
NASA-CR-203035

Cricket: A Mapped, Persistent Object Store

/::f; t/i/ _-

d ,P'_,e 1: _ <

Eugene Shekita
Michael Zwilling

Computer Sciences Department
University of Wisconsin

Madison, WI 53706

This research was partially supported by DARPA under contracts N00014-88-K-0303 and NAG 2-618, NSF under grant IRI-8657323, and
donations from Texas Instruments and Digital Equipment Corporation.

Cricket: A Mapped, Persistent Object Store

Eugene Shekita
Michael Zwilling

Computer Sciences Department
University of Wisconsin

Madison, WI 53706

ABSTRACT

This paper describes Cricket, a new database storage system that is intended to be used as a plat-
form for design environments and persistent programming languages. Cricket uses the memory
management primitives of the Mach operating system to provide the abstraction of a shared,
transactional single-level store that can be directly accessed by user applications. In this paper,

we present the design and motivation for Cricket. We also present some initial performance
results which show that, for its intended applications, Cricket can provide better performance

than a general-purpose database storage system.

(To appear in Proc. of the 4th Intl. Workshop on Persistent Object Systems Design, Implementation and Use)

1. INTRODUCTION

In recent years, there has been a great deal of research in extending database technology to meet the needs of

emerging database applications such as text management and multi-media office systems (see [DBE87] for a good

survey). Out of this research has come a variety of new storage systems that attempt to provide more functionality

as well as improved performance for these emerging applications. Examples of such systems include [Care86,

Horn87, Lind87, Moss88, Sche90, Ston90]. While these storage systems will undoubtedly meet the performance

demands of many new applications, our view is that for some applications there is still considerable room for

improvement. In particular, we feel that for design environments [Katz87, Chan89], persistent programming

languages [Cock84, Atki87], and other applications in which response time rather than throughput is often the key

concern, different storage techniques that those currently in use can provide better performance.

Towards this goal, we have designed a new database storage system called Cricket. 1Cricket uses the memory

management primitives of Mach [Acce86] to provide the abstraction of a shared, transactional, single-level store.

One advantage of a single-level store is that it provides applications with a uniform view of volatile and non-volatile

(i.e., persistent) memory. This in turn can lead to improved performance by eliminating the need for applications to

distinguish and convert between non-persistent and persistent data formats [Cope90].

As the reader shall see, the flow of control really hops around in our storage system!

Although storage systems based on a single-level store have been proposed as far back as Multics [Bens72],

Cricket offers several features that have not been combined in one system before. One of Cricket's key features is

the ability to let applications directly access persistent data, but at the same time maintain the applications in

separate (and potentially distributed) protection domains. Cricket also offers transparent concurrency control and

recovery, and since it runs as a user-level process on Mach, it is easily ported to a variety of machines. We believe

that these features distinguish Cricket from other recent proposals based on a single-level store [Chan88, Ford88,

Spec88, Cope90] and make it an attractive platform for design environments and persistent languages.

The remainder of this paper provides a detailed description of Cricket. In the next section, we present the

motivation for Cricket, and then in Section 3, we argue why a single-level store is the right approach. This is fol-

lowed by Section 4, where we review Mach's external pager facilities [Youn87], which play a central role in

Cricket's design. Cricket's system architecture is then described in Section 5, and in Section 6, we provide some

preliminary performance results that compare Cricket to the EXODUS Storage Manager [Care86]. These prelim-

inary results show that for its intended applications, Cricket can provide better performance than a general-purpose

database storage system. Finally, related work is mentioned in Section 7, and conclusions are drawn in Section 8.

2. THE MOTIVATION BEHIND CRICKET

While traditional database storage systems are extremely good at retrieving large groups of related objects

and performing the same operation on each object, they are generally ill-suited for design environments. To illus-

trate why, it is useful to step through the execution of a design transaction in a CAD/CAM system [Katz87]. There,

transactions can be broken down into three basic phases: 1) a loading phase, when the design is loaded into memory

from disk, 2) a work phase, during which the design is repeatedly changed, and 3) a saving phase, when design

changes are committed. As noted in [Maie89], this load/work/save paradigm is substantially different from a tradi-

tional database workload. During the work phase, accesses are unpredictable and fast response time is the key per-

formance criteria rather than system throughput. Moreover, the data objects that make up the design may be

traversed and updated hundreds, even thousands of times before the design is saved.

Unfortunately, traditional database storage systems are not geared for these sort of access patterns. Among

other things, the procedure-based interface that must typically be used to traverse and update persistent objects is

too slow [Moss90]. And as noted in [Male89], the recovery protocols are often inappropriate. For example, gen-

erating a log record for each update in the work phase of a design transaction would obviously have a negative

impact on response time (not to mention the volumes of log data that could be generated). For these reasons, CAD

transactions often use a database system in more of a batch mode by loading a whole design into their virtual

address space, converting it to an in-memory format, working on it, converting it back to a disk format, and then

committing the entire design as changed at end-of-transaction. In general, we would argue that these problems are

not just limited to design environments. Implementors of persistent languages have already run up against many of

the same problems [Rich89, Schu90].

More recently, a number of new database storage systems have been proposed to address some of these

issues, e.g., [Care86, Horn87, Lind87, Moss88, Sche90, Ston90]. But our feeling is that for design environments

and persistent languages, many of these systems will still fall short of the mark. This is due to the fact that many of

them still use a procedure-based interface to access persistent data. Moreover, many of them still use fairly tradi-

tional recovery techniques based on write-ahead logging [Moh89a]. It was these observations and also our experi-

ences with the EXODUS Storage Manager [Care86] and the persistent language E [Rich89, Schu90] that motivated

us to design Cricket.

3. THE ARGUMENT FOR A SINGLE-LEVEL STORE

As mentioned earlier, Cricket provides the abstraction of a single-level store to applications, and we advertise

this as one of its key features. With a single-level store, the database itself is mapped into the virtual address space,

allowing persistent data to be accessed in the same manner as non-persistent data. This is in contrast to a conven-

tional two-level store, where access to persistent data is less direct and a user-level buffer pool is typically main-

tained to cache disk pages.

Single-level stores are nothing new, of course. Their origins can be traced back almost 20 years to Multics

[Bens72], and many operating systems provide mapped file facilities that effectively implement a single-level store.

