PR

S p AT AT
et
/

NASA-CR-203045

University of Southern California 2T
Department of Contracts and Grants

Los Angeles, CA 90089-1147 O VES

DIstributed VIRtual System (DIVIRS)
Project

formerly

Center for Experimental Research in
Parallel Algorithms, Software, and Systems

Final Report
December 1996

Principal Investigator:
Herbert Schorr
Co-principal Investigator
B. Clifford Neuman
Stockton R. Gaines
David Mizell
USC/Information Sciences Institute

Prepared under NASA Cooperative Agreement NCC 2-539
for Henry Lum, Technical Officer
NASA Information Sciences Division 244-7
The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies,

either expressed or implied, of the National Aeronautics and Space Administration, the Defense Advanced Research Projecis Agency, or the U.S.
Government.

Final Report
Covers period 1 May 1988 through 30 May 1996

As outlined in the original proposal and continuation proposals on NASA cooperative agreement
NCC 2-539, ISI has conducted research in three areas: operating system development for multi-
processor systems, resource management for parallel and distributed systems, and operating system
services for large scale distributed systems.

Our work on the DIVIRS/CERPASS effort was conducted during the period of May 1, 1988 through
July 1995. The funding of this effort covered work during this period only. The contract was
subsequently extended with a no-fund extension through May 1996 to allow completion of work
on a separate AASERT award, supporting a graduate student working on electronic commerce. The
AASERT award was attached to this contract and required that the contract remain in place, but
funding for the graduate student was provided independently.

This report will summarize our efforts and accomplishments in all areas.

Phase 1 - May 1, 1988 Through November 30, 1991

OS Development for Multiprocessor systems

The Center for Experimental Research in Parallel Algorithms, Software and Systems (CERPASS)
provided an experimental facility for researchers on the Internet. The Center’s parallel computing
resources included a Connection Machine CM-2 and a Symult Series 2010. Both the CM-2 and
the Symult S2010 were made accessible from the Internet via their VAX and Sun Front Ends,
respectively.

The first machine installed at ISI was a Connection Machine Model CM-2. This CM-2 was a data-
parallel, single-instruction, multiple data-stream (SIMD) machine. It consisted of 16K (16,384)
processors, each with 64K-bit local memory. These processors were interconnected via a hypercube
network that allowed configuration at the software level as an N-dimensional cube where N is an
integer from 1 to 31 (including linear array and mesh configurations when N is 1 and 2 respectively).
The flow control was handled by the front-end. Both a VAX 6210 and a Symbolics 3600 were used,
each of which could control either an 8K partition or a 16K partition of the machine. The upper
8K partition of our CM-2 was equipped with a floating-point accelerator, and had two high-band-
width I/O boards connecting to two I/O devices: the Framebuffer and the Data Vault. The Frame-
buffer is a direct mapping color display device, which included a SONY color display, and the Data
Vault is a 5GB fault-tolerant disk storage system, which was used for fast file transfer. The software
available on ISI’s CM-2 included *Lisp, C* and PARIS. Most of the programs that we wrote for
this machine are in *Lisp or PARIS, each of which were supported on both front-end machines.

The Symult Series 2010 system (S2010) used for this project is a distributed-memory, message-
passing, multiple-instruction, multiple data-stream (MIMD) computer based on a rectangular mesh
topology. ISI’s S2010 has 32 processing nodes, each node consisting of a Motorola 68020 micro-
processor as its CPU, and a Motorola 68881 floating-point coprocessor. Each processing node has

8MB of local memory and a custom-designed VLSI routing chip that manages the message routing
wholly on the mesh network. The S2010 utilizes a Sun-3 as a front-end. The programming lan-
guages available are C and SPCL (Common LISP) with parallel extensions defined in the Cosmic
Environment and Reactive Kernel (CE/RK) software.

The results of our efforts in phase 1 of the CERPASS/DIVIRS contract include the provision of
computing services on the CM-2, porting of Mach to the Simult Series 2010 system and provision
of computing service on the machine, and consulting for others on the problems associated with
such environments. Each of these results will be described separately below.

Connection Machine activities

The Connection Machine Model CM-2 is amassively parallel SIMD machine. Its hardware consists
of 16,384 data processors interconnected via a hypercube network. Each processor has a bit-serial
ALU and a 64K-bit local memory. This CM-2 has two front-end subsystems -- one VAX 6210 and
one Symbolics 3600, a 5-Gigabyte mass storage system and a graphic color display device. Half
of the machine (i.e., 8,192 processors) is also equipped with floating-point accelerator. Program-
ming languages available on this machine include *Lisp, C* and PARIS interfaces to Common Lisp
and C.

Results - Connection Machine activities

Both the Connection Machine Data Vault and floating-point accelerator were installed during the
first year of the CERPASS effort. Software release 5.1 for the VAX 6210 and the Symbolics 3600
was installed by Thinking Machines Corporation (TMC) personnel and Dr. Yu-Wen Tung. ISI
assisted TMC in installing version 5.1’s patch files to both our front-end systems and prepared
several bug reports for this new software release.

Initially, IST had problems with the chip failure rate for the lower 8K partition of the 16K machine,
but this was resolved in September when the floating-point accelerator was installed and the TMC
people move the original 16 upper boards to where the 16 lower boards had been.

Dr. Tung improved previous implementations for bitonic sorting algorithms by using the “get-from-
news” functions for hypercube bitonic sort, and the “get-from-power-two” functions for mesh
bitonic sort. These functions were made available only in versions 5.0 and 5.1, respectively, and
did show significant speed up over previous implementations.

Dr. Tung also wrote a quicksort algorithm and a bubble sort algorithm in the new version of PARIS,
as well as a set of testing programs. He ran them on the Connection Machine. These programs
automatically measured the timing and performance of his previous sorting algorithms on the Con-
nection Machine, under various values of VPR (virtual processing ratio) and various argument
lengths. (The total execution time was four to five days.)

Dr. Tung conducted research with Dan Moldovan of USC’s Department of Electrical Engineering
on using the Connection Machine to implement the marker propagation rules for retrieving infor-
mation stored in semantic networks.

ISI continued to seek new applications for parallel processing research using the Connection Ma-
chine. One such research area was the development and testing of a cognitive model of how a

novice acquires perceptual skill for visual data. Both the low-level vision system and the high-level
neural system in this model will require the computing speed of the Connection Machine and its
graphics and direct input/output capabilities.

Richard Bisbey explored the feasibility of using the Connection Machine frame-buffer as a visual-
ization tool, due to its high-bandwidth connection to CM-2 processor memory. He also investigated
the use of ISI’s 16K processor Connection Machine (CM-2) for processing and displaying
1024x1024x24 (HDTV) video images.

His studies concluded that the CM-2 was too slow in both processing power and I/O bandwidth to
do real-time processing of the video images. Non-real-time processing is possible, if the entire
video sequence is cached in CM-2 memory prior to display. The current 16K processor configuration
(and 128MB of memory) would permit slightly more than one second of 30 frame-per-second video.
Upgrading the CM-2 to 64K processors (and 512MB of memory) would permit a commensurately
longer sequence. However, the people at TMC believe that real-time display of HDTV images is
not possible with the above configuration, and that real-time HDTV display would only be possible
with a 64K processor, 8 frame buffer machine. In this case, external hardware would have to be
built to merge the video signals from the independent frame buffers.

Dr. Tung provided technical advice and support to the Connection Machine programming group.
The Connection Machine programming group acquired several new members during the first year
of the CERPASS effort, including: USC’s Olivier Bourdon (image processing), UCLA’s Rajive
Bagrodia and Edmund Kwan (parallel language), and Hughes’s Michael Oyster and associates (for
their DARPA contract). Old users such as USC’s J. S. Chen (image processing) and S. H. Chung
(semantic network array processor project) continued to use the machine heavily during the first
year of the effort.

In the Spring of 1990, DARPA exchanged a newer model CM-2 for ISI’s older CM-2 machine.
Engineers from the Thinking Machine Corporation upgraded ISI’s CM-2 with a 16K floating-point
accelerator. They also installed software release 5.2 on the Symbolics front-end.

During this period, ISI continued to seek new applications for parallel processing research using
the Connection Machine. Dr. Tung contacted Professors Prasannakumar and Kai Hwang at USC’s
Electrical Engineering Department, and Professor Selim Akl at Queen’s University, Canada, re-
garding use of the Connection Machine in their research activities. Prasannakumar was interested
in collaborating on parallel vision and other non-numerical algorithms, and Professor Akl wanted
to try a few of his algorithms on the Connection Machine.These algorithms include parallel geom-
etry on a grid, optimal parallel algorithms for b-matchings in trees, parallel binary search, optimal
parallel algorithms for computing a vertex of the Hitchcock transportation polytope, a parallel
algorithm for the assignment problem on complete weighted bipartite graphs, and so on.

Dr. Tung continued his daily technical and administrative support for CM-2 users. He created a
mailing list for ISI's CM users for easier information exchange. This list included,
price @iris.usc.edu,rom@iris.usc.edu,mzerroug @pollux.usc.edu,wdl @rana.usc.edu,
plin@iris.usc.edu, peng @iris.usc.edu, kwan @cs.ucla.edu, rajive@cs.ucla.edu, ato@bellcore.com,
thanh @vlsi-cad.isi.edu, bfreeman @silver.ucs.indiana.edu, efreeman@silver.ucs.indiana.edu, and
marek @iuvax.cs.indiana.edu

Porting Mach to the Symult 2010

There are a great number of parameters that characterize parallel architectures and their resident
operating systems that can be expected to have an influence on system performance. Examples of
these include whether a machine is MIMD or SIMD, whether it has shared or local memory, the
ratio of its computation speed to its communication speed, I/O bandwidth, processor speed, types
of low-level parallelism available within processors, tolerance of memory latency, the effect of
caches, synchronization overhead, and operating system characteristics such as context switching
speed or the ability to migrate processes for load balancing.

