
/j /3

Flexibility and Performance

of Parallel File Systems

)

• / _ ,¢

f

David Kotz and Nils Nieuwejaar

Department of Computer Science

Dartmouth College

Hanover, NH 03755 USA

{dfk, nils }@cs.dartmouth, edu

Abstract. As we gain experience with parallel file systems, it becomes

increasingly clear that a single solution does not suit all applications. For

example, it appears to be impossible to find a single appropriate interface,

caching policy, file structure, or disk-management strategy. Furthermore,

the proliferation of file-system interfaces and abstractions make applica-

tions difficult to port.

We propose that the traditional functionality of parallel file systems be

separated into two components: a fixed core that is standard on all plat-

forms, encapsulating only primitive abstractions and interfaces, and a set

of high-level libraries to provide a variety of abstractions and application-

programmer interfaces (APIs).

We present our current and next-generation file systems as examples of

this structure. Their features, such as a three-dimensional file structure,
strided read and write interfaces, and I/O-node programs, are specifically

designed with the flexibility and performance necessary to support a wide

range of applications.

1 Introduction

Scientific applications are increasingly dependent on multiprocessor computers

to satisfy their computational needs. Many scientific applications, however, also

use tremendous amounts of data [11]: input data collected from satellites or seis-

mic experiments, checkpointing output, and visualization output. Worse, some

applications manipulate data sets too large to fit in main memory, requiring

either explicit or implicit virtual memory support. The I/O system becomes the

bottleneck in all of these applications, a bottleneck that is worsening as processor

speeds continue to improve more rapidly than disk speeds.

Fortunately, it is now possible to configure most parallel systems with suf-

ficient I/O hardware [22]. Most of today's parallel computers interconnect tens

This research was funded by NSF under grant number CCR-9404919 and by NASA

Ames under agreement numbers NCC 2-849 and NAG 2-936.

This paper appeared previously in ACM Operating Systems Review 30(2), April

1996, pp. 63-73. The only changes are the format, a shorter abstract, and updates
to Section 7 and the references.

Copyright 1996 by Spdnger-Veriag.
Appeared in the Third IntemalJonal Conference of the Austrian Center for Parallel Computation (ACPC),
which was published in the Sprlnger-Verlag Lecture Notes in Computer Science series.
Available at URL ftp://ftp.cs.darlmouth.edu/pub/CS-papem/Kotz/kotz:flexibility2.ps.Z.

or hundreds of processor nodes, each of which has a processor and memory, with

a high-speed network. Nodes with attached disks are usually reserved as I/O
nodes, while applications run on some cluster of the remaining compute nodes.

In the past few years, many parallel file systems have been described in

the literature, including Bridge/PFS [12], CFS [35], nCUBE [9], OSF/PFS [38],

sfs [271, Vesta/PIOFS [61, HFS [25], PIOUS [301, RAMA [201, PPFS [191, Scotch [151,

and Galley [31, 32]. Many more techniques for improving the performance of

parallel file systems have been described, including caching and prefetching [24,

23, 34], two-phase I/O [10], disk-directed I/O [20], compute-node caching [37],
chunking [40], compression [41], filtering [21, 2], and so forth.

The diversity of current systems and techniques indicates that there is clearly

no consensus about the structure of, interface to, or even functionality of parallel

file systems. Indeed, it seems that no one interface or structure will be appro-

priate for all parallel applications; for maximum performance, flexibility of the

underlying system is critical [25]. It is important that applications be able to
choose the interface and policies that work best for them, and for application

programmers to have control over I/O [46, 8].

This diversity of current systems, particularly of the application-programmer's

interface (API), also makes it difficult to write portable applications. Nearly ev-
ery file system mentioned above has its own API. A standard interface is being

developed, MPI-IO [5], but even that interface is appropriate only for a certain

class of applications.

2 Solution

We believe that flexibility is needed for performance. An application programmer
should be able to choose the interfaces and abstractions that work best for that

application. To be practical, however, these interfaces and abstractions should

be available on all platforms, so the application is portable, and each platform

should support multiple interfaces and abstractions, so the platform is usable by

many applications.

Consider Figure 1. Most traditional parallel file-system solutions attempt to

provide a common file system that hopes to fit all applications. This common

"core" file system is fixed, in that it must be used by all applications accessing
parallel files. 1 To increase flexibility, we propose to move much of the function-

ality out of the core and into application libraries. Our new Galley Parallel File
System takes this "RISC"-like approach.

