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Abstract

The Asymptotic Waveform Evaluation(AWE) technique is applied to a generalized

frequency domain electromagnetic problem. Most of the frequency domain techniques in

computational electromagnetics result in a matrix equation, which is solved at a single frequency.

In the AWE technique, the Taylor series expansion around that frequency is applied to the matrix

equation. The coefficients of the Taylor's series are obtained in terms of the frequency derivatives

of the matrices evaluated at the expansion frequency. The coefficients hence obtained will be used

to predict the frequency response of the system over a frequency range. The detailed derivation of

the coefficients (called 'moments') is given along with an illustration for electric field integral

equation (or Method of Moments) technique. The Radar Cross Section(RCS) frequency response

of a square plate is presented using the AWE technique and is compared with the exact solution at

various frequencies.
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1. Introduction

Frequency domain numerical techniques such as Method of Moments(MoM), Finite

Element Method(FEM) and hybrid FEM/MoM have become popular over the last few years due

to their flexibility to handle arbitrarily shaped objects and complex materials[I,2]. One of the

disadvantages of frequency domain techniques, however is the computational cost involved in

obtaining the solutions over a frequency range. Computations have to be repeated for each

frequency to obtain the complete frequency response over a frequency range. For frequency

dependent systems such as resonant structures, the number of frequencies required to capture the

resonance can be very large. If the problem size is large, total CPU time to compute all the

frequencies can be highly prohibitive. To overcome this problem, a technique called Asymptotic

Waveform Evaluation(AWE) is proposed. Initially, this technique was applied to timing analysis

of VLSI circuits[3,4] and extended later to finite element analysis for microwave circuits[5].

The AWE technique, basically makes use of the Taylor series expansion of a matrix

equation which is common in all frequency domain techniques. The coefficients of the Taylor

Series (called 'moments', not to be confused with moments in Method of Moments) are evaluated

using frequency derivatives of the original system matrix. In this work, we derive the expressions

for evaluating the AWE moments and discuss the validity of AWE over a frequency band. Also,

as an illustration, the Electric Field Integral Equation (EFIE) will be considered to compute the

AWE moments.

The AWE technique used with a single expansion frequency may not always produce

accurate results over a desired frequency range. Once the desired frequency range is fixed,

techniques such as Complex Frequency Hopping(CFH)[6] can be used to accurately predict the

frequency response over the entire frequency range. CFH involves considering multiple

expansion frequency points for applying AWE and checking the accuracy of the response.

The organization of the rest of the paper is as follows. In section 2, the derivation of AWE

moments for any system matrix (resulting from a frequency domain technique) is given. An

application to the EFIE is also discussed. Section 3 discusses the accuracy of single frequency

AWE and possible application of CFH for accurate prediction of frequency response over a

desired frequency range. Numerical results of RCS frequency response of a square plate are

presented. These results are compared with the computations done at each frequency point to

validate the analysis presented in this paper. Section 4 concludes the paper with remarks on the

advantages and limitations of the current technique.



2. Derivation of AWE moments

Any frequency domain technique such as MoM or FEM depends on the solution of the

matrix equation

A (ko) x (ko) = b (ko) (1)

where A (ko) is a square matrix of the order N (number of unknowns in the frequency domain

technique) calculated at the frequency corresponding to k o , the wave number. Similarly b (ko) is

the excitation vector and x (ko) is the solution vector at the same frequency. The AWE technique

approximates the frequency response by expanding x(k) (where k is the wave number

corresponding to any frequency within the frequency range) in a Taylor series around k o .

X (2) (ko) (k-ko) 2 X (3) (ko) (k-ko)3

x(k) = x(ko) +x (1) (ko) (k-ko) + 2! + 3! + ...... +

X (n) (ko) (k- ko) n

n_
d l- °°°.°°°.°°......°.° (2)

where x (n) (ko) is the nth derivative of x(k) evaluated at k o .

Writing the moments

(3)

(o)
with x (ko) = x (ko) , equation (2) can be rewritten as

x(k) = Z u n
n=O

Equation (1) can be rewritten for any frequency as

A(k) x(k) = b(k)

(4)

(5)
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At k = ko;

M o = X(ko)

Differentiating equation (5) with respect to k

X

= A -1 (ko) b (ko)

(1) (k) = A -1 (k) [b (1) (k) -A (1) (k)x(k)']

(6)

(7)

Evaluating equation (7) at k o , the moment M 1 is given by

M 1 = A -1 (ko) [b (1) (ko) -A (1> (ko)Mol

Differentiating equation (7) with respect to k again;

x (2) (k) = A -1 (k)[b (2) (k)-2A (1) (k)x (1) (k)-A (2) (k)x(k)']

(8)

(9)

Evaluating equation (9) at k o , the moment M 2 is given by

[b(2)_!ko ) A (1) (ko) M 1
M2 = A-1 (k°) [. 2! 1!

