111 and the second second

NASA Technical Memorandum 110300

A Wind Tunnel Investigation of Three NACA 1-Series Inlets at Mach Numbers Up to 0.92

Richard J. Re and William K. Abeyounis Langley Research Center, Hampton, Virginia

November 1996

National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-0001

SUMMARY

Pressure distributions on three NACA 1-series inlets have been obtained in the Langley 16-Foot Transonic Tunnel. The cowl diameter ratio (ratio of cowl highlight diameter to cowl maximum diameter) was 0.85 for all three inlets. The cowl length ratio (ratio of cowl length to cowl maximum diameter) was 1.0 for two of the inlets (NACA 1-85-100) and 0.439 for the other (NACA 1-85-43.9) inlet. One of the inlets with a cowl length ratio of 1.0 had an internal contraction ratio (ratio of highlight area to throat area) of 1.009 and the other had a contraction ratio of 1.250. The inlet with a cowl length ratio of 0.439 also had an internal contraction ratio of 1.250. All three inlets had longitudinal rows of static pressure orifices on the top and bottom external cowl surfaces. The inlet with a contraction ratio of 1.009 also had a row of static pressure orifices on the side of the cowl (external surface). The two inlets with a contraction ratio of 1.250 had a longitudinal row of static pressure orifices on the diffuser surface.

The NACA 1-85-100 inlets were tested in the Mach number range from 0.79 to 0.92 and the NACA 1-85-43.9 inlet was tested in the Mach number range from 0.60 to 0.92. Inlet mass-flow ratios ranged from 0.27 to 0.96 depending on inlet configuration and freestream Mach number. Angle of attack was varied within the range -3° to 3.1° at selected Mach numbers and mass-flow ratios. The Reynolds number of the test varied with Mach number from 3.2×10^6 to 4.2×10^6 per foot.

INTRODUCTION

Engine installation on jet-powered subsonic transport aircraft generally results in each engine being wrapped separately in a nacelle that is essentially symmetric (in external contour) about the axis of the engine rotating components. The nacelle is pylon mounted (displaced from the airframe) so that during cruise flight at least the forward portion of the nacelle will pass through air that has not been significantly disturbed by the passage of any main airframe components. Such installations permit some decoupling of nacelle design from airframe design in that substantial development of at least the inlet portion of the nacelle can be done independently. This independence of inlet geometry from airframe geometry makes the pitot-type subsonic inlet data base available in the literature directly useable for many aircraft applications.

Inlets for turbojet and turbofan powered subsonic aircraft must provide high quality flow to the engine fan and compressor, produce low external drag, be low in weight and have noise characteristics acceptable to the community. High quality flow for the engine is provided by designing the internal flow lines (cowl lip, throat contour, and diffuser) for separation-free flow. Based on internal flow considerations, cowl length and weight are minimized by making the inlet throat radius as large as possible and by designing the diffuser contour so that the diffusion angle is close to the maximum for separation-free flow while allowing some margin at the most adverse operating conditions. For commercial applications it is also important to consider noise suppression during diffuser design since this may have some effect on how short the cowl portion of the nacelle can be. The external drag is minimized, based on external flow considerations, by making the maximum cowl diameter and length as small as possible while still obtaining the desired drag divergence Mach number and spillage critical mass-flow ratio.

Many of the pitot-type subsonic transport nacelle forebodies (cowls) used in the past have been based (at least in part) on the NACA 1-series contour which was developed in the 1940's. The NACA 1-series contour has a relatively small leading edge radius (external to the highlight) and because of this has good high speed spillage drag characteristics. However, high speed external performance of the NACA 1-series contour must often be compromised by increasing the leading edge radius to achieve acceptable internal performance at low speed and static crosswind conditions. The NACA 1-series contour was developed concentrating on the inlet external performance with the assumption that throat and diffuser shape would be essentially a separate design endeavor. Most of the published experimental data obtained on NACA 1-series inlets is contained in references 1 to 10.

Evolutionary changes in transport aircraft speeds, engine cycle and mass flow needs, and advances in analytical and computational techniques applicable to inlet forebody design and analysis have produced the need for some expansion of the experimental data base. To this end, three inlet models having the same cowl highlight diameter have been investigated to obtain pressure data on the inlet forebody exterior and lip over a range of mass-flow ratios. Two of the inlets had an NACA 1-85-100 external contour but had different internal lip contours and internal contraction ratios. One of these inlets had a contraction ratio of 1.009 and has been tested previously over a limited range of mass-flow ratios (refs. 9 and 10). The other NACA 1-85-100 inlet had a contraction ratio of 1.250 and therefore had a different internal lip shape and throat diameter. The third inlet had an NACA 1-85-43.9 contour and a contraction ratio of 1.250. The two inlets with 1.250 contraction ratio had identical internal surface contours so that the effect of the 53.1 percent change in external cowl length on the surface pressure distributions could be determined. The difference in inlet lip contour and contraction ratio between the two NACA 1-85-100 inlets will show the effect, if any, of the internal contour change on the external surface pressure distributions.

The investigation was conducted in the Langley Research Center 16-Foot Transonic Tunnel at Mach numbers ranging from 0.60 to 0.92, mass-flow ratios from 0.27 to 0.96, and at angles of attack within the range from -3° to 3.1° at selected mass-flow ratios and Mach numbers. Cowl external static pressures were measured in rows on the top and bottom surfaces of the inlets (in the plane of vertical symmetry). The NACA 1-85-100 inlet with a contraction ratio of 1.009 also had a longitudinal row of cowl external static pressure orifices on the side of the inlet. Diffuser wall static pressures were measured in the two inlets with a contraction ratio of 1.250.

SYMBOLS

Symbols in parenthesis are used in computer generated tables.

A area normal to model centerline, in^2

 (RMAX) maximum external cowl radius, in. (R/RMAX) nondimensionalized radius, in percent, from centerline of model to cowl or diffuser surface, RMAX = 9.0 in. R₀ freestream Reynolds number, per foot r lip radius internal to highlight for NACA 1-series inlet (see Table in. V velocity, ft/sec x/L (X/L) nondimensionalized distance, in percent, from cowl lip measured longitudinally (aft) with negative values indicating locations on the internal surface x (X) longitudinal distance measured aft of the cowl lip (highlight), in. Y radial distance at RMAX minus inlet highlight radius (see Table I), in. 	C _p (CP) D _{max} d L (L)	local pressure coefficient, $(p-p_0)/q_0$ maximum diameter of model, 18.0 in. inlet internal diameter at end of lip radius (see Table I), in. length of cowl from lip (highlight) to start of cylindrical portion of model,in., see fig. 1
R0freestream Reynolds number, per footrlip radius internal to highlight for NACA 1-series inlet (see Table in.Vvelocity, ft/secx/L(X/L)nondimensionalized distance, in percent, from cowl lip measured longitudinally (aft) with negative values indicating locations on the internal surfacex(X)Yradial distance measured aft of the cowl lip (highlight), in. radial distance at RMAX minus inlet highlight radius (see Table I) y	M P PO QO Rp Rw (RMAX)	freestream Mach number local static pressure, psi freestream static pressure, psi freestream dynamic pressure, psi pressure probe radial distance from model centerline, in. radial distance from model centerline to duct outer wall, 8.40 in. maximum external cowl radius, in. nondimensionalized radius, in percent, from centerline of
and a stant with respect to four-basic contarting that	r V x/L (X/L) X Y (X)	freestream Reynolds number, per foot lip radius internal to highlight for NACA 1-series inlet (see Table I), in. velocity, ft/sec nondimensionalized distance, in percent, from cowl lip measured longitudinally (aft) with negative values indicating locations on the internal surface longitudinal distance measured aft of the cowl lip (highlight), in. radial distance at RMAX minus inlet highlight radius (see Table I), in.
ρ density slug/ft ³	α ρ φ	angle of attack with respect to forebody centerline, deg density $slug/ft^3$ meridian angle, measured from top of model in clockwise direction when looking upstream, deg

h	highlight, most forward point on cowl lip
max	maximum
r	axial mass-flow rake measuring station in duct
0	freestream condition

MODELS

A complete model test installation consisted of an inlet cowl and cylindrical section which were supported by a force balance, and an afterbody (also cylindrical) which was supported by the sting upon which a remote controlled mass-flow throttle plug was mounted. A simplified cross-sectional sketch of the model assembly is shown in figure 1 and a photograph of a typical model installation in the wind tunnel test section is shown in figure 2.

The basic nondimensionalized NACA 1-series outer profile ordinates, as presented for a given lip radius of 0.025Y in reference 1, are reproduced in table I. The NACA 1-85-100 inlet with an internal contraction ratio of 1.009 (table II) was used in the investigations of references 9 and 10. The second NACA 1-85-100 cowl had the same external profile, but had a different lip radius and an internal contraction ratio of 1.250 (table III). The third inlet (table IV) also had an internal contraction ratio of 1.250 but had a shorter cowl profile (NACA 1-85-43.9). This third inlet was designed to have the same overall assembled model length by including a section of constant (external) diameter at the end of the cowl profile. The internal contours (including the diffuser) of the two inlets with a 1.250 contraction ratio were identical.

Total model length was 52.0 inches (fig. 1) with the forward 27.50 inches, which included the cowl, supported by four struts that connected to a forcebalance mounted centerbody. The aft 24.50 inches (cylindrical in external shape) of the model was supported by four struts attached to the support sting. A 0.10 inch gap between the forward and aft portions of the model was spanned by a free floating flexible strip to inhibit flow leakage. Three of the four struts supporting the forward portion of the model were instrumented with pressure (fig. 3) probes to measure the internal mass flow. These struts were also used to route the tubes from the inlet surface static-pressure orifices to differential pressure-scanning units mounted in the nose of the centerbody. All pressure tubes associated with the aft portion of the model were routed through the four rear support struts; into the sting; and out through the tunnel support system to another differential pressure-scanning unit.

The mass-flow throttle plug was driven by an internally housed remote controlled electric motor and had a travel capability of about 10 inches (fig. 1). The open area at the exit of the model (normal to the centerline of the model) could be varied from 27.5 in² to 244.9 in² (plug in its two extreme positions).

WIND TUNNEL

The investigation was conducted in the Langley Research Center 16-Foot Transonic Tunnel which is a single-return atmospheric wind tunnel with continuous air exchange. The test section is octagonal in shape with 15.5 feet between opposite walls (equivalent in area to a circle 16 feet in diameter) and has axial slots at the wall vertices. The total width of the eight slots in the vicinity of the model is approximately 3.7 percent of the test section perimeter. The extreme limits of solid blockage of the model in the test section is between 0.88 percent for the hypothetical case of no flow through the model and 0.79 percent for the case of the throttle plug only (the throttle plug in its most rearward position). The tunnel sting support system pivots in such a manner that the model remains on or near the test section centerline through the angle of attack range. Details of the operation of the tunnel and its flow qualities are presented in references 11 to 13.

TESTS AND METHODS

Each inlet was tested at Mach numbers up to 0.92 at an angle of attack of 0° and over a nominal angle of attack range (less than 3.1°) at selected Mach numbers and mass-flow ratios. Freestream Reynolds number per foot varied with Mach number from 3.2×10^6 to 4.2×10^6 (fig. 4). All the data presented herein are for artificially fixed boundary layer transition on the internal and external surfaces of the model. Boundary-layer transition on the external surface of the model was fixed by applying a 0.10 inch wide circumferential strip of number 120 silicon carbide particles 0.6 inch aft (streamwise) of the cowl lip. Boundary-layer transition was fixed on the internal flow surface of the model by applying a 0.10 inch wide circumferential strip applying a 0.10 inch wide circumferential strip applying a 0.10 inch wide circumferential strip of number layer transition was fixed on the internal flow surface of the model by applying a 0.10 inch wide circumferential strip of number layer transition carbide particles at the geometric throat of each inlet.

Angle of attack was computed by correcting the measured angle of attack of the support system for deflection of the sting and force balance due to aerodynamic forces and moments and for tunnel stream angularity. Although the test was conducted with the model mounted on a force balance, the data from it will not be presented since the balance was damaged during the test. Duct mass flow was calculated from the freestream total temperature, rake area-weighted stagnation pressures, and static pressures from the rake, centerbody surface, and duct wall.

No corrections have been made to the pressure data for test section wall interference effects. The presence and geometry of the mass-flow plug will have an effect on the afterbody external flow field. Therefore, the afterbody pressure data presented in the pressure tabulations should be considered qualitative, especially for pressures near the model aft end. The effect of the mass-flow plug should be the greatest for cases with large mass-flow ratios where the internal flow exits the afterbody before passing over the front face of the mass-flow plug and therefore has not been turned back streamwise by the internal afterbody surface.

PRESENTATION OF RESULTS

The results of this investigation are presented primarily in tabular form as local internal and external pressure coefficients in tables V to VII. The surface pressure coefficients are tabulated against nondimensionalized orifice location (X/L) where L is the length of the NACA cowl portion of the model. The ratio X/L is presented in percentage form in the tables. A negative value of X/L indicates the orifice is located on the internal surface (downstream of the highlight) of the inlet. The pressure coefficients are presented for either two or three meridian angles (PHI) depending on the number of rows of orifices on the configuration. Inlet mass-flow ratio and angle of attack are given at the top of each table. In addition, some data are presented graphically (figs. 5 to 11) to illustrate the variation of pressure coefficient with X/L over the lip and cowl portion of the model over a range of Mach numbers, mass-flow ratios, and angles of attack. Some graphical data are presented in figures 12 to 15 for the two inlets with a contraction ratio of 1.250 to show the effect of mass-flow ratio and angle of attack on the lip and diffuser pressure coefficient distributions.

Summaries of the tabular and graphical data presented are contained in the following three listings. The listing for each cowl includes nominal test condition information and table and figure numbers for the pressure coefficient data.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-				oefficients
.64 $.71$ $5(a)$ $.77$ $.85$ $.5(a)$ 0.84 0.57 -3.0 $V(b)$ -2.0 -1.0 $6(a)$ 0 -1.0 $5(b), 6(a), 7(a)$ 0 -1.0 $6(a)$ 0 -1.0 -1.0 0 -1.0 $6(a)$ 0 -1.0 $6(b)$ $.71$ 0 -2.1 $.64$ 0 $5(b), 6(b), 7(b)$ $.78$ -3.1 -2.1 0 $5(b), 6(c), 7(b)$ $.95$ -3.1 -2.1 $.95$ -3.1 -2.1 $.95$ -3.1 -2.1 $.95$ -3.1 -2.1 $.01$ -2.1 $-5(b), 6(c), 7(c)$ <td>М</td> <td>mfr</td> <td>α,deg</td> <td>Table</td> <td>Figure</td>	М	mfr	α,deg	Table	Figure
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.79		<u>o</u>	V(a)	5(a)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					5(a)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					5(a)
$ \begin{vmatrix} & -2.0 & -1.1 & -0$	•	.85	•	▼	
$\begin{array}{ c c c } & -1.0 & & 5(b), 6(a), 7(a) \\ \hline 0 & & 5(b), 6(a), 7(a) \\ \hline 2.0 & & 6(a), 7(a) \\ \hline 2.0 & & 5(b) \\ \hline 3.0 & & 5(b) \\ \hline .71 & 0 & & 5(b) \\ .71 & 0 & & 5(b) \\ .78 & -3.1 & & 6(b) \\ \hline .78 & -3.1 & & 6(b) \\ \hline .78 & -3.1 & & 6(b) \\ \hline .71 & 0 & & 5(b), 6(b), 7(b) \\ \hline 0 & & 5(b), 6(b), 7(b) \\ \hline 0 & & 6(b), 7(b) \\ \hline 0 & & 6(c) \\ \hline .1.1 & & 5(b), 6(c), 7(c) \\ \hline \end{array}$	0.84	0.57		V(b)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					0(a)
$\begin{array}{ c c c c c c c c } & 2.0 & 6(a),7(a) \\ \hline & 3.0 & 5(b) \\ .64 & 0 & 5(b) \\ .71 & 0 & 6(b) \\ .78 & -3.1 & 6(b) \\ & -1.1 & 5(b),6(b),7(b) \\ & 1.0 & 6(b),7(b) \\ \hline & 3.0 & 6(b),7(b) \\ \hline & 3.0 & 6(c) \\ .95 & -3.1 & 6(c) \\ .95 & -3.1 & 6(c) \\ .1.1 & 6(c) \\ .1.1 & 5(b),6(c),7(c) \\ \hline & 1.0 & 1.0 \\ \hline & $					5(b),6(a),7(a)
$\begin{array}{ c c c c c } \hline \bullet & 3.0 & & 5(b) \\ \hline & .64 & 0 & & 5(b) \\ \hline & .71 & 0 & & & 6(b) \\ \hline & .78 & -3.1 & & & 6(b) \\ \hline & .78 & -3.1 & & & 6(b) \\ \hline & .78 & -2.1 & & 6(b) \\ \hline & 0 & & 5(b).6(b).7(b) \\ \hline & 1.0 & & 6(c) \\ \hline & .1.1 & & 5(b).6(c).7(c) \\ \hline & 1.0 & & 5(b).6(c).7(c) \\ \hline \end{array}$					$\mathcal{O}(z)$ $\mathcal{T}(z)$
$ \begin{bmatrix} .64 & 0 & 5(b) \\ .71 & 0 & 6(b) \\ .78 & -3.1 & 6(b) \\ .78 & -2.1 & 6(b) \\ .78 & -1.1 & 5(b).6(b).7(b) \\ 1.0 & 5(b).6(b).7(b) \\ .10 & 6(b).7(b) \\ .10 & 6(c) \\ .95 & -3.1 & 6(c) \\ .1.1 & 6(c) \\ .1.1 & 5(b).6(c).7(c) \\ .10 & 5(b).6(c).7(c) \\ .10 & .10 & .10 \\ .1$		- ↓			6(a), 7(a)
$\begin{array}{ c c c c c c c c } \hline & .78 & -3.1 & & & & & & & & & & & & & & & & & & &$			0		5(b)
$\begin{array}{ c c c c c } & -2.1 & & 6(b) \\ & -1.1 & & 5(b),6(b),7(b) \\ \hline & 0 & & 5(b),6(b),7(b) \\ \hline & 1.0 & & 6(b),7(b) \\ \hline & 3.0 & & 6(c) \\ & -2.1 & & 6(c) \\ & -1.1 & & 6(c) \\ & -1.1 & & 5(b),6(c),7(c) \\ \hline & 1.0 & & 5(b),6(c),7(c) \end{array}$					
$\begin{array}{ c c c } & -1.1 & & & & & & & & & & & & & & & & & & $.78			6(b)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-1.1		0(0)
$\begin{array}{ c c c c c c c } & 2.0 & 6(b),7(b) \\ \hline & 3.0 & & & & \\ & .95 & -3.1 & & & \\ & -2.1 & & 6(c) \\ & -1.1 & & & & \\ & -0.1 & & & 5(b),6(c),7(c) \\ & & 1.0 & & & \\ \end{array}$					5(b),6(b),7(b)
$\begin{array}{ c c c c } \hline \bullet & 3.0 \\ .95 & -3.1 \\ & -2.1 \\ & -1.1 \\ & -0.1 \\ & 1.0 \end{array} \qquad $					6(b) 7(b)
-2.1 6(c) -1.1 -0.1 5(b),6(c),7(c)		•			0(0),7(0)
-1.1 -0.1 1.0 5(b),6(c),7(c)		.95			
-0.1 5(b),6(c),7(c)					6(c)
					5(b),6(c),7(c)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $. ↓	- ↓	2.0 3.0	. ↓	6(c),7(c)
0.87 0.57 -2.0 V(c) 6(d)	0.87	0.57	-2.0	V(c)	
		- 🕹 l			
▼ 2.1 6(d),7(d) .63 0 5(c)		.63			
		.70	Ĭ		0(0)
▼ .78 ▼ ▼ 5(c)	V		▼	V	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.89	0.57		V(d)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		- ↓]			
.62 0 5(d)					
		.71	0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	↓			- ↓	
0.92 0.57 0 V(e) 5(e)	0.92			V(e)	
.63 5(e)		.63			
.71 .77 5(e)					E(c)
 ↓ .77 ↓ .96 ↓ ↓ ↓ 5(e) 5(e) 	♥	.96	. ★	. ♦	

NACA 1-85-100 with contraction ratio 1.009

		Pressur	e coefficien	ts				e coefficien	its
м	mfr	a,deg	Table	Figure	м	mfr	α.deg	Table	Figure
0.60	0.28 .31 .40 .50	0 1.0 2.0 3.0 0	VI(a)	14(a) 8(a) 8(a).9(a).14(a).15(a) 9(a).15(a) 15(a)	0.82	0.27 .30 .40 .54 .61 .68 .74	0	VI(h)	14(h) 14(h) 14(h) 14(h)
0.64	.63 .69 .75 .82 .82 .93 0.27	2.0 0 2.0 0 2.0 0	VI(b)	14(a) 8(a).9(b).15(b) 9(b).15(b) 14(a) 8(a).9(c).14(a).15(c) 9(c).15(c) 14(b)	0.84	.80 0.27 .30 .39 .49	0 1.0 2.0 3.1	VI(i)	14(h) 14(i) 8(d) 8(d).9(f).14(i).15(f) 9(f).15(f) 15(f)
0.69	.30 .40 .50 .55 .62 .68 .75 .81 0.28		VI(c)	14(b) 14(b) 14(b) 14(b) 14(c)		.54 .61 .67 ↓ .73 .82 .83	0 ↓ 1.0 2.0 3.1 0 0 1.0		14(i)8(d).9(g).14(i).15(g)9(g).15(g)15(g)14(i)8(d).9(h).14(i).15(h)
0.03	.30 .40 .49 .55 .61 .68 .74 .81 0.30		VI(d)	8(b) 8(b),9(d),14(c),15(d) 9(d),15(d) 14(c) 8(b) 14(c) 8(b),14(c) 14(d)	0.87	.84 .81 0.27 .31 .39 .50 .49 .54 .61 .68	2.0 3.0 0 ↓ 2.0 0 ↓	VI(j)	$9(h).15(h) \\ 15(h) \\ 14(j) \\ 8(e) \\ 8(e).9(j).14(j).15(j) \\ 9(j).15(j) \\ 14(j) \\ 8(e).9(j).14(j).15(j) \\ 9(i).15(j) \\ 9($
0.74	.40 .49 .54 0.27 .31 .40 .49 .54 .61 .68	0	VI(e)	14(e) 14(e) 14(e)	0.89	.68 .74 .83 0.27 .32 .39 .49 .49 .54 .61	2.0 0 0 ↓ 2.1 0	VI(k)	$9(j), 15(j) \\ 14(j) \\ 8(e), 14(j) \\ 14(k) \\ 8(f) \\ 8(f), 9(k), 14(k), 15(k) \\ 9(k), 15(k) \\ 14(k) \\ 0(2, 14(k)) \\ 0 \\ 0(2, 14(k)) \\ 0 \\ 0(2, 14(k)) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
0.77	.74 .80 0.27 .30 .40 .48 .54 .61 .68 .74		VI(f)	14(e) 14(e) 14(f) 14(f) 14(f) 14(f) 14(f)	0.92	.68 .74 .81 0.27 .32 .40 .49	0 1.0 2.0 3.1	VI(1)	$8(f).14(k) \\ 14(k) \\ 8(f)914(k) \\ 14(l) \\ 8(g) \\ 8(g).9(l).14(l).15(l) \\ 9(l).15(l) \\ 15(l) $
0.79	.80 0.27 .30 .39 .49 .49 .54 .61 .68 .74 .80		VI(g)	$ \begin{array}{r} 14(f) \\ 14(g) \\ 8(c) \\ 8(c),9(e),14(g),15(e) \\ 9(e),15(e) \\ 14(g) \\ 8(c),14(g) \\ 14(g) \\ 8(c),14(g) \\ 8(c)$.54 .61 .68 .68 .74 .82 .82	0 2.1 0 2.0		$\begin{array}{c} 14(l)\\ 8(g).9(m).14(l).15(m)\\ 9(m).15(m)\\ 14(l)\\ 8(g).9(n).14(l).15(n)\\ 9(n).15(n)\end{array}$

NACA 1-85-43.9 with contraction ratio 1.250

			Pressure c	oefficients
М	mfr	α,deg	Table	Figure
0.79	0.61 .67 ↓	0 -2.0 0 2.1	VII(a)	$ 10(a), 12(a) \\ 11(a) \\ 10(a), 11(a), 12(a) \\ 11(a) \\ 10(a), 10(a) \\ 11(a) \\ 10(a) \\$
0.84	.74 0.49	0 -2.1	VII(b	10(a), 12(a) 11(b)
		-1.0 0 1.0		10(b), 11(b), 12(b), 13(a)
	↓ .55	2.0 3.1 0		11(b),13(a) 13(a)
	.61 .67 I	0 -2.1 -1.0		10(b),12(b) 11(c)
		0 1.0		10(b),11(c),12(b),13(b)
	.74 .83 .83	2.0 3.1 0 -2.1 -1.1		11(c),13(b) 13(b) 12(b) 11(d)
	.83 .84 .83	0 1.1		10(b),11(d),12(b),13(c)
+	. ↓	2.0 3.1	↓ ↓	11(d),13(c) 13(c)
0.87	0.49 .55 .61	-2.0 0 2.1 0	VII(c)	$11(e) \\ 10(c), 11(e), 12(c), 13(d) \\ 11(e), 13(d) \\ 10(c), 12(c) \\ 10(c), 12(c), 12(c) \\ 10(c), 12(c), 12(c) \\ 10(c), 12(c), 12(c) \\ 10(c), 12(c), 12(c) \\$
+	.67 .73	¥	+	10(c),12(c) 10(c),12(c)
0.89	0.49 .55 .61	-2.1 0 2.0 0	VII(d)	11(f) 10(d),11(f),12(d),13(e) 11(f),13(e) 10(d),12(d)
	.67 .73 .81	Ļ	↓ ↓	10(d),12(d) 12(d) 10(d),12(d)
0.92	0.49 .55 .61 .67 .73 .81	0	VII(e)	10(e),12(e) 10(e),12(e) 10(e),12(e) 12(e) 10(e),12(e)

NACA 1-85-100 with contraction ratio 1.250

RESULTS

This investigation was conducted primarily to obtain cowl pressure distributions under conditions that isolate the cowl from the influence of a boattailed afterbody flow field. Therefore a considerable portion of the model aft of the cowl was cylindrical in shape equal in diameter to the cowl maximum diameter (figure 1). This test apparatus was used in the investigation of reference 10 for high mass flows through the model. However, the geometry of the throttle plug used in that investigation was not capable of reducing the afterbody exit area enough over the range of plug travel to obtain low mass flows for the NACA 1-85-43.9 cowl, which should have significantly better performance at low mass-flow ratios at the lower Mach numbers. That is, it should have a lower critical mass-flow ratio which is a measure of cowl performance when operating below the compressibility drag-rise condition. At a given Mach number, drag changes only gradually as inlet mass flow is decreased until a critical mass flow is reached where drag abruptly increases. The drag increase results from flow separation caused by shocks or strong pressure gradients resulting from flow separation around the initial cowl lip curvature. Conversely the term lower critical Mach number would indicate the Mach number at which an abrupt drag increase results for a given mass-flow ratio as Mach number is decreased.

To expand the mass flow range capability of this apparatus to encompass lower mass flow rates, the throttle plug geometry was altered so that it was blunter and had a larger maximum diameter. Comparisons made in reference 10 of the results of references 9 (last 14 inches of afterbody boattailed) and 10 (cylindrical afterbody) at high mass-flow ratios indicate no significant effects fed forward from the exit plume/mass-flow plug combination to the cowl pressure distributions over the range of test Mach numbers.

Cowl Pressure Distributions

At 0° angle of attack.- NACA 1-series cowls that are designed for moderate or high subsonic Mach numbers often have high negative pressure peaks near the lip at low Mach numbers and low mass-flow ratios because of the relatively sharp cowl lip. This often results in flow separation on the forward portion of the cowl when the pressure can not recover from the peak. The pressure distributions of reference 9 for the NACA 1-85-100 inlet with a contraction ratio of 1.009 show that flow separation occurred on the cowl at a mass-flow ratio of 0.56 for Mach numbers of 0.4, 0.6, and 0.7. However at a Mach number of 0.79, which was the lowest test Mach number for that inlet in the present investigation, flow separation did not occur (fig. 5(a)) at that mass-flow ratio. Larger contraction ratios of 1.046 and 1.093 (reference 9) did not significantly affect flow separation on the forward portion of the cowl under the aforementioned conditions. At higher Mach numbers where flow separation did not occur on the forward portion of the cowl, larger contraction ratio had only small effects on the cowl pressure distributions. However, these small effects did result in some decrease in cowl critical Mach number at a given mass-flow ratio (see ref. 9) for a contraction ratio of 1.093.

The NACA 1-85-43.9 inlet, which because of its blunter lip profile is capable of better performance at lower Mach numbers than the NACA 1-85-100 inlets was tested at lower Mach numbers and lower mass-flow ratios. This inlet did not encounter flow separation at 0° angle of attack on the forward portion of the cowl at the lowest Mach numbers and mass-flow ratios tested (fig. 8) which indicates that it had lower critical Mach numbers relative to the NACA 1-85-100 inlets. Three non-NACA 1-series inlets (X/L = 0.337, 0.439, and 0.547), whose external

contour changes with length were made in the same manner as the NACA 1series inlets, were tested on the same apparatus described herein and the pressure coefficients are reported in reference 14. Those data showed the same improvements in performance at the lower Mach numbers and lower mass-flow ratios for the blunter lip profiles.

At small angles of attack.- The NACA 1-85-100 inlets were tested at angles of attack within the range from -3.0° to 3.1° at selected Mach numbers and massflow ratios (figs. 6 and 11). As would be expected, at low mass-flow ratios an increase in angle of attack caused an increase in the severity of the negative pressure peaks on the cowl upper surface and shifted the onset of strong recompression aft (see fig. 6(e) for example). At the high mass-flow ratios an increase in angle of attack decreased the extent of positive pressure on the forward portion of the cowl upper surface (see fig. 6(c) for example). The NACA 1-85-43.9 inlet was tested only at positive angles of attack so the row of pressure orifices on the bottom of the cowl can be considered to represent the equivalent negative angle of attack and are included in figure 9 for that purpose. The effects of angle of attack on the forward pressure peaks on this inlet were similar to those encountered on the NACA 1-85-100 inlets. This inlet was tested at angle of attack at lower Mach numbers than the others since it has more potential for good performance in the lower Mach number range. At a Mach number of 0.69 (fig. 9(d)) there appears to be flow separation near the cowl upper surface leading edge at 2.0° angle of attack. This can be seen by comparing the extent of constant pressure coefficient at the peak relative to that at 0° angle of attack for the top and bottom rows of pressure orifices.

<u>At small angles of sideslip.</u>- The NACA 1-85-100 inlet with a contraction ratio of 1.009 had a row of external pressure orifices on the side of the cowl at a meridian angle of 90°. Because of the inlet axial symmetry this row of orifices can be considered to represent the top of an inlet at 0° angle of attack that moves in sideslip when the model is moved in what has been defined as the angle of attack direction in this investigation. To determine the effect of sideslip on the pressure distributions, data from this row of orifices are presented in figure 7 for the maximum positive angle of attack at each Mach number. The data indicate a negligible effect of sideslip over the small angle range of this test.

Diffuser Pressure Distributions

The variation of pressure coefficient (internal to the highlight) with X/D_{max} for various mass-flow ratios for the two inlets with a contraction ratio of 1.250 is shown in figures 12 ($\alpha = 0^{\circ}$) and 13 (small α 's) for the NACA 1-85-100 cowl and in figures 14 ($\alpha = 0^{\circ}$) and 15 (small α 's) for the NACA 1-85-43.9 cowl.

<u>At 0° angle of attack.</u>- An illustration of the effect of changing mass-flow ratio at a Mach number of 0.60 on the location of the stagnation point on the inlet lip of the NACA 1-85-43.9 inlet can be seen in the pressure coefficients of table VI(a). As expected the stagnation point was farthest inside the inlet on the contraction surface (at an X/L of -5.13 percent) at the lowest mass-flow ratio of 0.28. The

stagnation point moved forward on the contraction surface with increasing mass flow until it reached the highlight (X/L = 0) at the maximum mass-flow ratio of 0.93.

The pressure distributions of figure 14 (or figure 12) indicate that the lowest internal pressure occurred approximately at the geometric throat $(X/D_{max} = 0.113)$ for all mass-flow ratios up through a Mach number of 0.77. At a Mach number of 0.79 a shock occurred at the throat at a mass-flow ratio of 0.80. Above a Mach number of 0.79 the shock moved downstream to an X/D_{max} of about 0.18 where the lowest pressure also occurred.

The effect of changes in external cowl shape on the pressure distributions internal to the highlight at 0° angle of attack was negligible as can be seen by comparing the data of figure 12 (NACA 1-85-100) with data at the appropriate Mach number and mass-flow conditions in figure 14 (NACA 1-85-43.9). The inlets both had a contraction ratio of 1.250 and identical diffuser geometry.

<u>At small angles of attack.</u>- The effect of angle of attack on the pressure distributions internal to the highlight is shown in tables VI and VII and figures 13 and 15 for the two different external cowl shapes. In general the effect of angle of attack is as would be expected. For example, examination of the pressure coefficients of tables VI and VII show that as angle of attack was increased for a given mass-flow ratio, the stagnation point of the incoming stream tube on the upper lip moved slightly farther into the contraction section while on the lower lip (the windward side) of the inlet the streamtube stagnation point moved slightly closer to the highlight.