The new core file system provides only a minimal set of services, leaving
higher-level interfaces, semantics, and functionality to application-selectable li-

braries. While the implementation of the core is platform dependent, and pro-

vided by the platform vendor, its interface is standard across all platforms. This

approach has proven successful with the MPI message-passing standard [28].

1 We avoid the term "kernel," as the core may be comprised of user-level libraries,
server daemons, and kernel code.

Compute
node

UO node

Traditional Galley Galley2

a) b) c)

Fig. 1. Our proposed evolution of parallel file-system structure. Traditional systems
depend on a fixed "core" file system that attempts to serve all applications. In our
Galley File System, we shrink the core to leave the API and many of the parallel features
to an application-selectable library. In our next-generation Galley2 File System, we
shrink the core further to allow user-selected code to run on the I/O nodes.

Application programmers may then choose from a variety of different lan-

guages and libraries, to select one that best fits the application's needs. Some

languages or libraries would provide a traditional read-write abstraction; others

(probably with compiler support) would provide transparent out-of-core data
structures; still others may provide persistent objects. Some libraries may be

designed for particular application classes like computational chemistry [13] or

to support a particular language [7, 4]. Finally, some compilers and program-
mers may choose to generate application-specific code using the core interface

directly.

The concept of I/O libraries is not new; the C std£o library and the C++
£ostreams library are common examples, both layered above the "core" kernel

interface. Yet few parallel file systems have been designed specifically to support

a variety of high-level libraries. The difficulty is in deciding how to divide fea-
tures between the core and the application libraries, and then in designing an

appropriate core interface. In our research to explore this issue, we are building

two generations of file systems. In the first, Galley, we investigate the underlying

file abstraction, a low-level read/write interface, and resource-scheduling alter-
natives. In the second, with the tentative name Galley2, we go a step further

and allow user code to run on the I/O nodes. The next two sections discuss each

file system in more detail.

3 The Galley Parallel File System

Our currentparallelfilesystem, Galley [31,32],looks likeFigure lb. A more

detailedpictureisshown in Figure 2.The core filesystem includesserversthat

run on the I/O nodes and a tinyinterfacelibrarythatrunson the compute nodes.

The I/O-node serversmanage file-systemmetadata, I/O-node caching,and disk

scheduling. The interface library translates library calls into messages to servers

on the I/O nodes and arranges the movement of data between compute and I/O

nodes. The higher-level application library, if any, is responsible for providing a
convenient API, data declustering, file-access semantics, and any compute-node

caching.

Compute Nodes

I/0 Nodes

Fig. 2. The structure of the Galley parallel file system includes a tiny interface library
on the compute node, which coordinates communication between application I/O fi-
braxies on the compute nodes and servers on the I/O nodes.

Galley's servers provide a unified global file-name space. Each file is actually

a collection of subfiles, each of which resides entirely on one I/O node. Each
subtile is itself a collection of one or more named forks. Each fork is a sequence

of bytes, the traditional file abstraction. Galley's core file system provides no

automatic data declustering; a library may choose to stripe data across subfiles,
for example.

Galley's forks are specifically designed to support libraries. In particular,

some libraries may wish to store metadata in one or more forks of the subtile,
with data in other forks. The traditional approach is to place the metadata

in an auxiliary file or in a "header" at the beginning of the data. The former

approach makes file management awkward, as there is more than one file name
involved in a single data set. The latter approach makes it difficult to access the

file through multiple libraries, each of which expects its own header, and can
complicate declustering calculations. In Galley each library can add its own fork

to the subfiles, containing its own metadata.

The structure of parallel files, beyond the fact that they are collections of local

files, is completely determined by library code. Multiple applications wishing

to usethe sameparallelfilesmustmaintaina mutually agreed structure, by
convention.

In an extensive characterization of parallel scientific applications [33], we

found that many applications access files in small pieces, typically in a regular

"strided" pattern. To allow application libraries to support these patterns effi-

ciently, the Galley interface supports both structured (e.g., strided and nested

strided) and unstructured read and write requests. This interface leads to dra-
matically better performance [32].

Galley's features, including the global name space, three-dimensional file
structure, and structured read and write requests, make it a suitable and ef-

ficient base for constructing parallel file systems, much more so than building

directly on distributed Unix systems.
More information about Galley is available on the WWW 2 and in forthcom-

ing papers [31, 32].

4 The Galley2 Parallel File System

Our next-generation file system, which we so far call "Galley2" for lack of a better
name, goes beyond Galley to allow application control over I/O-node activities.