But more importantly, database implementors have repeatedly rejected the idea of using the mapped file facilities

offered by operating systems and instead have chosen to manage buffering and disk storage themselves. There are a

variety of reasons given why this is so (see [StonS1, Trai82, Ston84]). Among the most notable are:

• Operating systems typically provide no control over when the data pages of a mapped file are written to disk,

which makes it impossible to use recovery protocols like write-ahead logging [Moh89a] and sophisticated

buffer management [Chou85].

• The virtual address space provided by mapped files, usually limited to 32 bits, is too small to represent a large

database.

• Page tables associated with mapped files can become excessively large.

As pointed out in [Eppi89] and [Cope90], however, these criticisms may no longer be as valid as they once were.

The above items can be countered by arguing that:

• With the right operating system hooks, it is possible to control when the data pages of a mapped file are writ-

ten to disk. Mach, for example, provides many of the necessary hooks with its notion of memory objects

[Youn87]. More will be said about this shortly.

• For many emerging database applications, a 32-bit address space is sufficient. Moreover, with the rapid

increase in memory sizes and with shared-memory multiprocessors becoming more commonplace, processors

with large virtual address spaces may soon become available. In fact, IBM's RS/6000 [Bako90] already sup-

ports a 52-bit address space, and HP's Precision Architecture [Maho86] supports a 64-bit address space

(although strictly speaking, these are both segmented architectures).

• As the cost of memory decreases, large page tables will become less of a concern. Furthermore, inverted

page tables such as those found in IBM's RS/6000 and HP's Precision Architecture may become more com-

mon with the increase in memory sizes. Inverted page tables exhibit the desirable property of growing in pro-

portion to the size of physical memory rather than the size of virtual memory.

Despite these compelling arguments (see [Eppi89] for several more), the jury is still out on whether a single-

level store offers any advantages for traditional database applications. In fact, the performance results presented in

Eppinger's Ph.D thesis and also in [Duch89] seem to argue that it may not be a good idea for transaction processing.

Interestingly enough, the real problem with a using single-level store for transaction processing appears to be the

high cost of handling page faults for persistent data rather than the criticisms mentioned above.

3.1. Why a Single-Level Store is Right for Cricket

Given the known problems with a single-level store, why do we think it is the right choice for Cricket? The

answer is that we are primarily interested in supporting non-traditional applications where, in our opinion, the

advantages of using a single-level store outweigh its disadvantages. In the following paragraphs, we briefly mention

some of these advantages.

One advantage is that a single-level store can eliminate the need for applications to distinguish and convert

between non-persistent and persistent data formats. In most database storage systems, the format of persistent data

and the access to it usually differs from that of non-persistent data. Moreover, the cost of accessing persistent data

is generally more expensive, even after it has been brought into memory [Moss90_ Schu90]. As a result, applica-

tions often convert persistent data to a more efficient in-memory format before operating on it. Unfortunately, this

can involve copying costs, added buffering requirements, and format conversions. With a single-level store, non-

persistent and persistent data can have a uniform representation and these costs can be eliminated [Cope90]. This

has obvious benefits in applications like design environments, where the real-time cost of accessing and updating

persistent data is a key concern.

4

Forsimilarreasons,wefeelthatasingle-levelstorewillalsosimplifythejobof implementingapersistent

language.To reducethecostof accessingpersistentdata,persistentlanguagesoftenuse"pointerswizzling"

[Cock84,Moss90,Schu90].In pointerswizzling,theembeddedobjectidentifiers(i.e.,pointers)thatarestoredin

persistentobjectsaretypicallyconvertedtovirtualaddresseswhiletheyareinmemory.Thisisdonetoreducethe

costof traversingobjects.Unfortunately,swizzlingisnotassimpleasit sounds.Therearetheissuesof what

identifierstoswizzle,whentoswizzlethem,andhowtounswizzlethem.AndinpersistentlanguagesbasedonC

[Agra89,Rich89],it isoftendifficulttoknowwhereidentifiersarelocated,whentheychange,andwhentheyneed

tobereswizzled[Schu90].Withasingle-levelstore,objectidentifiersbecomevirtualmemoryaddresses,soallthis

effort(anditsassociatedcost)canbeeliminated.

Yet anotheradvantageof usinga single-levelstoreis thatpersistenceandtypecanbekeptorthogonal

[Atki87].Thatis,applicationcodecanbewrittenwithoutconcernforwhetherit isoperatingonnon-persistentor

persistentdata.Thissimplifiescodedevelopmentandalsoallowsbinariesthatwereoriginallydesignedtooperate

onnon-persistentdatato beusedwithpersistentdata-- which,of course,hasobviouspracticalandcommercial

advantages.

Finally,asingle-levelstorecansimplifythemanagementofpersistentobjectsthatspanmultiplediskpages.

Becauseasingle-levelstoremakesuseofMMUhardware,multi-pageobjectscanbemadetoappearinmemoryas

thoughtheywerecontiguouswithoutactuallyrequiringphysicalcontiguity.Thisis in contrasttotheEXODUS

StorageManager[Care86],whereconsiderableeffortwasrequiredtoimplementcontiguousbufferingofmulti-page

objects.

4. EXTERNALPAGERSIN MACH

In thenextsection,wewill describeCricket'ssystemarchitecture.Beforewecandothat,however,weneed

tobrieflygooverMach'sexternal pager interface [Youn87], since it plays a central role in Cricket's design.

Among other things, Mach provides a number of facilities that allow user-level tasks (i.e., processes) to exer-

cise control over virtual memory management. Mach provides the notion of a memory object, which is simply a

data repository that is managed by some server (in this case Cricket). Such a server is called an external pager. An

external pager is in charge of paging the data of a memory object to and from disk.

In Mach, tasks can associate (i.e., map) a given region of their address space to a memory object using the

vm_map kernel call. After doing so, the external pager for that memory object will be called by the Mach kernel

when a page in the mapped region needs to be read or written to disk. Physical sharing of data occurs when more

than one task maps the same memory object into its address space. The Mach kernel and external pagers coordinate

their activity through a message-based interface, which is summarized in Table 1.

