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Chapter 1

INTRODUCTION

The design constraints for space power converters differ from those of terrestrial

converters in several important ways: (1) low mass is important because of the high cost

of boosting it into space, and (2) high power efficiency is even more important because of

the incremental mass in the heat removal system associated with a low efficiency

converter. High switching frequency is only useful to the extent that it allows weight

reduction in the complete system comprising the switching converter and its heat removal

system.

This study included a survey of various DC/DC converter topologies in order to

select the most appropriate ones for a 1.8 kW ion engine power supply. This supply

actually consists of three converters that provide the following power sources:

1. A 1.8 kW source with an output of 500 - 1350 V.dc.

2. A 150-250 V.dc source that delivers 20 m.a. steady state and a 1 amp surge

current.

3. A + 15 V.dc housekeeping supply.

In addition to selecting the topologies for these converters, their implementation

often required a choice from several different technical options. A number of subtle

problems also were encountered, and these frequently determined which technology was

used. The more important choices and problems are discussed in the next chapter, and it

is hoped that some of this information will be useful in the design of power supplies for

future ion thrusters.
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Chapter 2

TECHNOLOGY SURVEY

Several factors determined the choice of the converter for the 1.8 kW source:

1. DC isolation between input and output

2. Voltage transformation ratio

3. Input voltage

4. Power level

5. Component limitations

6. Efficiency

7. Low mass

8. Reliability

The need for DC isolation obviously restricts the choice to a topology with a transformer.

Actually, the high voltage transformation ratio (which has a maximum value of 1350/80)

also would dictate this choice. The next basic decision is to select a circuit from the wide

variety of forced switching and resonant topologies. The low switching loss of FETs

virtually eliminates the need for relatively complex resonant circuits such as the series

and parallel loaded types. VDS limitations of FETs then point to the full bridge topology.

Finally, one must decide between diagonal and phase-shift control. Diagonal is the

simplest, but phase-shift readily allows the implementation of zero voltage switching

(ZVS) over the upper end of the load range. This reduces both switching loss and

snubber requirements for the PETs.
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The next choice is between,

1. Current mode control (CMC)

2. Average current mode control (ACMC)

3. Voltage mode control (VMC)

First, one should be aware that all bridge and push-pull circuits must guard against

momentary flux imbalances that can lead to transformer saturation. If this happens, the

transformer primary appears as a short circuit, and if the circuit is unprotected the results

are usually catastrophic.

One possibility is to place a large capacitor in series with the primary, but at

higher levels this capacitor is subject to serious heating, mass and efficiency problems.

CMC is also a popular solution to this problem, and it provides wide bandwidth which

helps improve the transient response. However, CMC demands a sanitized replica of the

load current waveform (e.g., minus turn-on transients and EMI) for the control circuit,

and obtaining this can be tedious. CMC is certainly do-able, but the difficulty in

obtaining waveform replica at higher power levels motivates the search for a simpler

approach.

ACMC was considered, but to provide flux balance this also requires a signal that

responds to the instantaneous current. This approach was investigated, but it was

eventually abandoned because of transients and EMI problems.

Because of the implementation complexities of CMC and ACMC, it was decided

to investigate VMC for this application. VMC alone is always vulnerable to transformer

saturation, but the circuit was altered to avoid this, and the resulting system appears to be

less sensitive to transients and EMI than either CMC or ACMC. First of all, for steady
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state operation there are some factors that help to prevent transformer saturation. To

explain this, it should be recognized that the conduction time periods and parasitic

voltage drops in the two halves of the circuit are always slightly imbalanced. This means

that the transformer core will operate at one end of its BH loop, and one half cycle will be

on the verge of saturation. At the end of this half cycle, the magnetizing current will

increase slightly as the end of the BH loop is approached, and the increasing iR drop will

decrease the voltage applied to the winding. It is this iR drop that forces the flux to

ultimately balance for the two half cycles, and the core will then operate on a steady state

minor BH loop. This is perfectly acceptable as long as the increased magnetizing current

on the one half cycle doesn't become excessive. FETs are very helpful in this respect

because they are resistive and have positive temperature coefficients. They also minimize

conduction time imbalances between the two half cycles because their switching times are

very small, and thus any time imbalance is very very small compared to a half period, ff

the current saturation current on one half cycle is still too high, it can often be decreased

to an acceptable level by increasing the gap in the transformer core. This increases the

magnetizing current so the necessary iR increase can be achieved at a lower saturation

level. In this particular application, acceptable steady state operation was achieved

without increasing the transformer gap.

Although features such as parasitic R and core gaps can provide satisfactory

steady state operation, they cannot guarantee the avoidance of saturation during transient

conditions. Thus saturation may still randomly occur during situations such as start-up or

output faults. To avoid FET failures during these conditions an active circuit must be

used to protect the FETs. In this case a current sensor and controller was used to detect
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excessive primary currents, turn-off the circuit, and then use a soft re-start. In spite of

this extra circuitry, the resulting VMC system was judged to be easier to implement than

a CMC or an ACMC system. As noted earlier, stabilization of VMC requires a lower

bandwidth than CMC or ACMC, and thus a slower transient response results. The

transient response was still considered to be adequate for this application however, and

this was not judged to be a serious limitation.

The original controller for the 1.8 kW converter used the UC3875 control chip.

