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Abstract. The NASA Upper Atmosphere Research Program organized a Stratospheric

Ozone Intercomparison Campaign (STOIC) held in July-August 1989 at the Table

Mountain Facility (TMF) of the Jet Propulsion Laboratory (JPL). The primary

instruments participating in this campaign were several that had been developed by

NASA for the Network for the Detection of Stratospheric Change: the JPL ozone lidar

at TMF, the Goddard Space Flight Center trailer-mounted ozone lidar which was

moved to TMF for this comparison, and the Millitech/LaRC microwave radiometer. To

assess the performance of these new instruments, a validation/intercomparison

campaign was undertaken using established techniques: balloon ozonesondes launched

by personnel from the Wallops Flight Facility and from NOAA Geophysical Monitoring

for Climate Change (GMCC) (now Climate Monitoring and Diagnostics Laboratory), a

NOAA GMCC Dobson spectrophotometer, and a Brewer spectrometer from the

Atmospheric Environment Service of Canada, both being used for column as well as

Umkehr profile retrievals. All of these instruments were located at TMF and

measurements were made as close together in time as possible to minimize atmospheric

variability as a factor in the comparisons. Daytime rocket measurements of ozone were

made by Wallops Flight Facility personnel using ROCOZ-A instruments launched from

San Nicholas Island. The entire campaign was conducted as a blind intercomparison,
with the investigators not seeing each others data until all data had been submitted to a

referee and archived at the end of the 2-week period (July 20 to August 2, 1989).

Satellite data were also obtained from the Stratospheric Aerosol and Gas Experiment

(SAGE II) aboard the Earth Radiation Budget Satellite and the total ozone mapping
spectrometer (TOMS) aboard Nimbus 7. An examination of the data has found

excellent agreement among the techniques, especially in the 20- to 40-km range. As

expected, there was little atmospheric variability during the intercomparison, allowing

for detailed statistical comparisons at a high level of precision. This overview paper

will summarize the campaign and provide a "road map" to subsequent papers in this

issue by the individual instrument teams which will present more detailed analysis of
the data and conclusions.
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Introduction

Measurement of the abundance of ozone in the Earth's

stratosphere and its susceptibility to modification due to a

variety of natural and anthropogenic causes has been a

central focus of atmospheric research for decades. As the-

only significant atmospheric absorber of near-UV solar

radiation, ozone abundance not only controls the flux of

solar UV at ground level but also plays a major role in

creating the temperature structure of the stratosphere. In the

past two decades we have seen a dramatic improvement in

our knowledge of the processes controlling stratospheric

ozone, now recognizing that the simple production of ozone

from solar photodissociation of molecular oxygen is bal-
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Table1. StratosphericOzoneIntercomparisonCampaign

Investigator Institution Instrument

PDT
Altitude, Observation

km LocationTime,hours

I. S.McDermid JPL lidar(JL) 20-50 TMF 22-24
T.McGee GSFC lidar(GL) 20--45TMF 00-05
A.Parrish/B.ConnorMillitech/LaRCmicrowave(MM) 20--64TMF 22-05
C.Parsons/R.BarnesWFF ROCOZ(RO) 20-60 SN 12-15

ECCsondes(WS,MS)0-35 TMF/Mu 23-01
W.D.Komhyr NOAA Dobson columnTMF 07-19

Umkehr/Dobson 0-50 TMF SR,SS
ECCsondes(NS) 0-40 TMF 23-02

J.Kerr/T.McElroy AES/CanadaBrewer columnTMF 07-19
Umkehr/Brewer 0-50 TMF SR,SS

M.P.McCormick Langley SAGEII (SA) 10--60Sat SR
A.J.Krueger GSFC TOMS columnSat noon
A.J.Miller NOAA meteorologicaldata Sat

PDT,Pacificdaylighttime.JPL,JetPropulsionLaboratory;GSFC,GoddardSpaceFlightCenter;
WFF,WallopsFlightFacility;NOAA,NationalOceanicandAtmosphericAdministration;AES,
AtmosphericEnvironmentService.Two-lettercodesinparenthesesincolumn3areusedtoidentify
datainthefigures.TMF,TableMountainFacility;SN,SanNicholasIsland;Mu,PointMugu;Sat,
satellitemeasurement;SR,sunrise;SS,sunset.

ancedbyaseriesofcatalyticdestructionprocessesinvolving
theoddhydrogen,nitrogen,andchlorinefamilies.While
thesespeciesexistasaconsequenceofnaturalsourcesof
precursortracegasesin the loweratmosphere,wenow
recognizethatmankindhasthecapabilityto significantly
increasesourcegasemissionsand,consequently,changein
significantwaystheozonedestructionprocesses.Concerns
inthepastdecadeshavecenteredonemissionsfromsuper-
sonictransports,spaceshuttleandrockets,degradationof
fertilizer,increasedbiologicalactivity/productivity,andper-
hapsbestknownemissionsof chlorineandbrominecom-
pounds(chlorofluorocarbons,halons,andotherhaiocar-
bons).Thelocalized,seasonalAntarcticozoneholeprovides
highlyvisibleevidenceof thesusceptibilityof ozoneto
destruction;themuchsmallerglobaldecreaseinferredfrom
longer-termdatasetsdemonstratesthepervasiveextentof
ozonedecline[WorldMeteorological Organization (WMO),

1985, 1988, 1991].