The Mach port methodology involved specifying a systems architecture that supported a NORMA
multicomputer hardware environment, including identifying strategies whereby filesystem support
could be made available to jobs executing in that environment and internode communications
between cooperating tasks was supported. To accomplish this, we (1) treated the underlying com-
munications mesh as a local-area computer network, allowing us to take advantage of existing
software resources, (2) placed a minimal instance of the Mach kernel on each node with additional
operating system services supplied by the executing servers on selected nodes of the simulated
LAN, and (3) provided a global filesystem environment to each node by supporting a diskless
workstation strategy for the nodes with remote NFS support handled by the front-end machine.

Results - Porting Mach to the Symult 2010

This section of the report describes the first port of CMU’s Mach operating system to a NORMA
multicomputer. The target machine was a Symult 2010 multicomputer, a distributed-memory,
multiple-instruction, multiple data-stream (MIMD) computer based upon a two-dimensional mesh
topology. The machine was installed at ISI as part of the CERPASS project and eventually contained
32, 25MHz 68020 computational node boards, each with 8 MBytes of memory and a resident
Motorola 68881 floating-point coprocessor. Each board was attached to the system via a commu-
nications coprocessor, connected to a custom-designed VLSI routing chip known as an automatic
message routing device (AMRD). Neighboring AMRD chips were interconnected on a backplane
via four bidirectional channels in the form of a two dimensional communications mesh, with an
additional channel connecting the AMRD to the computational node board. The data path between
AMRD:s is eight bits wide with advertised data rates on the order of 20 MBytes per second per
direction. Access to the communications mesh was via a Sun-3 front-end attached to one corner
of the communication mesh.

Unlike Mach, the Cosmic Environment/Reactive Kernel (CE/RK), the native operating system for
the 2010 provided by Symult, is primarily designed to optimize message passing between applica-
tions running on several nodes. As such, the OS did not provide preemptive scheduling, general
purpose virtual memory or interprocess communication, multiprocessing, or paging. To maintain
compatibility between CE/RK and Mach, several hybrid software architectures combining Mach
and CE/RK were considered. However, due to fundamentally different assumptions made in both
operating systems, no approach was found that would successfully combine both operating systems
without negatively impacting the implementation of Mach.

For these reasons, it was decided avoid a design combining both systems. Instead, effort was focused
on avoiding the introduction of features in the port that would later prevent a developer from
partitioning the 2010 into nodes that would run one OS or the other. Furthermore, with careful
planning it was felt that the Mach nodes could run existing CE/RK applications with little or no
change to existing Symult software.

With respect to Mach itself, another decision was made to run an instance of the Mach operating
system on each node, as opposed to developing a multinode kernel. This decision predated infor-
mation on CMU’s microkernel development work, but was made with the assumption that unnec-
essary features might be stripped from node kernels in the future, with the minimum software
required to support a job remaining on each node or provided via user-level servers.

Other features of the CE/RK influenced the Mach port. In particular, the lack of UNIX support
severely restricted available software upon which to draw and the multiple binary executable formats
and multiple versions of utilities complicated program development. While the 2010 and Sun-3
were substantially different at the hardware level, it was realized that the virtual machine presented
by Mach to the application could be nearly identical on both machines. Supporting compatibility
for Sun-3 binaries on the nodes provided access to a substantial software base and eliminated
incompatibilities between Mach applications running on the 2010 nodes and the front-end.

Other major design issues remained, specifically: the form of interface adopted for the mesh, how
the file access and paging were to be supported, how the system was to be initialized, how nodes
were to be made available to user processes, and what would be the role of the Front End Sun-3.

It was reasoned that if the mesh interface was implemented as a network interface and supported
standard TCP/IP access, many existing software mechanisms could be utilized intact to help expe-
dite the porting effort, including all existing Mach network-based servers. Furthermore, NFS could
be utilized to provide a global file system that spanned the node environment and to provide paging
on the front-end. Finally, the mesh could be implemented as a subnet on the ethernet with access
through the Front End Sun-3 workstation, with each node assigned its own network address and
supporting remote user login and command execution from any interior node or exterior host.

While the TCP/IP family of communications protocols was realized to be a poor match to the
characteristics of the mesh, the immediate advantages brought to the environment in supporting the
protocols far outweighed the anticipated performance penalties incurred in their use. Later effort
could be applied to support a better communications protocol.

The model used to implement the network interface stemmed from an existing Sun-3 UNIX device
driver provided by Symult for handling mesh I/O for the front-end. Originally, the driver only
supported character I/O, but, during Symult’s dissolution, ISI obtained an undebugged, unreleased,
experimental device driver containing a network interface. This module, designed to drive the Sun
Interface Board (SIB) connected to the mesh from the Sun-3 Front End, formed the basis for all
mesh communication for both the Sun-3 Front End and the Mach port running on each node. Basing
mesh communication on this module not only provided complete BSD network functionality to the
port but also provided a high speed messaging mechanism that could be used both by Mach and
CE/RK applications.

The experimental SIB driver code was designed to interface to an earlier version of the network
distribution software than was supported under the current Mach release. The interface had to be
adapted to the current software distribution and debugged. The process resulted in the detection of

various hard-to-find coding errors, including apparent random modification of communications
buffers, and their eventual correction. The code was integrated with the Mach operating system,
and modified to execute in both the front-end and node environments.

As part of this process, the SIB driver had to be modified to utilize Mach blocking and wake-up
mechanisms. In addition, the network interface code had to be extended to support simulated
broadcasting, since the underlying mesh, unlike the Ethernet, provided no hardware support for this
feature, and the Mach operating system relied upon it to extend Mach IPC over the local area
network. Further work was also required to support the Internet routing of messages between nodes
in the mesh.

During this activity, a significant design defect was uncovered in the message passing subsystem
that limited kernel error recovery. Insufficient context shared between the Message Packet Processor
and the node CPU prevented a kernel from resetting it’s message buffers. Furthermore, the Front
End had no means to restart a single node. This precluded any support for debugging or restarting
a node remotely using the mesh or diagnosing a kernel bug on a node from a postmortem period
dump.

Critical to the Mach port was the need for diskless operation. Only a fraction of the nodes on the
2010 have disks yet Mach relied exclusively on local disks for booting. Fortunately, CMU had
added vnode support to the evolving kernel to support NFS and one group at CMU had modified
the inode pager to support remote paging. However, the code quickly became obsolete as new
kernels were released. Several modifications at ISIallowed paging off of a NFS-mounted file system
with minimal changes needed to keep current with new kernels.

The standard Mach porting activity of reimplementing the PMAP module for the underlying MMU
hardware was also undertaken. Deficiencies with the Symult 2010 memory management unit
complicated this task. The Symult memory management unit is optimized to provide rapid message
remapping between the kernel and a few user processes and not the functionality for virtual memory
in a general-purpose OS.

The 2010 MMU was found to provide an inconvenient page table implementation for Mach that
could result in very expensive context switching. In addition, it did not incorporate page-referenced
or page-modified bits and did not provide kernel read-only protection. These deficiencies compli-
cated the development of the machine-dependent VM support.

A major advantage in porting Mach to a target machine is the prior existence of a UNIX implemen-
tation on the same hardware platform. Much of the machine-dependent code in UNIX, such as
system initialization and the device drivers, can be used in the port; no prior UNIX implementation
existed for the 2010 multicomputer. This also resulted in a rewrite of the Mach real-time clock
code as well introduction of special mechanisms to support the system console and emulate software
interrupts. The latter mechanism was also used to facilitate kernel debugging in the node environ-
ment.

One issue that had to be addressed was how to debug the mesh communications driver, given that
any error in the front-end version of this driver would almost invariably mean an error in the node
version of the driver, and vice versa. A strategy was adopted utilizing several test programs running
under CE/RK to facilitate debugging the driver on the Front End. Loopback code was introduced
in the standard RK software, designed to validate and record an arriving message and associated
checksum and turn the message around to the sender after computing the new checksum. This

approach enabled the diagnosing and correction of an especially insidious error that periodically
corrupted message packets on a random basis. A side-effect of this activity was the detection of an
error in the ping utility used at ISI and various other sites that resulted in incompatible checksums
in even-byte-count versus odd-byte-count messages. Once the front-end version of the driver was
known to function correctly, the node version of the driver was much easier to debug since modi-
fications that were introduced were designed with compatibility in mind.

A major question early on in the effort was how to debug the Mach kernel being ported to the 2010.
Since the porting effort involved development of mesh support in addition to more traditional Mach
porting activities, it was clear that relying on the mesh driver software for kernel debugging was
not a practical solution. The existence of two serial ports on each node board offered an alternative
access path that could assist in the debugging process. With Symult’s assistance, ISI was able to
use the serial ports to track and monitor console output as well as interface to the kernel debugger.
Achieving this debugging capability required additional effort in several areas. Real-time clock
software was modified to provide an alternate mechanism to invoke the Mach Kernel debugger on
the nodes as well as simulate console interrupts lacking in the hardware. A Symult-supplied utility,
SIPG, was modified to provide a mechanism for downloading symbol information and utilizing this
kernel symbol table with the kernel debugger software supported within Mach. And a new mech-
anism for procedure invocation that facilitated use of the debugger in the node environment was
developed.

