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PREFACE

The Seventh Copper Mountain Conference on Multigrid Methods was held on April
2-7, 1995, at Copper Mountain, Colorado, and was sponsored by NASA and the
Department of Energy. The University of Colorado, Front Range Scientific Computations,
Inc., and the Society for Industrial and Applied Mathematics provided organizational
support for the conference.

This document is a collection of many of the papers that were presented at the con-
ference and thus represents the conference proceedings. NASA Langley has graciously
provided printing of this book so that all of the papers could be presented in a single
forum. Each paper was reviewed by a member of the conference organizing committee
under the coordination of the editors.

The multigrid discipline continues to expand and mature, as is evident from these
proceedings. The vibrancy and diversity in this field are amply expressed in these
important papers, and the collection clearly shows the continuing rapid growth of the
use of multigrid acceleration techniques.

N. Duane Melson
NASA Langley Research Center

Steve F. McCormick and
Tom A. Manteuffel
University of Colorado at Boulder

Craig Douglas
IBM Thomas J. Watson Research Center
Yale University

The use of trademarks or names of manufacturers in this publication does not
constitute endorsement, either expressed or implied, by the National Aeronautics and
Space Administration.
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MULTIGRID HISTORY

(At the awards ceremony of the conference, Achi Brandt presented the following
history of multigrid. The reader should study the truths contained herein and revel in
the humor.)

The early history of multigrid has recently become a hot subject of research. An
ancient multigrid code was uncovered during extensive excavations last year in northern
Turkestan. Carbon tests indicate that this code has an efficiency of 5.1 on the Richter
scale. Some researchers believe that the V cycle was practiced by the Neanderthals.
The use of the Full Multigrid (FMG) algorithm was, however, unique to Homo sapiens and
is one of the major reasons for their ultimate survival. Prototypes of two-grid algorithms
predate the first hominids. Most historians agree that coarsening was, in fact, invented
by the dinosaurs; however, coarse-to-fine grid transfers were unknown to them, which
explains their extinction.

Earlier geological findings include rich multilevel deposits that have been unearthed
in several North American gold mines, and thick layers of old multigridders have been
discovered at Copper Mountain.

The artifacts at the northern Turkestan site indicate that an early form of residual
weighting was already in widespread use before the middle Full Approximation Storage
(FAS) period. When Copernicus first introduced line relaxation, it was banned by the
Catholic church. Pope Pointus the Square decreed that mere mortals should not practice
such nonlocal schemes. He feared this practice would lead humanity to incompleteness,
in particular to the incomplete LU decomposition of the Dutch church. The advent of
variational coarsening during the French Revolution marks the dawn of the modern era,
which is quite familiar to us all.
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A PRESSURE BASED MULTIGRID PROCEDURE FOR THE
NAVIER-STOKES EQUATIONS ON UNSTRUCTURED GRIDS

R. Jyotsna and S. P. Vanka
Department of Mechanical and Industrial Engineering
University of Illinois at Urbana-Champaign, Urbana, IL. 61801

ABSTRACT

We present details and performance of a pressure based multigrid solution procedure for the
Navier-Stokes equations discretized on triangular grids. The discretization uses a control volume
methodology, with linear inter-nodal variation of the flow variables. The use of the multigrid
technique provides rapid and grid-independent rates of convergence. Three model driven cavity
flows are computed, and the performance of the method at several grid densities and Reynolds
numbers is reported. Representative flow fields characterizing the viscous eddies are also
presented.

1. INTRODUCTION

The multigrid technique [1] provides an efficient means of smoothing high and low
frequency errors that arise during the iterative solution of elliptic equations. Multigrid acceleration
of solution procedures on unstructured meshes has been demonstrated earlier for single elliptic
equations [2,3], for Euler equations [4-7], and for the compressible Navier-Stokes equations [8].
These procedures have used complete remeshing to generate a sequence of independent coarse and
fine grids. Because of the independence of the grids, inter-grid transfers are somewhat
complicated. Another strategy to coarsen a given fine grid is 'volume agglomeration', where the
fine grid control volumes are progressively combined to obtain coarser control volumes. The
resulting coarse grid volumes in this procedure do not have the same shapes as those of the finest
grid, thus requiring special practices for constructing the discrete operators. The volume
agglomeration technique is reviewed in reference [6].

The present paper describes a pressure based multigrid calculation procedure for unstructured
grids. The discretization scheme is based on a control volume integration of the governing
equations analogous to the practices followed in references [9-12]. On any given grid, the solution
procedure employs a decoupled relaxation in conjunction with a pressure equation obtained
through combination of the continuity and momentum equations in a special way [10]. In contrast
with the coupled multigrid procedure followed in Vanka [13], and recently in Webster [14], the
decoupled solution procedure is simpler to implement, and is better suited for use with a variety of
linear solvers. In this paper, we discuss the details of the multigrid implementation, and its
performance in three model driven-cavity flows. We have considered as examples, flows in a
square cavity, a triangular cavity, and a semicircular cavity. The flow domain is discretized by
Delaunay triangulation [15], with the fine grid obtained by uniform refinement of each triangle. In
the following sections, we first describe the single grid procedure and its performance at increasing
refinements of the mesh. Next, we describe the details of the components of the multigrid
procedure (coarse grid equations, restriction, prolongation). The performance of the procedure in
the three configurations at increasing Reynolds numbers is next presented along with brief
descriptions of the flow fields.

2. GOVERNING EQUATIONS AND DISCRETIZATION PROCEDURE
Currently, we consider only the Navier-Stokes equations governing a two-dimensional,

steady, incompressible flow of constant fluid properties. Thus the equations that are solved can be
written in primitive variables (u, v, p) as
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V-(@au) = -(@p/dx) + v V-(Vu)+ B, (1)
V-av) =-(@p/dy)+ v V-(Vv)+B, 2

Veu=0 | 3)

Here u and v are the two components of the velocity vector u, and p is the pressure divided by the

density; v is the kinematic viscosity, and B;; and By, provide a means to include other forces such
as those due to gravity and rotation.

The above equations are discretized on a triangular mesh shown in Figure 1(a). We use a
control volume procedure essentially the same as that described in Prakash and Patankar [10],
except that we have preferred to retain the central differencing scheme. In Prakash and Patankar
[10] and related works, an exponential variation was introduced for stability at high cell Peclet
numbers. Such a differencing scheme, although it provides stability, reduces the accuracy to first
order, and is not satisfactory. Currently we have refined the finest mesh, until the cell Peclet
number decreases below the stable value. Thus for a given grid, there exists a maximum flow
Reynolds number that cannot be exceeded.

Figure 1(a) shows the control volume constructed around a representative node P, by joining
the centroids of the relevant triangles to the midpoints of the sides. The equations are integrated
over each of these control volumes to obtain nodal values of pressure and velocity. The checker-
board split in the pressure field that arises in such equal-order interpolation is avoided, by requiring
a different set of velocities (@, ), located at the cell interfaces, to satisfy mass continuity. This
practice is similar to the momentum interpolation concept used in collocated finite volume schemes
[16-18].

The Momentum Balances

Integrating equation (1) over the discrete control volume ABCDEF and using the divergence
theorem, we have

gJ[(uu-vVu)-nids = (B, - R)av 4)

where S is the enclosing surface of control volume V.

Consider now element PAB (Figure 1(b)), which has two faces ajc and caz bounding the
control volume around P. The contributions from these two surfaces to the flux balance can be

written as
C a3

d
alj (Jy'm)dS + J (Jy-m)ds [ (B, -i)dv (5)

B Pajcag
where J, =uu-vVu

To compute the flux J u» We use a linear interpolation of velocities between the nodes of PAB.

Pressure is also assumed to vary linearly. Further, it is convenient to integrate the flux terms in
local coordinates (X, Y), defined with the origin at the centroid of the element. The components of
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Jy, are then expressed in terms of the nodal values of u because of the linear interpolation used.

Using Simpson's rule to evaluate the integrals, it can be shown that after collecting like terms and
simplifying the complete equation, the resulting equation has the form

0
AP uP = EAﬂb unb - VP < Bu - -é-E)P (6)

where up is the value of u at pdint P and u;, represents values at the neighboring nodes A, B, C,
D, E and F. Vp is the area of the control volume around P, and < > is an average defined by

B> =(1/Vp) Ze [(A;/3)B;] )

where A is the area of element 1 around P, and Ze denotes summation over all the elements
contributing to Vp. The expressions for the coefficients are not provided here, but can be derived

by the above mentioned steps. Following the same procedure for equation (2), we can obtain the
discretized y-momentum balance as

3
Apvp = ZAnp Vb - Vp<By- %,P (8)

It is convenient to define momentum velocities @ and v as
i =(2App Upp )/ Aps V=(ZAp Vob )/ Ap ©)
so that
u= i+ VpBy-25/Ap  and v = ¥ + VpeBy- 25/ Ap (10)
X y
The Continuity Equation
In the present procedure, u and v located at the nodal points do not satisfy the continuity
equation. Rather, the cell face fluxes are balanced for each control volume. These cell face fluxes
are interpolants of the nodal values in a special way that preserves the connections between the
nodal pressures. The practice is similar to the momentum interpolation scheme used in finite

volume schemes with a collocated arrangement of velocities and pressure [16-18].

We define a new set of velocities @ and v, located at the interfaces, and related to & and ¥
by

i =8 +D(B.-2) and v = ¢ + D (By-2) (11)
U o Voo9y

where D = Vp / Ap. The pressure gradients in equations (11) are evaluated locally for each
element. The discrete continuity equation is obtained from

V:a =0 ‘ (3)
written as

Sf(a~n)ds = 0 (12)
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The values of D at points within the element are linearly interpolated from the nodal values. The
pressure gradients (dp/dx) and (dp/dy) are now local at the cell faces, and can be related to the
p
ox
% are substituted in the two interface flux relations, the contributions from element PAB to the
continuity at node P are obtained. Similar contributions from all elements surrounding P
then provide a pressure equation at P given by

nodal pressures ( pp, PA. P ) because of the linear interpolation used. If the equations for —~ and

APppp = ZAP  pp + Mp (13)

where Mp is the source term arising from the terms containing 4, ¢ and By, By. We now
seek a solution (u, v, p) that satisfies the set of discrete equations (6), (8) and (13).

3. SINGLE GRID SOLUTION STRATEGY AND PERFORMANCE

The system of coupled equations (6), (8) and (13) has been previously solved by a sequential
solution method, SIMPLER [19]. The iterative update involves solving in a cycle the pressure
equation, followed by the two momentum equations. Starting from guessed velocity and pressure
fields, the coefficients Ap and A}, are first assembled. Using these, the pressure equation is

assembled through the above mentioned formulae. The pressure equation is then solved by any
convenient linear solver. For simplicity, we have used a point Gauss-Seidel scheme, which is
repeated a few (nswpp) times. This pressure field is then used to solve the velocity equations. The
previously assembled Ap and Ay, are used, and a few (nswpm) sweeps of the Gauss-Seidel

scheme are made. The new velocity field is then used for calculating the next iterate of the pressure
field.

A point to mention is the under-relaxation used to hold the iterative process from becoming
unstable. This is done by adding only a part of the change to the flow variables in an implicit
manner by modifying the central coefficients and the source terms in the discrete equations. Figure
2 shows the behavior of the single grid scheme for flow in a driven square cavity, discretized on a
triangular grid with increasing number of elements. As is evident, the convergence deteriorates
with increasing number of nodes, which significantly increases the cost of performing systematic
mesh refinement studies.

4. DETAILS OF THE PRESENT MULTIGRID IMPLEMENTATION

Mesh generation and refinement

In the present procedure, the coarsest mesh is first generated as for any single grid
procedure, by the Delaunay triangulation method. Subsequent finer grids are then generated by
successively dividing each element into four elements (Figure 3(a)). A prespecified number of
nested grids are thereby obtained. Each coarse grid element shares three nodes with the daughter
finer grid elements. This grid arrangement makes the intergrid transfers as well as the construction
of coarse grid equations simpler than with the practice of using different meshes for each grid
density [4,5,7]. However, it has the disadvantage that the coarsest grid may not be very smooth.
Nevertheless, the boundary shape is still accurately captured because during refinements, the
daughter nodes are moved to coincide with the boundary shape.

The coarse grid discrete equations
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Successful multigrid procedures rely heavily on consistent practices for the construction of
the coarse grid equations and for the restriction and prolongation operators. Consistent restriction
of variables and residuals to the coarser grids is the most important aspect of multigrid procedures
for a system of equations, especially the fluid flow equations. For nonlinear equations, the Full
Approximation Scheme (FAS) is the most suitable scheme for deriving the coarse grid equations.
This is an extension of the more straight-forward Correction Scheme (CS) that is used for linear
equations.

