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SUMMARY

Pressure distributions on three NACA 1-series inlets have been obtained in

the Langley 16-Foot Transonic Tunnel. The cowl diameter ratio (ratio of cowl

highlight diameter to cowl maximum diameter) was 0.85 for all three inlets. The

cowl length ratio (ratio of cowl length to cowl maximum diameter) was 1.0 for
two of the inlets (NACA 1-85-100) and 0.439 for the other (NACA 1-85-43.9)

inlet. One of the inlets with a cowl length ratio of 1.0 had an internal contraction

ratio (ratio of highlight area to throat area) of 1.009 and the other had a

contraction ratio of 1.250. The inlet with a cowl length ratio of 0.439 also had an

internal contraction ratio of 1.250. All three inlets had longitudinal rows of static

pressure orifices on the top and bottom extemal cowl surfaces. The inlet with a
contraction ratio of 1.009 also had a row of static pressure orifices on the side of
the cowl (external surface). The two inlets with a contraction ratio of 1.250 had a

longitudinal row of static pressure orifices on the diffuser surface.

The NACA 1-85-100 inlets were tested in the Mach number range from 0.79

to 0.92 and the NACA 1-85-43.9 inlet was tested in the Mach number range from
0.60 to 0.92. Inlet mass-flow ratios ranged from 0.27 to 0.96 depending on inlet

configuration and freestream Mach number. Angle of attack was varied within the

range -3 ° to 3.1 ° at selected Mach numbers and mass-flow ratios. The Reynolds

number of the test varied with Mach number from 3.2x106 to 4.2x106 per foot.

INTRODUCTION

Engine installation on jet-powered subsonic transport aircraft generally

results in each engine being wrapped separately in a nacelle that is essentially

symmetric (in external contour) about the axis of the engine rotating
components. The nacelle is pylon mounted (displaced from the airframe) so that

during cruise flight at least the forward portion of the nacelle will pass through

air that has not been Significantly disturbed by the passage of any main airframe

components. Such installations permit some decoupling of nacelle design from

airframe design in that substantial development of at least the inlet portion of the
nacelle can be done independently. This independence of inlet geometry from

airframe geometry makes the pitot-type subsonic inlet data base available in the

literature directly useable for many aircraft applications.

Inlets for turbojet and turbofan powered subsonic aircraft must provide high

quality flow to the engine fan and compressor, produce low external drag, be low

in weight and have noise characteristics acceptable to the community. High

quality flow for the engine is provided by designing the internal flow lines (cowl

lip, throat contour, and diffuser) for separation-free flow. Based on internal flow
considerations, cowl length and weight are minimized by making the inlet throat

radius as large as possible and by designing the diffuser contour so that the

diffusion angle is close to the maximum for separation-free flow while allowing

some margin at the most adverse operating conditions. For commercial

applications it is also important to consider noise suppression during diffuser

design since this may have some effect on how short the cowl portion of the
nacelle can be. The external drag is minimized, based on external flow

considerations, by making the maximum cowl diameter and length as small as



possible while still obtaining the desired drag divergence Mach number and
spillage critical mass-flow ratio.

Many of the pitot-type subsonic transport nacelle forebodies (cowls) used in
the past have been based (at least in part) on the NACA 1-series contour which
was developed in the 1940's. The NACA 1-series contour has a relatively small
leading edge radius (extemal to the highlight) and because of this has good high
speed spillage drag characteristics. However, high speed external performance
of the NACA 1-series contour must often be compromised by increasing the
leading edge radius to achieve acceptable internal performance at low speed and
static crosswind conditions. The NACA 1-series contour was developed
concentrating on the inlet extemal performance with the assumption that throat
and diffuser shape would be essentially a separate design endeavor. Most of the
published experimental data obtained on NACA 1-series inlets is contained in
references 1 to I0.