We keep the same three-dimensional file structure of subfiles and forks, and we

keep the global name space, but we otherwise reduce the core file system to a
minimal local file system on each I/O node, and allow application-supplied code

to run on the I/O nodes (see Figure lc). Indeed, we expect that an I/O node

would have an active process (or thread) for each application with files on that

I/O node. Figure 3 gives a more detailed picture of this structure.
This structure breaks away from the traditional client-server structure to

allow for "programmable" servers. A fixed, common server always forces design-
ers to choose between specific high-level services that may not fit the needs of

all applications, and primitive low-level operations that permit flexibility in the

clients but at the cost of extensive client-server communications. Galley makes

a reasonable choice here, but (for example) uses a fixed caching policy.

In Galley2 the core file system is extremely simple: there is no caching,

prefetching, or remote access. It provides a (local) interface to open, close, read

and write forks through a block-level interface, and it arbitrates among I/O-

node programs competing for processor time, memory, disk access, and network
access. In short, it focuses on the shared aspects of the file system.

Thus, Galley2 applications can choose nearly all features of the parallel file

system, including the API, caching, prefetching, declustering, inter-node com-

munication protocols, synchronization and consistency, and so forth. Again, we

expect most applications to choose from pre-defined libraries, but we also en-
courage use of application-specific code written by application programmers,

generated automatically by compilers, or generated at run time [36]. We refer to
all of these choices as "application-selected code."

2 http://uww.cs.dar_mouth.edu/'nils/galley.html

Compute Nodes
VO Nodes

Fig. 3. The structure of the Galley2 parallel file system depends on application I/O
libraries that have components on both the compute and I/O nodes. The I/O-node
servers shrink down to simple I/O managers that arbitrate resources among the local
user-selected library modules.

There are many reasons to allow application-selected code on the I/O node.

Application-specific optimizations can be applied to I/O-node caching and prefetch-

ing. Mechanisms like disk-directed I/O [20] can be implemented, using application-

specific data-distribution information. File data can be distributed among mem-

ories according to a data-dependent mapping function, for example, in applica-

tions with a data-dependent decomposition of unstructured data [21]. Incoming
data can be filtered in a data-dependent way, passing only the necessary data

on to the compute node, saving network bandwidth and compute-node mem-

ory [21, 2]. Blocks can be moved directly between I/O nodes, for example, to

rearrange blocks between disks during a copy or permutation operation, without
passing through compute nodes. Format conversion, compression, and decom-

pression are also possible. In short, there are many ways that we can optimize

memory and disk activity at the I/O node, and reduce disk and network traffic,

by moving what is essentially application code to run at the I/O node in addition
to the compute nodes.

Although it would be feasible to use a Unix file system as the local file system,

the semantics and interface are not appropriate for the highest performance. In

particular, the Unix file-system interface does not give the applications enough

control, would have no global name space, and has an inefficient copy-based
interface.

5 Research directions

The success of our design clearly depends on the ability of the I/O-node oper-

ating system to efficiently manage its resources while providing the necessary

functionality. We are exploring the following issues:

- resource management: how should the I/O node manage its shared resources

in the presence of competing applications? The result must be a tradeoff

between overall system throughput and individual application performance.
Traditional uniprocessor policies do not directly apply to this distributed

situation; local resource decisions can have a disproportionate global impact

on performance.

- physical memory allocation: how should we best allocate physical memory

among I/O-node programs?
- processor scheduling: how shall we schedule the CPU among I/O-node pro-

grams? What about applications that choose to move some non-I/O-related

computation to the I/O node?
- disk transfers: what is an appropriate interface for requesting I/O to and

from buffers?

- message-passing: what is the best interface for I/O-node programs to com-

municate with the compute nodes, and with each other?

- What is the appropriate mechanism to support I/O-node programs? We are

considering three alternatives: processes, threads within a safe language like

Java [16] or Python 3, and threads running sandboxed code [45]. There are
three primary issues in this consideration:

1. how is the I/O-node manager protected from I/O-node programs? With
normal hardware protection, in the case of processes; with type-safe lan-

guages like Java; or with sandboxing.
2. how is the code loaded onto the I/O node? Presumably they can be

loaded from disk in the same way as the compute-node code. The tricky

part might be dynamic linking of sandboxed code.
3. what is the overhead?

6 Related work

The Hurricane File System (HFS) [25], a parallel file system for the Hector mul-

tiprocessor, is also designed with the philosophy that flexibility is critical for

performance. Indeed, their results clearly demonstrate the tremendous perfor-
mance impact of choosing the right file structure and management policies for

the application's access pattern. HFS is actually a collection of building-block

objects that can be plugged together differently according to application needs.