Consider the discrete fine grid equations given by
Ligf= #f (14)

where Lf is the nonlinear operator matrix made of the convection and diffusion terms, qf is the

solution vector, and Ff is the right-hand side vector. The superscript f is used to denote the fine
grid. After a few iterations on the fine grid, the residual is computed as

f f f f

RI=F .Llq (15)

This residual is restricted to the next coarser grid, and it is required that the corrections satisfy the
equation

LF1 aqf! - 1 F1RS (16)

where Lf'1 is the nonlinear operator on the coarse grid, A qf'1 is the vector of corrections on the
coarse grid, and Iff'1 is the restriction operator. For the FAS scheme, equation (16) is rewritten as

Lf—l (Aqf'l +Iff—1 qf) _ Iff—lRf + Lf-l (Iff-l qf)
_ L FRE L (FFL L (g f o) (a7

where Rof'l is the residual on the coarse grid, calculated using the restricted solution vector and

qf'1 is the solution on the coarse grid. After a fixed number of iterations on the coarse grid, the

corrections implied by the coarse grid solution can be extracted from the relation

agl = oft i f (19)

The above FAS scheme is used in a straight-forward way for the momentum equations. The
restriction and prolongation operators defined below provide a consistent and convergent multigrid
procedure. The main complexity in the present scheme lies in the construction of the pressure
equation which satisfies mass continuity not for the nodal velocities but for a different set of fluxes
implicitly located at the cell faces of the control volume. As the success of the present procedure
relies solely on this aspect, we give below details of the coarse grid pressure equation.
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The FAS form of the coarse grid pressure equation that results from the continuity
satisfaction condition is derived as follows. We begin with the correction equation

f

f-1 f-1 R, (20)

(V-a) = If

where the prime denotes the correction in @, and the right-hand side is the restricted residual in the
continuity equation. Equation (20) is expressed as

f-1 f-1

= If !

V(@ + @) RS + (V%) @1)

Now,
i=d8+DVW ad v =% +DVW (22)

where @ is the momentum velocity and Vp is the pressure gradient that is used to evaluate the cell
face fluxes. For the coarse grid equations, the components of a are defined as

=>

= (Ry+ SAppUnp)/Ap + (1-)u
and
v = (Ry+ ZAnbvnb)/AP + (1-)v (23)

where R;; and R, are the net coarse grid momentum residuals defined from equation (21) as

f-1 ,f f-1

R=1I "R -Rg (24)
Substituting equations (22) in (21), the coarse grid continuity equation is given by
Ve + D%+ &+ Do)l = F IR+ V-a + Dopf! 25)
where pf'1 is the restricted pressure Iff'l pf. Equation (25) can be further rewritten as
v.-O % + D)l = IR S -v-afl + voD ¥ o+ v
= IR S - v ol 4 Rt (26)

where chf—l is the coarse grid residual in the pressure equation calculated using the restricted

values of the variables. It must be noted that because of the segregated method of solution, i’ is set
to zero for the pressure equation. Now, in the FAS practice, the left-hand side terms of equation
(26) can be combined to give

v.-o 7l = -veafl 4 g Il @7
where pf'1 is now redefined to be
pf—l - Iff—l pf + (p,)f-l and Rcf—l - Iff—l Rcf + Rcof-l (28)
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Equation (27) has the standard structure of the pressure equation with an added residual Rcf'1

Restriction and prolongation operations

Restriction and prolongation operators for structured rectangular and curvilinear grids are
now well established. For arbitrarily generated sequence of unstructured grids the intergrid
transfers must be performed ‘through systematic interpolations using appropriate geometric
coordinates of the variable locations [2]. An advantage of constructing fine grids embedded within
the coarse grids is that the simple injection scheme can be used as the restriction operator for the
nodal variables. Thus coarse grid values for (u, v, p) are obtained by locating the fine grid
daughter nodes coincident with the considered coarse grid nodes.

For the residuals in the momentum equations, several fine grid residuals are summed to
obtain the corresponding coarse grid residual Iff-1 Rf. We need to determine the fractions of the
fine grid control volumes around a coarse grid node that contribute to the coarse grid control
volume (see Figure 3(b)). The coarse grid control volume around P in two dimensions is given by
the area ABCDEFGHIJKL. This is composed of fractions of the fine grid control volumes around
each of the nodes P, A, B ... and L. It is apparent that the complete fine grid control volume
around P contributes to the coarse grid volume. It can be shown that the rest of the coarse grid
volume is made of the sum of half the fine grid volumes around each of the nodes A, B, ...and K.
Therefore, the restricted residual at point P is the sum of the fine grid residual at point P, and half
the fine grid residuals at the surrounding fine grid nodes.

The prolongation process similarly is considerably simplified because of the mesh
embedding. Coarse grid corrections to the solution are prolongated by direct injection at those fine
grid nodes that coincide with the coarse nodes. For those fine grid nodes that lie in between the
coarse nodes, the corrections are determined as averages of the corrections at the two surrounding
coarse nodes. For example, in Figure 3(a), the coarse grid corrections at nodes P, A, and B are
injected onto the next finer grid, whereas the corrections at a node such as D are determined as
averages of the corrections at P and A.

5. TEST CALCULATIONS

We shall now present the performance of the algorithm in three model flow problems that
illustrate the potential of the technique in calculating complex internal flows. The three selected
problems reflect complex geometry, elliptic nature of the flow field and the presence of very fine
scale variations in the flow that can only be resolved by a very fine mesh. In future, other problems
that contain inflows and outflows, periodic boundary conditions and turbulence equations will be
considered. The main point to be demonstrated here is that the method converges rapidly and that
the rate of convergence is independent of the mesh density. In comparison with the single grid
convergence shown in Figure 2, the multigrid method should save a large number of iterations.
This is indeed the case as will be presented below.

Laminar Flow in a Square Cavity

We have conducted a systematic testing of the influence of the flow Reynolds number, the
under-relaxation factors and the mesh density for three model driven cavity problems. The first one
is the familiar problem of flow in a driven square cavity. In our tests, the square cavity is
discretized by triangular elements. The triangulation is performed by the Delaunay procedure.
Several levels of grid are then superimposed over the coarsest grid. Since upwinding was not used
in the present study, for each mesh level, there was a limiting value of the Reynolds number
beyond which convergence was not possible. Therefore, in the multigrid sequence, the desired
Reynolds number was used only on the finest mesh. Iterations on each of the coarser meshes were
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performed with its stable maximum value of the Reynolds number, following along the concept of
double discretisation. Two fixed V- cycles were examined. In the first, the number of iterations on
the coarse grids increased as the coarsest grid was approached. On the locally finest grid, one
iteration was performed. The next grid used two relaxations and the subsequent one three and so
on. The same number of relaxations were performed on the up-leg of the V-cycle, except at the top
of the V-cycle. In the second fixed cycle, a fixed number of three coarse grid relaxations were
performed accompanied by one relaxation on the finest grid. Both schemes were well convergent
except for minor differences in the rates of convergence and the CPU times.

Figure 4 shows the convergence history for a Reynolds number of 50 for different mesh
densities, with the mass residual plotted against the number of iterations on the finest grid. In all
the runs, the coarsest grid had 40 elements and 29 nodes. The finest grid in the 5-grid run had
10240 elements and 5249 nodes. It is apparent from the plots that the rate of convergence in all
cases is nearly independent of the grid size. There is a five order decrease in the mass residual in
less than 20 multigrid cycles. This may be compared with the convergence shown (for 640
elements) if only a single grid is used. Figure 5 shows the multigrid convergence for the highest
permitted Reynolds number of 500 which requires a slightly larger number of iterations due to the
increased nonlinearity. The calculated results agreed well with previously reported results of Ghia
et al. [20] and Vanka [13].

Laminar flow in a triangular cavity

The flow in a triangular cavity wherein the fluid motion is set by the motion of the top wall is
an interesting complex flow which results in an infinite number of vortices of diminishing intensity
towards the lower corner of the cavity [21, 22]. Although the square cavity has been studied
extensively, there has been very little numerical work reported on the triangular cavity [23]. The
triangular cavity cannot be easily discretized by a curvilinear mesh that is smooth and has high
quality. However, it is ideally suited for triangulation. For the calculations presented here, the
depth of the cavity is twice the width of the top wall. Here, as in the square cavity, the top wall is
moved to the right with a velocity u = 1. A series of Reynolds numbers up to 800 were considered
and the performance of the method was evaluated. Here the Reynolds number is defined with
respect to the depth of the cavity and the top wall velocity.

Figures 6 and 7 show the multigrid convergence of the code for Reynolds numbers of 50
and 800. Linear convergence is observed even with 12288 elements and 6305 nodes. The velocity
vectors and streamtraces in the flow field are shown in Figures 8 and 9 for Reynolds numbers of
50 and 800. The occurrence of the series of vortices is replicated by the calculations to the point
of grid resolution. Further resolution near the bottom corner should reveal more and more eddies
of smaller dimension. Moffat [21] has shown that for Stokes flow, the distance of each eddy
from the corner increases in geometric progression as does its intensity. This was indeed seen for
all the eddies except for the one near the top wall. Therefore, starting from the second eddy, the
ratios of successive distances from the corner for Re = 50 are respectively, 1.97, 1.98 and 1.9.
The deviation from the expected series for the topmost eddy is probably because of the breakdown
of the Stokes flow assumption there. Near the top wall, inertial effects dominate, and Moffat's
analysis is not valid there.

Laminar flow in a semicircular cavity

The final problem considered is the flow in a semi-circular cavity which has a curved
boundary. In this case, the coarsest triangulation does not capture the true shape of the boundary.
However, as the mesh is refined, the fine grid points are moved to the boundary to fit the shape.
Thus a better representation of the boundary is obtained. For this geometry also, several Reynolds
numbers and mesh densities were considered. As a representative plot, Figure 10 shows the
convergence for the Reynolds number of 500 discretized with 3584 elements and 1873 nodes. The
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consistency of the coarse grid and fine grid transfers is demonstrated by this rate of convergence. It
is to be noted that only the near boundary elements are altered and no remeshing is performed. This
preserves the restriction/prolongation practices that are valid in the interior. The velocity vectors
and streamtraces in the flow field for Re = 500 are shown in Figure 11.

Table 1 summarizes all the calculations currently performed with this procedure. The
corresponding work units are,also presented, which accounts for the coarse grid iterations. The
work involved in the injections and interpolations during restriction and prolongation is neglected
as per the standard practice in multigrid literature.

6. CONCLUSIONS

In this paper, a multigrid method for unstructured grids based on geometric coarsening
(versus algebraic coarsening, Webster [14]) has been presented. A sequence of embedded grids
has been used to smooth out low frequency errors, and accelerate the convergence on fine grids.
The momentum and continuity equations are discretized by a control volume procedure with equal
order interpolations for the variables. The mass continuity equation is transformed to a pressure
equation which is derived through special interpolations that provide a well-connected pressure
field. A simple iterative scheme such as the Gauss-Seidel method has been used to relax the
discrete equations on any grid. The coarse grid pressure equation is constructed by a consistent
restriction of the cell face fluxes and appropriate equations. It is demonstrated that the method
provides good multigrid convergence in the three test problems for all Reynolds numbers up to
the value permitted by the cell Reynolds number criterion of the central differencing scheme.
Future extensions to this procedure are underway to include periodic boundary conditions,
turbulence models, time-dependent terms, and three-dimensional variations.
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Figure 1: (a) Unstructured mesh with control volume around node P; (b) Element PAB and local

coordinate system
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Figure 2: Single grid convergence for shear driven flow in a square cavity with increase in number of
elements
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Figure 3: (a) Mesh refinement; (b) Course and fine grid control volumes around node P
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Figure 4: Muitigrid and single grid convergence for laminar flow in a square cavity at Re = 50
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Figure 5: Multigrid and single grid convergence for laminar flow in a square cavity at Re = 500
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Figure 6: Multigrid and single grid convergence for laminar flow in a triangular cavity at Re = 50
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Figure 7: Multigrid and single grid convergence for laminar flow in a triangular cavity at Re = 800,
with 12288 elements

Figure 8: Velocity vectors and streamtraces for laminar flow in a triangular cavity at Re = 50
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Figure 9: Velocity vectors and streamtraces for laminar flow in a triangular cavity at Re = 800
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Figure 10: Multigrid and single grid convergence for laminar flow in a semicircular cavity at Re = 500,
with 3584 elements
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Figure 11: Velocity vectors and streamtraces for laminar flow in a semicircular cavity at Re = 500

Table 1: Number of fine grid iterations for a five order decrease in the residuals, shown as a function
of the number of elements and the Reynolds number. Each fine grid iteration corresponds to three
work units

Reynolds number | . | 140 | 200 | 500 | 600
Elements
Square Cavity
160 16 | 22 - - -
640 15| 20 | 30 - -
2560 15| 19 | 25 - -
10240 18 17 | 29 | 36 | b1
Triangular Cavity
192 ) 211 21 - - -
768 18| 17 | 26 - -
3072 19] 16 | 24 - -
12288 231 17 | 16 | 37 | 50
Semicircular cavity
56 4] 18] - | - | -
224 1116 |2 | - | -
896 14| 18 | 24 | - | -
3584 14| 15 | 23 | 24 | 45
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Abstract

A multigrid-mask method for solution of incompressible Navier-Stokes equations in primitive variable
form has been developed. The main objective is to apply this method in conjunction with the pseudospec-
tral element method solving flow past multiple objects. There are two key steps involved in calculating
flow past multiple objects. The first step utilizes only Cartesian grid points. This homogeneous or mask
method step permits flow into the interior rectangular elements contained in objects, but with the re-
striction that the velocity for those Cartesian elements within and on the surface of an object should be
small or zero. This step easily produces an approximate flow field on Cartesian grid points covering the
entire flow field. The second or heterogeneous step corrects the approximate flow field to account for
the actual shape of the objects by solving the flow field based on the local coordinates surrounding each
object and adapted to it. The noise occurring in data communication between the global (low frequency)
coordinates and the local (high frequency) coordinates is eliminated by the multigrid method when the
Schwarz Alternating Procedure (SAP) is implemented.

Two dimensional flow past circular and elliptic cylinders will be presented to demonstrate the versa-
tility of the proposed method. An interesting phenomenon is found that when the second elliptic cylinder
is placed in the wake of the first elliptic cylinder a traction force results in a negative drag coefficient.