Evolutionary changes in transport aircraft speeds, engine cycle and mass

flow needs, and advances in analytical and computational techniques applicable to

inlet forebody design and analysis have produced the need for some expansion of

the experimental data base. To this end, three inlet models having the same
cowl highlight diameter have been investigated to obtain pressure data on the

inlet forebody exterior and lip over a range of mass-flow ratios. Two of the inlets

had an NACA 1-85-100 external contour but had different intemal lip contours
and intemal contraction ratios. One of these inlets had a contraction ratio of

1.009 and has been tested previously over a limited range of mass-flow ratios
(refs. 9 and 10). The other NACA 1-85-100 inlet had a contraction ratio of 1.250

and therefore had a different intemal lip shape and throat diameter. The third
inlet had an NACA 1-85-43.9 contour and a contraction ratio of 1.250. The two

inlets with 1.250 contraction ratio had identical internal surface contours so that

the effect of the 53.1 percent change in external cowl length on the surface

pressure distributions could be determined. The difference in inlet lip contour
and contraction ratio between the two NACA 1-85-100 inlets will show the effect,

if any, of the internal contour change on the external surface pressure
distributions.

The investigation was conducted in the Langley Research Center 16-Foot

Transonic Tunnel at Mach numbers ranging from 0.60 to 0.92, mass-flow ratios

from 0.27 to 0.96, and at angles of attack within the range from -3 ° to 3.1 ° at

selected mass-flow ratios and Mach numbers. Cowl extemal static pressures

were measured in rows on the top and bottom surfaces of the inlets (in the plane
of vertical symmetry). The NACA 1-85-100 inlet with a contraction ratio of 1.009

also had a longitudinal row of cowl external static pressure orifices on the side of
the inlet. Diffuser wall static pressures were measured in the two inlets with a
contraction ratio of 1.250.

Symbols in parenthesis are used in computer generated tables.

A area normal to model centerline, in 2
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local pressure coefficient, (P-P0)/q0

maximum diameter of model, 18.0 in.

inlet intemal diameter at end of lip radius (see Table I), in.

length of cowl from lip (highlight) to start of cylindrical portion

of model,in., see fig. 1

mass-flow raUo based on highlight area, 1/(p AhV0)JPrVrdA

freestream Mach number

local static pressure, psi
freestream static pressure, psi

freestream dynamic pressure, psi

pressure probe radial distance from model centerline, in.

radial distance from model centerline to duct outer wall, 8.40 in.

maximum external cowl radius, in.

nondimensionalized radius, in percent, from centerline of
model to cowl or diffuser surface, RMAX = 9.0 in.

freestream Reynolds number, per foot

lip radius internal to highlight for NACA 1-series inlet (see Table I),
in.

velocity, ft/sec

nondimensionalized distance, in percent, from cowl lip measured

longitudinally (aft) with negative values indicating locations
on the internal surface

longitudinal distance measured aft of the cowl lip (highlight), in.
radial distance at RMAX minus inlet highlight radius (see Table I), in.

radial distance minus inlet highlight radius (see Table I), in.

angle of attack with respect to forebody centerline, deg

density slug/ft 3

meridian angle, measured from top of model in clockwise direction

when looking upstream, deg

highlight, most forward point on cowl lip
maximum

axial mass-flow rake measuring station in duct
freestream condition

MODELS

A complete model test installation consisted of an inlet cowl and cylindrical

section which were supported by a force balance, and an afterbody (also

cylindrical) which was supported by the sting upon which a remote controlled

mass-flow throttle plug was mounted. A simplified cross-sectional sketch of the
model assembly is shown in figure 1 and a photograph of a typical model

installation in the wind tunnel test section is shown in figure 2.
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The basic nondimensionalized NACA 1-series outer profile ordinates, as
presented for a given lip radius of 0.025Y in reference 1, are reproduced in table
I. The NACA 1-85-100 inlet with an intemal contraction ratio of 1.009 (table II)
was used in the investigations of references 9 and I0. The second NACA 1-85-
100 cowl had the same external profile, but had a different lip radius and an
intemal contraction ratio of 1.250 (table III). The third inlet (table IV) also had
an internal contraction ratio of 1.250 but had a shorter cowl profile (NACA 1-85-
43.9). This third inlet was designed to have the same overall assembled model
length by including a section of constant (external) diameter at the end of the
cowl profile. The internal contours (including the diffuser) of the two inlets with
a 1.250 contraction ratio were identical.