Although simple to implement, this chip had very poor EMI immunity and was quickly

abandoned. A second controller was implemented with discrete I.C.'s and used a control

strategy very similar to that in the 3875. No serious EMI problems were encountered

with this new controller.
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Chapter 3

THEORY OF OPERATION

A block diagram of the complete system is shown in Dwg. A. The system

provides the following outputs:

1. +1350 V.dc, 1.8 kW. (HV Output)

2. -150 to -250 V.dc, 250 W. for 100 m.s. (LV Output)

Short circuit protection is provided for faults between either output and COM or between

the two outputs. In the event of a fault, this protection circuitry de-energizes the system

as specified by NASA, and it must be re-started manually. The system also provides its

own + 15 V.dc housekeeping power supply to avoid grounding limitations associated

with externally available supplies.

The HV power circuit in Dwg. B employees three parallel 300 volt FETs in each

leg of a full wave bridge. A layered interconnect structure is used on the primary in order

to minimize parasitic inductance.

The transformers used in most bridge and push-pull converters invariably have

leakage inductances, L g, that are larger than desired. Thus the usual design strategy

should minimize Lg, and that was done in this case for the HV transformer. This was

achieved by using a 3 turn foil winding on one leg of a UU core, wrapping this with a

layer of insulation and then winding the secondary in single layer sectors directly on top

of the insulation, this achieved an Lg = 0.51ktH when measured on the primary.

Unfortunately this was actually too low and resulted in an excessive current transient at

1



turn-on. To reduce this transient to an acceptable level, it was necessary to add an

external inductance of 2gH in series with the primary.

If the transformer was re-designed, it would be advantageous to use a more

compact arrangement, perhaps with more turns of multi-layer windings on a smaller core.

This should reduce the weight and increase L g to the desired value. The switching

frequency of 60 kHz was selected primarily to provide a sufficiently low flux density in

the transformer core. To accommodate the 1350 V.dc output at this frequency, it was

necessary to use 5 rectifier bridges connected in series as shown in Dwg. B. Even with

1000 volt diodes, switching voltage transients required the use of substantial snubbers for

these rectifiers. It was originally thought that this problem would be alleviated by use of

the RHRU150100 diode because of its low trr and soft recovery characteristic. However,

this diode is designed for currents well in excess of the 1.8 A.dc maximum load current,

and it has a large wafer with a high junction capacitance, this produced both current and

voltage transients that were excessive and could not be reduced to satisfactory levels with

reasonable snubbers, thus it was necessary to resort to the BYT08P diode with its lower

junction capacitance even though it does not have soft recovery.

Another feature of interest is the output voltage sensing circuit shown in detail in

Dwg. D for the HV converter. Strictly speaking, this circuit does not provide complete

DC isolation between the input and output ground. However, it does provide 1000Mf_ of

isolation, and this was considered adequate. This design provides a considerable

simplification over other alternatives such as optical or transformer isolation.

•



The LV converter in Dwg. G has a maximum steady state load of only 5W., and

this could be derived from an extremely small converter. However, it also has to supply a

1 amp surge for 100 m.s. with less than a 50% voltage droop. If a very small converter

was used, this surge specification would require the use of an extremely large output

capacitor. Instead of supplying this pulse from a capacitor, it was determined that

considerable weight and volume could be saved by designing the converter itself to

supply a 1 amp surge for 100 m.s. Although this necessitates much larger

semiconductors in the converter, the complete weight and volume are much less than the

large capacitor version, the converter now has a 100 m.s. rating of 250W., but this is still

within the range where simpler topologies are effective. Therefore a relatively simple

tbrward converter was selected for this circuit.

Although a +V.dc source is available externally, the ground for this source

cannot be connected to either the input ground or the output ground of the ion engine

power supply. Therefore, it was decided to provide the dedicated + 15 V.dc

housekeeping source in Dwg. I whose ground would be connected to the input ground.

Because of the low power level, a simple topology is also adequate for these sources, so a

forward converter similar to that for the LV source was selected.

So
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Chapter 4

EXPERIMENTAL RESULTS

The measured experimental performance of the ion-engine converter was reported briefly

in [1]. A copy of this paper is included in Appendix A. A more complete report is given in this

chapter.

Diode Selection

The output rectifiers were identified early in the project as an important contributor to the

losses, primarily because of the need for heavy snubbing of the output rectifiers to avoid large

reverse voltages at high line. A lossless snubber would aid in lowering the snubbing loss, but

was deemed unnecessarily complex for this power level. The development effort was expended

on finding the best possible diodes for the rectifier. In this context, best was defined as the

diodes which could be snubbed to an acceptable overshoot voltage with the lowest overall losses.

A workable choice was found in the BYT 08P diode. This device is made by Temic

(formerly Siliconix) and is rated at 8 A and 1000 V, with a 120 ns reverse-recovery time. Five

bridge rectifier sections, each associated with a separate transformer winding and using four

diodes, were used with the BYT 08P diodes. Additional improvement was obtained in the final

packaged version of the power converter by changing the output rectifiers to Motorola

MUR460s, rated at 4 A and 600 V, with a reverse-recovery time of 75 ns and a CJO of about

150 pF. This required five bridge rectifier sections, each with a separate transformer winding

19.



andeightdiodes,seriesconnectedin groupsof two. Thisrectifierarrangementis shownin Dwg.