1 Introduction

The motive to develop the multigrid-mask method is to remedy the drawback of grid generation which
often results in a tremendous effort to achieve the desired layout of grid points for flow past multiple
objects. As expected, the grid generation becomes even more difficult when the objects are close to
each other or randomly moving. The situation occurs in many physical problems, such as cross flow in
shell-tube heat exchangers, two phase flow in multiple particle sedimentation, and flow of blood cells in
arteriols, capillaries, and venules (Stokes flow).
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The conventional numerical simulation of Navier-Stokes (or Stokes) flow with multiobject systems falls
into two main categories: (I) distinguishable and (II) indistinguishable fluid-object interfaces. Category I
defines a distinct boundary between objects and fluid, and exact boundary conditions; velocity and force
can be prescribed on the surface of objects. Actually, this category partitions the entire flow domain into
two heterogeneous systems: objects (may or may not have fluid inside) and fluid system. It is capable of
providing highly accurate details of flow interaction among objects but is computationally intensive (not
more than three objects). Ingber [1] and Tran-Cong & Phan-Thien [2] use the boundary element method
for suspensions of rigid particles in Stokes flow and Li, Zhou, & Pozrikidis [3] use the boundary element
method for deformable particles.

Category II implies that a fuzzy boundary exists between objects and fluid. In other words, there is
no distinct boundary between objects and fluid; therefore, a homogeneous system can be applied to the
entire domain. As a result, a single set of fluid dynamics equations holds at all grid points (a “stationary”
grid) of the domain and no internal boundaries are necessarily defined, i.e., original boundary conditions,
force on the fluid-object surfaces, now become the additional inhomogeneous source term in the Navier-
Stokes equations. However, a sharp discontinuity for the velocity field (or other variables) between the
fluid-object interfaces should be preserved in conformity with the original problem. In order to maintain
a sharp front between fluid-object interfaces, the fuzzy boundary should be restricted to within a few
mesh distances; the less the mesh distance, the better the resolution of fluid-object interfaces. A variety
of means to achieve the desired sharp fluid-object interface are suggested by many investigators [4, 5,
6]. Basically, the flow field is discretized by the finite difference approximation on a stationary grid
to cover the entire flow domain. For the moving or deformable objects, a separate object grid which
configures the geometry of objects needs to be defined, and this object grid is allowed to move with the
speed interpolated from the stationary grid. The discussion of moving or deformable cases is beyond the
current scope.

Briscolini and Santangelo [5] proposed the spectral method to solve the incompressible unsteady flow
over a circular cylinder by introducing a strip zone (or equivalent to stationary boundary layers in which a
steep change of field variables occurs) of control within a few meshes. A narrow mask (Gaussian) function,
defined as zero inside the objects and one elsewhere along with a smooth connection between these two
values within the strip zone, is applied to the velocity field. The drawback of the mask method is that it
only provides an approximate flow field due to an inexact capturing of the configuration of the objects by a
stationary grid alone as well as the thickness of the fuzzy boundary (a few meshes wide) between the fluid
and cylinder. Peskin [6] adopted the immersed boundary method for numerical simulation of blood flow
in the human heart. His idea is very similar to the mask method of Briscolini and Santangelo [5] except a
separate material grid is added to trace the heart wall movement. For the data communication between
the stationary grid and the material grid, Peskin [6] employs an approximation to the delta-function to
define the interpolated velocity and force transferred between the fluid-object system.

The objective of this paper is to develop a numerical method which combines the desired features of
both category I and II and that can also accurately simulate the flow interaction among multiple objects.
In practice, it includes two major steps: (1) apply a stationary grid to obtain a fast solution covering the
entire domain, which is similar to the category II approach but differs in some respects by requiring that
the velocity for the stationary grid falling inside objects is imposed to be small or zero (a homogeneous
step or mask method is hereafter named); and (2) generate a local fluid grid surrounding objects to
exactly capture the surface configuration of objects, which is similar to category I by prescribing exact
boundary conditions on the surface of objects (a heterogeneous step). Notice that step (1) only provides
an approximate flow field and step (2) corrects the approximate flow field predicted from step (1) with
the imposition of exact boundary conditions on the surface of objects.

In domain overlapping terminology, one can regard the local fluid (or fine) grid as being fully over-
lapped with the global stationary (or coarse) grid. A data communication process between the stationary
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and fluid grid can be conducted by the Schwarz Alternating Procedure (SAP) [7]. Although the grid
points of each grid system in the overlapping area are not coincided with each other, the SAP iterative
scheme still can be used effectively for data communication between the stationary and fluid grid in con-
junction with the multigrid method [8, 9]. The role of the multigrid method in the SAP process ensures
a smooth data interpolation between the global stationary and local fluid grid without introducing any
high-frequency error. ‘

The solution of the Navier-Stokes equations is implemented by the pseudospectral element method,
which is an extension of the global pseudospectral method to the element-type method by requiring that
the function continuity ¢® be continuous across the interface between two adjacent elements [10] when
calculating the derivatives of a function.

2 Primitive Variable Formulation

2.1 Navier-Stokes Equations

In tensor notation, the time-dependent Navier-Stokes equations in dimensionless form can be described
as

Ou; Ou; _?_R_ __1_ 0%y,

Bt T Y9, T "oz T Re 0x? (12)
Oou; _

Here u; is the velocity component and Re is the Reynolds number.
The method applied to solve the Navier-Stokes equations is Chorin’s [11] splitting technique. Accord-
ing to this technique, the equations of motion are written in the form

—+--=F 2)

where F; = —u; Ou;/0z;+1/Re 8%u;/022.
The first step is to split the velocity into a sum of predicted and corrected values. The predicted
velocity is determined by time integration of the momentum equations without the pressure term

Gt = up + ALET 3)

The second step is to determine the pressure and corrected velocity fields that satisfy the continuity
equation by using the relationships

ultl = gt - At% (4a)
urt?

Here the superscript n denotes the n-th time step.

An equation for the pressure can be obtained by taking the divergence of Eq. (4a). In view of Eq.
(4b), we obtain

82p 1 0%;

527 = Aida )
Note that the pressure solution on the global stationary grid is solved numerically by separation of
variables [7], while the Generalized Conjugate Residual (GCR) method [12] is used to iteratively solve
the pressure equation on the local fluid grid.
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3 Domain Decomposition with Multigrid-Mask Method

As mentioned in the section of Introduction, two major steps are involved for the calculation of flow past
multiple objects: a homogeneous step as well as a heterogeneous step. Data communication between the
stationary and fluids grid by the multigrid method will be described in the process of the heterogeneous
step. Each step is addressed as follows.

3.1 Mask Method - Homogeneous Step

A single coordinate system is used to produce a stationary grid to cover the entire fluid-object domain.
Usually, several stationary grid points are contained inside the objects. This homogeneous step is some-
times called the mask method, which is analogous to that proposed by Briscolini & Santangelo [5] and
Peskin [6]. In other words, it permits flow into the interior stationary grid points contained in the objects
and considers the objects as a homogeneous (whole) system; no distinction between the fluid and objects
is made. But the requirement that the velocity on the stationary grid points confined in the objects being
small or zero should be met.

According to this step, the Cartesian grid points can be extended to cover the interior of each object
and the entire domain. Such an approach enables us to take advantage of the fast solution for the operator
resulting from the desired feature of a complete Laplacian type.

As pointed out in the Introduction, the mask method only provides an approximate flow field because
the Cartesian grids contained in the objects cannot accurately represent the configuration of objects
themselves. Besides, the flow field on the Cartesian grid points inside or on the surface of the objects
should be prescribed in order to comply with the original problem, i.e., no flow or small velocity inside
the objects (including on the surface).

Such a criterion, equivalent to finding a predicted velocity @"t! inside the objects as appeared in Eq.

(4a), can be met by setting
op

"7.1’+1 = P At——
on the Cartesian grid points confined in the interior of objects. Here superscript p refers to the prescribed
velocity. Presumably, this should implicitly force u™*! to be equal to the prescribed value. However, due
to the nonsmooth flow field exhibited around the fluid-object interfaces, simply choosing the predicted
velocity @™*! to be zero or constant does not guarantee that the velocity u™+! obtained from Eq. (4a)
be u? inside the objects after solving Eq. (5). Thus, the predicted velocity @"*! inside the objects can
be obtained by the repeated solution of Egs. (5) and (6). Usually, only 1 to 2 iterations are required to
ensure that || u™*! — u? ||< 107 after a few hundred time steps.

3.2 Multigrid Method - Heterogeneous Step

In order to correct the approximate flow field predicted from the homogeneous step (based on the station-
ary grid), the heterogeneous step next accounts for the actual shape of the objects by adding their own
local coordinates; an external fluid grid surrounds each object. Since the mask method does not define
a distinct interface between fluid and objects, rather the fuzzy interface falls within a few meshes. As a
result, such fluid-object interfaces need to be defined, and this is what the heterogeneous step tends to
accomplish. The boundary conditions on the surface of objects are straightforward with no slip velocity.

In view of the domain decomposition approach for flow past multiple objects, one can regard the
local subdomains (fine grid referred to the fluid grid surrounding each object) fully overlapped with the
global (coarse grid referred to the stationary grid) rectangular domain as depicted in Fig. 1. As for the
data communication between the fluid and stationary grid, the iterative SAP technique will be naturally
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suitable for this purpose, i.e., the global stationary grid provides the outer boundary information for the
local fluid grid and in turn the local fluid grid corrects the flow field outside objects by imposing exact
boundary conditions on the fluid-object interfaces.

Due to the different orientation and resolution of each grid system, simply exchanging the data through
interpolation in the overlapping area, stationary (coarse)-fluid (fine) grid system, causes the high frequency
error induced by the fine-grid (fluid grid) subdomain and hence affects the results throughout the whole
computational domain. The technique of filtering the high-frequency noise is also known as the multi-
grid method. The coarse-grid correction process often used in the multigrid method is adopted in the
overlapping area for the coupled pressure and velocity field and has been proposed by Ku & Ramaswamy
[9]:

VC‘“C—VC'(IEfuf)II&f(Tf”Vf‘uf)° (M

Here V.- represents the operator of divergence on the coarse-grid subdomain, If is an interpolation
operator from the fine-grid subdomain “f” to the coarse-grid domain “c,” u is the velocity, and r; is the
divergence of the velocity field which should be set to zero at the first SAP iteration. The left hand side
of Eq. (7) is the difference between the coarse-grid operator acting on the coarse-grid domain and the
coarse-grid operator acting on the interpolated fine-grid subdomain (which is held fixed). When the term
V.- u, appearing in Eq. (7) is substituted by Eq. (4a) the pressure equation in the coarse-grid domain
is thus governed, and so is the pressure equation in the fine-grid domain. Actually, Eq. (7) implicitly
functions as a coupled equation between the pressure and velocity; not only the residual of the right hand
side of Eq. (7) should be equal to zero but also the unchanged velocity field during the SAP iteration is
required.

In the overlapping area r; cannot be predetermined and needs to be adjusted until the velocity field
generated from the coupled pressure equations V. -u, = V.- (Ifuy) and Vj - uy = 7y is unchanged.

Once the residual 7y — V - uy and velocity field do not change in the fine-grid subdomain, this implies
that

u, = ;. (8)

Whenever either the residual 7y — V -uy or the velocity field in the fine-grid subdomain still varies, Eq. (7)
acts as a coarse-grid correction process to transfer the correction of the velocity field back to the fine-grid
subdomain, i.e.,

uf = uf’fld + I5(u, — Icfu‘}ld . (9)

This is vital for the success of the scheme. Changes in the velocity field are transferred back to the
fine-grid subdomain rather than the velocity field itself. At each SAP iteration, r; can be simply chosen
as ry = Vy-u}* from Eq. (7).

The multigrid-mask SAP iterative solution of the incompressible Navier-Stokes equations in primitive
variable form for flow past multiple objects (also shown in Fig. 1) is summarized by the following algorithm:

1. First assume u™t! on the outer boundary of each object. Usually u™ will be a good initial guess.

2. Solve the fine-grid or fluid grid system; where the pressure solution is obtained by the preconditioned
General Conjugate Residual (GCR) method.

3. With the interpolated solution of u?*! from step (2) through Eq. (8) in the overlapping area, solve
the pressure on the coarse-grid domain (stationary grid) by the mask method with the eigenfunction
expansion technique and also update u?*! in the overlapping area of the fine-grid domain by the
coarse-grid correction process in Eq. (9).

4. Repeat steps (2) & (3) until the velocity u™*! in the overlapping area satisfies the convergence
criterion of Eq. (8).
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It is worthwhile to emphasize that even with strong discontinuity exhibited for the velocity on the
grid points immediately outside the objects the multigrid-mask method indeed meets the requirements
of both having small velocity inside the objects and satisfying of Eq. (8).

4 Results and Discussion

Four SAP iterations are employed fo'r all the test problems, and the convergence criterion of Eq. (8) is
satisfied by the requirement || u. — Ifuy ||< 2.5 x 10~%. The radiation boundary condition [8] is applied
on the truncated downstream to give the least influence upon the upstream flow development.