The existence of ozone over a wide range of concentra-

tions and atmospheric altitudes and pressures has led to the

development of a wide variety of techniques for measuring it

by utilizing rocket, balloon, ground, and satellite platforms

on a variety of spatial and temporal integration scales.

Although space-borne techniques are clearly the only way of

obtaining global ozone measurements, the desire to identify

very small (few percent) changes in ozone over long time-

scales (decades) requires that the satellite sensors not be

used in isolation; rather, ongoing campaigns of ground truth

and intercomparison are needed, not only to provide an

assessment of the strengths and weaknesses of the various

techniques but also to provide a means of comparing data

sets obtained by different instruments at different times.

Toward this end, a number of intercomparison campaigns

have been conducted for ozone-measuring instruments (see

WMO [1985] for a summary), including the Ozone Intercom-

parison Campaign in 1981, the Balloon Ozone Intercompar-

ison Campaign (BOIC) in 1983-1984 [Hilsenrath et al.,

1986], and the Balloon Intercomparison Campaign (BIC) in

1982-1983. A particularly gratifying result of these cam-

paigns was that it does indeed appear that it is possible to

make ozone measurements in the stratosphere within an

accuracy of a few percent over an altitude range from 15 to

40 kin.

In the past few years a number of new instruments have

been developed specifically for the role of identifying long-

term trends in stratospheric compostion. In addition to their

role in the international Network for the Detection of Strato-

spheric Change (NDSC), these instruments would also pro-

vide a crucial validation/long-term calibration standard for

satellite sensors such as the solar backscatter ultraviolet

(SBUV/2) aboard the NOAA weather satellites and the

various instruments aboard the Upper Atmosphere Research

Satellite (UARS) (CLAES, MLS, HALOE, ISAMS). Al-

though these new instruments promise significantly im-

proved capability over many of the older techniques, the

existence of the long-term database from those older instru-

ments makes it mandatory that a detailed intercomparison

campaign be carried out to assess the relative performance

and to provide a means to interrelate the various data sets.

To carry out this comparison, the Stratospheric Ozone

Intercomparison Campaign (STOIC) was conducted for a

2-week period in July-August 1989 at the Jet Propulsion

Laboratory Table Mountain Facility (TMF) near Pasadena,

California. The participating instruments are shown in Table

!, along with their observing location and observing times.

The timing of the campaign was chosen to minimize atmo-

spheric variability as a factor and to allow for the maximum

opportunity for observations and satellite coincidences. To

further minimize atmospheric variability, the instruments

were, to the extent practical, coiocated at TMF, and obser-

vations were made as close together in time as possible.

Subsequent analysis of the results (see below) demonstrates

that this objective was achieved. For this campaign, the

altitude region of interest was 20--50 km, although some

instruments have performance capabilities beyond that

range.

A very significant aspect of this intercomparison was the

adherence to a data protocol to ensure that the various

instrument results were "blind." For the entire 2-week

period no investigator saw the results of any other investi-
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gator,andeachday'sresultswereturnedin toanindepen-
dentcoordinator.Investigatorsfollowedtheirstandarddata
analysisprocedures.Investigatorswerefreethroughoutthe
periodto revisetheirinitialblindresultsbasedonperfor-
manceinformationobtainedfromtheirowninstrumentas
thecampaignprogressed,leadingtoafinalsetofblinddata
for comparison.Aftertheendof the2-weekcomparison
periodtheseblindresultswerestudied.Aswillbediscussed
later,theyareinexcellentagreement.Nonetheless,theydo
highlightsomespecificinstrumentproblemsanddiscrepan-
cies,sometimesassimpleasdataanalysissoftwareerrors.
Onthebasisofblindcomparisons,someteamsdidreanalyze
theirdatatogenerate"revised"datasets.Theserevisions,
fullydiscussedinthissequenceofpapers,ledtoasecondset
of revisedcomparisons.TheconclusionfromtheSTOIC
seriesisthatthenewlydevelopedinstrumentsoftheNDSC
havethecapabilityto performmeasurementsataccuracies
approaching5%overthecritical20-to40-kinaltituderange,
withuncertaintiesincreasingtogreaterthan10%by50kin.

Instruments

The participating instruments listed in Table 1 are briefly
described in the following subsections: The main site for the

campaign was TMF at an altitude of 7500 ft (2300 m) in the

San Gabriel Mountains north of Los Angeles (34.4°N,

117.7°W). The JPL lidar had been operating at TMF for some

time prior to this campaign. The Goddard Space Flight

Center (GSFC) trailer-mounted lidar had previously been at

TMF and returned for STOIC. Both are excimer laser-based

systems. The I I0*GHz microwave instrument was newly

installed at TMF. These three instruments were the newly

developed ones for the NDSC. The microwave radiometer

has the capability of making both day and night measure-

ments of ozone. The iidars could only be operated at night

and had to be operated sequentially to avoid interference.