CONCLUDING REMARKS

An investigation has been conducted over a range of subsonic speeds to determine pressure distributions on three isolated inlets having NACA 1-series cowl profiles. Two had NACA 1-85-100 cowls that differed only in internal contraction ratio (1.009 and 1.250). The third inlet had an NACA 1-85-43.9 cowl and had a contraction ratio of 1.250. Angle of attack was varied over a small range at selected Mach numbers and mass-flow ratios for each inlet.

At low Mach numbers and low mass-flow ratios, the NACA 1-85-100 inlets encountered flow separation over the forward portion of the cowl surface that was not significantly affected by the variation in contraction ratio. However the critical Mach number at a given mass-flow ratio was decreased somewhat by the increase in contraction ratio. The NACA 1-85-43.9 inlet did not encounter flow separation at the lowest mass-flow ratios since its blunter lip profile was more conducive to better performance at lower Mach numbers. At an angle of attack of 2.0°, the NACA 1-85-43.9 inlet did encounter separation at the lowest mass-flow ratio at the two lowest Mach numbers (0.60 and 0.69). Pressure coefficients from a row of pressure orifices on the side of the NACA 1-85-100 inlet with a contraction ratio of 1.009 showed no significant effect of angle change when the model was moved through a small range of angles of attack thus indicating insensitivity to small angles of sideslip.

REFERENCES

1. Baals, Donald D.; Smith, Norman F.; and Wright, John B.: *The Development and Application of High-Critical-Speed Nose Inlets*. NACA Rep. 920, 1948. (Supercedes NACA ACR L5F30a.)

2. Nichols, Mark R.; and Keith, Arvid L., Jr.: Investigation of a Systematic Group of NACA 1-Series Cowlings With and Without Spinners. NACA Rep. 950, 1949. (Supercedes NACA RM L8A15.)

3. Pendley, Robert E.; and Robinson, Harold L.: An Investigation of Several NACA 1-Series Nose Inlets With and Without Protruding Central Bodies at High-Subsonic Mach Numbers and at a Mach Number of 1.2. NACA TN 3436, 1955.

4. Pendley, Robert E.; Robinson, Harold L.; and Williams, Claude V.: An Investigation of Three Transonic Fuselage Air Inlets At Mach Numbers From 0.4 to 0.94 and at a Mach Number of 1.19. NACA RM L50H24, 1950.

5. Nichols, Mark R.; and Pendley, Robert E.: Performance of Air Inlets at Transonic and Low Supersonic Speeds. NACA RM L52A07, 1952.

6. Pendley, Robert E.; Milillo, Joseph R.; and Fleming, Frank F.: An Investigation of Three NACA 1-Series Nose Inlets at Subsonic and Transonic Speeds. NACA RM L52J23, 1953.

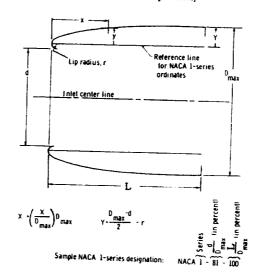
7. Pendley, Robert E.; and Smith Norman F.: An Investigation of the Characteristics of Three NACA 1-Series Nose Inlets At Subcritical and Supercritical Mach Numbers. NACA RM L8L06, 1949.

8. Pendley, Robert E.; Milillo, Joseph R.; Fleming, Frank F.; and Bryan Carroll R.: An Experimental Study of Five Annular-Air-Inlet Configurations at Subsonic and Transonic Speeds. NACA RM L53F18a, 1953.

9. Re, Richard J.: An Investigation of Several NACA 1-Series Axisymmetric Inlets at Mach Numbers From 0.4 to 1.29. NASA TM X-2917, 1974.

10. Re, Richard J.: An Investigation of Several NACA 1-Series Inlets at Mach Numbers From 0.4 to 1.29 for Mass-Flow Ratios Near 1.0. NASA TM X-3324, 1975.

11. Capone, Francis J.; Bangert, Linda S.; Asbury, Scott C.; Mills, Charles T. L.; and Bare, E. Ann: *Historical Overview, Facility Description, Calibration, Flow Characteristics, and Test Capabilities.* NASA TP-3521, 1995.


12. Couch, Lana M.; and Brooks, Cuyler W., Jr.: Effect of Blockage Ratio on Drag and Pressure Distributions for Bodies of Revolution at Transonic Speeds. NASA TN D-7331, 1973.

13. Dougherty, N. S., Jr.; and Steinle, Frank W., Jr.: Transition Reynolds Number Comparisons in Several Major Wind Tunnels. AIAA Paper No. 74-627, July 1974.

14. Re, Richard J.; and Abeyounis, William K.: Wind Tunnel Investigation of Three Axisymmetric Cowls of Different Lengths at Mach Numbers From 0.60 to 0.92. NASA Technical Memorandum 4488, 1993.

TABLE I.- NACA 1-SERIES ORDINATES

[Coordinates in percent]

		1	- <u>n</u>				
	x/L	· y/Y	x/L	y/Y	x/L	y/Y	
	0	0	20.0	52.70	48.0	81.25	
	.2	4.80	21.0	54.05	49.0	81.99	
	.4	6.63	22.0	55.37	50.0	82.69	
	.6	8.12	23.0	56.66	52.0	84.10	
	.8	9.33	24.0	57.92	54.0	85.45	1
ĺ	1.0	10.38	25.0	59.15	56.0	86.73	
	1.5	12.72	26.0	60.35	58.0	87.95	
	2.0	14.72	27.0	61.52	60.0	89.11	
	2.5	16.57	28.0	62.67	62.0	90.20	
	3.0	18.31	29.0	63.79	64.0	91.23	l
	3.5	19.94	30.0	64.89	66.0	92.20	l
	4.0	21.48	31.0	65.97	68.0	93.11	
1	4.5	22.96	32.0	67.03	70.0	93.95	l
	5.0	24.36	33.0	68.07	72.0	94.75	
	6.0	27.01	34.0	69.08	74.0	95.48	
	7.0	29.47	35.0	70.08	76.0	96.16	
	8.0	31.81	36.0	71.05	78.0	96.79	
	9.0	34.03	37.0	72.00	80.0	97.35	
	10.0	36.13	38.0	72.94	82.0	97.87	
	11.0	38.15	39.0	73.85	84.0	98.33	
	12.0	40.09	40.0	74.75	86.0	98.74	
	13.0	41.94	41.0	75.63	88.0	99.09	
	14.0	43.66	42.0	76.48	90.0	99.40	
	15.0	45.30	43.0	77.32	92.0	99.65	
	16.0	46.88	44.0	78.15	94.0	99.85	
	17.0	48.40	45.0	78.95	96.0	99.93	
	18.0	49.88	46.0	79.74	98.0	99.98	
	19.0	51.31	47.0	80.50	100.0	100.00	
_]	Lip radiu	s: 0.0253	······		

TABLE II. - DESIGN ORDINATES FOR NACA 1-85-100 INLET WITH INTERNAL CONTRACTION RATIO OF 1.009

[Coordinates in percent] L = 18.00in. and RMAX = 9.00in.

External ordinates

R/RMAX		97.47 98.40 99.11 99.62 99.91 100.00	
X/L	20.00 25.00 30.00 40.00		ordinates
R/RMAX		87.80 88.04 88.51 88.93 89.69 90.64 92.00	Internal ordinates
X/L	0.0 .20 .60 2.00	2.50 3.00 4.00 5.00 15.00	

Internal ordinates

R/RMAX	86.71 87.98 90.89 92.38 93.33
X/L	45.00 60.00 80.00 90.00 100.00
R/RMAX	85.36 85.00 85.42 85.87 86.22
X/L	0.0 .18 12.50 25.00 35.00

TABLE III.- DESIGN ORDINATES FOR NACA 1-85-100 INLET WITH INTERNAL CONTRACTION RATIO OF 1.250

[Coordinates in percent] L = 18.00in. and RMAX = 9.00in.

ន	R/RMAX	6.9	6.9	6.4	6.4	6.4	<u>6</u> .5	6.6	6.7	6.8	0.0	7.2	7.4		0.8	4.8	<u>б.</u>	4.0	0.0	0.7	1.5	2.4	ъ. 5	4.6	. ° 8	7.1	3.4	9.8	1.0	2.2	9.0	93.33	e
Internal ordinates	X/L	2.0	2.4	2.9	3.4	9.6	4.6	5.3	6.0	6.9	7.8	8.8	9.9	1.1	2.5	3.9	5.6	7.3	9.3	1.5	9.6	6.5	9.4	2.5	6.0	9.8	4.1	8.7	3.8	9.4	5.6	82.25	9.7
Internal	R/RMAX	ີ. ເ	ດ. ເ	4.6	4.2	о. е	с. С	~	2.8	2.4	2.1		1.3	1.0	0.6	0.3	<u>е</u> .	<u>с.</u>	.2	<u></u> . 8	<u>م</u> .5	.1	7.7	7.4	7.1	6.0	5.7	5.6	5.4	4.0	ç. 3	76.35	<u>۳</u>
	X/L	0.0	.01	.04	.08	.14	.23	.33	.45	.59	.76	.94	-	۳.	9.	σ.	2	9.	°.	4.	6.	<u>د</u>	.1	ω.	ς.	~	ω.	ഹ	2.	6.	0.5	11.26	1.6
S	R/RMAX	з. Э	Э. Э.	4.0	е. 1	4.6	4.9	95.28	ى. 0	ດ. ທ	6.3	e.6	7.0	7.3	7.6	7.9	8.2	4.8	8.7	6.8	9.1	9.2	9.4	ъ.5	9.6	5.7	9.8	9.6	6.6	9.9	0.0		
ordinate	X/L	ч. Ч	ч. Т.	4.8	9. 9	ц. С	9. 0	32.74	с. С	7.4	0.0	о. е	0.0	0.6	2.0	с. 0	о. 8	1.0	- -	7.0	0.0		0.0	0. 6	0.0	0.0	о. С				0.0		
External ordinates	R/RMAX	ີ ເກີ	ப் ப	с. С	9. 0	9.5	6.4	86.65	ω. φ	2.0	с. -	ີ ເບີ	5.7	0.8	8.2	ທີ່ ທີ	<u>۲</u> .	0.0	.2	ດ. ເບ	8		4.0		2		- 9	.9	<u>н</u>	4.2	5.7	°.	
	X/L	0.0	.02	.08	.18	.32	.50	.72	<u>.</u>		e.		Υ.	ິ.	5	0	÷.	<u>م</u>	<u>م</u>	Γ.	ц С	ຕ.	6 .7	0.2	1.2	2.2	3.4	4.5	5.8	7.1	18.54	0.0	

TABLE IV.- DESIGN ORDINATES FOR NACA 1-85-43.9 INLET WITH INTERNAL CONTRACTION RATIO OF 1.250

[Coordinates in percent] L = 7.897in. and RMAX = 9.00in.

70	R/RMAX	. 9	ć,	6.4	4.	4.	•	9.	-	8	਼ੇ		4.		2	÷.4	<u>و</u> .	4.	?		81.59	4.2	ц. 	9. -			5.8	÷.	3	~	<u> </u>	 	ີ. ຕ
Internal ordinates	X/L	÷	с.	.4	.6	8.	с.	<u>∞</u>	.6	<u>د</u> .5	.6	<u>م</u>	4.		~		<u>е</u>	4.0	5.0	ω. 	77.28	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ξ.	2.0	04.5	13.7	23.3	÷.	45.5	58.5	72		191.20
Internal	R/RMAX	ر .	0.0	1.6	1.2	و.	<u>د</u> .		°.	2.4		L.]	Г. Э	с. -	0.6	<u>.</u>	<u>.</u>	<u>с</u>		ω. ω.	78.51			1.4	7.1	3	5	6.6	9.4	9.6	9	9	· :
	X/L	0.0	.02	.08	.19	.33	.52	~	0	n.	5	-	Q	-	5	4	-	0	æ	ω.	8.99	0.1	1.8	с. С	4.8	6.4	5.	5	ਜ	2.		ы. С	9.9
Ω.	R/RMAX	3.3	3.6	4.0	4.3	4.6	4.9	5.2	5.6	5.9	6.3	6.6	7.0	7.3	7.6	7.9	8.2	8.4	8.7	8.9	99.11	9.2	9.4	9.5	9.6	9.7	9.8	9.9	9.9	9.9	0.0		
ordinates	X/L	1.5	3.1	4.8	6.6	8.5	0.6	2.7	5.0	7.4	0.0	3.0	6.0	0.6	2.0	5.0	8.0	1.0	4.0	7.0	70.00	3.0	6.0	9.0	2.0	5.0	8.0	1.0	4.0	7.	100.00		
External	R/RMAX	5.3	5.5	5.8	6.0	6.2	6.4	6.6	6.8	7.0	7.3	7.5	7.7	8.0	8.2	8.5	8.7	9.0	9.2	9.5	89.85	0.1	0.4	0.7	1.0	1.3	1.6	1.9	2.1	2.4	2.7	з.0	
	X/L	0.0	.02	.08	.18	.32	.50	.72	.98	?	. 6	਼	4.	6.	4.	°.	9.	2	6.	٢.	7.50	e.	?	0.2	1.2	2.2	3.4	4.5	5.8	7.1	ഹ	0	

TABLE V. PRESSURE COEFFICIENTS ON MODEL WITH NACA 1-85-100 INLET AND CONTRACTION RATIO OF 1.009 (a) M = 0.79

		γþ	6	1000	0.0200	0.0331	0.0742	0.1273	0.1876	0.2357	0.2889	0.3539																		÷	; Ĉ	00101	70100	0.0363	10531	22601	1524	12166	12653	1197	1987																	
	50	Afterbody			200.00																								50	Andre	XVI.			200.00																								
	♦ = 180°	ody	5	52560			1.1081						1.3409	0107.1	01171	04120		77170	441770	5717	64617	0.1420	21323	0.1120	0.1220	1060	-0.0398		• - 100e	-													2540	2789	-0.3014	2592	ET91.	1784	1366	1370	1213	1141	10110		1011.0-	C2/1	-0.0295	6720
		Forebody		2 F																			10.00				122.08			Forehody	X		-3.12												5.00													
q α = 0°		2	CP 00166	0.9420	0.9851	1.0240	916	-1.5728	-1.4910	•	529	c1 &		107	813	210	200	090			8671.0-	2/7	Ē	112	33	-0.0419	16	l α = 0°		,	. <u>a</u> .	053	135	0.7182																								-
mfr = 0.84 and α = 0°	•06 = •	Ę.		-3.12 0.5			0.00				2.50 -1.3		er.+			12.00											139.00 0.0311	mfr = 0.77 and α	•00 = ♥	Forehody	X/L CP				-1.25 0.7		0.62 -0.9					4.38 -0.21				15.00 -0.1792												
L H												_			. 1		: =		4 4	* 2	* 1	57	< 3		8	123	136	mfr =			×												S	1	10	15.	17.	20	4	<u>8</u>	60.09	2	00.04		Ř	00.221		
		Afterbody			0 0.0157		0 0.0788			S1770 0																				Afterbody				0.0327																								
	• = 0.		AL AL				1 238.90																	_		_			°0°	Ň				200:00																								
		Forebody		0.9581							2000-1-						-0.1914		01740					1771-0			N:0228		•	rebody				0.7537											-0.2823					-0.1164		-0.1136	-0.1021	CC20.0-	D mks	1100		
		Fo Y	175	-3.12	-1.88	-1.25	0.62	0.0	16.0	70'N		2.1		905	7.50	10.00	12.50	15.00	0000		000	2000		0.0	10°04	00.221	00.461			Fo	X	-3.75	-3.12	-1.88	-1.25	-0.62	0.00	0.31	0.62	1.25	2.50	3.12	4.38	5.00	7.50	10.00	12.50	15.00	30.00	40:00	50.00	60:00	70.00	00.06	122.00	120.00	20.70	
	180°	Afferbody X/I CP	٣				238.50 0.0007																						180°	Afterbody				200.00 0.0287																								
	9 8. = ♦	Afterbo X/I.	6 166.70	183.30		216.70	256.50		01.007	277.80			-1.4145	-1.3924	-1.3497	-1.2055	-0.1553	-0.1723	-0.1719	-0.1608	-0.1510	-0.1404	10110	14110- 14110-	-0.1.20		-0.0395		♦ = 180°		XL	166.70		200.00	216.70	238.90	255.60	266.70	272.20	277.80	283.30	-0.9912	0.44.39	-0.2767	-0.2727		-0.2317	-0.2113	-0.1600	0.1451	0.1400	0.1217	0.1039	0.1106	0.0803	0.0427	0.0286	8 8 9 9
	9 8. = ♦	Afterbo X/I.	1.0176 166.70	1.0291 183.30	1.0767 200.00	1.1010 216.70	06.862 0001.1	00.002 00110-	01.002 20201-	277.80	01 2801 281 10	-1.4995		4.38 -1.3924													139,00 -0.0395		6 = 180°	rebody	XL	0.8318 166.70	0.8446 183.30	200.00	0.9175 216.70	1.0078 238,90	0.7951 255.60	-1.2975 266.70	-1.2353 272.20	-1.1537 277.80	-1.0492 283.30	3.12 -0.9912	3.75 -0.4439				15.00 -0.2317	17.50 -0.2113		40.00 -0.1451						122.00 -0.0327	139.00 -0.0286	
r and $\alpha = 0^{\circ}$	361 = ●	Yorebody Afferbo X/L CP X/L	-3.75 1.0176 166.70	-3.12 1.0291 183.30	-1.88 1.0767 200.00	-1.25 1.1010 216.70	06.862 0001.1	06.3% 2532.1" 290	06.666 33631. 201	1.88 1.9409 1.88 1	0112 1121 122	3.12 -1.4995	3.75	-1.2054 4.38	-0.5817 5.00	-0.2006 7.50	-0.1640 15.00	-0.1652 17.50	-0.1565 20.00	-0.1408 40.00	-0.1364 50.00	-0.1226 60.00	-0.1246 70.00	0.1040 80.00			139.00	and $\alpha = 0^{\circ}$	÷ 1 = ♦	Forebody	XIL CP XIL	-3.75 0.8318 166.70	-3.12 0.8446 183.30	0.8858 200.00	-1.25 0.9175 216.70	-0.62 1.0078 238.90	0.7951 255.60	0.62 -1.2975 266.70	1.25 -1.2353 272.20	1.88 -1.1537 277.80	-1.0492 283.30	3.12	3.75		8.8 2		15.00	17.50		40.00	50.00	60.00		80.00	90:00	122.00	00'661	
nfr = 0.67 and $\alpha = 0^{\circ}$	361 = ●	Afterbo X/I.	1.0078 -3.75 1.0176 166.70	-3.12 1.0291 183.30	1.0653 -1.88 1.0767 200.00	0.0079 -1.25 1.1010 216.70	0.2420 0.00 1.1 200 2.38.20 1.7507 0.00 0.1455 755 20		01.002 #02.11 #00 00.0010	-15427 1.88 .15044 277.80	1.4800 2.50 1.5801 281.00	-1.3621 3.12 -1.4995	-1.3260 3.75	-1.2054 4.38	-0.5817 5.00	-0.2006 7.50	-0.1640 15.00	-0.1652 17.50	-0.1565 20.00	-0.1408 40.00	SO.00	-0.1226 60.00	-0.1246 70.00	0.1040 80.00			139.00	= 0.71 and α	÷ 1 = ♦	rebody Forebody	CP X/L CP X/L	0.8339 -3.75 0.8318 166.70	0.8371 -3.12 0.8446 183.30	-1.88 0.8858 200.00	0.9027 -1.25 0.9175 216.70	0.9798 -0.62 1.0078 238.90	-1.2940 0.00 0.7951 255.60	0.62 -1.2975 266.70	-1.1525 1.25 -1.2353 272.20	-1.0740 1.88 -1.1537 277.80	-0.9477 2.50 -1.0492 283.30	-0.4965 3.12	3.75	-0.3016 4.38	-0.2743 5.00	0671 1617.0-	-0.2030 15.00	17.50	-0.1486 20.00	-0.1217 40.00	-0.1231 50.00	-0.1069 60.00	-0.1086 70.00	-0.0675 80.00	-0.0336 90.00	-0.0278 122.00	00.061	
mfr = 0.57 and $\alpha = 0^{\circ}$	◆ = 00° = ◆ = 138	P X/L CP X/L CP X/L	-3.75 1.0078 -3.75 1.0176 166.70	-3.12 1.0243 -3.12 1.0291 183.30	-1.88 1.0653 -1.88 1.0767 200.00	0.00 00100 01.25 1.1010 216.70	06397 00011 7000 004770 0000 072336 33810 000 000 11 2400		0.002 20011 200 0000 0000 0000 0000 0000	2.50 -1.5427 1.88 .1 5044 777 80	3.12 -1.4890 2.50 -1.5801 283.30	4.38 -1.3621 3.12 -1.4995	-1.3260 3.75	-1.2054 4.38	-0.5817 5.00	-0.2006 7.50	-0.1640 15.00	-0.1652 17.50	-0.1565 20.00	-0.1408 40.00	-0.1364 50.00	-0.1226 60.00	-0.1246 70.00	0.1040 80.00			139.00	$\operatorname{rafr} = 0.71 \operatorname{and} \alpha = 0^\circ$	φ = 90°	Forebody Forebody	XI. CP XI. CP XI.	-3.75 0.8339 -3.75 0.8318 166.70	-3.12 0.8371 -3.12 0.8446 183.30	-1.88 0.8866 -1.88 0.8858 200.00	-1.25 0.9027 -1.25 0.9175 216.70	0.00 0.9798 -0.62 1.0078 238.90	0.62 -1.2940 0.00 0.7951 255.60	1.25 -1.1871 0.62 -1.2975 266.70	1.88 -1.1525 1.25 -1.2353 272.20	2.50 -1.0740 1.88 -1.1537 277.80	3.12 -0.9477 2.50 -1.0492 283.30	-0.4965 3.12	-0.2661 3.75	-0.3016 4.38	-0.2743 5.00	0671 1617.0-	-0.2030 15.00	-0.1531 17.50	-0.1486 20.00	-0.1217 40.00	-0.1231 50.00	-0.1069 60.00	-0.1086 70.00	-0.0675 80.00	-0.0336 90.00	-0.0278 122.00	00.061	
	♦ = 30° = ♦ = 138	rorebody rorebody Afterbo XI, CP XI, CP XI,	0 -0.0121 -3.75 1.0078 -3.75 1.0176 166.70	-0.0036 -3.12 1.0243 -3.12 1.0291 183.30	-1.88 1.0653 -1.88 1.0767 200.00	0.0201 0.01 0.01 0.01 0.01 0.01 0.00 0.00	0.1121 0.67 1.7402 0.00 0.2453 0.00 1.1200 2.36.50 0.1121 0.67 1.7402 0.00 0.1444 244 244	00:07 00:00 700 100 100 000 0000 0000 00	0.2052 1.88 -1.6136 1.75 -1.6055 200.70	0.2498 2.50 -1.5427 1.88 .1.6044 777.80	0.3105 3.12 -1.4800 2.47 -1.5801 283 30	4.38 -1.3621 3.12 -1.4995	-1.3260 3.75	-1.2054 4.38	-0.5817 5.00	-0.2006 7.50	-0.1640 15.00	-0.1652 17.50	-0.1565 20.00	-0.1408 40.00	-0.1364 50.00	-0.1226 60.00	-0.1246 70.00	0.1040 80.00			139.00	= 0.71 and α	φ = 90° Φ = 15	erbody Forebody Forebody	CP X/L CP X/L CP X/L	-0.0008 -3.75 0.8339 -3.75 0.8318 166.70	0.0113 -3.12 0.8371 -3.12 0.8446 183.30	0.0251 -1.88 0.8866 -1.88 0.8858 200.00	0.0444 -1.25 0.9027 -1.25 0.9175 216.70	0.0889 0.00 0.9798 -0.62 1.0078 238.90	0.1405 0.62 -1.2940 0.00 0.7951 255.60	0.2042 1.25 -1.1871 0.62 -1.2975 266.70	0.24// 1.88 -1.1525 1.25 -1.2353 272.20	0.3018 2.50 -1.0740 1.88 -1.1537 277.80	0.3673 3.12 -0.9477 2.50 -1.0492 283.30	-0.4965 3.12	-0.2661 3.75	-0.3016 4.38	-0.2743 5.00	0671 1617.0-	-0.2030 15.00	-0.1531 17.50	-0.1486 20.00	-0.1217 40.00	-0.1231 50.00	-0.1069 60.00	-0.1086 70.00	-0.0675 80.00	-0.0336 90.00	-0.0278 122.00	00.061	
		ermouy Forebody Forebody Afferbo CP XA, CP XA, CP XA.	166.70 -0.0121 -3.75 1.0078 -3.75 1.0176 166.70	183.30 -0.0036 -3.12 1.0243 -3.12 1.0291 183.30	0.0071 -1.88 1.0653 -1.88 1.0767 200.00	218.00 0.0204 -1.1.0 1.0979 -1.25 1.1010 216.70	255.60 0.1121 0.00 0.2423 0.00 0.256.50 256.50 256.50 256.50 256.50 256.50 0.121	266.70 0.16660 1.25 1.6010 2.000 2.000 0.000 0.000 0.000	272.20 0.2052 1.88 1.6136 1.75 1.6055 200.70	0.2498 2.50 -1.5427 1.88 .1.6044 777.80	283.30 0.3105 3.12 -1.4899 2 40 -1 5801 283.40	4.38 -1.3621 3.12 -1.4995	5.00 -1.3260 3.75	7.50 -1.2054 4.38	10.00 -0.5817 5.00	15.00 -0.2006 7.50	17.50 -0.1640 15.00	20.00 -0.1652 17.50	40.00 -0.1565 20.00	50.00 -0.1408 40.00	60:00 -0.1364 50:00	70.00 -0.1226 60.00	80.00 -0.1246 70.00	0.1040 80.00			00'561	= 0.71 and α	$\phi = 0^{\circ} \qquad \phi = 90^{\circ} \qquad \phi = 1^{\circ}$	Afterbody Forebody Forebody	XIL CP XIL CP XIL CP XIL	166.70 -0.0008 -3.75 0.8339 -3.75 0.8318 166.70	0.0113 -3.12 0.8371 -3.12 0.8446 183.30	200.00 0.0251 -1.88 0.8866 -1.88 0.8858 200.00	-1.25 0.9027 -1.25 0.9175 216.70	238.90 0.0889 0.00 0.9798 -0.62 1.0078 238.90	255.60 0.1405 0.62 -1.2940 0.00 0.7951 255.60	200./U U.2042 1.25 -1.1871 0.62 -1.2975 266.70	2/12.20 U.24// I.88 -1.1525 1.25 -1.2353 272.20	2.50 -1.0740 1.88 -1.1537 277.80	283.30 0.3673 3.12 -0.9477 2.50 -1.0492 283.30	4.38 -0.4965 3.12	-0.2661 3.75	4.38	-0.2743 5.00		17.20 -0.2030 15.00	-0.1531 17.50	40,00 -0.1486 20,00	50.00 -0.1217 40.00	60.00 -0.1231 50.00	70:00 -0.1069 60:00	80.00 -0.1086 70.00	90.00 -0.0875 80.00	-0.0336 90.00	139.00 -0.0278 122.00	139.00	

(a) Concluded mfr = 0.85 and $\alpha = 0^{\circ}$

 •= 0		÷	06 = 4	:	•	= 180°	
After	body	Fore	body	For	sbody	After	body
XI	CP C	ž	СЪ	XIL	9	XI	G
166.70	0.0075	-3.75	0.5108	-3.75	0.5078	166.70	0.0182
183.30	0.0200	-3.12	0.5021	-3.12	0.5194	183.30	0.0232
200.00	0.0350	-1.88	0.5037	-1.88	0.5215	200.00	0.0389
216.70	0.0568	-1.25	0.5124	-1.25	0.4909	216.70	0.0553
238.90	0.1042	000	1.1541	-0.62	0.4538	238.90	0.1010
255.60	0.1542	0.62	-0.1544	0:00	1.1646	255.60	0.1567
2507 266.70 0.2149	0.2149	1.25	-0.1532	0.62	0.62 -0.0833	0833 266.70 0.218	0.2181
272.20	0.2578	1.88	-0.1530	1.25	-0.1696	272.20	0.2653
277.80	0.3089	2.50	-0.1962	1.88	-0.1878	277.80	0.3188
283.30	0.3735	3.12	-0.1412	2.50	-0.1901	283.30	0.3845
		4.38	-0.1528	3.12	-0.1526		
		5.00	-0.1306	3.75	-0.1124		
		7.50	-0.1801	4.38	-0.1262		
		10.00	-0.1648	5.00	-0.1361		
		15.00	-0.1379	7.50	-0.1444		
		17.50	-0.1412	15.00	-0.1459		
		20.00	-0.1118	17.50	-0.1475		
30.00 -0.1274		40.00	-0.1093	20.00	1611.0-		
		50.00	-0.1015	40.00	-0.1164		
		60:09	-0.0998	50.00	-0.1112		
		70.00	-0.0928	60.09	-0.1048		
		80:00	-0.0947	70.00	-0.0876		
		90:06	-0.0775	80.00	-0.0986		
		122.00	-0.0251	90:06	-0.0679		
		139.00	-0.0185	122.00	-0.0243		
				130 00	0.0181		

(b) M = 0.84

	vdy 2	CP	0.0200	0610.0	1/70:0	0.0410	0.1725	0.1320	0.1910	6167.0	86/770	0.53UZ																	vody	G	-0.0036	0.0044	1610.0	10800	0.1338	0.1981	0.2430	0.2976	1000.0													
180°	Afterbody		100.70	00.00		07.012	06.862	10.027	266.70	07.717	02.112	783.50																80°	Afterbody	ХЛ	166.70	183.30	200.00	210.70	255.60	266.70	272.20	277.80	AC.C07													
\$ = 180	ođy (j	6	1.0756	(76)	1171-1	1.148/	1.1894	- 14C-D	-1.6325	2000.1	C 407	0/64/1	-1.4549	30001	1072	-1.2309	1.0537	0.0073	-0.1738	0.0628	-0.1058	0.1198	-0.1109	-0.1202	0.0907	-0.0350		d = 180°	ody	5	1.0419	1.0634	1.0977	11770	0.0120	-1.5339	-1.4944	-1.4245	1 tut 1-	1.2829	-1.2398	-1.2041	1.1039	-0.8869	-0.2358	1000	-0.1356	0.1321	-0.1150	0.1240	5000	
	Forebody	, k	5. 5. 5	21.6-	80.1		70.0		. 20.0		8. 5		21.2					12.50								139.00			Foreb		-3.75		88 T-		000			1.88			4.38			8.5			50.00			-	2020	
ጜ	÷		01410	77CO.1		1.1237	1 5467	1040	-1.4759	1076	77CC-1-		0617.1-	+1/1/1-	1 0004	0.8505	2716	-0.0995	1278	-0.1271	1111	1256	1253	-0.1045	0450	0358	id α = 0°	۳	dy	CP CP	1.0351	1.0520	1.0876	0.3712	1.5373	-1.4764	-1.4177	-1.3754	2016	6021	-1.1074	9856	8477	0.2159		01240	-0.1257	-0.1194	6411	-0.094	0.000	
₽	Forebody														200		17.50 -0								122.00		mfr = 0.57 and $\alpha = 0^\circ$	• = •	Forebody			-3.12		000													00.00			0.00		
	~	2	-0.021	2000			0461.0		110	0107.0		010												•		-	шfт			e.	-0.0089	0.0044		0.0816				0.2689													-	
	£.					216 CU 017			01.002		2011.00																		Afterbody					238.90 0.0				2.0 08.112														
°0 = ¢			1.0119 10								12 DFCC.1-		110	0001-	217	242	-0.7440	748	-0.1415	-0.1320	-0.1336	339	-0.1238	-0.0925		<u>8</u>		• = 0°				1.0556 18:						17 6CDC-1-		Ŧ	706	963	255	8		8	062	274	267	50	S	
	ě	WL C								2017 2017				01-005											122.00 -0.0404				Forebody		-3.75 1.0			-0.62 1.1			0.62 -1.5			4.38 -1.1	5.00 -1.1708		000 -1.0255		970 0000	0601.0-00.0				90.00 -0.0907		
	ody ac	100	0.0149	19000	51700	1900	17010		0.7743	DEVEN	1178	0710.0																	ody	CP CP	0.0115	16000	0.0238	0.0820	0.1352	0.1945	0.2377	0.787.0														
= 180°	Afterbody	NL 156 70	183.20		216 70	218 90	255 60		01.002	08 11 1	06.112	AC-1087																180°	Afterbody	ХI	166.70	183.30	200:00	238.90	255.60	266.70	272.20	08.112														
٠	body	1001	7/90.1	11380	1 1643	0001	0.6407	1202	7000'1-	1 6103	1 5612	18031-	107071-	1.4588	-1.4367	-1.3239	-1.1008	-0.5821	-0.2897	-0.0815	-0.0778	-0.1051	-0.1010	8/11/9	769010-	-0.0316		\$ = 180°	Forebody	G	1.0608	1.0712	1 1424	1.1840	-0.2232	-1.5899	-1.5564	1761-	-1.3836	-1.3397	-1.3077	-1.2937	-1.1699	1514.0-	06300-	0960.0-	-0.1237	-0.1265	0.1134	-0.1204	-0.0876	
	Forebody	7 17		58 	× 1-	999								4.38		7.50					20:00	60.09	20:00	80.00		00.021	٩		Forel	ХI	3.75	-3.12	89.T-	660											20.00							
= 3 0°	dy of		10501	0,000	1771	1226	1 5528	2007	CCCF.	7444	9000	91.00	PL81 1	0960	92660	-0.7958	-0.2146	0.1274	0.1471	0.1355	-0.1390	0.1194	0.1272	-0.1005	-0.0926	e/cor	id α = -1.0°	°0	ody	сь	6040	5840.	20071	0.3553	1.5441	1.4857	1.4202	2000-1-	2290	1.1809	1560'1	10114	-0.8995	00/71	-0.1237	-0.1223	-0.1303	0.1200	0.1230	-0.1023	0.0400	
11 •	Forebody															15.00											= 0.57 and α	•06 ≖ ♦	Forebody					000																		
	λų α	10.01	1020.0	0.0142	17500	0.081	1111	1001	C021.0	1000	0 1857																ца Ца		dy	c,	-0.0202	0,000	871070	0.0770	0.1316	0.1975	0.2417	80216														
5	Afterbody	142.00							279.20																			ዶ	Afterbody				216 70			266.70		281.30														
ຽ = ♦	Forebody	_		1.0472			0.5678		14000				0.8040	-0.8799	-0.7848	-0.4203	-0.1627	-0.1371	-0.1565	-0.1276	-0.1306	-0.1315	-0.1210	0060.0	0.0160	0C10/0-		0 = 0	Forebody					1.1592		-1.4566			-1.2060	-1.411	-1.0886	-1.0135	-0.9240	201050	-0.1244	-0.1240	-0.1300	-0.1283	-0.1224	C160.0-	20192	
	ere _	. 2		1.88							2 50						12.50								00.77				ĩ		- 7.5			-0.62				2.50					800									