B. Thedampingsnubbersweredistributedsothat theywouldalsofunctionasvoltageequalizers

for thediodes.Experimentalwork with lN6628sshowedthattheywouldproduceresultsnearly

equalto theMUR460s.

A typicaldc-sidevoltagefor onebridgesectionof theoutputrectifier is shownin Fig. 1.

Thisscopewaveformwastakenat high line (V_n= 120V) andaloadof 1.51A at 1100V. The

peakvoltageof 600V appearingundertheseconditionsis distributedacrosstwo MUR460

diodes.Thecharacterof thewaveshapeappearinghereis invariantfor highandlow line

conditions: theamplitudeanddutyfactorchangewith line andloadconditions,but the

lightly-dampedringing,with someclipping of thefirst voltageovershoot,appearsunderawide

rangeof conditions.Thetotal rectifieroutputvoltage(beforethefilter) andthedc-sidevoltages

of the individualbridgeswereobservedunderavarietyof conditions.Theywerefoundto

indicatepeakvoltagesat the individualbridgeswithin 20%of theexpectedvalues.The initial

clippingof thetransientvoltagein Fig. 1 iscausedby thevoltageclampcomposedof five

BYT 08Ps,the0.01_F capacitorandthe 144K resistor(seeDwg.B). This clampfeatures

partialenergyrecoveryby virtueof thefactthattheresistorbleedschargefrom thecapacitorto

theoutputterminal. Experimentally,it waspossibleto operatetheconverterwith only theclamp

andnodampingelementson theindividual bridges,or to useonlydampingelements(theseries

R-C networks)on thebridgesandnoclamp. However,thelowestoverall losseswhile meeting

thegoalof aconservativediodereversevoltagewasmetwith thecombinationof clampingand

dampingshownin Dwg.B. Observationof thediodecurrentsandvoltagesalsoshowedno

evidenceof significantreverse-recoveryproblems: theobservedringing waveformscanbe

20.
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explained solely in terms of the diode junction capacitances. The criteria used to search for

rectifier diodes were therefore (1) low junction capacitance, with (2) adequate current rating and

(3) high voltage rating.

Power Efficiency

The measured efficiencies of the 1.8 kW high-voltage converter under several conditions

are given in Table 1. The efficiency of operation at high line was generally found to be lower

due to the rapid increase in losses in the rectifier dampers and clamp. System no-load

performance is summarized in Table 2, which includes losses in the housekeeping power

supplies and the low-voltage converter.

Table 1

Measured Efficiency of the 1.8 kW High-Voltage Converter

Low Line/

Full Load

Input Voltage/

Input Current

80 V

23.6 A

Output Voltage/

Output Current

1106 V

1.53 A

Output Power/

Efficiency

1687 W

92.2%

High Line/ 120 V 1106 V 1687 W
Full Load 16.1 A 1.53 A 89.7%

Low Line/ 80 V 1322 V 1816 W

Maximum Output 25.0 A 1.37 A 93.3%

Low Line/ 80 V 908 V 853 W

Half Load 12.0 A 0.94 A 90.7%

22.



Table 2

Measured System No-Load Power Consumption

Input Voltage Input Power LV Output

Voltage

HV Output

Voltage

System
Status

80 V 12.8 W 250 V 1350 V Operating

at

120 V 12.0 W 250 V 1350 V No Load

80 V 9.6 W Standby

(Housekeeping

120 V 10.8 W _ Active)

Loss Breakdown

The losses in the 1.8 kW high-voltage converter were carefully measured under near

full-load (1106 V at 1.525 A) at high line and low line. For these two cases, the losses were

broken down among the various components of the converter as carefully as possible, using

direct measurements in some cases, and calculation or simulation in others to estimate the

corresponding losses. The results are summarized in the following.

Table 3 lists the test results, giving the directly-measured total loss, along with the

estimated loss for each component. The total loss was measured by subtracting the measured

output power from the measured input power, using dc instruments calibrated at levels near to

23.



the measured values. The corresponding measured power efficiencies are also listed in this

column.

MOSFET losses were estimated through heatsink temperature-rise matching. The

converter was run until thermal steady-state was reached, and the heatsink temperature rise was

recorded. The MOSFETS were then diode connected and heated using a dc supply. The power

level was adjusted to produce a matching temperature rise; the power level was then easily

measured. The measured heatsink temperature is also listed in the third column of Table 3. It

may be noted that the higher power produced the lower temperature because this test was done

on a day having a lower ambient temperature: temperature rise was actually matched in this

procedure. This method was used to avoid the uncertainties in accounting for conduction and

switching losses in the MOSFETs, inclusion of the losses in the MOSFET anti-parallel diodes,

and change of rDs(On) with temperature.

Table 3

Measured/Estimated Losses by Component Under Full-Load Conditions

Test Conditions

Low Line

Input: 79.3 V, 23.1 A

Output: 1106 V, 1.525 A

High Line

Input: l19.8V, 15.7A
Output: 1106 V, 1.525 A

Total Loss

(Directly

Measured)

142 W

r1=92.2%

194 W

r1=89.7%

MOSFET

Loss

75W

(Ts_K=74°C)

85W

(TsI_K=70°C)

HV

Clamp
Resistor

9.9W

33.4 W

HV

Rectifier

& Damper

31.6W

38W

Housekee

ping
Losses

17.8W

19.0 W

Power

Transf.