For comparison with these instruments, rocket ozone-

sondes (ROCOZ-A) were launched by personnel from the

rq <so_ OBS

[] >Se_ 08S

JL GL MM WS NS RO SA MS

INSTRUMENT

Figure 1. Altitude ranges for the STOIC instruments,
showing where data were reported on more than 50% of the

observations and less than 50% of the observations. Note,

for example, that SAGE shows full coverage, although there

were only three SAGE observations in this period: all of
them had data over the whole range. On the other hand, GL

had 12 observations, but not all of them covered their whole
altitude range.

Table 2. STOIC Observations

Date JL GL MM WS NS RO SA MS

890720 X X X X X X
890721 X X X X X X
890722 X X X X
890723 X X X X X X
890724 X X X X X X X X
890725 X X X X X X X
890726 X X X X X X X
890727 X X X X X X X
890728 X X X X
890729 X X X X X
890730 X X X X X X
890731 X X X X X X
890801 X X X X X X
890802 X X X X X X X
Observation 14 12 14 13 10 6 3 13

Read 890720 as July 20, 1989.

Wallops Flight Facility (WFF) at the U.S. Navy site on San

Nicholas Island, approximately 100 miles west of TMF.

Balloon ozonesondes (electrochemical concentration cell

(ECC)) were launched by WFF personnel at both Point

Mugu (supporting San Nicholas) and TMF, using their

standard procedures. Personnel from the NOAA Climate

Monitoring and Diagnostics Laboratory (CMDL), formerly

Geophysical Monitoring for Climate Change (GMCC), also

launched ECC sondes from TMF using their own, slightly

different, procedures. Both groups launched at night when

the lidar observations were made. The NOAA group also

operated a Dobson instrument at TMF for both column and

profile data (the latter using the Umkehr technique). Addi-

tionally, a Brewer spectrometer from Atmospheric Environ-

ment Service (AES)/Canada was operated at TMF, also

performing column and (Umkehr) profile measurements.

Satellite observations were made by the Stratospheric Aero-

sol and Gas Experiment (SAGE) II instrument on ERBS on

a number of overpasses, and column data were obtained

from the (TOMS) instrument aboard Nimbus 7. Meteorolog-

ical data were provided by NOAA Climate Analysis Center

(CAC). The in situ UV photometers that performed so well

in BOIC could not be flown for this campaign due to the lack

of suitable landing areas in the heavily populated southern

California region. A ground-based Dasibi was also used for

measuring surface ozone abundance which, although not

directly relevant to the STOIC measurements, is of value in

understanding diurnal and day-to-day changes in the column

amount. The surface measurements are not discussed fur-

ther here but are presented by McDermid and Walsh [this
issue].

The operating altitude ranges and dates of operation for

the instruments are shown in Figure 1 and Table 2. Table 3

contains precision and accuracy information for the individ-

ual instruments at a variety of altitudes. These performance

claims are those of the individual investigators, and no

attempt to critically evaluate them by the STOIC team was

made. The individual instrument papers should be consulted

for the basis of the figures.

Brief Descriptions of the STOIC Instruments

GSFC Stratospheric Ozone Lidar

The GSFC lidar is a mobile system mounted in a 45-foot-

long trailer. The instrument transmitted two laser wave-
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Table 3. Precision, Accuracy, and Range Resolution

Altitude JL GL MM WS NS RO SA Umkehr

P 50 5-25 10-15 5 5 5
A 50 10-50 20-30 9 7 8
R 50 8 at 45 km 14 4 5
P 40 2-5 5 5 10 3.5 5 5
A 40 4-10 10 8 20 7 8 12
R 40 4 5 10 0.5 4 I 12
P 30 1 I 4 6 3 3.5 5 5
A 30 2 2 6 10 5 7 8 12
R 30 I 2.5 8 0.3 0.5 4 1 14
P 20 1 1 4 6 3 5 5 8

A 20 2 2 7 10 5 7 8 12
R 20 1 1 10 0.3 0.5 4 I 13

P, precision (%); A, accuracy (%); R, range resolution (km). The
individual instrument papers should be consulted for the origin and
exact meaning of these parameters. They may not be strictly

comparable among the very different techniques in use here.

lengths: 307.9 nm generated by a line-narrowed XeCI laser,

and 355 nm, the third harmonic of a Nd:YAG laser. Back-

scattered light, at the transmitted wavelengths, was col-

lected using a 30-inch telescope, separated by dichroic

optics, and detected by photomultiplier tubes in a photon-

counting mode. Two detectors were used for each transmit-

ted wavelength to increase the dynamic range of the lidar.