5

Mach Kernel to External Pager Interface

memory_object_data_request ()
memory_object_data_write ()

request for data page of a memory object

request to write page of a memory object to disk

External Pager to Mach Kernel Interface

memory_object_data_provided () supplies kernel with data page
memory_object_data_unavailable () tells kernel to use zero-filled page

Table 1: External Pager Interface

Figure 1 illustrates how the Mach kernel and an external pager coordinate their activity on a page fault for a

memory object M. At startup, the external pager acquires a port (i.e., capability) from the Mach kernel and associ-

ates it with M. Through an exchange of messages, the capability for M is passed to the client task, which then calls

vm_map to map M into its address space. (Alternatively, the external pager can call vm_map on behalf of the client

if it has the right permissions.) When the client attempts to access a page P in the mapped region, a page fault is

generated. The page fault is caught by the Mach kernel, which verifies the client's access permissions and then

sends a memory_object_data_request message to the external pager, asking it to supply the data for P. The external

pager reads the data from disk and provides it to the kernel via memory_object_data_provided. The kernel then

locates a free page frame, copies the data into the frame, and resumes the client. Subsequent accesses to P will not

generate a page fault.

By default, Mach uses an LRU replacement algorithm to manage kernel memory. If its free-page list starts to

run low and page P is at the top of the inactive list, then P will be replaced. If P is clean, its contents are simply

Client Task

vm_map M

page fault _[Mach Kernel

check access permissions

page lookup

send memory_object_data_request

receive data

allocate page frame, copy data

resume client

External Pager Task

_ receive memory_object_data_request

read data from disk

send memory_object_dataH)rovided

Figure 1: Handling a Page Fault on a Memory Object

discarded.Otherwise,thekernelsendsamemory_object_data_write message to the external pager with a pointer to

P, at which point the external pager is expected to write P to disk.

In addition to the interface calls mentioned above, Mach also provides the means for an external pager to

force a page of a memory object to be cleaned or flushed. This effectively allows the external pager to control (to

some extent) the replacement policy used for a memory object. Furthermore, memory_object_data_provided can be

called asynchronously, so prefetching data for a memory object is also possible.

5. CRICKET'S SYSTEM ARCHITECTURE

This section describes Cricket's system architecture. The section is broken into two parts. In the first part, we

discuss Cricket's basic design, and in the second part we discuss more advanced design issues that are largely

unresolved at this point in time.

5,1. Basic Design

5.1.1. Architecture Overview

Figure 2 illustrates what the single-site architecture of Cricket looks like. As shown, Cricket follows a

client/server paradigm. Client applications run as separate tasks, each in their own protection domain, and they use

an RPC interface to request basic services from Cricket. The RPC interface includes connect to establish a connec-

tion with Cricket, disconnect to break a connection, begin_transaction to begin a transaction, and end_transaction to

end a transaction. For efficiency, some of Cricket' s functionality is split between the Cricket server itself and a run-

time library that gets linked with the application code at compile time. The runtime library includes RPC stubs as

well as code for allocating persistent data. More will be said about this shortly.

The Cricket server is multi-threaded to permit true parallelism on multiprocessors and also to improve

throughput by permitting threads to run even when others are blocked on synchronous events like I/O. The Mach

C-Threads package [Drav88] is used to create and manage threads. When Cricket starts up, it creates a pool of

threads which all line up on the same central message queue waiting to service client or kernel requests. A given

thread is not tied to any particular function or transaction. When a thread finishes servicing a request, it puts itself

on the central message queue again and waits for yet another request. Mach takes care of preemptively scheduling

individual threads.

As mentioned earlier, client applications are allowed direct (shared) access to persistent data. This is accom-

plished using Mach's external pager facility. We simply treat the database as a memory object and have the Cricket

server play the role of its external pager. When a client first connects to Cricket, a vm_map call is executed by

Cricket on behalf of the client to map the database into the client's virtual address space. The connect call returns

ClientTask

applicationcode

runtimesupport

ClientTask

applicationcode

runtimesupport

Cricket Server

core functions and data structures:

- transaction management

- concurrency control and recovery

- index management

- disk allocation

- frO, etc.

Mach Kernel I

\ I

cached database pages @ _-_ _ D

Figure 2: Single-Site Cricket

database

the virtual address that corresponds to the start of the database, as mapped in the client' s address space. Using this

address, the client can then access the database just as if it were in virtual memory -- ala a single-level store. To

ensure that pointers to persistent data remain valid over time, Cricket always maps the database to the same range of

virtual addresses

It is important to note that database I/O is completely transparent to client applications as a result of using

Mach's external pager facility. By default, the same holds true for concurrency control and recovery -- although

for efficiency, we are also experimenting with options that make those functions less transparent.

5.1.2. On Protection verses Performance

As shown in Figure 2, Cricket's core functions and their associated data structures are isolated in the Cricket

server where they are protected from client applications. Because of its widespread use, our view is that nobody

will take us seriously if we are unable to support applications written in C [Kern78] or its derivatives. Conse-

quently, separate protection domains are a necessary evil. (One can imagine the damage a buggy C application

could inflict if it had access to the disk allocation bitmapsI) In commercial database systems, the application code

and the system software typically reside in separate address spaces for the same reason.

Where Cricket departs from a more traditional design is that we let clients directly access regular data via

Mach's external pager facilities. (Bitmaps and other meta-data structures are still inaccessible, of course.)

Although this compromises protection somewhat, we view it as manageable and worth the extra performance for the

types of applications we have in mind. Moreover, because all database accesses filter through Cricket's locking

mechanism, which is discussed below, an application can only damage the data pages that it has gained access to

anyway. Without direct access to the database, a client application would have to make an explicit request to read

data into its address space, and it would have to take analogous steps to have it written back. This would involve

added complexity, copying costs, extra buffering (possibly leading to double-paging [Bric76]), and would also des-

troy the abstraction of a single-level store.

5.1.3. Coneurreney Control

By default, Cricket provides transparent, two-phase, page-level locking for client access to the database. This

is done using Mach's exception handling facility [Blac88], which allows the exceptions of one task to be caught and

handled by another task. In our case, Cricket handles exceptions for client tasks.

When a client first connects to Cricket, its exception handler is set to be the Cricket server. Later, when the

client executes begin_transaction, all the virtual addresses in the client that map to the database are protected

against read and write access. Subsequent attempts by the client to access a page in the database triggers an address

exception, causing Mach to block the client and send a message to Cricket. The message is received by a Cricket

thread, which attempts to acquire the appropriate (read or write) lock for the client, blocking itself if necessary.

