
Analysis of PSLQ, an Integer

Relation Finding Algorithm

Helaman R.P. Ferguson 1, David H. Bailey 2, and Steve Arno 1

NAS Technical Report NAS-96-005 April 96

helamanf@super.org, dbailey@nas.nasa.gov, and arno@super.org
NASA Ames Research Center

Mail Stop T27A-1

Moffett Field, CA 94035-1000

Abstract

Let K be either the real, complex, or quaternion number system and let O(K) be
the corresponding integers. Let × = (Xl, • • • , ×n) be a vector in K n. The

vector × has an integer relation if there exists a vector m = (ml, . . . , mn) E

O(K) n, m =_ O, such that mlx I + m2x 2 +... + mnXn = O. In this paper we

define the parameterized integer relation construction algorithm PSLQ(r), where
the parameter rcan be freely chosen in a certain interval.

Beginning with an arbitrary vector X = (Xl, . . . , Xn) _ K n, iterations of

PSLQ(r) will produce lower bounds on the norm of any possible relation for X.

Thus PS/Q(r) can be used to prove that there are no relations for × of norm less

than a given size. Let M x be the smallest norm of any relation for ×. For the real

and complex case and each fixed parameter rin a certain interval, we prove that

PSLQ(r) constructs a relation in less than O(fl 3 + n 2 log Mx) iterations.

1. Center for Computing Sciences, 17100 Science Drive, Bowie, MD 20715-4300

2. NASA Ames Research Center, Moffett Field, CA 94035-1000

1. INTRODUCTION

Let IK be either the real, complex or quaternion number system and let

O(K) be the corresponding system of integers (i.e., ordinary integers, Gauss-

ian integers, or Hamiltonian integers, respectively). Let x = (xl,..., xn) be

a vector in IK". The vector x has an intcger relation if there exists a vector

rn = (ml,..., ran) E (_(I[_) n, m # 0, such that rnlxl +rr/2£2+...+mnXn -_ O.

In this paper we define the parameterized integer relation construction al-

gorithm PSLQ(T). The parameter r can be freely chosen in the interval

1 < r < p, where p is 2, x/_, or 1, depending on whether IK is the real,

complex or quaternion number system, respectively. We analyze PSLQ(r)
for these three number systems. We describe in detail some efficient For-

tran multiprecision computer implementations of PSLQ('r). We also present

working Mathematica TM code for PSLQ(r) and, for comparison, some other

relation finding algorithms from the literature.

Beginning with an arbitrary vector x = (xl, x,) E K", a finite number

of iterations of PSLQ(r) will produce lower bounds on the norm of any

possible relation for x. The computation of such a lower bound constitutes a

proof that x has no integer relations whatsoever of norm less than this lower

bound. Any finite computation can only prove that no small relation exists.

Let M_ be the smallest norm of a relation for x. Let r = 1/V/1/p 2 + 1/72,

where p = 2 for the real number field and p = v_ for the complex number

field. For each fixed parameter r in the interval 1 < r < p, we prove

in the real and complex case that PSLQ(r) constructs a relation in less

than (_)log,. (7 "-1M_) iterations. This shows that PSLQ(r)is "polynomial
time" in the dimension and the number of bits of a smallest integer relation.

Different r or Afchoices lead to different time and space requirements for the

algorithm.
For dimension n = 2 we prove that PSLQ(r) will construct a relation of

smallest norm M,. We give examples in dimension n = 3, for some r, for

which PSLQ(r) does not construct a relation of smallest norm M_. However

for any dimension n >_ 2, we do prove that any relation constructed by

PSLQ(r) has norm less than or equal to _in-2M_.

The "polynomial time" and "small norm" proofs given here are straight-

forward generalizations to the parameter r and to the complex numbers of

the original "polynolnial time" proofs that appear in Lagarias et al, [HJLS89].

We show, however, that the algorithm of [HJLS89] is distinct from any of

these PSLQ(r) algorithms.

PSLQ(r) was introduced by the authors [BaFe91] in 1991. PS refers to

partial sums of squares. LQ to a lower trapezoidal orthogonal decomposition,

and (r) is a parameter defined as above. Since PSLQ(r) was introduced it
has been used to discover numerouspreviously unknown identities among
real numbers. One example is

1 1 (_l)k+ 1 2
k=, - +" + k (k + 1)-a

5 rr4 ln(2)
17 11

= 4L5(I/2) - In5(2)- _2 (()- 72---6

3 rr2(,.(3),+_(3)]n2(2) + _87r2In3(2)-

where Ln(z) denotes the polylogarithm fimction }--_}x}k -'_. See [BaBG94]
for details. Another example is the following fornmla for rr:

1 4 2 1 1
rr= _6_ (8i + 1 8i+4 8i+5 8i+6)"

i---=0

This remarkable series permits one to rapidly compute individual digits from

the hexadecimal expansion of rr. See [BaBP95] for details. It was found

by applying PSLQ(r) to the vector X -- (Xz,X2,... , Xs,_r) where Xj =
)-_k>o1/(16k(8k + J)). The smallest relation known,

(4,0,0,-2,-1,-1,0,0,-1),

yields the above %ase 16" formula for rr. A next smallest relation known,

(0, 8, 4, 4, 0, 0, -1,0, -2),

was subsequently discovered by Ferguson and this relation yields a similar

""base 16" formula for rr. Together these two integral lattice relation vectors

generate a two-dimensional lattice of relations of this *_base 16" type. It is

conjectured there are no further such relations outside this lattice. Note that

(-8,8,4,8,2,2,-i,0,0)

isin thislattice,so evidently X7 isintegrallydependent upon XI,X6.

Of course, a numerical discovery of a relation using PSLQ(r) does not
constitute a rigorous proof of the relatiou. However, in the wake of this

numerical evidence, proofs have subsequently been found for many of these

relations, including the above formula for rr. See [BorBG95] and [BaBP95]
for details.

In the theoretical proofs in Section 2, 3, 4, and 5, we will assume exact

arithmetic over the real numbers augmented by comparisons over the reals

and the nearest integer function.

2. LOWERBOUNDSON INTEGERRELATIONS

If K is the complex number field, then z* denotes the complex conjugate

of z, i.e. ifz = x3,iy, then z* = x-iy. I'I denotes the complex absolute

value, i.e. Izl 2 = z*z = zz* = x 2-4-y2. IfA is amatrix or vector, then A*

is the conjugate transpose of A. A unit in the complex number field is any

element z such that Izl = I. For real z, the conjugate operation is null, and

z is the usual absolute value.

Similarly, if IK is the quaternion number system, then z* denotes the

quaternion conjugate of z, i.e. if z = x3,yi3,uj3,vk, then z* --- x-yi-uj-vk.

The quaternion absolute value or norm is similarly defined, so that Izl 2 =

zz * = z * z = x 2 A- y2 Jr" u 2 3" v 2. Units and conjugates of matrices are defined

analogously.
If K is any of the above three number fields, two vectors x, y C IK" are said

to be orthogonal if xy* = 0. Let IAI = (tr(A*A)) _/2 denote the Frobenius

norm of the matrix A, i.e., lal = (Eaba,,J) An n × n matrix A is

unitary if A*A = AA* = I,_. U(n, IN) denotes the group of unitary matrices

over I_ An n x n matrix A is unimodular if det A is a unit. GL(n, O(K)) is

the group of unimodular matrices with entries in the integers O(K).

Definition I: (m_). Assume x = (xl,... ,xn) E IK" has norm Ixl = 1.

