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Abstract

The objects of this study were to determine the responses of
a cancellous bone site with a closed growth plate (the distal
tibial metaphysis, DTM) to ovariectomy (OVX) and OVX
plus a prostaglandin E z (PGE 2) treatment, and compare the
site's response to previous findings reported for another site
(the proximal tibial metaphysis, PTM). Thirty-five 3-month-
old female Sprague-Dawley rats were divided into five
groups: basal, sham-OVX, and OVX+0, +1, or +6 mg
PGEz/kg/d injected subcutaneously for 3 months and given
double fluorescent labels before sacrifice. Cancellous bone

histomorphometric analyses were performed on 20-ttm-thick
undecalcified DTM sections. Similar to the PTM, the DTM

showed age-related decreases in bone formation and in-
creases in bone resorption, but it differed in that at 3 months
post-OVX, there was neither bone loss nor changes in for-
mation endpoints. Giving 1 mg PGE2/kg/d to OVX rats pre-
vented most age-related changes and maintained the bone

formation histomorphometry near basal levels. Treating
OVX rats with 6 mg PGE2/kg/d prevented age-related bone

changes, added extra bone, and improved microanatomical
structure by stimulating bone formation without altering
bone resorption. Furthermore, after PGE z administration,
the DTM, a cancellous bone site with a closed growth plate,
increased bone formation more than did the cancellous bone
in the PTM.
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Introduction

Osteoporotic fractures in humans are limited to vertebrae, prox-

imal femur and the wrist (Lindsay & Cosman 1992). in light of

this, understanding the differences in bone site behavior among

various animal species may lay the foundation for explaining

site-specific differences in fracture rates. Despite the importance
of this, studies of the behavior of different bone sites are limited.

*Present address: Department of Metabolic Diseases, Pfizer Central Research,

Groton, CT 06340, USA.

Large animal and human studies are restricted to iliac crest bi-

opsies (Podenphant & Engel 1987; Kimmel & Jee 1982).

In small animals, the ovariectomized-osteopenic rat model
has been widely accepted for the study of the prevention and

treatment of estrogen-deficient bone loss (Kalu et al. 1991;

Wronski & Yen 1992). Most studies using this model have fo-

cused on the proximal tibial metaphysis (PTM) with fewer fo-

cusing on the distal femur metaphysis (DFM) and the lumbar
vertebral body (LVB) (Kalu et al. 1991; Wronski & Yen 1992;

Jee 1991c; Gasser & Jerome 1992, Wronski et al. 1989b). All

these sites have nonfused growth plates.

To date, no studies have been performed on a metaphysis
with a fully closed growth plate and low turnover rate. One such

site in the rat is the distal tibial metaphysis (DTM), where the

growth plate closes at 3 months (Dawson 1925). Recently, we

described the histomorphometry of untreated and PGE2-treated
cancellous bone in the DTM in 7-13-month-old males. We

found that the site contains low turnover cancellous bone and

trabeculae similar in architecture to that seen in man. We also

found that PGE 2 treatment induced more new bone formation in

the DTM than in the PTM (Ke et al. 1993a; Ito et al. 1993).
However, it still remained to be determined if the DTM would

behave similarly in the estrogen-deficient (OVX) rat given

PGE 2.

The current study is a continuation of a previous study by Ke

et al. (1992c, 1993b) in which PGE 2 was used to prevent OVX-
induced cancellous and endocortical bone loss. The cancellous

and cortical bone sites analyzed were the PTM and the tibial

shaft (TX). This report will deal with the following observations

in the DTM: I) the aging changes between 3 and 6 months; 2) the

effects of OVX; 3) the responses to PGE 2 in the OVX rats; and
4) the comparative responsiveness of the DTM and the PTM to

PGE 2 in OVX rats.