Once the lock has been acquired, the thread fixes the client's access permissions for the page via a kernel call and

then lets Mach know that the exception has been successfully handled. At that point, Mach resumes the client.

The exchange of messages involved in catching an address exception and setting a lock is similar to that

shown in Figure 1 for external pager fault handling. As one can imagine, setting a lock is not cheap! But compared

to a more traditional design, our scheme is not as bad as it may appear at first glance. In a more traditional design,

an RPC would typically have to be sent from the client to the database system to acquire a lock. And, as our prelim-

inary results will show, exception handling in Mach is not drastically more expensive than sending an RPC. 2

As mentioned earlier, we are also experimenting with different concurrency control options other than simple

two-phase, page-level locking. Among other things, we eventually intend to support dirty reads [Moh89a] and also

design- or file-level locks. The latter would be used by design transactions, where aborting a long-running transac-

tion due to a deadlock makes little sense. Of course, the smallest granularity of locking that we can transparently

provide in Cricket is limited to a page, but for the applications we have in mind that should be sufficient.

2 It is worth noting that we also experimented with an alternative locking scheme wherethe exception handler ran as a thread in client's
runtime support code. When an address exception was caught, this thread would send an RPC to Cricket to acquire the appropriate lock. Because
of RPC costs, this turned out to be more expensive than the design we have chosen.

It isimportanttonotethatusingaddressexceptionstotriggerlockingisnotanewidea.Exceptionswerealso

usedin theBubbadatabasesystem[Bora90]to setlocks.Ourschemediffersfromtheirsin thatweperformlock

managementinauser-leveltask,whereaslockingwasperformedbytheoperatingsysteminBubba.Thisrequired

specialmodificationstotheoperatingsystem.AddressexceptionshavealsobeenusedbyLi [Li86]to implement

memorycoherencyinadistributedvirtualmemorysystemandin thelanguageML totriggergarbagecollection

[Appe86].

5.1.4.DiskAllocation

Cricketusesanextent-basedschemeformanagingdiskspace.A diskispartitionedintoextents,witheach

extentcontainingthesamenumberofpages-- usuallyatleast16Kbytesworth.Extentsandthepageswithinan

extentareallocatedin a lazymanner,muchlikeinCamelot.Linearhashing[Litw80]is usedtomapa virtual

addresstoaphysicalextentondisk,allowingustoefficientlyhandlesparsedatabases.Becausehashingisdoneon

anextentbasis,thehashtablewillgenerallyconsumeverylittlespace.

Forallocatingpersistentdata,weprovidewhatamountstoanobject-basedversionof Camelot'srecoverable

virtualmemory.TheruntimesupportcodeprovidesaDBmalloc function for allocating persistent "objects" and a

corresponding DBfree for deallocating them. DBmalloc takes size and near-hint parameters. The size parameter

tells how much space to allocate, while the near-hint parameter is a virtual memory address that tells DBmalloc

where it should try to allocate space. The near-hint is used to simultaneously provide both virtual and physical

clustering. That is, DBmalloc tries to allocate the new object on the same page as the near-hint. Failing that, it

sends an RPC to Cricket, which tries to allocate the object either within the same extent as the near-hint or as phy-

sically close to it as possible. (Optimizations to cut down on RPCs are obviously possible here.)

As illustrated in Figure 3, individual disk pages are formatted as slotted pages [Date81]. The slot information

at the bottom of a page is used to keep track of the objects and the free space on the page. When all the space on a

page is free, it is marked as such in the page-allocation bitmaps maintained by the Cricket server. Large multi-page

objects are allocated as runs of pages that are virtually contiguous, but not necessarily physically contiguous. Only

the first page of a large object is formatted as a slotted page.

In addition to providing information about the objects on a disk page, the slot array at the bottom of a page

also provides a level of indirection for accessing the objects on the page. If that extra level of indirection is always

used, then it becomes possible to compact the free space on pages during idle periods. By default, this is not done

because it would force applications to distinguish between non-persistent and persistent data access. However, in

object-oriented languages that provide encapsulation, it may be possible to hide the extra level of indirection.

10

Disk Page Format

a small object,

and a large object

spanning 2 disk pages

slot array

Figure 3: The Format of Disk Pages

5.1.5. Buffer Management

At the moment, we delegate all page replacement decisions for regular data to Mach. Consequently, an LRU

replacement policy is used by default. For the types of applications we have in mind, where the working set of an

application will typically fit in memory, this is expected to be adequate. As noted in [Eppi89], the beauty of letting

Mach buffer regular data is that it effectively provides a buffer pool that dynamically changes its size in response to

other system activity.

We examined two alternatives for managing system meta-data such as the page-allocation bitmaps. The first

alternative was to maintain a small, wired-down virtual memory buffer pool in the Cricket server, while the second

alternative was to map meta-data into the virtual address of Cricket itself and treat it as yet another memory object.

We have chosen the first alternative because of the expense associated with using an external pager. Moreover, the

abstraction of a single-level store is not particularly important for meta-data.

5.2. Unresolved Design Issues

5.2.1. Files

Although we recognize that files are needed to group related objects, we have not yet settled on a particular

implementation for them. Given enough address bits (e.g., 64 bits), it may be sufficient in many cases to simply par-

tition the virtual address space into large fixed-sized segments and treat each segment as a different file. Another

alternative is to view a file as a list of (not necessarily contiguous) extents. This would require that all the objects in

an extent belong to the same file.

11

5.2.2. Index Management

Eventually, we would like to include support for indexes such as B-trees in Cricket. An index in Cricket

would simply map from some user-defined key to the virtual address of an object in the database. Our view is that

indexes need to be managed by Cricket for reasons of protection and also performance.

As far as protection goes, we view indexes as meta-data, and as such they must be protected. An errant client

application could cause considerable and potentially unrepairable damage if it were allowed write access to an

index. And as far as performance goes, our feeling is that simple two-phase, page-level locking is inadequate for

indexes, even in a design environment. Consequently, index pages cannot be treated as regular data. Obtaining

adequate system performance usually requires fairly complex concurrency control and recovery algorithms to be

used on indexes [Moh89b]. (In general, the same holds true for all meta-data structures.)