Define x ± to be all vectors in K n orthogonal to x. Let O(IK) _ N x ± be the

discrete lattice of integral relations for x. Define Mx > 0 to be the smallest

norm of any relation for x in this lattice.

Definition 2: (Hx). Assumex = (xl,...,xn) C K" has norm Izl = 1. For

1 < j < n define the partial sums

s_= Z xkx_.

j<k<n

Given such a unit vector x define the n x (n - 1) lower trapezoidal matrix

H_ = (hi,t) by

0
hi,j = si+l/si

ifl <_i<j <_n-1

ifl <i=j<_n-1

ifl<j<i<_n.

Note that hi,i is scale invariant.

Lemma 1. Let H_: be the lower trapezoidal matrix defined above.

(i) H;H_ = I,-1, i.e., the columns of H_: are orthogonal,

Then

(ii)]Hc[= v'_- 1,

(iii) xH_ = O.

Proof. The columns can be proven orthogonal by considering the cases i = j
and i < j separately. When i = j the inner product is

.2

6i+ 1 EXi*, . 2 * E
2 4- XiXkXk Si+l XiXi *

.2 _2 -- 2 nt- 2----2_ XkXk

8i i<k<_n 5i ai+l Si Si St+l t<k<n

-- 8i -- XiXi + xixi 1
.24

When i < j the inner product is

_t

Sj+lX i Xj -J-

SjsiSi+l

4t ¢r

-- Sj+lXiX'J "_- XtJgJ E *
8j.SiSi.t. 1 SiSi_t_lSjSj+l ZkX k -- O.

j<k<_n

Item (i) shows that H*Hc = In-I which has trace n - 1 so IHcl = v_ - 1.
To prove (iii), fix 1 _< j _< n - 1, then

XjSj+I X k * __
E Xkhk,j -- 8j E XkXj

l<k<n j<k<n '5'/"-q J + 1

• 2

XjSj+------_l XjSJ-t-1 -- O.

sj sis j+l
[]

Lemma 2. For a unit vector x E K n define Pc = HxH_. Then Pc satisfies:
(i) P_. = P_: ,

(ii) P_ = In - x*x ,

(iii) P_ = Pc ,

(iv) IP_:I = v'_- 1,

(v) Pcz* = z* for any z E x ±

(vi) P_rrz* = rn* for any relation rn E O(K) '_ for x.

Proof. Item (i) follows from H:H; = (HcH;)'. To prove (ii) note that

from Lemma 1 (iii), Hc is an n x (n - 1) rank n - 1 matrix whose columns

transposed form an orthonormal basis for x -l-. Defining U = (H, Ix*), an

n x n unitary matrix, we have UU* = H_.H_ + x*x = I,. To prove (iii) note

that
= 9 * x (xx)x=P..= (,. - x'x)2 - _Z.x • + * *

• *H
To prove (iv) note that IP_I 2 = tr(P_P.) = trP_ = trH.. = n - 1. Item

(vi) follows from (v) which follows from (ii) and the associativity (x*x)z* =

z*(xz*). []

Theorem 1. Let x # 0 E K n. Suppose that for any relation m of x and

for any matrix A E GL(n,O(K)) there exists a unitary matrix Q e U(n- 1)

such that H = AH_Q is lower trapezoidal and all of the diagonal elements

of H, hj,j #0. Then

1 = min 1 < irnl"

maxl<i<n-1 Ihj,jl Ihj,jl -

Proof. Let m be any relation for x. By the hypothesis, there exists a uni-

tary matrix Q E U(n - 1) such that H = AH, Q is lower trapezoidal {this

is equivalent to QR factorization). There is an n × n - 1 matrix T with

diagonal ones and an n - 1 × n - 1 diagonal matrix D where H = TD with

diagonal entries hj,j :)k 0, 1 <_ j < n - 1 from the hypothesis. On the other

hand, AP, = HQ*H_, from the definition of P, in Lemma 2. The equation
H decomposition of AP: into the product of a lowerAP, TDQ x gives a

trapezoidal matrix T with diagonal l's, an invertible diagonal matrix D with

diagonal h's, and an n - 1 × n matrix Q*H_ with orthonormal rows since
* * *I by Lemma 1. So the norm of the j-th row of

Q H.H.Q=Q n-lQ=In-I

DQ*H* is Ihj,_l.
From Lemma 2, part (vi), m* = Pxm*, so that Am* = AP.m*. From

the above decomposition of AP. = TDF)*H* =_._ ., we have Am* AP_m* =
H

T D(Q* H._)m *. Let QH,j be the j-th row of Q . and let Aj be the j-th

row of A. Then

Ajrn = hj,jQH,im + Z ti,khk,kQH, k •
k<j

Since A is invertible, Am* 7L O. Let j be the least j for which Ajrn* 5_ 0 so
TDQ Hem are zero,that Akrn* =0fork < j. Then thek <j rows of * * * and

since T is lower trapezoidal by recursion, the k-th rows of Q*H_m* are also

zero. With this least choice of j then Ajra* = hj,jQim*. Therefore, from

A E GL(n,O(K)),

1 < [Ajm*l < Ihj,jQH,jm'l < thJ,allm*l '

6

because QH,_ is a unit vector. []

Comment on Theorem 1. Theorem 1 suggests a strategy to construct

a relation finding algorithm: Find a way to reduce the norm of the matrix

He by multiplication by some unimodular A on the left. The inequality

of Theorem 1 offers an increasing lower bound on the size of any possible

relation. Theorem 1 can be used with any algorithm that produces any

GL(n,O(IK)) matrices. Any GL(n,O(IK)) matrix A whatsoever can be put
into Theorem 1.

Definition 3: (Hermite reduction). Let H be a lower trapezoidal matrix,

with hi,i = 0 if j > i and h3,j # O. Define the matrix D = (di,j) E

GL(n,O(K)) recursively as follows. For fixed i, decrement j from n to 1,
setting

0 if/<j
d,,i = 1 if i = j

nint((- _j<k_<i di,*hk,j)/h¢,i) if3 < i,

We will say that DH is the Hermite reduction of H and we will say that

D is the reducing matrix of H. The function hint denotes a nearest integer

function, e.g., nint(t) = It + 1/2J. This definition of nint can be extended to

each coordinate for complex or quaternion arguments.

Definition 4: (Modified Hermite reduction). With the same notation

as in Definition 3, set D = In. For i from 2 to n, and forj from i- 1 to

1 (step -1), set q = nint(hi,j/hi,¢); then for k from 1 to j replace h,,k by

hi.k -- qhj,k, and for k from 1 to n replace di,k by di,k - qdj,k.

Lemma 3. For a lower triangular matrix H with hi,i = 0 if j > i and

h j,) # O, Hermite reduction is equivalent to modified Hermite reduction.

Comment. This variation can be found in [Berg80] and later in [LLjL82].

This recursion replaces the input H with DH while developing the left mul-
tiplying reduction matrix D.

Lemma 4. There exists a constant py_ = p >_ 1, with the property that

the entries of the Hermite reduced matrix H' = (h'4) = DH satisfy the
inequality

Ih ,,I < Ih',,,I/p = Ih,,,I/p

for all k > i. The constant p= 2for the real case, p= _ for the complex
case, and p = 1 for the quaternion case.

Proof. This follows from the definitions of the nint fimction, Hermite reduc-

tion, and the fact that]z - nint(z)[< _ IK/2 for z C K []

3. STATEMENTOFTHE ALGORITHMPSLQ(r)

Definition 5: (The parameters 3' and v). Fix the real number 7 > 2/v/_

or 7 > _ or 3' = oo for the real, complex, and quaternion cases respectively.

