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Abstract. As we gain experience with parallel file systems, it becomes

increasingly clear that a single solution does not suit all applications. For

example, it appears to be impossible to find a single appropriate interface,

caching policy, file structure, or disk-management strategy. Furthermore,

the proliferation of file-system interfaces and abstractions make applica-

tions difficult to port.

We propose that the traditional functionality of parallel file systems be

separated into two components: a fixed core that is standard on all plat-

forms, encapsulating only primitive abstractions and interfaces, and a set

of high-level libraries to provide a variety of abstractions and application-

programmer interfaces (APIs).

We present our current and next-generation file systems as examples of

this structure. Their features, such as a three-dimensional file structure,
strided read and write interfaces, and I/O-node programs, are specifically

designed with the flexibility and performance necessary to support a wide

range of applications.

1 Introduction

Scientific applications are increasingly dependent on multiprocessor computers

to satisfy their computational needs. Many scientific applications, however, also

use tremendous amounts of data [11]: input data collected from satellites or seis-

mic experiments, checkpointing output, and visualization output. Worse, some

applications manipulate data sets too large to fit in main memory, requiring

either explicit or implicit virtual memory support. The I/O system becomes the

bottleneck in all of these applications, a bottleneck that is worsening as processor

speeds continue to improve more rapidly than disk speeds.

Fortunately, it is now possible to configure most parallel systems with suf-

ficient I/O hardware [22]. Most of today's parallel computers interconnect tens
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or hundreds of processor nodes, each of which has a processor and memory, with

a high-speed network. Nodes with attached disks are usually reserved as I/O
nodes, while applications run on some cluster of the remaining compute nodes.

In the past few years, many parallel file systems have been described in

the literature, including Bridge/PFS [12], CFS [35], nCUBE [9], OSF/PFS [38],

sfs [271, Vesta/PIOFS [61, HFS [25], PIOUS [301, RAMA [201, PPFS [191, Scotch [151,

and Galley [31, 32]. Many more techniques for improving the performance of

parallel file systems have been described, including caching and prefetching [24,

23, 34], two-phase I/O [10], disk-directed I/O [20], compute-node caching [37],
chunking [40], compression [41], filtering [21, 2], and so forth.

The diversity of current systems and techniques indicates that there is clearly

no consensus about the structure of, interface to, or even functionality of parallel

file systems. Indeed, it seems that no one interface or structure will be appro-

priate for all parallel applications; for maximum performance, flexibility of the

underlying system is critical [25]. It is important that applications be able to
choose the interface and policies that work best for them, and for application

programmers to have control over I/O [46, 8].

This diversity of current systems, particularly of the application-programmer's

interface (API), also makes it difficult to write portable applications. Nearly ev-
ery file system mentioned above has its own API. A standard interface is being

developed, MPI-IO [5], but even that interface is appropriate only for a certain

class of applications.

2 Solution

We believe that flexibility is needed for performance. An application programmer
should be able to choose the interfaces and abstractions that work best for that

application. To be practical, however, these interfaces and abstractions should

be available on all platforms, so the application is portable, and each platform

should support multiple interfaces and abstractions, so the platform is usable by

many applications.

Consider Figure 1. Most traditional parallel file-system solutions attempt to

provide a common file system that hopes to fit all applications. This common

"core" file system is fixed, in that it must be used by all applications accessing
parallel files. 1 To increase flexibility, we propose to move much of the function-

ality out of the core and into application libraries. Our new Galley Parallel File
System takes this "RISC"-like approach.

The new core file system provides only a minimal set of services, leaving
higher-level interfaces, semantics, and functionality to application-selectable li-

braries. While the implementation of the core is platform dependent, and pro-

vided by the platform vendor, its interface is standard across all platforms. This

approach has proven successful with the MPI message-passing standard [28].

1 We avoid the term "kernel," as the core may be comprised of user-level libraries,
server daemons, and kernel code.
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Fig. 1. Our proposed evolution of parallel file-system structure. Traditional systems
depend on a fixed "core" file system that attempts to serve all applications. In our
Galley File System, we shrink the core to leave the API and many of the parallel features
to an application-selectable library. In our next-generation Galley2 File System, we
shrink the core further to allow user-selected code to run on the I/O nodes.

Application programmers may then choose from a variety of different lan-

guages and libraries, to select one that best fits the application's needs. Some

languages or libraries would provide a traditional read-write abstraction; others

(probably with compiler support) would provide transparent out-of-core data
structures; still others may provide persistent objects. Some libraries may be

designed for particular application classes like computational chemistry [13] or

to support a particular language [7, 4]. Finally, some compilers and program-
mers may choose to generate application-specific code using the core interface

directly.

The concept of I/O libraries is not new; the C std£o library and the C++
£ostreams library are common examples, both layered above the "core" kernel

interface. Yet few parallel file systems have been designed specifically to support

a variety of high-level libraries. The difficulty is in deciding how to divide fea-
tures between the core and the application libraries, and then in designing an

appropriate core interface. In our research to explore this issue, we are building

two generations of file systems. In the first, Galley, we investigate the underlying

file abstraction, a low-level read/write interface, and resource-scheduling alter-
natives. In the second, with the tentative name Galley2, we go a step further

and allow user code to run on the I/O nodes. The next two sections discuss each

file system in more detail.