7W

(core)
24 W (Cu)

7W

(core)

11 W (Cu)

Sum of

Individual
Losses

165W

193W
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The losses in the high-voltage clamp resistor (marked 144 K on Dwg. B) were easily

found by direct measurement of the dc voltage on the resistor. The voltage ripple appearing on

both the output and clamp capacitors was deemed minimal.

The losses in the high-voltage rectifier diodes and their associated dampers were virtually

impossible to directly measure, because they occur in 40 individual diodes and 40 individual

damper resistors. The voltages and currents involved contain large switching-frequency content

and are superimposed upon large common-mode voltages. In addition, it appeared that

attempting to insert measuring equipment in the rectifier would alter the operation of the

converter enough to affect the accuracy of any attempted power measurements through the stray

capacitance added by these connections. Therefore, a computer simulation using PSpice was

used to estimate the power losses in the rectifier. This was done by simulating a SPICE model of

one bridge rectifier section (having 8 diodes) with its corresponding transformer secondary. The

clamping circuit was modeled as an ideal voltage source, apportioned to one-fifth of its measured

value, in series with a diode. The transformer was modeled as a transient voltage source, equal

to the observed primary waveform reflected to the secondary, behind an internal inductance equal

to the measured leakage inductance for one secondary winding. The SPICE diode model

included its capacitance, initially estimated from the data sheet. The transient SPICE simulation

was done parametrically, changing the diode junction capacitance until the overshoot and ringing

voltages observed in the simulation matched those observed experimentally. The static SPICE

diode parameter "N" (the emission coefficient) was then adjusted such that the simulation

showed the same diode forward voltage drop as that predicted by the diode data sheet. At this

point, SPICE was called upon for the integral of the input and output i-v products over one

25.



switchingperiod,thusallowingtheestimationof thetotal rectifier losses,includingswitching,

conductionanddampingelements.Theresultsof this simulationwereusedto producethe

entriesin thefifth columnof Table3.

Thehousekeepinglosseslistedin thesixthcolumnof Table3 includeall powerexpended

by thelow-voltagelogic powersuppliesandthelow-voltageoutput(250V), runningunloaded.

This losswasmeasureddirectly usingdc instruments.

Thepowertransformerlosseswereestimatedin twoparts: thecorelossesandthecopper

losses.The core losses were calculated using the data sheet for the core material. Core losses

were also measured directly through an open-circuit test using a square wave with an amplitude

and frequency equivalent to that of the converter. There was excellent agreement between these

two methods. The copper losses were measured experimentally through a short-circuit test using

a sine wave of the correct frequency and rms value equivalent to that of the complex current

waveform in the converter. The sinusoidal test current was generated using a low-power source

and series-resonating the leakage inductance of the transformer under test. In both cases the

losses were measured using the digital oscilloscope.

The right-hand column of Table 3 shows the sum of the individually-measured losses.

The agreement between the sum of the individually-measured losses and the directly-measured

loss is considered good.

Transient Performance

The transient performance of the HV power supply is documented in Figs. 2 and 3: Fig. 2

is for a lO0-f2 fault between the +1100-V and -250-V terminals, and Fig. 3 is for a dead short

26.



betweenthesesameterminals. Fig. 2 is asetof waveformsacquiredwhile operatingat full load

ona80-V linevoltage. Theupperwaveformin this figureis a logic signalindicatingthatthe

currentsensorprotectingtheloadhasdetectedtheinceptionof thefault current. Thenext

waveformbelowthis in Fig. 2 is the-250-Voutput,at 200V/div, centerreference.The lower

pairof waveformsarethe+1100-Voutputvoltage,andtheHV outputfilter inductorcurrent,at

1kV/div and2 A/div, respectively.It canbeseenthatthefaultcurrentis sufficientto drain the

outputcapacitorsonboththeHV andLV outputsin about30ms. The theconverteris shutdown

attherising edgeof thefault detectsignalwithout anyevidenceof transientover-currenton the

HV output.

Fig. 3 is asetof waveformsacquiredwhileoperatingat full loadon a 120-Vline voltage.

Thefault in thiscaseis adeadshort. Again,theupperwaveformis thelogic signalindicating

detectionof thefault. Thewaveformbelow thatis theLV outputvoltageat 200V/div. The

lowerpairof waveformsaretheHV outputvoltageat 1kV/div, andHV outputfilter inductor

currentat 2 A/div. Severalobservationsmaybemadefrom thesewaveforms.Theapparent

ripplefrequencyin thefilter inductorcurrentisabout110Hz, while theactualripple frequencyis

110kHz. This illustratesahazardof thedigital samplingoscilloscope:thesamplingrate

availableundertheacquisitionconditionsusedwastoo low to preventaliasing. However,

additionalinvestigationshowedthatthepeak-to-peakvalueof currentripple apparentin this

waveformwastheactualvalue,andthisaliasingeffectdoesnot impair theutility of theseresults.

Anotherobservationis thattheHV outputvoltagecollapsesalmostimmediately,while

theLV outputvoltageholdsup for about4 mswith little effect,andthencollapsesabruptly.

