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ABSTRACT

An explicit finite difference real time iteration scheme is developed to study harmonic sound propagation in

aircraft engine nacelles. To reduce storage requirements for future large three-dimensional problems, the time

dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both

explicit and stable for a harmonic monochromatic sound field, a parabolic (in time) approximation is introduced to

reduce the order of the governing equation. The analysis begins with a harmonic sound source radiating into a quies-

cent duct. This fully explicit iteration method then calculates stepwise in time to obtain the "steady state" harmonic

solutions of the acoustic field. For stability, applications of conventional impedance boundary conditions requires

coupling to explicit hyperbolic difference equations at the boundary.

The introduction of the time parameter eliminates the large matrix storage requirements normally associated

with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method

favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is

applied to sound propagation in a two-dimensional hard wall duct with plug flow.

INTRODUCTION

Both steady-state (frequency domain) and transient (time domain) finite difference and finite element tech-

niques have been developed to study sound propagation in aircraft nacelles. To date, the numerical solutions have

generally been limited to moderate frequency sound and mean flow Mach numbers in two-dimensional axisym-

metric nacelles. Wavelength resolution problems have prevented a broader range of applications of the numerical

methods. A fine grid is required to resolve the short wavelengths associated with high frequency sound propagation

with high inlet Mach numbers. Thus, application of numerical techniques to high frequency sound propagation in

three-dimensional engine nacelles has yet to be attempted.

To extend numerical analysis to higher frequencies and inlet flow Mach numbers, as well as three-dimensional

geometries Baumeister and Kreider (ref. 10), suggest using a pseudo-time-frequency transformation to the acoustic

potential equations. Their method eliminates the large matrix storage requirements of the steady state (Fourier trans-

forms) techniques in the frequency domain but still allows the use of conventional impedance conditions. Most

importantly, their two step time marching formulation is fully explicit under flow conditions. They also suggested

using an almost highly structured grid to reducing computer storage and run times. Using the same grid system and

governing acoustic potential equations, the goal of the present paper is to develop a stable real time iteration scheme.
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The paper begins with a brief description of the governing equations. A detailed development of the governing

equations has been given earlier (ref. 10); it is therefore described only briefly here. Next, assuming a harmonic
monochromatic sound field, a parabolic (in time) approximation is introduced to reduce the order of the governing

equation. The bulk of the paper describes the development of a stable, explicit finite difference scheme. The scheme

is iterated in time to converge to the steady-state solution associated with a Fourier transform solution.
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NOMENCLATURE

steady speed of sound, C#/Co #, equation (2)

dimensional duct height or diameter

duct height, D = 1

parameter, equation (25)

source amplitude at duct entrance, equation (17)

dimensional frequency

dimensionless frequency, f#D#/Co#

parameter, equation (27)

parameter, equation (26)

length of duct, L#/D #, figure 1

Mach number at duct entrance

unit outward normal

dimensional pressure

dimensionless fluid pressure, P#/Po#Co#2

acoustic pressure fluctuation, equation (6)

dimensionless time, f#t #

time step

dimensionless axial coordinate, x#/D #

axial grid spacing

dimensionless transverse coordinate, y#/D #

transverse grid spacing

ratio of specific heats



p dimensionlessfluiddensity,p#/po#

steadyfluiddensity

dimensionlesstimedependentflowpotential,(_#/Co#D#

steadymeanflowpotential

¢' transientacousticpotential

spatialpotential,equation(10)

co dimensionlessfrequency,2rff

V D#V#

Subscripts

i axialindex,seefigure1

j transverseindex,seefigure1

o ambientofreferencecondition

Superscripts

# dimensionalquantity

k timestep

PROBLEMSTATEMENT

Theproblemunderconsiderationhereisthesteady-statepropagationofsound,representedbytheperturbation
acousticpotential,throughatwo-dimensionalrectangularduct.Thesource,noiseemanatingfromfanbladesinajet
engineinletnozzle,isrepresentedbyspecifyingthepressuredistributionatthefanface.Thegoalofthepaperisto
developastable,explicitfinitedifferenceschemethatincorporatesthefarfieldimpedanceconditionappliedatthe
ductexitandrigidbodyboundaryconditionsontheductwalls.Themethodisdesignedwiththeintentionofextend-
ingthecurrenttwo-dimensionalductformulationtogeneralthree-dimensionalnacelledesignproblemswithavari-
etyofpossibleboundaryconditionsinthenearandfarfields.