For example, some building blocks distribute data across multiple disks, others

provide prefetching policies, and others define an API. HFS allows the program-
mer to replace or extend application-level building blocks, but these do not

3 http://ewe.python.org/

include the objects that control declustering, replication, parity, or other server-

side attributes. Galley permits, but does not enforce, a building-block approach

to library design; other approaches are possible. Finally, the Hurricane operating
system does not dedicate nodes to I/O, so it is not unusual for application code

to run on "I/O" nodes.

The Portable Parallel File System (PPFS) [19] is a testbed for experimenting

with parallel file-system issues. It includes many alternative policies for declus-

tering, caching, prefetching, and consistency control, and allows application pro-
grammers to select appropriate policies for their needs. It also supports user-

defined declustering patterns through an upcall function. Unlike Galley, however,

there is no clearly defined lower-level interface to which programmers may write

new high-level libraries. Unlike Galley2, it does not allow application-selected

code (beyond that already included in PPFS) to execute on the I/O nodes.

In the Transparent Informed Prefetching (TIP) system [34] an application
provides a set of hints about its future accesses to the file system. The file

system uses these hints to make intelligent caching and prefetching decisions.

While this technique can lead to better performance through better prefetching,
it only affects prefetching and caching behavior. It is possible to provide "hints

that disclose," in their words, for other aspects of the system, but it is unclear

that these hints can provide the same amount of flexibility offered by Galley and
Galley2.

All three of these systems provide the application programmer some control

over the parallel file system, primarily by selecting existing policies from the
built-in alternatives.

GaUey2 promotes the use of application-selected code on the I/O nodes. Sev-

eral operating systems can download user code into the kernel [14, 26, 1]. Other
researchers have noted that it is useful to move the function to the data rather

than to move the data to the function [3, 42, 17]. Some distributed database

systems execute part of the SQL query in the server rather than the client, to

reduce client-server traffic [2]. Hatcher and Quinn hint that allowing user code

to run on nCUBE I/O nodes would be a good idea [18].

7 Status

Galley runs on the IBM SP-2 and on workstation clusters [31], and has so far
been extremely successful [32]. We have ported several application libraries on

top of Galley, including a traditional striped-file library, Panda [39, 43], Vesta [6],
and SOLAR [44]. We are also using Galley to investigate policies for managing

multi-application workloads.

We are building a simulator for Galley2, to evaluate some of the key ideas,

and a full implementation, to experiment with real applications. There is no

question that it will be a much more flexible system than Galley and its prede-

cessors. We will declare success if that flexibility provides better performance on a

wider range of applications. That will occur if the benefits of application-specific

I/O-node programs outweigh the cost of the extension mechanism (sandboxing,

context switching, or interpretation). We are optimistic!

More information about our research can be found at

http :llwww, cs. dartmouth, edulresearch/pario, html

References

1. B. Bershad, S. Savage, P. Pardyak, E. Grin Sirer, M. E. Fiuczynski, D. Becker,

C. Chambers, and S. Eggers. Extensibility, safety and performance in the SPIN

operating system. In Proc. of the 15th ACM SOSP, pages 267-284, Dec. 1995.

2. A. J. Borr and F. Putzolu. High performance SQL through low-level system inte-

gration. In Proc. of the AGM SIGMOD Conf., pages 342-349, 1988.

3. J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Techniques for reducing

consistency-related communication in distributed shared-memory systems. ACM

TOCS, 13(3):205-243, Aug. 1095.

4. A. Choudhary, R. Bordawekar,

M. Harry, R. Krishnaiyer, R. Ponnusamy, T. Singh, and R. Thakur. PASSION:

paraJlel and scalable software for input-output. Technical Report SCCS-636, ECE

Dept., NPAC and CASE Center, Syracuse University, Sept. 1994.

5. P. Corbett, D. Feitelson, Y. Hsu, J.-P. Prost, M. Snir, S. Fineberg, B. Nitzberg,

B. Traversat, and P. Wong. MPI-IO: a parallel file I/O interface for MPI. Techni-

cal Report NAS-95-002, NASA Ames Research Center, Jan. 1995. Version 0.3.