Materials and Methods

A complete description of the materials and methods we used

was detailed in Ke et al. (1992c, 1993b). Briefly though, we

divided 35 3-month-old virgin female Sprague-Dawley rats,

weighing approximately 255 g (Charles River Laboratory, Inc.,

Portage, MI), into five groups. The first group was sacrificed at

day 0 for basal controls. Group 2, used as aging controls, was

sham-OVX and injected daily with a 20% ethanol vehicle for 90

days. Groups 3-5 were ovariectomized and simultaneously given
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vehicle (OVX + 0), 1 (OVX + 1) and 6 (OVX + 6) mg/kg/d pros-

taglandin E2 subcutaneously for 90 days. There were 6-9 ani-
mals in each group. Powdered PGE 2 (Upjohn Co., Kalamazoo,

MI) was prepared as previously reported (Ke et al. 1991). All

rats received 25 mg/kg of tetracycline (achromycin-tetracycline

hydrochloride; Lederle Laboratory, Pearl River, NY) on days 14
and 13 before sacrifice and 10 mg/kg of calcein (Sigma Chemical

Co., St. Louis, MO) on days 4 and 3 before sacrifice. Except for

the basal group, all rats also received a subcutaneous injection of

90 mg/kg xylenol orange (Fisher Scientific, Fairlawn, N J) on

day 0.
The rats were exsanguinated by heart puncture under keta-

mine anesthesia. The left tibia, lumbar vertebrae, femurs, serum

and soft tissue were collected for future analyses. The right tibia
was removed and defleshed. The distal tibia was cut at the ti-

biofibular junction, stained in Villanueva bone stain, and then

processed to 100-p,m-thick longitudinal undecalcified sections

for microradiography. The sections were further ground to 20

I_m for static and dynamic histomorphometric measurements

(Jee et al. 1983; lto et al. 1993).

Using a Video Image Analysis System and KSS Image Anal-

ysis Computer Programs, we determined total tissue area, tra-
becular bone area and perimeter. The measurements were taken
from the area between the former epiphyseal-metaphyseal junc-

tion to 4 mm proximal to the junction. The percent trabecular
bone area, trabecular width, number and separation were calcu-
lated from these measurements. The microanatomic trabecular

bone structure indices were then measured. These indices con-

sisted of the number of nodes, node to node, node to free end and

Table 1. Comparison of proximal tibial (PTM) and distal tibial (DTM)

free end to free end. The measurements were then normalized to

total tissue area and trabecular bone area in order to calculate

their tissue- and bone-based densities (Garrahan et al. 1986;

Compston et al. 1987, 1989; Ke et al. 1992c).

A digitizing image analysis system (DIAS) was used for the

static and dynamic histomorphometric measurements of the 20-

_m sections of the distal tibial metaphyses. We used the same
areas in the microradiographs for histomorphometric measure-

ments. The parameters included total tissue area, trabecular bone
area, perimeter and wall width, eroded perimeter, osteoid pe-

rimeter, single-labeled perimeter, double-labeled perimeter and

interlabeling width. These parameters were used to calculate

percent trabecular bone area, trabecular width, number and sep-

aration, as well as percent osteoid perimeter, percent eroded

perimeter, percent labeled perimeter (double label + 1/2 single

label based), mineral appositional rate, bone formation rate-bone
area and tissue area referent, formation period, resorption pe-

riod, remodeling period, quiescent period and activation fre-

quency (Frost 1976, 1977, 1981, 1983; Parfitt et al. 1987). We
also determined the amount of newly formed cortical bone,

which was found in the area between the xylenol orange label

and the periosteal or endocortical surfaces (Figs. 8 and 9).
We evaluated the statistical differences between basal and

other groups using the two-tailed Student's t test. The statistical

differences between the sham-OVX and treatment groups were

evaluated using ANOVA with Dunnett's t test (Neter & Wasser-

man 1982). A Z test (Nanivadekar & Kannappan 1990, 1991;

Zhao et al. 1990; Niimoto et al. 1987) was employed to test

whether the effects of PGE 2 in the DTM and PTM sites differed

cancellous bone: response to PGE2 treatment (vs. basal)