During the course of the effort, various hardware problems were encountered with the Symult 2010.
Initially, node failures were detected during the booting of the node environment. These node
failures did not necessarily manifest themselves as hard or repeatable failures, and were often
immune to detection by Symult diagnostic routines. Most of these failures started showing up in
the last few months prior to Symult’s termination of business operations, since that was the point
when the porting effort began to utilize the Symult more regularly as part of the porting effort.
Suspect node boards were replaced, even if hard failures could not be produced. Eventually Symult
terminated operations, and the long term support of the 2010 hardware became an issue. Project
resources resulted in a decision to acquire support on a time and material basis, hoping that complete
system failure did not occur and that lesser failures could be dealt with by reconfiguring offending
nodes out of the system. Eventually, failures appeared that disabled the entire system, producing
the suspicion that the communications backplane itself was at fault. Custom chip pullers were not
available to swap AMRD ICs to pinpoint the failure, but project staff experimentation with hardware
reconfiguration of the Symult to a 4x4 mesh, with the suspect AMRD configured out of the reduced
system, eliminated the problem while still affording a useful operating environment.

The intent throughout the porting effort was to attempt to stay current with new Mach kernel releases,
both to take advantage of CMU’s and other participating site’s bug fixes, as well as to acquire new
Mach system functionality as it was developed, such as support for NFS. When ISI first got involved
in the porting effort, the Mach 2.0 system was the current release and Mach 2.5 was to be released
shortly for experimentation and examination to selected research sites.

While CMU attempted to minimize the impact of OS changes within the machine-dependent code,
the nature of the ISI porting effort could not be localized in this area. Furthermore, some functionality
needed for the 2010 port was in development at CMU. To complicate the porting process, CMU
customized standard software development tools and libraries that resulted in incompatibilities

when used in different computing environments. As a result, a significant effort was expended in
updating new releases of the Mach kernel, the accompanying libraries, servers, and subsystems.

The Mach/2010 port was completed in early 1991, with the initial goals of a multinode Mach
machine connected to the Internet realized. With that task finished, new goals were developed that
addressed issues that surfaced during the porting effort with regard to properly supporting an MIMD
computer of this sort. Specifically, it was realized that the internode 1/O performance might not be
adequate for finer-grained multinode parallel program execution due to the intrinsic overhead of
the network IPC environment. Also, the need for more global job and system management concepts
than those provided for in the traditional Mach environment were identified. As a consequence,
two new activities were initiated: investigation of existing communications performance between
individual nodes and between the front-end and the node environment and concomitant experimen-
tation with reduced overhead communication strategies; and development of job and system man-
agement concepts that supported a more global view of a job than simply an ad hoc, disconnected
collection of processes launched or spawned dynamically on the various nodes of the system.

In the area of high-performance I/O, various experiments were initiated to gather better information
on the performance of the existing system. Various mechanisms for accumulating performance
information were explored including the Mach Kernel Monitoring feature and the UNIX Profiling
mechanism. Excess and experimental code was trimmed from the software to improve system
performance. A set of token ring programs were also written to measure interprocessor communi-
cations speed on the 2010 nodes. One program was written for the 2010 running the CE/RK
environment and the experiment carried out on Caltech’s 92-node 2010. Another program was
written for the ISI’s 32-node 2010 running the newly ported Mach 2.6 system that exploited the
Mach port mechanism. As expected, the performance of the latter was found to be unacceptably
slow for finer-grained parallelism. An alternative communications mechanism that bypassed Mach
IPC was also tested which yielded a better than 500% improvement but still fell short of the CE/
RK performance fi gures!. Additional work continues in this area under other funding.

In the area of job and system management, experimental software was developed that described a
job as a multi-node collection of tasks that were to be dynamically interconnected via Mach IPC
based upon an accompanying script that defined both the tasks and their interconnectivity. The
software would process the job script, establish unique port names, launch both the requested tasks
as well as necessary support tasks designed to assist in interconnecting the components of the job,
and pass on the unique port names to the appropriate tasks for subsequent IPC. This work is being
used as a preliminary mechanism for exploring and developing the much more elaborate concepts
of job and system management required for large multicomputers such as those of the joint DARPA/
Intel Touchstone effort.

Communications

A significant component of the Mach/Symult porting effort involves communications, including
communications between Mach hosts outside of the Symult multicomputer environment and the
Front End Sun, communications between the Front End Sun and the processor nodes on the mesh,
and communications between individual nodes within the mesh. The approach adopted was to

1. The IPC speed on the S2010 using CE/RK was measured as 0.24 milliseconds, and that using Mach ports,
which utilizes TCP/IP communication, required 5 milliseconds. Our new approach interfaced directly at the
device level. The IPC speed under this approach was 0.72 ms.

implement the concept of a subnet within the Symult node set and exploit existing Internet mech-
anisms and techniques to effect communications between nodes, with the Sun Front End, and
(through that front-end) to other hosts in the Internet. Mach runs on the selected node set as well
as the Front End Sun workstation. This communications infrastructure provides the requisite com-
munications support for higher level Mach functions. Where necessary for performance, a special
communications mechanism bypasses the Internet mechanisms in order to effect direct communi-
cation between user processes, but this requires more active communications management on the
part of the user process.

The effort required development of new software as well as modification of existing software to
interface standard Internet support code to the Symult communications mesh, both at the front-end
host and at Mach nodes within the S2010. Also important was optimization of selected high-level
Mach components that implement network IPC and remote file access to improve the efficiency
with which they utilize the underlying communications infrastructure in implementing their ser-
vices. These services included the Network Message Server, the Network Name Server, and the
Network File Server. Internet routing mechanisms were examined with regard to communication
between external hosts and the Front End Sun, and the forwarding of messages by the Front End
Sun to destination nodes.

With respect to intra-S2010 node connectivity, the focus of the work was on the manner in which
CMU Mach networking software best interfaced to Symult Reactive Kernel subroutines that drive
the Symult communications mesh. Investigation of Symult Inner Kernel and Reactive Handler
software regarding message communications functionality took place. Detailed analysis of Inner
Kernel software use of message buffers and Symult 2010 Message Packet Processor hardware buffer
placement requirements, and its impact on Mach buffer allocation routines was completed.

The principal software component involved with communications over the mesh, and from the Front
End Sun to the mesh, is the SIB driver. Standard software that treats the Sun Interface Board as a
UNIX I/O device was supplied by Symult. An experimental version of this code that additionally
interfaces to SunOS Internet software was also acquired from Symult. Project members analyzed
and modified this code to integrate the SIB network interface with Mach/Internet software. During
the process, a mismatch between SIB networking software and Mach networking software was
discovered and corrective action undertaken.

Modifications to the Reactive Kernel to support loopback communications with the Mach SIB
network interface were developed for message transmission testing. This involved development and
incorporation of a loop-back extension to the Reactive Kernel, implemented as a separate handler
under the inner kernel.

A new Network Message Server was built utilizing the (previously experimental) message server
provided with Mach release 2.5. Several problems were encountered during server creation that
were reported to CMU. Tests were run on the Network Message Server to establish proper operation.
These included registering and retrieving ports with the Network Name Server and sending mes-
sages between the Mach/Sun-3 Front End and a NeXT workstation at ISI that also runs Mach. The
tests were successful, with one exception, resulting from an implementation inconsistency, that
required changing the broadcast address definition for one of the machines.

Consideration was given to reconfiguring the Network Message Server to utilize VMTP instead of
TCP as its communications protocol, in order to improve communications efficiency and reduce
communications overhead. To this end, a Mach kernel was configured with the VMTP protocol

option in anticipation of evaluating the protocol for exchanging data between processors in the
Symult 2010. Several small bugs were detected and corrected during this process and reported to
CMU.

Front-end software to support communications between the Sun and the Symult node environment
was completed and successfully tested via a loopback mechanism introduced into the Symult Re-
active Kernel software. This software supported Internet connectivity with the Symult communi-
cations mesh driver by completing experimental software made available by Symult. Nodes in the
mesh are assigned Internet addresses consistent with implementation of a subnet within the mesh.
Standard Internet services are used to establish and support both stream- and datagram-based com-
munications. With the exception of modifications to conform to the memory management support
requirements of the Symult/Mach kernel for Mach/UNIX mbufs and Symult control and message
blocks, the code runs essentially unaltered on the Mach system that executes on the nodes and
complete the high-level Internet communications path between processes in the Mach/Symult en-
vironment.

The Mach operating system requires a broadcast capability to support Mach IPC. To satisfy this
requirement, a broadcast mechanism was introduced into the communications driver to simulate
the broadcast facility normally available on the Ethernet. This mechanism was tested in the front-
end environment by exploitation of the loopback mechanism introduced into the Reactive Kernel
for communications checkout. Minor modification to this loopback mechanism was required to
support testing.

During subsequent testing, a serious communications bug was detected that resulted in intermittent
and apparently unpredictable corruption of communications buffers. The result was proper trans-
mission of a number of uncorrupted messages, followed by transmission of a corrupted message
with concomitant message rejection due to an incorrect checksum. Diagnosis of the bug was
complicated by the fact that a standard internet utility, ping, was improperly generating checksums
for odd-sized messages but was functioning correctly for even-sized messages. This problem with
ping was diagnosed and communicated to Internet management personnel. Extensions were intro-
duced into the loopback code previously incorporated into the Reactive Kernel to help determine
whether the extant communications bug was associated with the sending or the receiving of mes-
sages, or both. Additional data on the nature and frequency of message buffer corruption was
accumulated to help in error diagnosis through the generation of fixed-format test messages and
the logging of corrupted messages by the loopback code.

