential equation 

In the case of no switching a constant solution always exists for the above 
Lyapunov equation provided the eigenvalues of the exosystem A, are different 
from the zeros of the plant eigenvalues of A,. The above equation also 
provides a control strategy when the exosystem states are not known. We 
estimate the state of the exosystem as 2, and regulate the trajectory id = 
G(t)$,. The stability of such a controller is studied in the next section. 

If the state of the exosystem x, is not known, then we could estimate it as i, 
with I( ~ , ( t )  - ?,(t) (I2 5 Keeaetl( xe(0) - i e (0)  (I2. We use &(t) = G(t)ie(t) 
as the estimated desired state trajectory, and stabilize this trajectory by 
using the control scheme shown in Figure 3. Note that the feedforward used 
(equation 3) is completely specified in terms of the exosystem's state-estimate 
as follows 

The state equations are of the form 

We require that the system in each interval is either stable or stabilizable. 
For simplicity, we assume that A(k)  + B(k)K is Hurwitz for all k - the 
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Figure 3: Trajectory Tracking with Exosystern 



arguments remain valid if the system is stabilized through any other feedback 
control scheme. . 

The desired trajectory satisfies 

Let e := x - xd. Then the difference of the last two equations yields 

The exponential stability of the error dynamics system follows from the fol- 
lowing lemma 

Lemma 5 Given the system d = Ae + v ( t )  where Kle"lt < I( e-At 1 1 2  < 
K2ePat and I( v ( t )  11, < K3e-"at, -with K l ,  K2, K3 positive, then e = 0 is an 
exponentially stable equilibrium point provided a3 > a2 > 0 

Proof: Using the variation of constants formula 

provided cr3 > a z .  Hence 

the rhs being a constant. Therefore, for all c > 0 there exists a positive 
constant K such that 



Figure 4: Example 

Consider the flexible structure, cantilevered at the base and free at the top, 
shown in figure 4. It is modeled (with Finite Element Method) with a single 
flexural element. The degrees of freedom are the translational motion at 
the base (xl), and the top (xz), and the rotation at the top, x3. Input is a 
translational force at the base and the system output is 2 2 .  The structure is 
loaded with a mass mt, which is changed at several instances. The flexural 
element has the following properties: mass 420; length 1; elastic modulus 1; 
and cross sectional area moment of inertia 1. The objective is to maintain 
the top of the structure along a prescribed trajectory so as to  facilitate the 
transfer of the load. The equations of motion can be described by 

where 



x = [xl xz z3]', and B = [l 0 01'. 
In the standard form x = [x', 5'1' (abuse of notation) we get the dynamics 

where 

The desired trajectory is generated by an exosystem of the form x, = A,x,, 
where 

0 1 0 0  
- 1 0 0 0  

1 0  o ]  
0 0 1 0  

and the desired output is yd = [0 0 0 l]x, a Cex,. We also switch the 
exosystem to A, = 0"' at the initial and finaltimes Ti = 0 and TI = 2 *pi. 
The first two states of the exosystem form an oscillator and the second state 
is then integrated twice to obtain the desired output. Note that (A,, C,) is 
observable. Hence the exosystem states can be estimated. In our simulations 

As an example we simulate the forward dynamics with the initial condition 
for the exosystem as [0 1 0 01'. The corresponding initial system state for 

we ensure that the output trajectories have a compact support [ 0 , 2 ~ ]  by 
choosing initial conditions of the exosystem of the form xe(T;) = [O; *; 0; 01. 