In terms of this ^t, define the real mlmber 7- by

1/r 2 = 1/p _ + 1/7 2 ,

where p is defined as in Lemma 4. For the proof of Theorem 2, we will

require that 1 < r and that r <_ p; clearly these conditions are satisfied in

the real and complex cases. In the quaternion case r = 1 and p = 1.

For the proofs that follow assume E is real or complex, not quaternion.

Note however that the statement of the algorithm is valid for the quaternions.

Initial conditions: Given the input unit vector x E IKn, set H = H_ where

He is defined as above. Set the n x n matrices A and B to the identity In.

Perform Hermite reduction on H, producing D E GL(n,O(K)). Replace x

byxD -_, H by DH, A by DA, B by BD -_.

One four-step iteration:

Step 1: Exchange

Let H = (hi,j) where hi,i is the i-th row, j-th column entry of H. Let

0 -= hr, r, fl = hr+l,r, /\ = hr+l,r+l, _ = V/fl_ * -t-/_*.

Choose an integer r such that rlhr, l for all 1 < i < n - 1. Define

the permutation matrix R to be the identity matrix with the r and r + 1

rows exchanged. Replace x by xR, H by RH, A by RA, and B by BR.

Step 2: Corner
At this point the updated matrix H may not be lower trapezoidal since

)_ may not be zero. If r < rz - 1 replace H by HQ where Q is the unitary

n - 1 x n - 1 matrix Q = (qi,j) E U(n - 1, IN) defined by

qi,i =

1

0

if/= r,j =r

ifi=r,j =r+l

ifi=r+l,j=r

ifi=r+l,j = r+ 1

if i = j :/= r or i = j ¢ r + 1

otherwise.

wherethe a,/3, A, 5 are defined in Step 1. If r = n - 1 then H is unchanged.

Step 3: Reduction

Perform Hermite reduction on H, producing D C GL(n, O(K)). Replace
,r byxD -l,H by DH, A by DA, B by BD -l.

Step 4: Termination

Terminate the algorithm if xj = 0 for some 1 < j < n or if hi, -- 0 for
some 1 <i<n-1. - - '

4. NUMBER OF ITERATIONS OF PSLQ(r)

Let H(k) = H, A, and B = A -1 be the result after exactly k iterations

of PSLQ. Let a = h_,r(k) and/3 = h_+l,_(k). These definitions of o and

are consonant with those of Step 2. Because H is Hermite reduced in Step
3, from Lemma 4, 101 < Ic_l/p. For r < n - 1 set ,\ = hr+l,r+l (k) and define
t by t = x/'/3/3" + ,\A*/la I. From this definition of t we have

I,\1_<Iolt.

From the Step 1 Exchange, 0 < I \l _< it follows that

t = + A*/I I _<v/X/p2 + x/ 2 = T,

as in Definition 5. For this proof we will require that t < 1 < T, clear!y
satisfied in the real and complex cases.

Lemma 5. /fhj,j(k) = 0 for some 1 < j < n- 1 and no smaller k, then

j = n - 1 and a relation for x must appear as a column of the matrix B.

Proof. (Alyson Reeves) First we show that h3, i = 0 implies that j = n - 1.

Consider the matrix H(k - 1), the end result of the k - 1-th iteration. By

the hypothesis on k we know that no diagonal elements in H(k - 1) are zero.

In particular, for the r about to be chosen in Step 1 of the k-th iteration, we

know that h_,_(k - 1) :fi 0 and that h_+l,_+l(k - 1) # 0. Now, suppose the
r chosen in Step 1 is not n - 1. Let

be the submatrix of H(k - 1) consisting of the r and r + 1 rows of columns

r and r + 1. After Step 1 has been performed this submatrix becomes

a).

At Step 2, we post-multiply the matrix by the unitary sub-matrix of Q

where 6 = x/'3/3" +/\M. The result is the matrix

0)-o,.x/6 '

Since A and a are not zero (they were diagonal elements of H(k - 1)), we

know that 6 and -aA/6, the two diagonal elements in the matrix, are also

not zero. Note that since the rest of Q is the identity matrix none of the

other diagonal elements is affected by the multiplication. Thus, at the end of

Step 2, all diagonal elements are non-zero. Since Hermite reduction doesn't

introduce any new zeros on the diagonal, the end result of the k-th iteration

has all non-zero diagonal elements. But this contradicts the hypothesis on

k and our assumption that r < n- 1 was false. Note that for r = n- 1

in order to have h,,-1,n-l(k) = O, we must have h,,,,,__(k - 1) = 0 and

h__:,__:(k - i) -7:0.
Next we show that a relation for x must appear as a column of the matrix

B. By Lemma 1, xHx = O. BA = I, implies0 = xBAH, = xBAH, Q =

xBH(k - 1), where Q is an appropriate unitary n -- 1 x n -- 1 matrix. Let

z = xB. The above gives

(0, O) = xBH(k - 1) = zH(k - 1) = (... ,z,_-,hn-l,n-,(k - 1)).

Since hn-l,n-l(k - 1) ¢ 0 then zn-: = 0. Hence the n - 1-th column of B

is a relation for x. []

Lemma 6. At any k-th iteration of the algorithm the diagonal entries of

H(k) satisfy the inequality th_#(k)l <_ i.

Proof. We follow the o, _, .,\ definitions of the proof of Lemma 5 and use
induction. For k = 1 the diagonal entries of H(k) are those of Hx and

s j+l <_ sj <_ 1 gives the required inequality. Assume that the inequality also

holds up to k - 1. The diagonal entries of H(k) are equal to those of H(k - l)

except for row r where Step 1 Exchange occurs. When r = n - 1, after the

exchange, the r-th diagonal element is/3. But]f_l -<]°I/P <- 1 because p > 1

and lal <_ 1 by induction. When r < n - l, after tile exchange the r-th

diagonal element is 6. But 161 = la[t _< 1 since t < 1 and lal <_ 1. The

10

r + 1-th diagonal element of H is -a,\/5 (as in tile proof of Lemma 5) so

that 1-aA/S[= [Al/t _<]o[because [A[2 < [A]2 +]3] 2 and],\1 _< [olt. []

We show that every iteration of PSLQ causes a geometric monotonic in-

crease in a certain function II(k) which is roughly the product of all the

principal minors of the matrix H(k). If a relation for x exists, this prod-
uct will be bounded above and below. Assume x has some relation and as

usual let M, denote the norm of a smallest relation for x. We will need the
following technical lemma in the proof of Lemma 9.

Lemma 7. Consider the quotient

q(A,B,t) = min{B,t}- min{A. 1}
min{B, 1}. min{A,t}

Suppose that the four positive real numbers A, B. 1. t satisfy the three inequal-
ities

A>B, A>t, l>t.

Then,

q(A,B,t) > 1.

Proof. Of the 16 possible choices in the min's, the inequality A > t removes

8, A _> B removes 2, and 1 _> t removes 1 leaving 5. These five are

A > B > 1 > t with quotient t/1 • 1/t = 1,

A > 1 _> B _> t with quotient

1 _> ,4 _> B > t with quotient

1 _> A > t > B with quotient

A _> 1 > t > B with quotient

t/B. 1/t z t/1.1/t = 1,

t/B. A/t = A/B >_ 1,

BIB. A/t = A/t > 1,

BIB. lit = 1/t > 1. []

Lemma8. For a, 7, M. as above,

"/ n - 2-_/Ix [oe [> 1.