This phenomenonis explainedby thefactthat theLV outputhasalargefilter capacitor(120gF),

27.



andthe HV outputhasasmallfilter capacitor(0.5gF). Theenergystoredin theHV output

capacitoris releasedquickly, leavingtheHV inductorto supportthevoltageappearingon theLV

capacitor(about250V). Theflux in theHV filter inductorrampsup to its saturationvalueafter

about4 ms,andthentheenergystoredin theLV capacitoris rapidlydischargedthroughthe

faultedload,theHV filter inductor,andtheHV rectifierdiodes.Thepeakdischargecurrent

throughthis pathis about20A. This valueis within thecapabilitiesof theHV diodesused;

however,thephenomenonillustratesanadditionaldifficulty whichwouldbeencounteredif one

attemptedto designfor theLV load-currentstepresponseby usinga smallconverterandavery

largecapacitor. It mightbeanticipatedthatthepeakvalueof thisdischargecurrentwould

becomeunmanageableif amuchlargerLV filter capacitorwereused.
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Upper: Logic indicating converter shutdown

LV output voltage at 200 V/div, baseline at center

Lower: HV inductor current at 2 A/div

HV output voltage at 1 kV/div

Timebase: I0 msldiv
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Upper: Logic indicating converter shutdown

LV output voltage at 200 V/div, baseline at center

Lower: HV inductor current at 2 A/div

HV output voltage at 1 kV/div

Timebase: 10 ms/div
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Chapter 5

SUMMARY

A complete laboratory breadboard version of a ion engine power converter was built and

tested. This prototype operated on a line voltage of 80-120 Vdc, and provided output ratings of

1100 V at 1.8 kW, and 250 V at 20 mA. The HV output voltage rating was revised from the

original value of 1350 V at the beginning of the project. The LV output was designed to hold up

during a 1-A surge current lasting up to 1 second. The prototype power converter included a

internal housekeeping power supply which also operated from the line input. The power

consumed in housekeeping is included in the overall energy budget presented for the ion engine

converter. HV and LV output voltage setpoints are commanded through potentiometers.

The HV converter itself reached its highest power efficiency of slightly over 93% at low

line and maximum output. This would dip below 90% at high line. The no-load (rated output

voltages, zero load current) power consumption of the entire system was less than 13 W.

A careful loss breakdown shows that the converter losses are predominately MOSFET

conduction losses and HV rectifier snubbing losses, with the rectifier snubbing losses becoming

predominant at high line. This suggests that further improvements in power efficiency could best

be obtained by either developing a rectifier that was adequately protected against voltage

overshoot with less snubbing, or by developing a pre-regulator to reduce the range of line voltage

on the converter.

The transient testing showed the converter to be fully protected against load faults,

including a direct short-circuit from the HV output to the LV output terminals. Two current

31.



sensorswereused:oneto directly detectanycoreratchetingon theoutputtransformerand

re-initiateasoft start,andtheotherto directly detecta loadfault andquickly shutdownthe

Thefinishedconverterhasbeenextensivelyfault testedwithoutconverterfor loadprotection.

failure.

Thefinishedconverterhasbeenpackagedsuitablefor useasalaboratoryprototypefor

furthertesting. Thefinishedconverteris readily transportable.

Furtherwork on thisconvertershouldprobablyconcentrateon improvingits power

efficiency. Thisappearsto bebestdonethroughdevelopmentof a pre-regulatorstageto reduce

thepeakvoltagestressappearingin theHV rectifier. It isbelievedthatanypower loss

introducedin thepre-regulatorwouldbemorethanrecoveredin aredesignedoutputrectifier.
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the following paper was presented at the

30th Intersociety Energy Conversion Engineering Conference
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ABSTRACT

A design strategy is presented for a power
converter for a high voltage ion engine for a
spacecraft application. Various design Issues
such as appropriate topologies end control
methods are considered. In this particular
Instance It was determined that a full bridge
converter with phase shift gating and voltage
mode control provided an efficient system with a
minimum of EMI Interference. This system can
be Implemented in a straightforward manner, and
it Is relatively easy to protect from faults at the

output.

I. INTRODUCTION

The design constraints for space power converters differ from
those of terrestrial conveners in the following manner. (I) low
mass is important because of the high cost of buosr_g it into

space, but (2) high power efficiencyis even more important
because of the incremental mass in the heat removal system
associated with a lower efficiency converter. High switching
frequency is only useful to the extent that it allows weight
reduction in the complete system comprising the switching
convener and its heat removal system. Ion engine requirements

then introduce additional complexities, primarily because of
their exceptionally high voltages.
This study included a survey of various DC/DC converter

topologiesin order to selectthe most appropriateones for a 2

kW ion engine power supply. This supply actuallyconsistsof

two convertersthatprovide the followingpower sources:
I. A 2 kW source with an outputof 500-1350 V ck:.

2. A 150-250 V dc source thatdelivers 20 mA steady stateand a
1 A surgecurrent.

In addition to selecting the topologies for these converters,

their implementation often required a choice from several
different technical options. A number of subtle problems also

were encountered, and these frequently determined which

technology was used. The more important choices and

problems are discussed in the next section, and it is hoped that
some of this information will be useful in the design of power
supplies for future ion thrusters.

II. TOPOLOGY AND CONTROL ISSUES
Several factors determined the choice of the converter for the 2

kW source:

1. DC isolation between input and output
2. Input and output voltage levels
3. Power level

4. Component limitations
5. Efficiency
6. Low mass

7. Reliability
The need for DC isolation obviously msU'ictsthe choice to a

topology with a transformer. Actually, the high voltage
transformation ratio (which has a maximum value of 1350/80)
also would dictate this choice. The next basic decision is to

select a circuit fl'om the wide variety of forced switching and

resonant topologies. The low switching loss of FETe virtually
eliminates the need for relatively complex resonant circuits
such as the s_ies and parallelloaded types. VDS limitationsof

FETs then point to the fullbridge topology.