We also switch the mass mt on the structure (see figure 4) to take values 
rnt = 0 Vt E [ 0 , ~ / 2 ] ,  mt = 100 Vt  E (n/2,1.5~], and mt = 10 Vt  E 
( 1 . 5 ~ , 2 ~ ] ,  which denotes the jumps in the system. Note that Ci remains 
constant through the switches and hence the compatibility conditions are 
always satisfied. As illustrated in Section 3, the map G(0) : xe(T;) + xd(T;) 
is given as 

G(o) = 

' -4.6715 -3.3239 0 0 ' 
0 0 0 1 

6.9406 2.6672 0 0 
-0.5935 -1.4710 0 0 

0 0 1 0  
- 2.6851 -0.8211 0 0 - 



exact output tracking is xd(T i )  = [-3.3239 0 2.6672 - 1.471 0 - .8211]'. 
The simulation results are shown in Figure 5, where the exact tracking state 
trajectory is shown - this desired state trajectory yields the desired output 
with an error of for a motion of 2 units. This error is believed to be 
due to the numerical integration schemes. Further the initial conditions are 
large and unrealistic. The initial conditions of the system are typically not 
the same as the initial conditions of the desired state trajectory - this re- 
sults in initial transient errors. If the system is stabilized then these errors 
decay exponentially, even if the system dynamics has switches. This ability 
to maintain tracking is a major advantage of our approach. Further, pre- 
actuation techniques to achieve these initial conditions (with output-error 
maintained at zero) has been developed in (Devasia et al. (1996)) and we 
expect to integrate the two approaches in the future. 

CLUSIONS 

The problem of achieving exact output tracking for linear systems that 
present jumps in parameter's values has been analyzed. We established nec- 
essary and sufficient conditions for the existence of exact output-tracking 
bounded state trajectories. When the reference trajectory is generated through 
an exosystem, the feedforward action needed to maintain exact tracking can 
be written as a time-varying feedback. Further, this time-varying feedback is 
related to a map from the state of the exosystem to the desired system state. 
The map is linear and is shown to satisfy an ordinary differential equation. 
For the case of systems without switches the theory presented reduces to 
the standard regulator theory. We also showed that the desired trajectory 
can be stabilized and presented the simulation results for an example flexible 
structure with switchingmass. 

Future work will attempt to remove the requirement of compact support 
for the output. There is also a need to address the tracking problem for 
systems whose internal-dynamics may not be hyperbolic. 

This work was supported through National Science Foundation grant MSS- 
9216690, NASA Ames Research Center Grant NAG 2-1042, and by the Astro 
Aerospace Corporation 
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I. Introduction 

G IVEN a desired output trajectory, inversion-based techniques 
find input-state trajectories required to exactly track the 

These inversion-based techniques have been successNly 
applied to the endpoint tracking control of multijoint flexible ma- 
nipulators in Ref. 3 and to aircraft control in Ref. 4. The specified 
output trajectory uniquely determines the required input and state 
trajectories that are found through inversion. These input-state tra- 
jectories exactly track the desired output; however, they might not 
meet acceptable performance requirements. For example, during 
slewing maneuvers of flexible structures, the structural deforma- 
tions, which depend on the required state trajectories, may be unac- 
ceptably large. Further, the required inputs might cause actuator sat- 
uration during an exact tracking maneuver, for example, in the flight 
control of conventional takeoff and landing a i r~ra f t .~  In such situ- 
ations, a compromise is desired between the tracking requirement 
and other goals such as reduction of internal vibrations and preven- 
tion of actuator saturation; the desired output trajectory needs to be 
redesigned. 

Here, we pose the trajectory redesign problem as an optimization 
of a general quadratic cost function and solve it in the context of 
linear systems. The solution is obtained as an off-line prefilter of the 
desired output trajectory. An advantage of our technique is that the 
prefilter is independent of the particular trajectory. The prefilter can 
therefore be precomputed, which is a major advantage over other 
optimization approaches (see Ref. 6 for further references). 