Proof. By the choice of r in Step 1 Exchange, we have Trial _> _/[h/,j] for
any j, l_<j_<n-l, which implies

 r/lhi, l-> J/I-I >

for all j including that jo for which M_ >_ 1/[hjo,jo [from Theorem 1. Thus
> 1/lol and 7"-2,l,./,1o_1 > 1 []

Definition 6: (The II function). Recall r = V/1/p 2 -Jr-1/72. Define

II(k) = H min{_/"-'M*,l/IhJ.J(k)[} n-j.
l<j<n--1

11

Lemmag. For any k > 1 we have

(i)

(Tn-lMx)(_) >_ II(k) > 1,

(ii)
n(k) >_TH(k- 1).

Proof. For the k's so far, hi,j(k) 7£ 0 for all 1 _ j _ r_ - 1.

1/Ihj,_(k)l >_ 1 by Lemma 6. This gives

min{M_,l/Ihj,j(k)l} >_ 1,

Ms >_ 1 and

for all 1 <_ j _< n - 1, which implies the right hand inequality of (i). On

the other hand, it is always the case that iVI¢ > min{M,, 1/Ihj,j(k)l}, which
gl

together with the fact that (2) = n - 1 + .'- + 2 + 1 and that ht _> 1 gives

the left hand inequality of (i).

The proof of part (ii) is more involved. Let r be given by the Step 1

Exchange of PSLQ. Recall the definitions of the two successive diagonal

elements a, A, the single off diagonal element B, t = _/_;_* + A,\;/la[in the

Step 2 (Corner development) of the unitary matrix in terms of _ and A.

Suppose that r < n - 1. Then only two diagonal elements change. These

correspond to the 2 x 2 submatrix of H

(: o)
which after a single iteration becomes

(' _°%)_./_

But 181= lair so that the absolute values of the of the a, A diagonal elements

are replaced by the absolute values of the 8,-o,\/8 diagonal elements. All

the factors of II(k) are the same except these two so that

n(k)
ii(k- 1) _ (min{_t"-_M_,l/(la[t)})

\ min{7"-'M_,l/lal}

12--r

(min{2_-lM*'t/lAI})

n--r--1

Set
A = *l"-'M.lalt and B = -,_-_'M.[AI,

12

so that

II(k- 1) - k,_t} k,min{B, 1} miniA, t}
We now show that the assumptionsfor Lemma 7 hold. Note that 1 > t

by the definition of t; also, A > B since]c_[t > I'\]- By Lemma 8 we have
A > t 7 > t. By Lemma 7 we have

Fi(k) rain{A, 1} 1
> >-->r.

II(k- 1) - min{A,t} - t -

Now suppose that r = n - 1. By Step 3 Reduction, under one iteration

the absolute value of the last diagonal element a is less than Icr]p. All the
factors of II(k) except the last are the same so that

II(k) min {-_"-' _V/_ 1/(lalp)} min{A,t/p}<

II(k- 1) - min{7.-1Mx,1/[oj} = min{A,t}

But we always have "7"-2Mx]al > 1, so if A >_ t/p > t

ri(k)
rI(k - 1) > 1/p >_T.

By Lemma 8, A > t7 > t. If t <_ A < t/p then

II(k)

II(k - 1) > A/t > 7 > r.

Thus for r _< n - 1, II(k) __>rlI(k - 1). []

Theorem 2. Assume real or complex numbers, n > 2, r > 1, and that

0 # x E K n has q_(K) integer relations. Let _lz be the least norm of relations

for x. Then PSLQ(r) will find some integer relation for x in no more than

• log r
iterations.

Proof. Suppose we have done k" iterations, then from Lemma 6 and Lemma

7, [hj,j(k)l ¢ 0 and not all Ihi,j(l)l < 1/M_ for l < k. By Lemma 6, I-I(0) > 1
and by Lemma 7, II(k) > r k so that

(7,,-1

Taking natural logarithms of both sides of this inequality gives

2 log > klogT. []

13

Corollary 2. Let IK be the real numbers R or the complez numbers C. Fix

n > 1 and assume given a unit n-tuple x E IKn which has a relation rn,: E

O(IK) '_ of least norm Mx. Then there ezists a 7 such that the algorithm

PSLQ(r) will construct some O(K)" relation for x in no more than

2. (dim_ IK) • (n 3 + n 2 log Mr)

iterations.

Proof. Let "_ = 2. Then for either K, r > 1, specifically, 1/logr < 4direr _

PSLQ(r) takes O(n) exact arithmetic operations per iteration, so in this

sense finds relations in "polynomial time" O(n 4 + na log M.). []

5. UPPER BOUNDS ON INTEGER RELATIONS

_VVecompare the relation found by PSLQ to a shortest possible relation.

Lemma 9. Suppose m is the relation found on the k + 1-st iteration so that

hn-l,n-l(k + 1) =h.,n-l(k) =0 and hn-l,n-l(k) 7L O. Then

Iml = 1/Ih.-,,.-l(k)l-

Proof. At this iteration we have developed the matrix A E GL(n,O(IK))

where the (n - 1)-st column of A -1 by Lemma 5 is m and the vector Am* =

en-1 has as its only non-zero entry a 1 in the (n - 1)-st position. Since

AP = TDQ, Qrn* = D-1TtA rn*, where T t is the generalized inverse of T

and D is a diagonal matrix with last entry h.-l,_-l(k), which is also the

last entry of D-1TtA m*. Because Q is unitary IQrn*l = [rn"[. []

Theorem 3. Let M. be the smallest possible norm of any relation for x.

Let m be any relation found by PSLQ(r). For all "/> x/_ for real vectors

and for all y > v_- for complex vectors

[rn I < 7"-2M,:.

Proof. Assume we are at the k-th step of PSLQ where a Step 1 Exchange

r = n - 1 was made with h._l,,,-t(k) :it 0 and h._l,.-l(k + 1) = 0. Then

-/"-'}h,_l,n-,(k)[>_ "/Jlhj,j(k)l

for all 1 <_ j <_ n - 2 by the choice of r. Hence, by Theorem 1 and Lemma 8

Me >_1/max Ih,,,(k)l >- _[2-n/Ihn-l,n-l(k)l = /2-"lml" []

14

Comment on Theorem 3. For n = 2, Theorem 3 proves that any relation

0 :/- rn E O(IN 2) found has norm Irn I = Mx. In other words, PSLQ(r)

finds a shortest relation. For real numbers this corresponds to the case of

the Euclidean algorithm, [Euclid, Book X], [Fowl79], [Knut81]. For complex

numbers this corresponds to the case of an algorithm in [Schm75].