OVX + 6 mg OVX + 6 mg PGE 2 effect
Basal treated vs. basal vs. basal

Parameters Sites (mean ± SD) (mean ± SD) (Z score) a (p value) b

Trabecular area (%) PTM 15.9 -+ 2.4 21.4 -+ 7.1 2.3 -+ 2.9
DTM 23.7 + 4.5 _ 45.2 -+ 13.2 4.8 -,- 2.9 p < 0.05

Trabecular width (v.m) PTM 44 ± 4c 57 +- 9 3.5 -+ 2.4 p < 0.01
DTM 145 ÷ 5 150 -+ 20 0.7 ± 0.4

Trabecular number (#/mm) PTM 3.6 ± 0.4 3.7 + 0.7 0.2 -+ 2.0 NS
DTM 2.3 +- 0.7 3.1 -+ 1.0 1.0 +- 1.3

Trabecular separation (v.m) PTM 338 -+ 41 322 -+ 89 -0.4 --- 2.2 NS
DTM 379 ± 186 206 ± 105 -0.9 +- 0.6

Labeled perimeter (%) PTM 17 ± 2.9" 27.6 ± 4.8 3.6 -+ 1.7 p < 0.01
DTM 15.4 - 8.2 _ 26.3 -+ 7.8 1.3 -+ 1.0

Eroded perimeter (%) PTM 7.9 ± 0.9" 11.6 ± 2.8 4.1 -+ 3.1 p < 0.01
DTM 2.6 + 1.5 2.1 -+ 0.8 -0.3 ± 0.5

Mineral apposition (l_m/d) PTM I.I ± 0.2 1.3 ± 0.3 1.6 - 1.8 NS
DTM 0.7 _+0.2 0.9 +- 0.2 1.0 ± 1.1

Bone formation rate/BV (%/yr) PTM 258 -+ 76 405 ± 145 1.9 ± 1.9 NS
DTM 59.0 + 25 94 ± 38 1.4 ± 1.5

Bone formation rate/TV (%/yr) PTM 40.5 _+ 11.1 _ 81.6 ± 28.4 3.7 ± 2.6 NS
DTM 13.9 +- 5.5 _ 43.4 -+ 21.6 5.3 ± 3.9

Formation period (day) PTM 15.6 ± 5.6 _ 23.2 +-+--7.4 1.4 ± 1.3 NS
DTM 17.0 -+ 4.6 _ 25.0 ± 6.6 1.8 ± 1.4

Resorption period (day) PTM 7.8 ± 3.2 12.2 ± 6.7 1.4 ± 2.1 NS
DTM 4.4 + 1.3 3.7 +- 2.7 -0.5 ± 2.0

Remodeling period (day) PTM 23.4 ± 8.6 _ 35.4 _+ 12.7 1.4 ± 1.5 NS
DTM 21.3 + 3.8 28.7 ± 8.8 1.9 ± 2.3

Activation frequency (cyc./yr) PTM 4.2 ± 1.7 4.3 ± 1.9 0.04 4- 1.1 NS
DTM 2.1 -+ 0.6 3.2 ± 1.9 2.1 -+ 3.5

aZ score obtained from standardizing each group to an appropriate sets of controls and indicates how many standard changes
controls. Basal will be zero.

t,p Value obtained from the Z test and indicates whether the effect of PGE 2 was different in DTM from PTM. A significant
there is a significant difference in the effect of PGE_ between the PTM and DTM.
Cp < 0.05 Vs. OVX + 6 mg PGE 2 group.

from appropriate sets of

P value thus means that
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from the OVX-induced changes with basal-based Z scores (Ta-

ble I) and whether they differed from the OVX-induced changes

with OVX-based Z scores (Table II). All changes are significant
at the p < 0.05 level unless noted otherwise.

Results

DTM changes when compared to basal (see Figs. 2-7).

Aging effects (sham-OVX). There were no bone mass alter-
ations, but there was decreased trabecular bone width, node den-

sity, labeling perimeter, mineral apposition rate and bone for-

mation rate-tissue and -bone levels and increased eroded perim-

eter and resorption and remodeling periods.