Total model length was 52.0 inches (fig. 1) with the forward 27.50 inches,
which included the cowl, supported by four struts that connected to a force-
balance mounted centerbody. The aft 24.50 inches (cylindrical in extemal shape)
of the model was supported by four struts attached to the support sting. A 0.10
inch gap between the forward and aft portions of the model was spanned by a free
floating flexible strip to inhibit flow leakage. Three of the four struts supporting
the forward portion of the model were instrumented with pressure (fig. 3) probes
to measure the internal mass flow. These struts were also used to route the tubes
from the inlet surface static-pressure orifices to differential pressure-scanning
units mounted in the nose of the centerbody. All pressure tubes associated with
the aft portion of the model were routed through the four rear support struts;
into the sting; and out through the tunnel support system to another differential
pressure-scanning unit.

The mass-flow throttle plug was driven by an intemally housed remote
controlled electric motor and had a travel capability of about 10 inches (fig. 1).
The open area at the exit of the model (normal to the centerline of the model)
could be varied from 27.5 in2 to 244.9 in2 (plug in its two extreme positions).

WIND TUNNEL

The investigation was conducted in the Langley Research Center 16-Foot

Transonic Tunnel which is a single-return atmospheric wind tunnel with

continuous air exchange. The test section is octagonal in shape with 15.5 feet

between opposite walls (equivalent in area to a circle 16 feet in diameter) and has

axial slots at the wall vertices. The total width of the eight slots in the vicinity of

the model is approximately 3.7 percent of the test section perimeter. The
extreme limits of solid blockage of the model in the test section is between 0.88

percent for the hypothetical case of no flow through the model and 0.79 percent
for the case of the throttle plug only (the throttle plug in its most rearward

position). The tunnel sting support system pivots in such a manner that the

model remains on or near the test section centerline through the angle of attack
range. Details of the operation of the tunnel and its flow qualities are presented
in references 11 to 13.

TESTS AND METHODS
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Each inlet was tested at Mach numbers up to 0.92 at an angle of attack of 0 °

and over a nominal angle of attack range (less than 3.1°) at selected Mach

numbers and mass-flow ratios. Freestream Reynolds number per foot varied with

Mach number from 3.2 x 106 to 4.2 x 106 (fig. 4). All the data presented herein

are for artificially fixed boundary layer transition on the internal and external
surfaces of the model. Boundary-layer transition on the external surface of the

model was fixed by applying a 0.10 inch wide circumferential strip of number
120 silicon carbide particles 0.6 inch aft (streamwise) of the cowl lip. Boundary-

layer transition was fixed on the intemal flow surface of the model by applying a
0.10 inch wide circumferential strip of number 120 silicon carbide particles at

the geometric throat of each inlet.

Angle of attack was computed by correcting the measured angle of attack of

the support system for deflection of the sting and force balance due to

aerodynamic forces and moments and for tunnel stream angularity. Although the
test was conducted with the model mounted on a force balance, the data from it

will not be presented since the balance was damaged during the test. Duct mass
flow was calculated from the freestream total temperature, rake area-weighted

stagnation pressures, and static pressures from the rake, centerbody surface, and
duct waU.

No corrections have been made to the pressure data for test section wall

interference effects. The presence and geometry of the mass-flow plug will have

an effect on the afterbody external flow field. Therefore, the afterbody pressure

data presented in the pressure tabulations should be considered qualitative,
especially for pressures near the model aft end. The effect of the mass-flow plug

should be the greatest for cases with large mass-flow ratios where the internal

flow exits the afterbody before passing over the front face of the mass-flow plug
and therefore has not been turned back streamwise by the internal afterbody

surface.