Previous works have addressed the issue of preshaping inputs 
to minimize residual and in-maneuver vibrations for flexible struc- 
tures; see, for example, Refs. 6 and 7. Since the command preshap- 
.ing is computed offline, in Ref. 8, the use of noncausal prefilters has 
been suggested-such noncausality is allowable since the command 
preshaping is computed off-line. Further, minimization of optimal 
quadratic cost functions has also been previously used to preshape 
command inputs for disturbance rejection in Ref. 9. All of these ap- 
proaches are applicable when the inputs to the systems are known a 
priori. ~ ~ ~ i c a l i y ,  outputs (not inputs) are specified in tracking prob- 
lems, and hence the input trajectories have to be computed. The 
inputs to the system are, however, difficult to determine for non- 
minimum phase systems like flexible structures. One approach to 
solve this problem is to 1) choose a tracking controller (the de- 
sired output trajectory is now an input to the closed-loop system) 
and 2) redesign this input to the closed-loop system. Thus, we ef- 
fectively perform output rede~ign .~  These redesigns are, however, 
dependent on the choice of the tracking  controller^.'^' Thus, the 
controller optimization and trajectory redesign problems become 
coupled; this coupled optimization is still an open problem. In con- 
trast, we decouple the trajectory redesign problem from the choice 
of feedback-based tracking controller. It is noted that our approach 
remains valid when a particular tracking controller is chosen. In 
addition, the formulation of our problem not only allows for the 
minimization of residual vibrations as in available techniques6 but 
also allows for the optimal reduction of vibrations during the ma- 
neuver, e.g., the altitude control of flexible spacecraft? We begin by 
formulating the optimal output trajectory redesign problem and then 
solve it in the context of general linear systems. This theory is then 
applied to an example flexible structure, and simulation results are 
provided. 

Received April 22, 1996; revision received May 30, 1996; accepted for 
publication May 30, 1996. Copyright @ 1996 by the American Institute of 
Aeronautics and Astronautics, Inc. All rights reserved. 
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IT. Problem Formulation 
System Inversion for Exact "bcking 

Consider a square system described by 

where x E %", u E B p ,  and y E %P. The inversion approach2 finds 
a bounded input-state trajectory that satisfies the preceding system 
equations and yields the exact desired output, i.e., 

The inverse input-state trajectories can be described in terms of 
Fourier transforms as1. 

uff (jw) = [C(jwI - A)-'B],-lyd(jo) = G;'(jo)yd(jw) 

xrcr(jw) = t ( jwI - A)-'Bluff ( j o )  = Gx(jo)uff (jw) 
(1) 

This Fourier-based inversion approach has been extended to non- 
linear time-varying nonminimum phase systems in Ref. 2; however, 
we restrict our discussion to linear time-invariant systems. 

Remark. We note two results. One, an inverse exists if the output 
and a certain number of its time derivatives are bounded. The number 
of time derivatives of the output that needs to be specified for an 
inverse to exist is well defined and depends on the relative degree of 
the s y ~ t e m . ~ . ' ~  Second, for linear hyperbolic systems, if the inverse 
exists, then it is unique.'.2 

Performance Criterion 
Trajectory redesign seeks a compromise between the goal of 

tracking the desired trajectory and other goals such as reducing 
the magnitude of input and vibrations. We formulate this redesign 
problem as the minimization of a quadratic cost function of the type [I { u ( t l T ~ u ( t )  + X ( ~ ) ~ Q , X ( ~ )  

where R, Q,, and Q, represent the weight on control input, states, 
and the error in output tracking, respectively. 

Using Parseval's theorem, we rewrite our optimization problem 
in frequency domain as the minimization of the cost function 

W 

J = [_ {u(jw)*R.(j4 + x(jw)*Qxx(j.) 

+ [ ~ ( j w )  - y,i(jw)l*Q,[y(jw) - yAjw)l} d o  (2) 
where the superscript + denotes complex conjugate transpose. 

Optimal Redesign of the Output 
Our main result is given by the following lemma, which shows that 

the optimal output trajectory redesign can be described as a prefilter, 
which maps desired output trajectories yd to the redesigned output 
trajectory yo,,. This prefilter Gf does not depend on the particular 
choice of desired trajectory and hence can be precomputed. 