Ovariectomy effects (OVX +O).The OVX-induced changes
were similar to those seen in the sham-OVX rats.

Ovariectomy plus 1 mg PGE2/kg/d (OVX + 1). This treatment
mainly prevented age-related bone changes, that is, it maintained

the bone histomorphometry at near basal levels. The exceptions

were increases in remodeling period, formation period and a

decrease in trabecular width, activation frequency and tissue
level free end.

Ovariectomy plus 6 mg PGE2/kg/d (OVX + 6). This treatment
prevented age-related bone changes, added trabecular bone and

enhanced bone formation parameters. Both increases in trabec-

ular area and in tissue-based bone formation rate were at the p <

0.01 level or less. Furthermore, free ends were lower and ratio of

node to free end higher.

DTM changes when compared to 6-month-old (sham-OVX)

and OVX (Figs. 2-7).

OVX+O. There were no significant differences between

6-month-old sham-OVX subjects and the vehicle treatment

group.

OVX+ 1. Most bone formation parameters were higher (la-
beled perimeter, bone and tissue-based bone formation rates,

trabecular wall width, formation period). However, cancellous

bone mass was not higher and bone volume-based free end and

ratio of node to free end were lower. Nevertheless, new metaph-

yseal cortical bone was seen with PGE 2 treatment (Fig. 8b).

OVX + 6. The treated group had higher bone mass and better

architecture. Trabecular area, width and tissue level node density
were higher. Trabecular separation, bone- and tissue-level free

ends were lower along with the stimulated bone formation end-

points (labeled perimeter, mineral apposition rate, bone- and

tissue-level bone formation rates, activation frequency). There

was less eroded perimeter and a shortened resorption period
when compared to OVX rats. The bone volume-based node

density was also lower. Higher trabecular area, width, ratio of

node to free end and bone formation parameters and lower tra-

becular separation and eroded perimeters were significant at the

p < 0.01 level or less.

Table !1. Comparison of proximal tibial (PTM) and distal tibial (DTM) cancellous bone response to PGE 2 treatment (vs. OVX)

OVX + 6 mg OVX + 6 mg PGE 2 effect
OVX + 0 mg treated vs. OVX/0 vs. OVX/0

Parameters Sites (mean - SD) (mean -+ SD) (Z score) a (p value) b

Trabecular area (%) PTM 3.0 ± 1.8 c 21.4 ± 7.1 10.1 ± 3.9 NS
DTM 20.8 -+ 3.3 c 45.2 ± 13.2 7.4 ± 4.0

Trabecular width (IJ.m) PTM 36 ± 8¢ 57 ± 9 2.6 ± I. 1

DTM 92 ± 6¢ 150 ± 20 9.8 +- 3.3 p < 0.01
Trabecular number (#/mm) PTM 0.8 - 0.5 c 3.7 ± 0.71 5.8 ± 1.4 NS

DTM 2.3 ± 0.2 3.1 ± 1.0 3.3 ± 4.0

Trabecular separation (Ixm) PTM 3703 ± 4930 c 322 ± 89 -2.7 ± 0.0 p < 0.01
DTM 354 -+ 50 c 206 -+ 105 -1.0 -+ 2.1

Labeled perimeter (%) PTM 24.6 ± 5.3 27.6 - 4.8 0.6 +- 0.9
DTM 4.5 -- 1.3 c 26.3 -+ 7.8 17.0 - 6.1 p < 0.01

Eroded perimeter (%) PTM 16.2 ± 6.9 11.6 ±- 2.8 -0.7 - 0.4 NS
DTM 4.6 --- 1.4 2.1 -+ 0.8 -0.9 ± 0.2

Mineral apposition rate (o,m/d) PTM 0.9 ± 0.1 c 1.3 ± 0.3 4.4 ± 2.9 p < 0.01
DTM 0.6 ± 0.1 c 0.9 ± 0.2 1.4 ± 0.9