_A (2) (ko)Mol
J

(10)

From equations (8) and (10), a recursive relationship can be written for evaluating the moments

as

[b (n)_!ko ) n ( 1 - gqo ) A (q) (ko) M n_q]Mn = a-1 (k°) I n! Z
q=0

where the Kronecker delta _qo is defined as

(11)

1 q = 0 (12)
_qo = {0 q ¢:: 0

A (n) (ko) and b (n) (ko) are the nth derivatives of A(k) and b(k) at the frequency

corresponding to k o .



Once the moments are evaluated, the solution vector at any frequency (within the

frequency range of accuracy) can be found by equation (4). It can be noticed from the equations

that if the inverse of matrix A (ko) is calculated once, it can be repeatedly used to compute the

moments. In practice, instead of finding the inverse of matrix A (ko) a LU factorization of the

matrix is done once and all the moments are evaluated by computationally less intensive forward/
backward substitution.

Application of AWE to EFIE:

The Electric Field Integral Equation is widely used in MoM, for radar cross section

analysis of complex perfect Electric Conductor(PEC) bodies. The analysis involves solving the

following matrix equation:

Z(k)I(k) = V(k) (13)

where

jkrlof f
Z (k) = -_ jj T " II Jexp (-jkR)R ds'ds

and

_kll (V'T)II (V.J)exp (-jkR)ds'ds
R

(14)

V(k) = IIEi(k) • Tds (15)

J is the current distribution over the surface and T is the testing function• E i is the incident plane

wave• For a subdomain approach, the surface integrals are evaluated over the surfaces of the

subdomains. For more details on subdomain MoM using EFIE, the reader is referred to [7].

Applying AWE to the equation (13), I (k) is expanded in Taylor series as

I(k) = ___ Mn(k-ko) n

n=O

(16)

with the moments given by



M n = Z -1 (ko)

-V (n) (ko)

n_ n2 (1-_q°)Z(q)(k°)Mn-q

q!
q=O

(17)

Z (q) (ko) is the qth derivative with respect to k, of Z(k) given in equation (14) and evaluated at

k o. Similarly V (n) (ko) is the nth derivative with respect to k, of V(k) given in equation (15).

After performing a number of differentiations, one can show that the explicit representation of

Z (q) (ko) is given by

= q _exp(-jkoR)
Z (q) (ko) Jk--_OIITo fIJ (-jR) q(1 JkoR ) -_ ds'ds

JTlo [f .... q( q p(q,p)

II
exp (-JkoR)

R
ds'ds (18)

where the permutation function P(q,p) is defined as[8]

P(q,p) - q! (19)
(q-p)!

Once the moments are obtained, the current distribution can be obtained for different frequencies

within the frequency range of accuracy using the equation (16). The Radar Cross Section is

obtained using the current distribution on the PEC surface.

3. Numerical Results

The AWE technique described above is implemented in a method of moments code to

obtain the RCS frequency response of a square plate. Figures 1 and 2 show the frequency

response of lcmXlcm square plate over two different frequency bands for H-polarization with

normal incidence. In figure 1, the frequency response at the center frequency 30GHz is shown

with a frequency range of + 10 GHz. Even with two or three moments, we can see a very good

agreement over the complete frequency band. In figure 2, the frequency response at the center

frequency 12GHz is shown with a frequency range of +6 GHz. The first, third and sixth order

AWE solutions are plotted. As it can be seen from figure 2, third order AWE showed a reasonable

agreement in the frequency range of 12 + 3 GHz, the sixth order gave a very good agreement.

These results validate the application of AWE for electromagnetic analysis. Many more examples

along with storage and timing requirements are presented in [9] to show the flexibility of AWE

technique in different EM environments.
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As it canbe seenfrom the two examplespresented,the frequencyrangeand accuracy
dependson thenumberof momentsusedandalsotheelectromagneticphenomenaoccurringin a
particularproblem.By numericalexperimentation,it wasalsonotedthat aftercertainnumberof
moments,the frequencyrangeof AWE hasnot increasedfurther. Methods suchas Complex
FrequencyHopping(CFH)canbe implementedto estimatethe error in AWE predictionsand
henceimprovethereliability of thecalculationsandalsoincreasethefrequencyrange[6].

4. Concluding Remarks

Application of AWE for numerical electromagnetic analysis is considered. The moments

required in the AWE analysis are derived and explicit expressions are presented. Application of

AWE for an electric field integral equation for RCS frequency response is demonstrated. A

numerical example is considered to validate the analysis presented. AWE seems to be a viable

approach to obtain the frequency response of an electromagnetic system through a frequency

domain analysis. By expanding at many frequency points, a RCS over a wide frequency range can

be obtained. Computationally, AWE increases the storage and CPU time requirements, compared

to single point calculations. But considering the number of frequency points required to compute

the frequency response of a system, AWE provides much better performance. The accuracy and

frequency range of AWE can be further improved by implementing techniques such as Complex

Frequency Hopping(CFH)[6].
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Figure 1 Frequency response of a square plate (lcmXlcm). Center frequency 30GHz (H-

Polarized, normal incidence)
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