6. P. F. Corbett, D. G. Feitelson, J.-P. Prost, G. S. Almasi, S. J. Baylor, A. S. Bol-

marcich, Y. Hsu, J. Satran, M. Snir, R. Colao, B. Herr, J. Kavaky, T. R. Morgan,

and A. Zlotek. Parallel file systems for the IBM SP computers. IBM Sys. Jour, al,

34(2):222-248, Jan. 1995.

7. T. H. Cormen and A. Colvin. ViC*: A preprocessor for virtual-memory C*. Tech-

nical Report PCS-TR94-243, Dept. of Computer Science, Dartmouth College, Nov.
1994.

8. T. H. Cormen and D. Kotz. Integrating theory and practice in parallel file systems.
In Proc. of the 1993 DAGS/PC S_tmposium, pages 64-74, Hanover, NH, June 1993.
Dartmouth Inst. for Adv. Graduate Studies. Revised as Dartmouth PCS-TR93-

188 on 9/20/94.

9. E. DeBenedictis and J. M. del Rosario. nCUBE parallel I/O software. In Proc. o/

the llth IPCCC, pages 0117-0124, Apr. 1992.

10. J. M. del Rosario, R. Bordawekar, and A. Choudhary. Improved parallel I/O via a

two-pha_e run-time access strategy. In IPPS '93 Workshop on I/O in Par. Comp.

Sys., pages 56-70, 1993. Also published in Computer Architecture News 21(5),
December 1993, pages 31-38.

11. J. M. dei Rosario and A. Choudhary. High performance I/O for parallel computers:
Problems and prospects. IEEE Computer, 27(3):59-68, Max. 1994.

12. P. C. Dibble. A Parallel Interleaved File System. PhD thesis, University of
Rochester, Max. 1990.

13. I. Foster and J. Nieplocha. ChemIO: High-performance I/O for computational

chemistry applications. WWW http://www.mcs.anl.gov/chemio/, Feb. 1996.

14. R. S. Gaines. An operating system based on the concept of a supervisory computer.

Comm. of the ACM, 15(3):150-156, Mar. 1972.

15. G. A. Gibson, D. Stodoisky, P. W. Chang, W. V. Courtright II, C. G. Demetriou,
E. Ginting, M. Holland, Q. Ms, L. Neal, R. H. Patterson, J. Su, R. Youssef, and

J. Zelenka. The Scotch parallel storage systems. In Proc. of 40th IEEE Computer

Society International Conference (COMPCON 95), pages 403-410, San Francisco,
Spring 1995.

16. J. Gosling and H. McGilton. The Java language: A white paper. Sun Microsys-
terns, 1994.

17. R. S. Gray. Agent Tcl: A transportable agent system. In Proceedings o/the CiKM

Workshop on Intelligent Information Agents, Fourth International Conference on

information and Knowledge Management (CIKM 95), Baltimore, Maryland, Dec.
1995.

18. P. J. Hatcher and M. J. Quinn. C*-Linda: A programming environment with mul-

tiple data-parallel modules and parallel I/O. In Proc. of the _4th HICSS, pages
382-389, 1991.

19. J. Huber, C. L. Elford, D. A. Reed, A. A. Chien, and D. S. Bhmenthal. PPFS:

A high performance portable parallel file system. In Proc. o/the 9th ACM Int'i

Conf. on Supercomp., pages 385-394, Barcelona, July 1995.

20. D. Kotz. Disk-directed I/O for MIMD multiprocessors. In Proc. of the 1994 Syrup.

on OS Design and lmpl., pages 61-74, Nov. 1994. Updated as Dartmouth TR PCS-

TR94-226 on November 8, 1994.

21. D. Kotz. Expanding the potential for disk-directed I/O. In Proc. o/the 1995 iEEE

SPDP, pages 490--495, Oct. 1995.

22. D. Kot,.. Introduction to multiprocessor I/O architecture. In R. Jaia, J. Werth,

and J. C. Browne, editors, input/Output in Parallel and Distributed Computer

Systems, chapter 4, pages 97-123. Kluwer Academic Publishers, 1996.

23. D. Kotz and C. S. Ellis. Caching and writeback policies in parallel file systems. J.

o/Par, and Dist. Comp., 17(1-2):140-145, January and February 1993.

24. D. Kotz and C. S. Ellis. Practical prefetching techniques for multiprocessor file

systems. J. o/Dist, and Par. Databases, 1(1):33-51, Jan. 1993.

25. O. Krieger and M. Stumm. HFS: A performance-oriented flexible file system based

on building-block compositions. In 4th Workshop on I/O in Par. and Dist. Sys.,

pages 95-108, Philadelphia, May 1996.