3 The Galley Parallel File System

Our currentparallelfilesystem, Galley [31,32],looks likeFigure lb. A more

detailedpictureisshown in Figure 2.The core filesystem includesserversthat

run on the I/O nodes and a tinyinterfacelibrarythatrunson the compute nodes.

The I/O-node serversmanage file-systemmetadata, I/O-node caching,and disk



scheduling. The interface library translates library calls into messages to servers

on the I/O nodes and arranges the movement of data between compute and I/O

nodes. The higher-level application library, if any, is responsible for providing a
convenient API, data declustering, file-access semantics, and any compute-node

caching.

Compute Nodes

I/0 Nodes

Fig. 2. The structure of the Galley parallel file system includes a tiny interface library
on the compute node, which coordinates communication between application I/O fi-
braxies on the compute nodes and servers on the I/O nodes.

Galley's servers provide a unified global file-name space. Each file is actually

a collection of subfiles, each of which resides entirely on one I/O node. Each
subtile is itself a collection of one or more named forks. Each fork is a sequence

of bytes, the traditional file abstraction. Galley's core file system provides no

automatic data declustering; a library may choose to stripe data across subfiles,
for example.

Galley's forks are specifically designed to support libraries. In particular,

some libraries may wish to store metadata in one or more forks of the subtile,
with data in other forks. The traditional approach is to place the metadata

in an auxiliary file or in a "header" at the beginning of the data. The former

approach makes file management awkward, as there is more than one file name
involved in a single data set. The latter approach makes it difficult to access the

file through multiple libraries, each of which expects its own header, and can
complicate declustering calculations. In Galley each library can add its own fork

to the subfiles, containing its own metadata.

The structure of parallel files, beyond the fact that they are collections of local

files, is completely determined by library code. Multiple applications wishing



to usethe sameparallelfilesmustmaintaina mutually agreed structure, by
convention.

In an extensive characterization of parallel scientific applications [33], we

found that many applications access files in small pieces, typically in a regular

"strided" pattern. To allow application libraries to support these patterns effi-

ciently, the Galley interface supports both structured (e.g., strided and nested

strided) and unstructured read and write requests. This interface leads to dra-
matically better performance [32].

Galley's features, including the global name space, three-dimensional file
structure, and structured read and write requests, make it a suitable and ef-

ficient base for constructing parallel file systems, much more so than building

directly on distributed Unix systems.
More information about Galley is available on the WWW 2 and in forthcom-

ing papers [31, 32].

4 The Galley2 Parallel File System

Our next-generation file system, which we so far call "Galley2" for lack of a better
name, goes beyond Galley to allow application control over I/O-node activities.

We keep the same three-dimensional file structure of subfiles and forks, and we

keep the global name space, but we otherwise reduce the core file system to a
minimal local file system on each I/O node, and allow application-supplied code

to run on the I/O nodes (see Figure lc). Indeed, we expect that an I/O node

would have an active process (or thread) for each application with files on that

I/O node. Figure 3 gives a more detailed picture of this structure.
This structure breaks away from the traditional client-server structure to

allow for "programmable" servers. A fixed, common server always forces design-
ers to choose between specific high-level services that may not fit the needs of

all applications, and primitive low-level operations that permit flexibility in the

clients but at the cost of extensive client-server communications. Galley makes

a reasonable choice here, but (for example) uses a fixed caching policy.

In Galley2 the core file system is extremely simple: there is no caching,

prefetching, or remote access. It provides a (local) interface to open, close, read

and write forks through a block-level interface, and it arbitrates among I/O-

node programs competing for processor time, memory, disk access, and network
access. In short, it focuses on the shared aspects of the file system.

Thus, Galley2 applications can choose nearly all features of the parallel file

system, including the API, caching, prefetching, declustering, inter-node com-

munication protocols, synchronization and consistency, and so forth. Again, we

expect most applications to choose from pre-defined libraries, but we also en-
courage use of application-specific code written by application programmers,

generated automatically by compilers, or generated at run time [36]. We refer to
all of these choices as "application-selected code."

2 http://uww.cs.dar_mouth.edu/'nils/galley.html



Compute Nodes
VO Nodes

Fig. 3. The structure of the Galley2 parallel file system depends on application I/O
libraries that have components on both the compute and I/O nodes. The I/O-node
servers shrink down to simple I/O managers that arbitrate resources among the local
user-selected library modules.

There are many reasons to allow application-selected code on the I/O node.

Application-specific optimizations can be applied to I/O-node caching and prefetch-

ing. Mechanisms like disk-directed I/O [20] can be implemented, using application-

specific data-distribution information. File data can be distributed among mem-

ories according to a data-dependent mapping function, for example, in applica-

tions with a data-dependent decomposition of unstructured data [21]. Incoming
data can be filtered in a data-dependent way, passing only the necessary data

on to the compute node, saving network bandwidth and compute-node mem-

ory [21, 2]. Blocks can be moved directly between I/O nodes, for example, to

rearrange blocks between disks during a copy or permutation operation, without
passing through compute nodes. Format conversion, compression, and decom-

pression are also possible. In short, there are many ways that we can optimize

memory and disk activity at the I/O node, and reduce disk and network traffic,

by moving what is essentially application code to run at the I/O node in addition
to the compute nodes.