For n = 3, let x = (113,343,311). This vector has a shortest relation

rnx = (7,-15, 14) with the shortest norm Irnxl = Mx = 21.6794 This

can be verified directly, cf., [Kann88], [PoZa84], [Cohe93]. On the other

hand, for r = 1.0000..., 7 = 1.1547..., PSLQ(r) in iteration 6 produces
the relation rnl = (24,-7,-1). Indeed

Mx < Irnll = 25.0199... _< 7M_, = 25.0333

This relation appears from a zero in the second coordinate of the xA61

vector. Continuing to iteration 8 gives the relations appearing from the first

and second coordinates of the current xA81 vector, rn2 = (-17, -8, 15) and

m3 = (41, 1,-16) of norms 24.0416... and 44.0227..., respectively. The

vector rn2 has smaller but not smallest norm. Continuing to iterations 9

and 10 gives the relations appearing from the first and second coordinates of

xA_ 1 of rn4 = (7,-15, 14) and rn2 = (-17,-8, 15), so a shortest vector rn4

was eventually found. In iteration 11 the h2,2 (11) = 0 condition appeared for
the first time giving the relation rn5 = (-10,-23, 29) of norm 38.3405

This example is instructive in that various choices of the parameter r give

different outputs. The "legal" r are such that 1 < r < 2, although the

PSLQ(r) sometimes works for "illegal" r outside of this interval. For the

"legal" r, r = 1.1, iteration 6 yields rnl, 8 yields rn2,ma, 9 yields rn4,rn2,

and 10 yields rn_. On the other hand, for r = 1.8, iterations 4, 5, 6 all yield

only the shortest length relation m4. For the "illegal" r below 0.7 and above

2.1 the algorithm cycles indefinitely. The end point r = 1.0 gives essentially

the same outputs as r = 1.1. The other end point r = 2.0 yields two new

relations m6 = (1,-91,100) and rn7 = (0,-311,343) of norms 135.2109...
and 463.0010..., respectively.

6. MULTIPLE RELATIONS.

A given unit vector x C INn may have 0, 1, 2, or up to n - 1 relations.

Once a relation has been constructed, one of the coordinates of xB for the

appropriate B C GL(n, O(IN)) will bc zero, and the corresponding column of

B will be a relation. The remaining n - 1 coordinates can be used to form

a new unit vector in y C INn. Apply PSLQ(r) to this y. Any second relation

so found will be integrally independent from the first and can be referred

15

back to the original x. In this way as many as n - 1 integrally independent

relations for x can be constructed. We omit here the tangent discussion of

using classical lattice reduction techniques to find integer relations; this is the

case for the Recognize[] function in Mathematica TM which calls the function

LatticeReduce[], el., [Cohe93], [CJOS83], [LaLS821. Lattice reduction there

applies typically only to integer relations for integer vectors. Integer relation

finding here is directed specifically at integer or Gaussian integer relations

for real or complex number vectors.

7. VARIATIONS OF PSLQ(r).

The algorithm PSLQ(r) as stated may be performed for various "illegal"

r or "illegal" _, and under these circumstances will find relations for some x

vectors. This can happen for ? < V/-4-/3 in the real case, for ? < v_ in the

complex case, and for ? < oc in the quaternion case, so that r < 1 and the

conclusions of Theorem 2 or Theorem 3 make no sense or have no apparent

content. The reason for this apparent anomaly is that for a specific n-tuple x

the actual field or division ring constant p bound in Lemma 4 is not universal

and could depend upon an input vector x. Say p, gives a bound such as that

of Lemma 4 for some special x or collection of them. Then there may be an

"illegal" ? so that rx = 1/X/1/P 2 + 1/? 2 > 1. For such x one could expect

to see some relation emerge before the number of iterations indicated by

Theorem 2 for this r, = r.

On the other hand, it is possible to use the real PSLQ(r) algorithm to find

complex and quaternion relations at the expense of doubling and quadrupling

the dimension. For example, suppose z = x + yi + uj + vk is a vector in tl '_

with vector components x, y, u, v E IR '_. Suppose the corresponding relation

is m = a + bi + cj + dk which is a lattice point in W" with integral vector

components a,b,c,d E Z'L Then zm* = 0 implies four integer relations

among the interlaced and suitably sign changed coordinates of z. For the

first set _l<i<n(ajxj - bjyi - cjuj - divj) = 0 and one can apply real

PSLQ(r) to the real 4n-tuple (... ,xi,ys,uj, vj,...). There are three others

which are similar. A relation for z will be in the intersection of the four

associated lattices. Alternatively, one can give a PSLQ('r) algorithm along

the lines of [HJLS89, Section 5. Finding simultaneous integer relations].

8. COMPUTER IMPLEMENTATION OF PSLQ(r)

The PSLQ(r) algorithm can be implemented using ordinary floating point

arithmetic on a computer. Using double precision (i.e., 64-bit) arithmetic,

relations of two or three digits in size can be recovered for n up to five or

16

so. Beyond this level, precision is quickly exhausted, and recovered relations

and norm bounds are meaningless. Thus a serious implementation of PSLQ

(or any other integer relation algorithm for real numbers) must employ some

form of multiprecision arithmetic. The authors employed the MPFUN mul-

tiprecision translator and computation package. The Fortran-77 version of

this software is described in [Bail93], and the newer Fortran-90 version is

described in [Bail95]. A C++ translator that employs these routines is also

now available. Alternatively, one may employ the multiprecision facilities of

symbolic math software packages, such as Maple, Pari or Mathematica TM.

The descriptions presented here of computer implementation of PSLQ(r)
are for the ease of the real number system. Extensions to the case of the

complex and quaternions number systems are straightforward, provided one's

multiprecision system supports these datatypes.

One key to an efficient implementation is to utilize a simplified version of

Hermite reduction and the associated update. As noted in Lemma 3 above,

Hermite reduction can be done more efficiently by a triply nested loop. In

fact, the update operations associated with I-Iermite reduction (updating

x, H, A and B) can also be done in a loop of this form. Further, if these

updates are done in this manner, then it is not necessary to compute the D

matrix. This simplified scheme is as follows. In the initialization step, Her-

mite reduction and the subsequent updates are replaced with the following:

For i from 2 to n, for j from i - 1 to 1 (step -1), set t = nint(hi4/hi,j) and

replace xj by zj - tzi; then for k from 1 to j replace hi,k by hi,k - thj,k; for

k from 1 to n replace ai,k by ai,k - taj,_ and replace b_,,j by b(k,j) + tb(k, i).

Step 3 is also replaced with this, except i is incremented from r + 1 to n, and

j is decremented from min{i - 1, r + 1} to 1. Here r denotes the row index

selected in Step 1. These more restrictive limits on i and j merely reflect the
fact that t = 0 outside these limits.

Obviously in a computer implementation some care must be taken in

testing for zero. This is typically done by checking that the absolute value of

the tested value is less than the "epsilon" appropriate for the level of numeric

precision being used. Also, a run should be terminated if any entry of the

A matrix exceeds the level of numeric precision being used (so that these

integer values can no longer be represented exactly).

The level of working precision required for PSLQ is generally only a few

digits greater than the accuracy of the input z vector. Along this line, if

one wants to recover (or to exclude) relations of size d digits, then the input

data must be specified to at least nd digits in order to obtain m,merically

meaningful results. The significance of a recovered result can be measured by

17

noting the ratio between the multiprecision epsilon and the largest entry of

the updated x vector when a relation is recovered. If this ratio is very small,

such as 10 .4o , then one can be fairly certain that the relation produced by

PSLQ is a real relation. But if this ratio is only a few orders of magnitude

below unity, then the result is suspect, and higher accuracy in the input

data, as well as correspondingly higher working precision, is required.

The above implementation is satisfactory for most applications. For more

demanding applications, a "two-level" implementation is significantly faster.

In a two-level implementation, most operations are performed in ordinary

double precision arithmetic, with occasional updates of multiprecision arrays

using multiprecision arithmetic. This two-level scheme can be described as

follows. Here the prime notation is used to denote double precision approx-

imations to multiple precision values.

To initialize, perform the initialization step as described above using full

precision. Then perform a "double precision initialization"" (1) set x' =

x� maxi,/Ixjl and set H' = H; (2) perform a LQ decomposition on H', using

double precision arithmetic, setting H' to be the lower triangular part; (3)

set A t =B t=I,_.