26. C. H. Lee, M. C. Chen, and R. C. Chang. HiPEC: High performance external

virtual memory caching. In Proc. of the 1994 Syrup. on OS Design and lmpi.,

pages 153-164, 1994.

27. S.J. LoVerso, M. Isman, A. Nanopoulos, W. Nesheim, E.D. Milne, and

R. Wheeler. s/s: A parallel file system for the CM-5. In Proc. of the 1993 Summer

USENIX Conf., pages 291-305, 1993.

28. Message Passing Interface Forum. MPI: A Message-Passing Inter/ace Standard,

1.0 edition, May 5 1994. http://www.mcs.anl.gov/Projects/mpi/standard.html.

29. E. L. Miller and R. H. Katz. RAMA: Easy access to a high-bandwidth massively

parallel file system. In Proc. o/the 1995 Winter USENIX Conf., pages 59-70, Jan.

1995.

30. S. A. Moyer and V. S. Sunderam. PIOUS: a scalable parallel I/O system for dis-

tributed computing environments. In Proc. of the Scalable High-Perf. Comp. Conf.,

pages 71-78, 1994.

31. N. Nieuwejaar and D. Kotz. The Galley parallel file system. In Proc. o/the lOth

ACM int'l Con/. on Supercomp., pages 374-381, May 1996.

32. N. Nieuwejaax and D. Kotz. Performance of the Galley parallel file system. In 4th

Workshop on I/0 in Par. and Dist. Sys., pages 83-94, May 1996.

33. N. Nieuwejaar, D. Kotz, A. Purakayastha, C. S. Ellis,and M. Best. File-access

characteristicsof parallelscientificworkloads. Technical Report PCS-TR95-263,

Dept. of Computer Science, Dartmouth College, Aug. 1995. To appear in IEEE

TPDS.

34. R. H. Patterson,G. A. Gibson, E. Ginting, D. Stodolsky,and J. Zelenka. Informed

prefetchingand caching. In Proc. of the 15th ACM SOSP, pages 79-95, Dec. 1995.

35. P. Pierce. A concurrent filesystem for a highly parallelmass storage system. In

Proc. of the Fourth Conf. on Hypercube Concurrent Comp. and AppI., pages 155-

160. Golden Gate Enterprises, Los Altos, CA, Mar. 1989.

36. C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan, J. Inouye, L. Kethana,

J. Walpole, and K. Zhang. Optimistic incremental specialization: Streamlining

a commercial operating system. In Proc. of the 15th ACM SOSP, pages 314-324,

Dec. 1995.

37. A. Purakayastha, C. S. Ellis, and D. Kotz. ENWRICH: a compute-processor write

caching scheme for parallel file systems. In $th Workshop on 1/0 in Par. and Dist.

Sys., pages 55-68, May 1996.

38. P. J. Roy. Unix file access and caching in a multicomputer environment. In Proc.

of the Useniz Mach 11I Symposium, pages 21-37, 1993.

39. K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-directed

collective I/O in Panda. In Proc. of Supercomp. '95, Dec. 1995.

40. K. E. Seamons and M. Winslett. An efficient abstract interface for multidimen-

sional array I/O. In Proc. of Supercomp. '9J, pages 650-659, Nov. 1994.

41. K. E. Seamons and M. Winslett. A data management approach for handling large

compressed arrays in high performance computing. In Proc. of the 5th Syrup. on

the Frontiers of Massively Par. Comp., pages 119-128, Feb. 1995.

42. J. W. Sta_aos and D. K. Gifford. Remote execution. ACM TOPLAS, 12(4):537-

565, Oct. 1990.

43. J. T. Thomas. The Panda array I/O library on the Galley parallel file system.

Technical Report PCS-TR96-288, Dept. of Computer Science, Dartmouth College,

June 1996. Senior Honors Thesis.

44. S. Toledo and F. G. Gustavson. The design and implementation of SOLAR, a

portable libraryforscalable out-of-corelinearalgebra computations. In Jth Work-

shop on [/0 in Par. and Dist.Sys.,pages 28--40,Philadelphia,May 1996.

45. R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficientsoftware-based

faultisolation.In Proc. of 1Jth ACM SOSP, pages 203-216, 1993.

46. D. Womble, D. Greenberg, R. Riesen, and S. Wheat. Out of core, out of mind:

Practical parallel I/O. In Proc. of the Scalable Par. Libraries Conf., pages 10-16,

Mississippi State University, Oct. 1993.

This articlewas processed using the IATEX macro package with LLNCS style