20

(b) Continued

vbc	CP	-0.0225	-0.0025	0.0161	1.620.0	1010.0	2001.0	0.7499	0.1001	1.202.0	C 100.0																			ody	с <mark>ь</mark>	0.0051	0.0137	0.0310	0.0494	0.0957	0.1533	007770	CK07.0	0.3061															
φ = 180° Afterbody			183.30																										180°	Afterbody	XI	166.70	183.30	200.00	216.70	238.90	255.60	200.10	07.717	02.112	AC.CO.7														
+ body	5	1.0135	1.0262	1.0628	176011	11011	19167	13981	30261	NDAC 1.	1 1400	1 0075	C/ 20.1 -	18/01-	77001-	2/56/0-	-0.1691	-0.1444	-0.1381	-0.1429	-0.1418	-0.1293	0.1105	-01247	01600-	1000	-0.0266		* •	body	or, cp	0.9664	0.9706	1.0200	1.0577	1.1257	0.4721	ccct.1-		¥667-1-	11702	1 0618	99201	1011-	-0.9477	-0.3155	-0.1153	-0.1392	-0.1496	-0.1411	-0.1365	01210-	4171-D-	0/20/0	-0.0350
Foret	X/L CP	-3.75	-3.12	89.T-	99	800																					00.651			Fore				-1.88																					122.00
ړ مړ	G	1.0359	1.0488		- 195 	0.000.0	1900	1.4202	1460	000C	0010	04171	1000	1.1008		0.84.50	0.2174	-0.0951	0.1252	0.1285	0.1289	0.1239	0.1193	0.0085	00700	100		nd a = 0°	.0°	ody	e.	0.9660	0.9678	1.0256	1.0461	0.7223	1.3924	00761	0607.1	200771	1 0767	0.0018	0 9198	0.8555	0.1365	-0.1293	0.1412	0.1444	0.1342	0.1282	-0.1169	0.0060	2010.0-	0.000	0.0238
¢ = 90° Forebody			-3.12																				r 0008			00001		mfr = 0.64 and $\alpha = 0^{\circ}$	• - 6	Foreb	X/L CP	-3.75												00.01		17.50				800			00 661		
*	5	0.0141	0.0138	0234	1240	0000	2701	0960	1011		1070																	Ē		đy	G.	6000	0127	0.0280	0.0508	0.0974	0.1533	68171	75047		11007														
^ Afterbodv	XI							0, 00, 007																					8	Afterbody				200:00																					
•= 0°						C021.1				7670'1-		0264-1-		-1.5280	CZ (Z)	-1.1690	-1.0908	-1.0117	-0.1110	-0.0464	-0.0965	-0.1188	01130	1100.0	00180	05000	007070-		°0 •	vpoc				1.0354								1 0677	1 0708	0.9529	-0.8079	-0.7117	-0.1743	-0.1452	-0.1350	-0.1350	-0.1320	-0.0836	0.000.0-	8000-	-0.0145
Foreb	XIL CP	-3.75	-3.12			70'0		15.0										15.00						000		00.021				Forel				-1.88			000							9.40				30.00	40.00	50.00	00.09	00.07	00.04	00.221	00'6£1
♦ = 180° • Afterhodv		166.70 -0.0125		200.00 0.0183	216.70	16.857	00.002		07.717	02.112	06.682																		= 180°	Afterbody	î	166.70	183.30		216.70	238.90	255.60	266.70	272.20	D8.112	06.682							~	-						*
¢ Forebody	5	1.0283	1.0433	1.0733	1611.1	1.1094	C071-D	0704-1-		4166.1-	7047-1-	00771-	1001-1-		-1.1121			-0.1570			-0.1353	1111	1110	01764		014000	-0.0333		4	mbodv				1.0391									19900				-0.1757					7111-0- 1 5051-0			0.0354
Por	X	-3.75	-3.12	-I.88	1.2	70.0	3.5	70.0	9	- 98 	R :	7.6	C 2	4.38	2.00	7.50	15.00	17.50	20.00	40.00	50.00	0009	10.05				139.00	.0		Fo	X	-3.75	-3.12	-1.88	-1.25	-0.62	0.00	0.62	1.25	8.1	2.2	71.C		8 E	051	15.00	17.50	20.00	40.00	50.00	60.00	70.07	3.02	8.06	122.00
¢ = 90° Forehody	G	1.0362	1.0468	10021	1.1204	0.3695	6/601-	-1.408U	1.4011	0706.1-	0106.1-	-1.2013	-1.1030	-1.0791	-0.9861	-0.8843	-0.2555	-0.0752	0.1206	-0.1181	1621.0-	09110-	1778	0.001		61CD/D	7/60/0	0.67 and $\alpha = 3.0^{\circ}$	6 = 90°	ehody	KIL CP	1.0358	1.0549	1.0882	1.1234	0.3934	-1.5462	1.4794	-1.4035	0496.1-	1.15 P	NCN7-1-	0701-1-	20001-	0.8730	-0.2419	-0.1394	-0.1429	-0.1340	-0.1389	0.1310	-0.1278	1001.0-	-0.0477	-0.0373
¢ . Fore	XI	-3.75	-3.12	-1.88	-1.25	0.0	7970	(7.1	29.T	2.50	21.2 7 5 5	8.4 8.5	8.5	7.50	10.00	15.00	17.50	20.00	40.00	50.00	60.00	10.01	0008	0.00		00.221	00.461	mfr = 0.67	•	For	XI	-3.75	-3.12	-1.88	-1.25	000	0.62	1.25	1.88	067	5.12	9. 1		0001	15.00	17.50	20.00	40.00	50.00	60.00	20.00	00.08	00.02	122.00	139.00
ž	2 2 2	0.0014	0.0074	0.0213	0.0389	0.0847	0.1552	0.1939	0.2545	0.2826	0.3568																	e		via	6	0.0175	0.0168	0.0274	0.0444	0.0859	0.1340	0.1862	0.2181	5/57.0	PK0X-0														
0° Afterhady	X	166.70	183.30	200.00	216.70	238.90	00.007	266.70	07717	277.80	283.50																		٤	Afterhody	XI	166.70	183.30	200.00	216.70	238.90	255.60	266.70	272.20	08.112	187587														
a = 0° Bonehoder	c d	1.0547	1.0726	1.1172	1.1442	1.1793	C040.0	-1.5897	1.004/	-1.5576	- 1.4493	-1.4215	-1.2785	-1.2445	-1.1371	-1.0795	-1.0245	-0.9483	-0.0878	1170.0-	LL I U	1221.0	1010		714010	70000	00200-		-		KI. CP	1.0838	1.0979	1.1412	1.1617	1.1891	-0.2901	·1.6632	-1.7057	-1.0455	00001-	66701-	0164.1-	0102	00211	-1.1482	-1.0572	-0.3097	-0.0639	-0.0655	-0.1032	-0.1048	0.80.0	-0.0385	-0.0273
1		3.75	-3.12	<u></u>	ຄ	2	2	1.0	0.02	21	8	2	8	8	8	00.01	8	15.00	8	40.00	000	8	200	8.8	3 8	007771	8			8	. ا	2	3.12	-1.88	3	8	0.00	0.31	0.62	2	2 9	2 2	88	8.6	8 8	12.50	15.00	8	40.09	30.00	80.09	8.8	B 8	22.00	39.00

21

(b) Continued

		ody	e ce	0.0416	0.0565	0.0762	0.1280	0.2500	0.3026	0.3491	0.4020																		vbo	C.P.	0.0276	0.0326	0.0479	0.1718	0.1856	0.2553	0.3035	0.3557	18167														
	180°	Afterbody			200.00																							180°	Afterbody	χĩ			200.00																				
	a = 180°	Forebody	5	0.8602	0.9014	0.9422	1510.1	1 1654	-1.1760	-1.1348	-1.1050	-1.0718	-0.9824	-0.9640	2/16/0-	29110	-0.1557	-0.1646	-0.1521	-0.1428	-0.1324	-0.1086	-0.1121	-0.0747	-0.0202			6 = 180°	body	(L CP	0.7749	0.7780	0.8338	0.9246	1.0484	-0.9858	-0.9354	-0.8887	-0.8128	-0.6174	-0.6998	-0.5883	-0.2218	-0.2292	-0.2133	-0.1647	CC#1.0-	-0.1.595	C671-0-	-0.1146	-0.0797	-0.0224	-0.0181
•		Fore	ž		-1.88	-1.25	70 G	80	1.25	88.1	2.50	3.12	3.75	4.4 8.4	8 S	2 S S	17.50	20.00	40.00	50.00	60.09	70.00	80.00	90:06	122.00				Fore				-1.88																	00.08			
mfr = 0.78 and a = -3.1°	• = 90°	body	3	0.7413	0.7618	0.7846	1.18247	-0.6878	-0.6093	-0.4673	-0.4420	-0.3099	-0.2776	-0.5049	-102.0-	-0.1914	-0.1466	-0.1384	-0.1213	-0.1215	-0.1055	-0.1101	-0.0909	-0.0317	-0.0213		mfr = 0.78 and $\alpha = -1.1^{\circ}$	4 = 90°	vpody	6	0.7297	0.7326	0.7565	1.1805	-0.7762	-0.6550	-0.6678	7/7010	0.2589	0.2402	-0.2865	-0.2417	0.1925	0.1941	0.1380	50.1.0		0 1024	0.1051	-0.0827	0.0235	0.0124	
= 0.78 aı	•	Forebody	XL XL	5.15 21.12	-1.88	-1.25		1.25			3.12				8.9									122.00			= 0.78 ar	•	Forel	X/L CP	-3.75	-3.12	88.1-	000					1 1 1											8.08		139.00	
ця		vdy ()	1.00	0.0200	0.0389	0.0655	01750	0.2464	0.2906	0.3485	0.4266																58		dy	c,	0.0041	0.0263	0.0416	0.1194	0.1776	0.2457	0.2935	0.4105															
	0,	Afterbody			200.00																							8	Afterbody				216.70				272.20																
	• = 0,	Forebody	10	0.6204	0.6080	0.5819	1.1869	0.0194	0.0145	-0.0145	0.0168	0.0083	0.0667	0.0099	0.0952	0.0909	-0.0795	-0.0988	-0.0854	-0.0955	-0.0972	-0.0893	-0.0644	-0.0187	0.0006			•	Forebody	6	0.7155	0.7161	0,756	0.7806	1.1823	-0.3258	-0.5158	792.0	-0.2132	-0.1548	-0.2184	0.2525	-0.1900	-0.2142	-0.1568	0,110	01142	71110	01000	-0.0756	-0.0170	-0.0039	
		Fore	N F	-3.12	-1.88	-1.25	800	0.31	0.62	1.25	2.50	3.12	8	0.	10,00	12.50	15.00	30.00	40.00	50.00	60.00	70.00	00:06	122.00	00'661				Fore	χr	-3.75	-3.12	-1.25	0.62	0.00	0.31	0.62	9 5	3.12	4.38	5.00	7.50	00.01	12.50	00.01	0.00	900 9	0000		90:06	122.00	139.00	
		ody L	2000	0.0222	0.0428	0.0601	0.1726	0.2417	0.2941	0.3480	0.4177																		ody	СР	0.0391	0.0381	01200	0.1220	0.1885	0.2555	0.9004	0.4102															
	= 180°	Afterbody	166.70	183.30	200.00	216.70	255.60	266.70	272.20	277.80	283.30																	180°	Afterbody	χΓ	166.70	183.30	216.70	238.90	255.60	266.70	077217	283.30															
	٠	Forebody	0860	0.8844	0.8979	12420	0.8461	-1.1189	-1.0833	-1.0436	-0.9399	-0.9112	0.787.0.	0.8010	-0.7505	-0.1948	-0.2070	-0.1636	-0.1474	-0.1379	-0.1284	-0.1085	-0.1189	-0.0846	-0.0287			•	Forebody	6	0.8033	0.8287	0.8876	0.9886	0.9325	-1.0681	CCCU.1-	0.9886	-0.9433	-0.8615	-0.8357	-0.7910	-0.0333	01410	-0.212.0	0.1518	-0.1427	-0.1314	-0.1099	-0.1153	1080.0-	-0.0233	-0.0183
۰		Por	1	-3.12	-1.88	2 9 -	80	0.62	1.25	1.88	2.50	3.12	C 7	8	7.50	15.00	17.50	20.00	40:00	50.00	60.09	70.00	80.00	80.06	122.00		•_		Pon	Ż	-3.75	-3.12	-1.25	-0.62	0.00	0.62		2.50	3.12	3.75	4.38	<u>8</u>	2.2	9 C		80 W	20.00	00.09	00.07	80.00	00:06	122.00	139.00
0.71 and $\alpha = 0^{\circ}$	4 = 90°	Forebody	0.8619	0.8725	0.9062	10084	-1.1272	-1.0601	-0.9917	-0.9895	-0.9289	-0.8438	0.4525	0.1746	-0.1744	-0.1926	-0.1568	-0.1452	-0.1303	-0.1210	-0.1123	-0.1107	-0.0839	-0.0287	-0.0194	-	= 0.78 and $\alpha = -2.1^{\circ}$	•06 ≖ ♦	Forebody	d C	0.7452	1021.0	0.8021	1.1851	-0.7641	-0.6843	0.5216	0.5612	-0.3717	0.2639	-0.2763	-0.2510	-0.1005	C 401-0-	7761-0-	01207	-0.1188	6660.0-	-0.1059	-0.0841	0.0260	-0.0156	
mfr = 0.71	•	Fore		-3.12	-1.88	9 9	0.62	1.25	1.88	2.50	3.12	4.3	90 F	10:00	15.00	17.50	20.00	40.00	50:00	60.09	20.00	80.00	90.06	122.00	00.961			•	Fore	TX	5.5	5.12	-1.25	0:00	0.62	N 1	8 C	3.12	4.38	5.00	7.50	80	0.0		40.07	0005	00.09	20.00	80.00	00:06	122.00	139.00	
Ħ		ېو د	00046	0.0222	0.0358	0 1007	0.1700	0.2360	0.2845	0.3384	0.4031															•			ody	d C	-0.0088	102010	0.0660	0.1190	0.1772	0.2445	1767.0	0.4205															
	° 8	Afterbody V/I C	166.70	183.30	200.00	218.90	255.60	266.70	272.20	277.80	283.30																	= 0°	Afterbody			200.00	216.70	238.90	255.60	200.70	07.717	283.30															
	٠	Yorebody	0.8666	0.8761	0.9201	1 0245	0.9162	-1.0925	-1.2018	-1.1092	-0.933	C658.0-	-0.7843	-0.5597	-0.1814	-0.2001	-0.1745	-0.1673	-0.1356	-0.1349	-0.1290	-0.1172	16/0.0-	-0.0252	8600.0-			٠	Forebody	5	0.6504	0.6757	0.6618	0.6932	1.1894	-0.1936	-0.2167	-0.1192	-0.0808	-0.0713	-0.1680	-0.1713	2121.0-	0110	0.1146	-0.092	-0.1021	-0.1087	-0.0982	-0.0708	-0.0152	-0.0010	
	ł	YOL	-3.75	-3.12	-1.88	0	80	0.31	0.62	1.25	2.50	31.5 91.6	899	1.50	10.00	12.50	15.00	30.00	40.00	20:00	60.00	70.00	0.06	122.00	00.461				Fore	TN.	51 F	21.6-	-1.25	-0.62	000	16.0	1 25	2.50	3.12	4.38	8	001	00.01	8 9	90'00 10'00	40.00	50.00	60.00	70.00	00.06	122.00	139.00	

(b) Continued

		5 3	; \$	23	53	3	8	Ę a	55	2																			۵.	387	ŝ	£ 5	4	2	4 62	55	ŝ	33														
or Afterbody		5600.0																										Afterhodv	do do			0.0405																				
• = 180° Afte	XI	166.70	200.00	216.70	238.90	255.60	266.70	272.20	08.112	285.30																		A = 100	ž	166.70	183.30	200.00	238.90	255.60	266.7(272.2(277.8(283.3(
edy ≜=	5	0.6935	0.7380	0.7258	0.7799	1.1800	0.4754	0.3778	0.2872	0.5481	0.1008	0.0000	0.1977	0.2366	0.1731	0.1701	0.1327	-01239	0.1166	0.1141	0.0957	0.1072	-0.0751	0.0188	0.0100		•	- 	28	0.6069	0.6008	0.5850	6605 0	1.1868	0.0351	0.0216	-0.0371	-0.0400	-0.0235	12000	0.0529	0.0856	-0.1014	-0.1191	0.0978	-0.1055	-0.1022	-0.0942	-0.0801	-0.1004	-0.0083	
Forebody	XL																											Rareh	XIL CP	-3.75													15.00									
																									-	= 3.0°				ŝ	v.	50			5	=	5	2		0 9	. x	2	2	56	6	0	ž	×	33	£ 3	4	
Forebody	5	0.7358	122.0	0.7895	1.186	-0.752	-0.6671	0.502	0.521	-0.572	67.0-	167 D	0.244	1010	-0.181	-0.140	0.130	611 0-	0.115	00100	010	0.00	-0.0203	-0.011		and a	100	orehodo	KIL CP			0.7635															-0.1195			-0.0873		
+ or	XI	-3.75	1.88	-1.25	0.00	0.62	1.25	1.88	2.50	3.12	8.4 9.5	8	0001	15.00	17.50	20.00	40.00	000	0000	20.00	80.00		122.00	139.00		mfr = 0.78 and $\alpha = 3.0^{\circ}$		- Ca	X	-3.75	-3.12	-1.88	000	0.62	1.25	1.88	2.50	3.12	4.38	00.5	00.01	15.00	17.50	20.00	40.00	50.00	60.00	70.00	80.00	00:06	122.00	
×	.8	0.0251	1001	0725	1242	1871	0.2530	2964	3495	4108																B		2	- ²	1640	0415	0.0544	1295	1897	12525	1.2964	.3413	3941														
Afterbody		166.70 0.																										A flarbor	XIL CP	_		200.00																				
° •	-										¢ [8 2	85	2	22	31	; 9	6 G	: :		5		57			1			_									33	E	84	5	161	4	529	£	338	282	161	35	82	
rebody			0.8774							-0.7522				0.120		-0.2072			01242				-0.0184					wheeler	CIL CP			8 0.9061											0 -0.3431							0 -0.0735		
Po	XI	3.75	21.6-	1 25	-0.62	00.0	0.31	0.62	1.25	2.50	5.12	5 5 7 7	3.5		0.01	15.00	30.00	20.00	0005	0.00	00.07		122.00	139.00				Å	X	-3.7	-3.15	-1.88 	90	0.0	0.3	0.6	12	2.5	5	4.4	9 F	001	12.50	15.00	30.0	40.0	50.00	60.09	70.00	00:06	122.0	
¢ = 180° Forebody Afterbody	CP X/L	0.7030 166.70		0.7008 216.70	0.8285 238.90	1.1489 255.60	-0.7373 266.70	-0.6961 272.20	-0.5772 277.80	-0.6310 283.30		10/70- CI-5							40.00 - 0.1273 50.00 - 0.1196						39.00 -0.0065			≊ =	rorebody Autorbody YA. CP XA. CP	0.6568 166.70	0.6576 183.30	-1.88 0.6718 200.00 0.0420	0.0491 210./0	1.1894 255.60	-0.1468 266.70	-0.1681 272.20	-0.2126 277.80	-0.1853 283.30			4.38 -0.0508			17.50 -0.1453					70.00 -0.0898		90'00 -0'011	
$\phi = 180$ Forebody	X/L CP X/L	-3.75 0.7030 166.70	-3.12 0.7576 183.50	1.75 0.7008 716 70	-0.62 0.8285 238.90	0.00 1.1489 255.60	0.62 -0.7373 266.70	1.25 -0.6961 272.20	1.88 -0.5772 277.80	2.50 -0.6310 283.30	3.12	C	8. F	0.0 9.0		8.5	0002	00.07	00.04 CO CO	00.00		0.00	000	122.00	139.00	a = 2.0°		• = 18	rorebody Auterno Yr, CP X/,	1 -3.75 0.6568 166.70	-3.12 0.6576 183.30	-1.88 0.6718 200.00	-1.25 0.0491 210./0	0.00 1.1804 255.60	0.62 -0.1468 266.70	1.25 -0.1681 272.20	1.88 -0.2126 277.80	2.50 -0.1853 283.30	3.12 -0.1247	3.75	4.38	85	15.00	17.50	20.00	40.00	50.00	60:00	70.00	80.00	8.8	
$\phi = 180$ Forebody	CP X/L CP X/L	0.7258 -3.75 0.7030 166.70	0.7551 -3.12 0.7576 183.30	02.007 COLO 00.1- CCC/U	1 1840 -0.62 0.8285 238.90	-0.7549 0.00 1.1489 255.60	-0.7294 0.62 -0.7373 266.70	-0.6527 1.25 -0.6961 272.20	-0.5356 1.88 -0.5772 277.80	-0.5709 2.50 -0.6310 283.30	-0.2584 3.12	C/ -5 - 51 - 51 - 51 - 51 - 51 - 51 - 51	-0.3018 4.36 0.75 500	00°C /607/0-	0.11 8261.0-	0.1544 17.50	0002 00010	-00.02 20.00 40.00	-0.1163 40.00 A 1716 SO 20	0.00 00.00		00.04 0211.0-		0.0169 122.00	139.00	1.76 and $\alpha = 7.0^{\circ}$		• = 18	rebody rorebody Autorio CP X/I. CP X/I.	0.7323 -3.75 0.6568 166.70	0.7411 -3.12 0.6576 183.30	0.7634 -1.88 0.6718 200.00	0.8073 -1.25 0.0491 210./0		-0.6454 0.62 -0.1468 266.70	-0.5405 1.25 -0.1681 272.20	-0.4464 1.88 -0.2126 277.80	-0.4544 2.50 -0.1853 283.30	-0.2834 3.12 -0.1247	-0.2600 3.75	-0.2566 4.38	0.0010 105-07-	-0.1890 15.00	-0.1401 17.50	-0.1365 20.00	-0.1190 40.00	-0.1159 50.00	-0.1014 60.00	-0.1089 70.00	-0.0868 80.00	-0.0277 90.00	
- 180	CP X/L CP X/L	-3.75 0.7030 166.70	0.7551 -3.12 0.7576 183.30	02.007 COLO 00.1- CCC1.0	1 1840 -0.62 0.8285 238.90	-0.7549 0.00 1.1489 255.60	0.62 -0.7373 266.70	-0.6527 1.25 -0.6961 272.20	-0.5356 1.88 -0.5772 277.80	-0.5709 2.50 -0.6310 283.30	-0.2584 3.12	C/ -5 - 51 - 51 - 51 - 51 - 51 - 51 - 51	-0.3018 4.36 0.75 500	0.0 9.0	0.11 8261.0-	0.1544 17.50	0002 00010	-00.02 20.00 40.00	-0.1163 40.00 A 1716 SO 20	0.00 00.00		00.04 0211.0-		0.0169 122.00	139.00	$\mathbf{mfr} = 0.78 \text{ and } \alpha = 2.0^{\circ}$		• = 18	repoay Arterroo CP X/L.	-3.75 0.7323 -3.75 0.6568 166.70	-3.12 0.7411 -3.12 0.6576 183.30	-1.88 0.7634 -1.88 0.6718 200.00	-1.25 0.8073 -1.25 0.6491 210./0 6.00 1.1634 6.42 7.4242 238.00	0.00 1.16.04 -0.02 0.0212 2.36.50	1.25 -0.6454 0.62 -0.1468 266.70	1.88 -0.5405 1.25 -0.1681 272.20	2.50 -0.4464 1.88 -0.2126 277.80	3.12 -0.4544 2.50 -0.1853 283.30	4.38 -0.2834 3.12 -0.1247	-0.2600 3.75	-0.2566 4.38	0.0010 105-07-	15.00	-0.1401 17.50	-0.1365 20.00	-0.1190 40.00	-0.1159 50.00	-0.1014 60.00	-0.1089 70.00	-0.0868 80.00	-0.0277 90.00	
$\phi = 90^{\circ} \qquad \phi = 180$ Porcehody Forehody	P X/L CP X/L CP X/L	0.7258 -3.75 0.7030 166.70	-3.12 0.7551 -3.12 0.7576 183.90	02.007 COLON 00.1- CCC/U 00.1-	0.00 1.1840 -0.62 0.8285 238.90	0.62 -0.7549 0.00 1.1489 255.60	-0.7294 0.62 -0.7373 266.70	1.88 -0.6527 1.25 -0.6961 272.20	2.50 -0.5356 1.88 -0.5772 277.80	3.12 -0.5709 2.50 -0.6310 283.30	-0.2584 3.12	C/ -5 - 51 - 51 - 51 - 51 - 51 - 51 - 51	-0.3018 4.36 0.75 500	00°C /6070-	0.11 8261.0-	0.1544 17.50	0002 00010	-00.02 20.00 40.00	-0.1163 40.00 A 1716 SO 20	0.00 00.00		00.04 0211.0-		0.0169 122.00	139.00			$\phi = 90^{\circ} \qquad \phi = 181$	b VA CP VA CONTRACTOR ALMONTON	-3.75 0.7323 -3.75 0.6568 166.70	-3.12 0.7411 -3.12 0.6576 183.30	0.7634 -1.88 0.6718 200.00	-1.25 0.8073 -1.25 0.6491 210./0 6.00 1.1634 6.42 7.4242 238.00	0.00 1.16.04 -0.02 0.0212 2.36.50	1.25 -0.6454 0.62 -0.1468 266.70	1.88 -0.5405 1.25 -0.1681 272.20	2.50 -0.4464 1.88 -0.2126 277.80	3.12 -0.4544 2.50 -0.1853 283.30	4.38 -0.2834 3.12 -0.1247	-0.2600 3.75	-0.2566 4.38	0.0010 105-07-	-0.1890 15.00	-0.1401 17.50	-0.1365 20.00	-0.1190 40.00	-0.1159 50.00	-0.1014 60.00	-0.1089 70.00	-0.0868 80.00	-0.0277 90.00	
φ = 90° φ = 180 Afterhody Forebody	CP X/L CP X/L CP X/L	0.0144 -3.75 0.7258 -3.75 0.7030 166.70	-3.12 0.7551 -3.12 0.7576 183.90	02.2017 002.10 0011- 02.01 0011- 01.0011- 01.0011- 01.0011- 01.0011- 01.0011- 01.0011-01-01-01-01-01-01-01-01-0011-01-01-	0.1174 0.00 1.1840 -0.62 0.8285 238.90	0.1766 0.62 -0.7549 0.00 1.1489 255.60	0.2483 1.25 -0.7294 0.62 -0.7373 266.70	0.2932 1.88 -0.6527 1.25 -0.6961 272.20	0.3488 2.50 -0.5356 1.88 -0.5772 277.80	3.12 -0.5709 2.50 -0.6310 283.30	-0.2584 3.12	C/ -5 - 51 - 51 - 51 - 51 - 51 - 51 - 51	-0.3018 4.36 0.75 500	00°C /6070-	0.11 8261.0-	0.1544 17.50	0002 00010	-00.02 20.00 40.00	-0.1163 40.00 A 1716 SO 20	0.00 00.00		00.04 0211.0-		0.0169 122.00	139.00			φ = 90° φ = 18 • • • • • • • • • • • • • • • • • • •	rbody rorebody rorebody Autorov op vn. Op vn. CP XA.	-3.75 0.7323 -3.75 0.6568 166.70	0.0354 -3.12 0.7411 -3.12 0.6576 183.30	0.0463 -1.88 0.7634 -1.88 0.6718 200.00	-1.25 0.8073 -1.25 0.6491 210./0 6.00 1.1634 0.62 0.675 238.00	07357 75000 2000 2000 00011 0000 10710 093557 7500 1000 000 0000 0000 0000 0000	1.25 -0.6454 0.62 -0.1468 266.70	0.2957 1.88 -0.5405 1.25 -0.1681 272.20	0.3455 2.50 -0.4464 1.88 -0.2126 277.80	0.4026 3.12 -0.4544 2.50 -0.1853 283.30	4.38 -0.2834 3.12 -0.1247	-0.2600 3.75	-0.2566 4.38	0.0010 105-07-	-0.1890 15.00	-0.1401 17.50	-0.1365 20.00	-0.1190 40.00	-0.1159 50.00	-0.1014 60.00	-0.1089 70.00	-0.0868 80.00	-0.0277 90.00	
$\phi = 90^{\circ} \qquad \phi = 180$ Porcehody Forebody	NL CP XI CP XI CP XI	166.70 0.0144 -3.75 0.7258 -3.75 0.7030 166.70	183.30 0.0273 -3.12 0.7551 -3.12 0.7576 183.30	02.2017 02.210 00.11 02.2210 00.11 02.400 00.007 02.2017 02.2017 02.11 02.01 02.11 02.2017 02.2017	0.1174 0.00 1.1840 -0.62 0.8285 238.90	255.60 0.1766 0.62 -0.7549 0.00 1.1489 255.60	266.70 0.2483 1.25 -0.7294 0.62 -0.7373 266.70	272.20 0.2932 1.88 -0.6527 1.25 -0.6961 272.20	277.80 0.3488 2.50 -0.5356 1.88 -0.5772 277.80	283.30 0.4122 3.12 -0.5709 2.50 -0.6310 283.30	-0.2584 3.12	5.00 -0.2515 5.00 - 20 -0.2515 5.00	80.4 8106.0- 00.7	00.0 1602.0- 00.01		05.01 006170- 00711 05.01 07531 07 04.00	0002 00010	00.02 6001.0- 00.04 00.04 6001.0- 00.04	00.04 C811.0- 00.02 20.00 A 101.0 A 20.00			00'00 0711'0- 00'08		130 m J0160 133 (0)	139.00			$\phi = 0^{\circ} \qquad \phi = 90^{\circ} \qquad \phi = 10^{\circ}$	rbody rorebody rorebody Autorov op vn. Op vn. CP XA.	5 166.70 0.0347 -3.75 0.7323 -3.75 0.6568 166.70	183.30 0.0354 -3.12 0.7411 -3.12 0.6576 183.30	200.00 0.0463 -1.88 0.7634 -1.88 0.6718 200.00	0.0723 -1.25 0.8073 -1.25 0.0491 210.0 0.1021 0.00 1.091 0.20 0.20 0.200	258.50 U.1201 U.00 I.16350.02 U.0124 259.50 366.60 D.1968 D.63 J.8060 D.10 11804 255.60	0.2525 1.25 -0.6454 0.62 -0.1468 266.70	272.20 0.2957 1.88 -0.5405 1.25 -0.1681 272.20	277.80 0.3455 2.50 -0.4464 1.88 -0.2126 277.80	283.30 0.4026 3.12 -0.4544 2.50 -0.1853 283.30	4.38 -0.2834 3.12 -0.1247	5.00 -0.2600 3.75	-0.2566 4.38	00.00 / 04.2.0- 00.01 03.0 A 0.0 A 0.0 A 0.0	-0.1890 15.00	20.00 -0.1401 17.50	40.00 -0.1365 20.00	-0.1190 40.00	60.00 -0.1159 50.00	70.00 -0.1014 60.00	80.00 -0.1089 70.00	90.00 -0.0868 80.00	-0.0277 90.00	