Lemma. The modified output trajectory yo,( is given by yop1(jw) = 
Gf (jw)yli(jw), where 

Gf(jw) = 1 - Gv[R + G3xG.x + G;Q~G,]-' 

x [R + G: Q,G,]G;' 
The modified input trajectory u,, is given by u,,(jw) = u ff (jo) + 
voPt(jw), where v,,(jo) = G,( jw)yn( jw) and 

X ( R  + G:Q,G,)G;' (3) 
Note that the dependence on jw is not explicitly written for com- 
pactness. 

ProoJ: Without loss of generality, we rewrite the input u as the 
sum of the feedforward input, G;' yli, found from inversion of the 
desired trajectory, and an arbitrary v: 

u(jw) = u ff (jw) + v(jw) = G;'( jw)yd(jw) + u(jw) (4) 

Substituting x ( j o )  = G,(jw)u(jw) and y(jw) = G,(j.w)u(jw) 
along with the preceding Eq. (4) for u into the cost funcnon given 
by Eq. (2), we obtain 
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Fig. 1 Output redesign. 

Note that the cost function is quadratic in v .  Therefore, the cost 
function is minimized by setting this quadratic term to zero, i.e., 
choosing v ( j w )  = vopt( jw)  = GV(jw)yd( jw) ,  where G ,  is defined 
by Eq. (3)  in the lemma. The choice of v = u,, defines the optimal 
input u,,, through Eq. (4)  as 

Theresultfollowsfrom yoPt(jw) = Gy( jw)uopt ( jw)  = [ 1 +  G y  ( j w )  
G,( jw>lyd(jw).  

III. Example 
Consider a flexible structure consisting of two freely rotating 

disks connected by a thin shaft. A motor is attached between the 
connecting shaft and one of the disks. Input to the system is torque 
t provided by a dc motor, and the outputs are the angular rotations of 
the two disks el and 6. These angular rotations are measured using 
potentiometers. The transfer function of an experimental system, 
which includes the rigid-body mode and one flexible mode, was 
obtained using a HP3562A Dynamic Signal Analyzer as 

With the state vector x chosen as x = [el e2 8, e21T, the system 
equations can be represented in state-space form as x = Ax + Bu, 
i.e., 

1 0  
-3.1555 -0.1640 3.1555 0.3845 

0 0 0 1 
2.8956 -0.0899 -2.8956 -0.1 0 124 1 

with y = 6 = [0 1 0 O ] X .  The control objective is to track the 
angular rotation e2 of the disk that is farthest away from the motor 
(see Fig. 1 for the desired output trajectory). 

The relative degree of a single-inputlsingle-output linear system 
is the number of zeros at infinity.12 For our system, with the torque 
as input and 8 2  as output, the transfer function has four poles and 
two finite zeros [see Eq. (6)] .  Thus, the number of zeros at infinity 
are two, and hence the relative degree is two. This implies that the 
second derivative of the desired output, i.e., the desired angular 
acceleration profile of the output, uniquely determines the required 
input-state trajectory and the resulting structural vibration, el - 82.' 

If the internal vibrations are to be reduced, then we have to relax the 
exact tracking requirement. Similarly, to reduce the required input 
amplitudes we have to compromise exact tracking. This tradeoff 
can be represented as the minimization of a general quadratic cost 
function (Sec. 11) of the form 

where R = r, Qy = q,, and 

The scalars r, q,, and q, represent the relative weight on the re- 
duction of inputs, structural vibrations, and tracking errors, respec- 
tively. To reduce the vibrations and control inputs, we choose r = 1, 
q, = 5000, and q, = 1 in our simulations. Figure 1 shows the modi- 
fication for a desired trajectory- about 10% of the final slew angle. 
The maximum magnitude of the required input, however, is reduced 
by 60%, and the corresponding structural vibration, 8' - Q2, is re- 
duced by 20% (compared with results from exact tracking of the 
initial desired trajectory). 