The communications bug was eventually isolated to the Symult-supplied network SIB driver mes-
sage transmission code. The error was associated with an incorrectly updated counter involved with
the transfer of data from operating system mbufs to driver output buffers. The consequence was
apparently random, frequent corruption of data in output communications buffers depending upon
message size and location in the output stream. The erroneous software was modified appropriately,
tested, and subsequently functioned correctly.

To permit continuation of the porting effort during diagnosis of the communications bug, the kernel
was reconfigured to force NFS to utilize slower, special-purpose code in the Mach kernel that

-10-

performs UDP checksumming as part of its normal operation (instead of the fast-send code normally
utilized by Mach to reduce Internet communications overhead). The assumption was that commu-
nications could successfully continue, even if a percentage of the transmitted messages were rejected
and message retransmission was required. Unfortunately, this slow-send code did not function
correctly, resulting in frequent system crashes. As an alternative approach, checksumming software
was temporarily introduced into the fast-send code to permit continued progress in the porting effort.

User interface

Some effort was directed toward insuring that the remote user interface to the system was fully
functional. Problems were found to exist in the operation of various servers that provide remote
access to a Mach host. For the most part, these problems are a consequence of CMU-specific
authentication procedures and requirements that differ from standard BSD 4.3 authentication pro-
cedures.

Specifically, the rshd did not allow remote shell execution, but instead, terminated with no apparent
action; rexecd exhibited similar behavior to rshd; and syslogd filled up logging files with reinitial-
ization messages issued every 60 seconds. Similarly, rlogind required an inordinate amount of time
to complete the login process.

Investigation of the problem with rshd indicated fundamental differences between CMU access
authorization procedures and those typically supported in the BSD 4.3 UNIX operating environ-
ment. In fact, interaction with CMU personnel revealed that the CMU Computer Science Depart-
ment does not, in fact, support rshd as part of normal operations and that sources for the server
were not available from CMU. Upon request, CMU made available the sources for the internet
super server, inetd, and advised us to utilize publicly available BSD 4.3 versions of the rshd server.
Recompilation under Mach of rshd, rexecd, and rlogind sources retrieved from the standard BSD
4.3 UNIX distribution appeared to correct their problems.

Problems with syslogd appeared to be endemic to its use with the Nanny super server. Experiments
with the syslogd log server revealed that the software exhibited the behavior described above when
executed under the control of the Nanny, but not when started independently as it would be under
non-Mach system operation. The latter has been adapted as the standard mode of operation in our
environment.

Investigation of the problem of abnormal termination of the system utility ps revealed a problem
with the implementation of the kernel-mode copy-on-write mechanism during the porting effort.
This problem has been corrected.

Several errors specific to the node environment surfaced as the Mach node software became more
fully operational. In particular, a problem with the Nanny server arose in which the server would
crash without any diagnostic messages when executed on a Symult node. Sources for the Nanny
server were obtained from CMU and the problem was diagnosed as resulting from an improperly
formatted data file describing the services managed by the Nanny server. The erroneous file was
reformatted, and the Nanny server subsequently to functioned correctly in the node environment.

11 -

Additionally, various bugs associated with the spawning of processes and console output were
identified and corrected.

Hardware issues

To facilitate debugging of the node version of the Mach kemnel, a second TTY line between the
Sun-3 Front End and the Symult was installed. This required interaction with Symult personnel to
identify the appropriate communications lines to use on the on-board UART chip interface.

A replacement board for a marginal node board at location 3,0 in the Symult was obtained imme-
diately prior to Symult’s terminating business operations. This board (without memory) was
swapped with a defective node board in the S2010, by scavenging the memory from the bad board
and using it to populate the replacement board. This corrected the problem of the marginal board
that resulted in occasional difficulty in booting the S2010.

-12 -

Provision of service and consulting

With both platforms installed and running at ISI, it was the role of the CERPASS staff to provide
service to others needing the use of our computing resources, to explore the best ways to use these
resources, and to transfer the knowledge acquired from our use of these resources to others in the
community.

Results - Provision of service and consulting

Dr. Tung completed his extensive studies of instruction set execution on the Connection Machine.
Dr. Tung and Dr. David Mizell completed their experiments with mapping parallel sorting algo-
rithms onto the Connection Machine. Their joint paper, “Two Versions of Bitonic Sorting Algo-
rithms on the Connection Machine,” [30] was presented by Dr. Mizell at the IEEE Parallel Processing
Symposium in Fullerton, California, where he also chaired a session on multiprocessor performance
evaluation.

Extending their previous results in conservative methods for parallel discrete-event simulation, Rivi
Sherman, working with Mani Chandy of the University of Texas (currently visiting at Caltech),
developed a theoretical model of discrete-event simulation [2] that characterizes all discrete-event
simulation methods as special cases of a very general “relaxation” algorithm -- one in which time
can be run either forwards or backwards. Dr. Mizell, worked with Richard Lipton of Princeton,
and obtained “worst case” results that provide a limited theoretical comparison of conservative
versus optimistic simulation methods. Their results are summarized as follows: while examples
can be found for which optimistic methods outperform conservative methods by an arbitrary amount,
the converse is not true. It ws proven that conservative methods can only outperform the optimistic
methods on the same simulation model by a constant factor.

Susan Coatney and Walid Najjar produced a first prototype of Simple,” an object-oriented con-
current programming language based on C++, which they are designing to relieve programmers of
many of the tedious details of writing parallel programs for message-passing systems like the
Ametek 2010.

Dr. Mizell and Rivi Sherman, along with Richard Lipton of Princeton, continued their joint work
on a theoretical extreme-case comparison of conservative and optimistic distributed simulation
methods. A paper on their results was submitted to the 1990 SCS Conference on Distributed
Simulation [11].

In the first part of calendar year 1989, Sherman attended the Eastern Multiconference of the Society
for Computer Simulation in Tampa, Florida, and presented two papers based on her collaboration
with Mani Chandy of Caltech [2, 1].

Dr. Mizell gave a lecture, “Sorting Algorithms on the Connection Machine,” at the Institute for
Defense Analyses (IDA) Supercomputing Research Center in Lanham, Maryland.

Steve Farnworth and Dr. Mizell completed the preliminary design of an instrumentation and de-
bugging system for MIMD multiprocessors using an in-circuit emulator system.

-13-

Walid Najjar and Paraskevas Evripidou worked with Jean-Luc Gaudiot of USC’s Department of
Electrical Engineering on techniques for mapping functional language programs onto multicom-
puter architectures [9].

Rivi Sherman and A. Pnueli began and completed a study of efficient implementations of linear
temporal logic model checkers for verifying finite-state parallel and distributed programs [25].
Susan Coatney developed a compiler for the state machine and proposition notation used by Rivi
Sherman’s experimental prototype model checker.

Dr. Tung and JPL’s P. Peggy Li prepared an unpublished research note, “Parallel Sorting on Symult
$2010” {28]. The paper is on the performance analysis of three sorting algorithms implemented on
the Symult S2010. Each of these algorithms is a combination of a fast sequential algorithm and a
parallel version of either Bitonic sort, Shell’s sort, or Quicksort, and is used to sort M keys on an
N-node machine where M >> N.

Paraskevas Evripidou’s presentation, “Data-Flow Computing: A Status Report,” which was pre-
sented in June 1989, is currently being prepared as a chapter in a book titled, Advanced Topics in
Data-Flow Computing to be published by Prentice Hall [3].

The paper, “A Single-Assignment Language in a Distributed-Memory Multiprocessor,” by Evripi-
dou, Najjar and Gaudiot that appeared in the Proceedings of the Parallel Architectures and Lan-
guages Europe, was reprinted by USC/Information Sciences Institute in December 1989 [9].

Paraskevas Evripidou’s paper, coauthored with J-L. Gaudiot of USC’s Electrical Engineering De-
partment, was accepted for publication in the proceedings of the 1990 International Conference on
Parallel Processing, St. Charles, Illinois, the week of 13-17 August 1990. “A Decoupled Graph/
Computation Data-Driven Architecture with Variable-Resolution Actors” [4] presents a hybrid
multiprocessor architecture that combines the advantages of the dynamic data-flow principles of
execution with those of the control-flow model of execution. Two major design ideas are utilized
by the proposed model: asynchronous execution of graph and computation operations, and variable-
resolution actors.

We have responded to two surveys regarding our parallel computing resources and research. ISI
has become known to researchers by means of the listing on the NNSC’s Internet Resource Guide.

The first query was from Von Neumann Supercomputer Center’s Bob Bijoy, who asked detailed
questions on the CM-2 configuration, research, and applications.

The second query came from MITRE Corporation’s Bede McCall, who was surveying the various
NSFNET Supercomputer Centers with an eye toward their possible use by various MITRE projects.
He asked detailed questions on ISI’s resources (CM-2 and S2010), network access, and user account
policies.

Dr. Tung attended the Connection Machine Workshop held at UCLA on 20-21 April. This work-
shop, hosted by Professor Charles Taylor of UCLA, provided Connection Machine researchers a
chance to interact with and discuss their research work with others. Of particular interest was joint
work by UCLA’s Charles Tong and NASA-Ames’s Paul Swarztrauber on ordered-FFT, which il-
lustrates some research points in our work on machine performance.