(b) Continued

	Ş Û	0201	0.0475	0010	6180		2001	0104	111																					×	СР	0.0241	0360	0.0566	3755	1229	1813	E H	1787	146	0																	
	P - P																													Ê																												
= 180°	۶ş	166.70	183.30	200.0																									♦ = 180°	5	XI	100.1	183.	200.00	216.7	238.9	255.6	266.7	272.2	2778	2813																	
	rorebody M. CP	0.2604	0.2615	0.2231	0.1584	11641		0.41.0	27000	SAMPO D.	-0.0444	0.0160	0.0689	1.000.0	1111	1010	0.01.0-	67CI /	-0.1251	-0.1181	-0.1196	-0.1114	-0.0924	-0.0996	-0.0656	-0.0108	-0.0077		•	Forebody	6	0.1262	0.0359	-0.2497	1606.0	-0.7635	1.0873	0.4149	0.2209	0.1583	01382	0.0010		1000	10100	6770.0	-0.0224	-0.0836	-0.0914	-0.1002	-0.001	30010		0.0938	-0.0789	-0.0927	0.0620	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	XL VI	-3.75	-3.12	-1. 88	9	70.02		70'N	3	5	1.12	17	4.38	8	9	3 5	3		20.02	60.04	<u>\$0.0</u>	80.09	70.00	80.00	90:06	122.00	139.00		I	Fore	ž	5.13	-1.IZ	8	1.23	0.62	8	0.62	1,23	1.88	5	22		2 - C		3	8	15.00	17.50	20.00	40.00	89		8,00	8.0	80.00	80	20.00
5	¢ ĉ	-0.0514	-0:0609	3008	0070	7940. 7944		1643		201	0643	0550	6120	0890	9990	500		0,790	0000	0030	0602	1060	0620	0702	0173	8010		mfr = 0.95 and α = -0.1°	გ.	ð	CP.	-0.0107	8051	2441	120	9312	1164	2579	1 59 3	1306	Ĩ	0440			0250		1000.0-	6680	0812	1860	0830	2100			0677	0673	0133	
ф 8	XAL CP	.75 -0	-3.12 -0										1.50							20:00			80.00					.95 an	°.	Forebody		9 : 2 : 		9 9 88 1 -							3 17 0						19 - 61 19 - 61 19 - 61											
	2	ė	÷	. .	÷		- C		• ~	• •	• 4			ġ	2 2	2 2		3 9	₹ 1	8	8	2	8	8	122	139.00		mfr - 0			×			÷ •	÷.	¢	Ó		-	2	~	•	f u	<u>,</u> L	- 9	2 3	<u>i</u> 1	1	20.	Ŷ	20	ŝ	3 4	2 :	ĝ	90:06	122	
	ş ů	0.0047	0.0316	0.0518	08/0/0	0.1803	0.0100	1000770	0 1267	0.3870																				ody 	5	17700	1/50/0	0.0223	1/070	0.1269	0.1796	0.2387	0.2792	0.3236	0 38 76																	
ج	X/L CP	166.70	183.30	200.00	210.70	255.60	00.00	272.20	277.80	281.30																				Afterbody	XI	00.10	163.30	200.00	210.70	238.90	235.60	266.70	272.20	277.80	283.30																	
• •		~	-0.5186							0.2819		2089	0.1462	0466	0251	0002		5	5780	22	0769	8638	-0.0799	0554	6110	0.0084			.0≠ ● .				1660.0-			-0.5917							1920		0070	9100	CACD-0-	16/0	0578	0892	0843	0860			1892	0613	0128	
•	K/L CP		-3.12 -0.							2.50											20:00 20:00					139.00 0.			-	Forebody		0.4 0.4 0.4					800					3.12										0005						
																									-	-																									•	•				.	2	
	Cb cb	0.0528	0.0496	0.0654	1143	1916	0.2557	0.2952	0.3389	0.3882																				dy 30	L.	20407	10101	1900.0	0/101	1.12/4	1837	50403	1.2890	1.3361	1606.0																	
	Alteroody VL CP		3.30 0.0496																											vareno	-	2	3 5		2 2	8.90 U.12/4	8	2	20	.80	96																	
8	P X/L CP	166.70	183.30	200.00	738.00	255.60	2665 70	272.20	277.80	283.30		1	80	06	60	41	2	8			.	10	48	86	3	26	81			vareno	-	2	3 5	88	2 2	Ŗ	8	2	20	.80	96			. 9	3 5				28	38	2			8	70	60	2	
8	CP	0.3478 166.70	0.3597 183.30	0.3248 200.00	0.012 0.000	1.1791 255.60	0.747 1.1400.	-0.1608 272.20	-0.1161 277.80	-0.1846 283.30	-0.1461			0681.0-0			0 -01746									3 -0.0126			• = 180°	vareno	-	2	3 5	88	2 2	Ŗ	8	2	20	.80	96		10268	00156														
8	CP	166.70	0.3597 183.30	0.3248 200.00	0.012 0.000	255.60	0.747 1.1400.	-0.1608 272.20	-0.1161 277.80	-0.1846 283.30	-0.1461						21 C - 01 7 K				S0.00 -01.194					122.00 -0.0126		°	0 = 180° 181 - 4	vareno	-	2	3 5	88	2 2	Ŗ	8	2	20	.80	96		1 75 0 0268	4 38 0.0156		2 KO DOTE			17.50 -0.1228						70807-00.07			
× = +	XIL CP	-3.75 0.3478 166.70	-3.12 0.3597 183.30	-1.88 0.3248 200.00	07.012 0200.0 02.1-	0.00 1.1791 255.60	0.67 .0.043 266 70	1.25 -0.1608 272.20	1.88 -0.1161 277.80	2.50 -0.1846 283.30	3.12 -0.1461	3.75	4.38	5.00	7.50	15.00	9 11	200	00.02	40.00	808	00.00	20:00	80.00	90:06	122.00		d α = -1.1°		rorebooy Alterbo		0/.001 1412.0 0/.0-			0.1012 6161.0 67.1-	06.362 1036.0- 20.0-	00.002 6/21.1 00.0	0.00 0.2800 200.70	1.25 0.0649 272.20	1.88 0.0687 277.80	2.50 0.0488 283.30	3.12 0.0514					8	M'CI	05.71	20.00	40.00	50.00	0009	00'00 00 00	00:0/	80.00	00.06	
8	CP X/L CP)	0.0548 -3.75 0.3478 166.70	-0.0084 -3.12 0.3597 183.30	-0.3316 -1.88 0.3248 200.00		0.3966 0.00 1.1791 255.60	0.2412 0.62 .0.0643 266.70	1.25 -0.1608 272.20	0.1040 1.88 -0.1161 277.80	0.1028 2.50 -0.1846 283,30	0.0473 3.12 -0.1461	0.0390 3.75	-0.0409 4.38	-0.0508 5.00	-0.0738 7.50	-0.0992 15.00	0.011 1000	0000 00010	00.02 201.0-	00.04	-0.010 50.00	-0.0914 60.00	-0.0915 70.00	-0.0692 80.00	-0.0267 90.00	-0.0137 122.00		0.95 and a = -1.1°		ebody rorebody Alterbo		0/1001 141710 0/15- 00000		00,007 4100,0 88.1. 6766.0- 05.310 511 5334.0	0/1017 51510 5711- 55550	U.8884 -U.02 -U.05U - 238.9U	09.662 6/71.1 00.0 126C.0	0/ 007 0087 0 700 1007 0	0.2158 1.25 0.0649 272.20	0.1136 1.88 0.0687 277.80	0.1029 2.50 0.0488 283.30	0.0553 3.12 0.0514	0.025	010249	0.0463	10.00	00000 00000	00.51 SHOUL	-0.0804 17.50	-0.0921 20.00	-0.0915 40.00	-0.0913 50.00	0.0940 A0 00	00,000 000000		-0.0697 80.00	-0.0118 90.00	
× = +	CP X/L CP)	-3.75 0.0548 -3.75 0.3478 166.70	-3.12 -0.0084 -3.12 0.3597 183.30	-1.88 -0.3316 -1.88 0.3248 200.00		0.62 0.3966 0.00 1.1791 255.60	1 25 0 2412 0 60 .0 0641 266 70	1.88 0.1850 1.25 -0.1608 272.20	2.50 0.1040 1.88 -0.1161 277.80	3.12 0.1028 2.50 -0.1846 283.30	4.38 0.0473 3.12 -0.1461	0.0390 3.75	4.38	-0.0508 5.00	-0.0738 7.50	-0.0992 15.00	0.011 1000	0000 00010	00.02 201.0-	00.04	-0.010 - 50.00	-0.0914 60.00	-0.0915 70.00	-0.0692 80.00	-0.0267 90.00	-0.0137 122.00		mufr = 0.95 and α = -1.1°		ebody rorebody Alterbo	ALL UP ALL UP ALL		001001 0007/0 7110- 1070/0 7110- 001000 0130 0 84 1 0130 0 86 1	00/00/2 6160/0 98/1: 6/66/0- 99/1- 02/910 61610 90/1 63970 90/1-	0/1017 5151/0 57/1- 5554/0- 57/1-	U.U. U.8634	100°CC7 6/71°1 0000 170°1 7000	00.002 0022.0 20.0 10.02.0 0.10	1.88 0.2158 1.25 0.0649 272.20	2.50 0.1136 1.88 0.0887 277.80	3.12 0.1029 2.50 0.0488 283.30	4.38 0.0553 3.12 0.0514	0.025	010249	0.0463	10.00	8	00.51 SHOUL	-0.0804 17.50	-0.0921 20.00	-0.0915 40.00	-0.0913 50.00	0.0940 A0 00	00,000 000000		-0.0697 80.00	-0.0118 90.00	
♦ = 30° 	CP X/L CP X/L CP >	0.0022 -3.75 0.0548 -3.75 0.3478 166.70	0.0300 -3.12 -0.0084 -3.12 0.3597 183.30	U.0466 -1.88 -0.3316 -1.88 0.3248 200.00 0.0714 1.26 0.5523 1.26 0.3248 200.00	0/1017 C70C10 C711- C02C10- C711- 477020	0.1757 0.62 0.3966 0.00 1.1791 255.60	02141 1 25 0 2412 0 60 .00641 266 70	0.2743 1.88 0.1850 1.25 -0.1608 272.20	0.3244 2.50 0.1040 1.88 -0.1161 277.80	0.3876 3.12 0.1028 2.50 0.1846 283.30	4.38 0.0473 3.12 -0.1461	0.0390 3.75	-0.0409 4.38	-0.0508 5.00	-0.0738 7.50	-0.0992 15.00	0.011 10.00	0000 00010	00.02 201.0-	00.04	-0.010 50.00	-0.0914 60.00	-0.0915 70.00	-0.0692 80.00	-0.0267 90.00	-0.0137 122.00			• = 9. 18t-: • • = 18	rorebody rorebody Alterbo			00,001 8002.0 21.0 1820.0 21.0 10.000 00,000 0130.0 31.0 1821.0 80.1 2120.0	00/007 6100/0 99/1- 6/00/0- 99/1- 6/00/0 02.710 61610 301 63970 301 07000		0.1244 0.00 0.3834 0.00 2.38.90	09:557 6/711 0000 17650 7000 /08100	0/.002 0.025.0 20.0 1.025.0 2.1 1.025.0	0.2798 1.88 0.2158 1.25 0.0649 272.20	0.3258 2.50 0.1136 1.88 0.0887 277.80	0.3861 3.12 0.1029 2.50 0.0488 283.30	4.38 0.0553 3.12 0.0514	0.025	010249	0.0463	10.00	00000 00000	00.51 SHOUL	-0.0804 17.50	-0.0921 20.00	-0.0915 40.00	-0.0913 50.00	0.0940 A0 00	00,000 000000		-0.0697 80.00	-0.0118 90.00	
♦= 30° ♦= 18(CP X/L CP X/L CP >	-3.75 0.0548 -3.75 0.3478 166.70	0.0300 -3.12 -0.0084 -3.12 0.3597 183.30	U.0466 -1.88 -0.3316 -1.88 0.3248 200.00 0.0714 1.26 0.5523 1.26 0.3248 200.00	0/1017 C70C10 C711- C02C10- C711- 477020	0.1757 0.62 0.3966 0.00 1.1791 255.60	02141 125 02412 062 00641 266 70	1.88 0.1850 1.25 -0.1608 272.20	0.3244 2.50 0.1040 1.88 -0.1161 277.80	0.3876 3.12 0.1028 2.50 0.1846 283.30	4.38 0.0473 3.12 -0.1461	0.0390 3.75	-0.0409 4.38	-0.0508 5.00	-0.0738 7.50	-0.0992 15.00	0.011 1000	0000 00010	00.02 201.0-	00.04	-0.010 - 50.00	-0.0914 60.00	-0.0915 70.00	-0.0692 80.00	-0.0267 90.00	-0.0137 122.00			φ = 90 ⁻ φ = 100 Δ = 100	srbody rorebody rorebody Anterbo	ALL UP ALL UP ALL		00,001 8002.0 21.0 1820.0 21.0 10.000 00,000 0130.0 31.0 1821.0 191.0 11.0 11.0 11.0 10.0 10.0 10.0	00/00/2 6160/0 98/1: 6/66/0- 99/1- 02/910 61610 90/1 63970 90/1-		0.1244 0.00 0.3834 0.00 2.38.90	09:557 6/711 0000 17650 7000 /08100	0/.002 0.025.0 20.0 1.025.0 2.1 1.025.0	0.2798 1.88 0.2158 1.25 0.0649 272.20	0.3258 2.50 0.1136 1.88 0.0887 277.80	0.3861 3.12 0.1029 2.50 0.0488 283.30	4.38 0.0553 3.12 0.0514	0.025	010249	0.0463	10.00	00000 00000	00.51 SHOUL	-0.0804 17.50	-0.0921 20.00	-0.0915 40.00	-0.0913 50.00	0.0940 A0 00	00,000 000000		-0.0697 80.00	-0.0118 90.00	
φ=0° φ=180° φ=10° φ=180° φ=1	X/L CP X/L CP X/L CP >	0.0022 -3.75 0.0548 -3.75 0.3478 166.70	183.30 0.0300 -3.12 -0.0064 -3.12 0.3597 183.30	200.00 0.0466 -1.88 -0.3316 -1.88 0.3248 200.00	0/1017 C20C10 C211- C02C10- C211- 427020 0/2017 0/2017 C20C10 C211- PLUDOU UUU UILIU UD BLC	0.1757 0.62 0.3966 0.00 1.1791 255.60	266 70 0.2141 1.25 0.2412 0.62 0.0641 266 70	272.20 0.2743 1.88 0.1850 1.25 -0.1668 272.20	277.80 0.3244 2.50 0.1040 1.88 0.1161 277.80	283.30 0.3876 3.12 0.1028 2.50 0.1846 283.30	4.38 0.0473 3.12 0.1461	5.00 0.0390 3.75	7.50 -0.0409 4.38	10.00 -0.0508 5.00	15.00 -0.0738 7.50	17.50 -0.0992 15.00	2000 - 0.001	0000 00010		00.04	0000 -0.1010 - 2000	0000 11600-0000	80.00 -0.0915 70.00	90.00 -0.0692 80.00	-0.0267 90.00	139.00 -0.0137 122.00			р = 0' ф = 10' ф = 10' ф = 10' ф = 10'	srbody rorebody rorebody Anterbo			00,001 8002.0 21.0 1820.0 21.0 10.000 00,000 0130.0 31.0 1821.0 80.1 2120.0	001007 610000 9011- 670000-9011- 010000 00107	0/1017 515170 5717- 555470- 5711- 00/070 0/1017	0.1244 0.00 0.3834 0.00 2.38.90	100°CC7 6/71°1 000 170°C 170°0 /001°0 00°CC7	00.00 U.236 U.2.0 U.237 U.237 U.200. V	272.20 0.2798 1.88 0.2158 1.25 0.0649 272.20	0.3258 2.50 0.1136 1.88 0.0887 277.80	283.30 0.3861 3.12 0.1029 2.50 0.0488 283.30	4.38 0.0553 3.12 0.0514	5.00 0.0225	010249			00000 00000		-0.0804 17.50	40.00 -0.0921 20.00	50.00 -0.0915 40.00	-0.0913 50.00			00.00/ 000000 00.00	90.00 -0.0697 80.00	0.0099 122.00 -0.0118 90.00 -0.0560	

(b) Concluded

mfr = 0.95 and $\alpha = 2.0^{\circ}$

♦ = 180°
 × XL. CP
 × XL. CP
 183.30
 0.0348
 9
 200.00
 0.0348
 2183.90
 0.0348
 2183.90
 0.1248
 2255.60
 0.1248
 2255.60
 0.1248
 2255.80
 0.1318
 231318
 231318
 231318

◆ = 0°
 ★ 10°
 ★ Afterbody
 P. XL. CP
 P. 166.70
 0.0094
 188.30
 0.0094
 188.30
 0.0094
 2.38.90
 0.01969
 2.38.50
 0.1909
 2.35.60
 0.1909
 2.35.30
 0.2393
 2.31.30
 0.3320

 Forebody

 X/L
 CP

 -3.12
 -0.4815

 -3.12
 -0.4810

 -3.12
 -0.4810

 -1.12
 -0.4610

 -1.25
 -0.9023

 -1.25
 -0.9033

 0.62
 0.6039

 1.12
 0.2061

 3.12
 0.2061

 3.12
 0.2063

 3.12
 0.2061

 4.38
 0.2010

 4.38
 0.2010

 4.38
 0.2010

 4.38
 0.2010

 4.38
 0.2010

 4.38
 0.2010

 4.38
 0.2010

 4.38
 0.2010

 4.38
 0.2010

 4.38
 0.2010

 7.90
 0.0045

 7000
 0.0077

 80.00
 0.0089

 90.00
 0.0089

 1139.00
 0.0013

 139.00
 0.0013

 $\begin{array}{c} \phi = 90^{\circ} \\ Forebody \\ XL \\ XL \\ XL \\ AL2 \\ -3.72 \\ -3.72 \\ -3.72 \\ -3.72 \\ -3.72 \\ -3.12 \\ 0.0259 \\ -1.28 \\ 0.032457 \\ -1.28 \\ 0.02457 \\ -1.28 \\ 0.01199 \\ -1.28 \\ 0.02457 \\ -1.28 \\ 0.01199 \\ -1.28 \\ 0.02457 \\ -1.29 \\ 0.00314 \\ -5.00 \\ 0.01199 \\ -1.29 \\ 0.00014 \\ -1.09 \\ -0.00012 \\ -0.0002 \\ -0.0$

 Forebody

 XLL
 CP

 -3.12
 0.2791

 -3.12
 0.2791

 -3.12
 0.3035

 -1.25
 0.1784

 -0.65
 0.1186

 0.00
 1.1632

 0.00
 1.1632

 0.01
 0.2442

 0.02
 0.1163

 0.25
 0.00494

 3.12
 0.00494

 3.12
 0.00494

 3.12
 0.00494

 3.12
 0.00494

 3.12
 0.00494

 3.12
 0.00494

 3.00
 0.1194

 3.000
 0.1194

 3.000
 0.0194

 3.000
 0.0194

 3.000
 0.0194

 3.000
 0.0194

 3.000
 0.0194

 3.000
 0.0194

 3.000
 0.0194

 3.000
 0.0194

 3.000
 0.0194

 3.000
 0.0194

 3.000
 0.0194

 3.000</td

			B	ıfr = 0.95	mfr = 0.95 and $\alpha = 1.0^{\circ}$	\$			
		6 = 0°		•	• = 90°		и Ф	• = 180°	
For	Forebody	Afterbody	body	For	Forebody	Pore	Forebody	After	Afterbody
ХL	6	XL	C.	XI	G	XL	C.	XL	Ö
-3.75	0.1833	166.70	0.0337	-3.75	-0.0544	-3.75	-0.1976	166.70	0.01
-3.12	0.1941	183.30	0.0420	-3.12	-0.0104	-3.12	-0.1798	183.30	0.03
-1.88	0.0507	200.00	0.0560	-1.88	-0.3674	-1.88	-0.4261	200.00	0.0
-1.25	-0.2129	216.70	0.0805	-1.25	-0.5302	-1.25	-0.6078	216.70	0.0
-0.62	-0.5209	238.90	0.1273	0.00	0.9182	-0.62	-0.8519	238.90	0.12
0:00	1.1362	255.60	0.1807	0.62	0.4217	0.00	1.0200	255.60	0.13
0.31	0.4822	266.70	0.2414	1.25	0.2460	0.62	0.4940	266.70	0.24
0.62	0.2019	272.20	0.2809	1.88	0.2116	1.25	0.3329	272.20	0.28
1.25	0.1489	277.80	0.3264	2.50	0.1192	1.88	0.2443	277.80	0.3
2.50	0.0706	283.30	0.3817	3.12	0.1142	2.50	0.1780	283.30	0.35
3.12	0.0895			4.38	0.0877	3.12	0.1660		
4.38	0.0390			5.00	0.0298	3.75	0.1447		
5.00	-0.0485			7.50	-0.0240	4.38	0.1487		
7.50	-0.0844			10.00	-0.0372	5.00	0.1084		
10.00	-0.0880			15.00	-0.0529	7.50	0:0309		
12.50	-0.1129			17.50	-0.0974	15.00	-0.0577		
15.00	-0.0877			20.00	0.0890	17.50	-0.0745		
30.00	-0.1145			40.00	-0.0962	20.00	-0.0782		
40.00	-0.0965			50.00	-0.0824	40.00	-0.0856		
50.00	-0.1011			00:09	-0.0893	50.00	-0.0830		
60.00	-0.1018			70.00	-0.0840	60:09	-0.0924		
70.00	-0.0932			80.00	-0.0693	70.00	-0.0771		
90.00	-0.0684			90:06	-0.0698	80.00	-0.0901		
122.00	-0.0117			122.00	-0.0148	00.06	-0.0588		
139.00	0.0020			139.00	-0.0057	122.00	-0.0117		
						139.00	-0.0041		
			4	nfr = 0.95	mfr = 0.95 and $\alpha = 3.0^{\circ}$	ఒ			
	•	°0 •		٠	• = 90°		•	a = 180°	
	•								

-0.0680 80.00 -0.0216 90.00 -0.0151 122.00
କ୍କ୍କ୍
90.00 -0.060 122.00 -0.0216 139.00 -0.0151
-0.0604 -0.0170 -0.0021

25

(c) M = 0.87

mfr = 0.67 and $\alpha = -2.0^{\circ}$

mfr = 0.57 and $\alpha = 0^{\circ}$

	đy	5	0:0029	0.0122	0.0296	0.0489	11511	0.2178	0.2683	0.3232	0.3897																			4.	2 ⁰	0.0152	0.0232	0.0406	0.0560	0.1078	0.1698	0.2399	0.0470	0.4145															
80°	Afterbody	XIL				216.70																							000	Afterhodu	3				216.70 (
o = 180°						1.1391							1.1745	1.1144	1.1070	1.0180	0.8715	0.7344	0.0913	0.0549	076010	0.1096	0.1013	0.1196	0.0507	0.0380	0.0283					_										1.0568	1.0087	0.9728	0.9023	0.7286	0/160	57110	0.1277	0.1305	0.1138	0.1260	0.0892	-0.0328 -0.0247	
	Forebody					() 									5.00					- 10,04				808		007221				Town P	X/L CP				1.25																			122.00	
ۍ د	dy	G.	1.0540	1.0647	00111	0.4501	1714	-1.3873	7756.	.2726	.2136	.1386	-1.1094	.0232	19397	-0.8355	.7473	0840	0364	10844	60013		97117	-0.0699	10000	6820		nd α = 0°	٤	2	20	0.9847	9946	.0408	1.0728	.7758	-1.2839	.2549	1494	0834	.0027	.9682	8709	18169	(7332	0.4499	2211	0/11/0	1280	001130	26117	-0.0952	0380	0210	
9 = 6	Forebody	XL				4 8 7 8				2.50 -1					00.01					20:00					00.221			mfr = 0.63 and α = 0°	• 00e	Foreher	X/L CP			-1.88 1			0.62			3.12															
	2	CP CP	-0.0016	9110	1520	2000.0	101	2153	2600	3136	3814																	цш			20	0100	0232	0374	0.0621	1113	171	2390	0011	4051															
_	Merbo		166.70 -0.			238.00																								Afterhody	XIL				216.70 0.																				
°) = 0						1.1419 2						2513	1363	.1199	-1.0236	.9255	1006.0	1.8494	0.1212	06100		0/01/0	0.1140	-0.0628	+CSU.	-0.0161			00 - V	-		\$			1.0813 2							.0282	.9861	-0.9246	18360	5711.0	1467-0-	96600-	1205	-0.1272	-0.1262	-0.0864	0299	10132	
	Forebc	XIL CP											4.38 -1				12.50			80.04 10.02					B 22					Foreho	XIL CP				-1.25																				
																																																					-	-	
	body	C.	0.0248	0.0209	0.0344	0.0045	0.1523	0.2134	0.2565	0.3031	0.3590																			2 Port	5	-0.0213	0.0025	0.0228	0.0395	0.0865	0.1468	0.2582	0.3303	0.4079															
180°	Afterbody	XI	166.70	183.30	200.00	238.00	09 556	266.70	272.20	277.80	283.30																		180.	Afterhody	XI	166.70	183.30	200.00	216.70	238.90	255.60	200.70	277.80	283.30															
•	Forebody	CP CP	1.0875	1.1009	1361.1	8	1200	-1.5262	-1.4956	-1.4436	-1.3903	-1.3721	-1.3337	-1.3077	-1.2760	-1.1674	0.9959	COUKID-	-0.2966	-0.0514	8CCU.U-	04/00-	CM8010-	1901.0-	00000	7600-	1870'0-		•	hudu	di CP	1.0253	1.0425	1.0742	1.1070	1.1644	0.3618	10401	1,2102	-1.1699	-1.0965	-1.0519	-1.0020	-0.9695	-0.8626	0.000	1001 0-	-0.1236	0.1308	-0.1276	-0.1115	-0.1231	-0.0883	-0.0346	
	Fon	Хľ	-3.75	-3.12	29. I-	() () ()	8	0.62	1.25	1.88	2.50	3.12	3.75	4.38	5.00	7.50	15.00	06.71	20:00	40.00	N 90	00.00	0.07	8.08		0.21	199.00	ድ		Pop	X	-3.75	-3.12	-1.88	-1.25	-0.62	80	0.02	8	2.50	3.12	3.75	4.38	8 8	051	8.0		8.04	50.00	60:09	70.00	80.00	90:00	139.00	
6 = 90°	body	СЪ	1.0548	1:0651	1.1064	04140	1.4767	-1.3952	-1.3170	-1.2964	-1.2281	-1.1353	-1.1023	·1.0198	1056.0-	-0.8424	-0.7283	-0.109	-0.0678	0.000	16110	-0.1141	-0.1235	00000	8760.0	8670.0-		= 0.57 and $\alpha = 2.0^{\circ}$	ŝ	- And	5	1.0548	1.0672	1.1063	1.1340	0.4261	-1.4490	1.1105	-1.2726	-1.2410	-1.1551	-1.1360	-1.0200	-0.9517	-0.8358	1011.0	0.000	-0.1034	-0.1168	-0.1138	-0.1233	-0:0960	-0.0387	-0.0294	
-69	Forebody	ХI	-3.75	-3.12		C7-1-				2.50	3.12	4.38	5.00	7.50	10.00	15.00	17.50	20.00	B:04	00.00	00.00	00.07	20.02	8.6	00.771	00.461		r = 0.57 s	•	Prine	XIL CP	-3.75	-3.12	-1.88	-1.25	0.0	0.62	1.25	2.50					0.0	12:00		8.07	50.00	60:09	70.00	80.00	90:06	122.00	139.00	
	dy	C.	-0.0202	0.0045	0.0216	00400	1477	0.2160	0.2636	0.3237	0.3986																	Ъ		d.	; Ĉ	0.0179	0.0183	0.0292	0.0479	0.0962	0.1519	0.2095	0.2946	0.3487															
\$	Afterbody		166.70			218.90																							٩	Afterhody	XL				216.70																				
ی) = ۹			16201			1.10/8						-1.0906	0.9952	-0.9537	0.8780	62.62.0-	-0.7194	0.0334	-0.0932	-0.1141	14110	-0.1201	0.1198	-0.0891	CI (0) /	-0.0142			و ۲	•	39	_				1.1968		1.5240				-1.3002	-1.2691	-1.1729	-1.0783	-1.0004	C12C 0	-0.0383	0.0370	-0.0770	-0.0935	-0.0805	0.0335	-0.0193	
	Forebody					C7-1-														- 10/04				806						Foreh	XAL CP	-3.75	-3.12	-1.88								4.38				8 8				00:09		00:06			

(c) Concluded

		dy	сь	0.0241	0.0354	0.0550	0.0740	0.1307	0.1971	0.2682	0.3204	0.3771	0.4428																
	.80°	Afterbo	CP X/L CP	166.70	183.30	200.00	216.70	238.90	255.60	266.70	272.20	277.80	283.30																
	 ₩	body	KIL CP	0.7538	0.7490	0.7976	0.7870	0.8475	1.1623	-0.7358	-0.6266	-0.6755	-0.6145	-0.5525	-0.2900	-0.3834	-0.3067	-0.2425	-0.2297	-0.2022	-0.1516	-0.1441	0.1348	-0.1218	-0.1016	-0.1036	-0.0670	-0.0232	-0.0147
		Forel	XL	-3.75	-3.12	-1.88	-1.25	-0.62	0:00	0.62	1.25	1.88	2.50	3.12	3.75	4.38	5.00	7.50	15.00	17.50	20.00	40.00	50.00	60.00	70.00	80.00	90.00	122.00	139.00
mfr = 0.78 and $\alpha = 0^{\circ}$	90°	ody	c,	0.7485	0.7421	0.7890	0.7943	1.1947	-0.7411	-0.6539	-0.5665	-0.5899	-0.3611	-0.3972	-0.2810	-0.2937	-0.2618	-0.1888	-0.1987	-0.1456	-0.1359	-0.1226	-0.1173	-0.1047	-0.1095	-0.0854	-0.0132	-0.0061	
fr = 0.78 i	n 🗢	Foret	XIL CP	-3.75	-3.12	-1.88	-1.25	0.00	0.62	1.25	1.88	2.50	3.12	4.38	5.00	7.50	10.00	15.00	17.50	20.00	40.00	50.00	60.09	70.00	80.00	90.00	122.00	139.00	
8		ody	cb	0.0212	0.0367	0.0560	0.0814	0.1359	0.1990	0.2692	0.3137	0.3681	0.4309																
	0°	Afterb	P XIL CP	166.70	183.30	200.00	216.70	238.90	255.60	266.70	272.20	277.80	283.30																
	# •	body	XIL CP XI	0.7610	0.7803	0.8125	0.8106	0.9021	1.1829	-0.7015	-0.7681	-0.7011	-0.5741	-0.4071	-0.5211	-0.2684	-0.3119	-0.2484	-0.2376	-0.2011	-0.1545	-0.1230	-0.1218	-0.1126	-0.1088	-0.0792	-0.0180	-0.0020	
		Fore	XI	-3.75	-3.12	-1.88	-1.25	-0.62	0.00	0.31	0.62	1.25	2.50	3.12	4.38	<u>s</u> .8	7.50	10.00	12.50	15.00	30.00	40.00	50.00	60.09	70.00	90:06	122.00	139.00	
	180°	Afterbody	X/L CP	166.70 0.0236	183.30 0.0313	200.00 0.0509	216.70 0.0683	238.90 0.1263	255.60 0.1903	266.70 0.2611	272.20 0.3128	277.80 0.3679	283.30 0.4349																
	♦ = 180°	body Afterbody	XL	166.70	183.30	200.00	216.70	238.90	255.60	266.70	272.20	277.80	283.30	-0.8607	-0.7535	-0.7859	-0.7642	-0.7320	-0.1405	-0.1216	-0.1543	-0.1533	-0.1433	-0.1345	-0.1141	-0.1200	-0.0827	-0.0245	-0.0207
	■ = 180°	Forebody Afterbody	CP X/L	0.8857 166.70	0.8924 183.30	0.9360 200.00	0.9531 216.70	1.0268 238.90	0.9177 255.60	-1.0467 266.70	-0.9921 272.20	-1.0039 277.80	-0.9430 283.30	Ģ	3.75 -0.7535	4.38 -0.7859	5.00 -0.7642	7.50 -0.7320	15.00 -0.1405	17.50 -0.1216	20.00 -0.1543	40.00 -0.1533	50.00 -0.1433	60.00 -0.1345	70.00 -0.1141	80.00 -0.1200	90.00 -0.0827	122.00 -0.0245	139.00 -0.0207
and α = 0°		Forebo	XIL CP X/L	-3.75 0.8857 166.70	-3.12 0.8924 183.30	-1.88 0.9360 200.00	-1.25 0.9531 216.70	-0.62 1.0268 238.90	0.00 0.9177 255.60	0.62 -1.0467 266.70	1.25 -0.9921 272.20	1.88 -1.0039 277.80	2.50 -0.9430 283.30	3.12 -0					-0.1833 15.00 -0.1405									-	139.00 -0.0207
afr = 0.70 and $\alpha = 0^{\circ}$		Forebo	CP X/L	-3.75 0.8857 166.70	-3.12 0.8924 183.30	-1.88 0.9360 200.00	-1.25 0.9531 216.70	-0.62 1.0268 238.90	0.00 0.9177 255.60	0.62 -1.0467 266.70	-0.9618 1.25 -0.9921 272.20	-0.9280 1.88 -1.0039 277.80	-0.8154 2.50 -0.9430 283.30	-0.8028 3.12 -0.	-0.7185	-0.6793	-0.5881	-0.1315		-0.1501	-0.1451	-0.1296	-0.1315	-0.1166	-0.1173	-0.0873	-0.0237	-0.0167	-0.0207
mfr = 0.70 and $\alpha = 0^{\circ}$		Forebody Forebo	XIL CP XIL CP XIL	-3.75 0.8818 -3.75 0.8857 166.70	-3.12 0.8733 -3.12 0.8924 183.30	-1.88 0.9319 -1.88 0.9360 200.00	-1.25 0.9433 -1.25 0.9531 216.70	0.00 1.0700 -0.62 1.0268 238.90	0.62 -1.0389 0.00 0.9177 255.60	1.25 -1.0183 0.62 -1.0467 266.70	1.88 -0.9618 1.25 -0.9921 272.20	2.50 -0.9280 1.88 -1.0039 277.80	3.12 -0.8154 2.50 -0.9430 283.30	4.38 -0.8028 3.12 -0	-0.7185	-0.6793	-0.5881	-0.1315	-0.1833	-0.1501	-0.1451	-0.1296	-0.1315	-0.1166	-0.1173	-0.0873	-0.0237	-0.0167	139.00 -0.0207
		fterbody Forebody Forebo	L CP X/L CP X/L CP X/L	70 0.0158 -3.75 0.8818 -3.75 0.8857 166.70	.30 0.0306 -3.12 0.8733 -3.12 0.8924 183.30	0.00 0.0477 -1.88 0.9319 -1.88 0.9360 200.00	1,70 0.0728 -1.25 0.9433 -1.25 0.9531 216.70	.90 0.1243 0.00 1.0700 -0.62 1.0268 238.90	0.00 0.1887 0.62 -1.0389 0.00 0.9177 255.60	1,70 0.2598 1.25 1.0183 0.62 -1.0467 266.70	220 0.3054 1.88 -0.9618 1.25 -0.9921 272.20	1,80 0,3608 2.50 -0.9280 1.88 -1.0039 277.80	1.30 0.4255 3.12 -0.8154 2.50 -0.9430 283.30	4.38 -0.8028 3.12 -0	5.00 -0.7185	7.50 -0.6793	10.00 -0.5881	15.00 -0.1315	17.50 -0.1833	20.00 -0.1501	40.00 -0.1451	50.00 -0.1296	60.00 -0.1315	70.00 -0.1166	80.00 -0.1173	90.00 -0.0873	122.00 -0.0237	1 139.00 -0.0167 1	-
		fterbody Forebody Forebo	CP XIL CP XIL CP XIL CP XIL	0.8860 166.70 0.0158 -3.75 0.8818 -3.75 0.8857 166.70	0.8927 183.30 0.0306 -3.12 0.8733 -3.12 0.8924 183.30	0.9448 200.00 0.0477 -1.88 0.9319 -1.88 0.9360 200.00	0.9643 216.70 0.0728 -1.25 0.9433 -1.25 0.9531 216.70	1.0384 238.90 0.1243 0.00 1.0700 -0.62 1.0268 238.90	0.9851 255.60 0.1887 0.62 -1.0389 0.00 0.9177 255.60	-0.9999 266.70 0.2598 1.25 -1.0183 0.62 -1.0467 266.70	-1.0874 272.20 0.3054 1.88 -0.9618 1.25 -0.9921 272.20	-1.0636 277.80 0.3608 2.50 -0.9280 1.88 -1.0039 277.80	-0.8974 283.30 0.4255 3.12 -0.8154 2.50 -0.9430 283.30	-0.7912 4.38 -0.8028 3.12 -0	-0.7516 5.00 -0.7185	-0.7312 7.50 -0.6793	-0.6894 10.00 -0.5881	-0.6522 15.00 -0.1315	17.50 -0.1833	-0.1300 20.00 -0.1501	-0.1620 -0.1451	-0.1360 -0.1296	-0.1430 60.00 -0.1315	-0.1306 70.00 -0.1166	-0.1217 80.00 -0.1173	-0.0856 90.000 -0.0873	-0.0245 122.00 -0.0237	-0.0051 139.00 -0.0167 1	_

.