n! Conclusion 
We formulated and solved the trajectory redesign problem in the 

context of linear invertible systems, including nonminimum phase 
systems. Thus, we provide a systematic approach to an optimal 
tradeoff between tracking desired trajectory and other goals such as 
vibration reduction and reduction of required inputs. The approach 
was applied to an example flexible structure, and simulation results 
were presented. Future work will address trajectory redesign for 
nonlinear systems. 
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Abstract 

In this paper we study the optimal redesign 
of output trajectory for linear invertible sys- 
tems. This is particularly important for track- 
ing control of flexible structures because the 
input-state trajectories that achieve the re- 
quired output may cause excessive vibrations 
in the structure. A trade-off is then required 
between tracking and vibrations reduction. We 
pose and solve this problem as the minimiza- 
tion of a quadratic cost function. The theory is 
developed and applied to the output tracking 
of a flexible structure and experimental results 
are presented. 

I Introduction 

Large space structures, like manipulators used 
to assemble the space station, are lightweight, 
and hence flexible. The structural flexibility 
results in elastic vibrations. These vibrations 
are caused not only by exogenous perturba- 
tions but also arise during maneuvers like slew- 
ing. Hence the output tracking control for 
flexible structures is a formidable task. Re- 
cent works have solved the output tracking 
problem, for example, given a desired out- 
put trajectory, inversion-based techniques find 

*This work was supported by NASA-Ames Research 
Center Grant No. NAG 2-1042 

input-state trajectories that exactly track the 
output [I, 2, 3, 41. These inversion-based 
techniques have been successfully applied to 
the control of multi-joint flexible manipulators 
in [5,6], and to  aircraft control in [7,8,9]. Note 
that the specified output trajectory uniquely 
determines the required input and state trajec- 
tories. Therefore, although these input-state 
trajectories exactly track the desired output, 
they might not meet performance requirements 
in flexible structures. For example, during 
slewing maneuvers of a flexible manipulator, 
the structural deformations - determined by 
the inverse state trajectories - may be unac- 
ceptably large. In such situations, a compro- 
mise is desired between the tracking require- 
ment and the other goals like the reduction of 
internal vibrations and prevention of actuator 
saturation - the output trajectory needs to be 
redesigned. 

Here, we pose the trajectory redesign problem 
as an optimization of a general quadratic cost 
function, and solve it in the context of lin- 
ear systems. The solution is obtained as an 
off-line prefilter of the desired output trajec- 
tory. Thus the redesigned output trajectory 
can be obtained through a simple convolution 
similar to the convolutions prevalent in the 
command shaping approaches, see for exam- 
ple [lo, 111. An advantage of our technique is 
that the pre-filter is independent of the partic- 



ular trajectory. The pre-filter can therefore be 
be pre-computed which is a major advantage 
over other optimization approaches (see [ll] for 
references). 
Previous works have addressed the issue of pre- 
shaping inputs, rather than desired outputs, 
to minimize residual and in-maneuver vibra- 
tions for flexible structures - see for exam- 
ple 111, 12, 13, 14, 15, 161. Note that in these 
problems, the command preshaping is com- 
puted off-line, and hence noncausal pre-filters 
can be used [lo]. Further, minimization of op- 
timal quadratic cost functions have also been 
previously used to preshape command inputs 
for disturbance rejection in 1171. A common 
problem with all these approaches is that they 
are applicable when the inputs to the systems 
are known a priori. In tracking problems, how- 
ever, outputs are usually specified and not the 
inputs : input trajectories have to be computed 
from the desired outputs. For nonminimum 
phase systems (flexible structures with non- 
collocated inputs and outputs) the inputs to  
the system are difficult to  determine. One ap- 
proach to  solve this problem is to: (1) choose a 
tracking controller - the desired output trajec- 
tory is now an input to  the closed loop system; 
and (2) redesign this input to  the closed loop 
system. Thus, effectively, we perform output 
redesign [I 11. These redesigns are, however, 
dependent on the choice of the tracking con- 
trollers 1181. Thus the controller optimization 
and trajectory redesign problems become cou- 
pled - this coupled optimization is still an open 
problem. In contrast, our optimal output tra- 
jectory redesign is independent of the particu- 
lar choice of tracking controller. We can, there- 
fore, decouple the trajectory redesign problem 
from the tracking-controller design. Note that 
if a particular closed loop controller is chosen, 
our approach is still valid. The formulation 
of our problem not only allows for the mini- 
mization of residual vibrations as in available 
techniques [ll] , but, additionally, allows for the 
optimal reduction of vibrations during the ma- 
neuver, which is required in maneuvers like the 
altitude control of flexible spacecraft [17]. 