Index management presents something of a dilemma because on the one hand we would like to protect

indexes from being damaged by client applications, but on the other hand the cost of sending an RPC to the Cricket

server for each index access is likely to be too expensive, even if they are batched. To get around this dilemma, we

are examining the possibility of giving clients read-only access to index pages. In this scheme, the runtime support

code would take care of read operations on indexes (including locking), but updates would be forwarded (perhaps in

batch-mode) to the Cricket server.

5.2.3. Recovery

Recovery is another area where we have yet to settle on a particular implementation. In discussing recovery

algorithms, one of the key things to remember is that we give response time priority over throughput in Cricket. As

a result, we are willing to accept a recovery algorithm that slows down transaction commit somewhat if it

significantly improves response time during the execution of the transaction. Another thing to remember is that

Cricket is intended to be used in a design environment, where the same set of persistent objects may be updated

thousands of times by the same transaction. In such an environment, traditional old-value/new-value logging is

clearly inappropriate.

At this point, we have decided that for disk allocation data, indexes, and all other meta-data, we will use the

ARIES recovery algorithm [Moh89a], which is based on operation logging. For regular data, we have identified a

number of alternatives, all of which require a no-steal buffer policy. 3 With a no-steal policy, steps must be taken to

ensure that a dirty data page is not written to its home location on disk until the transaction that has modified the

page commits. For the types of applications we have in mind, this is not expected to be a problem (especially in a

Note that with a no-steal policy, logging is only needed to provide commit atomicity and to support recovery from media failure.

12

distributedenvironment,whichisbrieflydiscussedbelow).Theadvantagesofusingano-stealpolicyarethatold-

values do not have to be logged and repeated changes are accumulated before being logged at commit.

One alternative for regular data recovery in Cricket is to simply log full pages at commit. Although this

sounds like it could generate excessive amounts of log data, the applications that use Cricket may tend to update a

large fraction of each page that they modify. If this turns out to be the case, then logging full pages at commit will

result in an efficient recovery algorithm. During idle periods, the on-line log can be compressed by removing all but

the most recent copy of a given page.

Another alternative is to use a copy-on-write mechanism. When a write lock for a page is granted, the page is

copied to a temporary location in memory. Then, at commit, the new version of the page is compared to its original

and the changed portions are logged. If log space is a concern, a compression algorithm can be applied to the log

records that are generated.

One final alternative is to require all updates to persistent objects to filter through a runtime support function.

The support function would record information that indicates which persistent objects have been modified. At com-

mit, the Cricket server would then use the recorded information and its knowledge of which pages were modified to

generate new-value log records. The disadvantage of this approach is that persistence is no longer transparent to

applications.

5.2.4. Moving to a Distributed Environment

Since a client/server hardware configuration is expected to be the norm for design applications, we naturally

plan on moving Cricket to a distributed environment. In fact, that has always been our main goal, and the single-site

architecture is really just a stepping stone. Because it has been built on top of Mach, client applications and the

Cricket server can already run on separate machines. However, the current design has not yet been optimized for

the distributed case.

When we move to a distributed environment, we expect Cricket's architecture to look like Figure 4. As illus-

trated, Cricket will be split into a front-end and a back-end. The front-end will take care of functions that can be

handled more efficiently on the local machine, while the back-end will take care of global functions like cache

coherency. Note that because we provide a single-level store to clients, this architecture supports what amounts to

distributed, transactional, shared, persistent virtual memory (phew!). Although we could use the algorithms

described by Li [Li86] to maintain memory coherency across machines, transaction semantics open up the possibil-

ity for us to use more efficient algorithms. There has been some work done in this area (see [Wilk90, Dewi90]), but

not in the context of a single-level store. One of Cricket's designers is actively working on this problem already

[Fran90].

13

Workstation Workstation

Client Task

\
I

Client Task

I [
Cricket Front-End

local functions

!
I

;erver Machine

Cricket Back-End
J

global functions:

- cache coherency

- disk allocation

- global buffer pool

- I/O, etc.

Client Task

I _ [Cricket Front-End
local functions

database

Client Task

Figure 4: Distributed Cricket

Some of the interesting problems that surface in a distributed environment include index management, buffer-

ing, and the general question of what functionality belongs in the front-end and what functionality belongs in the

back-end. We also expect distribution to affect our choice of recovery algorithms. For example, in a distributed

environment, it probably makes more sense to offload as much commit processing as possible to the front-end

machine. Also note that there is no need to use Mach's external pager facilities in the back-end, as the data pages

that are cached there are not directly accessible to clients.

6. PRELIMINARY PERFORMANCE RESULTS

To get a rough idea of how the single-site version of Cricket can be expected to perform, we ran a series of

benchmarks on a DEC MicroVax 3200 workstation with 16 Mbytes of memory. The benchmarks were run in

single-user mode on version 2.5 of Mach with the workstation disconnected from the network. We only ran single-

user benchmarks, and the average cost of a given operation was calculated by performing the operation several

thousand times, and then dividing the measured elapsed time by the number of operations performed. This was

done several times to check for stability, and the average observed values are the ones reported here. The Mach

real-time clock, which has a resolution of roughly 17 msec, was used to measure elapsed times. The virtual page

14

size in the version of Mach that we were running under was 4 Kbytes.

Before running any benchmarks, we measured the CPU costs of various key operations in Mach. This was

done to get a general feel for the cost of different operations on the MicroVax. The results are presented in Table 2.

Operation Cost in usec

getpid ()
vm_protect ()
bcopy () a 4 Kbyte page
null RPC

send page out-of-line

send page in-line

108
49O
585

1,275
1,316
4,493

Table 2: Cost of Various Operations in Mach

Getpid (get process ID) is the simplest kernel call that we could think of, while vm__protect is the call that Cricket

uses to set the access rights on client pages. Bcopy is a library function for copying data in memory, and the last

three operation costs listed are for sending a null RPC with no arguments, sending a page out-of-line via an RPC,

and sending a page in-line via an RPC, respectively.

6.1. The Cost of Using Mach's External Pager and Exception Handling Facilities

The performance of Cricket is largely dependent on the cost of Mach's external pager and exception handling

facilities. To measure these costs, we used a simple scan benchmark. In this benchmark, a single client connects

with Cricket, invokes begin_transaction and then sequentially touches the first 1,280 pages (i.e., 5 Mbytes) of the

mapped database. All I/O is short-circuited in the benchmark by having the Cricket server pass Mach a pointer to a

dummy page in memory_object_data_provide. By using the scan benchmark and by turning off all aspects of tran-

saction management in Cricket other than exception handling and external pager requests, we were able to obtain

the results shown in Table 3. These results capture the per-page CPU cost of using Mach's external pager and

exception handling facilities.