Although it would be feasible to use a Unix file system as the local file system,

the semantics and interface are not appropriate for the highest performance. In

particular, the Unix file-system interface does not give the applications enough

control, would have no global name space, and has an inefficient copy-based
interface.



5 Research directions

The success of our design clearly depends on the ability of the I/O-node oper-

ating system to efficiently manage its resources while providing the necessary

functionality. We are exploring the following issues:

- resource management: how should the I/O node manage its shared resources

in the presence of competing applications? The result must be a tradeoff

between overall system throughput and individual application performance.
Traditional uniprocessor policies do not directly apply to this distributed

situation; local resource decisions can have a disproportionate global impact

on performance.

- physical memory allocation: how should we best allocate physical memory

among I/O-node programs?
- processor scheduling: how shall we schedule the CPU among I/O-node pro-

grams? What about applications that choose to move some non-I/O-related

computation to the I/O node?
- disk transfers: what is an appropriate interface for requesting I/O to and

from buffers?

- message-passing: what is the best interface for I/O-node programs to com-

municate with the compute nodes, and with each other?

- What is the appropriate mechanism to support I/O-node programs? We are

considering three alternatives: processes, threads within a safe language like

Java [16] or Python 3, and threads running sandboxed code [45]. There are
three primary issues in this consideration:

1. how is the I/O-node manager protected from I/O-node programs? With
normal hardware protection, in the case of processes; with type-safe lan-

guages like Java; or with sandboxing.
2. how is the code loaded onto the I/O node? Presumably they can be

loaded from disk in the same way as the compute-node code. The tricky

part might be dynamic linking of sandboxed code.
3. what is the overhead?

6 Related work

The Hurricane File System (HFS) [25], a parallel file system for the Hector mul-

tiprocessor, is also designed with the philosophy that flexibility is critical for

performance. Indeed, their results clearly demonstrate the tremendous perfor-
mance impact of choosing the right file structure and management policies for

the application's access pattern. HFS is actually a collection of building-block

objects that can be plugged together differently according to application needs.

For example, some building blocks distribute data across multiple disks, others

provide prefetching policies, and others define an API. HFS allows the program-
mer to replace or extend application-level building blocks, but these do not

3 http://ewe.python.org/



include the objects that control declustering, replication, parity, or other server-

side attributes. Galley permits, but does not enforce, a building-block approach

to library design; other approaches are possible. Finally, the Hurricane operating
system does not dedicate nodes to I/O, so it is not unusual for application code

to run on "I/O" nodes.

The Portable Parallel File System (PPFS) [19] is a testbed for experimenting

with parallel file-system issues. It includes many alternative policies for declus-

tering, caching, prefetching, and consistency control, and allows application pro-
grammers to select appropriate policies for their needs. It also supports user-

defined declustering patterns through an upcall function. Unlike Galley, however,

there is no clearly defined lower-level interface to which programmers may write

new high-level libraries. Unlike Galley2, it does not allow application-selected

code (beyond that already included in PPFS) to execute on the I/O nodes.

In the Transparent Informed Prefetching (TIP) system [34] an application
provides a set of hints about its future accesses to the file system. The file

system uses these hints to make intelligent caching and prefetching decisions.

While this technique can lead to better performance through better prefetching,
it only affects prefetching and caching behavior. It is possible to provide "hints

that disclose," in their words, for other aspects of the system, but it is unclear

that these hints can provide the same amount of flexibility offered by Galley and
Galley2.

All three of these systems provide the application programmer some control

over the parallel file system, primarily by selecting existing policies from the
built-in alternatives.

GaUey2 promotes the use of application-selected code on the I/O nodes. Sev-

eral operating systems can download user code into the kernel [14, 26, 1]. Other
researchers have noted that it is useful to move the function to the data rather

than to move the data to the function [3, 42, 17]. Some distributed database

systems execute part of the SQL query in the server rather than the client, to

reduce client-server traffic [2]. Hatcher and Quinn hint that allowing user code

to run on nCUBE I/O nodes would be a good idea [18].

7 Status

Galley runs on the IBM SP-2 and on workstation clusters [31], and has so far
been extremely successful [32]. We have ported several application libraries on

top of Galley, including a traditional striped-file library, Panda [39, 43], Vesta [6],
and SOLAR [44]. We are also using Galley to investigate policies for managing

multi-application workloads.

We are building a simulator for Galley2, to evaluate some of the key ideas,

and a full implementation, to experiment with real applications. There is no

question that it will be a much more flexible system than Galley and its prede-

cessors. We will declare success if that flexibility provides better performance on a

wider range of applications. That will occur if the benefits of application-specific



I/O-node programs outweigh the cost of the extension mechanism (sandboxing,

context switching, or interpretation). We are optimistic!

More information about our research can be found at

http :llwww, cs. dartmouth, edulresearch/pario, html
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