(d) M = 0.89

;	30	0.0121	0.0214	302	50	5	ŝ	66	2892	3457	#115																					;	5	Ļ	601	1284	0.0484	715	000		790	5	1117	1021		2																	
J° ▲@authadu	2																															Attended	3																														
• = 180°			183.30																												• • • •		5				200.00																										
•	ch CP	1.0735	1.0869	1.1259	1.1501	1.2004	0.0840	1.349	-1.3028	-1.2630	-1.2212	-1.1676	-1.1179	-1.1013	1.0595	0.0617	1100000	6861.0-	-0.7284	-0.5825	-0.1101	-0.0302	0.0616		16/070-	-0.0994	-0.0731	-0.0237	-0.0219		•	Product of		5	1.0124	1.0182	1.0652	1.1024	ş		6+1C-0	-1.1974	-1.1909	-1.1204	0000		1.0354	-0.9542	-0.9642	-0.9258	-0.8235	-0.7005	INCN O.		-0.5124	-0.0519	-0.0826	Ami 0	-0701.0-	-0.0989	-0.1173	-0.0812	***on'n-
Powe	XI	-3.75	-3.12	1.88	-1.25	-0.02		0.62	1.25	1.88	2.50	3.12	3.75	4.38	5.00	5	2	B ::	17.50	20.00	40.00	50.00	600			80.08	<u>90</u> 00	122.00	139.00			1			C	3.12	-1.88	-1.25	0 40			0.62	1.25	1.88	5	3:	3.12	3.75	4.38	8.8	7.50	15.00	S 21		20°00	40.09	20.00			20.00	80.00	80	3
	. a.	53	ž	8	ş ;	žŝ	2	77 7	8	ŝ	Ŧ	8	1 33	557	880	99		2	178	ş	M 2	582	80.7	i s	6 3	*	ñ	2		α = 0°				. ;	2	2	58 3	Ī	894		8	2	27	010			5	õ	E	61	42	S.		3	20	8	8	. 6	6	26	81	25	
a = 90° Forehodu	3	5 1.0659		8				5 -1.2942														0 -0.0682								.62 and	• − •	hohor	au u				8 1.0583											1916.0- 0												0.1092			
ĥ	ž	-3.7	-3.12	8.1	-1-2 -	0.0		1.2		2.5	3.1	£.4	S.0	7.50	10:01	N Y			20.01	40.04	50.00	60.09	70.01		10.00 10.00	80.06	122.0	139.00		mfr = 0.62 and α = 0°		ġ				5	8.1	-1.2	0.0		5		87	2.50	~			B	2.1	10.01	15.00	17.50	2000			20:02	60:09	00.02		80.00	90:06	122.00	
ŗ	3 Ĉ	0.0074	0.0202	0.0355	0.0595	0.1110	0.170	0.2374	0.2830	0.3391	0.4044																			-		40	şê	5	510.0	0.0278	0.0468	0.0718	1245	2010	0/01/0	1867.0	0.3055	0.3617	05070	0.141.0																	
A ft orbed v	XI			200.00																												AAshodu					200.00							277.80 (
°0 = •	~											717	176	567	206	Ę		795	60	845	853	312	586		-0.070	717	270	1			•U - ₹															•		4	380	319	953	387	Ĩ	2	<u> </u>	553	793	50		1	808	261	
Forehody				8 1.1269								2 -1.1717						10 0.8462				0 -0.0312										proton																8 -0.9469											101.0		0 -0.0809		
Ca	ž	-3.75	÷.	-1.88	51.1		0.0 22	0.0	0.62	1.25	2.50	3.12	4.38	5.00	7.50	0001		00.21	15.0	30.00	40.00	50.00	60.00			8	122.0	00'6E1				6	• >	Ş	с.	· .	-1.88	-1.25	0.67			0.31	0.62	1.25	č	3 -		4.38	5.00	7.50	10.00	12.5				40.0	50.00	999		0.07	90:06	122.0	
¢ = 180° ▲Martudu	XI	166.70	183.30	02 200.00 0.0437	216.70	236.90	00.002	200.70	272.20	217.80	283.30	73	18	5	69	88			5	D8	53	69	41	: 2		86	35	32	03		A - 180°	Afterhody			0.001	183.30	200.00		7.18 QU	046.40	00.007	1007	272.20	277.80	01.180			23	3	26	53	2	5			\$	z				21	58	
80 1 0 0 0	CP XI	1.1008 166.70	1.1157 183.30	1.1492 200.00	1.1 /92 216.70	06.362 1212.1	00.002 4022.0	-1.4432 266.70	-1.4200 272.20	-1.3710 277.80	-1.3240 283.30							CU04.U-							0.020.0				-0.0203		4 - 180°				1/001 100/1	06.681 2660.1	1.0874 200.00	1.1144 216.70	1 1761 238 90	04116 366.40		0/ 007 /7771-	-1.1720 272.20	-1.1157 277.80	01.136 29201	33001		57/60-					06450-							-0.1058			
¢ = 180° Romehodv ▲ Aterbody	XI	1.1008 166.70	1.1157 183.30	200.00	1.1 /92 216.70	06.362 1212.1	00.002 100 0011 1	-1.4432 266.70	272.20	-1.3710 277.80	-1.3240 283.30			4.38 -1.2304															139.00 -0.0203	1°	÷ 180°				1/001 100/1	06.681 2660.1	200.00	1.1144 216.70	1 1761 238 90	04116 366.40		0/ 007 /7771-	-1.1720 272.20	-1.1157 277.80	01.136 29201			57K0- C/-5			7.50 -0.8163									NU.0- 00.105		90.00 -0.0868	
¢ = 18 Forehodv	XI CP XI	-3.75 1.1008 166.70	-3.12 1.1157 183.30	-1.88 1.1492 200.00	0/ 017 76/11 271-	06.967 17171 7910-	00.007 H022.0- UUU	0.02 -1.4432 200.70	1.25 -1.4200 272.20	1.88 -1.3710 277.80	2.50 -1.3240 283.30	3.12	3.75	4.38	5.00	5.6		0.51	17.50	20.00	40.00	50.00	60.00	0000		80.00	90:06	122.00		ıd α = 2.1°	ore A ≂ 1800	Forshody			0/.001 40401 61.6-	-3.12 1.0352 183.30	-1.88 1.0874 200.00	-1.25 1.1144 216.70	-0.67 1.1761 2.18.90			0/1007 /7771- 7010	1.25 -1.1720 272.20	1.88 -1.1157 277.80	01.136 33201 05.6	33401 016	71.0	c1.5	4 .38	2.00	1.50	15.00	17.50	0000	00.02	40.00	50.00	000	8	0.0	80.00	00.06	
80 1 0 0 0	CP X/L CP X/L	1.0706 -3.75 1.1008 166.70	1.0792 -3.12 1.1157 183.30	1.1212 -1.88 1.1492 200.00	0/.917 76/11 67:1- 6761.1	0.3094 -0.02 1.2121 238.90	00.007 H077.0- 000 1100.1-	-1.29/3 0.62 -1.4432 266.70	-1.2503 1.25 -1.4200 272.20	-1.2007 1.88 -1.3710 277.80	-1.1441 2.50 -1.3240 283.30	-1.0720 3.12	-1.0324 3.75	-0.9646 4.38	-0.9011 5.00	0.7816 7.50		00101 001/0-	-0.5678 17.50	-0.1023 20.00	-0.0520 40.00	-0.0763 50.00	-0.0830 60.00	0000 ¥0010	00.07 00.00	-0.0816 80.00	-0.0322 90.00	-0.0261 122.00		0.57 and $\alpha = 2.1^{\circ}$	A + 000	Forshody			0/001 10001 10701 00001	06.681 2000.1 21.6- 183.90	1.1259 -1.88 1.0874 200.00	1.1510 -1.25 1.1144 216.70	0.8006 -0.67 1.1761 2.18.00			0/'007 /777'I- 70'N 44'04'I+	-1.2435 1.25 -1.1720 272.20	-1.1982 1.88 -1.1157 277.80	01.136 3320 1. 05.6 11.1.1	3340 1 C1 E 0030 1	21.0 6600.1-	C/-F 1660-1-	-0.9072 4.3K	-0.8929 5.00	-0.7889 7.50	-0.6823 15.00	-0.5465 17.50		00.02 P201.0-	-0.0584 40.00	-0.0710 50.00	0.0847 60.00		0.1020 /0.00	-0.0861 80.00	-0.0292 90.00	1000 M
¢ = 18 Forehodv	XAL CP XAL CP XAL	-3.75 1.0706 -3.75 1.1008 166.70	-3.12 1.0792 -3.12 1.1157 183.30	-1.88 1.1212 -1.88 1.1492 200.00	0/.917 76/11 67.1- 6761.1 671-	0.00 0.3094 -0.02 1.2121 238.90	00.007 M077.0- 0010 1/001- 7010	1.25 -1.29/3 0.62 -1.4432 206.70	1.88 -1.2503 1.25 -1.4200 272.20	2.50 -1.2007 1.88 -1.3710 277.80	3.12 -1.1441 2.50 -1.3240 283.30	-1.0720 3.12	-1.0324 3.75	-0.9646 4.38	-0.9011 5.00	0.7816 7.50		00101 001/0-	-0.5678 17.50	-0.1023 20.00	-0.0520 40.00	-0.0763 50.00	-0.0830 60.00	0000 ¥0010	00.07 00.00	-0.0816 80.00	-0.0322 90.00	-0.0261 122.00		$mfr = 0.57$ and $\alpha = 2.1^{\circ}$	A + 00°	Forshody			0/1001 40401 67/5- 80001 67/5-	-5.12 1.0784 -5.12 1.0552 183.50	-1.88 1.1259 -1.88 1.0874 200.00	-1.25 1.1510 -1.25 1.1144 216.70	0.00 0.5006 -0.62 1.1761 2.18.90			0//007 /7771- 70/0 HOW:1- C7/1	1.88 -1.2435 1.25 -1.1720 272.20	2.50 -1.1962 1.88 -1.1157 277.80	01.13C 3320 1. 05 C 1.151 1. 01.1		21.0 6600.1-	c1.5	-0.9072 4.3K	-0.8929 5.00	-0.7889 7.50	-0.6823 15.00	-0.5465 17.50		00.02 P201.0-	-0.0584 40.00	-0.0710 50.00	0.0847 60.00		0.1020 /0.00	-0.0861 80.00	0.0292 90.00	
φ = 90° φ = 18 Forebody Forebody	CP X/L CP X/L CP X/L	-0.0153 -3.75 1.0706 -3.75 1.1008 166.70	0.0134 -3.12 1.0792 -3.12 1.1157 183.30	0.0296 -1.88 1.1212 -1.88 1.1492 200.00	0/.017 76/11 57:1- 57511 57:1- 85500	0.1040 0.00 0.2004 40.00 0.1040 0.1010 238.90	00'567 4077'0- 00'0 1/56'1- 70'0 6001'0	0.2377 1.23 1.29 0.06 1.297	0.2861 1.88 -1.2503 1.25 -1.4200 272.20	0.3469 2.50 -1.2007 1.88 -1.3710 277.80	0.4224 3.12 -1.1441 2.50 -1.3240 283.30	-1.0720 3.12	-1.0324 3.75	-0.9646 4.38	-0.9011 5.00	0.7816 7.50		00101 001/0-	-0.5678 17.50	-0.1023 20.00	-0.0520 40.00	-0.0763 50.00	-0.0830 60.00	0000 ¥0010	00.07 00.00	-0.0816 80.00	-0.0322 90.00	-0.0261 122.00			A - 000 A - 1600	Ronehody Forehody			0//02 10/00 10/02 -2//2 1/0000 -2//2 1/02/02 100//0	0.0530 -5.12 1.0784 -5.12 1.0500 0.05300	0.0453 -1.88 1.1259 -1.88 1.0874 200.00	0.0649 -1.25 1.1510 -1.25 1.1144 216.70	00111 1907 9000 0000 1110			0/'007 /777'I- 70'N +506'I+ 67'I 1667'N	0.2760 1.88 -1.2435 1.25 -1.1720 272.20	0.3232 2.50 -1.1982 1.88 -1.1157 277.80	OF 186 3920 1. 05 C 19151 1. CI E EBCE U		21.0 6600.1-	C/-F 1660-1-	-0.9072 4.3K	-0.8929 5.00	-0.7889 7.50	-0.6823 15.00	-0.5465 17.50		00.02 P201.0-	-0.0584 40.00	-0.0710 50.00	0.0847 60.00		0.1020 /0.00	-0.0861 80.00	-0.0292 90.00	1000 M
φ = 90° φ = 18 Afterbody Forebody	P X/L CP X/L CP X/L	-0.0153 -3.75 1.0706 -3.75 1.1008 166.70	0.0134 -3.12 1.0792 -3.12 1.1157 183.30	-1.88 1.1212 -1.88 1.1492 200.00	0/.017 76/11 57:1- 57511 57:1- 85500	0.1040 0.00 0.2004 40.00 0.1040 0.1010 0.238.00	00'567 4077'0- 00'0 1/56'1- 70'0 6001'0	1.25 -1.29/3 0.62 -1.4432 206.70	0.2861 1.88 -1.2503 1.25 -1.4200 272.20	0.3469 2.50 -1.2007 1.88 -1.3710 277.80	0.4224 3.12 -1.1441 2.50 -1.3240 283.30	-1.0720 3.12	-1.0324 3.75	-0.9646 4.38	-0.9011 5.00	0.7816 7.50		00101 001/0-	-0.5678 17.50	-0.1023 20.00	-0.0520 40.00	-0.0763 50.00	-0.0830 60.00	0000 ¥0010	00.07 00.00	-0.0816 80.00	-0.0322 90.00	-0.0261 122.00			, nº 4 - 16nº 4 - 16nº	Forshody			0//02 10/00 10/02 -2//2 1/0000 -2//2 1/02/02 100//0	0.0333 -3.12 1.0784 -3.12 1.0330	0.0453 -1.88 1.1259 -1.88 1.0874 200.00	0.0649 -1.25 1.1510 -1.25 1.1144 216.70	0.00 0.5006 -0.62 1.1761 2.18.90			0/'007 /777'I- 70'N +506'I+ 67'I 1667'N	0.2760 1.88 -1.2435 1.25 -1.1720 272.20	0.3232 2.50 -1.1982 1.88 -1.1157 277.80	OF 186 3920 1. 05 C 19151 1. CI E EBCE U		21.0 6600/1-	C/-F 1660-1-	-0.9072 4.3K	-0.8929 5.00	-0.7889 7.50	-0.6823 15.00	-0.5465 17.50		00.02 P201.0-	-0.0584 40.00	-0.0710 50.00	0.0847 60.00		0.1020 /0.00	-0.0861 80.00	0.0292 90.00	
φ = 90° φ = 18 Forebody Forebody	NIL CP X/L CP X/L CP X/L	166.70 -0.0153 -3.75 1.0706 -3.75 1.1008 166.70	183.30 0.0134 -3.12 1.0792 -3.12 1.1157 183.30	200.00 0.0296 -1.88 1.1212 -1.88 1.1492 200.00	0/.017 76/1/1 67/1- 6761/1 67/1- 7/0/2000 0//017	0.1040 0.00 0.2004 40.00 0.1040 0.1010 0.238.00	00'CC7 +077'0- 00'0 //CC'1- 70'0 C001'0 00'CC7	200.70 0.2377 1.25 -1.2973 0.62 -1.4432 200.70	272.20 0.2861 1.88 -1.2503 1.25 -1.4200 272.20	277.80 0.3469 2.50 -1.2007 1.88 -1.3710 277.80	283.30 0.4224 3.12 -1.1441 2.50 -1.3240 283.30	4.38 -1.0720 3.12	5.00 -1.0324 3.75	-0.9646 4.38	10.00 -0.9011 5.00	05.0 9181.0 W SI			20.00 -0.5678 17.50	40.00 -0.1023 20.00	50.00 -0.0520 40.00	60:00 -0:0763 50:00	70.00 -0.0830 -60.00			90000 -0.0816 80.00	122.00 -0.0322 90.00	139.00 -0.0261 122.00	00.95.1		۲۰۰۷ ۲۰ ۲۰ ۲۵۰۰ ۲۰ ۲۵۱۰ ۲۰۰۷ ۲۰۰۹ ۲۰۰۹ ۲۰۰۹	Ronehody Forehody			00.70 U.U.056	05/581 750001 71/5- MR/011 71/5- 100000 001001	0.0453 -1.88 1.1259 -1.88 1.0874 200.00	216.70 0.0649 -1.25 1.1510 -1.25 1.1144 216.70	718 90 0 11 15 0 100 0 5006 -0 67 1 1 761 7 18 90			0/1007 /7771- 7070 HC0571+ C711 100770 0/1007	272.20 0.2760 1.88 -1.2435 1.25 -1.1720 272.20	0.3232 2.50 -1.1982 1.88 -1.1157 277.80	OF 18C 3920 1. 05 C 9151 1. CI 1. 18C1 0. 18C		7110 446011- 9014	C/-F 1660-1-	1.50 -0.9672 4.38	10.00 -0.8929 5.00	-0.7889 7.50	17.50 -0.6823 15.00	20 m -0 \$465 17 50		00.02 P201.0-	50.00 -0.0584 40.00	60.00 -0.0710 50.00	70.00 0.0847 60.00		00.00 0701.0- 00.08	90.00 -0.0861 80.00	-0.0292 90.00	(M) M 7670 M

(d) Concluded

mfr = 0.77 and $\alpha = -0.1^{\circ}$

•0 = **•**

	+	Forebody	0	0.8016	0.7893	0.8292	0.8405	0.9111	1.1444	-0.7117	-0.7835	-0.6814	-0.5885	-0.5101	-0.5197	-0.4527	-0.3984	-0.2494	-0.2395	-0.1691	-0.1629	-0.1361	-0.1314	-0.1274	-0.1142	-0.0744	-0.0143	0.0009							
		For	хr	-3.75	-3.12	-1.88	-1.25	-0.62	00.0	0.31	0.62	1.25	2.50	3.12	4.38	5.00	7.50	10.00	12.50	15.00	30.00	40.00	50.00	60:09	70.00	90.00	122.00	139.00							
		ody	CP	0.0269	0.0391	0.0581	0.0809	0.1398	0.2079	0.2821	0.3323	0.3912	0.4559																			ody	СЪ	0.0422	0.0545
	180°	Afterbody	χr	166.70	183.30	200.00	216.70	238.90	255.60	266.70	272.20	277.80	283.30																		i = 180°	Afterbody	ХI	166.70	183.30
	\$ = 180°	Forebody	CP	0.9036	0.9133	0.9494	0.9776	1.0603	0.8967	-0.9768	-0.9238	-0.8814	-0.8676	0.7999	-0.7363	-0.7008	-0.7163	-0.6489	-0.5076	-0.1625	-0.1446	-0.1394	-0.1428	-0.1354	-0.1152	-0.1257	-0.0851	-0.0180	-0.0104		-	Forebody	ĉ	0.1362	0.0786
		Fore	XL	-3.75	-3.12	-1.88	-1.25	-0.62	0.00	0.62	1.25	1.88	2.50	3.12	3.75	4.38	5.00	7.50	15.00	17.50	20.00	40.00	50.00	60.00	70.00	80.00	90:06	122.00	00.601	•		For	XI	-3.75	-3.12
mfr = 0.71 and $\alpha = 0^{\circ}$	• = 90°	body	6	0.8791	0.9077	0.9307	0.9827	1.1079	0.9626	-0.9325	-0.8692	-0.8565	-0.8212	-0.6846	-0.6807	-0.6402	-0.5767	-0.4929	-0.1653	-0.1052	-0.1415	-0.1311	-0.1342	-0.1167	-0.1211	-0.0965	-0.0227	-0.0079		$\mathbf{mfr} = 0.96 \ \mathbf{and} \ \mathbf{a} = 0^{\circ}$	• = 90°	Forebody	G	0.0235	0.0486
fr = 0.71	•	Forebody	XI	-3.75	-3.12	-1.88	-1.25	0.00	0.62	1.25	1.88	2.50	3.12	4.38	5.00	7.50	10.00	15.00	17.50	20:00	40.00	50.00	60.00	70.00	80.00	90:06	122.00	139.00		ofr = 0.96	•	Fore	XL	-3.75	-3.12
8		ody	CP.	0.0241	0.0416	0.0606	0.0880	0.1448	0.2100	0.2818	0.3276	0.3819	0.4443																	8		ody	G	0.0360	0.0535
	°0	Afterbody	XI.	166.70	183.30	200.00	216.70	238.90	255.60	266.70	272.20	277.80	283.30																		°0 = 0°	Afterbody	ХI	166.70	183.30
	• = 0.	Forebody	6	0.8916	0.9023	0.9500	0.9849	1.0396	0.9626	1606.0-	-1.0265	-0.9426	1628.0-	0.7317	-0.7366	-0.7056	-0.6543	-0.6106	-0.5727	-0.5632	-0.1245	-0.1218	-0.1310	-0.1334	-0.1224	0.0837	-0.0187	-0.0061			•	Forebody	6	0.0741	0.0112
		Fore	Ż	-3.75	-3.12	-1.88	-1.25	-0.62	00.0	0.31	0.62	1.25	2.50	3.12	4.38	5.00	7.50	10.00	12.50	15.00	30.00	40.00	50:00	60:09	70.00	90:06	122.00	139.00				Fore	χī	.3.75	-3.12

♦ = 90°
 Forebody
 X1. CP
 3.12 0.7823
 -3.12 0.7823
 -3.12 0.7823
 -1.88 0.8157
 -1.88 0.8432
 0.000 1.2018
 0.0123
 0.0132
 0.0132
 0.0132
 0.0123
 0.0123
 0.0123
 0.0123
 0.0123
 0.0123
 0.0123
 0.0123
 0.0124
 0.0124
 0.0123
 0.0123
 0.0123
 0.0123
 0.0123
 0.0123
 0.0123
 0.0123
 0.0132
 0.0132
 0.0132
 0.0132
 0.0132
 0.0132
 0.0132
 0.0132
 0.0132
 0.0132
 0.0132
 0.0132
 0.0132
 0.0132
 0.0132
 0.0132
 0.0132
 0.0132
 0.0132
 0.0132
 0.0132
 0.0132
 0.0132
 0.0132
 0.0132
 0.0132
 0.0133
 0.0133
 0.0035
 0.0135

Afterbody XL CP 166.70 0.0222 183.30 0.0401 200.00 0.0601 205.70 0.0904 225.60 0.1496 225.60 0.2197 238.77 0.03817 277220 0.3887 233.30 0.4540

			H	mfr = 0.96 and $\alpha = 0^{\circ}$	and a = (٩			
	•	° 1		₀06 = ♦	• = 60°		•	= 180°	
Fore	sbody	After	Afterbody	Fore	body	For	body	After	body
XI	6	XL	•	XL	9	XIL	5	P XIL CP	9
-3.75	0.0741	166.70	0.0360	-3.75	0.0235	-3.75	0.1362	166.70	0.0422
-3.12	0.0112	183.30	0.0535	-3.12	0.0486	-3.12	0.0786	183.30	0.0545
-1.88	-0.1910	200.00	0.0701	-1.88	-0.3400	-1.88	-0.2229	200.00	0.0775
-1.25	-0.3589	216.70	0.1004	-1.25	-0.5191	-1.25	-0.3893	216.70	0.1035
-0.62	-0.7443	238.90	0.1541	0.00	0.9328	-0.62	-0.8213	238.90	0.1551
0.00	1.1136	255.60	0.2148	0.62	0.4608	0.00	1.1139	255.60	0.2164
0.31	0.6272	266.70	0.2783	1.25	0.3056	0.62	0.4267	266.70	0.2792
0.62	0.4290	272.20	0.3189	1.88	0.1997	1.25	0.2842	272.20	0.3264
1.25	0.2123	277.80	0.3652	2.50	0.1590	1.88	0.2262	277.80	0.3758
2.50	0.1541	283.30	0.4224	3.12	0.1196	2.50	0.1681	283.30	0.4330
3.12	0.1695			4.38	0.0891	3.12	0.1491		
4.38	0.1327			5.00	0.0573	3.75	0.1142		
5.00	0.0527			7.50	-0.0511	4.38	0.0942		
7.50	-0.0372			00:01	-0.0447	<u>5</u> 8	0.0497		
10.00	-0.0705			15.00	-0.0540	7.50	-0.0285		
12.50	-0.0840			17.50	-0.0922	15.00	-0.0825		
15.00	-0.0764			20:00	-0.0892	17.50	-0.1240		
30.00	-0.1096			40.00	9060.0-	20.00	-0.0953		
40.00	-0.0849			50.00	-0.1001	40.00	-0.0992		
50.00	-0.1044			60.09	-0.0950	50.00	0.1040		
60.00	-0.1025			70.00	-0.0910	60:09	-0.1109		
70.00	-0.1003			80.00	-0.0884	70.00	-0.0919		
90.06	-0.0548			90:06	-0.0659	80.00	-0.1026		
122.00	-0.0060			122.00	-0.0034	90:06	-0.0635		
139.00	39.00 0.0114			00'6£1	0.0042	122.00	22.00 -0.0052		
						139.00	0.0013		

(e) M = 0.92

mfr = 0.67 and $\alpha = 0^{\circ}$

mfr = 0.63 and $\alpha = 0^{\circ}$

	dy	c b	01410	UN41	0851	1.1437	0.2100	0.2856	13369	0.3947	.4609																				ţ,	e C	0420	.0560	0.0809	4601.	TOPIC	3152	3669	4211	4853															
٩	erpo	XIL XIL			216.70 0																									٩	terbo				200.00 0.																					
\$ = 180°												8	28	21	6	5	s :	4 :	58	2 2	99	2:	<u> </u>	9 9	s :	5 9	2			<u>8</u>												2	* :	. .	c x	2 2		1	\$	8	3	8	2	2	13	5
	Forebody		2 1.0424																												Forebody				0.8466																					0.001
	6 I	Z:	6 C	81.	-1.2	-0.6	0.0	0.6	1.2	8°.1	2.5	3.1	1.5	4	5.00 2.2	S.1	0.61	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	D.02			5 6				0.221	1.92.1	8		1	ŭ,	X	ų,		-1.88	091-	000	0.62	1.25	1.88	2.50	3.12	57.F	4 4	1	15.00	17.50	20.00	40.00	50.00	60.00	70.00	80.00	90:06	122.00	00.061
. 06	ody		1.0385	1.071	1.1016	0.7578	1161.1	1.0985	1.0436	0.9953	0.9708	0.8742	0.8650	0.7750	-0.7271	1.0473	57/57	0.4.0	7776-0			10000		00100		50001		nd α = (1	è.	Å V	5	0.7894	0.117	0/72/0	10000	6594	69090	1.5136	.5655	1.5683	-0.4301	14280	1204-1	7070	1850	1479	1453	1381	-0.1277	1146	1146	-0.0833	0063	(0063	
• 06 = ♦	Forebody	NF NF			-1.25										898													mfr = 0.77 and $\alpha = 0^{\circ}$			Forebody		51.5- 51.5-		-1.25					2.50 -6						12.50				60.00						
											_						•	•	•••						2 2	2		mfr				-												-				4	*	¢	-	¢	6	12	13	
	ê.		0.0377								0.4493																				Afterbody				0.1000						0.4767															
°.	Ϋ́Ψ		183.30	200.00	216.70	238.90	255.60	266.70	272.20	277.80	283.30																		2		Arei v	NI.	100.70		216.70	238.90	255.60	266.70	272.20	277.80	283.30															
•	у С	1961	1.0418	1.0788	1.1083	1.1678	0.6061	-1.1149	-1.1987	-1.1230	-1.0155	-0.9365	-0.5515	10000	011810	1261.0	1963.0	1970.0	13140	00100	FLUO		10000	07100	0,000	0100-0-				•	ρ δ	5	10.0124	1.10.0	0.8620	0.9040	1.1700	0.6252	0.6450	0.6105	0.5425	0.4306	1100.0	0.0018	0 1664	-0.3832	-0.2678	0.1536	0.1352	0.1382	0.1316	0.1232	-0.0752	0.0113	0.0067	
	Forebody	ž	-3.12	-1.88	-1.25	-0.62	0:00					3.12			067			200			800			0020						10	r orebody		515							1.25		3.12												22.00		
																								1	• -	-																						.,	•		•				-	
		4	52	24	12	5 . :	6	5	8	8	8																					5	2 =	. 1	2	2	5	9		50																
•	Afterbody	-					0.1919																							Abothodu	d) a)		18000		0.0946						0.4756															
= 180°	Ÿ,	166.70	183.30	200.00	216.70	238.90	255.60	2007	N 212	08.112	283.30																		001				0.001	0000	216.70	238.90	255.60	266.70	272.20	277.80	283.30															
	Forebody 27 CD	1.0897	1.1006	1.1344	1.1605	1.2143	0.0958	7717.1-	8677.1-	-1.1948	8/21-1-	76601-			868670-	IFFL U	0.6775	04.43 0-	02020-	-0.4064	-0.0348	17000-	0.0454	-0.0331	00100-	-0.0081			4			100	9060	0.9640	0.9809	1.0654	0.9429	-0.8630	-0.8445	-0.7731	-0.8084	0/7/0-	0.6653	-0.6548	-0.6356	-0.5102	-0.4287	-0.2242	-0:0797	-0.1144	-0.1289	-0.1127	-0.1219	-0.0780	0.0140	CHOD-0-
1	Y.U.	-3.75	-3.12	-1.88	-1.25	0.62	000	7 7		89. C			11						40.00					80.06	22.00	39.00				Forebody	XI.		212		-1.25						2.20									80.8				88		
		1	z	8	2	1 :	<u>s</u> :	= 5	2 5	= :	29	2 2	: :		2 X	2 2	: 2		2 2		*	8	3				•	о п п О					. 95		2	\$	7	-	9	- 1	•	• •		, o	0	0	0									•
.06 = +	rebody		1.0954		1.1622					1.1.21		6/00/1-				1929 0- 1				-0.0351					-0.0032			0.71 and $\alpha = 0^{\circ}$	4 - 00°	Forehody	d'							-0.8691			0.141.0	-0.6000				-0.4260							0.0889		0.0020	
C	XU	-3.75	-3.12	-1.88	-1.25	0.0	20.0	C7-	0.1		21.6	5.5	5	10.01	899	17 40	20.00	40.00	50.00	60.09	70.00	80.00	90:06	122.00	139.00			mfr = 0.		4	X.		-3.12	-1.88	-1.25	00.0	0.62	1.25	1.88	2.50	3.12		7.50	10.01	15.00	17.50	20:00	40:04	50.00	60.00	20:02	80.00	90.06 20.00	00.221	00.661	
	20	0189	0.0335	.0487	0.0746	1321	0161.	C107		550C.	7174																	8		>	, 0	1010	0472	0654	0.0946	1576	2279	3006	3490	4035	600															
	ALLELDOGY X/I. C		183.30 0																											Afterhodv					216.70 0.																					
•0 ●												1 9	: -	: 5	. 3	. 22	15	2	-	20	=	Ŧ	2	9					e ≡ Ue														. 4			0	2	•	•	4	.	v n 1	~ <	2 •	0	
	CP				1.1641			11001				50 U U			0.8554									-0.0039						Forebody	10		0.9282						0.9840		-0.7375												-0.0817	0.000	r m n	
5	X	-3.75	-3.12	-1.88	-1.25				20.0		2.7	4 18	90	7 50	10.00	12.50	15.00	30.00	40.00	50:00	60:09	70.00	90.06	122.00	139.00					Por	X	17.6.	3.12	1.88	-1.25	-0.62	0.00	0.31	0.62	1.25	2	4.78	5.00	7.50	10.00	12.50	15.00	30.00	40.00	20:00	00.09	00.07	8.8	122.00	M.601	