The costs listed in Table 3 are as follows: (1) is simply the CPU cost of handling a page fault for a page that is

already cached in Mach kernel memory. (2) is the CPU cost of handling an address exception in Cricket to trigger

locking on a database page. (3) is the CPU cost of having the kernel send a memory_object_data_request message

to Cricket, with Cricket responding via a memory_object_data_provided message. (4), which should approximately

equal (1) + (2), is the CPU cost that a client incurs on the first access to a database page that is cached in kernel

memory. Finally, (5), which should approximately equal (1) + (2) + (3), is the CPU cost that a client incurs on the

first access to a database page that is not cached in kernel memory.

15

Event Cost in usec

(1) page fault that is handled completely in the kernel
(2) handle address exception in Cricket
(3) memory_object_data_request & memory_object_data_provided
(4) page fault + address exception
(5) page fault + address exception +

memory_object_data_request & memory_objectdata_provided

420

3,180
3,221
3,605

6,845

Table 3: Per-Page CPU Cost of External Pager and Exception Handling Facilities

As Table 3 clearly indicates, the external pager and exception handling facilities of Mach are not exactly free!

Most of the expense presumably comes from context switches, message costs, and management of the kernel data

structures associated with memory objects. However, the reader should bear in mind that (4) or (5) will only be

incurred on the first access to a page. Furthermore, there are a number of ways that these costs can be reduced. One

way is to simply do large block-sized I/O operations for regular data. We simulated the effect that this would have

on the CPU costs in Table 3 by providing 16 Kbyte blocks of data to Mach in memory_object_data_provided.

When this was done, the CPU cost of (5) dropped to 4,954 usec per 4 Kbyte page. Another method to reduce costs

is to read data from disk and asynchronously call memory_object_data__provided as soon an address exception for

an uncached data page is caught. 4 This is in contrast to waiting for an explicit memory_object_data_request mes-

sage from the Mach kernel. Finally, large-grained locks can be used to cut down on the number of exceptions gen-

erated. To examine the effects of combining these methods, we simulated doing 16 Kbyte block I/O as soon as an

address exception was generated for the first page in the block, and we also set the granularity of locking to 4-page

units. When this was done the CPU cost of (5) dropped further to 2,248 usec per 4 Kbyte page. In design environ-

ments, we may do even better if design-level locks are acceptable.

6.2. Comparing Cricket to a General-Purpose Database Storage System

To determine how Cricket's performance compares to a general-purpose database storage system, we ran a

tree-search benchmark on Cricket and also on the single-user version of the EXODUS Storage Manager [Care86].

In this benchmark, a persistent tree is searched in a depth-first manner, and the number of times the tree is searched

can be varied. No processing is done on a node other than to follow its edges to neighboring nodes. This bench-

mark was chosen because it is representative of the types of data access that Cricket applications are expected to

make. It is important for readers to realize that this is not really a fair comparison, as the single-user EXODUS

Storage Manager does not provide shared access, protection, or locking. Nonetheless, we were still able to obtain

some results that we thought might be of interest to other researchers.

4This is a rather obvious thing to do, but surprisingly Mach does not currently provide a way for an external pager to determine if a given
page of a memory object is cached in kemel memory. Hopefully, this design flawwill be fixed in the near future.

16

In the tree-search benchmark, we used a tree with a depth of 4 and a node fanout of 11 (16,105 nodes total).

For uniformity, the nodes in the tree were padded so that data pages in both the EXODUS Storage Manager and

Cricket contained the same number of nodes, namely 12. As a result of padding nodes, the tree spanned 1,343

pages in both storage systems. Readers should note that padding the nodes in this manner biases the results in favor

of the EXODUS Storage Manager due to the fact that its object identifiers consume 12 bytes, whereas they only

consume 4 bytes in Cricket. Therefore, under normal circumstances, the resulting tree would tend to span fewer

disk pages in Cricket than than it does in the EXODUS Storage Manager. This would in turn lead to less I/O,

smaller buffering requirements, etc.

To measure the effect of doing I/O, we used a version of the tree-search benchmark that read the tree from

disk at startup. When we sat down and looked at the numbers that were generated for Cricket, however, they made

no sense. In particular, the CPU cost of using Mach's external pager facilities was not showing up. A little experi-

mentation revealed that Mach could not issue I/O requests fast enough to avoid rotational delays (even for sequen-

tial reads on a raw disk partition). Since the average rotational delay for the disk we used was 8.3 msec, this meant

that Cricket could, on average, do an extra 8.3 msec of CPU processing per page without it ever showing up in a

single-user benchmark! This, of course, lead to the strange results. In the near future, we will try to get I/O numbers

using some other benchmark.

As a result of the above problems and due to time constraints, we ended up generating only the results shown

in Table 4. To ensure that no I/O would take place, the whole tree was read into memory by a separate transaction

before the benchmark was run. Although exception handling for locks was turned on in Cricket, the transaction

management code associated with locking was turned off to keep the comparison as fair as possible.

Elapsed Search Time in msec
Setting One Pass Two Passes

non-persistent tree 789 1599
Cricket 5,680 6,515
EXODUS 6,230 12,467

Table 4: Results for the Tree-Search Benchmark

The first line in Table 4 shows the cost of searching a non-persistent version of the tree. The values shown

there and in Table 3 can be used to validate the results that we obtained for Cricket. For example, the elapsed time

for the one-pass search in Cricket is estimated to be 5,631 msec (789 msec for the base cost of executing the search

code, plus 4,842 msec for the cost of handling page faults and exceptions on 1,343 pages). This estimate is quite

close to the measured time of 5,680 msec. The same holds true for all the results, and therefore we are confident

that the numbers we obtained are accurate.