PRESENTATION OF RESULTS

The results of this investigation are presented primarily in tabular form as

local intemal and extemal pressure coefficients in tables V to VII. The surface

pressure coefficients are tabulated against nondimensionalized orifice location

(X/L) where L is the length of the NACA cowl portion of the model. The ratio X/L

is presented in percentage form in the tables. A negative value of X/L indicates
the orifice is located on the internal surface (downstream of the highlight) of the

inlet. The pressure coefficients are presented for either two or three meridian

angles (PHI) depending on the number of rows of orifices on the configuration.

Inlet mass-flow ratio and angle of attack are given at the top of each table. In

addition, some data are presented graphically (figs. 5 to 11) to illustrate the

variation of pressure coefficient with X/L over the lip and cowl portion of the

model over a range of Mach numbers, mass-flow ratios, and angles of attack.

Some graphical data are presented in figures 12 to 15 for the two inlets with a
contraction ratio of 1.250 to show the effect of mass-flow ratio and angle of attack

on the lip and diffuser pressure coefficient distributions.



Summaries of the tabular and graphical data presented are contained in the
following three listings. The listing for each cowl includes nominal test condition

information and table and figure numbers for the pressure coefficient data.

NACA 1-85-I00 with contraction ratio 1.009

Pressure coefficients

M mfr

0.79 0.57
.64
.71
.77

_1r .85

0.84 0.57

¶V

_r

.64

.71

.78

_r

.95

.63

.70

.78

0.57

.62

.71

.77

.96

0,57
.63
.71
.77
.96

a, deg Table Figure

o V(a) 5(a)
5{a)

-3.0 V(b)
-2.0
-1.0

0
1.0
2.0

3.0
0
0

-3.1
-2. I
-1.1

0

1.0 !
2.0
3.0

-3.1
-2.1
-1.1
-O.1

1.0
2.0 i
3.0 Ir

-2.0 V|c)
0

2.1
0

-2. I V{d)
0
2.1
0
0

-0. I
0 _r

0 V(e)

5(a)
5(a)

6(a)

5(b),6(a),7(a)

6(a),7(a)

5(b)

6_b)

5Co),6(b),7(b)

6(b),7(b)

6(c)

5(b),6(c),7(c)

6(c),7(c)

6(d)
5(c),6(d),7(d)

6(d),7(d)
5(c)

5(c)
6(e)

5(d),6(e),7(e)
6(e),7{e)

5(d)

5(d)
5(d}
5(e)
5(e)

5{e)
5{e)
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mfr

0.28
.31
.40
.50

V

.56

.63

.69

.69
,75
,82
.82
.93

0.27
,30
.40
.50
.55
.62
.68
,75
.81

0.28
.3o
,40
,49

,49
.55
.61
.68
.74
.81

0.30
.40
.49
.54

0.27
.31
.4o
.49
.54
.61
.68
.74
.80

0.27
.30
.40
.48
.54
.61
.68
,74
.80

0,27
.30
.39
.49
.49
.54

.61

.68
,74
,80

Pressure coefficients

i

a, deg Ta )le i
I

0 VI a)

q

1.0
2.0

3.0
0

1,
2.0 ;
o 1

i

0 :
2.0 !
0 ' I

i

0 vI b) I

11!
l

o Vle) I

200

o vI d)

,,
0 VI el

[ 1
o v][f) !

l 1,
o v1g}

2.0
0

I
!