Once the fullbridge is selected, one must then decide between

diagonal and phase-shift control. Diagonal is the simplest, but

phase-shiftreadily allows the implementation of zero voltage

switching (2VS) for the FETs over the upper end of the load
range [1-3],and it was selected for this reason. The schematic of
the full bridge power circuit is shown in Fig. 2. whi]e the drive
signals for both diagonal and phase shift control are shown in

Fig. 3. For a typical half cycle with phase shift control Q1 and
Q4 commence conducting together, but Q4 turns off fh'st.As Q4

turns off, its drain current is diverted to C2 and C4 so that vDS

increases at a slower rate, thus approximating ZVS. When Q1
turnsoff. CI and C3 provide Z'VS in a similar manner to C'2 and
C4. To avoid high turn-on losses,allof thesecapacitorsmust
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I F 1be properly charged before the start of the Q2-Q3 half cycle,
i.e., C2 and C3 must be discharged and C1 and C4 must be

charged to Vs. This is more difficult to achieve for CI and C'3
since their former charge must be "pumped" back into Vs by the

energy stored in L1 and the leakage L of T1. Thus if C1-C4 are

all the same size, Q1 and Q3 will experience higher turn-on

losses than Q2 and Q4 when the load is reduced.
The next choice is between.
1. Current mode control (CMC) [4-6]

2. Average current mode control (ACMC) [7]

3. Voltage mode con0rol (VMC) [6]
First, one should be aware that all bridge and push-puU circuits

must guard against momentary flux imbalances that can lead to

transformer saturation. If this happens, the transformer primary
appears as a very low impedance, and if the circuit is unprotected

the results are usually catastrophic.
One possibility is to place a large capacitor in series with the

primary, but at higher power levels this capacitor produces

serious heating, mass and efficiency problems. CMC is also a

popular solution to this problem, and it provides wide
bandwidth which helps improve the transient response.

However. CMC demands a sanitizedreplicaof the load current

waveform (e.g.,minus turn-on transientsand EMI) for the

control circuit,and obtaining this can be tedious. CMC is

certainlydo-able"but the difficultyin obtaining the waveform

repficaathigher power levelsmotivates the search fora simpler

approach.
ACMC was considered,but to provide fluxbalance thisalso

requiresan alteredcurrentfeedback signalthatresponds to the
instantaneous current as well as the average value. This

approach was investigated,but it was eventually abandoned
because of transientsand EMI problems.

Because of the implementation complexities of CMC and
ACMC, itwas decided to investigateVMC for thisapptication.

VMC alone is always vulnerable to transformersaturation,but
the circuitwas alteredto avoid this,and the resultingsystem

appears to be less sensitive to transients and EMI than either
CMC or ACMC. First of all, for steady state operation there are

some factors that help to prevent _'ansformer saturation. To

explain this. it should be recognized that the conduction time

periods and parasitic voltage drops the two halves of the circuit
are always slightly imbalanced. This means that the

transformer core will opexate toward one end of its BH loop, and

the magnetizing current win be higher for this half cycle than
for the other. At the end of this half cycle, the magnetizing

current wiU continue to increase as the end of the BH loop is

approached, and the increasing iR drop will decrease the voltage
applied to the winding. It is this increased iR drop that forces
the flux to ultimately balance for the two half cycles, and the

core will then operate on a steady state minor BH loop. This is

perfectly acceptable as long as the increased magnetizing
current on the one half cycle doesn't become excessive. As

opposed to minority carrier devices such as BJTs, FETs are very
helpful in limiting the magnetizing current because they are

resistive and have positive temperature coefficients. They also
minimize conduction time imbalances between the two haft

cycles because their switching times are very small, and thus

any time imbalance is very small compared to a half period. If
the saturation current on one half cycle is still too high. it can

often be decreased to an acceptable level by increasing the gap
in the transformer core. This increases the magnetizing current

so the necessary iR increase can be achieved at a lower flux,

which helps to avoid excessive saturation. In this particular

application, acceptable steady state operation was achieved
without increasing the transformer gap.
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FIG. 3 PWM TIMING DIAGRAMS

Although features such as parasitic R and core gaps can provide

satisfactory steady state operation, they cannot guarantee the
avoidance of extreme saturation during transient conditions.

Thus saturation may still randomly occur during situations such

as start-up or output faults. To avoid FET failures during these
conditions an active circuit must be used to protect the FETs. In
this case a current sensor and controller was used to detect

excessive primary currents, turn-off the circuit, and then use a

soft re-start. In spite of this extra circuitry, the resulting VMC

system was judged to be easier to implement than a CMC or an
ACMC system. As noted earlier, stabilization of VMC requires
a lower bandwidth than CMC or ACMC, and thus a slower

transient response results. The transient response was still
considered to be adequate for this application however, and this

was not judged to a serious limitation.
The original controller for the 2 kW converter used the

UC3875 control chip. Although simple to implement, this

chip had very poor EMI immunity and was abandoned. A second
controller was implemented with discrete ICs and used a control

strategy very similar to that in the 3875. No serious EMI
problems were encountered with this new controUer.