PSLQ iterations are then performed as above oi1 the arrays x t, H', A t and

B t, using double precision arithmetic. Some care must be taken to insure
numerical accuracy in these iterations. Obviously these iterations must be

halted before entries in A t grow so large (9 x 1015 on IEEE systems) that

they cannot be exactly represented as double precision values. In the authors'

implementation, double precision iterations are halted when the largest entry
of A t exceeds 101° • Tests for zero in these iterations must reflect the accuracy

of double precision arithmetic -- the authors used an "epsilon" of 10 -13

here. As an additional measure to insure numerical integrity, the authors'

code aborts the modified Hermite reduction procedure (and restores arrays

to their previous values) if the multiplier q exceeds 10 T.

When the double precision iterations are halted, either due to large entries

in A t, or to a tentative zero in x t or H t, it is necessary to perform a "mul-

tiprecision update": (1) replace A by AtA, replace B by BB _, replace H by

A'H, and replace x by xB'; (2) check for zero entries in x, using the multi-

precision epsilon. If no zeroes are found, then a double precision initialization

is performed, followed by more double precision PSLQ iterations.

One detail has been omitted here. In some cases, the entries of the up-

dated x vector have such a large dynamic range (greater than 101° in the

authors' implementation) that when converted to double precision, additions

and subtractions would produce results of questionable reliability. In these

cases it is necessary to perform PSLQ iterations on the multiprecision ar-

18

rays, using multiprecision arithmetic, for a number of iterations until this

large dynamic range is eliminated. If this situation is encountered on any

iteration other than the very first, a multiprecision LQ decomposition of H

must be performed prior to performing these nmltiprecision iterations (so

that the H array contains the same entries as the H array defined in the
PSLQ algorithm statement).

9. SUMMARY OF THE LITERATURE

The problem of finding integer relationsamong sets of rational and real

numbers is quite old. When n = 2 this problem can be solved for ratio-

nals by the firstEuclidean algorithm in Euclid, Book VII, and for reals by

the second Euclidean algorithm given in Book X, cf., [Knut81], [Cohe93],

[Shim94]. Generalizations of this algorithm to higher real dimensions were

proposed without proof by many authors, including Jacobi [Ja1868], Her-

mite [He1850], Poincar_ [Po1882], Perron [Perr07], Brun [Brunl9, Brun57]
and Szekeres [Szek70].

The first integer relation finding algorithm with proofs for the case of

real numbers was discovered in 1977 by Ferguson and Forcade, [FeFo79,

FeFo82]. These algorithms were shown to be polynomial time in the loga-

rithm of the size of a smallest relation. They were not shown to be polyno-

mial in the dimension. Since then, other algorithms for finding relations for

real vectors have appeared in [BergS0], [Ferg86]. [Bail88] reports on a com-

puter implementation of [Ferg86]. The sequence including [HJLS89] (HJLS),

[BaFe91] and [ArFe931 (PSLQ), [BaBG94] (a concise statement of PSLQ),
and [RoSc95] (a stable variation of HJLS) will be discussed below.

These algorithms all depend upon an orthogonal decomposition of some

sort. See [GoVL90], for a list of various orthogonalization algorithms and

their differences. PSLQ is of the QR type. HJLS follows the lattice reduction

work of [LLjL82], which is classical Gram-Schmidt type, cf. [Cohe93]. This

difference may explain some of the differences observed between PSLQ and
HJLS, of. [BaFe91].

Rigorous proofs that the algorithm under investigation must find a relation

if one exists appeared in [FeFo79, Berg80, FeFo82, Ferg86]. All of these

proofs gave a linear bound in the logarithm of the size of a relation, but

were not known to be polynomial in the dimension. [Berg80] and [Ferg86]
had unsatisfactory proofs in the sense that they were shown to be at worst

exponential in the dimension rather than polynomial in the dimension. This

unsatisfactory state of affairs was resolved affirmatively with the proofs that

appeared in [HJLS89] for the "small integer relation algorithm". We will

refer to this "small integer relation algorithm" as HJLS, as stated in [HJLS89,

19

Section 3] as a reflection of that in [Berg80, Section 3]. In fact, this proof

in [HJLS89] was the first appearance in the literature of a polynomial time

bound for a relation finding algorithm, polynomial in both dimension and

logarithm of relation size.
This important p,'ogress was made when [HJLS89] combined two inde-

pendent streams of research, [FeFo79, Berg80, FeFo82, Ferg86, Ferg88] and

[LLjL82, ScEu94, Cohe93, ScRo95]. Inspired by the polynomial result, but
not the details, the first author of this paper formulated what he thought

was a new algorithm [BaFe92, ArFe92] and gave a polynomial proof. This

proof was independent of that of [HJLS89], a different analysis, but flawed by

giving a slightly higher degree polynomial in the dimension than the polyno-

mial proof given in [HJLS89]. This algorithm in [BaFe92, ArFe92] was called

PSLQ and had the advantage of the adjustable parameter _ or r. Applica-

tions and implementation of this earlier version of PSLQ(r) were described

in [BaBG94, Bail95, BaBP95]. These implementations showed that the pa-
rameters were a helpful feature of the algorithm. The bound on iterations for

HJLS proven in [HJLS89] was O(n 3 + n 2 log2 _/lx); this is consonant with the

bound proven in this paper for PSLQ(v/2). The subsequent paper [RoSc95]

included parameters as well as addressing a certain issue of stability.

Examples can be generated from the Mathematica TM implementations

described in Section 10. Specifically, in three dimensions, consider the triple

z = (11, 27, 31). We list the sequence of A -1 matrices for each algorithm. A

relation if found will be constructed as a column of one of these A-1 matrices.

For PSLQ(1.1547) the successive iterations k = 0, 1, 2, 3,4, yield the five

A- l matrices

0 0 011)0 1 , 3 8 , 3 ,

0 -1 -3 -7 1 -3 -

l 2 , 5 9 - •

-2 -1 -- -4 -5 -1

Note that PSLQ has constructed two relations appearing as the first and

second columns of the last matrix, iteration k = 4.

For HJLS the successive iterations k = 0, 1,2, 3, 4, 5, 6 yield the seven A -1

matrices

(i°°) °°)(i1 0 , 0 0 , 0 , 0 1 ,

0 1 0 1 1 0 - 1 -1

20

(i0 21)1 - , 1 3 , 1 2 5 .

-1 -1 -1 -3 1 -1 -1 -4

Note that only one relation is found; it appears in the last column of the last

matrix, iteration k = 6. The report [ScEu94] claimed that HJLS is a special

case of PSLQ(r) for "/ = v/2 or equivalently r = V/-4-/3. The example just

given shows that this claim is not true. This fact is also underscored by the

results reported in [BaFe92], which show that HJLS, as stated in [HJLS89],

often requires a level of numeric precision far higher than that of the input

data, whereas PSLQ(r) typically only requires 10 digits or so more than the

input data. Indeed, it is clear from the results in [BaFe92] that without

some suitable modification to the HJLS algorithm, such as that proposed in
[ScRo95], it is not usable for many problems of interest.

The various algorithms in the literature stand independently of any proofs.

Though the proofs were exponential, the algorithms stated in [FeFo79], and in

[FeFo82], and again in [Ferg86] were parametric. The parameter b in [FeFo79,

FeFo82] satisfies 1 < b < 2 whereas in [Ferg86] the parameter 3' is empha-

sized. The algorithm in [BergS0, Sect. x] seems closest to PSLQ(v/-_)

with the r parameter set by 7 = V/'2. This parameter choice appears in

[Berg80, Sect. x] without the [LLjL82] setting and reappears in [HJLS89] as

the "small integer relation algorithm", which we call HJLS, rewritten in the

[LLjL82] language and accompanied by a polynomial time proof.