NACA 1-85-43.9 with contraction ratio 1.250

Figure

14(a}

8(a)
8(a),9(a),14(a),15(a)

9(a), 15(a)
15(a)

14(a)

8(a),9(b),15(b}
9(b),15(b)

14(a)
8(a).9(c).14(a),15(c}

9(c},15(c)

14(b}

14(b)

14(b)

14(b}
14col

14(c}

8m)

8(b),9(d),14(c},15(d)

9(d),lS(d)

14(c)
8Co)
14(c)

8(b), 14(c}

14(d)

141e)

14{e}

14(e)

14{e)
14{e)
14(t")

14(0

14(0

14(fl
14(fl

14{g)

8(c)
8(c),9(e),14(g),15(e)

9(e},15(e)

14(g)
8{c),14(g)

14(g)

8(c), 14(6)

M mfr

0.82 0.27
.30

,40
.49
.54
.61

.68

.74
• .80

0.84 0.27
.30
.39
.49

0.87

0.89

i
I
I

0.92

.54

.61

.67

.73

.82

.83

.84

.81

0.27
.31
.39
.50
.49
.54
.61

.68

.68

.74

.83

0.27
.32
.39
.49
.49
.54
.61
.68
.74
.81

0.27
.32
.40
.49

.54

.61

.68

.68

.74

.82

.82

Pressure coefficients

a,deg T_ )le

0 V] h}

o v[i)

,L
1.0
2.O

:3.1
0

1.0
2.O
3.1
0
0

1.0
2.0
3.0 _ '

0 V _j}

,L
2.O
0

4,
2.O
0
0

o Vk)

,L
2.1
0

'II _ r

o v {I)

1.0
2.0

3.1
0

2.1
0
0

, p2.0

Figure

14(h)

14(hi

14(h)

14(hi
14(h)

14(i)

8(d)
8(d).9(fl. 14(i}, 15(fl

9(f), 15(fl

15(I}

14{t)
8{d).9(g}. 14(i). 15(g)

9{g), 15(g)
15(g)
14(i)

8(d).9{h). 1 4{i), 1 5(h)

9(h), 1 5(h)
15(h}

14{j)

8(e)
8(e),9(i). 1 4{j), 15(i}

9(i), 15(i)

14(J)

8(e),9(j), 14(j), 15(j)
9(j), 15{j)

14(j)

8(e), 141j}
14(k)

8(9
8(f),9(k},14(k), 15{k)

9{k), 15(k}

14(k)
8(fl.14(k)

14(k}

8{f1914(k}
14{1)

8{g)
8{g} ,9(1). 14(1). 15(1)

9{1), 15(1}
15(1)

14(1}

8(g}.9(m). 14(1), 15{m)
9(m}.15(m}

14(1}

8(g).9(n). 14(1). 15(n)
9(n). 15{n)
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NACA 1-85-I00 with contraction ratio 1.250

Pressure coefficients

M a, deg Table Figure

0.79 VII{a)

mfr

0.61

.67

.74

0.84 0.49 -2. I

-1.0

0

1.0

2.0

'' 3.1

.55 0

.61 0

.67 -2. i
-1.0

0

1.0
2.0

'_V 3.1

.74 0

.83 -2.1

.83 -1.1

.84 0

.83 1.1

2.0
_r 3.1

0.87 0.49 -2.0

, o
2.1

.55 0

.61 l

.67

_v .73 '

0.89 0.49 -2. I

, o
2.0

.55 0

.61

.67

.7:3
_v .81 _ '

0.92 0.49 0

i .55
.61

.67

.73
' ' .81 'V

0

-2.0
0

2.1

0

Vll(b

_P

VII{c)

_r

VII(d)

i

VII(e)

q ¢

10(a), 12(a)
11(a}

10(a), 11 {a), 12(a)
1 l(a)

10(a), 12(a)

1 1 (b)

10(b), 1 l(b), 12 (b), 13(a)

1 l(b), 13{a)

13 (a)

10(b), 12(b)

11 (c)

10(b), 11 (c}, 12{b}, 13 {b)

11{c), 13{b}
13(b)

12{b)
11{d)

I 0(b}, I l(d}, 120a), 13(c)

I l{d), 13(c}

13(c}

I 1 (e}

10(c), 1 l{e), 12{c), 13(d)

11(e), 13(d)

I 0(c), 12 [c)

I 0{c}, 12{c}
10(c}, 12{c)