Bone formation rate/BV (%/yr) PTM 376 ± 87.4 405 ± 145 0.3 ± 1.7

DTM 18.5 - 9.4 c 94 ± 38 8.1 - 4.0 p < 0.05
Bone formation rate/TV (%/yr) PTM 10.9 ± 6.8 ¢ 81.6 ± 28.4 10.5 ± 4.2

DTM 3.7 ± 1.6c 43.4 ± 21.6 24.8 ± 13.5 p < 0.01
Formation period (day) PTM 12.8 ± 1.2c 23.2 ± 7.4 2.4 ± 1.0 NS

DTM 16.3 ± 6.2 c 25.0 ± 6.6 !.4 ± 1.1
Resorption period (day) PTM 4.8 ± 2.2 c 12.2 ± 6.7 3.3 ± 2.3

DTM 27.3 ± 41.2 c 3.7 ± 2.7 -0.6 - 0.1 p < 0.01
Remodeling period (day) PTM 17.7 ± 1.0_ 35.4 ± 12.7 2.7 ± 1.3

DTM 43.6 ±46 28.7 ± 8.8 -0.3 ± 0.2 p < 0.01
Activation frequency (cycle/yr) PTM 9.1 ± 0.9 _ 4.3 ± 1.9 -0.1 +- 0.4

DTM 1.3 ± 0.9 ¢ 3.2 ± 1.9 2.3 ± 2.2 p < 0.01

aZ score obtained from standardizing each group to an appropriate sets of controls and indicates how many standard changes from appropriate sets of
controls. OVX will be zero.

bp value obtained from the Z test and indicates whether the effect of PGE 2 was different in DTM from PTM. A significant p value thus means that there
is a significant difference in the effect of PGE 2 between the PTM and DTM.
¢p < 0.05 Vs. OVX + 6 mg PGE 2 group.
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Fig.1.Microradiographsandfluorescentmicrographsshowingapartiallyclosedgrowthplate(a)withitsfluorescentlabeling(c)ina3-month-old
DTMandaclosedgrowthplate(b)withreducedfluorescentlabeling(d)ina6montholdDTM.Asteriskindicatesformerepiphyseal-metaphyseal
junction;(a)and(b):×20,(c)and(d):×60.

Comparison of OVX + PGE2-induced changes in the DTM and

PTM (Tables I and H)

Tables I and II show the different responses to PGE z treatment at
the DTM and PTM (Ke et al. 1992c) in the same animals. For

many parameters, the DTM site responded more favorably to
PGE2 treatment than the PTM site. When compared to the basal

or pretreatment controls, PGE2 treatment did not induce bone

mass change in the PTM (15.9 --- 2.4% to 21.4 +- 7.1%; p >
0.05); however, it did add 91% new bone in the DTM (23.7 +-

4.5% to 45.2 + 13.2%; p < 0.01). Furthermore, basal control-

based Z scores for bone mass were higher in the DTM than in the

PTM (4.8 --- 2.9 vs. 2.3 + 2.9; p < 0.05); however, increases

in trabecular width and labeled and eroded perimeters were

higher in the PTM (Table I).

In contrast to the above, several parameters improved more in
the PTM than in the DTM after treatment. When compared to

changes in the OVX controls, PGE2 treatment resulted in 600%

more bone in the PTM (3.0 -+ 1.8 to 21.4 -+ 7.1%), but only

87% more in the DTM (20.8 -+ 3.3% to 45.2 --- 13.2%). How-

Fig. 2. Microradiographs showing cancellous bone changes in DTM from basal (a), sham-OVX (b), OVX controls (c), and OVX rats treated with 1
mg (d) and 6 mg (e) PGEz/kg/d for 90 days. There were no obvious differences in bone mass and other microanatomic structures among basal (a),
sham-OVX (b) and OVX controls (c). Metaphyseal cancellous bone mass was slightly greater in 1 mg PGE2/kg/d-treated OVX rats (d) than in basal
(a), sham-OVX (b) and OVX controls (c). More cancellous bone mass. thicker cortex, and added trabecular bone (WB) were found in the 6-mg

PGE2-treated OVX rats. One-hundred-micron microradiography section. (×6).
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ever,theOVXcontrol-basedZ scores for bone mass were not

significantly different (7.4 +- 4.0 in the DTM vs. 10.1 -+ 3.9 in
the PTM). Moreover, other OVX-based Z scores showed the

trabecular width, labeled perimeter and bone formation rates

increased more after PGE 2 treatment in the DTM than in the

PTM, while trabecular separation decreased and mineral appo-
sitional rate increased more in the PTM than in the DTM (Ta-

ble II).