Differential absorption provides the basis for the extraction

of an ozone profile from the backscattered returns. Ozone

absorbs at 307.9 and is much less absorbent at 355 nm (about

3 orders of magnitude less). Therefore an analysis of the

difference in slope between returns at the two wavelengths

results in a vertical profile of ozone. Because of the small

difference in absorption at high altitudes where the concen-

tration is small, it is necessary to integrate the returns for

approximately 4 hours to achieve the necessary signal to
noise. This amounts to 106 shots at 307.9 nm and 2.5 x 10 s

at 355 nm. Temperature is also extracted from the 355-nm

return. Because of interference from Mie scattering, the

temperature profile is limited to a lower altitude of 30 km.

During STOIC, temperatures were retrieved to an altitude

above 70 km [Ferrare et al., this issue]. The GSFC lidar has

been discussed in detail in a previous publication [McGee et

al., 1991].

JPL Stratospheric Ozone Differential Absorption Lidar

Complete details of the JPL-TMF differential absorption

lidar system and the data analysis procedures have been

published elsewhere [McDermid and Godin, 1989; McDer-

mid et al., 1990a, b]. Briefly, a high-power (100 W), narrow-

bandwidth, tunable, xenon chloride (XeCI) excimer laser

system provides directly the absorbed probe wavelength at

307.9 nm. The reference wavelength, 353.2 nm, is generated

by stimulated Raman shifting of a portion of the fundamental

beam in a high-pressure (400 psig) hydrogen cell. Thus the

two wavelengths are transmitted simultaneously in time and,

by careful alignment, in space. The radiation backscattered

by the atmosphere is collected with a 90-era-diameter tele-

scope and the two wavelengths are separated by a series of

dichroic beam splitters and interference filters. The signal is

then measured using photomultipliers and photon-counting

techniques. The system operates only at night and the signal

is averaged for l06 laser pulses, which takes approximately

2 hours to derive a single stratospheric ozone profile. The

ozone number density is obtained from the difference of the

derivatives of the signals recorded for each wavelength,

divided by the ozone differential absorption cross section,

taking into account the temperature dependence of this cross

section, and the wavelength dependence of the Rayleigh

backscatter and extinction. The slope (derivative) of the

background corrected signal is computed as a function of

range. As the altitude is increased, the range resolution of

the measurement has to be degraded to limit the increase in

the statistical error related to the rapid decrease in the signal

level (see Table 3). In this particular lidar implementation the

largest source of error has been found to be associated with

the determination of the background signal.

Millitech/LaRC Microwave

The microwave instrument is intended for long-term

ozone monitoring and is largely automated so that it requires

a minimum of operator attention. It was developed at the

Millitech Corporation. The data calibration and retrieval

algorithms used with the instrument were developed at the

NASA Langley Research Center. The instrument consists of
a microwave receiver and a 122-channel spectrometer. It

was tuned to observe the ozone line at 110.836 GHz (A = 2.6

ram) for all data reported in this paper. The receiver converts

signals at its input to lower "intermediate" frequencies that

can be processed by conventional electronic techniques in

the filter spectrometer. The spectrometer's filters are fol-
lowed by detectors; the detector outputs are digitized,

integrated, and stored in the system computer. The instru-
ment is calibrated using the thermal radiation from black-

body standards. The instrument, observing technique, and
calibration method are described by Parrish et al. [1992].

The ozone altitude distribution is retrieved from the details

of the pressure-broadened line shape. The retrieval method

is described by Parrish et al. [1992] and a detailed charac-
terization of the results is presented by Connor et al. [this

issue]; it is based on the work of Rodgers [1976]. The data

reported in STOIC were 5- to 8-hour integrations, at night.

ECC Ozonesondes

The ECC ozonesonde, a compact, lightweight, balloon-

borne instrument, employs a wet-chemical method involving

the reaction of ozone with potassium-iodide (KI) to measure

the vertical distribution of ozone. The sensor is made of two

bright-platinum electrodes immersed in KI solutions of dif-
ferent concentrations contained in separate cathode and

anode chambers linked together with an ion bridge. Driving

emf for sensor operation is provided by the different solution

concentrations. Ozone in air, forced into the sensor cathode

by a nonreactive gas sampling pump during balloon ascent,
reacts with the aqueous KI solution to form iodine 02). The

sensor then reconverts the 12 to iodide, at which time two

electrons flow in the sensor's external circuit corresponding

to each molecule of ozone entering the sensor. A measure of

the sensor's output current translates, therefore, into the

rate of ozone entry into the sensor per unit time. During

balloon ascent the ECC instrument is connected to a meteo-

rological radiosonde for ozone data transmission to a

ground-receiving station. Transmitted data include air pres-

sure, temperature, and relative humidity. See Komhyr et al.

[this issue(a)] for more details.

ECC ozonesondes flown during STOIC by NOAA and

WFF personnel were essentially identical, but operating
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procedures were different in some respects. These differ-

ences are traditional between the two institutions and were

maintained here, rather than imposing a uniform procedure.

ECC sensor cathode KI solutions in the WFF instruments

were slightly more concentrated (by 0.5%), causing a small

difference in the stoichiometry of the KI-O 3 reactions in the

NOAA and WFF sondes. Somewhat different pump effi-

ciency corrections were used by the two groups at balloon

flight altitudes above about 100 mbar. NOAA ECC sonde

ozone profiles were normalized to Dobson spectrophotome-

ter total ozone, while the WFF instruments were calibrated

prior to flight with an ozone source of known concentration,

with calibration traceable to NIST. Finally, the NOAA

sonde data were processed automatically during flight, while

the WFF data were manually extracted from radiosonde

receiver recorder charts for processing.