11{f}

10(d}, i 1 {f), 12{d}, 13(e)

1 l(f), 13(e)

10(d), 12 {d)

10(d), 12{d}

12{d)

10(d), 12{d)

10(e), 12(e)

10(e), 12(e}
10(e), 12(e}

12(e)

10(e}, 12(e)

RESULTS

This investigation was conducted primarily to obtain cowl pressure
distributions under conditions that isolate the cowl from the influence of a

boattailed afterbody flow field. Therefore a considerable portion of the model aft

of the cowl was cylindrical in shape equal in diameter to the cowl maximum

diameter (figure 1). This test apparatus was used in the investigation of
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reference 10 for high mass flows through the model. However, the geometry of
the throttle plug used in that investigation was not capable of reducing the
afterbody exit area enough over the range of plug travel to obtain low mass flows
for the NACA 1-85-43.9 cowl, which should have significantly better performance
at low mass-flow ratios at the lower Mach numbers. That is, it should have a
lower critical mass-flow ratio which is a measure of cowl performance when

operating below the compressibility drag-rise condition. At a given Mach

number, drag changes only gradually as inlet mass flow is decreased until a

critical mass flow is reached where drag abruptly increases. The drag increase
results from flow separation caused by shocks or strong pressure gradients

resulting from flow separation around the initial cowl lip curvature. Conversely
the term lower critical Mach number would indicate the Mach number at which

an abrupt drag increase results for a given mass-flow ratio as Mach number is
decreased.

To expand the mass flow range capability of this apparatus to encompass

lower mass flow rates, the throttle plug geometry was altered so that it was

blunter and had a larger maximum diameter. Comparisons made in reference 10

of the results of references 9 (last 14 inches of afterbody boattailed) and 10

(cylindrical afterbody) at high mass-flow ratios indicate no significant effects fed

forward from the exit plume/mass-flow plug combination to the cowl pressure

distributions over the range of test Mach numbers.

Cowl Pressure Distributions

At 0 ° angle of attack.- NACA 1-series cowls that are designed for moderate or

high subsonic Mach numbers often have high negative pressure peaks near the lip

at low Mach numbers and low mass-flow ratios because of the relatively sharp

cowl lip. This often results in flow separation on the forward portion of the cowl

when the pressure can not recover from the peak. The pressure distributions of
reference 9 for the NACA 1-85-100 inlet with a contraction ratio of 1.009 show

that flow separation occurred on the cowl at a mass-flow ratio of 0.56 for Mach
numbers of 0.4, 0.6, and 0.7. However at a Mach number of 0.79, which was the

lowest test Mach number for that inlet in the present investigation, flow

separation did not occur (fig. 5(a)) at that mass-flow ratio. Larger contraction
ratios of 1.046 and 1.093 (reference 9) did not significantly affect flow separation

on the forward portion of the cowl under the aforementioned conditions. At

higher Mach numbers where flow separation did not occur on the forward
portion of the cowl, larger contraction ratio had only small effects on the cowl

pressure distributions. However, these small effects did result in some decrease

in cowl critical Mach number at a given mass-flow ratio (see ref. 9) for a
contraction ratio of 1.093.

The NACA 1-85-43.9 inlet, which because of its blunter lip profile is capable

of better performance at lower Mach numbers than the NACA 1-85-100 inlets
was tested at lower Mach numbers and lower mass-flow ratios. This inlet did not

encounter flow separation at 0 ° angle of attack on the forward portion of the cowl

at the lowest Mach numbers and mass-flow ratios tested (fig. 8) which indicates
that it had lower critical Mach numbers relative to the NACA 1-85-100 inlets.

Three non-NACA 1-series inlets (X/L -- 0.337, 0.439, and 0.547), whose external
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contour changes with length were made in the same manner as the NACA 1-
series inlets, were tested on the same apparatus described herein and the
pressure coefficients are reported in reference 14. Those data showed the same
improvements in performance at the lower Mach numbers and lower mass-flow
ratios for the blunter lip profiles.