Discussion

Aging had only a limited effect on the cancellous bone in the
DTM site between 3- and 6-month-old rats. It reduced the tra-

becular bone width, bone formation parameters (labeled perim-

eter, mineral apposition rate and bone formation rate), and in-

creased the eroded perimeter and the resorption and remodeling

periods. This resulted in histomorphometric values for the

6-month-old DTM sites similar to those we previously reported

in 7-month-old males (Ito et al. 1993). These changes in bone

resorption and formation activities were not surprising, since at

3 months the DTM was in the process of closing the epiphysis

and transforming its primary spongiosa into secondary spongiosa
(Fig. 1).

Our study showed that there had been no bone mass lost nor

had there been any architectural changes 3 months after OVX in

the DTM. There are several possible explanations for the lack of

estrogen-deficiency-induced bone loss. One is the extremely low

bone turnover rate of the DTM. There is a strong relationship

Fig, 3. The fluorescent micrographs of DTM cancellous bone from basal (a), sham-OVX (b), OVX control (c), and OVX rats treated with 1 (d) and
6 (e) mg PGE2 for 3 months. A dramatic reduction in labelling surface was observed in sham-OVX [(b) 6-month-old] compared to those of basal [(a)
3-month-old] controls. OVX + 1 mg PGE2/kg/d prevented this reduction (d), while OVX + 6 mg PGEe/kg/d showed increased interlabeling width
and labeling surfaces (e). Tb = trabeculae; arrows = double labeled surfaces. Twenty-micron sections (× 150).
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Fig. 4. Static histomorphometric indices of DTM cancellous bone. (t)(a) p < 0.05, p < 0.01 vs. basal controls; (*)(b) p < 0.05, p < 0.01 vs.
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Fig. 5, Microanatomical indices of the DTM cancellous bone. (t) p < 0.05 vs. basal controls; (*) p < 0.05 vs. sham-OVX controls; (#) p < 0.05

vs. OVX controls; (@) p < 0.05 vs. OVX + 1 mg PGE 2 (mean --- SD). OVX did not induce any difference from sham-OVX controls. OVX + 1

mg PGEz/kg/d decreased free end density (C and D) and increased ratio of node to free end (E), while OVX + 6 mg PGE2/kg/d increased tissue-level

node density (A).
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Fig. g. Fluorescent micrographs of a portion of periosteal surface of DTM from OVX (a) and OVX rats treated with 1 mg (b) and 6 mg (c) PGE2 for
90 days. More newly formed periosteal bone (*) was observed in OVX + 1 mg (b) and 6 mg (c) PGE2/kg/day-treated subjects than in OVX-treated
subjects (a). XO = xylenol orange label; CL - calcein label; TC = tetracycline label. Twenty-micron sections (×80).

between OVX-induced bone loss and bone turnover rates in the

rat, in that OVX-induced cancellous bone loss is greater in the

PTM than in the LVB metaphyses (Wronski et al. 1988,

1989a,b), and the bone turnover is much more rapid in the

PTM (Li et al. 1991). The second explanation pertains to the

differences in mechanical loading. It is conceivable that the
DTM is more heavily loaded than the PTM because, with its

closed growth plate, it lacks a cartilaginous shock absorber to

absorb some of the mechanical loading and, being situated far-

ther back in the skeleton, it may bear more body weight. Over-

loading tends to stimulate bone formation and depress bone re-

sorption (Frost 1964, 1988a,b; Jee et al. 1990, 1991a,b); thus,

the low bone turnover rate in the DTM may be due to heavy

loading and, in turn, be responsible for the lack of OVX-induced
bone loss.