TABLE V. Concluded

(e) Concluded mfr = 0.96 and α = 0°

	body	6	0.0525	0.0663	0.0894	0.1129	0.1689	0.2346	0.3025	0.3463	0.3959	0.4531																
= 180°	After	CP X/L CP	166.70	183.30	200.00	216.70	238.90	255.60	266.70	272.20	277.80	283.30																
*	body	C	0.1251	0.1304	-0.1657	-0.5397	-0.8487	1.1260	0.4886	0.2947	0.2420	0.1713	0.1864	0.1239	0.1031	0.1068	0.0212	-0.1001	-0.1297	0.1135	-0.1122	-0.1213	-0.1122	-0.0923	-0.1070	-0.0643	0.0001	139.00 0.0062
	Pore	XL	-3.75	-3.12	-1.88	-1.25	-0.62	0.0	0.62	1.25	1.88	2.50	3.12	3.75	4.38	5.00	7.50	15.00	17.50	20:00	40.00	50.00	60:09	70.00	80.00	90:06	122.00	139.00
•06	body	XIL CP	0.1226	0.0472	-0.5843	-0.6922	0.9918	0.4270	0.3112	0.1971	0.1198	0.1649	0.1099	0.0846	-0.0107	-0.0462	-0.0591	-0.1092	-0.1017	-0.1129	-0.1107	-0.1102	-0.0989	-0.1011	-0.071	-0.0030	0.0122	
•	Fore	ХL	-3.75	-3.12	-1.88	-1.25	0.0	0.62	1.25	1.88	2.50	3.12	4.38	5.00	7.50	10.00	15.00	17.50	20.00	40.00	50.00	60.00	70.00	80.00	90:00	122.00	139.00	
	ody	ĉ	0.0465	0.0632	0.0824	0.1135	0.1725	0.2355	0.2994	0.3411	0.3886	0.4455																
చి	Afterbody	XI	166.70	183.30	200.00	216.70	238.90	255.60	266.70	272.20	277.80	283.30																
•	Forebody	CP C	0.1537	0.1621	-0.2652	-0.4062	-0.7739	1.1245	0.5952	0.4180	0.3193	0.1434	0.1711	0.1003	0.0615	-0.0258	-0.0393	-0.0882	-0.0579	-0.1140	-0.0984	-0.1161	-0.1134	-0.0996	-0.0660	0.0020	0.0196	
	Pore	Хſ	-3.75	-3.12	-1.88	-1.25	-0.62	0:0	0.31	0.62	1.25	2.50	3.12	4.38	5.00	7.50	10.00	12.50	15.00	30.00	40.00	50:00	60.09	70.00	90.06	122.00	139.00	

TABLEVI. PRESSURE COEFFICIENTS ON MODEL WITH NACA 1-85-43.9 INLET AND CONTRACTIONRATIO OF 1.250

(a) M = 0.60

		*	م	200	3 3	2		41	<u> </u>	148	723		•																																					
		erb		0.00106																																														
	• = 180°	z	ž	201.645	11.000	457 12	11.10	45.26	20125	58.1.74	1964	1000																																						
స	•	Forebody	5	C166.0	0.8441	0.9826	1.0481	-0.4691	0000 0	-2.1147	-2 0807	-2 1010	2 001	07001	1 8580	910L 1	96CZ 1.	1037.1	1907	0002-1-		VI#1.1-	0.6421	0.6947	10090	0.5302	-0.4312	0.4011	0.3840	-0.3404	-0.3198	-0.2479	-0.2084	-0.0726																
= x pus		For	ž	16.181-	1980	-10.27	-2.05	000	0 11	0.63	1.75	881	2 50	111	ž	11.4	5	200	99	22. B		12 50		17.50	20.02	30.00	50.00	00.00	70.00	80.00	90:06	00:001	110.00	241.85																
mfr = 0.40 and $\alpha = 0^{\circ}$		ody	9 9	CENOU-	00400	0.0336	0.0240	0.0176	0.003	0.0236	0.0417	0.0888																																						
ā		Afterbody	XI.																																															
	₀0 = ♦		e e									-		0.8582	0.8901	0 9867	PLL0 1	1.0871	10414	1461	0 5075	0.6269	1041	-2.2311	9463	-2.2358	184	-2.0099	-1.9689	-1.8239	-1.7760	-1.5917	-1.4833	-1.2232	-1.0894	1288	-0.7913	-0.7484	-0.7270	-0.5405	-0.4740	-0.4284	054	-0.3787	-0.3528	-0.3206	-0.2582	-0.2059	-0.0757	652
		Đ.	NL NL			_				_																					5.00 -1.7	6.25 -1.5						17.50 -0.7				S0.00 -0.4					_	_		.84 -0.0653
				<u> </u>		÷.	01-	ġ	2-	ş	Ŧ	÷	Ņ	2	: 4	1-	•	, . <u>,</u>				, -			-	. –	7			•	۹٦			*	0	12	5	5	20	R	₹	8	8	5	8	8	8	2	241.85	279.84
		Afterbody	d de	000200-	-0.0470	-0.0518	-0.0460	-0.0465	-0.0369	-0.0226	-0.0135	0.0290																																						
		After	XIX	384.14	419.13	457.12	501.77	545.76	571.08	583.74	596.41	10.609																																						
	• = 180°	Å,	d of	91101	0.9613	1.0558	0.9607	-0.7328	-1.4437	-1.9119	-1.3699	-1.2512	-1.2220	-1.5092	-1.3127	-1.1989	-1.2309	-1.5135	-1.2886	-1.2137	1.2426	-1.2674	-1.2921	-1.2886	-1.2097	-1.0023	-0.4530	-0.3861	-0.3485	-0.3180	-0.2980	-0.2470	-0.2153	-0.0768																
mfr = 0.31 and $\alpha = 0^{\circ}$		Forebody	XIL VIL	-106.57	-25.67	-10.27			0.31		1.25																20:00	00:09	20:00		00'06	_	00:01	41.85																
- 0.31 ar		~ 1				165	<u>3</u> 6	117	Ξ	<u> 295</u>	183	89																				-	-																	
E E E	•	Afterbody							1100.0- 80		0.0183																																							
	- 0-	< ;	WL WL			-	507.77		571.08		596.41	609.07					_	_					_	_					_		_	_																		
		Forebody	2 20	1.0327	1.0312	1.0239	1.0145	1.0009	0.9910	0.9743	0.9655	0:9607	0.9678	0.9754	1166.0	1.0588	1.0892	1.0560	0.9531	0.6852	0.3882	-0.9112	-1.8324	-1.9657	-1.6925	-1.6841	-1.8628	-1.5362	·1.6427	-1.6594	-1.6290	-1.6710	-1.6484	-1.6306	-1.5661	-1,4791	-1.3857	-1.3076	-1.0766	-0.6607	-0.5992	-0.4756	-0.4224	-0.3826	-0.3473	0.0070	-0.2640	1622.0-	00200	300
	1		787.47	-171.29	-155.11	-130.84	-106.57	-90.39	-74.21	-58.03	41.85	-33.76	-25.67	-23.11	-17.97	-10.27	-5.13	-3.34	-2.05	06.0-	0.44	0.00	0.31	0.63	1.25	1.88	2.50	3.13	3.75	4.37	5.00	6.25	7.50	8.75	0.01	12.50	15.00	17.50	20.00	30.00	40:00	20:00	60.09	70.00	808	00.06	00.001	10.00	241.85	-0'617
		λų λ	100	-0.0573	0.0503	0.0557	0.0557	0.0589	0.0536	0.0461	20503	2810.0																																						
		Afterbody										9- 00:609																																						
	• = 180°						-	_		_		Ĩ	-1.0777	-1.1173	-1.1671	910	-1.1808	-1.1840	101	-1.1643	-1.1731	-1.1547	-1.2993	-1.2928	-1.2436	-1.1322	-0.6873	-0.5225	-0.3973	-0.3448	-0.2993	-0.2680	0.2208	724																
ມ ສ	•	Foreboo				_			0.31 1.5				2.50 -1.0	3.13 -1.1	3.75 -1.1	4.37 -1.1	5.00 -1.1		7.50 -1.1		10:00 -1.1			17.50 -1.2										241.85 -0.072																
$\mathbf{mfr} = 0.28 \ \mathbf{snd} \ \alpha = 0^{\circ}$		>	-									-	~	.,		•	•1	v	-	90	3	12	Σ.	5	20	8	8	29	2	8	8	0		241																
87 - 0		Alterbody	Ÿ		-0.0573	-0.0557	-0.0530	-0.0536	-0.0461	-0.0455	-0.0375	-0.0241																																						
	• = 0°	NIA.	343.16	384.14	419.13	457.12	507.77	545.76	571.08	583.74	596.41	609.07																																						
		rorebody	1.0366	1.0361	1.0377	1.0298	1.0220	1.0120	1.0015	0.9884	0.9842	0.9883	0.9954	1.0007	1.0214	1.0722	1.0833	1.0343	0.9166	0.6353	0.3284	-1.0201	-1.2174	-2.0895	-1.9850	-2.0336	-1.9369	-1.8858	-1.8098	-1.7760	·1.729I	-1.6384	-1.5951	-1.4707	-1.4913	-1.1/4/	-1.2003	-1.2069	1.2007	-1.0655	-0.8681	-0.6113	-0.4926	-0.4180	-0.3202	0107	1007.0	2180.0	0.0650	
	1	rore V/	14	-171.29	Е	2	21	90.39	-74.21	-58.03	-41.85	.13.76	-25.67	-23.11	11.97	-10.27	-5.13	-3.34	-2.05	0.0	-0.44	0.00	0.31	0.63	1.25	1.88	2.50	:I3	3.75	4.37								17.50		8	40.00	20:00	60.00	00:02	00.00		3 8	201.01	279.84	į
			<u>ب</u>	-17	-155.11	-130.84	-106.57	ġ	-14	ş	4	÷	ŝ	?	÷	÷	÷.			т	Ŧ	Ĭ	Ŭ	-	-	-	~	ς.	<u>ش</u>	4	~				2 !	2 :	2 :		¥ 1	8	4	2	8 1	≍ 3	2	Χş		2	Ĭ	

(a) Continued

Afterbody X/L CP 3X/L CP 384,14 0.0379 384,14 0.0379 419,13 0.0251 419,13 0.0251 419,13 0.0054 5677 0.0054 5677 0.0054 5637 0.0056 5664 0.1228 5664 0.1228 609.07 0.1948
 ♦
 180*

 Forebody
 A

 X/L
 CP
 X/I

 18/31
 0.9269
 343.

 18/31
 0.9269
 343.

 18/31
 0.9269
 343.

 18/31
 0.9269
 343.

 25.67
 0.6215
 419.

 25.67
 0.6313
 419.

 25.67
 0.6103
 541

 0.00
 0.4435
 542

 0.01
 0.1433
 544

 0.31
 1.09910
 571

 0.31
 1.09910
 571

 0.31
 0.1433
 542

 0.31
 0.9910
 571

 0.31
 0.9100
 571

 0.313
 0.8027
 59

 3.13
 0.8027
 59

 3.13
 0.8027
 59

 3.13
 0.8026
 5030

 1.230
 0.5368
 110.00

 1.230
 0.5368
 110.00

 2.2000
 0.53618
 1000

 <t **mfr = 0.50 and** $\alpha = 2.0^{\circ}$ Afterbody X/L CP 343,14 C0336 384,14 0.03316 384,14 0.03304 419,13 0.03004 419,13 0.03004 419,13 0.03004 597,10 0.0328 593,74 0.0584 593,10 0.0584 609,07 0.1366 **0** = **0**
 Forebody

 RAL
 CP

 171.2
 0.9361

 171.2
 0.9361

 171.2
 0.9361

 171.2
 0.9361

 171.2
 0.9361

 171.2
 0.9361

 171.2
 0.9361

 171.2
 0.9147

 171.2
 0.9147

 171.2
 0.8873

 171.3
 0.8863

 171.3
 0.8163

 171.3
 0.8163

 171.3
 0.7744

 171.3
 0.7743

 171.3
 0.7744

 171.3
 0.7743

 171.3
 0.7744

 171.3
 0.7744

 171.3
 0.7744

 171.3
 0.7738

 0.4
 0.7128

 0.4
 0.7738

 0.4
 0.7738

 0.4
 0.7738

 0.41.3
 1.0879

 0.41.3
 1.0879

 0.41.3
 1.0879

 0.44.3
 1.1865

 1.13.2</ Afterbody VL CP 3.16 -0.0370 13 -0.0317 13 -0.0317 13 -0.0385 13 -0.0082 13 -0.0082 13 -0.0082 0.0088 0.0042 0.00728 0.01844 XJL 343.16 384.14 419.13 457.12 567.77 545.76 551.08 551.08 553.74 566.41 609.07 180° ♦ = 18
 Forebody XU. XD. AP - 187
 AP - 187
 AP - 187
 AP - 187
 AP - 1027
 AP - 1013
 AP - 1123
 AP - 1019
 AP - 1019
 AP - 1019
 AP - 1123
 AP - 1019
 AP - 1019
 AP - 1019
 AP - 1019
 AP - 1123
 AP - 1123
 AP - 1019
 AP - 113160
 AP - 1019
 AP - 1010
 AP - 10160
 AP - 10160

 AP - 10160
 AP mfr = 0.50 and $\alpha = 1.0^{\circ}$ Afterbody X/L CP 3/L CP 384.14 0.0445 384.14 0.0445 384.14 0.0438 419.13 0.0381 419.13 0.0318 597.71 0.0173 595.74 0.00296 598.34 0.0520 598.34 0.0520 598.34 0.0520 598.34 0.0520 598.34 0.0550 പ ല = ¢
 Porebody

 XL
 CP

 171.29
 0.9350

 171.21
 0.9355

 175.11
 0.9355

 190.57
 0.9356

 190.57
 0.9356

 190.57
 0.9356

 190.57
 0.8143

 190.57
 0.8143

 -190.57
 0.8143

 -58.03
 0.8143

 -58.03
 0.7104

 -60.56
 0.8143

 -58.03
 0.7701

 -58.13
 10.7701

 -57.421
 0.8143

 -58.03
 0.7701

 -57.41
 0.8653

 -57.41
 0.8653

 -57.41
 0.8653

 -57.41
 0.8653

 -51.11
 10.771

 -51.11
 10.771

 -51.11
 0.7701

 -51.11
 0.7701

 -51.11
 0.7711

 -51.11
 0.7711

 -51.11
 0.7711

 -51.11
 0.7711

 -51.11
 0.7711
 Afterbody XIL CP 343,14 CP 343,14 -00232 384,14 -00232 384,14 -00232 419,13 -00147 457,12 -00147 567,77 -00045 567,77 -00045 583,74 -00035 543,60 -00352 596,41 -01092 596,41 -01092 596,41 -01092 699,07 -01092 80° Pode
 Ibody
 CP
 0.9328
 0.9328
 0.9559
 0.6558
 0.6558
 0.6558
 0.6558
 0.12819
 1.10376
 1.2079
 2.2093
 2.10956
 1.2078
 2.20958
 0.12819
 0.8591
 0.25513
 0.25513
 0.25513
 0.25513
 0.25513
 0.25513
 0.25513
 0.25513
 0.25513
 0.25513
 0.25513
 0.25513
 0.25513
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0.2552
 0. mfr = 0.50 and $\alpha = 0^{\circ}$ Forel: 871. 2567 - 2567 - 2567 - 2567 - 2567 - 2567 - 2567 - 25567 - 2008 - 200 Afterbody X/L CP 384.14 0.0207 384.14 0.0206 419.13 0.0222 447.12 0.0147 447.12 0.0147 547.1 0.0035 545.76 0.0193 557.1.08 0.0419 556.41 0.00640 556.41 0.00640 609.07 0.1734 • = 0°
 Forebody

 XL
 CP

 XL
 0.9238

 118741
 0.9238

 1187511
 0.9302

 119747
 0.9328

 1197511
 0.9022

 1197611
 0.9129

 1197611
 0.9129

 -9010
 0.9129

 -9010
 0.9129

 -9010
 0.9129

 -9010
 0.9129

 -9010
 0.9129

 -9110
 0.9129

 -9110
 0.9129

 -1120
 0.8101

 -1120
 0.8101

 -1120
 0.8101

 -1120
 0.8101

 -1120
 0.8101

 -1120
 0.8111

 -1120
 0.8112

 -1120
 0.8112

 -1120
 0.8112

 -1120
 0.8112

 -1120
 0.8112

 -1120
 0.8112

 -1120
 0.8112

 -1120
 0.8112

 0.1120
 0.8112

 <

(a) Continued

	o = 180°		CP X/L CP	384.14	419.13	457.12	507.77	545.76	-0.5984 571.08 0.0772		10'609		-0.8704	-0.7079	-0.6757	C 620-0-		0.5948	-0.5984	-0.5836	-0.5341	0.4687	0.4004	-0.3509	-0.3498	0.3274	0.3150	1617.0	0.1724	0.0538												
mfr = 0.63 and α = 0°		Forebody	TXT.			-10.27				56.1					4.37						8.5							888														
mfr = 0.6		Afterbody	CP CP		·				0.0895		0.2343																															
	• = 0°		XI		•				571.08					_			_			_		_								_		_										
	•	rebody	CP						0.6225						7 0.5629						1 20802 1					5 -0.7561					0 -0.6038									1116.0-0		
		sī.	XL	-171.29	-155.11	-130.84	-106.57	66.04-	-74.21	2018- 1818-	-33.76	-25.67	-23.11	19.71-	-10.27	1.6	-2.05	06.0-	4.0	000		1.25	1.88	2.50	3.13	3.75	16 1	6.25	7.50	8.75	10.01	12.50	09'CI	20.00	30:00	40:00	50.00	60:09	0.02	80.08		00011
		Afterbody	CP D00%	-0.0286	-0.0143	-0.0143	0.0033	0.0241	0.001	0.1397	0.2048																															
	\$ = 180°	Afte	TX Y	384.14	419.13	457.12	11.100	0/.040	501.08	596.41	609.07																															
ಕಿ	₽ ◆	Forebody	CP 0 8030	0.8215	0.5370	0.7263	1.0874	0.1232	9991.1- 1977 1-	-1.6478	-1.6297	-1.3250	-0.9981	-0.8583	0.8315	-0.7092	-0.7354	-0.7011	-0.6925	0.6807	044670-	-0.5109	-0.4397	-0.3780	-0.3586	0.3427	1226.0-	-0.2263	-0.1822	-0.0583												
mfr = 0.56 a nd α = 0°		For	X/L -18747	-106.57	-25.67	-10.27	-2.05		16.0	1.25	1.88	2.50	3.13	3.75	<u>}</u>	6.25	7.50	8.75	00.01	12.50	17.50	20.00	30.00	50.00	60:09	00.07	00.08	100.001	110.00	241.85												
mfr = 0.5		Afterbody	40 GP	-0.0356	-0.0308	-0.0249	-0.0052	001010	46 CU.U	0.1211	0.1915																															
	•= 0°	After After	343.16 343.16	384.14	419.13	457.12	507.77	2.040	583 74	596.41	609.07																															
	•	Forebody	0.8926	0.8957	0.8921	0.8659	0.8236	2011.0	0.6706	0.6021	0.5740	0.5464	0.5311	0.5775	0.9239	1.0363	1.0869	1.0554	0.9264		-1.9612	-1.7169	-1.6896	-1.2358	-1.0005	1016.0	-0.8541	-0.8024	-0.7162	-0.7261	-0.6906	0.6438	0.5872	-0.5196	-0.4614	-0.4117	-0.3893	-0.3667	8646.0	16767.0-	0.2341	-0.1819
		For	-187.47	-171.29	-155.11	-130.84	106.57	10.00	17.47-	41.85	-33.76	-25.67	-23.11	16/11-	12:01-	-3.34	-2.05	06:0-	4. 7	8 G	690	1.25	1.88	2.50		0.5	2.00	6.25	7.50	8.75	00.01	2 0 X	17.50	20.00	30.00	40.04	50.00	90.09 50	00.02	0.00	100.001	110,00
		Afterbody	-0.0342	-0.0315	-0.0181	-0.0175	0.0009	0.0400	0.0855	0.1263	0.1994																															
	80°	After	343.16	384.14	419.13	457.12	507.77	20172	583.74	596.41	10.609																															
\$	4 = 180°	Forebody	0.9275	0.8712	0.5897	0.7147	1.0732	0.8430	-1.3031	-1.3037	1:0631	-0.9096	-0.7404	200000	0.6033	-0.5365	-0.5589	-0.5291	-0.5032		0.4547	-0.4227	-0.3563	-0.3255	-0.3208	110.0	0.2722	-0.2106	-0.1644	-0.0485												
mfr = 0.50 and α = 3.0°		Fore	NL -187.47	-106.57	-25.67	-10.27	-2.05	11.0	690	1.25		2.50	919 11	C	8		1.50		10.00					30.00	8.00	8.0 0	90.06 00.06	100.00	110.00	241.85												
fr = 0.50 a		body	-0.0422	-0.0455	-0:0401	-0.0277	-0.002	0.0188	0.0549	0.0796	0.1258																															
2	ల "	Afterbody	343.16	384.14	419.13	457.12	11.100	51.06	583.74	596.41	609.07																															
	٠	body	0.9353	0.9343	0.9322	0.9143	0.8501	0.8141	0.7785	0.7438	0.7366	0.7165	0.7449	09/01/0	1.0627	1.0895	1.0702	0.8788	0.6675	007070-	-2.3558	-2.1336	-2.2865	-2.1643	44/0.7-	0700.7-	-1.8436	-1.6330	-1.4659	-1.3849	4090 F	-0.9087	-0.8581	-0.8056	-0.5750	-0.4955	-0:4577	-0.4247	2636.0-	0.3203	-0.2555	-0.2077
		Forebody	-187.47	-171.29	-155.11	130.84	/(°9)-	10 70-	-58.03	-41.85	-33.76	-25.67	-23.11	16.11-	-5.13	-3.34	-2.05		4.0 4.0				1.88								 							00.00				00.01

		λų δ	-0.0119	-0.0108	-0.0013	0.0277	0.0694	0.1103	0.1491	0.1922	0.2618																																			
		Afterbody		-	419.13			571.08	583.74	596.41	20.609																																			
	• = 180°	yb c	_		-0.1439	-						3744	-0.3689	-0.3387	2010-0-	-0.3185	1015	3634	3727	-0.3791	3891	3645	3340	-0.3281	-0.3111	-0.3094	Ì.	-0.2540	-0.1968	0.1482	0.0416															
α=0°	- ;	Forebody			-25.67 -0					1.25 -0				3.75												00.00																				
mfr = 0.75 and α = 0°										5	5								-	-	-	-		., ,	•••	•			. =	: =	5.2															
L E		Afterbody	7		3 -0.0013						7 0.2645																																			
	• = (),	ų.			419.13	-					10:609 3	•	~							~	_	~	~	•	~ .	•						~	~	5		~	-	_		~	.	-				
		Forebody			0.6996							-0.1369		-0.1433						0.7917	1060'0-	-0.3986				-0.4064		10000														0.2804				
	F	For	-187.47	-171.29	-155.11	10.001	66.06-	-74.21	-58.03	41.85	-33.76	-25.67	-23.11	76:71- 72:01	17.01-	46.65	-2.05	06.0-	<u>4</u>	0.0	0.31	0.63	1.25	1.88	2.50	51.5 27.5			6.25	7.50	8.75	10.00	12.50	15.00	17.50	20.00	30.00	40.00	50.00	60.09	20:02	80.08	00 W I		241.95	41.62
	-	γġ ĉ	-0.0267	-0.0213	-0.0101	5/00/0-	0.0461	0.0883	0.1236	0.1692	0.2451																																			
		Afterbody			419.13					596.41	609.07																																			
	• = 180°	v b o	_		0.0428 4							-0.3891	-0.3580	-0.2994	110.0	-0.2905	-0.3112	-0.3363	-0.3242	-0.3661	-0.3319	-0.3069	3047	-0.2735	-0.2882	-0-2776	0/1770-	-0.2475	0.2003	-0.1478	0.0404															
α = 2.0"		Forebody		-	-25.67 0.					1.25 -0				5.5 6 6								17.50 -0				00.00																				
mfr = 0.69 and $\alpha = 2.0^{\circ}$				•			-			6	1								-	-	-	-	7	m 1	•	0 -	- 0		9	: =	24															
5 - 28		Afterbody	4		0.0058						1 0.2457																																			
	°0 "	UV N			457.13						609.07	_				_												_	_				_	_		_			-							
	•	Forebody	0.7766	0.7786	0.7697	0.664.0	0.5930	0.5138	0.4147	0.3057	0.2659	0.1880	0.1921	0.2181	1927.0	0.8600	0.9943	1.0525	0.9906	0.3393	-0.8438	-1.3211				-0.21804	-0.70er			-0.6431	-0.6708	-0.5933	-0.6079	-0.6359	-0.5288	-0.5325	-0.4245	-0.4378	-0.3846	-0.3982	-0.3514	-0.3598	0.02.0	2621.0-	1611.0-	-0.0806
	5	101	-187.47	-171.29	-155.11	10,001	66.06-	-74.21	-58.03	41.85	-33.76	-25.67	-23.11	16.11-	17:01-	51.5- 16.6-	-2.05	0.0	-0.44	0:00	0.31	0.63	1.25	88.1	2.50	3.15		005	6.25	7.50	8.75	10.00	12.50	15.00	17.50	20.00	30.00	40.00	50.00	60:09	70.00	80.00	8.00 1000	00011	241.85	241.63
	÷	Å å	0.0176	0.0197	0.0106	51000	0.0473	0.0875	0.1234	0.1675	0.2377																																			
		Afterbody Y.f. CP	343.16	384.14	419.13		545.76	\$71.08	583.74	596.41	609.07																																			
	• = 180°	dy D	0.7715		0.1238		0.6064	-0.3644	-0.8543	-0.8258	-0.7321	-0.6602	-0.5930	-0.5224	A046	.4683	-0.4910	-0.4999	.4679	-0.4946	-0.4443	-0.4200	13981	-0.3431	-0.3325	-0.3319	10000	-0.2698	0.2083	0.1621	-0.0088															
а = 0-	6	YAL CP			-25.67 0									51.6												8.8			_	_																
mfr = 0.69 and $\alpha = 0^{\circ}$				•		•		-		2	3																		-	-	Ň															
- Lu		Afterbody	Ŷ		3 -0.0096		_																																							
	• = ().	UV VA			0 419.13 457 17						0.609.07	-	~	~			. ~	. ~	~	-	•	_	•		<u>.</u>			o			~	_	•	~		\$	~	•	2	x -	.				<u>-</u>	
		Forebody	0		0.7680									0.1332												1616.0-		171371														0.2981				
		٥ <u>۲</u>	-187.47	-171.29	-155.11	10.001	90.39	-74.21	-58.03	-41.85	-33.76	-25.67	-23.11	16.11-	11.5	199	-2.05	60	4.0-	0.00	0.31	0.63	1.25	88.1	2.50	212		28	6.25	7.50	8.75	10.00	12.50	15.00	17.50	20.00	0	40.00	50.00	60.00	70.00	80.00			00.011	C0.1 P2

(a) Continued

.