17

AstheresultsinTable4 show,evenwithjust12nodesperpageandwithalmostnoprocessingonanode,

Cricketwasstill abletooutperformtheEXODUSStorageManager.Tounderstandwhy,it sufficestolookatthe

interfacethattheEXODUSStorageManagerprovidesforaccessingpersistentobjects.There,accesstoapersistent

objectisobtainedviatheReadObject procedure call, which locates the object in the buffer pool, pins the page that

contains it, and sets up an indirect pointer that is used to access the object. After the object is no longer needed a

ReleaseObject call is issued to upin the object. In the tree-search benchmark, ReadObject and ReleaseObject had to

be called once per node per search pass. It was primarily the costs associated with these two procedures (somewhere

around 330 usec for the pair) that lead to the slower times in the EXODUS Storage Manager. Given that this bench-

mark was somewhat biased in favor of the EXODUS Storage Manager, we view these results very positively. To

us, they suggest that for its intended applications, Cricket can provide better performance than a general-purpose

database storage system.

7. RELATED WORK

The work most closely related to ours is that done by the implementors of the Bubba database system at MCC

[Bora90, Cope90]. In Bubba, the kernel of an AT&T UNIX System V kernel was modified to provide a single-level

store with automatic, two-phase, page-level locking. Although we have borrowed a number of ideas from Bubba,

several differences distinguish Cricket from the approach taken in Bubba. One difference is that Bubba's imple-

mentors had to modify the operating system kernel, since they did not have the luxury of using Mach. This, of

course, caused problems with portability. Also, their recovery algorithms relied on battery-backed RAM, again

causing problems with portability. Furthermore, in contrast to Cricket, the implementors of Bubba were able to

ignore protection issues because their applications were written in FAD, which is a "safe" language. Finally, the

focus in Bubba was on building a highly parallel database system, whereas in Cricket we are more interested in

storage system issues, client/server hardware configurations, and providing support for design environments and

persistent languages.

The Camelot Distributed Transaction System [Spec88] is another related work. Camelot also used the exter-

nal pager facilities of Mach to provide a single-level store. In contrast to Cricket, however, the single-level store

that Camelot provides is not meant to be directly accessed by client applications. Instead, it is intended to be

accessed only within a "data server" for storing all the persistent data and meta-data managed by that server. It is

not clear, however, that the abstraction of a single-level store is all that important in the context of a data server. In

contrast to Cricket, Camelot also provides fairly conventional locking and recovery services that must be explicitly

invoked by its clients.

18

Thelastrelatedworkthatweneedtomentionis thatdonein IBM's801prototypehardwarearchitecture

[Chan88].Inthe801prototype,theoperatingsystemessentiallyprovidedmappedfileswithautomaticconcurrency

controlandrecovery.Specialhardwarewasaddedforbothlockingandlogging.Whilethisis aninteresting

approach,ourviewisthatit suffersfrombeingtooinflexible.Inparticular,nosupportwasgivenforanythingother

thantwo-phaselockingandvalue-basedlogging.This,ofcourse,causesproblemsforindexesandothermeta-data

structureswheretwo-phaselockingisinappropriate.Distributionisalsoproblem.Finally,specialhardwaresupport

wasnecessary,whichclearlycausesproblemswithportability.

8. CONCLUSIONS

Inthispaper,wehaveintroducedCricket,adatabasestoragesystemthatis intendedtobeusedasaplatform

fordesignenvironmentsandpersistentprogramminglanguages.Cricketusesthememorymanagementprimitives

of theMachoperatingsystemto providetheabstractionof a shared,transactionalsingle-levelstorethatcanbe

directlyaccessedbyuserapplications.In thepaper,wedescribedourmotivationfor buildingCricket,andwe

arguedthatasingle-levelstoreisausefulabstractionformanydatabaseapplications.Wealsopresentedafairly

detaileddescriptionofCricket'sarchitecture,outliningasingle-sitearchitectureaswellasadistributedarchitecture

thatwewill eventuallymoveto. Finally,wepresentedsomepreliminaryperformanceresults,whichcompared

CrickettotheEXODUSStorageManager.A simpletree-searchbenchmarkwasusedtoshowthat,foritsintended

applications,Cricketcanprovidebetterperformancethanageneral-purposedatabasestoragesystem.

AsfarastheimplementationstatusofCricketisconcerned,thesingle-siteprototypeiscurrentlyupandlimp-

ingalong.However,muchworkremains.Wehavestolenthecodefortransactionmanagementandlockingfrom

theEXODUSStorageManager,butrecoveryhasyetto beimplemented;andlikewisefor indexmanagement.

Eventually,of course,wewill movetoadistributedarchitecture.Thatmovelookslikeit will leadtoanumberof

interestingresearchproblems.Theseincludetheproblemofhowtosplitstoragesystemfunctionalitybetweenclient

machinesandservers,andalsotheproblemofmaintainingmemorycoherencyforwhatamountstodistributed,tran-

sactional,shared,persistentvirtualmemory.

REFERENCES

[Acee86]

[Agra89]

[Appe86]

M. Accetta et al., "Mach: A New Kernel Foundation for UNIX Development," Proc. of the Summer
Usenix Conf., June 1986.

R. Agrawal and N. Gehani, "ODE (Object Database and Environment): The Language and the Data
Model," Proc. of the 1989 ACM SIGMOD Conf., June 1989o

A. Appel et al., "Garbage Collection Can be Faster Than Stack Allocation," Computer Science Tech.
Report 045-86, Princeton Univ., June 1986.

19

[Atki87]

[Bako90]

[Bens72]

[Bora90]

[Blac88]

[Bric76]

[Care86]

[Chan88]

[Chan89]

[Chou85]

[Cock84]

[Cope90]

[Date86]

[DBE87]

[DeWi90]

[Drav88]

[Duch89]

[Eppi89]

[Ford88]

[Fran90]

[Horn87]

[Katz87]

[Kern78]

[Li86]

[Litw80]

[Lind87]

[Maho86]

M. Atkinson and P. Buneman, "Types and Persistence in Database Programming Languages," ACM

Computing Surveys, 19(2), 1987.

H. Bakoglu et al., "The IBM RISC System/6000 Processor: Hardware Overview," IBM Journal of
Research and Development, 34(1), 1990.

A. Bensoussan et al., "The Multics Virtual Memory: Concepts and Design," CACM,

H. Boral et al., "Prototyping Bubba, A Highly Parallel Database System" IEEE Trans. on Data and
Knowledge Eng., 2(1), 1990. 15(5), May 1972.

D. Black et al., "The Mach Exception Handling Facility," Computer Science Tech. Report 88-129, Car-
negie Mellon Univ., April 1988.