At small angles of attack.- The NACA 1-85-100 inlets were tested at angles of

attack within the range from -3.0 ° to 3.1 ° at selected Mach numbers and mass-

flow ratios (figs. 6 and 11). As would be expected, at low mass-flow ratios an

increase in angle of attack caused an increase in the severity of the negative

pressure peaks on the cowl upper surface and shifted the onset of strong
recompression aft (see fig. 6(e) for example). At the high mass-flow ratios an

increase in angle of attack decreased the extent of positive pressure on the

forward portion of the cowl upper surface (see fig. 6(c) for example). The NACA

1-85-43.9 inlet was tested only at positive angles of attack so the row of pressure

orifices on the bottom of the cowl can be considered to represent the equivalent

negative angle of attack and are included in figure 9 for that purpose. The effects
of angle of attack on the forward pressure peaks on this inlet were similar to

those encountered on the NACA 1-85-100 inlets. This inlet was tested at angle of

attack at lower Mach numbers than the others since it has more potential for
good performance in the lower Mach number range. At a Mach number of 0.69

(fig. 9(d)) there appears to be flow separation near the cowl upper surface leading

edge at 2.0 ° angle of attack. This can be seen by comparing the extent of

constant pressure coefficient at the peak relative to that at 0 ° angle of attack for

the top and bottom rows of pressure orifices.

At small angles of sideslip.- The NACA 1-85-100 inlet with a contraction ratio of
1.009 had a row of extemal pressure orifices on the side of the cowl at a

meridian angle of 90 ° . Because of the inlet axial symmetry this row of orifices can

be considered to represent the top of an inlet at 0 ° angle of attack that moves in

sideslip when the model is moved in what has been defined as the angle of attack
direction in this investigation. To determine the effect of sideslip on the

pressure distributions, data from this row of orifices are presented in figure 7 for
the maximum positive angle of attack at each Mach number. The data indicate a

negligible effect of sideslip over the small angle range of this test.

Diffuser Pressure Distributions

The variation of pressure coefficient (internal to the highlight) with
X/Dmax for various mass-flow ratios for the two inlets with a contraction ratio of

1.250 is shown in figures 12 (a = 0 °) and 13 (small a's) for the NACA 1-85-100

cowl and in figures 14 (a = 0 °) and 15 (small a's) for the NACA 1-85-43.9 cowl.

At 0 ° angle of attack.- An illustration of the effect of changing mass-flow ratio at a

Mach number of 0.60 on the location of the stagnation point on the inlet lip of
the NACA 1-85-43.9 inlet can be seen in the pressure coefficients of table VI(a).

As expected the stagnation point was farthest inside the inlet on the contraction

surface (at an X/L of -5.13 percent) at the lowest mass-flow ratio of 0.28. The

10



stagnation point moved forward on the contraction surface with increasing mass
flow until it reached the highlight (X/L =0) at the maximum mass-flow ratio of
0.93.

The pressure distributions of figure 14 (or figure 12) indicate that the
lowest internal pressure occurred approximately at the geometric throat
(X/Dmax = 0.113) for all mass-flow ratios up through a Mach number of 0.77. At a
Mach number of 0.79 a shock occurred at the throat at a mass-flow ratio of 0.80.
Above a Mach number of 0.79 the shock moved downstream to an X/Dmax of
about 0.18 where the lowest pressure also occurred.

The effect of changes in external cowl shape on the pressure distributions
internal to the highlight at 0° angle of attack was negligible as can be seen by
comparing the data of figure 12 (NACA 1-85-100) with data at the appropriate
Mach number and mass-flow conditions in figure 14 (NACA 1-85-43.9). The
inlets both had a Contraction ratio of 1.250 and identical diffuser geometry.