4.1 Circular cylinders

For the first benchmark test, we choose a uniform flow over a cylinder to give a comparison of results
between the multigrid scheme and the pseudospectral element method [9], in which the computational
domain is decomposed into two subdomains: an “O” grid domain, partially overlapped with the Cartesian
grid domain. The diameter of a cylinder over the width of a channel is 1/20 in this numerical experiment;
18 x 15 elements (each element contains 7 X 7 points in the z and y directions) are allocated in the
stationary grid system, and 15 x 6 elements in the fluid (or “O”) grid system. The periodic character of the
flow motion can be defined by the Strouhal number § = fD/Upq., where f is the shedding frequency, D is
the diameter of a cylinder, and U is the maximum inlet velocity. Numerical results of drag coefficient Cp
and lift coefficient Cy, predicted by the multigrid-mask method, 1.379 < Cp < 1.394, —0.263 < Cr, < 0.263
for Re = 100 and 1.328 < Cp < 1.481,-0.733 < Cf, < 0.733 for Re = 250, are in good agreement with
those calculated by the multigrid method of [9]: 1.36 < Cp < 1.385,-0.269 < Cr, < 0.269 for Re = 100
and 1.29 < Cp < 1.432,-0.711 £ Cr, £ 0.711 for Re = 250. The Strouhal number, S = 0.168 at Re =
100 and S = 0.208 at Re = 250, also reproduces the same results as those found in [9]. Streamline plots
presented in Fig. 2 describe the typical flow motion behind the cylinder at Re = 100 and 250, respectively.

We secondly examine Poiseuille flow past multiple cylinders at Re = 20 using the multigrid-mask
method. Figs. 3 and 4 show both the element layouts of the stationary and fluid grids and streamline
plots for flow over four cylinders with the shortest distance 1.828 (Fig. 3a) and 0.414 (Fig. 4a) diameter
of the cylinder. Numerical results indicate that less flow rate goes through the intercylinder area when
the case in Fig. 4b is compared with the case in Fig. 3b. Due to the relatively large flow rate going
through the outer cylinders as shown in Fig. 4b a strong separation behind the fourth (or last) cylinder
is observed.

4.2 Elliptic cylinders

In this case, an incoming uniform flow past a slender elliptic cylinder of thickness ratio (minor to major
axis) 1:6.66 at a 450 incidence angle is studied. Reynolds number is chosen to be Re = 200 (based on the
chord length which is twice that of major axis),-and the aspect ratio (the channel width over the chord
length) is 20. The number of elements allocated for the stationary grid system is 14 x 16 elements in
the z and y directions, and 14 X 4 elements are adopted for the fluid grid system. The detailed element
layout is sketched for the first elliptic cylinder shown in Fig. 1.

When the incidence angle is 45° and Reynolds number is Re = 200, a well-known Kérmén vortex
street develops [13]. The streamline plots shown in Fig. 5 illustrate the history of separation behind the
elliptic cylinder within a cycle. If one regards the separation starting from the leading edge as seen in Fig.
5a, the time evolution of separation is described as follows: the separation region continues to increase
toward the trailing edge (Fig. 5b) and up to the trailing edge where the maximal lift holds. After the
separation breaks down (Fig. 5¢), it restarts from the trailing edge (Fig. 5d) and then gradually extends
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to the region toward the top tip (Fig. 5e), where the minimal lift occurs. The separation also splits into
two parts: one is located immediately behind the ellipse, and another forms as a vortex behind the body
(Fig. 5f).

The drag and lift coefficients are found to be —0.985 < €, < —-1.500,1.355 < Cp < 1.781 (as seen
in Fig. 6), which are qualitatively similar to the case with thickness ratio of 1:10 in [13]. The Strouhal
number is 0.275 in contrast with 0.25 in the case of a thickness ratio of 1:10.

To demonstrate the capability .of the multigrid-mask method in simulating the interaction among
multiple objects, we add another elliptic cylinder with thickness ratio 1:4 (chord length is 60% of the first
one) in the direction of incoming flow. The element layout is also sketched in Fig. 1 and the position is
placed in the wake of the first elliptic cylinder. It is very common for us to experience the traction force
when we park a car and another high speed car passes by to us, or when a small plane flys into the wake
of a big plane, a tremendous suction force can cause a small plane to crash into the big one.

In order to prove that the traction force acting on the second elliptic cylinder is induced by the
wake effect from the front one, it is rational to plot the time history of the drag coefficient at the rear
one. If any negative value of drag coefficient exists, it supports our assumption. In Fig. 7, the drag
and lift coefficients of both elliptic cylinders appear in the same plot. Evidently, the negative drag
coefficient for the second one indeed stands and strengthens the fact that the traction force acts on the
rear elliptic cylinder. Meanwhile, the drag and lift coefficients for the front elliptic cylinder also change
(1.30 < Cp < 1.828,-0.82 < C, < —1.39) due to the existence of the rear one. More strikingly, the
Stouhal number is reduced to 0.208, which is the same as that of the rear elliptic cylinder (resonant
effect), whose drag and lift coefficients are —0.139 < Cp < 0.360,—0.939 < C, < 0.911, respectively.

The streamline plots as seen in Fig. 8 give a detailed description of the aforementioned traction effect.
The phenomenon of the front elliptic cylinder is very similar to that of the single case; separation starts
from the leading edge and grows up to the trailing edge where the separation breaks down, then restarts
from the trailing edge and extends toward the leading edge where it splits into two parts, one on the
surface with a small intensity and another in the wake region. The traction force can be judged based
on the vortex formation on the surface of the second elliptic cylinder. Whenever the vortex formation
appears on the front surface of the second one, the drag coefficient turns into a negative value as indicated
in Fig. 8c. The negative value persists during the time period (Fig. 8c - Fig. 8¢) when the separation
on the surface of the front elliptic cylinder breaks down at the tail and restarts from the bottom and
extends toward the tip. The intensity of the traction force turns out to be the strongest when the wake
zone resulting from the first elliptic cylinder acts on the front surface of the second one and becomes the
largest (Fig. 8d).

5 Conclusions

The solution of the Navier-Stokes equations in primitive variable form has been obtained by the pseu-
dospectral element method via the multigrid-mask SAP domain decomposition technique. The solution
procedure for flow past multiple (or single) objects includes two basic steps: a homogeneous step (mask
method) and a heterogeneous step of (multigrid method). The solution on the stationary grid is first
solved by the mask method, then the iterative solution between the heterogeneous step, the solution on
the fluid grid, and the homogeneous (mask) step is repeated by the SAP technique with multigrid method.

The homogeneous step permits flow into the stationary grid contained in each object but subject to
the restriction that flow inside or on the surface of objects should be small within the prescribed error
index. The merit of the mask method is its simplicity to first provide an approximate solution of flow
field by the fast eigenfunction solver. The implementation of heterogeneous step is next used to correct
the flow field predicted from the homogeneous step by considering the actual contour and exact boundary
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conditions on the surface of objects.

From the solution point of view, the problem can be interpreted as the local fluid grid representing
the objects fully overlapped with the global stationary grid standing for the entire computational domain.
The SAP iterative technique bridges the data communication between the local and global coordinate
systems. During the data exchange between the fluid grid (fine-grid) domain and the stationary grid
(coarse-grid) domain, the coarse-grid correction technique is used to eliminate the high frequency error
caused by the data interpolation from the fine-grid domain to the coarse-grid domain.

Test problems demonstrate the versatility of the proposed multigrid-mask method. Future research
will concentrate on solution of flow in the three-dimensional geometries.
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Fig. 2 Streamline plots for flow past a cylinder for (a) Re = 100,
and (b) Re = 250

433



n
1
|

N
|
1

0 S 10 15
Fig. 3 Flow past four cylinders at Re = 20 with (a) element layout,
and (b) streamline plot

a g

S 10 ' 15
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Fig. 5 Full-cycle time history of streamline plots for Re = 200 at time (a) t = 0, (b) t = 0.2T, (c) t = 0.4T,
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IMPLEMENTATION OF HYBRID V-CYCLE MULTILEVEL METHODS
FOR MIXED FINITE ELEMENT SYSTEMS WITH PENALTY
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Chia-Yi, Taiwan

SUMMARY

The goal of this paper is the implementation of hybrid V-cycle hierarchical multilevel methods for
the indefinite discrete systems which arise when a mixed finite element approximation is used to
solve elliptic boundary value problems. By introducing a penalty parameter, the perturbed
indefinite system can be reduced to a symmetric positive definite system containing the small
penalty parameter for the velocity unknown alone. We stabilize the hierarchical spatial
decomposition approach proposed by Cai, Goldstein, and Pasciak for the reduced system. We
demonstrate that the relative condition number of the preconditioner is bounded uniformly with
respect to the penalty parameter, the number of levels and possible jumps of the coefficients as long
as they occur only across the edges of the coarsest elements.

INTRODUCTION

We shall be concerned with solving the discrete equations which arise when the mixed
approximatiqn is used for second order elliptic boundary value problems. Specifically, we consider
the mixed approximation based on the Raviart-Thomas spaces [12]. Such approximations lead to
the solution of linear systems involving block matrices of the form

(¥

Here M is symmetric and positive definite and NT is the transpose of the matrix N. This matrix is
clearly symmetric and indefinite.

Instead of solving this system directly, we consider solving the penalty approximation to it (cf.
[1],[5]). This approximation involves the use of a small parameter € (10~ ~ 108 in practice) and
results in a linear system involving the block form

M NT
N —el |-
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The linear system of this form can be reduced to the solution of the matrix
M+ e *NNT. (1)

Although the matrix in (1) is symmetric and positive definite, it can have a large condition number
of the order O(e~1h~?). Here, h is the discretization parameter.

The hierarchical space decomposition method proposed in [8] reduces the above condition
number to the order O(h~! log %) That is, the dependence of the penalty parameter € has been
removed and a reduction in the mesh dependence has been achieved. In the same paper [8], a
negative result for the standard application of the multigrid method to the reduced system has
been suggested. The asymptotic behavior for the standard multigrid method remains of the order

O (e*h72).

In this paper, we stabilize the hierarchical spatial decomposition approach from [8] by allowing
hybrid V-cycle type multilevel iterations developed by Axelsson and Vassilevski (cf. [2], [3], [13],
[14]). This means that we use a pure V-cycle iteration at most of the levels while we perform a
v-fold (v > 1) cycle iteration at levels whose index is proportional to a fixed integer parameter k.
We demonstrate that the hybrid V-cycle hierarchical multilevel preconditioners constructed in this
manner give relative condition numbers that are uniformly bounded with respect to both the
penalty parameter € and the number of discretization levels if kg is sufficiently large and v (the
number of recursive calls at every ko level) satisfies certain inequalities determined only by k.

Finally, we note that there are other approaches suggested in Bramble, Pasciak, and Xu [6],
Ewing, Lazarov, and Vassilevski [9], Mathew [11] for indefinite systems that arise in mixed finite
element discretizations of second-order elliptic problems. Some of these methods are based on
reducing the indefinite systems by working in divergence-free finite element spaces to obtain a
system with a symmetric and positive definite matrix.

STATEMENT OF THE PROBLEM

Let Q be a two-dimensional polygon and consider the following boundary value problem:

-V -(kVp) = f, inQ, 5
p = 0, onl=00Q, (2)

where f € L*(Q) and k = k(z) (z € § is bounded from above and below by some positive
constants). ‘

_ We shall use the following space to describe the corresponding variational problems. We consider
the Hilbert space
H(div; ) = {v € [L¥Q))? |V-ve L)}

with norm defined by
IV aivay = IVI1Z2@) + IV - vz )-
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In (2), we set u = —kVp. Then we obtain the following variational equations:

{ (k7'u,v) — (p,V - V)
(v " u, q)

0, forall ve H(div;Q),
(f) q)7 for all qc L2(Q)

Here (-,-) denotes the inner product in'L*(2) or [L*(Q)]?.
We assume that we are given two finite dimensional subspaces
VP c H(div;©)) and W" c L*(Q)

defined on a quasi-uniform mesh with elements of size O(h). The mixed finite element
approximation of (u,p) is then defined to be the pair, (u*,p*) € V* x W*, satisfying

{ (k_luh>v) - (pha V-v)
—(V ' uh7 q)

0, for all v e V%, )
'—(fa q)a for all q € Wh.

Problem (3) can be reformulated in terms of operators. We define operators M : Vh - VE,
N :VF - Wh and N*: Wh — V* by

(Mv,) = (k7'v,9), forallyp e Vh
(Nv,q) = —(V-v,q), forallge Wh
(N*¢,v) = —(¢,V-v), forallveVh

With this notation, (3) takes the following form:

(3 7)(3)-(2)

where f* denotes the L?(Q) orthogonal projection of f onto W™.

The solution (u”,p") can be approximated by regularization (i.e., by solving a reduced system
using a penalty approximation). Let € > 0 be a small (penalty) parameter. We consider the
solution of the following perturbed system:

M N~ ul 0
(3 ) ()= () <5>
Eliminating p/ in (5) gives rise to the following reduced problem for uf:
1
Al = (M + gN*N) uh = —e N fh. (6)

The operator A® is obviously symmetric and positive definite. We note that once u” has been
determined from (6), p* can be computed by

pt =" (Nul + ).
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The penalty method was analyzed in [1] and [5] for a class of mixed approximations. It follows
from these results that, for the Raviart-Thomas spaces [12],

lla — u?||m@iviey + llp — P22

<O jnf |lu = vila@ve) + inf {lp - qllzz@) + ellpllz@)] »

where the constant C is independent of both ¢ and A.