Dobson Speetrophotometer

The Dobson spectrophotometer is a UV double mono-

chromator capable of highly accurate measurements of the

relative intensities of the double-pair wavelengths A (305.5/

325.0 nm), B (308.9/329.1 nm), C (311.5/332.4 rim), and D

(317.5/339.9 nm) emanating from the Sun, Moon, or zenith

sky. The short wavelength of each pair is highly absorbed by

ozone, while absorption at the longer wavelengths is only

slight. Effective band passes are 1 nm for the short wave-

length and 3 nm for the long wavelength of each pair. Total

ozone amounts deduced from direct Sun measurements are

most accurate and can be made on any of the wavelength

pairs, taking into account the solar elevation at the time of

observation, relevant ozone absorption coefficients, and

light scattering by air molecules and aerosols. To eliminate

aerosol interference which is difficult to quantify, observa-

tions are made on double-pair wavelengths such as the

fundamental A and D wavelengths. Aerosol effects are

eliminated through a subtraction process since aerosol scat-

tering is highly similar for the A and D wavelengths. All

Dobson spectrophotometers in use throughout the world are

calibrated periodically relative to world standard Dobson

spectrophotometer 83, whose long-term ozone measurement

precision has been maintained at --- I% since 1962 [Komhyr et

al., 1989]. Ozone measurement precision for the instrument

is -+0.3%, and ozone measurement accuracy is estimated to

be +-3.0%.

During STOIC, ozone vertical profiles [Kornhyr et al., this

issue(b)] were also made with the Dobson instrument em-

ploying the Umkehr technique [Gotz et al., 1934; Mateer and

Dutsch, 1964; Mateer and DeLuisi, 1992]. Umkehr observa-

tions are made in mornings or afternoons on light scattered

from the clear zenith sky. The measurements are based on

the principle that the effective scattering height in the

atmosphere for any of the Dobson instrument pairs, e.g., C,

varies during times of rising or setting Sun.

Brewer Speetrophotometer

The automated Brewer ozone spectrophotometer was

developed during 1979-1981 at the Atmospheric Environ-

ment Service (AES) in Canada for the purpose of measuring

column ozone operationally with the high stability necessary

for accurate long-term trend analysis. It is a modified Ebert

grating spectrophotometer which can be programmed to

sequence automatically measurements of total ozone (using

the direct Sun, zenith sky, or focused Moon measurement

method), the ozone profile using the Umkehr method, and

UV-B radiation. The World Meteorological Organization

Brewer instrument 39 was used during STOIC to measure

total ozone using the direct Sun method [Kerr and McEIroy,

this issue] and the ozone profile using the Umkehr method

[McElroy and Kerr, this issue]. The instrument and the

methods to measure total ozone are described by Kerr et al.

[1983, 1985] and Evans et al. [1987], and the Umkehr method

for ozone profiles by Mateer et al. [1985], McElroy et al.

[1989, this issue], and McElroy and Kerr [1990].

ROCOZ-A

The improved rocket ozonesonde (ROCOZ-A) is launched

aboard a Super-Loki booster to approximately 70 km, where

the payload is ejected for parachute descent. The radiometer

measures the solar UV irradiance over its filter wavelengths

as it descends through the atmosphere. The amount of ozone

in the path between the radiometer and the Sun is then

calculated from the attenuation of solar flux as the instru-

ment falls. In addition, radar from the launch site measures

the height of the payload throughout its descent which,

combined with knowledge of the solar zenith angle, allows

calculation of the overhead ozone column as a function of

geometric altitude. Ozone mixing ratio can be calculated as

the derivative of the column amount with respect to pres-

sure. The ROCOZ-A and its performance are described

more fully by Barnes et al. [1989].

Results and Discussion

Plate 1 shows the "blind" results from a "sample" day,

July 24, 1989, referred to as 890724 (in YYMMDD format),

the day being UT. This was the only day in the 2-week

period that had results from all instruments, due to the

limited SAGE II overpass opportunities (three) and the

limited ROCOZ launches (six). As can be seen from the

linear and semilogarithmic presentations, the results are in

very good agreement. It is obvious from the profiles that the

GSFC lidar falls offabove -42 km, due to rapidly decreasing

signal returns coupled with difficulties in treating signal-

induced noise in the background region of the lidar return, a

common problem for high-powered lidars not equipped with

a shutter in front of the detectors. There was no uniform,

fixed maximum altitude for cutoff; rather it varied from day

to day in the blind submissions. A similar dramatic increase

in uncertainty occurs in the JPL lidar for the same reason,

albeit at a slightly higher altitude due to the increased laser

power of the JPL system. Following an examination of the

data at the end of the campaign, revisions were made to

some instrument data sets. These revised profiles are shown

in Plate 2. For these profiles, as well as all others in this

overview, the individual profiles were interpolated using a

cubic spline function onto 0.5-km spacing to permit direct

comparison.