Although the use of a I mg PGE z treatment on OVX rats did

not increase cancellous bone mass, it did add new cortical bone

and increase bone formation parameters which improved archi-

tecture. A longer treatment period may add extra bone. The 6-rag

PGE 2 treatment of OVX rats prevented age-related bone

changes, added extra bone, and improved the microanatomical

structure appreciably by stimulating bone formation. This is in

agreement with our previous findings. We have demonstrated
that this dose will add cancellous and cortical bone to intact,

OVX and immobilized (IM) limbs (Ke 1992a,c, 1993b;
Akamine 1992), as well as restore bone loss associated with

OVX and IM (Mori et al. 1992; Tang et al. 1992; Li et al. 1993).

Both doses of PGE 2 added periosteal as well as endocortical

bone mass to the DTM (Figs. 8 and 9). In an earlier report, we
noted that this treatment added extra bone in tibial diaphyses

in intact, OVX and 1M rats (Jee et al. 1991b,c, 1992a; Tang

et al. 1992).

We decided when comparing the responsiveness of the DTM

and PTM to the ability of PGE 2 to add bone in OVX rats, to base

comparisons on basal control values rather than on those of the

OVX control. Since this is a prevention study, the PGE 2 treat-

ment did not allow OVX-induced bone loss in the PTM, but

instead it maintained bone in the PTM (pretreatment 15.9% +--

2.4%, final 21.4 -+ 7.1%; p > 0.05) and added more bone to the

DTM (pretreatment 23.7 +-- 4.5%, final 45.2 --- 13.2%; p <

0.01 ). Thus, it was more realistic to compare the PGE z effects to
pretreatment or basal controls. Nevertheless, it was useful to
determine an OVX-control-based Z score because it tested the

responses of the two sites where OVX had had no effect on the
DTM bone mass but had induced bone loss in the PTM. The

OVX-based Z score did not show any significant difference be-
tween increases in bone mass in the DTM and those in the PTM.

However, most of the bone formation endpoints (increased

width, labeled perimeter, bone formation rates and activation

frequency and shortened resorption and remodeling periods;

Table II) were higher in the DTM. The DTM is more responsive
than the PTM to PGE2's ability to induce a positive bone bal-

ance. The same conclusion was reached in an earlier study com-

paring the response of PGE2-induced bone formation in intact

male Sprague-Dawley rats (Ito et al. 1993; Ke et al. 1993a).
The fact that no cancellous bone loss was induced in the 3

months post-OVX in the DTM (a cancellous bone site with a

closed growth plate) suggests that bone is not lost at a uniform
rate in all skeleton sites after menopause. Some sites may not

lose any bone after OVX; however, a longer-term study is

needed to confirm this. Finding variable rates of bone loss in rats

may be analogous to finding different fracture rates in humans.

This is borne out in humans where osteoporotic fractures are seen

predominantly in the vertebral column, distal forearm (Colles)

and the hip. In addition, the finding that PGE 2 can add bone to
low turnover cancellous bone sites indicates that bone anabolic

agents will be effective in senile (Type II) osteoporosis (i.e., low

turnover osteoporoses). It also suggests the presence of osteopro-
genitor cells capable of responding to PGE z in the DTM and,

perhaps, other fatty marrow sites. In this regard, the rat DTM

can be used to advantage as another site for studying the effects

of such anabolic agents on bone.

Fig. 9. Fluorescent micrographs of a portion of endocortical surface of DTM from OVX control (a), and OVX rats treated with I mg (b) and 6 mg
(c) PGE 2 for 90 days. Newly formed endocortical bone (*) was observed only in the OVX + 1 nag and 6 mg PGE2/kg/d treated rats (b and c). XO
= xylenol orange label; CL = calcein label; TC = tetracycline label. Twenty-micron sections (×80).
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