Moreover, we note that the problem (4) is indefinite and of saddle-point type. An adequate
approximation can be provided if the finite element spaces V* and W" satisfy the Babuska-Brezzi
stability condition (cf. Babuska [4] and Brezzi {7]). This means that for some positive constant j
independent of the mesh parameter & the following stability condition holds:

(V-v,q)

sup ——=— > B||q||2  for all ¢ € W
vevh HVHH(div;Q)

In the remainder of this section, we describe the Raviart-Thomas spaces on the triangle 7. The
Raviart-Thomas space of order r (a given nonnegative integer) on the triangle 7' for the velocity is
defined by

VHT) = {v e [B(D)*®Vo},

(L'l.p,,- (ZL‘)
VO = a
z2 P, ()
and Pr(a,) is a homogeneous polynomial of degree r. The corresponding space for the pressure is
given by

where

WH(T) = PA(T),

where P.(T) is a polynomial of degree r defined on the triangle 7. We also consider the projection
operator 7, that is defined by the following:

(7pv-n,q)g = (v-n,q)g, for ¢ € P.(E) and all three edges F of T, (1)
(ﬂ'hvﬂl’)T = (V7¢)T7 for ¢ € (Pr-l (T))2

HIERARCHICAL SPACE DECOMPOSITION METHOD

In this section, we shall describe the hierarchical spatial decomposition method [8]. We start
with a coarse initial triangulation 7 of the domain ). For any element T' € 75, we consider the
local ellipticity constants

' sup k(z)
_ zeT
or

 inf k(z)

z€T
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and

O = maxor.
TeTp

Note that ¢ can remain close to 1 even when the coefficient £(z) has large jumps, as long as these
occur only across edges of elements from 7.

We next construct a nested family of triangulations
TO) 71, Tty TI = 7;7.

of the domain Q by subdividing each element of 7; into four congruent ones to obtain 7;;;. We
consider the Raviart-Thomas velocity space V; for every triangulation 7; (with mesh size
h; = 277ho). For each level j = 1,2,---,J, we let

TV = Th;V,

where 7, is the projection operator defined in (7). For convenience, we shall let 7_; = 0.

We define the spaces M; to be the images of the operators (r; — 7;_1) acting on elements from V,
M; ={w = (r; —mj_1)v, allveV}.
It is clear that {M;} are subspaces of V; =V}, satisfying
Vi=Me®d M ®...06M;, j=01,...J.
For y =0,1,...J, we define the operator A; to be

(Ajv,w) = A°(v,w), forall v,w € V.

We next define the operators D; to be Aj,.. That is,

(Djh,0) = A*(%,8), for all ,0 € M;,

where ¢ = (7; — 7j_1)v and 8 = (7; — 7;—1)w for some v,w € V}.

The primitive form of the hierarchical preconditioner proposed in [8] can be written as
J
(Bf;lv,'w) = (Bomov, Tow) + Z D,y,,0,

where By = Ao, ¥, = (g — ®g—1)v, and 0, = (7, — my—1)w. To obtain an efficient preconditioner
D; for D; (cf. [8]), we use the decomposition

Y =y +¢p,

where 9 € M; is defined element-wise for any T € 7;_; such that
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{ As(Yy,0) = 0, for all@ € M;, and 8 -n =0 on 9T}

Yunly, = ¢ n\aT'
H : : H
Let D' be an appropriately scaled diagonal part of D} such as

(Diviv)=C Y Rk X (veonls)(z)

all edges E {z,}:_o a set

of all T€T; of nodes on E

for some constant C > 0 independent of h;_; and for some weights

kg = 1 1 , whereT'NTy=FE and T}, T, € T;_;.
max k max k
1 2

Then we can write D; as
(DJ¢7X) = (D;I')bH’XH) + (Df'/’PaXP) .
The final form for the hierarchical preconditioner becomes

~ J ~
(BYv,w) = (Bomov,mow) + 3 (Dotps, 6, ) - (8)

o=1

We now state the following theorem for the hierarchical preconditioner [8] without proof.

Theorem 1. For any vector function v € Vj, we have that
C27IBY(v,v) < A*(v,v) < CIB¥(v,v),

where C is a constant independent of €, J, and the mesh size.

The above theorem shows that the hierarchical preconditioner can be used to effectively
precondition the original form A° as long as J is not too large.

HYBRID V-CYCLE MULTILEVEL PRECONDITIONERS

We shall describe the hybrid V-cycle multilevel preconditioners in this section. The construction of
these multilevel preconditioners is based on the hierarchical preconditioner (8) and some
polynomial acceleration techniques proposed.in [2], [3], [13], and [14]. The purpose of the
polynomial acceleration is to stabilize the growth of the condition number for the hierarchical
preconditioner. The hybrid V-cycle multilevel preconditioner B; is defined by recursion as follows.

e Let p,(¢) be a given polynomial of degree v > 1 such that

{ (i) p.(0) =1,

(i) 0 < p,(t) <1 forte(0,1].
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e For a given integer parameter ko > 1, we set

1. By = Ao,

k() ~
2. (Byyv,w) = (Bomov, mow) + Z (D,z/),,, 9,,).

o=1

e For s =1,2,..., m = sko, and for all j such that m < j < m + ko, we first define operator
B, to be

(Bmv,w) = (Bomov, mow) + Z (Dazbg,f)a) (Yv,w € V).
o=1

Then the operator B; is obtained for all v,w € V; by the relation

(Bjv,w) = (Bm'irmv,wmw) + i (Da(m,v — Te10), (Fow — wa_l)w) .

o=m+1

We next present some technical lemmas which are used to prove the convergence results for the
hybrid V-cycle multilevel preconditioners. We will state these lemmas without proof. We refer to
[10] for detailed proof.

Lemma 1. For any function v € Vjyy,, we have that
Af(mjv,mv) < n(ko)A°(v,v),

where (ko) = C2% and the constant C is independent of j and the penalty parameter €.

Lemma 2. Let m and j (> m) be given integers. The following inequality holds for some constant
Om > 0:
(Amv,v) < (Bnv,v) < (14 65)(Anv,v),  for all v € V.

Lemma 3. The following spectral equivalence relation holds for all v € V;:

1

T A S (Bwo) < (Sun = m) 40l —m)

Hon(1) 3 - ) )(Aw,o)

o=m+1

We shall use the following polynomial p,(¢) for the preconditioner:

1+Tu (1ia—2t) |

l-o

14T, (}—J_Cg)

p,,(t) =
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with
v > ‘\/ (k‘o -+ 1)7](k0). (9)

Here T, is the Chebyshev polynomial of degree v.

Let a be a small positive parameter satisfying

Sup{ﬁ’te[&’ll}z (”1—\/5) +(1+ V@) 1
—p.() 2WaEy (1-va)" (1+va)"

«

ko+1°
We note that such a parameter exists under the above choice of v because in this case we have
the following asymptotic relation:

where the parameter & =

2

-V +(4vE) |1

~y

WEY (1-v&"™ (1+v&)™ via

and for a sufficiently small a we solve the inequality for v

1 1

e " an(ko)
Let A; be the largest eigenvalue of A;'B;. An upper bound for An4x, is given as follows.

Lemma 4. .
1 a i
<
Amtke < (ko) sup {1 ~—pu(t)’t € [k‘o n 1,1]} + bn(1) Z'I](O') <

o=1

R~

(10)

The multilevel preconditioner B; will be spectrally equivalent to A;. We summarize these results
in the following theorem.

Theorem 2. Let v satisfy the inequality (9) for some given integer parameter ko > 1. For
a € (0,1] that is sufficiently small and satisfies the inequality (10), the following spectral relation
between B; and A; holds uniformly for 3 > 0:

1 1
P 1(AJv,v) < (Bjv,v) < a(AJv,v) for allv eV
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COMPUTATIONAL COMPLEXITY OF THE PRECONDITIONER

To study the computational costs, we denote the degrees of freedom at level j by n;. From the
triangulation process, we may assume that nj41/n; = 4. Let W,y be the number of arithmetic
operations performed at level (s + 1)ks. We then obtain the following recursive formula:

Ws+1 = Cn(s+1)ko + VW37 (11)

where the second term on the right-hand-side stands for v recursive calls of the preconditioner By,
(the polynomial corrections at level sko). Thus, the computation of this action is

o 1 _ _
Bski = [I - Pv (mBsk})A-s%)] ski)‘ (12)

We note that the first term on the right-hand side of (11) stands for the work to invert the
block-diagonal matrices Df and Df and v actions of the matrix A, involved in (12). Thus, in
general, C is a function of the parameter v and ko (C = C(v, ko)). To obtain an optimal order
preconditioner in terms of computational complexity, we choose v and ko such that

W1 < const n(sq1),-

Using (11) recursively, we obtain

Wspp = C (n(s+1)ko +vngg, +...+ Vsnko) + v W,

v\ W, S v\’
= On(s+1)k0 {(%) _7’;; + Z <%) ] .

=0
Hence the condition for an optimal order preconditioner is

v

5’2-%;<]..

This is the constraint for determining the parameters v and ko to be an optimal hybrid V-cycle
multilevel preconditioner.

In order to make B; spectrally equivalent to A; as given in Theorem 2, we need to impose
another constraint for choosing parameters v and ko as follows:

v > /(ko + 1)n(ko).

Therefore, we establish the following relation for the parameters v and ky to guarantee both the
optimality and the spectrally equivalent property for the hybrid V-cycle multilevel preconditioner.

The relation reads as follows:
2% > v > Cy/Jo(ko + 1)2k. (13)
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These relations can always be satisfied because ko can be sufficiently large. We summarize the
above results in the next theorem.

Theorem 3. The hybrid V -cycle preconditioner B; with the parameters specified above gives an
optimal order CG method if v and ko satisfy the inequalities (13).

IMPLEMENTATION OF THE PRECONDITIONER

We first consider the hybrid V-cycle multilevel preconditioner in following matrix form:

(1) For k = 1, set
MO = 40

(2) For k = 2 to J, we define
o <[40 T ART AR
AR Mé-v [ Lo g ’

where

MGEY = MY kLo sky+ 1,
(M'(k-x))_l — [I _pu(M(k—-l)—IA(k-l))A(k—U—l] , (14)
k=sko+1, s=1,2,---,J/k — 1.
Here, p,(t) is a polynomial of degree v > 1 such that p,(0) =1 and 0 < p,(t) < 1, ¢t € (0,1].

To solve systems defined by M = M), we use the following multilevel iteration (AMLI) from
(3). Let p{),s =1,2,---,J, be given polynomials of degree v such that p{*)(0) = 1. Let polynomial
QL) of degree v — 1 be

QY = (1—pPt = ¢ + g+ + g, v =00,
For a given vector d = d(/), the AMLI gives

) = QUMD TTAMMDTIW
= [1_ P (MO A(J))] ADIqO).

In particular, for the case v; = 1 (i.e., pl/)(¢) = 1 — t), we have simply

MDD = W),
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Algorithm AMLI. Given a set of polynomials
{pf,")(t),s =1,2,--+, J}
such that p{*)(0) = 1, we .set
QW =g+t 4+ + ¢, v=u.
Then, for any vector d = d¥), the AMLI gives
c = [I _ p,,(M(")_lA(J))] ADIgD

in the following steps.

(0) initiate
for k=1 to J set o(k) =0;
k=J;
(1) o(k) = o(k) + 1;
if o(k) =1 then
vk =0, W = ¢*) d®);
else
W = q(k) )d(k) + A(k)v(k)’

vi—o(k
-1
2) vi? = 4D wy;
(3) A1) = W, — Afvy;

4) k:=k-1
if £ > 0 go to (1);

(5) solve on the initial level
v = QL) (1)4A0 ™ d;

(6) set
Vgk+1) — v(k);

(7) v = D) A§I;+1)-1 AEFD (1),

(8) k:=k+1;
if o(k) < v go to (1);

(9) o(k) = 0;
if £ < J go to (6);

(10) ¢@ = dt).
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NUMERICAL RESULTS

We present numerical results of the hybrid V-cycle multilevel preconditioners for the following
two-dimensional discontinuous coeflicients problem on the unit box 2=(0,1) x (0,1). In all
experiments, the lowest order Raviart-Thomas triangular element is used. We consider the model
problem given in (2), where the diffusion coeflicients are assumed to be piecewise constants on the
coarsest grid triangles. As a consequence, both local and global elliptic constants o7 and o are 1.
In particular, we give the numerical results for the 32-subdomain case with £~! in each subdomain
as shown in Figure 1.

1 1 1 .01
.01 10 1000 .001
.001 .0001 1000 100
10000 .001 .01 A
10 1 10 100
1 100 .01 1000
10000 .001 .01 1
.001 1000 100 1

Figure 1: the coefficient k=1 on each subdomain

For each preconditioning step, we note that a set of polynomials of degree v = v,
Q£S):q((18)+Q£S)t++qz(/S)tua ‘5:1727"',‘]

is used in the AMLI algorithm. These polynomials are specified by the following set of positive
integers:
{Vla Vo,V3,y- " aVJ} ’

which are the degree of the polynomials for each level. Here level 1 and level J(= 6) are the
coarsest level (hg = 1/4) and finest level (h = 1/128), respectively. We note that v, is always chosen
to be one, and that the coarsest grid problem is always solved by the CG method to the machine
precision €mach- .

During the preprocessing stage, for k = 2,3, -, 6, we first estimate the extreme eigenvalues of
[M; 1, Ak—1] by PCG iterations (the convergence criterion is that the reduction of the energy norm
for residuals is not less than or equal to 1076).
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Suppose that
MM Ak-a] C e, d],

for some constant ¢ and d. Then the polynomial Q) is computed by the formula,

ap = 1224,
where
n(t) = 1-4%
_ 1+Tfc+d-20)/d=q] _, .,
) = T rlerdid—a) @ =¥

We see that this step can be done by table lookup since v is a small number (v € {2,3}) in practice.
We refer to the set of polynomials by the set of degrees

{n=Lrv=vv3=v,---,vy=1}.