Atmospheric variability has always been an issue that has

hampered measurement intercomparisons. To minimize its

effect here, the campaign was carried out during the summer

which is a period of reduced variability, and attempts were

made to make measurements as close together in time and

space as practical. One indication of the extent of atmo-

spheric variability during this period is obtained in Plate 3,

which shows the daily average profiles, obtained for each

day by simply averaging the available measurements. Figure
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These instrument average profiles, for the blind data, are

shown in Plate 4. It is clear from Plate 4 and from Plate 1 that

the excellent agreement among the techniques makes it

difficult to visualize the differences, when plotted in any

usual manner. We therefore began comparing instruments to

reference profiles and plotting the differences of the individ-

ual instruments from the reference. To try to keep the

average difference near zero, it was most appropriate to

compute internal STOIC references, rather than attempting

to use some independent, external reference profile, which

would have given rise to systematic offsets. This is not to
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Plate 1. Ozone data for July 24, 1989. "Blind" data from lO
all instruments. (top) Linear ozone scale; (bottom) logarith-

mic ozone scale.

2 shows the data as a contour plot. Since not all instruments

measure ozone each day and, as will be discussed later,

there are some instrument-to-instrument variations, the vari-

ability shown in Plate 3 and Figure 2 is slightly enhanced

over the true atmospheric variability. Nonetheless, the con-

clusion from Plate 3 and Figure 2 is that atmospheric

variations during the daily measurement period were small.

Given the limited day-to-day variability during this period,

it was appropriate to compute an average profile for each

instrument, obtained from the individual day's data, even

though not all instruments made measurements on all days.

--...

0 ........................ ' ........

10 9 1010 10 .I 1012 1013

OZONE (cm-3)
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.......... MUC._SONDE

Plate 2. Ozone data for July 24, 1989. "Revised" data

from all instruments. (Compare to Plate 1). (top) Linear

ozone scale; (bottom) logarithmic ozone scale.
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imply that the STOIC measurements represent the "cor-

rect" atmospheric profile, although, since these are pur-

ported to be among the best ozone measuring techniques, it

should be very close. Any reference profile, computed by

averaging the different measurements, will have errors in it

arising from contributions from the individual measure-

ments. Thus deviations of an individual measurement from

the reference cannot be construed as proof of a deficiency in

that technique: even a "perfect" measurement will show

differences from the reference since the reference was com-

puted from "imperfect" data.

Several different approaches were taken to formulating

reference profiles. First, the measurements for each day

were averaged to obtain daily average profiles (the ones

shown in Plate 3), and the individual measurements were

then ratioed to that daily average, on a day-by-day basis.

These differences were then plotted and examined. While

this approach provides a wealth of useful data, it contains

the flaw that the instruments contributing to a given day's

average change from day to day, and the individual instru-

ment biases can cause the average to "shift" from day to

day. To obtain a more consistent picture of instrument

biases, all the available profiles from the 2-week period were

averaged into a STOIC reference profile. This clearly does
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STOIC OZONE RESULTS
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Figure 2. STOIC ozone variability shown as a contour plot

over the 14-day period. Note that there was little day-to-day
variability except near the peak, where it was about 10%.

not given each instrument equal weight since each instru-

ment had a different number of observations. It does,

however, provide a single, consistent "normalization" pro-

file against which all the individual profiles can be compared.

The alternative technique of averaging the individual instru-

ment averages led to a virtually identical profile.

This procedure was first carried out using the blind data.

Comparisons of the individual profiles against this blind
reference led to the identification of a number of instrumen-

tal problems. Some of these were as straightforward as, for

example, discovering software errors causing the first point

in a profile to be artificially low. Identification of these

problems allowed for the generation of revised data sets

which could then all be averaged into a revised reference

profile, which did not include such instrument artifacts. The

individual profiles could then be better compared against this

better, more correct, revised reference. It is this revised

reference profile that we refer to as the STOIC reference

profile. The blind and revised instrument averages are com-

pared to this STOIC reference in Plate 5, plotted as ((indi-

vidual/reference)-l), so that 0.1 represents an instrument

10% higher, and -0.1 represents one 10% lower than the

reference. These comparisons were carried out for the 20- to

50-km altitude range of interest. Since both the blind and the

revised comparisons in Plate 5 use the same reference, the

small effect of revisions can be seen in that figure. The

revisions that occurred for the individual instruments are

discussed in detail in the individual papers of this issue and

are only briefly summarized here.

Three significant features were noted in the comparison of

the JPL-lidar blind profiles with the overall averages. First,

at 45 km the comparison had an obvious inflection and the

magnitude of the lidar deviation from the average started to

increase rapidly. Second, there was a small but consistent

difference, of the order of 5%, just above 30 km altitude

where the high- and low-intensity profiles were joined to-

gether. Third, the very first point, at 20 km altitude, was

always low by approximately 10%. These three points were

carefully studied to see if there was a scientifically justifiable

explanation and possible correction.