Bergman discussed the complex case of finding gaussian integer relations

for complex vectors in [BergS0, Sect. 5: Variants]. Bergman also gave an al-

gorithm for the simultaneous real vector case in [Berg80, Sect. 7]. Following

Bergman, the paper defining HJLS for simultaneous real vectors, [HJLS89,

cf., Sect. 5], implicitly includes the complex and quaternion vector case

as well. As an alternate approach, inspired by [Shim94], in this paper we

have extended the base field of PSLQ(r) to these division rings and intro-

duced unitary matrices into the algorithm directly. The proof given here

of polynomial number of iterations covers the real and complex cases, but

fails for quaternions. However, the quaternion version of PSLQ(r) performs

reasonably well experimentally in finding hamiltonian integer relations for
quaternion vectors. This was explained in Section 8.

10. WORKING MATHEMATICA TM CODE FOR THE

ALGORITHMS PSLQ, PSOS, HJLS, BRUN.

Attached to this paper as an appendix is a list of working Mathematica TM

procedures for PSLQ and a few other lattice relation algorithms. Each algo-

21

rithm algo is given by an initialization procedure initalgo [] followed by

one iteration procedure algo []. The input is some tuple such as

(:c,A-',A,H, 1/ max Ihj,j(H)l,k)

where k is the iteration number, where hj,j(H), 1 _< j <_ n- l, are the

diagonal elements for a matrix A E GL(n, Z) with xH = 0 for H E M(n x

n - 1,R), H a rank n - 1 and n x n - 1 lower trapezoidal matrix, zH = O.

The output is the sextuple

(xB-' A-'B-',BA, BH, 1/ max [hjj(BH)],k + l)' l<_j<_.-1 '

for the matrix A E GL(n, Z). PSLQ and PSOS are written in real GL(n, Z)

and complex GL(n, Z + iZ) form. Variations from this format will be clear

from the actual Mathematica TM notation itself.

Each algorithm is characterized by the sequence of matrices developed at

each iteration, from the group GL(n, Z) or the group GL(n, Z + iZ),

AI,A2,... ,Ak,...

("partial quotients") and their accumulated products ("convergents")

B1,B2,... ,Bk

The general scenario is that BkHx will converge to zero if the coordinates

of z are integrally linearly independent, BkH_, gives lower bounds on the

size of possible relations, the rows of Bk will converge to x, and if z has a

relation at all. then one will appear as a column of B_- 1 for some k. There are

counterexamples for B RUN (relations not always found), no counterexamples

are known for PSOS. This paper proves that PSLQ(r) fits this scenario where

k is polynomially bounded by (i)log,. (_,,-1 :vI,) with Mx the least norm of

any relation. HJLS fits this scenario as well, el., [HJLS89].

In these listings, sO [x, j ,d] computes the square root of the j-th partial

sum of squares for x, precision d decimals, x0 [x,d] computes the unit vec-

tor with the same direction as z, h0 [x,d] constructs the initial H_: matrix

out of the partial sums of squares, hLQ [H] is the maximum of the absolute

values of the diagonal elements in the LQ decomposition of H. By Theorem

1, the reciprocal of this number gives a lower bound on the L2 norm of any

relation for z. brun is Brun's algorithm: this is a simple generalization of

Euclid's anthyphairesis algorithm n = 2 to r_ >_ 2 quantities. Anthyphairesis,

22

or (_OqtaepeaLg,means "continually subtracted in turn from", cf.,[Fowl79].
This concept appears in Euclid in Book VII and Book X, [Euclid]. Brun's
algorithm, cf., [Brunl9], [Brun57], is a natural generalization of oOrl¢oLpeat _

from a pair of numbers to a list of numbers. This generalization is rediscov-

ered by almost everyone working in this area. Brun's algorithm can cycle and

does not always find relations. However, according to a theorem of Forcade,

cf., [Forc81], Brun's algorithm finds relations almost everywhere, pslq is

the PSLQ algorithm described in this paper; tau and rho are the PSLQ pa-

rameters defined in this paper, psos is the partial sum of squares algorithm

defined in [Ferg88]. hj ls is the "small integer relation algorithm" defined in

[HJLS89]; see also [Berg80], [Ferg87].

ii. OPEN QUESTIONS

1) Is there a relation finding algorithm that finds one of the shortest

relations (there may be more than one with the same minimum height), with

a guaranteed iteration count that is a polynomial function of the dimension?

2) What are the best choices for the parameter r or _, relative to the

number of iterations, time, and precision requirements of PSLQ?

3) Does PSOS have a counterexample in dimension 5 or less? The com-

plete Mathematica TM definition of PSOS for real and complex numbers, with

possible extension to quaternions, is described in Section 10.

12. ACKNOWLEDGMENTS

The authors thank (in alphabetical order) Peter Borwein, M. Euchner,

Rod Forcade, Jeff Lagarias, Alyson Reeves, Robert Riley, M. L. Robinson,

Carsten RSssner, Claus Schnorr, and Francis Sullivan for their helpful and

motivating comments about PSLQ. Specifically we thank Alyson Reeves for

her lucid rewriting of the proof of Lemma 5 and Rod Forcade for some
counterexamples.

[ArFe92]

[BaFe91]

[BaBG94]

REFERENCES

Steve Arno and Helaman Ferguson, A new polynomial time algorithm for

finding relations among real numbers, Supercomputing Research Center Tech

Report SRC-93-093 (March 1993), 1-13.

D. H. Bailey and H. R. P. Ferguson, A polynomial time, numerically sta-

ble integer relation algorithm, SRC Technical Report SRC-TR-92-066; RN R

Technical Report RNR-91-032 (16 December 1991; 14 July 1992), 1-14.

D. H. Bailey, J. Borwein, and R. Girgensohn, Ezperimental evaluation of

Euler sums, Experimental Mathematics 3 (October 1994), 17 - 30.

23

[BaBP95]

[BailS8]

[Bail93]

[Bail95]

[Berg80]

[Brunl9]

[Brun57]

[Cohe93]

[CJOS93]

[Euclid]

[FeFo79]

[FeFo82]

[Ferg86]

[Ferg87]

[Ferg88]

D. H. Bailey, P. Borwein, and S. Plouffe, On the rapid computation of various

polylogarithmic constants, Cf., Science News 148 (28 October 1995), no. 18,

http ://www. ¢o¢m. sfu. ¢a/personal/pborwein/, 279.

D. H. Bailey, Numerical Results on the Transcendence of Constants Involv-

ing rr, e, and Euler's Constant, Mathematics of Computation 50 (January

1988), no. 181, 275 - 281.

D. H. Bailey, Multiprecision Translation and Execution of Fortran Programs,

ACM Transactions on Mathematical Software 19 (1993), no. 3, 288 - 319.

D. H. Bailey, A Fortran-90 Based Multiprecision System RNR-94 -013, ACM

Transactions on Mathematical Software, to appear (January 6, 1995), 1 -

10.

G. Bergman, Notes on Ferguson and Forcade's generalized Euclidean algo-

rithm, University of California at Berkeley, unpublished (1980), no. Novem-

ber, 823-826.

V. Brun, En generalisatiken av kjedebrooken, I, II, Norske Videnskapssel-

skapets Skrifter I. Matematisk Naturvidenskapelig Klasse 6 (1919, 1920),

1-29, 1-24.
V. Brun, Algorithmes euclidiens pour trois et quatre hombres, tenu a Helsinki

18-23 aoht 1957, Treizibme congr_s des mathematiciens scandinaves (1958),

46 - 64.