Other work by Paraskevas Evripidou and J-L. Gaudiot of USC involves the implementation of
scientific programs on a decoupled data-driven architecture with vectors and macro actors. The

-14 -

compiler generates graphs with various-sized actors in order to match the characteristics of the
computation. For instance, vector actors are proposed for many aspects of scientific computing
while lower resolution (compiler-generated collection of scalar actors) or higher resolution (scalar
actors) is used for unvectorizable programs. A block-scheduling technique for extracting more
parallelism from sequential constructs is incorporated in the decoupled architecture. In addition,
a graph-level priority-scheduling mechanism is implemented that improves resource utilization and
yields higher performance.

Technology transition activities for phase 1
Papers

[1] Chandy, K. M. and R. Sherman. Space-Time and Simulation. Proceedings of the SCS
Multiconference on Distributed Simulation, Tampa, Florida, March 1989.
[Reprinted as USC/Information Sciences Institute Reprint Series ISI/RS-89-238, June
1989.]

2] Chandy, K. M., and R. Sherman. The Conditional-Event Approach to Distributed Simu-
lation. USC/Information Sciences Institute Research Report IS/RR-88-226, June 1989.

[3] Evripidous, P. Data-Flow Computing: A Status Report. Published? by Prentice Hall, June
1989.

[4] Evripidou, P. and J-L. Gaudiot. A Decoupled Graph/Computation Data-Driven Architec-
ture with Variable-Resolution Actors. Was presented at the International Conference on
Parallel Processing, Saint Charles, Illinois, August 1990.

[5] Evripidou, P. and J-L. Gaudiot. Decoupled Data-Driven Architectures with Vectors and
Macro Actors. Presented at the CONPAR 90-VAPP IV Joint Conference on Vector and
Parallel Processing held in Zurich, Switzerland, 10-13 September, 1990.

[9] Evripidou, P., W. Najjar, and J-L. Gaudiot. A Single-Assignment Language in a Distrib-
uted-Memory Multiprocessor. Proceedings of the Parallel Architectures and Languages.

[11] Mizell, David and Richard J. Lipton. An Extreme-Case Comparison of Optimistic and
Conservative Parallel Discrete-Event Simulation Methods. Submitted to the 1990 Society
for Computer Simulation (SCS) Conference on Distributed Simulation.

[25] Sherman, R., and A. Pnueli. Model Checking for Linear Temporal Logic: An Efficient
Implementation. USC/Information Sciences Institute Research Report ISI/RR-89-241 (in
preparation).

[28] Tung, Y. and P. Li. Parallel Sorting on S2010. Presented at the Fifth Distributed Memory
Computing Conference, Charleston, South Carolina, April 1990.

-15-

[30] Tung, Yu-Wen, and David Mizell. Two Versions of Bitonic Sorting Algorithms on the
Connection Machine. Presented at the IEEE Parallel Processing Symposium in Fullerton,
California.

Seminars

Dr. Tung presented a seminar surveying several recently developed distributed operating systems
onJanuary 17, 1991. Research issues of communication and resource management on the Amoeba,
Sprite, V and Mach operating systems were addressed and discussed.

Dennis Hollingsworth gave a seminar at IS on Mach messaging concepts that was attended by
individuals from Trusted Information Systems and TeraData Corporation.

Discussions

Dr. Gaines discussed with Intel Corporation the porting of Mach to their Touchstone machines.
Experience gained through our efforts was passed on to Intel staff.

Dr. Tung worked with Thanh Tu, a USC graduate student, on the performance analysis of the CM-
2 machine.

ISI met with researchers from the VISCOM group on the USC campus and provided technical
advice concerning Mach and their design for an orthogonal multiprocessor based on the Intel i860
Processor.

Visitors

In early 1990, Dr. Tung discussed with Professor Redekopp, who is head of USC’s Aerospace
Engineering and Mechanical Engineering departments, how researchers in his departments can use
ISI’s Connection Machine and Symult S2010.

Gil Weigand of DARPA visited ISI on 11 January 1990 to discuss the parallel processing projects
at ISI.

On 7 February 1990, Stephen M. Griffin of the Division of Advanced Scientific Computing at the
National Science Foundation visited with several project team members.

-16 -

Covers period 1 November 1991 through 30 April 1992
Phase 2 - October 1, 1991 Through May 30, 1996

Resource Management for Parallel and Distributed Systems
and OS Services for Distributed Systems

To reflect the shift in focus indicated in the continuation proposal, the name of the Center for
Experimental Research in Parallel Algorithms, Software, and Systems (CERPASS) Project changed
to the DIstributed VIRtual System (DIVIRS) Project.

As outlined in the continuation proposals 91-ISI-57 (revised) and 92-ISI-50R (revised) on coop-
erative agreement NCC 2-539, we (1) developed software, including a system manager and a job
manager, that manages available resources and that enables programmers to program parallel ap-
plications in terms of a virtual configuration of processors, hiding the mapping to physical nodes;
(2) developed communications routines that support the abstractions implemented in item one; (3)
continued the development of a file system based on the Virtual System Model; and (4) incorporated
appropriate security measures to allow the mechanisms developed in items 1 through 3 to be used
on an open network.

The goal throughout our work was to provide a uniform model that can be applied to both parallel
and distributed systems. We believe that multiprocessor systems should exist in the context of
distributed systems, allowing them to be more easily shared by those that need them. Our work
provides the mechanisms through which nodes on multiprocessors are allocated to jobs running
within the distributed system and the mechanisms through which files needed by those jobs can be
located and accessed.

The results of our efforts in these areas take the form of several research prototypes: The Prospero
Resource Manager, the Prospero File System and Directory Service, and integration of security and
electronic commerce mechanisms with distributed system services. Each of these results is de-
scribed separately below.

The Prospero Resource Manager

Conventional techniques for managing resources in parallel systems perform poorly in large dis-
tributed systems. To manage resources in distributed parallel systems, we have developed resource
management tools that manage resources at two levels: allocating system resources to jobs as needed
(a job is a collection of tasks working together), and separately managing the resources assigned
to each job. The Prospero Resource Manager (PRM) presents a uniform and scalable model for
scheduling tasks in parallel and distributed systems. PRM provides the mechanisms through which
nodes on multiprocessors can be allocated to jobs running within an extremely large distributed
system.

The common approach of using a single resource manager to manage all resources in a large system
is not practical. As the system grows, a single resource manager becomes a bottleneck. Even within

-17 -

large local multiprocessor systems the number of resources to be managed can adversely affect
performance. As a distributed system scales geographically and administratively, additional prob-
lems arise.

PRM addresses these problem by using multiple resource managers, each controlling a subset of
the resources in the system, independent of other managers of the same type. The functions of
resource management are distributed across three types of managers: system managers, job man-
agers, and node managers. The complexity of these management roles is reduced because each is
designed to utilize information at an appropriate level of abstraction. Our approach to resource
management is based on a separation of duties across the three entities.

The system manager controls a collection of physical resources. In our present work we are con-
centrating solely on processors, though eventually the system manager might also manage memory,
communication links, and IO channels. Usually a system manager will control the resources on a
single multiprocessor, but when necessary for performance or other reasons, multiple system man-
agers may exist, each controlling a disjoint subset of the processors on the machine. A system
manager might also control resources across a collection of systems.

The job manager provides the abstraction of a virtual system to a job. A job is a collection of tasks
working together to perform a computation. When a job is initiated, the job manager contacts one
or more system managers to obtain the necessary resources. The job manager then initiates the
loading of programs onto the appropriate processors, causes the jobs to be executed, and monitors
the continued execution of the program. If user I/O is required the job manager starts a task on the
local node that manages I/O to the terminal. If additional resources are required, tasks within the
job request them from the job manager, which is responsible for allocating resources across the
tasks in the job.

The node manager runs on each processor in the system, eventually as part of the kernel but in the
current implementation as a user level process. The node manager accepts messages from the system
manager identifying the job managers that will load and execute programs. When requested by an
authorized job manager, the node manager loads and executes a program. The node manager notifies
the job and system managers about events such as the termination and failure of tasks. In the current
prototype, since nodes are shared with other users, the node manager keeps the system manager
informed about the availability of the node for assignment (i.e. whether any interactive users are
logged in to the workstation). The node manager also caches information needed to direct messages
for other tasks to the node on which the task runs.

Results - Prospero Resource Manager

During the contract period the job manager, system manager, and node managers were designed,
implemented, deployed, and several releases were distributed by FTP through the Internet. The
release through the end of the CERPASS/DIVIRS effort runs on a collection of Sun3, SPARC, and
HP9000/700 workstations running various versions of the Unix operating system, and a single
Intel486 personal computer running Mach. Communication between the job, system, and node
managers, and between tasks in a job is supported by a reliable delivery protocol based on the user

-18 -

datagram protocol (UDP) running over local and wide-area networks. Heterogeneous execution
environments are supported - a system manager may manage nodes of more than on processor type.
In the common case there is one system manager for each site. For example, our test setup consisted
of one system manager responsible for a set of SPARCstations on USC’s main campus, another
managing a collection of Sun3, SPARC, and HP700 workstations at ISI, 15 miles away from the
main campus, while a third managed a set of HP700 workstations at MIT, across the country. We
have run applications that use processors at all three sites.

Initially we had planned to move our software to a Touchstone class multicomputer when such a
machine became available at the DARPA High-Performance Computing demonstration center , and
we considered applications of our model to shared-memory multiprocessors, discussing the possi-
bility of access to such a machines from the Information Sciences Division of NASA Ames. Un-
fortunately, these resources were not ultimately made available to us, so development and releases
remained focussed on collections of workstations throughout the term of the contract.