We begin by formulating the optimal output 
trajectory redesign problem, and then solve it 
in the context of general linear systems. This 
theory is then applied to an example flexi- 
ble structure and experimental results are pro- 
vided. 

2 Problem Formulation 

System Inversion for Exact Tracking 
Consider a square system described by 

x = Ax+ Bu 
y = Cx 

where x E Rn, u E Rp and y E Rp. The inver- 
sion approach [4] finds a bounded input-state 
trajectory that satisfies the above system equa- 
tions, and yields the exact desired output, i.e. 

The inverse input-state trajectories can be de- 
scribed in terms of Fourier transforms as [I,  21 

This Fourier based inversion approach has been 
extended to nonlinear time-varying nonmini- 
mum phase systems in 141, however, we restrict 
our discussion to linear time-invariant systems. 

Remark I We note two results. One, an in- 
verse exists if the output and a certain number 
of its time-derivatives are bounded. The num- 
ber of time derivatives of the output that needs 
to  be specified for an inverse to  exist is well- 
defined and depends on the relative degree of 
the system 11.9, 41). Second, for linear systems, 
if the inverse exists then it is unique [I, 2,3,4]. 



The Performance Criterion 
Trajectory redesign seeks a compromise be- 
tween the goal of tracking the desired trajec- 
tory and other goals like reducing the magni- 
tude of input and vibrations. We formulate 
this redesign problem as the minimization of a 
quadratic cost function of the type 

where R, Q, and Q, represents the weight on 
control input, states, and the error in output 
tracking respectively. 
Using Parseval's theorem we rewrite our opti- 
mization problem in frequency domain as the 
minimization of the cost function 

where the superscript * denotes complex con- 
jugate transpose. 

Optimal Redesign of the Output 

Our main result is given by the following 
lemma, which shows that the optimal output- 
trajectory redesign can be described as a pre- 
filter, which maps desired output trajectories, 
yd, to the redesigned output trajectory, yopt. 
This pre-filter, Gf ,  doesn't depend on the par- 
ticular choice of desired trajectory and hence 
can be pre-computed. 

Lemma The modified output trajectory, 
yOpt, is given by 

where 

Proof: See 1201 

Remark I1 We point out two extreme cases. 
First, if the weight on the tracking error is zero, 
Q, = 0, but R is positive definite then we ob- 
tain v = - ( ~ , - ' ~ d )  = -uff. This implies 
that the input uopt = uff + v = 0, i.e., the best 
strategy is not to  track the desired trajectory 
at all. It is more optimal to remain at  the equi- 
librium point where the cost is zero. Second, 
if the weight on the inputs and states are zero, 
i.e., R = 0 and Q, = 0 but with Q, positive 
definite then yopt = yd. This implies that exact 
tracking is optimal, and the cost is again zero. 

3 Example 

Consider an experimental flexible structure 
which consists of two discs connected by a thin 
shaft as shown in figure 1. These two discs can 
rotate freely. 