GOVERNINGEQUATIONS

Acousticpropagationininletnacellescanbereasonablymodeledbyaninviscidapproximation.Forsingle
modeJT15Denginedata,apreviousfiniteelementstudy(ref.8)employingthepotentialformulationinthefre-
quencydomainshowedgoodagreementwithexperimentaldata inthefarfieldradiationpatternaswellassup-
pressorattenuation.Duetothissuccess,theproblemunderconsiderationhereis formulatedintermsofanacoustic
potential.

Forinviscid,nonheatconductingandirrotationalflow,thelinearizedacousticequationfortwo-dimensional
potentialflowcanbewrittenindimensionlessformas(ref.10,eq.(1))



0--f2,  ),xx +2 x y,x,+2f x¢xt+ + +Cy xy),x

+2( x xy + x,x + yy) (1)

where

(2)

The symbol ¢ represents steady mean flow potential while _' represent the time dependent acoustic potential. The

speed of propagation of a disturbance is represented by c and the frequency of an acoustic source by f. The sub-

scripts indicate partial differentiation with respect to the subscripted variables.

The conventional normalization factors used to develop these nondimensional equations are given in the

NOMENCLATURE. However, the normalization of time deserves some special comment. A common choice for

normalizing time is t = Co#t#/D#. The superscript # designates a dimensional quantity wN!e the subscript o inNcates
an arbitrary reference value. With this choice, the dimensionless frequency f would not appear in equations (1)or

(2). However, in this paper, the dimensional frequency f# of the forcing acoustic signal was chosen to no_alize

time, so that t = f#t #. As a result, the time t indicates the number of complete acoustic cycles that have occurred since

the start of the solution process. This is advantageous because the total time of the numerical calculation can gener-

ally be set independently of the frequency of the acoustic signal.

For simplicity, the current paper will focus only on plug flow. For this case, the mean flow terms in equation (1)
become

_y =_xy=_xx=0 _x =Mf (3)

Substituting equation (3) into equation (1) yields

0 : f2_'tt- (E2 M2)_)'xx- _2¢'yy + 2flVlfCx t (4)

and

e2 =__l(r.OM _ (5)

The relationship between the acoustic pressure and potential can also be expressed as (ref. 10, eq, (7))

1_P' (x, y, t) = -f(_'t - Mf(_' x (x=O, Oy=O) (6)
P

Equation (4) is the basic equation used to establish a finite difference formulation for sound propagation in the rect-

angular duct shown in figure 1. However, care must be taken when discretizing derivative terms to insure that the

resulting scheme is both stable and explicit; Note that it is easy t° develop a stable implicit method, but this would

yield a matrix formulation that is no better than a frequency domain approach. It tums out that the proper treatment
of the mixed time and space derivative terms (which appear on the second line of eq. (1)) is critical for maintaining

stability.

The implicit formulation is obtained by approximating the mixed partials by (ref. 6, eq. (16), and ref, 1, p. 884,

eq. (25.3.27))

d_' k+l 'k ' 'k-1 2,' ik _.' k-i-1 'k-1
_)'xt = "ri,j + *i-l,j + (_ik,j + (_i,j ,_ -- _?i-l,j - *i+l,j

2Axkt
(7)
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_h'.k+l ' k-1 a.' k +a.' k __2q_'ik_a,' k+l ' k-1+ (_i,j + Vi,j+l '¢i,j-1 Vi,j+l -- @i,j-1
_'yt -- "rx,j

2AtAy

where i and j denote the space indices for the nodal system shown in figure 1, k is the time index defined by

t k+l = t k + At

and Ax, Ay, and At are the space and time mesh spacings, respectively.

Reference 6 shows that equation (7) can be used in an explicit fashion for one-dimensional plug flow problems

in a duct. However, if the flow is not one-dimensional or if the region exterior to the duct is included, the scheme

must be implicit. This approach is inappropriate for general three-dimensional problems. This problem can be cir-

cumvented by modifying the governing equation. The details follow in the next section.