Programmers link executables for their tasks with the communication library we provide. To run a
parallel application, users invoke the job manager passing it the name of the application. /O to the
terminal and to files that are not otherwise accessible to the application is handled through an I/O
task that runs on the user’s workstation.

In the initial prototype, information about the requirements of a job was read from a job description
file. This file specified the number of tasks to be initially created, the location of the executable for
each task, and a list of system managers from which resources might be obtained. Work was
completed in 1993 that allowed this information to be obtained from the Prospero directory service,
developed in another part of the project. Now, depending on how PRM has been configured, users
create a job description file or they make suitable entries in the Prospero Directory Service.

In the final funded year of the project, we extended the Prospero Resource Manager to support
remote execution of programs that are not written specifically for PRM or relinked with the PRM
library. Sequential applications, including those for which source code is not available, can be run
under PRM. Interactions between the user and unmodified sequential jobs are supported by redi-
recting stdin, stdout and stderr streams through a separate task running on the same node. This task
accepts output from the unmodified task and sends it to the terminal-I/O task and it accept input
from the terminal /O task and writes to the stdin stream of the unmodified task. A parallel application
may be composed of both unmodified and relinked program modules. For such applications, a user-
designated task receives terminal input; unmodified tasks communicate through their standard /O
streams as described above, and relinked tasks use PRM's message passing mechanisms.

We also added support for suspension and subsequent migration of tasks running under PRM. To
suspend a task, the execution state is captured in a checkpoint file and the task is killed. To migrate
the task, a checkpoint is created by the node manager, which informs the concerned job manager.
The job manager then acquires another processor from the system manager and requests the new
node manager to restart the task from the checkpoint. Our implementation builds upon the check-
pointing mechanisms from the Condor package of the University of Wisconsin. We have integrated
this package with PRM and enhanced PRM's communication libraries to correctly handle messages

-19-

addressed to migrating/migrated tasks. We have also implemented an alternative task suspension/
resumption method (but not migration) for programs that cannot be relinked with Condor's check-
pointing library.

Also, in the final funded year of the effort, we extended PRM's resource allocation and release
policies. Depending on its configuration, the system manager may allocate a node to a job for the
entire duration of the job's execution, or for executing a designated set of tasks. The former policy
is more efficient for jobs in which tasks are dynamically spawned. The latter policy enables the
system manager to preempt nodes from a job, and force its tasks to checkpoint (for tasks capable
of checkpointing). It is then the job manager's responsibility to find an alternate set of nodes to
migrate its tasks to. The implementation allows for a default policy to be configured to suit the users'
requirements.

Also during the final funded year we began development of an alternate job managers to support
debugging of parallel applications and we improved the performance of the communications prim-
itives that provide the appearance of a virtual systems to tasks using our software. We also explored
the benefits of creating separate I/O tasks to control I/O to remote files.

To debug PRM applications we developed debugging tools consisting of a command interface at
the front-end and task-monitors at the back-end. The interactive front-end enables the application
programmer to monitor and control program execution. At the back-end each target task is controlled
by a separate task monitor that is co-located with the target. We have adapted the Gnu Debugger
(gdb) to function as the task monitor and interact with the front-end. Use of gdb gives the task
monitor all the features of a traditional debugger.

We added support for playback debugging using traces. When applications are linked with an
instrumented version of the communication library the communication activity of the program can
be captured in trace files. Invoking 'replay’ at the command interface causes task-monitors to use
these trace files to replay programs and exactly recreate the sequence of events in a program's history.

We also implemented a library that allows existing programs written for the Parallel Virtual Machine
(PVM) parallel computing environment from Oak Ridge National Laboratory to run unmodified
over PRM. The programs must be relinked with our version of the communication library, but the
interface to the library is the same as that for PVM. The PRM libraries fully support the interprocess
communication interface provided by PVM Version 3.3.5. A group-server process handles collective
operations such as broadcast, barrier synchronization and global reduction. The group server is
automatically spawned by the job manager when a group operation is first invoked by one of the
tasks.

Products and papers - Prospero Resource Manager

Two papers about the Prospero Research manager were published and are included with this report:

-20-

[1] B. Clifford Neuman and Santosh Rao. Resource Management for Distributed Parallel
Systems. In Proceedings of the 2nd International Symposium on High Performance Dis-
tributed Computing. Spokane, July 1993.

[2] B. Clifford Neuman and Santosh Rao. The Prospero Resource Manager: A scalable
framework for processor allocation in distributed systems. Concurrency: Practice and
Experience. Summer 1994.

The latest release of the Prospero Resource Manager (as updated since completion of the contract),
can be obtained from the web page:

http://gost.isi.edu/info/prm

PRM has been used by a parallel computing class on the USC campus. We have also used it to
run the Ocean program from Stanford University’s SPLASH benchmark suite, which studies the
role of eddies and boundary currents in influencing large-scale ocean movements by solving a set
of partial-differential equations. We started with a message-passing version of Ocean available for
the Connection Machine (CM-5). To port this program to the PRM platform, we wrote a set of
macros and routines to implement the CM-5 communication library functions using equivalent calls
from our own library. The host program from the CM-5 version was incorporated into a terminal
I/O task and handles interactive input. We are also using PRM to develop a simulator for large
networks of neurons, to crack encryption keys, and to run the public domain ray tracing program,
POVRAY.

Our efforts to extend and support the Prospero Resource Manager will continue under new projects.

The Prospero File System and Directory Service

The Prospero file system and directory service is a file system and directory service based on the
Virtual System Model. In the context of multiprocessor systems, files are scattered across multiple
/O nodes. The Virtual System Model allows users to organize files with names that are independent
of the storage site. This allows files to be moved around as needed for optimal performance without
constraining the ability of the user to organize the files. Our work in this area is also important for
organizing information in distributed systems in general since it is difficult for users to find the files
that are of interest among the huge number of files scattered across the Internet.

Results - The Prospero File System and Directory Service

The development of Prospero moved from the University of Washington to ISI and several new
versions of the software were released from ISI during the contract period. Changes in the first
release from ISI included bug fixes and extensions to support the needs of specific users. Among
these changes was a new option to directory queries that allows attributes to be returned for all files
in a directory together with the directory listing. This change was requested by the maintainers of
the Australian Academic and Research Network who developed an FTP server that uses Prospero
to shadow archive sites in the U.S. and Europe. This change greatly improves the performance of
their server and reduces the number of packets sent across their trans-pacific connection to the rest

-21-

of the Internet. Other extensions to Prospero included the addition of support for multi-threading
of the Prospero server, and caching of directories and attributes.

In August 1992, a protocol specification for version 5 of the Prospero protocol was released. Version
5 of the Prospero protocol is more rigorously specified, and the implementation removes many of
the assumptions made in earlier releases. These changes allow additional information sources to
be made available through Prospero and will allow additional applications (e.g. document and file
system browsers, hypertext systems) to be implemented on top of Prospero. In March 1993, software
supporting Version 5 of the Prospero protocol was released. A prototype server supporting NFS
access to files named by a Prospero virtual system was implemented.

During the contract period several new access methods were added to the Prospero file system. The
first allows access by FTP. Though Prospero has supported Anonymous FTP for some time, the
extensions supporting FTP in general allow the use of Prospero to organize information that is not
publicly available. We also added support to retrieve data maintained as part of the Wide Area
Information Service (WAIS). Many full text databases are available over the Internet using this
service. Our extensions to Prospero allow documents found through WAIS queries to be treated as
files in the virtual file system. Support for access to files stored in Gopher, a distributed internet
menu browser, was also added. Also an e-mail method supporting non-real-time access to files
available through e-mail requests to designated electronic mail addresses is now supported. Finally,
we added support for access to files on the world wide web, retrievable using HTTP.

In addition to support for external data access methods, we have added support for. a new access
method based on the conTENTS attribute that is suited to the retrieval of data from files, where the
contents of a file can be sent as an attribute of the file, reducing the number of exchanges needed
to access a file. In support of the conTenTs access method we have extended the Prospero imple-
mentation to support binary data values for attributes. This technique is suitable primarily for small
files, and access to larger files is best performed using an access method separate from the directory
service itself.

In addition to FTP, WAIS, Gopher, e-mail, and HTTP, and the CONTENTS method, other access
methods supported include the Andrew File System (AFS), and Sun’s Network File System (NFS).

In July 1993, an initial version of a menu browser was released together with a gateway that made
information from the Gopher service available to Prospero users. Gateways from the Gopher Menu
Browser and the X-Mosaic hypertext browser to information exported using the Prospero protocol
have been implemented by Pandora systems and Bunyip Information Systems.

During the contract period we designed and implemented the Prospero Data Access Protocol
(PDAP) to support secure retrieval of data from systems running Prospero. Initially, the Prospero
Directory Service provided only directory information about files in the Prospero File System.
Access to the files was supported automatically using existing access methods. The PDAP provides
a common protocol for access to local files and gateway access to remote files using alternative
access methods, thus reducing the number of access methods that must be supported by Prospero
applications.

.22

We also integrated the Prospero Directory Service with the Prospero Resource Manager (PRM)
allowing information about the configuration of parallel programs to be maintained as attributes of
the programs themselves, rather than in a separate configuration files, and providing for parallel
applications to be invoked the same way sequential programs are, simply by typing their name; the
configuration information stored in the directory entry for the program is used to automatically
invoke the appropriate job manager. The Prospero File Access Protocol was also integrated with
PRM allowing access to local files that are not otherwise exported, by tasks running on remote
nodes as part of a job initiated from the local node.