We perform numerical experiments for the following cases
(a) (1,1,1,1,1,1),
(b) (1,1,2,1,1,1),
() (1,1,3,1,1,1),
(d) (1,1,2,1,2,1),
(e) (1,1,3,1,3,1),
(f) (1,2,1,2,1,1),
(g) (1,3,1,3,1,1),
(h) (1,2,2,2,2,1).

All experiments were performed in one of the research computing facilities at the National
Chung Cheng University. The LINPACK benchmark of the machine is about 22 mflops and the
machine constant emacn € (107%,107). We measure the CPU time for both the preprocessing
stage and the PCG iteration stage. We note that there is no preprocessing time for case (a) since it
corresponds to the pure V-cycle hierarchical method [8].

We perform each case 5 times on the same machine and get the average time and condition
numbers. The results are given in Table 1. We note that the set of polynomials (h) gives the best
result for the condition number, although it is the most expensive. In addition to case (h), both (d)
and (e) give very good results for the condition number. Also, most cases are less expensive than
the pure V-cycle in terms of computing cost.

In Table 2, we present the results for the V-cycle and case (d). The results show that both cases
have uniform condition numbers and computing times independent of the penalty parameter ¢.
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] {v:} [ preprocessing | PCG iteration | total time | « |

| (a) | (1,1,1,1,1,1) | 0 | 34.33 | 3433 [823]
b)) [ (1,12,1,1,1)] .64 28.90 29.54 |45.3
(0) [ (1,1,3,1,1,1) 64 29.98 30.62 | 39.5
(@ ](1,1,2,1,2,1) 3.66 25.49 29.15 [ 17.5
(e) | (1,1,3,1,3,1) 4.18 32.03 36.21 [ 12.5
) [(1,2,1,2,1,1) 1.89 26.50 28.39 | 28.1
(g) 1 (1,3,1,3,1,1) 2.65 33.23 35.88 [ 22.9
(h) [ (1,2,2,2,2,1) 8.01 32.09 40.10 [ 105

Table 1: computing time and condition number &

e=.001 €=.0001 e=.00001

(v1,v2,v3,va,v5,6) | & | CPUtime| & | CPUtime| & | CPU time
A,LLLLL) 853 | 36.37 |847| 3433 |820| 34.46
(1,1,2,1,2,1) 18.1 27.91 17.5 25.40 17.8 26.14

Table 2: comparisons of (1,1,1,1,1,1) and (1,1,2,1,2,1) for various €

However, the condition number for the case (d) is independent of the number of levels (there are
currently six levels) while the condition number of the V-cycle does grow with the order
O(h~*log+) (cf. [8]). Also, the computing cost for the case (d) is quite small compared to that
required for the V-cycle.

CONCLUSIONS

Based on the idea of a hierarchical block preconditioner proposed by Cai, Goldstein, and Pasciak
[8], we develop hybrid V-cycle multilevel preconditioners that give relative condition numbers that
are uniformly bounded with respect to both the penalty parameter € and the number of
discretization levels J if we choose proper values for kg and v. The numerical results confirm the
uniform convergence behavior for the hybrid V-cycle multilevel preconditioners.
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A CONFORMING MULTIGRID METHOD FOR THE PURE
TRACTION PROBLEM OF LINEAR ELASTICITY:
MIXED FORMULATION*

Chang-Ock Lee!
Department of Mathematics
University of Wisconsin-Madison

SUMMARY

A multigrid method using conforming P-1 finite element is developed for the two-dimensional
pure traction boundary value problem of linear elasticity. The convergence is uniform even
as the material becomes nearly incompressible. A heuristic argument for acceleration of the
multigrid method is discussed as well. Numerical results with and without this acceleration as
well as performance estimates on a parallel computer are included.

1. INTRODUCTION

Let Q be a bounded convex polygonal domain in R? and 8Q = |J; ;. The pure traction
boundary value problem for planar linear elasticity is given in the form

—div{ng(y)—i-/\tr(g(y))g} = [ inQ, (1)
(ng(y)-rktr(g(y))g) vile, = gi, 1<i<n, (2)

where u denotes the displacement, f the body force, g; the boundary traction, z > 0, A > 0 the

Lamé constants, and v is the unit outer normal. In addition, the Lamé constants (i, A) belong

to the range [u1, 2] X [Ao, o0), where uq, 2, Ao are fixed positive constants. The explanation
for the notations used in (1) and (2) is given in [4, 6].

It is well-known that finite element method using conforming piecewise linear (P-1) finite
elements converges for moderate fixed A, and as A — oo, i.e., the elastic material becomes
incompressible, it seems not to converge at all ([1, 10]). In order to overcome this so called
locking phenomenon, the method of reduced integration was employed by Brenner [4], Falk

*This research was partially supported by the National Science Foundation under Grant No. CDA-9024618.
'Current address: Department of Mathematics, Inha University, Inchon, Korea
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[6] and Lee [7] in the construction of finite element methods. The finite element methods
employed by them are robust in A, i.e., they give a uniform convergence rate as A — oo. In [4],
Brenner proved the convergence of the P-1 nonconforming finite element method for the mixed
formulation and robustness in A using a modification of the space used by Falk in [6]. In [7], Lee
proved the convergence of the P-1 conforming finite element method for the mixed formulation
and robustness in A using the same modification of the finite element space as Brenner used in
[4]. In addition, Brenner adopted the W-cycle full multigrid method as a numerical solver for
the resulting linear system and obtained the convergence of a multigrid method, which is robust
in A\. For mixed problems without penalty term (e.g. Stokes equation), a W-cycle multigrid
algorithm was developed by Verfiirth [9].

In this paper we present a W-cycle multigrid method to solve the linear system arising from
P-1 conforming finite element method for the mixed formulation of the pure traction boundary
value problem developed in [7]. We show that the convergence is uniform with respect to A
by following the argument adopted by Brenner in [4]. While the conforming multigrid method
has the same order of convergence as the nonconforming multigrid method in [4], the former
has about one third of the unknowns for the same mesh size. Moreover in the case of parallel
computation the intergrid transfer operator of the conforming multigrid method is easier to
design and has smaller communication overhead than the nonconforming one. Therefore, the
conforming multigrid method promises better performance in the cases of both sequential and
parallel computations. In addition, we may use this conforming multigrid method as the coarser
grid correction in the multigrid algorithm for the P-1 nonconforming discretization. It gives
the same convergence rate and robustness as the conforming multigrid method. In practice,
V-cycle multigrid methods employing one smoothing step are convergent. Even though the
P-1 conforming multigrid method is robust with respect to A, the convergence is slow in the
practical sense. Investigating the relation between eigenvalues and norms of corresponding
normalized eigenfunctions (u, p) we have found that an unusual bimodal distribution of || % || 1

vs. the eigenvalues. Based on this insight, we present a heuristic argument for a faster multigrid
algorithm employing a weighting factor and a damping factor. Experimental results indicate
the effectiveness of these two factors.

This paper is organized as follows. In Section 2 we explain the conforming finite element
method we employ. Conforming W-cycle multigrid method is discussed in Section 3. In Section
4 we give the numerical experiments for V-cycle multigrid methods on CM-5. Also we give
the performance estimate on a parallel computer. In the last section we discuss about the
acceleration of multigrid algorithm and give numerical results.

2. THE FINITE ELEMENT METHOD

Throughout this paper, the letter C denotes a positive constant independent of the Lamé
constants and the mesh parameter hg, which may vary from occurrence to occurrence even
in the proof of the same theorem. For the notations of several standard differential operators,
refer to [4, 6]. '
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In order for a solution of (1) and (2) to exist, f and g; must satisfy the compatibility

condition

/ﬂf-gdwdy+2/r gi-vds=0 VveRM, (3)
=1V 7

where RM, the space of rigid motions, is defined by

RM := {y tu=(a+by,c—bz), a,b,ceR} .

When this compatibility condition holds, the pure traction boundary value problem (1) and (2)
has a unique solution v € H? (2) where

HE(Q) = {yeljk(ﬂ) [ uy dody =0 VgERM}.

~

See [4] or Chapter 3 of [7] for more detail.) Here, H*¥(Q), k > 0, denotes the usual L?-based
( p i

Sobolev spaces of vector-valued functions (See [5]).

Henceforth, taking v = and p = vdiv u, we consider the mixed weak formulation for (1 )

and (2) as follows:
Find (u,p) € HY () x L*() such that

| £ g dedy+ [ pdive)dedy = 5o [/f vdwdy+2/ 5 v|r,ds] @
@

<

/(divy)qdmdy— —1-/ pgdzdy =
Q ‘ Y JQ
for all (v,q) € H () x L*(Q).

Replacing p and ¢ by /wp and \/wg (w > 1), respectively, we obtain the following
formulation which is equivalent to (4) and (5):
Find (u,p) € HY () x L*() such that

B (( ,P) (v,q) [/ f Udmdy‘i‘Z/ gz UIF. ds} (6)
for all (v, q) € H(Q) x L*(), where

B () (w0)) = [ {£0): gv) + Vir(aiv ) + VB(divae - % pa} dudy.

The quantity w is called the weighting factor. Equation (6) has a unique solution on
HY (Q) x L*(£2). (See [4] for more detail.) ‘
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Let {7%} be a family of triangulations of Q, where 7**! is obtained by connecting the
midpoints of the edges of the triangles in 7%. Let hy := maXxye7r diam T, then hy = 2hiy,.
Now let us define the conforming finite element space for our multigrid method CMG.

Wi := {u:u|rislinear for all T € 7%, y is continuous on Q},

Wi = {ye?j’k :/ v-vdedy=0 Vv GRM} .
Q
To describe the mixed finite element method, we define
Qr:={q:q € L*(Q) and ¢|7 is a constant for all T € T*}.
For the definition of nonconforming finite element space, see [4, 6].

For each k, define the bilinear form B,, ; on H!(Q) x L%(Q2) by

Bk ((y, p), (v ‘1)) = /ﬂ { €(u) : () + Vwp(Pr-1div y) + v (Pe1divy)g - %pq} dzdy,

where Py_; is the L%-orthogonal projection onto Qx_;. Now, we have a conforming
. discretization of (6), which are modifications of one proposed by Falk in [6]:
Find (uk,pr) € Wi X Qg1 such that

s (w0 00) = 5 | [ £ dot+ 32 [ vl g

=1

for all (v,q) € [{V;;L X Qr—1-

In Chapter 3 of [7], proving the analogue of the classical lemma for the existence of an
inverse of the divergence operator Lee showed the uniqueness of the solution of the conforming
discretization (7) with w = 1 and derived the following discretization error estimate:

llw - ukll2(@) + he (l v —uklmg) +llp - Pk||L2(9)>

n
< Chi {H[llg?(m + gillgllz(n)} :

i=1

In [4], Brenner showed the uniqueness of the solution of the nonconforming discretization and
derived asimilar discretization error estimate.

3. THE CONFORMING MULTIGRID ALGORITHM

In this section we present lemmas and theorems without procfs which are found in Chapter
4 of [7]. We set w = 1 for the time being until we have a statement for w > 1. Let B = B; and
By = Bi .
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Define the mesh dependent inner product by

((y, p), (g, Q)> (%, 9) r2(0) + hi (P, ) 12(0) -

k

The intergrid transfer operator I, f'fl Wi X Qr—1 = Wi_1 X Qk—2 is defined by

(' wn o) = (wnwo)

for all (27 p) € IN/V]C X Qk-—h and (Q, q) € Wk—l X Qk—2-

Lemmal If 1 : Wi X Qpo1 = Wi X Q2. O

Define By : Wi X Qg1 = Wi X Qg1 by
(Bew) (09) =5 (wrh () V(w) (2.0) € Wk x Qucs.

Lemma 2 By : Wi X Qk—1 = Wit X Qp—1. O

Let Bé_ = BkIV!}_\l:.ka_l .

Lemma 3 The spectral radius of Bfx <Ch;?. O

The mesh-dependent norms on W¢ X Qg1 are defined as follows:

(g, Pl := \/ ((B)" o wp) V) € Wk x Qus.

Define PF~! : Wi x Qi—1 = Wi_; X Qk—2 by

Bk—l <P]f—1(7,£; p)a (Qv q)) - Bk ((LL,P), ('L)a q))
for all (u,p) € Wi X Qk-1 and (,9) € Wi_; X Qg2
The k-th level iteration scheme of the conforming multigrid algorithm: The k-th

level iteration with initial guess (yo,20) € Wi X Qk-1 yields CMG(k, (yo, z0), (w, 7)) as a

conforming approximate solution to the following problem.
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Find (y,z) € Wi X Qk—1 such that

Bé‘(g,z) = (w,r), where (w,r) € VY}CL X Qr—-1 -
For k = 1, CMG(1, (o, 20) (w, 7)) is the solution obtained from a direct method, i.e.,

-1
CMG(L, (3o, 20), (w:7) = (BE') ™ (w:).
For k> 1,

Smoothing Step: the approximation (Ym,2zm) € Wi X Q-1 is constructed recursively from
the initial guess (yo, z0) and the equations

1
(yi, 21) = (Wi-1, 21-1) + —Br ((w, r) = Bk (y1-1, 21-1)), 1<1<m.

Here, A := C’h,:2 is greater than or equal to the spectral radius of Bi, and m is an
integer to be determined later.