(8)

(9)

PARABOLIC APPROXIMATION

There are several ways to develop a frequency domain formulation for the general two-dimensional acoustic
wave equation (1) or the plug flow simplification equation (4). The Fourier Transform can be applied if the potential

has a multifrequency content. In the monochromatic case, this is equivalent to assuming that

-i #t #
_' (x,y,t) = _t(x,y)e m = _(x, y)e -i2m (10)

which, in the case of plug flow (from eq. (4)), yields

0 = (_2 _ M2)_xx +_2_yy + c02_ +i2coMf_x (11)

This equation would be solved numerically using a linear system of equations. However, the associated matrix
is not positive definite, which can lead to numerical difficulties, and which preclude the use of iterative techniques.

Therefore, it is desirable to develop an explicit finite difference scheme to avoid the use of matrices. In time-

dependent form, equations (1) or (4) cannot easily be discretized in such a way that the resulting finite difference
scheme is both stable and explicit in the presence off low (it is possible to obtain reasonable results in the no-flow

case).

Reference 10 resolves these difficulties by a transformation to a transient-frequency domain. Herein, however,

the resolution of these difficulties is achieved by applying the transformation equation (10) only once to equa-

tion (4). Employing equation (10), the time derivatives in equation (4) can replaced by the following relationships:

_'t = -i2rc_ e-i2ra = -i2/N)' (12)

@'xt= _x (-i2r_lI/e-i2gt) = -i2glgxe-i2rct = -i27_@'x (13)

Under this transformation, the plug flow equation (4) becomes,

_ifo_d_'t = @2 _ M 2)dfxx + E2d0'yy+ i201Mf,' x (14)

The mixed derivative problem term which prevented an explicit finite difference representation of equation (4)

has been eliminated from equation (4). An explicit finite difference solution can now be formulated to solve

equation (14).



Theinterestinthispaperisinsteadystateharmonicsolutionstothewaveequationasrepresentedbythevari-
able_.Therefore,aftersufficienttimeduringthetransientsolutionofequation(14),the_'variablecanberelatedto
thesteadystateFouriertransformedsolution,usingequation(10).

_' (x,y,t) (15)_(x,y) - -i2rct
e

INITIAL AND BOUNDARY CONDITIONS

The duct is assumed to be quiescent at time 0, so that the initial condition is

_' (x,y,0) = 0

As the equation is iterated in time, the solution builds up to the steady state harmonic solution.

At the duct entrance, (x = 0), the potential is given by

_' (0, y, t) = F(y)e -i2nt

(16)

(17)

If the pressure at x = 0 is specified as the boundary condition, then the potential is related to the pressure directly

through equation (6).
The hard wail condition is

V_' .n = 0 (18)

where n is the unit outward normal.

To simulate a nonreflective boundary at the duct exit in figure 1, the difference equation at the end of the com-

putational domain can be expressed in terms of an exit impedance. In tem, this can be used to develop an exit gradi-
ent condition to simulate a nonreflecting grid terrninationJ For plane wave propagation in the examples to follow,

Baumeister and Kreider (ref. 10)have shown this gradient to be of the form:

io _, (19)
O'x - E +Mf

FINITE DIFFERENCE EQUATIONS

The finite difference approximations determine the potential at the spatial grid points at discrete time steps
tk = kAt. Starting from the known initial conditions at t = 0 and the boundary conditions, the algorithm marches the

solution out to later times.

Away from the duct boundaries, as shown by the cell in figure 1, each partial derivative in equation (14) can be

expressed as follows:

d_'..k+l ' k-1

"ft

2At
(20)

,'xx *i+k'j-2*i'Jk+*'ik'j
- Ax 2

(21)
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'k 'k 'k

_y = _i,j+l --2_i,j +_i,j-!
Ay 2

(22)

(23)

Substituting these expressions into equation (14) yields

g" "k+l( -h _ = q_i,j Ay2)v_,j _.2At) AX 2 + +qbi,j+l*i+l'J_-X2 2Ax) -'J_Ax 2_X" ' k ( _2 _ ' k ( _2

_'. k-l( -h _ (24)
+ _-l,j 1,2At)

where

and

d2 "_2 _M 2 (25)

h = io3f (26)

and

g = 2koMf (27)

Equation (24) is an explicit two step scheme. At t = 0, field values at tk-1 are assumed zero because the initial field is

quiescent.

The expressions for the difference equations at the boundaries are complicated somewhat by the impedance

conditions. However, a simple integration procedure resolves this problem. Baumeister (refs. 5 and 6) gives precise

details for generating the time difference equations at the boundaries. In fact, because of problems with applying the

exit termination condition, the actual hyperbolic exit difference equations used in these references will be applied.

This will be fully discussed later.