The problem identified at 20 km was caused by an error in

STOIC INSTRUMENT AVERAGES -- BLIND DATA

50

E" 40
x,,

klJ

E3

I--
u 30.<

20
Oe+0

->
le+12 2e+12 3e+12 4e+12 5e+12

_E
v

u.I

t3

I--
.J

50

40

30

20 .......
10 10 1011 1012

OZONE (cm-3)

'x
i .....

10 13

Data Revisions

Eight of the 12 GSFC profiles were revised above 40 km

after an analysis of the data. In all cases the revision

consisted of a truncation of the profile at a lower altitude

than previously reported. The truncation point was selected

where the GSFC profile began to deviate systematically

(always negatively) from the daily average. Below 40 km the

blind and revised profiles are identical. The reasons for this

systematic error are discussed by McGee et al. (this issue).
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Plate 4. Blind instrument averages over the period. (top)
Linear scale, (bottom) log scale.
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Plate 5. (top) Comparison of blind instrument averages to
the STOIC reference profile (see text). Plotted as ((instru-
ment/reference)-l); that is, 0. ! is an instrument that was 10%

above the reference. (bottom) Similar to (top panel) but for
the revised data. The STOIC reference is the same for both

plots, so that changes are due solely to revisions to the
instrument data, not the reference.

the data analysis algorithm that incorrectly considered the

raw data at lower altitudes in calculating the derivative of the

signal at 20 km. This was readily corrected by starting the

analysis calculations at a lower altitude.

The original rationale for using high- and low-intensity

data to form a composite ozone profile was to avoid the need

to apply a saturation correction to the raw data counts. It

was apparent from the blind intercomparison that the high-

intensity data still showed a small degree of saturation

immediately above the crossover point. The adopted solu-

tion was to apply a correction to the high-intensity data for

saturation or pulse pileup caused by the finite dead-time of

the photon-counting system. This is described in detail in the

paper by McDermid et al. [in this issue].

At the upper end of the altitude range, the high-intensity

data, and in particular the 307.9-nm channel, have been seen

to be affected by a signal-induced noise [McDermid et al.,

1990a], caused by the very high intensity of laser radiation

backscattered from the boundary layer and the lower tropo-

sphere, hitting the photocathodes of the photomultiplier

detectors. The effect of this signal-induced noise is to

increase and cause a curvature of the background level.

Different methods of fitting the background have been stud-

ied [McDermid et al., 1990a; likura et al., 1987] and the best

fit is given by a nonlinear least squares exponential regres-

sion. The ozone profile below -40--45 km is insensitive to

the method used to estimate the background. However,

above this altitude the profile is very sensitive to the back-

ground correction. For the nonlinear exponential fit it is also

found that the profile is sensitive to the starting altitude of

the regression. For the final refined results, the background

fitting for the 307.9-nm high-intensity channel was started at

85 km for all data sets. The only improvement in the

agreement of the results above 45 km was achieved by

truncating some of the profiles. Based on consideration of

the signal levels which were affected by clouds or other

conditions, some of the profiles were terminated at 47 km

instead of 50 km.

Revisions to the microwave data were small and were

made only for July 28 and 31. In both cases the GSFC lidar

temperature profiles, which were used in processing the

microwave data, were themselves revised subsequent to the

campaign. The microwave data were then reprocessed using

the new temperatures. Changes in the microwave ozone

retrievals were between 2--4%. On July 31 the revisions only
affected altitudes above 50 kin.

For the blind data, NOAA ECC sonde and Dobson total

column data were processed on the Vigroux [1953, 1967]

ozone absorption coefficient scale, a practice sanctioned by

the International Ozone Commission. Because ozone mea-

surements made with the other instruments during STOIC

(except for the microwave instrument) were expressed on

the newer Bass and Paur [ 1985] absorption coefficient scale,

the NOAA values were reduced for compatibility by 3% to

form the "revised" data sets. (More recently, Komhyr et al.

[1993] have shown that the difference in the two scales in

2.6%; however, this 0.4% change has not been made to the

data used here.) Final NOAA ECC data were processed

using pump efficiency corrections determined experimen-

tally in July 1989. These were lower than those used during

initial processing of the data by 5%, 3%, and I% at instru-

ment ascent altitudes of about 39, 36, and 31 km, respec-

tively.
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Figure 3. Standard deviations of the data versus altitude, showing atmospheric variability, and the

deviations in both blind and revised instrument profiles.

There were some differences also in the blind and revised

atmospheric pressures measured with the NOAA ECC

sondes, primarily because of the newness of the NOAA

automated sonde data acquisition system used at TMF, and

inadequacy of the preliminary algorithm used for processing

the radiosonde pressures. Changes made later to the algo-

rithm allowed the pressures to be corrected.