Correction Step: The coarser-grid correction in Wi_; X Q-2 is obtained by applying the

(k — 1)-th level conforming iteration twice. In other words, it is the standard W-cycle
multigrid method with g = 2. More precisely,

(vo,90) = (0,0) and
(Qi, qz) CMG(k - 1’ (Ei-—l;%—l); ("Pa F)), 1= 1) 2

wheré (@, 7) € Wit ; X Qk—2 is defined by (@,7) := I,’:'l ((g},r) - Bk(ym,zm)>.

Then
CMG(k1 (gOa Zo), ("37 7‘)) = (gm’ Zm) + (22’ 42) .

Let the final output of the two-grid algorithm be
(g#i 2#) = (gm’zm) + (9#1 q#)

where .
(*,¢*) = (BE1) ™ L' Bi(y — gm 2 — 2m)

Lemma 4 (v#,¢%) = P,f_l(g —Ym, 2= 2Zm). O
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Let 1
Ry:=I-— (Bk)2
¥
Then we have

(Y= Ymr 2= 2m) = B (y— Yo,z — z0),

(y—y*.z-2%) = (I- PRy —yo, 2~ 20) -

Lemma 5 (Smoothing Step) There exists a constant C, independent of hy and m, such
that

o 1
IR (%, P2k < Chﬁﬁlll(yvp)lllo,k V(u,p) € Wi X Qk-1. O

Lemma 6 (Approximation Step) There ezists a constant C, independent of hy and m,
such that

I = PEY (2 P)lok < CREN(2, )2k Y(w,p) € Wi X Q1. O

Theorem 1 (Convergence of the Two-Grid Algorithm) There exists a constant C,
independent of k and m, such that

Iy - y#,2-2* ll|0k<\/——|||y yo,z = zo)llo- O

Theorem 2 (Convergence of the k-th Level Iteration) There exists a constant C,
independent of k and m, such that

I(y, 2) — CMG (k, (g0, 20), (s 7))ok < V%III(g — Y0,z = 20)flox- O

4. EXPERIMENTAL RESULTS

For our numerical experiments, we choose the model problem studied in [4]:

—div {g(y) + Atr (g(@) é}

(g(y)+)\tr(g(y))é>l~/i|r.- = g, 1<i<4,

~

Il

f in Q = unit square,
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where T'; (1 < i < 4) represents four sides of the unit square. The body force f = (f1, f2)* is
defined by

. . 1 .
fi = -n?sinwzsinmy+ 27 (X + 1) cosmxsinmy,
1
fo = —72 coswz cos Ty + 27 (—X + 1> sin 7z cos Ty

and the boundary tractions are defined by

T ¢ m t
1 (——Xcosm:,0> , ggz(wsinﬂ'y,—:\—coswy) ,

1

T ¢ m t
3 (——Xcosm:,O) , g4=(7rsin7ry,—xcos7ry> .

RS

The exact solution u = (u1, ug)? € H% () is

. 1 . 4
U = (—31n7r:c+ Xcosrrm) sy + g
( 1 : )
U = |—cosmwr+ :\-sm wT ) cosTy.

First, we describe the implementation of conforming multigrid method CMG. Let ¢F be
the piecewise linear function which equals 1 at exactly one vertex p; and equals 0 at all other
vertices of T € T and 9¥ be the piecewise constant function which equals 1 on exactly one
triangle T; and equals 0 on all other triangles of 7¢. Then

{85} 1<icne = {(85,0,0), (0,9%,0), (0,0,%{~1)}

forms a conforming basis of Wi X Q1. The matrix representation of By with respect to
the basis {®F}1<i<n, in the CMG algorithm is equal to M 1Sx where M, is the mass matrix

and Sy, is the stiffness matrix. Let E,’j‘l be the matrix representation of the intergrid transfer
operator I ,’:"1. Then we have

Eyt = M (BELy) ' My
where E,’:_l is the matrix representation of the natural imbedding from W;J{—l X Qg2 into
Vj’i X Qr—1. Let X be the vector space which consists of the coefficients of the functions in
Wk X Qr—1 with respect to the basis {®¥}1<i<n,. Similarly we define X L as the equivalent
vector space to VNV;CL X Q—1. With the compatibility condition (3), the CMG algorithm can be
rewritten in matrix form for the following problem:

Find (Y, Z) € X such that

(Mk—lsk)le*(y’Z)t = (W,R)", where (W,R)'€ Xi -
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For k =1, CMG(1, (Yo, Zo), (W, R)) is the solution obtained from a direct method, i.e.,
CMG(1, (Yo, Zo), (W, R)) = (Mf151)|}?_(vy, R).

For k > 1,

Smoothing Step: the a,pprmlcima,tion (Y, Zm) € X is constructed recursively from the initial
guess (Yo, Zo) € Xj- and the equations '

L

Y,2))=(Yi—1,Z1-1) + 12 M{'Sk((W,R) — M7 'Sk(Yi-1,Z1-1)), 1<I<m.
k

Here, A := C’h,:2 is greater than or equal to the spectral radius of (Mk—lsk)lx,j-v and m
is an integer to be determined later.

Correction Step: The coarser-grid correction in X, is obtained by applying the (kK — 1)-th
level conforming iteration twice. In other words, it is the standard W-cycle multigrid
method. More precisely,

(Vo,Qo0) = (0,0) and
(Yi’ Qz) = CMG(k -1, (Yi—lv Qi—1)7 (I,/:V, R)), 1= 1,2

where (W, R) € X, is defined by
(7, B) = B (00, B) = My S(Ym, Zm) )

Then
CMG(k, (Yo, Z0), (W, R)) = (¥m, Zm) + Ef_1(V2,Q2) -

With respect to the basis {®¥ }1<i<n, the mass matrix M}, has seven entries per row so that

it is costly to take inverse of M} in the implementation of the algorithm at each level of the
multigrid. In practice, we replace M} by an appropriate Ni satisfying

(i) My and Ny are spectrally equivalent, i.e., there is a constant §, independent of hx, such

that
(N U, U,

N’N

0<pf i< — -~
s onu o,

<B VUEXi, U#Q.

N7'Se: X = X

N2 (BF_y)'Ng : X — Xiy
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The conditions (ii) and (iii) are essential because the solution of our problem should lie in X
In the smoothing step, instead of Ay, we use A, 5 which is the spectral radius of (N;1Sk)|x L

and by Lemma 3 we have
Spectral Radius of (N,;‘l.S'k)]Xé_ < Ch;?.

The multigrid algorithm CMG"is convergent with respect to the norm

I llow = /(0 =/ (M, ), -

By slight modification of the proof of the convergence theorem of the CMG algorithm, we
obtain the convergence theorem of the multigrid algorithm containing Nj instead of My with
respect to (N, -)}2/ ? which is equivalent to || - JJo,z- See [2] for more detail. For this specific
experiment on the unit square we take N = diag(Mj) as suggested in [2], which allows the
use of an under-relaxed Jacobi scheme of smoothing. Most rows of the stiffness matrix S have
sixteen entries so that most rows of N 16, have again sixteen entries. Note that the matrix
representation for I ,’:“1 has again seven entries per row. In the coarsest grid we use a direct
solver for the (6 x 6) linear system which comes from the matrix representation Bi- with respect
to the basis of Xj-.

The performance of multigrid algorithms has usually been measured in Work Units. In
serial machines, since the total CPU time is proportional to the amount of computational work
and smoothing steps make up most of the multigrid work, a reasonable unit of effort is the
Work Unit (WU) defined in [3] as the amount of computations in one smoothing step in the
finest grid.

However, in parallel machines (in particular, massively parallel machines adopting data
parallelism) we use a somewhat different method to measure the computational work. In this
paper, we use one WU as the amount of computations needed in one smoothing step of the
conforming multigrid method CMG at the finest grid on a serial machine. Let nj be the
number of unknowns at k-th level and Q) comp be the number of operations required to compute
one smoothing step at each mesh point. Then we have

nJQcomp =1 (WU)

where J-th level represents the finest grid. Let p be the number of processors and assume
two-dimensional square data distribution (cf. Chapter 5 of [7]). Then the number of unknowns
of k-th level allocated to each processor is

J-k
rk:l-ﬂ.l, and nki<l) eny for k=1,...,J,
P 4

where [z] is the smallest integer greater than z. On a parallel machine we need an additional
unit to measure the communication work. We define one CU (Communication Unit) as the
amount of communications needed in one smoothing step of the conforming multigrid method
CMG when we assume a large system of p-ny number of unknowns. Let Qcomm be the number
of interprocessor communication steps required to compute one smoothing step at each mesh
point. Since about 4,/7x mesh points in a processor do interprocessor communication in the
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Table I: V-cycle of CMG when h = 1/64

A=10 A =100 A = 1000
smoothing || WU [ CU | iter || WU | CU| iter | WU | CU| iter
1 68 | 582 |-1626 || 244 | 2073 | 5788 || 334 | 2842 | 7935
2 67 | 572 | 798 || 223 | 1894 | 2645 || 293 | 2491 | 3478
3 66 | 559 | 520 || 201 | 1714 | 1595 || 255 | 2169 | 2019
4 64 | 546 | 381 || 184 | 1564 | 1092 || 226 | 1924 | 1343

smoothing step of the conforming multigrid method CMG, we have

4\/}EQcamm =1 (CU) .

Let T,omp be the time needed to perform the computational work of one smoothing step at
one mesh point and T.omm be the time needed to perform the interprocessor communication
in one smoothing step at one mesh point. The multigrid algorithms in this paper are one-sided
method, i.e., it uses the smoothing step before correction step. If smoothing steps are used
before and after correction step, the multigrid method is called symmetric. Note that as far
as the convergence is concerned a symmetric V-cycle multigrid iteration is the same as two
one-sided V-cycle iterations (See [8]).

The programs execute the multigrid iterations until the discrete L, relative error is less than
.03 for the mesh size h = g; (10,498 unknowns) and for various number of smoothings and .
The experiments reported here were run in double-precision arithmetic on CM-5 Vector Units
with 32 processors.

In the Table I, the numbers in the columns of A = 10,100, 1000 represent Work Units,
Communication Units and Nj, (the number of iterations of CMG). While we have only
proven that CMG converges for the W-cycle with many smoothing steps, we see that in practice
it converges even for the V-cycle with one smoothing step. In both cases, convergence is
independent of the mesh size hy and Lamé constant A\. The total amount of computational
work of a 7-level V-cycle is

. (1 7~k
Z) nr N, iter
Weomp = m E .

=2 p nz

The total amount of communication of the 7-level V-cycle is

W d (%4_)7_1‘: nr Niter
comm = T kz=:2 P \/ﬁ .
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The total elapsed time is
T= WcompTcomp + WcommTcomm .

Therefore the performance of the multigrid algorithm is dependent upon the ratio between T¢om,p
and Teomm. It is not easy to obtain the ratio because it heavily depends on the implementation
of algorithms, e.g., the topology of data distribution and distance of communications.

5. ACCELERATION OF MULTIGRID METHOD

Even though the P-1 conforming multigrid method is robust with respect to A, the
convergence is slow in any practical sense. In this section we present a heuristic argument
for the acceleration of the multigrid algorithm CMG.

Replacing p and ¢ by +/wp and \/wgq (w > 1), respectively, we use the argument in Chapter
3 of [7] to show the uniqueness of the solution of the equations (6) and (7), and to derive the
following discretization error estimate:

e —ukllL2 (o) + he <| u — kg (o) + Vwllp - pkHLz(n))

< Cuh} {II fllg2e) + > gingl/2(x‘,~)} .

=1

Also, following the argument in Section 3, we can develop the same multigrid algorithm for the

problem:
Find (y, 2) € Wi X Qk—1 such that

Bt,k({/v z) = ("H’ r), where (w’ r) € W% X Q-1 -

For positive definite systems of which energy norms are equivalent to H' norm, the
normalized eigenfunctions (with respect to L? norm) corresponding to the large eigenvalues
have large H' norm, which means that these eigenfunctions are highly oscillatory. However
our linear system induced from the mixed finite element discretization of the pure traction
problem is indefinite. Moreover, the solution space is composed of two different spaces.
One is the space of piecewise linear functions and another is the space of piecewise constant
functions. Using MATLAB we have investigated the relation between eigenvalues and || u ||z

and ||[p]||z2 of normalized eigenfunctions (u,p) (with respect to || - |Jo,x) Where [p] represents
the jump across the edges of each triangle in 7;—;. Figure 1 shows the eigenvalues and || u ||z
and ||[p]||z> of normalized eigenfunctions of N; 'Sy where A = 1/16 (706 unknowns). The
eigenvectors corresponding to the negative eigenvalues have large ||[p]||z2, which means p is

highly oscillating, so that the error of p corresponding to the negative eigenvalues is not
reduced by smoothing step enough to be corrected in the correction step. By introducing the
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weighting factor, we can magnify the size of the negative eigenvalues with little effect on the
general distribution of eigenvalues. Figure 2 shows the eigenvalues and || u ||z and ||[p,]||z2 of

normalized eigenfunctions of N 1S,k with weighting w = 7. By employing such a weighting
factor the magnitudes of negative eigenvalues become larger while that of positive eigenvalues
grow little. Therefore we expect the better performance of multigrid method for the system
with the weighting factor.