STABILITY

Avon Neumann stability analysis (ref. 14) indicates that the method is conditionally stable, subject to the con-
servative condition

At <

cof L\Ax ) + Ayy q fax

(28)



Inatypicalapplication,co,f, andMfaresetbytheengineoperating conditions. Next, the grid spacing parameters
Ax and Ay are set to accurately resolve the estimated spatial harmonic variation of the acoustic field. Finally, At is

chosen to satisfy equation (28).

In the von Neumann analysis, conditional stability means that the amplification factor, which describes how

errors propagate from one time step to the next, has magnitude one. Thus, when inequality (28) is satisfied, errors
are not magnified or diminished in magnitude. This is a desirable property, since the numerical formulation can not

distinguish between an error and a small acoustic mode.

The von Neumann stability analysis does not take into account boundary conditions. For stability, gradient

boundary conditions require the use of smaller At than predicted by equation (28).

NUMERICAL EXAMPLES

In the three examples that follow, the parabolic transient results are compared to the exact results of the steady:

Fourier transformed solutions. The exact Fourier transformed solution for the problem considered is given by

(ref. 10, eq. (35))

m X

_(x) = e _+Me (29)

The following problem is considered: a plane wave propagates from the left into a quiescent duct of length one,

and the acoustic potential field is to be computed in the duct. Note that, boundary conditions can introduce instabili-

ties (refs. 7 and 11) into otherwise stable finite difference schemes. Therefore, it is important to test the proposed

method for convergence in time to the steady state solution in the absence of the exit boundary condition (eq. (19)),

and to test independently the effect of the exit boundary condition itself on the solution.

Semi-Infinite Duct

In this example, the computational boundary is set far enough away from the true boundary x = 1 that any arti-

facts arising from imperfections in the exit boundary condition do not affect the solution in [0,1]. The numerical

solution propagates one node per time step, so setting the boundary at x = 50 with step Ax = 0.05 provides a suffi-
cient number of time steps to gauge the convergence of the method before any artifacts might reflect back from the

computational boundary.

The numerical and exact results are compared in figure 2, for no flow (fig. 2(a)) and for Mach number

Mf = -0.5 (fig. 2(b)). The frequency is normalized to f = 1. Both cases show excellent agreement. The total calcula-

tion time was t,r = 5.0.

Finite Duct L = 1

In this example, the computational boundary is moved up to the true boundary x = 1 to examine the effect of

the exit boundary condition (eq. (19)). The frequency is normalized to 1. Three cases were considered---no flow

(Mf = 0) and Mach number Mf = +0.2.
The formulation using the parabolic wave equation, equation (14), was found to be unstable. Apparently, the

parabolic wave equation is not compatible with impedance boundary conditions represented by equation (19). Fortu-

nately, the exit termination difference equation could be written in an explicit fashion using the hyperbolic equation,

equation (4). The difference equation for this exit condition is given by Baumeister (ref. 5).

The results are shown in figures 3(a) to (c), respectively using a parabolic difference formulation in the interior

of the duct and a hyperbolic formulation at the exit. In figure 3, the direction of the arrow indicates the direction of

propagation of the acoustic wave. The numerical results again match well with the exact results. Notice also that the

time step has been decreased here, which tends to increase the execution time; however, the computational domain

is smaller, which tends to decrease the execution time. The total calculation time in this example was tT = 4.0.

_ _i i'i ! /i_ _II _ iii! i:_



It is clear that the exit boundary condition does have a slight degrading effect on the solution particularly with

flow. In fact, for Mach number greater than 0.2 the errors are unacceptable. Therefore, the parabolic solution should

only be employed in problems where the exit Mach number is zero or reasonably low. Consequently, in most prob-
lems, the transient-frequency approach develop by Baumeister and Kreider (ref. 10) is preferred.

CONVERGENCE RATE

In this example, the convergence rate is studied for the region x = 0 to x = 1 using the semi-infinite duct. The

results are:shown in figure 4 for the magnitude of the potential. As seen in this figure, the numerical solution quickly

and accurately converges to the exact steady state solution. As seen in figure 4, the parabolic solutions converges to
the Fourier transformed results after a time of t = 1 has elapsed. This is about twice as fast as the transient-frequency

approach presented by Baumeister and Kreider (ref. 10).