P. Brice and S. Sherman, "An Extension of the Performance of a Database Manager in a Virtual
Memory System using Partially Locked Virtual Buffers," ACM Trans. on Database Systems, 6(1),
1976.

M. Carey et al., "Object and File Management in the EXODUS Extensible Database System," Proc. of
the 12th Intl. Conf. on Very Large Databases, Sept. 1986.

A. Chang and M. Mergen, "801 Storage: Architecture and Programming," ACM Trans. on Computer
Systems, 6(1), 1988.

E. Chang and R. Katz, "Exploiting Inheritance and Structure Semantics for Effective Clustering and
Buffering in an Object-Oriented DBMS", Proc. of the 1989 ACM SIGMOD Conf., June 1989.

H-T. Chou and D. Dewitt, "An Evaluation of Buffer Management Strategies for Relational Database
Systems," Proc. of the 1985 VLDB Conf., Aug. 1985.

W. Cockshott et al., "Persistent Object Management Systems," Software-Practice and Experience, vol.
14, 1984.

G. Copeland et al., "Uniform Object Management," Proc. of the Intl. Conf. on Extending Database
Technology, March 1990.

C. Date, "An Introduction to Database Systems," Ch. 3., pg. 56, Addison-Wesley, Reading Mass. 1986.

Database Engineering, Special Issue on Extensible Database Systems, M. Carey ed., 10(2), June 1987.

D. DeWitt et al., "A Study of Three Alternative Workstation-Server Architectures for Object-Oriented
Database Systems," Computer Science Tech. Report 907, Jan. 1990. Univ. of Wisconsin,

R. Draves and E. Cooper, "C Threads," Computer Science Tech. Report 88-154, Carnegie Mellon
Univ., June 1988.

D. Duchamp, "Analysis of Transaction Management Performance," Proc. of the llth Symposium on
Operating System Principles, Dec. 1989.

J. Eppinger, "Virtual Memory Management for Transaction Processing Systems," Ph.D thesis, Com-
puter Science Tech. Report 89-115, Carnegie Mellon Univ., Feb. 1989.

S. Ford et al., "ZEITGEIST: Database Support for Object-Oriented Programming," The 2nd Workshop
on Object-Oriented Database Systems, 1988.

M. Franklin, et al. Paper in progress on algorithms for maintaining cache coherency in a client/server
hardware environment. Univ. of Wisconsin.

M. Hornick and S. Zdonik, "A Shared, Segmented Memory System for an Object-Oriented Database,"
ACM Trans. on Office Information Systems, 5(1), 1987.

R. Katz and E. Chang, "Managing Change in a Computer-Aided Design Database," Proc. of the 1987
VLDB Conf., Sept., 1987

B. Kernighan and D. Ritchie, "The C Programming Language," Prentice-Hall, 1978.

K. Li and P. Hudak, "Memory Coherence in Shared Virtual Memory Systems," Proc. of the 5th Annual
A CM Symposium on Principles of Distributed Computing, Aug. 1986.

W. Litwin, "Linear Hashing: A New Tool for File and Table Addressing," Proc. of the 1980 VLDB
Conf., Aug. 1980.

B. Lindsay et al., "A Data Management Extension Architecture," Proc. of the 1987 ACM SIGMOD
Conf., May 1987.

M. Mahon et al., "Hewlett-Packard Precision Architecture: The Processor," Hewlett-Packard Journal,
August 1986, pp. 4-22.

2O

[Maie89]

[Moh89a]

[Moh89b]

[Moss88]

[Moss90]

[Rich89]

[Sche90]

[Schu90]

[Spec88]

[StonS1]

[Ston84]

[Ston90]

[Trai82]

[Wilk90]

[Youn87]

D. Maier, "Making Database Systems Fast Enough for CAD Applications," in Object-Oriented Con-
cepts, Database and Applications, W. Kim and F. Lochovsky, eds., Addison-Wesley, 1987, pp. 573-
581.

C. Mohan et al., "ARIES: A Transaction Recovery Method Supporting Fine-Granularity Locking and
Partial Rollbacks Using Write-Ahead Logging," IBM Research Report RJ6649, Jan. 1989.

C. Mohan and F. Levine, "ARIES/IM: An Efficient and High Concurrency Index Management Method
Using Write-Ahead Logging," IBM Research Report RJ6846, Aug. 1989.

J. Moss and S. Sinofsky, "Managing Persistent Data with Mneme: Designing a Reliable, Shared Object
Interface," in Advances in Object-Oriented Database Systems, vol. 334 of Lecture Notes in Computer
Science, Springer-Verlag, 1988, pp. 298-316.

J. Moss, "Working with Persistent Objects: To Swizzle or Not to Swizzle," Computer Science Tech.
Report 90-38, Univ. of Massachusetts, May 1990.

J. Richardson, E: A Persistent Systems Implementation Language, Ph.D thesis, Computer Science Tech.
Report 868, Univ. of Wisconsin, August 1989.

H. Schek et al., "The DASDBS Project: Objectives, Experiences, and Future Perspectives," IEEE
Trans. on Data and Knowledge Eng., 2(1), 1990.

D. Schuh et al., "Persistence in E Revisited -- Implementation Experiences," Proc. of the 4th Intl.
Workshop on Persistent Object Systems Design, Implementation and Use, Sept. 1990.

"The Guide to the Camelot Distributed Transaction Facility: Release 1," A. Spector and K. Swedlow
eds., Carnegie Mellon Univ., 1988.

M. Stonebraker, "Operating System Support for Database Management," CACM, 24(7), 1981.

M. Stonebraker, "Virtual Memory Transaction Management," ACM Operating Systems Review, 18(2),
1984.

M. Stonebraker et al., "The Implementation of POSTGRES," IEEE Trans. on Data and Knowledge
Eng., 2(1), 1990.

I. Traiger, "Virtual Memory Management for Database Systems," ACM Operating Systems Review,
16(4), 1982.

K. Wilkinson and M. Neimat, "Maintaining Consistency of Client-Cached Data," Proc. of the 1990
VLDB Conf., Aug. 1990.

M. Young et al., "The Duality of Memory and Communication in the Implementation of a Multiproces-
sor Operating System," Proc. of the l lth Symposium on Operating System Principles, Nov. 1987.

21