Ill. IMPLEMENTATION

A block diagram of the complete system is shown in Fig. 1.

The system provides the following outputs:
1. +500 TO 1350 V de, 2 kW (HV Output)
2. -150 to -250 V de, 2.50 W for 100 ms (IV Output)

Short circuit protection is provided for faults between either

output and COM or between the two outputs. In the event of a
fault, this protection circuitry is designed to de-energize the
system, and it must be re-started manually. This requirement is

in contrast to the usual practice of using a current limit mode

that provides automatic recovery.
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TABLE I

STEADY-STATE-OPERATING PERFORMANCE OF THE
ION ENGINE POWER CONVERTER

Input Input Output Output Power
Voltage/ Power Voltage/ Power Efficiency
Current Current

Full 80V/ 2040W 1353V/
Load 25.6 A 1.38 A
Low 248 V/0 A
Line
Full 120V/ 2092W 1354V/

Load 17.4A 1.38A

High 248 V/0A
Line

Parti 80V/ 937W 1352V/
al 11.7A 0.62 A

Load 251 V/0A
Low
Line

No 120V/ 12W 1350V
Load 0.10A 250 V

High
Line

1867W

1869W

838 W

91.5%

89.3%

89.4%

The HV power circuit in Fig. 2. employs three paralleled 300 V

FETs in each leg of a full wave bridge. A layered inmrconnect

structure is used on the primary in order to minimize parasitic
inductance.

The transformers used in most bridge and push-pull converters
invariably have leakage inductances, L t, that are larger than

desired. Thus the usual design strategy should minimize L1, and
that was done in this case for the HV transformer. This was

achieved by using a 3 turnfoilwinding on one leg of a UU core,

wrapping this with a layer of insulation, and then winding the
secondary in single layer sectors directly on top of the

insulation. This achieved an L 1 = 0.5 p.H when measured on the

primary. Unfortunately this inductance was actually too low and
resulmd in an excessive current transient at turn-on. To reduce

this transient to an acceptable level, it was necessary to add an

external inductance of 2 gH in series with the primary.

If the transformer was re-designed, it would be advantageous to

use a more compact arrangement, perhaps with more turns of
multi-layer windings on a smaller core. this should reduce the
weight and increase L 1 to the desired value. The switching

frequency of 60 kHz was selected primarily to provide a
sufficiently low flux density in the transformer core. To

accommodate the 1350 V dc output at this frequency, it was

necessary to use 5 rectifier bridges connected in series as shown

in Figure 2. Even with 600-V diodes, switching voltage
transients required the use of substantial snubbers for these
rectifiers. It was originally thought that this problem would be

alleviated by use of the RHRU150100 diode because of its low

trr and soft recovery characterisdc. However, this diode is

designed for cumrents well in excess of the 1.8 Ade maximum

load current, and it has a large wafer with a high junction

capacitance. This produced both current and voltage transients
that were excessive and could not be reduced to satisfactory

tevels with reasonable snubbers. Thus it was necessary to resort

to the MUR460 diode with its lower junctio n capacitance even
though it does not have soft recover.
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The LV converter has a maximum steady state load of only 5 W
and this could be derived from a small converter. However, it

also has to supply a 1 A surge for 100 ms with less than a 50%

voltage droop. If a very small converter was used, this surge

SlX_Cificadon would require the use of an extzemely large output

capacitor. Instead of supplying this pulse from a capacitor, it
was determined that considerable weight and volume could be

saved by designing the converter itself to supply a I A surge for

100 ms. Although this necessitates much larger semi-

conductors in the converter, the complete weight and volume are

much less than the large capacitor version. The converter now
has a I00 ms rating of 2.50 W but this is still within the range

where simpler topologies are effective. Therefore a relatively

simple forward converter was selected for this circuit.

IV. EXPERIMENTAL RESULTS

The experimental hardware was initially constructed using

average inductor-current control in an attempt to ensure

_ansformer flux balancing. By the use of a de-coupled current
sensor (LEM LA-50) placed in the transformer primary, and

sufficient current-loop bandwidth to have switching-frequency

ripple appear at the input to the pulse-width modulator (PWM),
it was possible to achieve flux balance over a range of operating

conditions. Unfortunately. the result obtained was impaired due

to the presence of underdamped ringing in the transformer
primary current. This ringing, caused by the resonance of the

high-voltage rectifier diode's junction capacitance with the
transformer leakage inductance, also appeared at the PWM

input, thus interfering with a stable balance of the two

switching half-cycles. Because the amplitude of the ringing
component of primary current is essentially proportional to the

line voltage, while the expected quasi-square primary current is

determine by the load current, it was found that satisfactory flux

balance would not occur at light load and high line. It was also

noted that a latch-up mode involving a sustained sub-harmonic
oscillation was possible as an outgrowth of the large ringing
components appearing at the PWM.

Sufficient damping of the ringing currents to solve the

stability problem was not possible without excessive loss

penalties. Reduction of the current-loop bandwidth would

stabilize the system, but this eliminated its flux-balancing
effects. Low-bandwidth current feedback offered no other

advantage and was therefore abandoned. Future availability of

improved high-voltage rectifiers may allow reconsideration of
corrmat feedback.

The steady-state operating performance is summarized in Table
I.