Conclusions

The comparisons of the blind data provide an appraisal,

for each technique, of the composite of the capability of that

technique, the expertise of the particular group using it, and

the maturity or evolution in the data analysis. From the

standpoint of identifying the performance capability of the

techniques for use in obtaining stratospheric ozone profiles,

it is more valuable to concentrate on examining the compar-

isons of the revised data, which more clearly isolate the

technique's inherent capability from the operator's capabil-

ity. (The blind comparisons, however, provide an important

indication of the potential limitations of using the data from

an instrument obtained in an isolated setting.) The compar-

ison of instrument averages to the reference in Plate 5 leads

to a number of obvious conclusions regarding the perfor-

mance of the various instruments. These are discussed in

greater detail in the accompanying individual papers and

only briefly here.

The most striking feature of Plate 5 is the excellent

agreement among the techniques, measuring ozone within

about -+5% over the 20- to 40-km region. In Plate 6 the

individual day's data are plotted. The revised data are

shown, since they better represent the performance of the

instruments. In these plots, the individual profiles have been

compared to the 14-day STOIC reference profile, not to the

day's average. Thus the spread of results among the instru-

ments should be noted, not the deviation from 0 since small

day-to-day changes in ozone will lead to the mean for each

day differing from 0. Also, on several days, a significant

vertical structure is apparent, showing up in the lidars and

sondes in the 20- to 25-km region, clearly real structure on

those days but washed out in the average. The comparisons

are done using the reference profile since it is being used

here chiefly as a "scaling" factor to allow the profiles to be

plotted on an expanded scale. As discussed earlier, daily

averages are affected by the different combinations of instru-

ments contributing on different days. These individual daily

comparisons generally show a spread of about 10% (or +5%

about a central value) over the 20- to 40-km range (with some

exceptions), consistent with the instrument averages com-

parison in Plate 5. Detailed assessments of an individual

instrument's performance on a day-by-day basis are con-

tained in the individual instrument papers in this issue.

In Figure 3 the standard deviations are shown, which also

illustrates the little change between blind and revised data,

the agreement among the techniques, and the decrease in

performance above -40 km, arising from three sources:

decreasing ozone abundance, decrease in available data, and

rapid falloff in signal among the remaining lidar data sets. It

seems reasonable to conclude, from Plates 5 and 6 and

Figure 3, that ozone measurements can be made to within

about -+5% over the 20- to 40-km region. Below about 35 km

there are a significant number of data contributors: two

lidars, microwave, three sondes. By 35 km the sonde per-

formance falls off, and above 40 km the lidars begin to

deteriorate, GSFC at a lower altitude than JPL. Because of

the limited number of ROCOZ and SAGE II profiles, there is

a limited basis for evaluating the lidar and microwave

performance above 40 km. Very brief summary statements

of the individual instrument performance are made here; the
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Figure 4. Comparison of the Brewer and Dobson Umkehr

profiles to the mean of the other STOIC data.

generally excellent. The daily comparisons of the lidars and

ECC sondes show the ability to discern significant vertical

structure, especially in the lower stratosphere.

Figure 4 shows the comparison of the Brewer and Dobson

Umkehr retrieved profiles to the STOIC reference. Agree-

ment is within 15% over the 20- to 45 km region and 5%

between 30 and 40 km, as discussed in greater detail by

McElroy and Kerr [this issue]. The performance of the

Dobson Umkehr relative to ECC sondes is described by

Komhyr et al. [this issue].
Ground-based direct Sun measurements of total ozone

were made by the Brewer spectrophotometer at frequent

intervals throughout each day and by the Dobson spectro-

photometer several times each morning and afternoon during

STOIC. The Brewer-measured daily average ozone values

for all days between July 19 and August 2 are given in Figure

5. The average total ozone over the 15-day period was 297.8

Dobson units (DU) with a standard deviation of +-4 DU. A

systematic diurnal variation of total ozone was observed

throughout the period, with ozone values in the late after-

noon averaging 6.6 +-- 0.7 DU larger than in the morning.

This variability can be attributed to the buildup of low-level

ozone during the day [see McDermid and Walsh, this issue].

Results of 26 morning and afternoon Brewer and Dobson

total ozone comparisons indicated that the Dobson instru-

ment measured 1.2 DU (0.4%) less ozone than did the

Brewer instrument. A comparison of Brewer column ozone

to that obtained by TOMS shows TOMS values about 4.6%

larger, substantially different from past comparisons, possi-

bly resulting from the high altitude of the TMF site versus

the normal tropospheric correction used by TOMS. Detailed

discussion of the total ozone results and comparisons with

other measurements are presented by Kerr and McElroy

[this issue].

Overall Conclusion

The STOIC results provide a demonstration that the

instruments newly developed for the NDSC have the capa-

bility of producing highly accurate and intercomparable

measurements of the ozone vertical abundance, approaching

5% accuracy over the 20- to 40-km range. Periodic blind

comparisons such as this have value not only for establishing

the credibility of various techniques but also for identifying

possible improvements to instruments, algorithms, and pro-
cedures. Such campaigns should be an integral part of

ongoing measurement systems, including ground-based, bal-

loon, aircraft, and space-based sensors.
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Figure 5. Comparison of total ozone column measured by

the Brewer and the total ozone mapping spectrometer

(TOMS).
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