H. Cohen, A Course in Computational Algebraic Number Theory: 2.5.2.

The Gram-Schmidt Orthogo nalizati°n Procedure, 2.6.1. The LLL Algorithm,

2.7.2. Linear and Algebraic Dependence Using LLL, Graduate Texts in

Mathematics 138, Springer-Verlag, Berlin Heidelberg New York, 1993.

M. J. Coster, A. Joux, B. A. Latvlacchia, A. M. Odlyzko, C. P. Schnorr, J.

Stern, Improved Low-Densidy Subset Sum Algorithms, Computational Com-

plexity (1992-3).

Euclid, translated from the text of Heiberg with introduction and commen-

tary by Sir Thomas L. Heath, The Thirteen Books of Euclid's Elements,

Book VII, Proposition 1, Volume II, pages 296-7 [integers], Book X, Propo-

sition 2, Volume III, pages 17-20 [reals], Second Edition, revised with ad-

ditions, unabridged, Volumes I, II, III, Dover Publications, Inc., New York,

1956.

H. R. P. Ferguson and R. W. Forcade, Generalization of the Euclidean al-

gorithm for real numbers to all dimensions higher than two, Bulletin (New

Series) of the American Mathematical Society 1 (1979), 912 - 914.

H. R. P. Ferguson and R. W. Forcade, Multidimensional Euclidean Algo-

rithms, (Crelle's) Journal fiir die reine und angewandte Mathematik 334

(1982), 171 - 181.
Helaman Ferguson, A Short Proof of the Existence of Vector Euclidean Algo-

rithms, Proceedings of the American Mathematical Society 97 (May 1986),

no. 1, 8 - 10.

Helaman Ferguson, A non-inductive G L(n, Z) algorithm that constructs in-

tegral linear relations for n Z-linearly dependent real numbers, Journal of

Algorithms (1987), no. 8, 131 - 145.

Helaman Ferguson, PSOS: A new integral relation finding algorithm involv-

ing partial sums of squares and no square roots, Abstracts of the American

Mathematical Society 9 (March 1988), no. 56; 88T-11-75, 214.

24

[Forc81]

[Fow179]

[GoVL90]

[He1868]

[HJLS89]

[Ja1868]

[Kann88]

[Knut81]

[LaLS82]

[LLjL82]

[LoSc92]

[Perr07]

[PoZa84]

[Po1884]

[Schm75]

[ScEu94]

[Schn94]

Rodney W. Forcade, Brun's Algorithm, unpublished manuscript (November

1981), 1 - 27.

David Fowler, Ratio in Early Greek Mathematics, Bulletin (New Series) of

the American Mathematical Society 1 (November 1979), no. 6, 807 - 846.

G. H. Golub and C. F. Van Loan, Matrix Computations: 5.2 The QR Factor-

ization. 5.2.7 Classical Gram-Schmidt, 5.2.8 Modified Gram-Schmidt, 2nd

Edition, The Johns Hopkins University Press, Baltimore, Maryland, 1990.

C. Hermite, Extraits de lettres de M. Ch. Hermite _ M. Jacobi sur differdnts

objets de la thdorie de hombres, (Crelle's) Journal fiir die re*he und Ange-

wandte Mathematik (1850), no. 3, 4, 261 - 315.

J. Hastad, B. Just, J. C. Lagarias, and C. P. Schnorr, Polynomial time

algorithms for finding integer relations among real numbers, SIAM J. of

Comput. 18 (1989), 859 - 881.

C. G. J. Jacob*, Allgemeine Theorie der Kettenbruchahnlichen Algorithmen,

in welches jede Zahl aus drei vorhergehenden gebildet wird (Aus den hinter-

lassenen Papieren yon C. G. J. Jacob* mitgetheilt dutch Herrn E. Heine.),

Journal fiir die reine und Angewandte Mathematik 69 (1868), no. 1, 29 - 64.

R. Kannan, Lattices, basis reduction, and the shortest vector problem, Col-

loquia Mathematica Societatis Jdnos Bolyai, Theory of Algorithms, P6cs,

(Hungary) 44 (1984), 283-311.

D. E. Knuth, The Art of Computer Programming, Vol. 2 Seminumerical

Algorithms: 4.5.2. The Great Common Divisor, 4.5.3. Analysis of Euclid's

Algorithm, Second Edition, Addison-Wesley, Reading, MA, 1981.

J. C. Lagarias, H. W. Lenstra Jr., and C. P. Schnorr, Korkin-Zolotarev Bases

and Successive Minima of a Lattice and its Reciprocal Lattice, Combinatorica

10 (1990), no. 4, 333 - 348.

A. K. Lenstra, H. W. Lenstra Jr., and L. Lovasz, Factoring polynomials with

rational coefficients, Math. Ann. (1982), no. 21, 515 - 534.

Laszlo Lovasz and Herbert E. Scarf, The Generalized Basis Reduction Algo-

rithm, Mathematics of Operations Research 17 (August 1992), no. 3, 751 -
764.

O. Perron, Grundlagen fiir eine Theorie des Jacobischen Kettenbruchalgo-

rtthmus, Math. Ann. (1907), no. 64, 1 - 76.

M. Pohst and H. Za.ssenhaus, Algorithmic Algebraic Number Theory, Chap-

ter 3: Methods from the Geometry of Numbers, Encyclopedia of Mathematics

and its Applications, Cambridge University Fress. New York, 1989, pp. xiv,
465.

H. Poincar6, Sur une Gdndralisation des fractions continues, Comptes Ren-

dus Acad. Sci. Paris 99 (1884), 1014 - 1016.

Asmus L. Schmidt, Diophantine Approximation of Complex Numbers, Acta

Mathematica 134 (1975), 1 - 85.

.M. Euchner and C. Schnorr, Lattice Basis Reduction: Improved Practical

Algorithms and Solving Subset Sum Problems, Proceedings of the FCT'91

(July 1991), 1-21.

C. Schnorr, et al, Referees Report on "A polynomial time, numerically stable

integer relation algorithm", submitted to editor of Mathematics of Compu-

tation (December 1994), 1-8.

25

[ScRo95]

[ScRo95]

[Shim94]

[Szek70]

C. RSssner and C. P. Schnorr, A stable integer relation algorithm, FB Math-

ematik/Informatik UniversitAt Frankfurt TR-94-016 (1994), 1 - 11.

C. P. Schnorr, A More El_icient Algorithm for Lattice Basis Reduction, Jour-

nal of Algorithms 9 (1988), 47 - 62.

G. Shimura, Fractional and Trigonometric Expressions for Matrices, Tim

American Mathematical Monthly 101 (October 1994), no. 8, 744 - 758.

G. Szekeres, Multidimensional continued fractions, Ann. Univ. Sci. Budapest

EStvSs Sect. Math. XIII (1970), 113 - t40.

HELAMAN FERGUSON AND STEVE ARNO: CENTER FOR COMPUTING SCIENCES, 17100

SCIENCE DRIVE, BOWIE, MD 20715-4300 helamaaf@saper.org AND arno@super.org;

DAVID H. BAILEY: NASA AMES RESEARCH CENTER, _vIAIL STOP T27A-I, MOFFETT

FIELD, CA 94035-I000 dbailey@nas.nasa.gov

26

Title:
ANALYSIS

RELATION
OF PSLQ, AN INTEGER
FINDING ALGORITHM

Date: NAS ReportNumber:

NA_-% -Oc,_