(a) Concluded

			_	23	8 :	3 7	: 2	74	49	11	87	28																																		
		Afterhody	100		0.0050							0.2428																																		
	A = 180°		ž	343.16	384.14	457.12	507.77	545.76	\$71.08	583.74	596.41	609.07																																		
و	ł	₽arehadv	6	0.3544	0.0998	10001-	0.2085	1.0807	0.7355	0.4665	0.2830	0.2351		0 1105	0000	0.0530	0.0281	-0.0255	-0.0481	-0.0882	-0.1271	-0.1720	-0.1472	-0.1850	-0.2022	-0.2482	-0.2471	-0.2482	-0.2376	0.1210	-0.1044	0.0264														
nd a = 0		Pore	XU.	-187.47	-106.57	-10.27	-2.05	00'0	0.31	0.63	1.25	1.88 88.1	2		4.37	5.00	6.25	7.50	8.75	10.00	12.50	15.00	17.50	20.00	30.00	50.00	60.09	80.02	80.08	8 8 8 8		241.85														
mfr = 0.93 and α = 0°		4	6		0.0050	0.0274	0.0569	0.0901	0.1302	0.1571	0.1919	0.2412																																		
ក្នុង		Afterhodv	XI		384,14 00			-	-			609.07 0.																																		
	ی <u>ہ</u>				0.3523 38				•••				470		182	823	686	61.1	175	164	814	862	820	1 8	986	745	5 53	2 2	80.0	5	15	148	274	520	1	ž		4 X X		13	512	378	5	6	¥ .	1 8
		Forebody	XIL CP									76 -2.1812											0.63 0.4820		1.88 0.1		3.13 0.0653		4.3/ U.U.38							50 -0.1794									_	64 -0.0184
		-	X	-187.47	-171.29	-130.84	-106.57	-90.39	-74.21	-58.03	4.8	-33.76	10.02-	11.62-	-10.27	-5.13	-3.34 ICE-	4	Ŷ	Ŷ	ö	ö	Ö	-	2	7	en i	-	¢ v	ŝ		80	10.00	12.50	15.00	17.50	20.02		000	00:09	70.00	80:00	80.06 20.06			279.84
		bodv	5	-0.0123	-0.0086	0.0149	0.0416	0.0752	0.1200	0.1575	0.2002	0.2696																																		
	č	Afterbody	XI	343.16	384.14 419.13	457,12	501.77	545.76	571.08	583.74	596.41	609.07																																		
	e = 180°		18	0.6261	0.4459 -0.6708	0.4142	0.4971	1.0459	0.5896	0.3060	0.1443	0.0613	10000	1150.0	0.0254	-0.0066	-0.0005	-0.0891	0.1031	-0.1091	0.1656	0.1833	-0.1780	0.1686	0.1963	-0.2381	-0.2475		-0.2716	01771	0.1262	0.0308														
mfr = 0.82 and α = 2.0°		Forebody	XI		- 106.57							8.5						_									8.8		1 1																	
0.82 and				_				23	76	86 3	5 :	80																		-	. –	5														
mfr =		Rerbody	CP CP		4 0:0021							1 0.2680																																		
	• = ()	,	XI	A 1	384.14							609.07						_			_		_	_		_	_																			
	•	Forebody	ç	0.6338	0.6223	0.5647			0.2251	0.0498		0.2546	11110	0.3742	-0.0561	0.3282	0.5558	0.8327	1.0255	1.0898	0.7616	-0.1057	-0.4150	-0.4296	-0.4809	-0.4066	0.4019		1101.0	5656.0-	0.3809	-0.4218	-0.4223	-0.4181	-0.4160	3665.0-	2196.0	-0.3388	-0.3208	-0.3196	-0.3058	-0.2892	0.2606	2661.0	10100	-0.0358
		Foi	X	-187.47	11.221-	-130.84	-106.57	60.06	-74.21	-58.03	4.83	-33.76	11.12	10.71	-10.27	-5.13	-3.34	-2.05	0.00	4.0	0.00	0.31	0.63	1.25	1.88	2.50	5.15		005	6.25	7.50	8.75	10.00	12.50	15.00	0011		40.00	50.00	60.00	70.00	80.00	00.06		241.85	279.84
		ody	5	-0.0063	10001	0.0114	0.0431	0.0785	0.1240	0.1590	0.2008	0.2684																																		
		Afterbod			- 419.14 419.13							10.600																																		
	• = 180°	dy.			0.5022 4					-0.0043		-0.1/8/ 0	1781	-0.1690	-0.1620	-0.2205	-0.2011	2365	2650	-0.2566	2662	-0.3016	2933	-0.2761	-0.2708	-0.2935	2082.0-	FISCO.	-0.2389	0.1832	-0.1406	-0.0359														
α = 0°		Forebody			-100.27 0.							0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			4.37 -0.	5.00								20.00								241.85 -0.1														
mfr = 0.82 and $\alpha = 0^{\circ}$			î									_					-					-		~ ~	7 . (7.5	57	. 6	5 8	01	Ξ	24														
afr -		Afterbody	6	•						0.1644		1/770																																		
	°0°		XL	343.16	419.13	457.12	507.77	545.76	571.08	583.74	14-0KC	10.400																																		
	•	Forebody	6	0.6306	0.6196	0.5576	0.4524	0.3362	0.2111	0.0250	CC41-0-	-0.4813	-0.5324	-0.4963	-0.2140	0.1944	0.4179	0.6782	0.9552	1.0700	6616.0	0612.0	00/010-	4CC1-04	4C61-0-	101.0	1141.0-	01760	-0.2195	-0.2090	-0.2311	-0.2816	-0.3010	-0.2816	-0.3215	0.2005	0.2810	-0.2868	-0.2889	-0.2787	-0.2791	-0.2669	-0.2448	01407	0.0415	-0.0316
		For	X	-187.47	-155.11	-130.84	-106.57	60.96 -	-74.21	-58.03		-33.70	-23.11	-17.97	-10.27	-5.13	-3.34	-2.05	9 9	4 4 5 5	80	15.0	0.03	91	1.88	007	21.0	4 17	005	6.25	7.50	8.75	10.00	12.50	15.00	0000	10.01	40.04	50.00	60.00	70.00	80.00	0.00	8.001	241.85	279.84

	2	Afterbody X/L CP	343.16 -0.0361	554.14 -0.0564 410.13 -0.0337							609.07 0.1230																																	
101	• = 180°	CP CP	10101									-1.9465	-1.8568	-1.8201	-1.7630	-1.6954	-1.6071	-1.5449	-1.4026	-1.2384	-1.0516	24/1	-0./##8 -0.5641	04460	-0.4084	61.61	-0.3504	-0.3363	-0.2516	-0.2197	000													
		Ă.					•			1.25 -1.9				5.1- CL.8																														
	•	xr ²	-187.47	12:001-	10.22	?	Ö	0	0	-	-	4	eri e	-ń -	4 4	i vo	-		ē	12	<u>8</u> i	<u> </u>	S S	ξ.	3	02	80	80	100.00	110.00	5													
	-	Afferbody /L CP	-0.0399	1950.0-	10000	-0.0181	-0.0081	0.0203	0.0397	0.0534	0.1126																																	
2	-0 -	XL Mte	343.16	41013	457.12	507.77	545.76	\$71.08	583.74	596.41	609.07																																	
•	•	è ĉ	1.0122	1 0000	0 9964	0.9783	0.9565	0.9361	0.9059	0.8827	0.8753	0.8663	0.8785	00000	CC001	1.1067	1.0710	0.8824	0.6719	-0.4912	-1.9067	4017	-2 (020)	01110	-1.9343	-1.9436	-1.7910	-1.7667	-1.6009	-1 2000	-1 3148	-1.0427	-0.9244	-0.8335	-0.8227	-0.5460	-0.4985	-0.4532	-0.4256	-0.3807	-0.3729	0.2731	-0.2062	
	Ē	X/L CP	-187.47	-11.22	11084	-106.57	-90.39	-74.21	-58.03	41.85	-33.76	-25.67	-23.11	16/11-	17:01-	1.33	-2.05	06.0-	-0.44	0.00	15.0									0C/			15.00	17.50	20.00	30.00	40.04	50.00	60.00	00.02	0.08	00.001	110.00	2
		5 g	-0.0518	-0.0461	06900-	-0.0437	-0.0395	-0.0262	1600'0-	-0.0024	0.0456																																	
		Afterbody X/L CP	343.16 -0							ŕ	609.07 0																																	
9001 1	\$ = 180°											đ.	324	141	992	578	857	÷.	146	178	52 52	0	15	044	53	835	164	38	5	581	2													
		rorebody /L CP	47 1.0529			-	'							1412-1- 07.6							00 -1.2252									00 -0.2183 85 -0.0763														
	•	X	-187.47	10.001-	9 -	-2.05	0	0.31	Ö	-		~ .	ri r	- •	e v	ι e	7.	œ	0	12.	15.00		00.02	0005	00:09	70.00	80.00	808	00.001	241.05														
		Afferbody AL CP	-0.0542	76000-	06100	-0.0433	-0.0466	-0.0404	-0.0195	-0.0238	0.0085																																	
ş		XL	343.16	41013	457.12	507.77	545.76	571.08	583.74	596.41	10.609																																	
	• = 0.	c ğ	1.0525	1 05m	10441	1.0325	1.0232	1.0001	0.9971	0.9864	0.9826	0.9894	0.9947	70101		1.0717	0.9848	0.7285	0.4704	-0.7553	-1.7189	90.6.1-	974C'I-	1.5797	-1.4271	-1.4613	-1.4159	-1.4908	-1.4482	-1.5043	-1.4683	-1.4149	-1.4065	·1.3396	-1.2984	-0.9154	-0.6196	-0.5214	-0.4260	9166.0-	-0.3518	0.2632	-0.2267	
		X/L CP	-187.47	67111-	130.84	-106.57	-90.39	-74.21	-58.03	41.85	-33.76	-25.67	-23.11	1671-	17:01-	-3.34	-2.05	0.00	-0.44	0:00	0.31	(0))	1.88	992 97	3.13	3.75	4.37	8.5		2		12.50	15.00	17.50	20.00	30.00	40.00	3 0.00	60.09	00.02	00.08	100.00	110.00	
		c g	0.0525	0.00544	0.0558	0.0477	0.0591	0.0458	0.0340	0.0297	0.0049																																	
		Arterbody X/L CP	343.16	1011	457.12	507.77	545.76	571.08	583.74	596.41	609.07																																	
001	• = 180°	CP CP	1.0634 3								-	-1.1105	-1.0681	10001	-1.1220	-1.1322	-1.0827	-1.1273	-1.0648	1078	1498	04001-	1.1420	0.770	-0.6461	-0.4427	-0.3444	3030	-0.2345	-0.0917														
	-	X/L CP	-187.47					0.31 -1.												12.50 -1.																								
		î																	-	-				· •		1	80		2:	= 2	5													
		Afferbody AL CP		0.000							0.0132																																	
ę	° -	Ϋ́ν X	343.16	41014	457 12	507.77	545.76	571.08	583.74	596.41	609																																	
•	٠	L CP	1.0589	5000-1	1.051	1.0426	1.0366	1.0264	1.0148	1.0069	1010.1	1.0127	1.0211	100001	1.0694	1.0482	0.9473	0.6702	0.3947	-0.8431	-1.9982	0/ 70-7-	901411-	1918	-1.7885	-1.7623	-1.7675	-1.6712	-1.6194	1000.1-	1 2008	-1.1243	-1.0818	-1.0794	-1.1382	-1.0467	-0.9488	-0.7866	-0.6483	-0.4620	-0.4234	-0.2851	0.2331	
	F	XL VC	-187.47	11 221	10.84	-106.57	-90.39	-74.21	-58.03	41.85	-33.76	-25.67	-23.11	1611-	17.01	-3.34	-2.05	06:0-	-0.44	80	0.31	6 F	Q 88	9	3.13	3.75	4.37	8	6.25	27.9	0001	12.50	15.00	17.50	20.00	30.00	40.00	50.00	00.00	00.02	80.08	0000	00.01	

(b) **M** = 0.64

.

(b) Continued

.

				ድ	80	3 5	55	2 2	: 8	3 9	2 2	3 8	2																																			
		Afterhodv	6			-0.0084																																										
	180°		X	343.16	384.14	457 13		545.76	571.08	583 74	506.43	1000																																				
۶	a = 180°	Forebody	5	0.8618	0.7750	0.6080	10744	0.4057	-0.6192	1.2143	13615	UIL I-	-1.1414	-0.8919	-0.7285	-0.6810	-0.6707	-0.6278	-0.6513	-0.6465	-0.6308	-0.6094	-0.5549	-0.5047	-0.4921	-0.4100	-0.3765	-0.3566	-0.3435	-0.3247	-0.2980	-0.2263	-0.1739	-0.0495														
and α = (Fore	XI	-187.47	-106.57	10.62-	20.0	000	0.31	0.63	1.25	88	2.50	3.13	3.75	4.37	5.00	6.25	7.50	8.75	10.00	12.50	15.00	17.50	20.00	30.00	50.00	60.00	70.00	80.00	90.00	100.00	110.00	241.85														
mfr = 0.62 and α = 0°		vþ.	5	0.0236	0.0165	-0.0054	00100	0.0646	0.1101	0.1429	0.1875	0.2586																																				
ā		Afterbody	XL	•	384.14																																											
	°0 = ♦		_		0.8677 3					_				0.3819	160	0.6065	0.8379	0.9637	1.0740	1.1026	329	0.2986	H 35	-1.3891	9602	717	0138	-0.9061	1678	014	1257	318	-0.6355	202	-0.6309	761	90050-	0.4620	-0.4189	-0.3967	-0.3784	-0.3566	-0.3487	-0.3192	-0.2896	PC77-0-	10100	42a
		Porebody			171.29	_		-00.39							-11.97 0.	-10.27 0.4	-5.13 0.1	-3.34 0.9	-2.05 1.0		-0.44 1.0							3.13 -0.5		4.37 -0.7					10.00 10.00									_			_	
			î	¥.			ē	ō,	Ļ	, sù	4	÷	Ņ	4	Ŧ	÷	Ŷ		7	Ŧ	Y	C	Ĵ	Ŭ		-				•	•,	Ð			2 :	2 2		: >	. 8	4	8	8	2	8	88			279.84
		Afterbody	5	-0.0256	5120.0-	-0.0175	0.0010	0.0281	0.0703	0.1059	0.1487	0.2189																																				
	80°		Хľ	343.16	584.14	457.12	507.77	545.76	\$71.08	583.74	596.41	609.07																																				
•	\$ = 180°	body	G	0.9124	0.8452	0.7467	1.1026	0.1310	-1.0979	-1.6909	-1.8099	-1.6645	-1.7351	-1.6042	-1.0446	-0.8236	-0.7843	-0.7046	-0.7439	-0.7391	-0.7281	-0.7034	-0.6629	-0.5963	-0.5659	-0.4574	-0.4066	-0.3851	-0.3621	-0.3442	-0.3029	-0.2405	0.1902	0.0553														
mfr = 0.55 and $\alpha = 0^{\circ}$		Forebody	XI	-187.47	10.001-	-10.27	-2.05	0.00	0.31	0.63	1.25	1.88												17.50						_	_		_	241.85														
= 0.55 a		dy			-0.0100	-0.0080	0.0162	0.0451	0.0869	0.1192	0.1591	0.2284																																				
т Т		Afterbody		343.16 -0.				545.76 0.				0 10:009																																				
	₀0 = ♦												z	2	\$	5	2	\$	4	2	8	2	2	92	<u>e</u>	T	~	90 -	2	-	•	•		- •	. v	, .		9	2	•	4	•	6 1 -	4.				. –
		Ē		0.9171								0.6016								1.0706					-1.8649		-1.6015							10/1/0-	0.7065	0.6475	-0.6033	-0.5486	-0.4622	-0.4276	0.3994	-0.3820	-0.3673	-0.3424	020800-0-	0.1901	-0.0625	0.0531
		Fo Fo	ž	-187.47	67-171- 11-351-	-130.84	-106.57	-90.39	-74.21	-58.03	-41.85	-33.76	-25.67	-23.11	-17.97	-10.27	-5.13	-3.34	-2.05	06:0-	4	000	0.31	0.63	1.25	1.88	2.50	513 113	3.75	4.37	8 8	6.25	2.50	8.75	12 20	15.00	17.50	20.00	30.00	40.00	50.00	60.09	20:02	80.08		1000	241.85	279.84
		ody	6	-0.0271	2000	-0.0247	0.0109	0.0129	0.0466	664010	0.1231	0.1915																																				
	ዲ	Afterbody	ž	343.16								609.07																																				
	\$ = 180°	dy	G	0.9505						_	-2.1384	-1.9915	-1.9995	-2.0206	-1.7173	-1.4047	.2458	6106	(8185	18168	7664	1527	7022	.6575	.5882	4990	4220	-0.4026	3769	0.3491	0.3124	0.2510	0.1980	7000														
d α = 0°		ę.		-187.47 0				_																				9 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9				0.00		_														
mfr = 0.50 and α							14	8	8	46	22	34																				= :		2														
mfr		Afterbody		16 -0.0389		Ċ					H 0.1222																																					
	ہ = 0			24 343.10 11 324.14		-		19 545.76			53 596.41		=		3	ç	5	I.	2	2	-	2	2	9 .	9	-		2.		ç .	4 ·	1 -	.	2 -	o ~	0	6		¢	1	7	۰ م		• -			•	_
		đ.		0.9524														1.0844		1.0162											-1.2604				0.7382			-0.5828			-0.4242	-0.4029	P115.0-		-0.2532	-0.1969	-0.0678	-0.060
		Fo	X	19.181-	-155.11	-130.84	-106.57	6E.06-	-74.21	-58.03	-41.85	-33.76	-25.67	-23.11	-17.97	-10.27	-5.13	5. C.	-2.02	6 .0	-0-	000	0.31	0.03	1.25	1.88	87	(1) (1) (1)	с.	4.37	8.5	62.0	DC/	0.00	12.50	15.00	17.50	20.00	30:00	40.00	50.00	60.00 20.00	00.07	0.02 0.02	00001	110.00	241.85	279.84

Continued
TABLE VI. (

.

(b) Concluded

mfr = 0.75 and $\alpha = 0^{\circ}$

		اړ ا	CP 0041	0.0007	0.0121	282	0.0987	0.1495	5346	0.3037																																
		ęr		•																																						
	♦ = 180°		N XI	384.14	419.13			571.08		-																																
×	•	Forebody	CP CP	0.4776	-0.5277	0.7021	0.9730	0.3590	0.1504	-0.2492	-0.2129	0.1840	-0.2079	-0.2134	-0.1981	-0.2480	0.264	76/7/0-	-0.3173	-0.2921	-0.2942	-0.2821	0.2889	-0.2926	-0.2826	-0.2585	-0.1893	-0.1457														
mfr = 0.81 and $\alpha = 0^{\circ}$		Fore	X/L	106.57	-25.67	-2.05	0.0	16.0	1.25	1.88	2.50	21.5	4.37	5.00	6.25	7.50	5.8 90 91	12 40	15.00	17.50	20.00	30.00	20.02	70.00	80.00	90:06	100:00	241.85														
. 0.81 a		~			0.0116	5 IS	0.1020	0.1519	0.2285	0.2937																																
mfr		erb	CP D008																																							
	•0 = €	×	N N		419.13			571.08		609.01				_	~	.				_	-				~	~	~	~ -			~	~ •		.				•	. ,	. .		. ~
	•	Forebody	CP CP	0.6609	0.6437	0.4852	0.3687	0.2391	-0.1837	-0.3105	-0.4967	0007 0	-0.1751	0.1884	0.4703	0.7115	0.989.0	2616.0	0.2936	-0.0550	-0.0811	-0.176	-0.1184	0.1795	-0.1855	-0.2275	-0.2312	-0.2545	-0.328	-0.3193	-0.325	-0.3002	767.0	-0.2955	-0.2988	-0.2894	-0.2937	-0.2779	0.2484	0.190	0.1431	0.025
		For	XIL 747	171.29	-155.11	-106.57	-90.39	-74.21		-33.76	-25.67	11.62-	-10.27	-5.13	-3.34	-2.05	8 .0		0.31	0.63	1.25	1.88	2.50	3.75	4.37	5.00	6.25	1.50 27.8	10.00	12.50	15.00	17.50	8.02	9.06 00.08	20.00	60.00	70.00	80.00	00.06	00:001	10.011	279.84
			_			- - 0	0	- -		E																																
		Afterbody		•	0:0050	0.048		0.1416	0.2256	0.2973																																
	180°		۲ ۲	384.14	419.13	501.71	\$45.76	571.08	596.41	609.07																																
	a = 180°	ody	CP 07357	0.5969	0.1287	0.8802	0.7987	0.0284	-0.5228	-0.5015	-0.4359	-0.3674	0.3845	-0.3674	-0.3631	-0.3653	1160.0-	-0.4718	0.3857	-0.3841	-0.3354	-0.3203	-0.3276	-0.3150	-0.2878	-0.2684	-0.2041	-0.1580														
mfr = 0.75 and $\alpha = 0^{\circ}$		Forebody	XL 74	106.57	-25.67	-2.05	00.0	0.31				5.15 7 2					6. S				20.00					90.00	00.00	10.00														
0.75 an							=	•	9 7	3																	-															
mfr -		Afterbody	CP Doing		0.0079			0.1459																																		
	• = 0°		XI'N	384.14	419.13	507.77	545.76	S71.08	596.41	609.07																																
	÷	vdy	CP 07403	0.7417	0.7296	0.6002	0.5096	0.4040	0.0965	-0.0010	-0.1339	0110	0.0854	0.4784	0.6669	0.8564	700011	01130	0.0063	-0.3675	-0.4043	-0.3936	-0.3948	-0.3596	-0.3187	-0.4080	-0.3420	-0.3415	-0.3880	-0.3838	-0.4169	-0.3754	10000	0.3334	-0.3280	-0.3197	-0.3119	-0.2961	-0.2634	5002.0-	-0.1569	-0.0263
		Forebody	XIL TATU	171.29	-155.11	-106.57	-90.39	-74.21	41.85	-33.76	-25.67	11.62-	-10.27	-5.13	-3.34	-2.05	2.0	1 8	0.31	0.63	1.25	1.88	22	3.75	4.37	<u>5</u> .00	6.25	05.1 27.8				17.50	0.07	00.04	50.00	60.00	70.00	80.00	00.06	00.001	10.00	279.84
			•	•	•																																					
		Afterbody	CP D0121	-0.0131	0.0045	0.0397	0.0744	0.1243	0.2090	0.2842																																
	°.	After	ž	384.14	419.13	11.105	545.76	571.08	596.41	609.07																																
	♦ = 180°	dy	CP 0 8013	0.6906	0.1727	0.9966	0.5695	-0.3735	-0.8643	-0.7978	0.7600	4070'D-	25	-0.4747	-0.5130	2036	0.0400	-0.4/03	-0.4905	-0.4585	-0.4349	3761	-0.3004 -0.3398	0.3273	-0.3084	-0.2733	-0.2124	-0.1610														
°0 =		Ę.	-								2.1	2 2	2	2	22	÷.,						Υ.	4 4	ŶŶ	Ŷ	Ŷ																
8		Forebody	52																					80																		
.68 and α		For	X1L	-106.57	-25.67	-2.05	0.00	0.31	1.25	1.88	2.50 -0.7							10.00					00.02	00.02	80.00		_	10.00 0														
mfr = 0.68 and $\alpha = 0^{\circ}$			CP X/L	-106.57		-2.05	0.00		1.25	1.88														00.07																		
mfr = 0.68 and α	0	Afterbody		-0.0126 -106.57	-25.67	0.0416 -2.05	0.0792 0.00	0.31	0.2118 1.25	0.2809 1.88														00.07																		
mfr = 0.68 and α	°0 = +	Afterbody	XIL CP	384.14 -0.0126 -106.57	419.13 -0.0036 -25.67	507.77 0.0416 -2.05	545.76 0.0792 0.00	571.08 0.1310 0.31 593 24 0.1575 0.53	596.41 0.2118 1.25	609.07 0.2809 1.88	2.50	61.6 27.6	4.37	5:00	6.25	7.50	6/38 00001	12 50	15:00	17.50	20:00	30.00	0000		80.00	00'06	100.001	241.85	8	0.5020	0.5097	0.4684	61 C4 ()	2005.0	0.3444	0.3688	0.3220	0.3324	0.2759	C047.0	0.1594	0.0676
mfr = 0.68 and α	♦ ≡ 0°	rebody Afterbody	XIL CP	0.8046 384.14 -0.0126 -106.57	-0.0036 -25.67	0.6922 507.77 0.0416 -2.05	0.6195 545.76 0.0792 0.00	0.1310 0.31	0.3090 596.41 0.2118 1.25	0.2504 609.07 0.2809 1.88	2.50	21:5 57 56 10 57 5 10 57 5 10 57 5 10 57 5 10 57 5 10 57 5 10 57 5 10 57 5 10 57 5 10 57 50 50 50 50 50 50 50 50 50 50 50 50 50	0.3690 4.37	0.6575 5.00	0.8276 6.25	0.9713 7.50	C1.9 1.0131 1.0201	12.50	-0.4558 15.00	-0.7969 17.50	-0.8714 20.00	-0.7482 30.00		-0.5542	80.00	-0.5719 90.00	-0.5225 100.00		-0.5188					2060 U- 0000				_			10.00 -0.1594	

Aftarbody X/L CP 343.16 0.0348 344.14 0.03048 384.14 0.03033 344.19.13 0.0333 34577 0.0344 36777 0.0344 345.76 0.0343 345.76 0.0344 345.76 0.0344 345.76 0.0343 345.76 0.0344 345.76 0.0344 345.76 0.0343 345.76 0.0344 345.76 0.0344 345.76 0.0344 345.76 0.0343 345.76 0.0344 345.76 0.0344 345.76 0.0344 345.76 0.0344 345.76 0.0343 345.76 0.0344 345.76 0.0343 345.76 0.0344 345.76 0.0343 345.76 0.0344 345.76 0.0343 345.76 0.0343 345.76 0.0343 345.76 0.0343 345.76 0.0343 345.76 0.0343 345.76 0.0343 345.76 0.0343 345.76 0.0343 345.76 0.0343 345.76 0.0343 345.76 0.0343 355.76 0.0 08 **ufr = 0.40 and** $\alpha = 0^{\circ}$ Afterbody XL CP 34.16 0.0468 384.16 0.0468 384.16 0.0468 384.16 0.0400 419.13 0.0400 457.77 0.0198 557.7 0.0198 557.7 0.0198 557.7 0.0198 557.7 0.0198 556.41 0.0761 609.07 0.1310 ۰ ۵ = ۵
 Forebody

 <t Afterbody X/L CP 343.16 0.0486 344.14 0.05466 384.14 0.05466 419.13 0.0486 419.13 0.0482 597.7 0.0482 545.76 0.0482 545.76 0.00482 556.41 0.0023 586.77 0.0023 586.77 0.00 **180°** → 10
 → 11
 → 04
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 03
 → 04
 → 04
 → 04
 → 04
 <l and $\alpha = 0^{\circ}$ mfr = 0.30Afterbody X/L CP X/L CP 34,14 0.0552 34,14 0.0552 34,12 0.0515 5677 0.0405 5677 0.0405 5677 0.0405 5677 0.0405 5677 0.0045 5676 0.0045 5676 0.0027 5641 0.0003 566 **0** = **0** body CP CP 10727 10727 10727 10727 10728 10720 10728 1 Afterbody X/L CP 343.16 0.00514 343.16 0.00514 343.19.13 0.00508 19.13 0.00508 19.13 0.00508 17.12 0.00508 5.76 0.0097 1.08 0.00415 1.74 0.00313 174 0.00313 07 0.0128 343.16 384.14 419.13 457.12 507.77 545.75 571.08 571.08 571.08 583.74 609.07 180° ♦ = 18 Protebody XCL CP 187.47 106.57 106.57 105.567 105.667 105.667 105.9740 0.00 0.00 0.00 0.01 0.01 1.25 1.0056 0.01 **mfr = 0.28 and** $\alpha = 0^{\circ}$ Anerbody XL. CP 34.16 00544 384.19 00553 384.19 00553 384.12 00557 56777 00514 545.76 009415 545.76 00940 556.37 00050 566.00 • = 0 = **•**
 Forebody

 Rerebody

 R.G.
 CP

 R.M.
 CP

 175.11
 1.076

 175.11
 1.076

 175.11
 1.077

 155.11
 1.077

 1605.7
 1.074

 1605.7
 1.064

 -333.76
 1.064

 -333.76
 1.062

 -333.76
 1.062

 -333.76
 1.062

 -1.1737
 1.063

 -1.133
 1.0263

 -1.133
 1.0263

 -1.133
 1.0263

 -1.133
 1.0263

 -1.107
 1.0763

 -1.133
 1.0723

 -1.133
 1.0723

 -1.133
 1.0724

 -1.133
 1.0734

 -1.133
 1.0734

 -1.133
 1.0734

 -1.133
 1.0734

 -1.133
 1.0734

 -1.133
 1.0734

 -1.133
 1.0734

 -1.133
 1.0334

 -1.133</

TABLE VI. Continued

(c) M = 0.69

(c) Continued

			,	2 2	Ξ	15	4	20	ສ	5	9	2																																					
		Afterbody		6610'0-																																													
		Ÿ;	N.F.	384.14	419.13	457.12	507.77	545.76	\$71.08	583.74	596.41	609.07																																					
•	\$ = 180°	body	2.5	0.8781	0.6188	0.7947	1.1220	0.2127	-0.9275	-1.5228	-1.8104	-1.7676	-1.6723	-1.6215	-1.6590	-1.6230	-1.4745	-0.7247	-0.6776	-0.6758	-0.6833	-0.7135	-0.6885	-0.6322	-0.5835	-0.4836	-0.4198	-0.4001	-0.3831	-0.3529	-0.3138	-0.2464	0.1799	-0.0467															
nd α = 0		Forebody	XL	-10.57	-25.67	-10.27	-2.05	0.0	0.31	0.63	1.25	1.88	2.50	3.13	3.75	4.37	5.00	6.25	7.50	8.75	10.00	12.50	15.00	17.50	20.00	30.00	50.00	60.00	70.00	80.00	90:00	100.00	110.00	241.85															
mfr = 0.55 and α = 0°		28		1610.0-		-0.0007	0.0279	0.0617	0.1104	0.1458	0.1911	0.2629																																					
т		ferb		384.14 -0.								0.00.01																																					
	• = 0	;										-	5	141	0.6419	833	873	1.0813	273	897	0.9794	0.1716	854	284	345	831	-1.6358	240	017	055	-1.0942	870	60	24	-0.7004	-0./00	0.6133	-0.5549	104	-0.4369	193	-0.3894	-0.3868	-0.3439	-0.3108	381	0.1952	501	383
		Į.		4/ U.9453 29 0.9453														-3.34 1.0			-0.44 0.9				1.25 -1.8345										10.00				30.00 -0.4764				70.00 -0.3		_		÷	÷	.84 -0.0383
		-;		-171.29	-155.11	-130.84	-106.57	-90.39	-74.21	-58.03	-41.85	Ę	-25.67	- 5 3	17.97	-10.27	Ś	ċ	ņ	9	9	0	0	0	-	-	7	•	m	4	'n	Ŷ	-	••	2 9	3 X	1	50	æ	4	8	3	2	8	8	8	91	241	279.84
		ody 3	de la	-0.0314	0.0191	-0.0165	0.0078	0.0308	0.0717	0.1126	0.1629	0.2405																																					
		Afterbody		384.14	419.13	457.12	507.77	545.76	571.08	583.74	596.41	10.009																																					
	4 = 180°	ð.	-1 j	0.9202	0.6903	0.8224	1.1235	0.2190	-0.8885	-1.4754	-1.7532	-1.6029	-1.5776	-1.5389	-1.5073	-1.0806	-0.8470	-0.6169	-0.6445	0.6626	0.6431	0.6629	0.6082	-0.5789	-0.5124	-0.4426	-0.4012	0.3871	-0.3617	-0.3433	-0.3081	-0.2422	-0.1844	-0.0543															
α = 2.0°		Forebody		-106.57		-													7.50														_	241.85															
mfr = 0.49 and $\alpha = 2.0^{\circ}$							29	F2	20	147	148	242																																					
nfr -		Afterbody		14 -0.0267							41 0.1548																																						
	• 0°	< 1	~ `	384.14			-				3 596.41		•	5		•	~	\$	2	-		-	•	2	0	•	2	9	*	7	-		4			.		. 4	6	0	6		-	ŝ	*	-	_	5	•
		Forebody	10	0.9809	0.9788	0.9596	0.9358	0.8982	0.8656	0.8226	0.7883	0.776	0.7674	0.774	0.8045	0.935	1.077	1.1206	1.113		0.805	-0.190										1.8890			1421-1-1					-0.4859			-0.4101			Ċ			-0.0479
		٩. ۲	TX I	-151.4/	-155.11	-130.84	-106.57	60.06-	-74.21	-58.03	-41.85	-33.76	-25.67	-23.11	-17.97	-10.27	-5.13	-3.34	-2.05	0.0	-0.44	00:0	0.31	0.63	1.25	1.88	2.50	3.13	3.75	4.37	5.00	6.25	7.50	8.75	10.00	00.21	95.21	20.00	30.00	40.00	50.00	60.09	70.00	80.00	90.06	100.00	110.00	241.85	279.84
		ð.	CP CP	-0.0282	-0.0222	-0.0154	0:0069	0326	0.0720	01110	0.1539	12242																																					
		Afterbody		384.14 -0							596.41 0																																						
	4 = 180°			0.9281									-1.9525	-1.8500	-1.8443	-1.8053	-1.7755	-1.6691	-1.3753	6018	-0.6811	-0.6503	-0.6332	5166	-0.5862	-0.5017	-0.4273	-0.4117	906	-0.3578	-0.3143	-0.2500	-0.1904	-0.0550															
α = 0°		Ę.																	7.50 -1.						20.00 -0.							00:00		241.85 -0.															
mfr = 0.49 and $\alpha = 0^{\circ}$		1		19/18/1-										•••	•••	•	•,	•	•	-	=	-	2	-	2	Ē	ν.	æ	F	æ	æ	ē	Ē	24															
mfr = (Afterbody		-0.0334								0.2268																																					
	°0 =	Ŷ	X	343.10	419.13	457.12	\$07.77	545.76	571.08	583.74	596.41	609.07																																					
	٠	Forebody	e j	067.4.0 0.9769.0	0.9760	0.9555	0.9261	0.8937	0.8572	0.8122	0.7621	0.7539	0.7289	0.7336	0.7643	0.8996	1.0436	1.1081	1.1270	1.0476	0.8928	-0.0394	-1.2915	-1.7452	-1.9783	-1.9593	-1.8385	-1.8064	-1.7929	-1.7342	-1.6932	-1.6058	-1.2248	-0.7720	-0.8244	90000	10 6260	-0.5826	-0.4929	-0.4529	-0.4212	-0.4062	-0.3847	-0.3616	-0.3141	-0.2465	-0.1969	-0.0580	-0.0460
		Fore	TX.	18/.4/	-155.11	-130.84	-106.57	-90.39	-74.21	-58.03	41.85	-33.76	-25.67	-23.11	-17.97	-10.27	-5.13	-3.34	-2.05	06.0-	-0.44	0.0	0.31	0.63	1.25	1.88	2.50	3.13	3.75	4.37	5.00	6.25	7.50	8.75	10.00	06.21	8 5	20.00	00.04	40.00	50.00	60.00	70.00	80.00	90:06	100.00	110.00	241.85	279.84