Since we use the Gershgorin theorem to estimate the maximum eigenvalue of N I.S'w,k, we
always over-estimate it. Therefore for acceleration of our multigrid algorithm, it is useful to
use damping factor # in the smoothing step as follows:

62
(y1, 21) = (y1-1,21-1) + 55 Bk ((LU, r)— Bw,k(gz~1,zl—1)) , 1<i<m.
k

There is one more reason why the damping factor is useful. In Figures 1 and 2, there are
two or three peaks of || u_ [|1, which means that the error of u corresponding to mid-ranged

positive eigenvalues is not reduced by smoothing step enough to be corrected in the correction
step. By using a damping factor the error of u corresponding to several peaks can be reduced

simultaneously in the smoothing step. Numerical results for the effect of the weighting and
damping factors are shown in Tables II-IV. However, as § — 2, the multigrid algorithm is
suddenly divergent so that it is risky to take § = 2 in order to get better convergence results.
Tables V-VII show the convergence results with 2 smoothings with = 1 for the first smoothing
and § = a for the second smoothing. By the alternating smoothings, we can take  near 2 in
safe. Using these weighting and damping factors, we get about 30 times faster results.

Acknowledgements. I would like to thank Professor S. V. Parter for his valuable advice
and encouragement.
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Table II: V-cycle of CAMG with one smoothing, A = 10 and A = 1/64

w=1 o w=3 w=4 w=10
6 || WU [ CU | iter || WU [ Cu ] iter | WU | CU | iter | WU | CU ] iter
1.0 68 | 582 | 1626 13 | 111 | 310 13 | 112 | 313 19 | 160 | 446
1.2 49 | 419 | 1171 9| 78 |217 9| 78| 217 13 | 111 | 309
1.4 38 1325 | 907 7] 58] 161 T 571160 10 | 81 | 226
1.6 32| 271 | 758 51 45126 5| 441122 7| 62173
1.8 divergent 41 371103 41 35| 97 6 49| 136
2.0 divergent divergent 31 29 81 5| 391110

Table III: V-cycle of CMG with one smoothing, A = 100 and - = 1/64

w=1 w=26 w=7T w=10
6 || WU | CU | iter | WU | CU | iter || WU | CU | iter || WU | CU l iter
1.0 || 244 | 2073 | 5788 16 | 136 | 380 16 | 139 | 387 18 | 157 | 439
1.2 || 210 | 1788 | 4992 11| 96 | 268 111 97| 270 13 | 109 | 304
1.4 || 353 | 3001 | 8381 9 731|203 8| 721200 9| 801|223
1.6 divergent 7| 611169 71 571589 71 611170
1.8 divergent 11} 90} 252 6 | 53| 147 6| 49| 136

2.0 divergent divergent divergent divergent

Table IV: V-cycle of CMG with one smoothing, A = 1000 and A = 1/64

w=1 w=7 w=_8 w=10

9 || WU| CU| iter | WU | CU [iter || WU | CU | iter | WU | CU | iter
1.0 || 334 | 2841 | 7935 17 | 144 | 401 17 | 146 | 408 19 | 158 | 440
1.2 || 336 | 2855 | 7972 12 | 101 | 283 12 | 102 | 285 13 | 109 | 305
14 divergent 9| 781217 9| 761|213 91 80| 224
1.6 divergent 8| 67| 187 7| 62173 7| 621173
1.8 divergent divergent 10 | 88 | 247 6| 53| 147
2.0 divergent divergent divergent divergent
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Table V: V-cycle of CMG with alternating smoothings, A = 10 and ~ = 1/64

w=1 w=3 w=4 w =10
a || WU | CU |iter || WU | CU |iter || WU | CU | iter | WU | CU | iter
1.0 67 | 572 | 798 13 | 112 | 156 131113 | 158 19 | 160 | 224
1.2 56 | 473 | 661 11 92} 128 11 92129 15| 131 | 183
1.4 47 | 397 | 555 9| 76| 106 9| 77107 13 | 108 | 151
1.6 40 | 340 | 475 71 64| 89 7| 64| 89 11| 90| 126
1.8 35| 298 | 416 6| 54| 76 6| 54| 75 9| 76| 106
2.0 32| 271 | 378 6| 47| 66 51 46| 64 8| 64| 90
Table VI: V-cycle of CMG with alternating smoothings, A = 100 and h = 1/64
w=1 w==~6 w="T w=10
a | WU | CU| iter | WU | CU | iter || WU | CU | iter | WU | CU | iter
1.0 || 223 | 1894 | 2645 16 | 136 | 190 16 | 138 | 193 18 | 158 | 220
1.2 | 191 | 1620 | 2263 13 | 112 | 156 13| 114 | 159 151129 | 180
1.4 | 172 | 1461 | 2040 11| 93| 130 11} 94| 131 12 | 106 | 148
1.6 | 170 | 1445|2017 | 9| 79| 110 9 791110 10| 88| 123
1.8 || 232 | 1977 | 2761 8| 69| 96 8| 67| 94 91 74| 103
2.0 divergent 8| 64| 90 7| 59| 83 7| 63| 88

Table VII: V-cycle of CMG with alternating smoothings, A = 1000 and » = 1/64

w=1 w=7T w=3_8 w=10
o | WU ]| CU| iter | WU | CU |iter | WU | CU | iter || WU | CU | iter
1.0 || 293 | 2491 | 3478 17 | 143 | 199 17 | 146 | 204 19 | 158 | 220
1.2 || 255 | 2171 | 3032 14 | 117 | 164 14 ] 120 | 167 15§ 129 | 180
1.4 || 241 | 2049 | 2861 12| 98| 137 12 | 100 | 139 12 | 106 | 148
1.6 || 271 | 2308 | 3223 10| 83 116 10| 83| 116 10| 89| 124
1.8 divergent 91 74 103 81 721100 9| 74104
2.0 divergent 9 73| 102 8] 65| 91 81 64| 90
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MULTIPLE SCALE SIMULATION FOR
TRANSITIONAL AND TURBULENT FLOW

Chaoqun Liu* and Zhining Liuf
Numerical Simulation Group, Department of Mathematics

University of Colorado at Denver
Denver, CO

SUMMARY

A new concept, multiple scale simulation (MSS), is presented in this paper. The
basic idea is that the flow is decomposed into several component groups according
to spatial and temporal length scales. Each group has its own subdomain, govern-
ing system, mesh size, and discretization method. The simulation is then performed
groupwise. This approach has been successfully applied in combination with the in-
tergrid dissipation technique for simulation of transitional and turbulent flow in 3-D
boundary layers, and it is feasible for 3-D airfoils and other more complex configu-
rations. MSS should prove to ameliorate the scale problems associated with conven-
tional direct numerical simulation.

INTRODUCTION

The main challenge in direct numerical simulation (DNS) is the demand on com-
puter resources. Transitional and turbulent flows contain a wide range of length
scales, bounded above by the geometric dimension of the flow field and bounded be-
Jow by the dissipative action of the molecular viscosity (Canuto et al, 1988). The
ratio of the macroscopic (largest) length scale L to the microscopic (smallest) length
[ (usually called Kolmogorov scale) is L/l = (Re)%, where Re is the Reynolds num-
ber. Thus, for a 3-D problem, the number of grid points, N, must be on the order
of (Re)% if the Kolmogorov scale is to be resolved. This estimate reveals a funda-
mental difficulty with DNS for large Reynolds number flows because this resolution
requirement is far beyond the capability of current or foreseeable supercomputers.
However, this estimate is made based on a single simulatien on a single grid and

*Staff Scientist and Associate Professor, Applied Mathematics.
t Assistant Professor Adjunct, Applied Mathematics.
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Figure 1. Idealized sketch of transition process on a flat plate.

is, therefore, too pessimistic. Note that the length scales involved in transition and
turbulence processes are very different: for an open flow, in general. the main stream
and the linear growth of inflow disturbance are dominated by large scales that dom-
inate a large part of the flow field domain; small scales generally occur only in and
after breakdown areas. Extremely small scales are only meaningful in a narrow area
nearby the solid wall. These observations provide a clue that the total flow may be
effectively decomposed into several groups based on their length scales. The large
scale flow, dominating most of the flow field, can be simulated by conventional CFD
schemes on relatively coarse grids. For small scale flow phenomena, which plays an
important role only in a small area of the flow field, high-order discretization and
very fine grids have to be used. These small scale simulations may be performed on
several grid levels in which each grid has its own subdomain and governing system.
This idea eventually leads to a multiple scale simulation (MSS) on several levels of
grids. Unlike large eddy simulation (Reynolds, 1990), the MSS approach does not
require subgrid models. A basic description of MSS and its performance for CFD
problems with simple configuration is the subject of this paper.

ABSTRACT FLOW DECOMPOSITION EXAMPLE

Here we consider the flat plate boundary layer flow as an example to describe
the basic idea behind multiple scale simulation. Figure 1 depicts the natural flow
transition process in a 3-D boundary layer, showing clearly the variations in flow
regime scales.
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Using the fact that the flow scale of interest is generally large in the free stream
and the area before breakdown (Figure 1), we can consider the use of multiple levels of
grid to resolve the flow. Figure 2 depicts the case of three levels used in our boundary
layer example; (2; represents the domain that level j is used to resolve, with the whole
computational domain given by

Q:QIUQ2UQ3.

Figure 2. Multiple level grids.

To decompose the total flow according to those levels, suppose the physics is
governed by the time-dependent Navier-Stokes equations, which we write as

v o =
E + LV =F in Q,
V=U+U at inflow. (1)

Here, we also decompose the inflow vector into two components (usually, U is the
steady part with large magnitude, and U’ is the unsteady perturbation part with
relatively small magnitude). We then decompose the total flow field into three com-
ponents according to

V=Vi+Vs+ Vi, (2)

where 1_/'1, ‘_/‘2, and V5 represent increasingly more local and finer scales of the flow so
that

‘./’2 = 0 inQ—Qg,
Vs = 0 in Q0 —Qa. (3)
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To define individual governing systems for each component, first consider the
subdomain {2;, on which we impose the system
v, . .
L4 LMY, = B in
ot
i = U at inflow. (4)
Here, L% is the spatial difference operator in ;. In general, F # F can be chosen
with some freedom to represent large scale physics, so that V) represents the large
scale flow without the inflow disturbance. Thus, (4) can generally be solved by low
order schemes on a coarse grid. For subdomain {2;, we consider the governing system
Va4 [y, +Vy) = LM%V, —[2F + F in
8t+ (911 2) = Q, 1 Q, 11 in {9,
1_/‘2 = U at inflow. (5)

Here, 1812 represents some interpolation operator to transfer between Q; and 5. Note
that V, represents the perturbation in the flow field due to the inflow disturbance U’
and the presumably finer scale source term F— ﬁl. 172 has a much smaller scale than
does V; and should be solved by a high-order scheme (L) on a fairly fine middle
scale grid. For subdomain 23, which we choose to be a small part of the flow domain,
the governing system can be written as

O LRIV 4 12T+ V) = LURIET+ 1BV in O,

ot B
VZ; = 0 on 8Q3 (6)

Vg’s physical scale is considered to be very small so that (6) should be resolved on an
extremely fine grid.

Note that (4)-(6) together with the decomposition (2) represent a consistent
“lower triangular” formulation that is equivalent to (1) but lends itself to individ-
ualized treatment of various physical scales in the discretization. Its triangular form
allows for a simplified solution process: first (4) is solved to determine V;, then
(5) is solved for 1_/‘2, then (6) is solved for V},, with the final result then given by
V=V+Vh+ Vs

APPLICATION TO POISSON EQUATION

The idea of multiple scale simulation as described allows for any desired number of
levels, depending on available computer resources and given accuracy requirements.
To see the basic process more clearly, we first use a 1-D Poisson equation as an
example:

Z—ig:—él, xE(O,l)‘
?(0) = ¢(1) = 0. (7)
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This problem has the analytical solution

é(z) = 2z(1 — z).
Using standard central differences for discretization,

bit1 — 20i + hi1

h2 = f'l?
and three levels (21, 3, {13), we obtain the numerical solution at selected points:
. — 2. )
in QI ¢11+1 ¢1, + qsll—l — __4’
.52
. G241 — 202, + b2, _, Py — 261, + d1i,
in &y T S S R -
. $3,,, — 203, + &3,_, b1y — 209, + @y, Gy, — 20, + P,
i T t — _4 . 141 t 1—1 141 1 1—1
in {5 1252 ( 1252 i 1252 )

where ¢y = I§2¢1, & = [261, &, =[5 ¢n.
Letting ¢, ¢, and ¢(® denote the final solution at grid levels 1, 2, and 3, we

obtain the results as shown in Table 1. Obviously, the more the grid levels, the better
are the results.

solution | @1 | 1) | &, e ¢3 ) analytical
(0) 0 [0 [0 |0 0 0 0
#(0.125) 0.125 0.1875 | 0.03125 | 0.21875 | 0.21875
$(0.25) 0.25 |0.125 1 0.375 | 0.0 0.375 0.375
#(0.375) 0.375 0.4375 | 0.03125 | 0.46875 | 0.46875
#(0.5) 0.510.5 0 0.5 0.0 0.5 0.5
#(0.625) 0.375 0.4375 | 0.03125 | 0.46875 | 0.46875
#(0.75) 0.25 |0.125 | 0.375 | 0.0 0.375 0.375
#(0.875) 0.125 0.1875 | 0.03125 | 0.21875 | 0.21875
#0) 0 [0 |0 |0 0 0 0

Table 1. Comparison of the numerical solution with three grid levels
and the analytical solution for Poisson equation.

This simple example illustrates the basic idea underlying MSS, and it suggests
that it might provide a very efficient way to performing DNS for very complex con-
figurations.

FLAT PLATE PROTOTYPE

In this section, we consider spatial flat plate transitional flow as an example to
illustrate our app