At small angles of attack.- The effect of angle of attack on the pressure
distributions internal to the highlight is shown in tables VI and VII and figures 13

and 15 for the two different extemal cowl shapes. In general the effect of angle

of attack is as would be expected. For example, examination of the pressure

coefficients of tables VI and VII show that as angle of attack was increased for a

given mass-flow ratio, the stagnation point of the incoming stream tube on the

upper lip moved slightly farther into the contraction section while on the lower
lip (the windward side) of the inlet the streamtube stagnation point moved

slightly closer to the highlight.

CONCLUDING REMARKS

An investigation has been conducted over a range of subsonic speeds to

determine pressure distributions on three isolated inlets having NACA 1-series

cowl profiles. Two had NACA 1-85-100 cowls that differed only in internal
contraction ratio (1.009 and 1.250). The third inlet had an NACA 1-85-43.9 cowl

and had a contraction ratio of 1.250. Angle of attack was varied over a small

range at selected Mach numbers and mass-flow ratios for each inlet.

At low Mach numbers and low mass-flow ratios, the NACA 1-85-100 inlets

encountered flow separation over the forward portion of the cowl surface that was

not significantly affected by the variation in contraction ratio. However the
critical Mach number at a given mass-flow ratio was decreased somewhat by the
increase in contraction ratio. The NACA 1-85-43.9 inlet did not encounter flow

separation at the lowest mass-flow ratios since its blunter lip profile was more
conducive to better performance at lower Mach numbers. At an angle of attack of

2.0 °, the NACA 1-85-43.9 inlet did encounter separation at the lowest mass-flow

ratio at the two lowest Mach numbers (0.60 and 0.69). Pressure coefficients from

a row of pressure orifices on the side of the NACA 1-85-100 inlet with a
contraction ratio of 1.009 showed no significant effect of angle change when the

model was moved through a small range of angles of attack thus indicating

insensitivity to small angles of sideslip.
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TABLE I.- NACA I-SERIES ORDINATES

[Coordinates m percent]

\ .-L

rlMx

I _

g

oLL_j

Reference line

for tCACA l-series

orchn_te$

D -d
r_llx

Y'7 " r

SampJe NACA l-series OesKJnation:

x/L y/y x/L y/y x/L y/y

0 0 20.0 52.70 48.0 81.25

.2 4.80 21.0 54.05 49.0 81.99

.4 6.63 22.0 55.37 50.0 82.69

.6 8.12 23.0 56.66 52,0 84.10

.8 9.33 24.0 57.92 54.0 85.45

1.0 10.38 25.0 59.15 56.0 86.73

1.5 12.72 26.0 60.35 58.0 87.95

2.0 14.72 27.0 61.52 60.0 89.11

2.5 16.57 28.0 62.67 62.0 90.20

3.0 18.31 29.0 63.79 64.0 91.23

3.5 19.94 30.0 64.89 66.0 92.20

4.0 21.48 31.0 65.97 68.0 93.11

4.5 22.96 32.0 67.03 70.0 93.95

5.0 24.36 33.0 68.07 72.0 94.75

6.0 27.01 34.0 69.08 74.0 95.48

7.0 29.47 35.0 70.08 76.0 96.16

8.0 31,81 36.0 71.05 78.0 96.79

9.0 34.03 37.0 72.00 80.0 97.35

10.0 36.13 38.0 72.94 82.0 97.87

11.0 38.15 39.0 73.85 84.0 98.33

12.0 40.09 40.0 74.75 86.0 98.74

13.0 41.94 41.0 75.63 88.0 99.09

14.0 43.66 42.0 76.48 90.0 99.40

15.0 45.30 43.0 77.32 92.0 99.65

16.0 46.88 44.0 78.15 94.0 99.85

17.0 48.40 45.0 78.95 96.0 99.93

18.0 49.88 46.0 79.74 98.0 99.98

19.0 51.31 47.0 80.50 100.0 I00.00

Lip radius: 0.025Y
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Figure 1. Simplified cross-sectional sketch of complete model. Linear dimensions are in inches.
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Figure 2. Complete model installed in 16-Foot Transonic Tunnel test section.
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computations. Linear dimensions are in inches.
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