Figure 1 Schematic Experimental Setup 

The transfer function of the system, which 
includes the rigid body mode and one flexi- 
ble mode, was obtained experiment ally using 
a HP3562A Dynamic Signal Analyzer. Input 
to  the system is torque, r ,  provided by a DC 
motor and the outputs are the angular rota- 
tions of the two discs &,  62. These angular 
rotations are measured using potentiometers, 
and the transfer functions are obtained as 



With the state vector x chosen as 

r 01 1 
as input and O2 as output, the transfer func- 
tion has four poles and two finite zeros (see 
equation(3)). Thus the number of zeros at in- 
finity are two and hence the relative degree is 
two. This implies that the second derivative 
of the desired output, i.e. the desired angu- 
lar acceleration profile of the output, uniquely 
determines the required input-state trajectory, 
and the resulting structural vibration, O1 - O2 
[4]. If the internal vibrations are to be reduced, 
then we have to relax the exact tracking re- 
quirement. Similarly to reduce the required 
input amplitudes we have to compromise ex- 
act tracking. This trade-off can be represented 
as the minimization of a a general quadratic 
cost function (section 2) of the form 

the system equations can be represented in 
state-space form as 

where 

where R = T, Qy = qy, and 

The control objective is to track the angular 
rotation, O2 of the disc, that is farthest away 
from the motor (see figure 1). The desired out- 
put trajectory and its time-derivatives as pre- 
scribed as shown in figure 2. 

The scalars r,qx,qy represent the relative 
weight on the reduction of inputs, structural 
vibrations and tracking errors respectively. In 
order to reduce the vibrations and control in- 
puts, we choose r = l ,qx = 5000, and q, = 1 
in our simulations. Figure 3 shows the modifi- 
cation of the desired trajectory - about 10% of 
the final slew angle. 

Ime 

Ime 

Figure 2 The Desired Output 

The relative degree of a single-input single- 
output linear system is the number of zeros at 
infinity [19]. For our system, with the torque Figure 3 Simulation: Re-Designed Output 
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Figure 4 Optimal Input 

Figure 5 Simulation: Twisting of the Flexible 
Shaft 

The maximum magnitude of the required in- 
put, however, is reduced by 60% and the struc- 
tural vibrations, O1 - 02, is reduced by 20% as 
shown in figures 4 and 5 .  The input-state tra- 
jectories found through inversion as described 
in equation 1 : two simulations are performed, 
first with the original desired trajectory, yd 

and second with the modified output trajec- 
tory, yVt. These state trajectories are stabi- 
lized through feedback (see control scheme in 
figure 6 ) )  and preliminary experimental results 
are presented in figures 7 and 8. 

State Trajectory - 1  Fl 

(reduced) optimal input uOpt (figure 4), the ex- 
perimental results verify that the small modi- 
fication of the output trajectory (figure 7) re- 
duces the maximum internal vibrations (50%, 
figure 8). Further reduction in the vibrations 
are possible if the tracking requirement (Q,) is 
relaxed. Also, it is possible to stabilize the sys- 
tem first through the feedback loop and then 
apply the trajectory redesign scheme to the 
closed loop system - but the redesign for our 
control scheme will not change since the input 
state trajectories always satisfy the state equa- 
tions and hence in the redesign the stabilizing 
feedback is zero. For example, (uf f, xref) satis- 
fies the state equations and thus the stabilizing 
feedback is zero if x = xr,f and does not affect 
the output redesign. 

Figure 7 Experimental Results: The Tracking 

Figure 8 Experimental Results: The Internal 
Vibrations 

4 Conclusion 
Figure 6 The Control Scheme 

With the reference feedforward inputs as the 
original inversion input uff and the modified 

We formulated and solved the trajectory re- 
design problem in the context of linear invert- 
ible systems - including nonminimum phase 



systems. Thus we provide a systematic ap- 
proach t o  an optimal tradeoff between track- 
ing desired trajectory and other goals like vi- 
bration reduction and reduction of required in- 
puts. The  approach was applied t o  an example 
flexible structure and experimental results were 
presented. Future work will address trajectory 
redesign for nonlinear systems. 
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