Steven Augart implemented a new database/directory format for Prospero that combines attribute
information previously associated with a file or object, with the information associated with a
directory. Sung-Wook Ryu developed a database module that allows information in the format just
described to be stored in a common dbm database. The first change reduces the storage and i-nodes
required to maintain information on a Prospero server and improves performance. The dbm exten-
sion further reduces storage requirements, but locking and reliability issues make it suitable for
only certain applications.

Sio-Man Cheang developed a configuration package for Prospero that provides functionality similar
to that provided by the X Window system. All user runnable commands call the configuration
package to determine configuration parameters for network communication, gateways, debugging,
priorities, and security and payment options. The configuration package determines the configured
values by reading, in order, command line options, user-specific and system-specific configuration
files, and compile time definitions. :

In the final funded year of the effort, Sio-Man Cheang implemented a prototype transitive indexing
system. Transitive indexing is a scalable technique for generating high-level indices that direct users
to information of interest. An indexer was completed that when executed with a depth and a list of
attributes to be indexed as arguments, builds an index by traversing the Prospero directory structure
and retrieving the values of the named attribute from each file, directory, or object. An index is then
generated mapping values of the attribute to the first level links through which objects with matching
attribute values may be found. A reference to this index is bound as an attribute to the node from
with it was generated. When generating an index, if a node is reached that already has an associated
transitive index for the same attribute and at least the requested depth, the data from the existing
index is propagated upward and the traversal is pruned at that point.

Information from a transitive index is obtained using the TQ filter on a Prospero directory query.
When querying a directory, Prospero allows the user to specify filters that modify the list of objects
that are returned. By specifying an attribute and a value as arguments to the TQ filter, the list of
links that appear in a directory will be restricted to only those subdirectories through which objects
with the requested attributes can be reached.

-23.

Products and papers - Prospero File System and Directory Service

Four papers about the Prospero File System and Directory Service were published and are included
with this report:

[16] B. Clifford Neuman. Prospero: A Tool for Organizing Internet Resources. Electronic
Networking: Research, Applications and Policy, Volume 2, Issue 1, Spring 1992. USC/
Information Sciences Institute Research Report ISI/RS-92-421 (in preparation).

[18] B. Clifford Neuman. The Prospero File System A Global File System Based on the Virtual
System Model. Workshop on File Systems, May 1992.

[19] B. Clifford Neuman and Steven Seger Augart. Prospero: A Base for Building Information
Infrastructure. In Proceedings of INET’93. San Francisco, August 1993. USC/Informa-
tion Sciences Institute Research Report ISI/RS-93-415 (in preparation).

[20] B. Clifford Neuman, Steven Seger Augart, and Shantaprasad Upasani. Using Prospero to
Support Integrated Location-Independent Computing. In Proceedings of the Usenix Sym-
posium on Mobile and Location-Independent Computing. Cambridge Massachusetts, Au-
gust 1993. USC/Information Sciences Institute Research Report ISI/RS-93-416 (in prep-
aration).

The latest release of Prospero (as updated since completion of the contract), can be obtained from
the web page:

http://gost.isi.edu/info/prospero

On the technology transfer front, negotiations were completed with CyberSafe Corporation who
has licensed Prospero from USC and intends to integrate it with several of their products. Bunyip
Information Systems is working with several large publishers to make available information pro-
vided by the publisher to Internet users on a subscription basis. This information will be accessed
by users of the service using Prospero. Also, America Online (AOL) introduced their Internet
service, allowing AOL users to access information from Gopher, WAIS, and Prospero servers on
the Internet. AOL’s information gateway, developed by Pandora systems, uses a Prospero server
that translates data from the Gopher and WAIS formats, returning data to a Prospero client using
the Prospero protocol. The Prospero server caches data from other services, reducing network and
server load, and improving performance and reliability. In the Spring of 1994, the Prospero gateway
for AOL handled roughly 100,000 queries per day, and has a cache hit ratio of 88 percent. Our work
to optimize performance of the Prospero server was driven, in part, by the requirements for pro-
duction use by AOL, but the improvements were incorporated into the standard Prospero release
and, therefore, benefit all users of Prospero.

Our efforts to extend and support the Prospero Resource Manager will continue under new projects.

-24-

Security for Distributed Systems and Electronic Commerce

The computing and information infrastructure we are developing as part of the DIVIRS project
requires an underlying security infrastructure to provide fine-grained access control mechanisms,
to protect such resources, and to provide accounting in order to manage their use. Such security
infrastructure is also necessary to support secure commerce on the internet, and to protect electronic
forms of payment.

Though not specifically a task under the CERPASS/DIVIRS effort, separate funding was obtained
through an Augmentation Award for Science and Engineering Research Training (AASERT) to
support a graduate student, Ari Medvinsky, to work on the problems of electronic commerce. His
security related efforts - as needed for his work on electronic commerce - were also applied to
improve the security of the information and computing infrastructure under development as part of
the DIVIRS effort.

Results - Security for Distributed Systems and Electronic Commerce

During the contract period, we incorporated new security mechanisms into both Prospero and the
job, system, and node managers. Support for strong authentication through Kerberos was added to
Prospero. Significant changes to a beta release of Version 5 of Kerberos from MIT were made and
these changes were fed back to MIT and were included in the subsequent release from MIT. These
changes to Kerberos included support for the forwarding of authentication credentials, a mechanism
that is necessary to securely allow remotely executing tasks to perform operations with the privileges
of the user.

Support was added for password based authentication for Prospero directory queries. Although
Kerberos authentication was already supported, a weaker form of authentication was needed for
users at sites that don’t run Kerberos, and passwords are better than no authentication at all. Support
was also added to the Prospero Directory Service protocol for billing. These changes support a
range of billing methods from the inclusion of credit card numbers, to direct billing options, to
mechanisms that will be supported in the future such as proxy checks, and anonymous electronic
currency. While we discourage the use of techniques that are vulnerable to compromise, such as
sending a credit card number unencrypted on the network, we recognize that application developers
will use such methods anyway. By providing a common billing framework within which they can
use such methods, the hooks for more secure billing mechanism will already be present in applica-
tion protocols when those secure billing mechanisms are ready.

We separately received funding to develop wide scale security infrastructure supporting authoriza-
tion and related security services on the Internet, and within the scope of the DIVIRS effort we
implemented the Prospero Resource Manager and the Prospero Directory Service so that it can take
advantage of such infrastructure when it becomes available.

To support for-hire services, it must be possible to send payments over the network when information
or other on-line services are requested. As part of an AASERT award attached to the DIVIRS
contract, and in conjunction with our efforts on a separate contract for Security Infrastructure,

-25.

Gennady (Ari) Medvinsky developed electronic payment mechanisms for the Internet. As part of
this effort, a prototype implementation of NetCheque and NetCash have been released on the In-
ternet. Users registered with NetCheque accounting server are able to write checks to other users.
When deposited, the check authorizes the transfer of account balances from the account against
which the check was drawn to the account to which the check was deposited.

Products and papers - Security for Distributed Systems and Electronic Com-
merce

Two papers about the security end electronic commerce were published based on work from this
contract, and are included with this report:

{14] Gennady Medvinsky and B. Clifford Neuman. NetCash: A design for practical electronic
currency on the Internet. In Proceedings of the first ACM Conference on Computer and
Communications Security. Fairfax Virginia, November 1993 (copy included with last
semi-annual report). USC/Information Sciences Institute Research Report ISI/RS-93-413
(in preparation).

(171 B. Clifford Neuman. Proxy-Based Authorization and Accounting for Distributed Systems.
In Proceedings of the 13th International Conference on Distributed Computing Systems.
Pages 283-291. Pittsburgh, Pennsylvania, May 1993 (copy included with last semi-annual
report). USC/Information Sciences Institute Research Report IS/RS-93-419 (in prepa-
ration).

The latest release of Kerberos as obtained from MIT, with our changes included, and the latest
release of the NetCheque system, can be obtained from the web pages:

http://gost.isi.edu/info/kerberos

http://gost.isi.edu/info/netcheque

=26 -

Staff

The following individuals contributed to and were employed by the DIVIRS/CERPASS effort at
various points during the contract period.

Celeste Anderson
Steven Augart

Richard Bisbey

Ben Britt

Kwynn Buess - Work study
Scott Carter

Sio-Man Cheang, GRA
Susan Coatney

Danny Cohen
Paraskevas Evripidou
Manjiri Gadagkar - DR
Stockton R. Gaines
Frances Henderson
Dennis Holingworth
Sukumal Imudom, GRA
Sanjay Joshi - DR

Joe Kemp

Konstadinos Kutsikos
Charlie Lai

Wei-Ming Lin

Kathleen McLaughlin
Gennady (Ari) Medvinsky
David Mizell

Paul Mockapetris

-27-

Walid Najjar

Clifford Neuman

Ron Ohlander

Bruce Onder

Jon Postel

Santosh Rao, GRA
Sung-Wook Ryu, GRA
Rivka Sherman

Carole Sumler

Yu-Wen Tung
Shantaprasad Upasani, GRA
Peter Will

Suzanne Woolf

Jeanine Yamazaki

-28.