SOLUTION METHODS

With the parabolic transient approach developed in this paper, four different solution techniques are now avail-

able to solve the hyperbolic wave equation that describes acoustic propagation in ducts and jet engine nacelles with

a monochromatic source. This is illustrated in figure 5 for the zero mean flow case.

The Fourier transform of the wave equation was the first numerical approach used to study sound propagation

in jet engine ducts (refs. 2 and 4). This steady state approach is outlined on the centerline of figure 5 (third column

from left). The governing hyperbolic wave equation is transformed to the elliptic Helmholtz "wave" equation. Finite
difference (FD) and finite element (FE) numerical formulations have been employed to solve this equation. After

applications of the boundary conditions (fig. 5; [BC]), the associated finite difference or finite element global matrix

is solved for the velocity potential (or pressure). Because the matrix form of the Helmholtz partial differential equa-

tion is not positive definite, matrix elimination solutions are generally employed. This require extensive storage.

Conveniently, the steady state approach allows the direct calculation of the sound pressure levels. Currently, this is

the most popular approach for solving acoustic propagation in ducts.

In the inlet to a turbojet engine, the dimensionless frequencies f can be on the order of 30 to 50 for the higher

harmonics of the blade passing frequency. The storage requirements and associated computer run times for these

high frequencies makes computations expensive and even impossible. To make the numerical solutions more cost

effective, grid saving approximations to the governing Helmholtz wave equation have been used (fig. 5; [Approx.

Spatial]), Baumeister (ref. 3)employed the wave envelope theory while Hardin and Tappert (ref. 13) developed a

similar approach for underwater sound propagation with the addition of a parabolic (space) approximation. Candel

(ref. 12) presents an extensive discussion of the contemporary research in this area and a detailed development of the

parabolic (spatial) equation method (PEM).
The transient solution to the wave equation was the second numerical approach used to study propagation in jet

engine ducts, which is shown in the second column from the left in figure 5. To eliminate the matrix storage require-
ments, Baumeister developed time dependent finite difference numerical solutions for noise propagation in a two-

dimensional duct (ref. 5).

Sound is introduced as a boundary condition at the duct entrance. The initial conditions generally assume a qui-

escent duct. Finite difference (FD) approximations to the hyperbolic wave equation are then solved by an iteration

process. The calculations are run until the initial transient dies out and steady harmonic oscillations are established.

Finally, the transient variable _' is transformed into the steady state variable V associated with the solution of the
Helmholtz equation. As with the steady state approach, approximate spatial solutions reduce computer storage and

run times (ref. 9).

The third option, the transient-frequency technique (ref. 10), is illustrated in the fourth column from the left of

figure 5. This fully explicit iteration method eliminates the large matrix storage requirements of steady state tech-

niques and allows the use of conventional impedance conditions. As time increases, the iteration process directly

computes the steady state variable _.
The fourth option, as discussed in this paper, involves a parabolic (time) approximation to the wave equation.

The transient finite difference solution of this equation can be conveniently expressed in explicit form with mean

flow.



CONCLUDINGREMARKS

Aparabolictransientnumericalsolutionofthepotentialacousticequationshasbeendeveloped.Thepotential
formofthegoverningequationshasbeenemployedtoreducethenumberofdependentvariablesandtheirassoci-
atedstoragerequirements.Themethodeliminatesthelargematrixstoragerequirementsof steadystatetechniquesin
thefrequencydomainandtheformulationis fullyexplicitunderflowconditions.Thefieldisiteratedintimefrom
aninitialvalueof0toattainthesteadystatesolution:Ineachexampleprovided,thenumericalsolutionquicklyand
accuratelyconvergestotheexactsteadystatesolution.

Applicationofimpedanceboundaryconditionstothisparabolicformulationcausesaninstability.Tocircum-
ventthisproblem,theterminationbounds:conditionsare:developedintermsof the hyperbolic acoustic equations.

However, with high Machnumbers this termination procedure:leads to large errors. Thus, the method should only be

applied to problems with a zero mean: flow far field boundary condition.
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(b) Mf = +0.2 (Ax = 0.05, At = 0.001 tT = 4.0). (c) Mf = -0.2 (Ax = 0.05, &t = 0,001 tT = 4.0).
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I
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Parabolic transient Hyperbolic transient Fourier Parabolic transient-

solution solution solution frequency solution
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Figure 5.IAIternate finite difference/element methods insolvingwave equation with monochromaticsource.
(IC = initial condition,BC = boundarycondition).
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