Key waveforms for the trailing leg MOSFET's in operation at

1300 V/1.89 kW output are shown in Fig. 4. The drain current

is inaccessible, but close examination of the gate and drain

voltage waveforms shows that ZVS is being obtained at torn.off

and turn-off. The transformer primary current waveform shows

significant ringing current. Below one-half rated output current,
the ringing was found to interfere with ZVS. The switching

frequency is 55 kHz, giving an output ripple frequency of 110
kHz.

A multiple-level protection philosophy is used. The MOSFET
on-resistances were found adequate for transformer flux

balancing under all steady-state conditions. However, a de-
coupled primary current sensor is used to reset the converter if
the primary current exceeds a preset limit. Reset is followed by
a soft-start ramp-up of the output voltage set point. The load

current is also monitored by a d_-coupled sensor which causes a
latched shutdown of the converter in the case of a load fault.

This sensor detects the sum of the output currents at the high
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DRAIN-SOURCE VOLTAGE: 100 V/DIV

TRANSFORMER PRIMARY CURRENT: 20 NDIV

voltage and low voltage terminals and tripsif the following
condition is satisfied:

5 IHV + I0 ILV > 20 A. .(1)

The predominant faultwith the ion engine isconsidered to be
arcing from the high voltage to the low voltage terminal.The

arrangement of (I) gives excellentprotectionagainstthisfault

mode with a singlesensor(thefaultcurrentappears inboth IHV

and ILV). while alsogiving protectionagainsta faultto ground

of eitherthe low-voltageor the high voltagepower supply. The

sensor is implemented using two windings on a single Hall-
effect-based device. The low-voltage converter is further

protected by internalpulse-by-pulse current Limiting roughly

equivalentto a I-A output surge. The low-voltageconverteris
ableto survive thiscurrentsurge electrically,and thermallyfor
some 30-60 seconds, more than enough to handle normal start-

up currentsin the ion engine,
The transient behavior of the ion engine power supply is

shown in Fig. 5, which shows the effect of a 0-t_ short-circuit

applied between the +1350 V and the -250 V output terminah.
The waveforms are (from top to bottom): a logic waveform

indicating detection of the fault and shutdown, the low-voltage
output (200 V/div), the high voltage output (1 kV/div), and the
current in the high-voltage f'dter inductor (2 A/div). The llne
voltage is 120 V. The detection of the fault and the collapse of
the high-side output voltage are almost simultaneous due the
smaller filter capacitor on the +1350-V output.
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FIG. 5 LOAD FAULT TRANSIENT: 0 D APPLIED FROM HV

TO LV OUTPUT TERMINAL UNE
VOLTAGE 120 V.

UPPER GROUP:
LOGIC SIGNAL INDICATING DETECTION OF

FAULT AND CONVERTER SHUTDOWN
LV OUTPUT VOLTAGE: 200 V/DIM

LOWER GROUP:
HV OUTPUT VOLTAGE: 1 kV/dOlV

HV FILTER INDUCTOR CURRENT: 2 ADIV

However, the -250 V holds up forabout 4 ms, afterwhich it

abruptly collapses simultaneously with a large impulse of
current in the high-side inducts. It is postulated that the high-

side inductor supports the low-side output voltage until it
saturates, and subsequently permits rapid discharge of the

energy stored in the 120 _tF low-side filter capacitor.
behavior argues against using an excessively large storage

capacitor to meet the low-side transient output current
requirements. The 15 A discharge observed in this test is well
within the capability of the high-voltage diodes.

An anomalous ripple may be observed in the high-voltage

inductor current of Fig. 5. Although the ripple ampLitude is

correct, the ripple frequency appears to be only 110 Hz.
illustrates a hazard of using a digital sampling oscilloscope.
The actual ripple fre-quencyof II0 kI-Izhas been aliased in this

figure due to the limited sampling ratepossible at the sweep
s_ed in use.

V. SUMMARY

An ion engine power supply system has been built and teated
with good results. It was found that transformer flux balancing
problems could be solved using simple voltage loop control.
with the MOSFET on-resistances providing the needed

balancing force under normal conditions. A peak current
detector in the transformer primary provides back-up protection

against transient saturation by triggering a soft restart.
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back-up circuit was never observed to operate during ordinary
conditions, such as start-up, load dump and load connection.
The ion engine power supply was readily made short-circuit
safe, as evidenced by considerable laboratory testing.

Soft switching of the MOSFET's was obtained for output

currents exceeding 50 percent of full load, although ringing in

the transformer primary current made soft-switching
problematic at light load. This ringing was caused by the

interaction of the transformer leakage inductance, added to

obtain soft switching, and the high-voltage diode's junction
capacitance. This ringing also made current-mode control

impractical to implement. Diodes having lowered junction

capacitance would a/low rethinking of these conclusions. It was
also found necessary to add considerable dissipative snubbing
to control voltage overshoots at the output rectifier diodes.
Therefore, improvement in the system efficiency would also
result from diodes having lowered capacitances.

It is believed that future development efforts should focus on a

preregulator as the way to obtain wide line voltage capability

while maintaining good power efficiency. The need for an

increased transformer turns ratio to obtain low line operation
causes considerable increase in the peak voltage on the rectifier
diodes. A non-isolatad boost regulator in the 80-120 V input

line can achieve high efficiencies using presently available
components. It is postulated that the additional losses of an

added boost converter would be more than offset by lowered
losses in the output rectifiers.
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