APPENDIX A - GLOSSARY
AASERT Augmentation Award for Science and Engineering Research Training
ACM Association for Computing Machinery
ALU arithmetic logic unit
AMRD automatic message routing device
AOL America Online
ARPA Advanced Research Projects Agency (see also DARPA)
BSD Berkeley Standard Distribution

CERPASS Center for Experimental Research in Parallel Algorithms, Software and Systems

CM Connection Machine

CM-2 Connection Machine Model 2

CMU Carnegie Mellon University

DARPA Defense Advanced Research Projects Agency (see also ARPA)
DIVIRS Distributed Virtual Systems

EV Embeddable Variant

FTP File Transfer Protocol

GDB Gnu Debugger

HDTV high-definition television

IEEE Institute of Electrical and Electronics Engineers, Inc.
P internal macroinstruction procedures

INET’93 The 1993 annual conference of the Internet Society
/0 Input/Output

IOCTL 1I/O Control

IPC inter-process communication
ISI Information Sciences Institute
JPL Jet Propulsion Laboratory, Pasadena, CA

MIMD multiple-instruction, multiple data

-29-

MIT Massachusetts Institute of Technology
NFS network file system

NNSC NSF Network Service Center

OCSG Open Computing Security Group
PRM Prospero Resource Manager

PROM programmable read-only memory
PVM Parallel Virtual Machine

RISC reduced instruction set computer

SIB Sun Interface Board

SIMD single-instruction, multiple data
SIMMs single in-line memory module

SIPG Sun Interface Monitor to Ginzu

SPCL Symult 2010 Paralle]l Common Lisp
sup System Update Protocol

TCP Transmission Control Protocol
TCP/IP Transmission Control Protocol / Internet Protocol
TMC Thinking Machines Corporation

TQ Transitive query

UART universal asynchronous receive transmitter
UCLA University of California, Los Angeles
UDP User Datagram Protocol

USC University of Southern California
VMTP Versatile Message Transport Protocol
VPR virtual processing ratio

WAIS Wide Area Information Service

-30-

APPENDIX B - PUBLICATIONS

The following papers report research that was conducted wholly or in part through the DIVIRS/
CERPASS effort. Copies of each paper are attached.

(1]

[2]

3]

[4]

[5]

[6]

[71

(8]

9]

[10]

[11]

[12]

Chandy, K. M. and R. Sherman. Space-Time and Simulation. Proceedings of the SCS
Multiconference on Distributed Simulation, Tampa, Florida, March 1989.

[Reprinted as USC/Information Sciences Institute Reprint Series ISI/RS-89-238, June
1989.]

Chandy, K. M., and R. Sherman. The Conditional-Event Approach to Distributed Sim-
ulation. USC/Information Sciences Institute Research Report ISI/RR-88-226, June 1989.

Evripidous, P. Data-Flow Computing: A Status Report. Published by Prentice Hall, June
1989.

Evripidou, P. and J-L. Gaudiot. A Decoupled Graph/Computation Data-Driven Archi-
tecture with Variable-Resolution Actors. Presented at the International Conference on
Parallel Processing, Saint Charles, Illinois, August 1990.

Evripidou, P. and J-L. Gaudiot. Decoupled Data-Driven Architectures with Vectors and
Macro Actors. Was presented at the CONPAR 90-VAPP 1V Joint Conference on Vector
and Parallel Processing held in Zurich, Switzerland, 10-13 September, 1990.

Evripidou, P. and J-L. Gaudiot. Decoupled Multilevel Data-Flow Execution Model.
Presented at the workshop Data-Flow Computing: A Status Report, Eliat, Israel, June
1989. "

Evripidou, P. and J-L. Gaudiot. Some Scheduling Techniques for Numerical Algorithms
in a Simulated Data-Flow Multiprocessor. Published in the proceedings for Parallel
Computing 89, Leiden, August 1989.

Evripidou, P. and J-L. Gaudiot. The USC Decoupled Multilevel Data-Flow Execution
Model. Chapter to appear in Advanced Topics in Data-Flow Computing, Prentice Hall,
in press.

Evripidou, P, W. Najjar, and J-L. Gaudiot. A Single-Assignment Language in a Distrib-
uted-Memory Multiprocessor. Proceedings of the Parallel Architectures and Languages.

John T. Kohl, B. Clifford Neuman, and Theodore Y. Ts’o0. The Evolution of the Kerberos
Authentication Service. IEEE, Distributed Open Systems, Editors F.M.T. Brazier and D.
Johansen, pp. 78-94, 1994. USC/Information Sciences Institute Research Report ISI/
RS-94-412 (in preparation).

Mizell, David and Richard J. Lipton. An Extreme-Case Comparison of Optimistic and
Conservative Parallel Discrete-Event Simulation Methods. Submitted to the 1990 So-
ciety for Computer Simulation (SCS) Conference on Distributed Simulation.

Mizell, David, and Richard J. Lipton. Time Warp vs. Chandy-Misra: A Worst-Case
Comparison. In Distributed Simulation, Proceedings of the SCS Multiconference on

-31-

[13]

[14]

[15]

[16]

(17}

[18]

[19]

(20]

[21]

[22]

Distributed Simulation, San Diego, CA, Simulation Series, Vol. 22, No. 2, January 1990.
Reprinted as USC/Information Sciences Institute Reprint ISI/RS-90-253.

Gennady Medvinsky and B. Clifford Neuman. Electronic Currency for the Internet.
Electronic Markets, No. 9-10, pp. 23-24, October 1993. USC/Information Sciences
Institute Research Report ISI/RS-93-414 (in preparation).

Gennady Medvinsky and B. Clifford Neuman. NetCash: A design for practical electronic
currency on the Internet. In Proceedings of the first ACM Conference on Computer and
Communications Security. Fairfax Virginia, November 1993 (copy included with last
semi-annual report). USC/Information Sciences Institute Research Report ISI/RS-93-
413 (in preparation).

Najjar, W. and J-L. Gaudiot. Comparative Performance Evaluation of Three Voting
Schemes, 1989. Prepared for submission to a special issue of IEEE Transactions on
Computers.

B. Clifford Neuman. Prospero: A Tool for Organizing Internet Resources. Electronic
Networking: Research, Applications and Policy, Volume 2, Issue 1, Spring 1992. USC/
Information Sciences Institute Research Report ISI/RS-92-421 (in preparation).

B. Clifford Neuman. Proxy-Based Authorization and Accounting for Distributed Systems.
In Proceedings of the 13th International Conference on Distributed Computing Systems.
Pages 283-291. Pittsburgh, Pennsylvania, May 1993 (copy included with last semi-
annual report). USC/Information Sciences Institute Research Report ISURS-93-419 (in
preparation). ‘

B. Clifford Neuman. The Prospero File System A Global File System Based on the Virtual
System Model. Workshop on File Systems, May 1992.

B. Clifford Neuman and Steven Seger Augart. Prospero: A Base for Building Information
Infrastructure. In Proceedings of INET’93. San Francisco, August 1993. USC/Infor-
mation Sciences Institute Research Report ISI/RS-93-415 (in preparation).

B. Clifford Neuman, Steven Seger Augart, and Shantaprasad Upasani. Using Prospero
to Support Integrated Location-Independent Computing. In Proceedings of the Usenix
Symposium on Mobile and Location-Independent Computing. Cambridge Massachu-
setts, August 1993. USC/Information Sciences Institute Research Report ISI/RS-93-416
(in preparation).

B. Clifford Neuman and Santosh Rao. Resource Management for Distributed Parallel
Systems. In Proceedings of the 2nd International Symposium on High Performance Dis-
tributed Computing. Spokane, Washington, July 1993 (copy included with last semi-
annual report). USC/Information Sciences Institute Research Report ISI/RS-93-417 (in
preparation).

B. Clifford Neuman and Santosh Rao. The Prospero Resource Manager: A Scalable
Framework for Processor Allocation in Distributed Systems. Concurrency: Practice and
Experience. Summer 1994. USC/Information Sciences Institute Research Report ISI/
RS-94-410 (in preparation).

-32.

[23]

[24]

[25]

[26]

27}

[28]

[29]

[30]

B. Clifford Neuman and Stuart G. Stubblebine. A Note on the Use of Timestamps as
Nonces. In Operating Systems Review, 27(2): 10-14, April, 1993. USC/Information
Sciences Institute Research Report ISI/RS-93-418 (in preparation).

B. Clifford Neuman and Theodore Ts’o0. Kerberos: An Authentication Service for Com-
puter Networks. IEEE Communications Magazine, Volume 32, Number 9, pp. 33-38,
September 1994. USC/Information Sciences Institute Research Report ISI/RS-93-413
(in preparation).

Sherman, R., and A. Pnueli. Model Checking for Linear Temporal Logic: An Efficient
Implementation. USC/Information Sciences Institute Research Report IS/RR-89-241
(in preparation).

Tung, Yu-Wen. Mapping Parallel Algorithms to Parallel Computers: An Analysis Using
Sorting Experiments. Currently under review.

Tung, Y., S-H. Chung, and D. Moldovan. Modeling Semantic Networks on the Connec-
tion Machine, 1989. Submitted to IEEE Transactions on Parallel and Distributed Pro-
cessing.

Tung, Y. and P. Li. Parallel Sorting on Symult S2010. Presented at the Fifth Distributed
Memory Computing Conference, Charleston, South Carolina, April 1990.

Tung, Y. and D. Mizell. Performance Analysis and Modeling of Parallel Sorting Algo-
rithms on the Connection Machine. Submitted to a special session of the Hawaii Infor-
mation and Computing Systems Symposium.

Tung, Yu-Wen, and David Mizell. Two Versions of Bitonic Sorting Algérithms on the
Connection Machine. Presented at the IEEE Parallel Processing Symposium in Fullerton,
California.

-33-