(c) Continued

		vþ	5	-0.0076	0.0029		92301	01040	1621	0.2092	0.2592	0.3296																																			
	ఒ	Afterbody			384.14 -0																																										
	d = 180°	ody - vboo	С	0.7631	0.6246	201.0	1000	0.8272	0.0465	-0.3411	-0.4603	-0.4304	-0.4927	-0.3588	-0.3802	-0.3573	1106.0-		10110-	1906.0	-0.4280	0.4317	-0.4018	0.3456	0.3283	0.3381	-0.3311	-0.3180	-0.3026	-0.2712	0.2048	-0.1500	0.0297														
nd α=0°		Foret	XIL CP	-187.47					0.31			1.88	2.50																			_	241.85														
mfr = 0.74 and $\alpha = 0^{\circ}$		ody	G	0.0077	0.0149	107070	01/00	0.1087	0.1549	0.1948	0.2456	0.3126																																			
I	۶	Afterb		343.16						-																																					
	0 * \$	ody	G	0.7670	0.7566	0 7117	0.6281	0.5350	0.4389	0.2868	0.1193	0.0179	-0.0780	-0.1346	-0.1079	0.1213	90700	0.0221.0	1.0865	1.1253	0.8469	-0.0682	0.3596	-0.5026	0.4174	-0.3779	-0.3817	-0.4016	-0.4016	0.4116	0.3784	0.3605	0.4374	-0.4262	-0.4064	-0.3842	0.3769	-0.3622	-0.3440	0.3285	-0.5308	2000 0	UC2C 0		-0.1618	0.0390	0.0263
		Forebody	XI	-187.47	-155.11	130.84	-106.57	-90.39	-74.21	-58.03	-41.85					12:01-									88:1		3.13					_									00.00				_		_
		×	e ,	0.0059	0.0082	0.0177	0.0536	0.0964	0.1542	0.1936	0.2484	203																																			
		Afterbody		943.16 -0.0059 264.14 -0.0056	•							609.07 0.3203																																			
	♦ = 180°			0.7216 36.					-0.2880 57				-0.6576	-0.6352	-0.5709	4//C/D-		848	-0.5437	683	-0.5348	-0.5092	-0.4865	861	-0.3914	-0.3593	-0.3579	-0.3371	0.3187	0.2790	-0.2166	-0.1604	(10)														
α= 0°		ę.		-18/.47 0.2				0.00 0.6	0.31 -0.2				_		5.0- C1.5								17.50 -0.4			50.00 -0.3		Ċ	·			10.00 -0.1															
$\mathbf{mfr} = 0.68 \text{ and } \alpha = 0^\circ$											81									-	-	1	-	Ň	λ.	ν.	ð	~	æ	5	2	Ξ 3	ţ														
nfr -		erb.		14 -0.0076						-		0.3068																																			
	م = () ال	×		1 184 14	_							0.609 0	~							-	•	•	~		~	~	 .			_					_										_		
		Ę.		0.8313										0.1735								-0.4119							-0.5648				-0.5120				-0.4478		0.3794	2000.0-	0.3376	-0.3363	-0.2801	-0.2332	-0.1630	-0.0652	-0.0513
		.	۲X	-171.29	-155.11	-130.84	-106.57	ec.0e-	-74.21	-58.03	-41.85	-33.76	10.62-	11.62-	16.11-	51.2	-3.3M	-2.05	06:0-	4.0	0:00	0.31	0.63	1.25	88.	2.50	EF : 6	3.75	4F.		99 F		00.01	12.50	15.00	17.50	20:00	90.00 20.00	40.05	8.00	00.02	80.00	90:06	100.001	110.00	241.85	279.84
		Afterbody	d de	-0.0061	0.0041	0.0135	0.0447	0.0794	0.1290	0.1743	0.2239	0.2953																																			
	°0	After	XI							583.74	596.41	6(19.07																																			
	4 = 180°	ody 2	CP 0.0010	0.8061	0.4357	0.6442	1.0907	0.4402	-0.6087	-1.2474	-1.4831	-1.4529	0024-1-	0.0407	1007.0	-0.7011	-0.6229	-0.6589	0.6595	-0.6433	-0.6466	-0.6215	0.5495	-0.5202	-0.4295	-0.3839	-0.3631	-0.3042	-0.5397	2000-0-	79710	0.0446															
mfr = 0.81 and $\alpha = 0^{\circ}$	1	Forebody	X/I	-106.57	-25.67	-10.27	-2.05	_				88.1		2 X			6.25							0.02 20.02								241.85															
r = 0.61 s		Å(-0.0083	1100.0	0.0152	0.0482	0.0845	0.1384	(1743	0.2222	8262.0																																			
ų		Ť	ML NL									0 /0.609																																			
	•0 = ¢		1000		-							0.4329 0	0 4 4 4 6	0.4706	0.6391	0.8641	0.9973	1.0919	1.1171	1.0508	0.3708	-0.7201	-1.3247	-1.2635		1001.1-	0.010	1419.0-	1407.0-	000//0-	-0.6125	0.6759	-0.6599	-0.6333	-0.6130	-0.5503	-0.5221	-0.4179	0 1050	0.3708	-0.3529	-0.3381	-0.3029	-0.2287	-0.1683	-0.0525	-0.0416
		ê	JUL 11/X									-33./0					-3.34 0.				_																20-00-02 20-00-02			0000					_		279.84 -0.0
			7	7	7	7	Ŧ		•	•	•	•	•	• •	•																			,		• •		. 4	•			-	~	ž	= :	ñ	Ň

(c) Concluded

mfr = 0.81 and $\alpha = 0^{\circ}$

	•			8			
Korel	Forebody	After	Afterbody	FOR	Forebody	Aller	Afterbody
-187.47	0.6797	343.16	-0.0017	-187.47	0.6772	343.16	0.0064
-171.29	0.6830	384.14	0.0073	-106.57	0.4996	384.14	0.0081
-155.11	0.6709	419.13	0.0188	-25.67	-0.5596	419.13	0.0222
-130.84	0.6083	457.12	0.0376	-10.27	-0.1951	457.12	0.0338
01.001-	1000000	942.545	0.1104	607-	0.0743	11.100	0.1155
-74.21	0.2564	571.08	0.1716	0.31	0.3423	571.08	0.1712
-58.03	0.0617	583.74	0.2054	0.63	0.0673	583.74	0.2114
41.85	-0.1947	596.41	0.2533	1.25	-0.1328	596.41	0.2623
-33.76	-0.3326	609.07	0.3188	1.88	-0.1517	609.07	0.3295
-25.67	-0.5620			2.50	-0.1635		
-23.11	-0.6336			3.13	-0.1433		
-17.97	-0.5264			3.75	16/110		
-10.27	-0.1932			4.37	-0.1878		
-5.13	0.2284			<u>د</u>	-0.1819		
-J.34	0.5123			6.25	0.1631		
503	0.7399			7.50	-0.2438		
6 .0	1.0030			8.75	0.2602		
40	1.1100			10.00	-0.2882		
0.0	0.9651			12.50	-0.3392		
0.31	0.2475			15.00	-0.3236		
0.63	-0.0839			17.50	-0.3321		
1.25	-0.1959			20.00	-0.3023		
1.88	-0.1296			30.00	-0.3014		
2.50	-0.1921			20.00	0010-0-		
3.13	-0.1846			90.09 90.00	-0.3127		
2.2	-0.1055			00:07	1867'0-		
4.37	-0.1842			80.08	6767.0-		
2.00	-0.2173			D0.06	0.2.0-		
6.25	-0.2375			100.00	-0.1947		
7.50	-0.2031			110:00	-0.1460		
8.75	-0.2660			241.85	-0.0342		
8.0	-0.2840						
12.50	-0.3029						
12:00	0.3415						
17.50	0.3008						
80.02	4167.0-						
8.8	CCUC-0-						
	1710-0-						
70.00	0.3042	,					
80.00	-0.2884						
90.00	-0.2593						
100.00	-0.1968						
10.00	-0.1439						
241.85	-0.0342						

(d) **M** = 0.72

				31	2	.	93	8 5	3 2	35	2 2	8 g																																					
		Afterbody					C71010- 7				01736																																						
	♦ = 180°		ž	343.16	384.14	419.13	11.109			PU.110	19 905	609.009																																					
5	н Ф	Forebody	C	0.9862	0.9352	1651.0		71011	3961	1 6001	11811	1.8397	-1.8543	-1.8119	-1.7585	-1.7388	-1.7002	-1.6180	-1.4633	-1.4450	-1.4010	-1.0171	-0.5611	-0.5259	-0.5412	-0.4974	-0.4477	-0.4269	-0.4043	-0.3749	-0.3326	-0.2573	-0.1988	-0.0597															
and α = (Fore	ž	-187.47	-106.57	10.02-	17:01-	007		190	125	88	2.50	3.13	3.75	4.37	5.00	6.25	7.50	8.75	10:00	12.50	15.00	17.50	20:00	30.00	50.00	60.00	70.00	80.00	00:00	00.00	110.00	241.85															
mfr = 0.49 and $\alpha = 0^{\circ}$		ody	5	-0.0309	-0.0240	4/ IO:0-		0.0544	1001	0.1128	0.1756	0.2462																																					
ā	•	Afterbody			584.14																																												
	ა •	dy			5 99960 7 19900							_	_	0.7438	0.7821	0.9095	1.0622	1.1161	1.1312	1.0495	0.8940	-0.0007	-1.1716	-1.6403	8378	-1.8241	-1.7895	-1.7847	-1.7179	-1.7127	6572	-1.5920	-1.5110	2/001-	010011-	0.6695	103	0 2210	0.4946	-0.4719	-0.4476	-0.4163	-0.4052	-0.3715	-0.3267	-0.2567	0.2031	0.0001	5
		đ.			-1/172											-10.27 0.	-5.13 1.					0.00				1.88 -1.		3.13 -1.						1 000		2002		20.00									<u>.</u>	10- C01142	
				¥ :		2 2			7		· 7		Ģ	<i>.</i> ,	-	-																		-		. –	. –			. 4	, w	Ŷ		e¢.	o	≘:	= ;	4	;
		Afterbody	6	-0.0366	C460.0-	74CO-0-	10.0175	0.000	0.0297	0.0586	0.0953	0.1555																																					
		Afte	ž	343.16	41.90	CI 724	11.105	\$45.76	571.08	583.74	596.41	609.07																																					
۶	a = 180°	Forebody	5	1.0436	1.0106	10115	1,001	-0.1767	-1.4358	-1.8707	-2.0022	-2.0277	-2.0522	-2.0112	-1.9450	-1.9243	1:9031	-1.8594	-1.8233	-1.7786	-1.7305	-1.5975	-1.5908	-1.1374	0.8544	-0.4101	-0.4375	-0.4281	0.4051	-0.3776	-0.3363	-0.2058	2612.0-	NHON '0-															
and α = (Fore	Хľ	187 47	10.001-	10.22	2.05	0.00	0.31	0.63	1.25	1.88	2.50	3.13	3.75	4.37	5.00	6.25	7.50	8.75	10.00	12.50	15.00	17.50	20.00	30.00	20:00	00.09 10	00.07	80.00	00:06	00.001	00.011	C0.147															
mfr = 0.40 and $\alpha = 0^{\circ}$		ody	a i	-0.0436	14000	15000	0.0106	0.0122	0.0435	0.0638	0.1018	0.1571																																					
Ĩ		Afterbody		943.16																																													
	•0 = •			0448								-	0.9035	0.9075	0.9417	1.0306	1.1234	1.1361	1.1069	9504	0.7436	-0.2456	5143	8472	-2.0233	7950	-2.025		07/6/1-	-1.8974	0406.1-	-1.8033	1.767.1-	6611 I-	-1.5806	-1.5675	-1.3198	-0.6865	-0.4066	-0.4440	-0.4435	-0.4323	-0.4105	-0.3782	-0.3377	6607-0-	212	-0.0602	
		Ę.		-13/.4/		_		-90.39 0.												_		_					2 2 2			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1								20.00 -0.		40.00 -0.4					_		_		
				<u> </u>		1 5	01-	-ŗ	Ŀ	۰	4	ċ	ç	ċ	-	-	•	•		•	•															-	-	~	~	₹	æ	30	~	66 2	5.2	2 3		1.2	
		Afterbody	a 3	0.0409	-0.0467	-0.0496	-0.0459	-0.0422	-0.0239	-0:0080	0.0127	0.0501																																					
	= 180°	Afte	XL XL	384.10	41913	457.12	507.77	545.76	571.08	583.74	596.41	609.07																																					
•		Forebody	CP CP	1.0640	1 0204	1.1062	1.0258	-0.4333	-1.4822	-1.5726	-1.4178	-1.4325	-1.4881	-1.4621	-1.6070	-1.4189	-1.3953	-1.4532	1005.1-	-1.3700	-1.4020	-1.3016	-1.3034	-1.2860	+IC7-I-	-1.1008	0.680.0	10900	0/16-0-	101010	0170-0	0/07/0-	0.0408																
mfr = 0.30 and $\alpha = 0^{\circ}$	1	Fore		10/ 57	-25.67	-10.27	-2.05	0.00	0.31	0.63														0671				00.00 00.00	3.8	00.00 00.00	0.00	00.001	241.85																
= 0.30 E		2	CP .	-0.0528	-0.0524	0.0491	-0.0422	-0.0410	0300	-0.0223	-0:0060	0.0282																																					
5		te p					507.77 -0.					609.07 0.																																					
	• = 0°		ç				1.0634 50						1.0182	1.0236	1.0469	1.1002	6611	1.1075	1.0275	0.8013	638	Ş ;	Į.	10		104	8	710	140	269	004	080	194 194	8	100	531	785	478	567	<u>0</u> 6	581	498	172		797	3	Ē	88	
	•	Teb				_																			1.00 1 1.00 1					4.3/ -1.4389 5.00 -1.3069						15.00 -1.3531		00 -1.2478						2/46.0- 00				_	
	•			12.101-	-155.11	-130.84	-106.57	-90.39	-74.21	-58.03	41.85	-33.76	-25.67	-23.11	-17.97	17:01-	ý	ŗ,	Ċ,	Ý	φ'	5	5	5.		- r			ń.,	* •	ń	ŏ ~	. oc	0	12	15.	17.	20.00	30.00	40	50.00	60.00	70.00	80.08			241.85	279.84	

(d) Concluded

mfr = 0.54 and $\alpha = 0^{\circ}$

0.000 3.11 0.0001 3.11 0.0001 3.11 0.0001 3.11 0.0001 3.11 0.0001 3.11 0.0001 3.11 0.0001 3.11 0.0001 3.11 0.0001 3.11 0.0001 3.01 1.0001 1.0011	Pore	٠	- م م	Afterbody	For	u	180° After	Afterbody
0.960 34,11 00021 136,71 0.9595 34,11 0.9516 419,11 00101 -25,67 0.8472 419,11 0.9511 547,12 00303 0.1127 01395 47712 0.8571 545,76 00101 -25,67 0.8472 419,11 0.8511 547,16 00103 0.2303 545,76 0703 545,76 0.8511 547,16 00179 0.017 0.2567 0.8517 3557 1058 547,16 0.8511 541,4 0.1173 0.117 0.018 1.1234 545,76 0.0710 545,76 0.0710 545,76 0.0710 545,76 0.0710 545,76 0.0710 545,76 0.0710 545,76 0.0710 545,76 0.0710 545,76 0.0710 545,76 0.0710 545,76 0.0710 545,76 0.0710 545,76 1.045,76 1.045,76 1.045,76 1.045,76 1.045,76 1.045,76 1.045,76 1.045,76 1.045,76	z z	CP C	х,	d C	хr	CP CP	ТХ Х	CP CP
0.990 394.14 -0100 -0200 394.14 0.991 457.12 00006 -10.27 0.8195 477.12 0.934 457.12 00006 -10.27 0.8195 477.12 0.8140 57.10 00101 -23.67 0.1130 577.12 0.8140 57.11 0.0006 -10.27 0.8195 477.12 0.7354 58.17 0.1139 0.31 -2.561 -14653 587.14 0.7354 58.11 0.127 0.189 0.31 -14653 587.14 0.7400 57.01 1.231 1.6325 0.697 584.1 -14653 587.4 0.6901 0.2146 1.18 0.1189 0.31 -15287 586.41 -15287 0.6903 0.7146 1.18 -1.2591 690.01 -1.2591 690.01 0.6904 0.771 1.256 -1.6875 1.6673 1.14673 0.6904 1.11005 1.180 1.1250 -1.2591	18/.4/	079670	343.16	1620.0-	-187.47	0.9365	943.10	0610.0-
0.394 477.12 0.0004 -0.237 0.0994 477.12 0.8974 577.17 0.0034 -0.237 0.0995 477.12 0.8974 577.17 0.0034 -0.205 0.4675 587.74 0.8974 577.18 0.0134 -0.205 0.4675 587.74 0.7594 587.74 0.1135 0.61 -0.205 547.15 0.7594 587.74 0.1135 0.61 -0.205 547.15 0.7000 596.41 0.1135 0.1236 587.74 569.71 0.6342 580.71 0.2063 1.1236 587.74 690.07 0.641 0.205 5.25 1.16325 256 1.16325 0.6342 5007 0.2746 1.18 -1.5240 60007 0.6342 1.1305 1.1236 7.50 1.15287 6007 0.1975 1.1305 1.1305 1.1230 6777 -1.2307 0.1995 0.1110005 1.1305 0.2395 <td>67.1/1-</td> <td>0.9900</td> <td>384.14</td> <td>061010</td> <td>10:001-</td> <td>0.8905</td> <td>384.14</td> <td>0610.0-</td>	67.1/1-	0.9900	384.14	061010	10:001-	0.8905	384.14	0610.0-
0.934 377.17 0.000 0.2203 357.7 0.8571 545.76 0.0700 0.203 557.6 0.8571 545.76 0.0700 0.203 557.76 0.7100 534.1 0.1189 0.011 0.203 557.71 0.7000 596.41 0.203 545.76 0.7108 517.108 517.108 0.7100 596.41 0.2042 1.25 -1.683 596.41 0.203 0.7100 596.41 0.2042 1.25 -1.683 596.41 0.204 0.7100 596.41 0.2042 1.25 -1.683 596.41 0.6660 71.06 0.201 0.2766 71.08 500 0.6100 0.2746 1.28 -1.724 600 07 501 -1.685 0.8160 1.1005 2.756 1.2675 -1.867 500 7 -1.867 0.91006 1.1005 2.751 1.2007 -1.867 501 -1.867 0.1995 1.1	11.001	0906.0	419.13	1010.0-	10.62-	7/40.0	41.214	0.000
0.8571 545.76 0.0700 0.850 517.08 0.7800 571.08 0.118 0.157 545.76 0.7814 571.08 0.118 0.1172 0.856 517.108 0.7800 596.41 0.2012 1.483 1.7714 609.07 0.6674 695.07 0.2746 1.483 1.7714 609.07 0.6671 0.2746 1.281 1.4633 566.41 0.66710 0.000 0.2746 1.483 1.7214 609.07 0.6671 0.2746 1.281 1.4634 609.07 1.4634 609.07 0.6671 0.9756 5.00 1.2607 0.789 5.00 1.4634 609.07 0.6671 0.2746 1.2807 1.2807 0.789 6.23 1.4634 609.07 0.9993 1.1003 1.2500 0.6151 1.1507 0.789 1.1305 1.1306 6.23 1.4634 1.1507 0.6691 1.1207 1.1209	106.57	0.8974	201.102	0.0334	-2.05	0.619.0	11.105	0.0253
0.8140 571.08 0.1189 0.31 0.856 571.08 0.7594 583.74 0.0175 0.63 583.74 699.01 0.556 571.08 571.04 0.7504 589.74 0.0175 0.63 583.74 699.01 0.2746 1.683 585.74 0.6674 669.07 0.2746 1.88 -1.7214 699.01 0.6671 669.07 0.2746 1.88 -1.7263 586.11 0.6671 669.07 0.2746 1.88 -1.7264 699.07 0.6671 0.6771 1.250 0.691 2.50 -1.567 596.11 0.6703 81.74 670.0 2.50 -1.567 500 -1.669.1 0.11905 8.25 1.13.05 1.13.05 1.13.05 1.13.05 1.13.05 1.14.67 69.017 0.11905 1.1320 0.1899 0.0069 0.1399 1.13.05 1.14.51 69.016 1.17270 0.12994 1.12.50 0.6691	-90.39	0.8571	545.76	0.0700	0.00	0.2203	545.76	0.0615
0.7364 581.74 01575 981.74 981.74 0.7000 596.41 0.1575 0.65 1.4655 585.74 0.6542 695.07 0.2746 1.88 1.7514 695.07 0.6542 695.07 0.2746 1.88 1.6755 596.41 0.6542 695.07 0.2746 1.88 1.7514 695.07 0.6542 695.07 0.2746 1.88 1.7514 695.07 0.8106 6.37 1.5767 3.73 1.5287 695.01 0.9958 1.1305 7.50 1.2890 0.6691 1.2890 0.1897 1.1305 1.2500 0.651 1.2500 0.651 1.7270 1.7202 20.00 0.4365 0.6011 1.750 1.7270 1.7502 20.00 0.4365 0.6011 1.750 1.7270 1.7502 20.00 0.4185 0.6011 1.750 0.6181 1.14771 1.5003 0.6181 60.00	-74.21	0.8140	\$71.08	0.1189	0.31	-0.8566	\$71.08	0.1152
0.7000 5%41 0.2042 1.25 -1.683 5%641 0.6610 0.2614 609.07 0.2746 1.88 -1.7214 669.07 0.6610 0.2146 1.88 -1.7240 509.01 3.13 -1.6257 0.6405 5.00 1.4634 2.90 -1.6257 2.50 -1.6257 0.9518 6.9071 0.716 1.88 -1.7267 -1.6057 2.90 0.9958 1.10005 7.50 -1.2657 2.50 -1.4654 69.077 0.99594 1.1305 8.75 -0.7859 0.7609 -1.4654 0.99594 1.1305 7.50 -1.2677 0.7607 -1.2677 0.99594 1.1307 1.2500 -0.6151 1.2500 -0.6151 -1.4507 1.500 0.7466 1.1270 0.0009 -0.4968 -1.2508 1.1270 10.00 0.4968 7.000 -0.4968 -1.2508 1.1271 10.00 0.4968 7.000 -	-58.03	0.7594	583.74	0.1575	0.63	-1.4653	583.74	0.1575
066/4 695.07 0.2746 LB 1.7214 609.07 0.6403 0.6110 3.75 1.5867 609.07 0.6403 0.6110 3.75 1.5867 609.07 0.6110 0.813 1.5367 1.5367 609.07 0.6110 1.1305 1.4537 1.4537 1.4537 0.9005 0.1887 0.750 1.4537 0.7897 1.4537 0.1887 0.1887 0.750 1.4634 1.750 0.6691 0.1887 0.1897 1.750 0.6691 1.750 0.6691 1.1305 1.1305 8.75 0.7897 1.750 0.6691 1.1750 0.6907 0.6151 1.750 0.6691 0.6691 1.1750 0.0691 17.50 0.6691 1.6373 0.6691 1.1750 0.0691 17.50 0.6691 0.6691 0.7571 1.1750 0.0691 17.50 0.6691 0.691 0.7571 1.17720 <t< td=""><td>41.85</td><td>0.7000</td><td>596.41</td><td>0.2042</td><td>1.25</td><td>-1.6983</td><td>596.41</td><td>0.2083</td></t<>	41.85	0.7000	596.41	0.2042	1.25	-1.6983	596.41	0.2083
0.6445 0.6442 2.13 0.64465 0.6416 0.8110 0.8106 0.8710 0.8710 0.8710 0.8710 0.8710 0.8710 0.8710 0.8700 0.1897 0.09894 0.09894 0.09894 0.09894 0.09894 0.11300 0.113720 0.09894 0.12500 0.113720 0.09894 0.12500 0.113720 0.0000 0.1.3772 0.0000 0.1.3772 0.0000 0.1.3772 0.0000 0.1.3772 0.0000 0.1.3772 0.0000 0.1.3772 0.0000 0.1.3772 0.0000 0.1.3772 0.0000 0.1.3772 0.0000 0.1.3772 0.0000 0.1.3772 0.0000 0.1.3772 0.0000 0.1.3772 0.0000 0.1.3772 0.0000 0.1.3773 0.0000 0.1.3772 0.0000 0.1.3772 0.0000 0.1.3772 0.0000 0.1.3772 0.0000 0.1.3772 0.0000 0.1.3772 0.0000 0.1.3772 0.0000 0.1.3772 0.0000 0.1.3772 0.0000 0.1.3772 0.0000 0.1.3772 0.0000 0.1.3773 0.0000 0.1.3773 0.0000 0.1.3773 0.0000 0.1.3773 0.0000 0.1.3773 0.0000 0.1.3773 0.0000 0.1.3773 0.0000 0.1.3773 0.0000 0.1.3773 0.0000 0.1.3773 0.0000 0.0000 0.1.3773 0.0000 0.0000 0.1.3773 0.0000 0.1.3773 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000	-33.76	0.6674	609.07	0.2746	1.88	-1.7214	10.609	0.2831
0.6465 3.13 0.8710 3.75 0.8710 3.75 0.8710 3.75 0.8710 3.75 0.8710 3.75 0.8710 5.25 1.19055 5.25 1.19055 5.25 1.19055 5.25 1.14377 10.00 1.14377 11.00 1.12394 0.00 1.12934 90.00 1.12934 70.00 1.12720 20.00 1.12720 20.00 1.12720 20.00 1.12720 20.00 1.12720 20.00 1.12720 20.00 1.12720 20.00 1.12720 20.00 1.12721 20.00 1.12722 20.00 1.12722 20.00 1.12722 20.00 1.12722 20.00 1.12732 20.00 1.12733 20.00 1.12744 20.00<	-25.67	0.6342			2.50	-1.5867		
0.8100 0.958 0.958 0.958 0.9958 0.9894 0.1897 0.0895 0.1897 0.0895 0.1897 0.1807 0.1897 0.1807 0.1807 0.1807 0.1807 0.1807 0.1807 0.1807 0.1807 0.1807 0.1808 0.000 0.1807 0.1808 0.000 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.000 0.1800 0.000 0.1800 0.000 0.1800 0.000 0.1800 0.000 0.1800 0.000 0.1800 0.000 0.1800 0.000 0.1800 0.000 0.1800 0.000 0.1800 0.000 0.1800 0.000 0.1800 0.000 0.1800 0.000 0.1800 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000	-23.11	0.6405				-1.6325		
0.0993 1.1905 1.1905 1.1905 0.9993 0.1897 0.1897 0.1897 0.1897 0.1897 0.1897 0.1897 1.1905 0.1994 0.0898 1.1572 1.1578 0.000 0.000 1.1578 0.000 0.000 1.1578 0.0000 0.0000	10.27	0.8106			0.5 12.4	10401-		
1,0905 6.25 1,1305 1,1305 1,1305 8.75 0,1887 0,1887 0,1887 0,1887 0,1887 0,1887 0,1887 0,1887 0,1887 0,1897 0,1887 0,1897 0,1887 0,1897 0,1457 1,1500 1,5008 9000 -1,5038 9000 -1,5038 7000 -1,5038 7000 -1,5038 7000 -1,5038 7000 -1,5038 7000 -1,5038 7000 -1,5038 7000 -1,5038 7000 -1,5038 7000 -1,5038 7000 -1,4632 8000 -1,5038 7000 -1,4632 8000 -1,5038 7000 -1,4632 9000 -1,5038 7000 -1,5038 7000 -1,5348 7000	-5.13	0.9958			5 0 S	-1.4826		
1.1.305 7.30 1.1.305 7.30 0.9859 0.1897 0.1897 0.1897 0.1897 1.1.305 0.1897 1.1.305 0.1897 1.1.305 0.1897 1.1.300 1.1.7202 1.1.720 1.1.7202 1.1.720 1.1.7202 1.1.720 1.1.7202 30.00 1.1.7202 30.00 1.1.7202 30.00 1.1.7202 30.00 1.1.7202 30.00 1.1.7202 30.00 1.1.5738 70.00 1.1.5738 70.00 1.1.4671 10.00 1.1.3722 90.00 1.1.4672 90.00 0.66490 0.1000 0.64811 0.000 0.64811 0.4445 0.3154 0.3544 0.3154 0.3544 0.3154 0.3544 0.3544 0.3544 0.3154 0.3544	-3.34	1.0905			6.25	-1.4634		
0.10975 8.5 0.1897 0.1897 12.50 0.1897 12.50 1.12594 2000 12.50 1.7270 2000 12.50 1.7262 2000 2000 1.5778 7000 2000 2000 12.50 1.4672 2000 2000 2000 1.4671 10000 2000 2000 2000 2000 2000 2000 2	-2.05	1.1305			7.50	-1.2997		
0.9669 0.9669 0.09699 0.09699 0.09699 0.09899 1.15200 0.29894 1.15200 0.15250 0.20200 0.1.7252 0.2020 0.1.15722 0.2020 0.1.15722 0.2020 0.1.15722 0.2020 0.1.15722 0.2020 0.1.15722 0.2020 0.1.15722 0.2020 0.1.15269 0.000 0.1.14271 0.112896 0.000 0.1.14271 0.112896 0.000 0.1.14271 0.000 0.1.14271 0.000 0.000 0.1.14271 0.000 0.000 0.1.14271 0.000 0.	06:0-	1.0975			8.75	-0.7859		
0.1897 0.1897 12.00 0.1897 1.1.500 1.1.7262 0.000 1.1.7262 0.000 1.1.5974 0.000 1.5974 0.000 1.5738 0.000 1.4652 0.000 1.4652 0.000 1.4652 0.000 1.4652 0.000 0.6648 0.000 0.6848 0.000 0.6948 0.0000 0.6948 0.00000 0.6948 0.00000 0.6948 0.00000 0.6948 0.00	4	0.9699			10.00	-0.8859		
-1.4507 -1.4507 -1.7202 -1.7202 -1.7202 -1.7202 -1.5738 -1.5738 -1.5718 -1.4652 -1.4652 -1.4652 -1.4652 -1.4652 -1.4652 -1.4652 -1.4652 -1.4652 -1.4652 -1.4652 -1.4652 -1.4652 -1.4652 -1.4652 -1.4652 -1.2896 -1.4652 -1.2896 -1.2892 -1.2896 -1.2866 -1.2896 -1.2996 -1.296	0.0	0.1897			12.50	-0.6691		
-1.7270 17.20 -1.7282 2000 17.20 -1.5778 7000 2000 15.2778 6000 11.5778 6000 11.5778 6000 11.4627 10000 11.4627 10000 11.4627 10000 11.4627 10000 11.4627 10000 11.2896 10.06990 11.4627 10000 11.2896 10.06990 11.2896 10.09999 10.0999 10.09999 10.0999 10.0999 10.0999 10.0999	0.31	-0.9894			15.00	-0.6151		
-1.720 2000 -1.722 2000 -1.573 5000 -1.5008 7000 -1.5008 7000 -1.4652 8000 -1.4652 8000 -1.2896 110000 -1.2896 11000 -0.6848 9000 -0.6848 9000 -0.6848 9000 -0.6848 9000 -0.6848 9000 -0.6848 9000 -0.4811 1000 -0.4811 0.6603 -0.4811 0.6603 -0.556 0.1938 241,85 -0.3954 90.900 -0.3954 90.900 -0.39555 -0.0000 -0.3000 -0.00000 -0.0000 -0.0000 -0.00000 -0.	0.63	-1.4507			17.50	-0.6079		
-1.5924 5000 -1.5924 5000 -1.5924 5000 -1.5928 7000 -1.4652 2000 -1.4652 2000 -1.4652 2000 -1.4652 2000 -1.4652 2000 -1.4652 2000 -1.4652 2000 -0.6668 0.0688 0.06848 -0.6684	2	0/2/1-			20.02	11/0-0-		
-1.578 60.00 -1.508 70.00 -1.508 70.00 -1.372 80.00 -1.372 80.00 -1.427 1100 -0.6848 90.00 -0.6848 90.00 -0.6848 90.00 -0.6848 90.00 -0.6848 90.00 -0.6848 90.00 -0.6848 90.00 -0.4472 90.4416 -0.4416 90.4416 -0.3441 90.4416 -0.3441 90.4416 -0.3443 90.1938 90.1938	2 50	1.924			0005	0.4368		
-1,508 70.00 -1,572 90.00 -1,372 90.00 -1,472 10.00 -1,472 10.00 -1,485 0.0690 241.85 -0.6848 -0.6648 -0.0648 -0.6848 -0.6648 -0.00 -0.4811 -0.4811 -0.4811 -0.4811 -0.4811 -0.4811 -0.4811 -0.4811 -0.4811 -0.4811 -0.4812 -0.01954 -0.00000 -0.0000 -0.00000 -0.00000 -0.0000 -0.0000 -0.000	3.13	-1.5778			60.00	-0.4071		
-1.46.2 80.00 -1.46.2 80.00 -1.42.1 10.00 -1.42.1 10.00 -0.6690 241.8 -0.6648 0.5548 0.6548 -0.6648 0.6548 0.6548 -0.6648 0.6548 0.6648 -0.6647 0.4472 0.4168 -0.4472 0.4166 -0.4472 0.4166 -0.4472 0.4166 -0.3641 0.3541 -0.3543 0.1938	3.75	-1.5008			70.00	-0.3904		
-1.3722 9000 -1.2896 10000 -1.2896 11000 -0.6690 0.6698 -0.6181 -0.6548 -0.6181 -0.6548 -0.6053 -0.6053 -0.6053 -0.4416 -0.4411 -0.4415 -0.3954 -0.5955 -0.4955 -0.59555 -0.59555 -0.59555 -0.59555 -0.59555 -0.59555 -0.59555 -0.595555 -0.59555 -0.59555 -0.595555555 -0.595	4.37	-1.4632			80.00	-0.3593		
-1.4271 1000 -1.4271 1000 -0.6690 0.6848 -0.6848 -0.6848 -0.6848 -0.6848 -0.6848 -0.6848 -0.6848 -0.4811 -0.4472 -0.4166 -0.4166 -0.4166 -0.3954 -0.3955 -0.3954 -0.39555 -0.39555 -0.39555 -0.39555 -0.39555 -0.39555 -0.39555 -0.39555 -0.395555 -0.395555 -0.395555 -0.39555555555555555555555555555555555555	<u>5</u> 8	-1.3722			90:06	-0.3176		
-1.28% 1.28% 1.000 -0.6%90 2.41.85 -0.6%48 0.6548 0.6548 0.6548 0.6548 0.6548 0.6548 0.6548 0.6548 0.6548 0.6548 0.6548 0.6548 0.6548 0.04816 0.4811 0.4412 0.4412 0.4412 0.4412 0.4415 0.4412 0.4412 0.4415	6.25	-1.4271			100.00	-0.2436		
0.0690 241,85 -0.0648 -0.0181 -0.0538 -0.6536 -0.6548 -0.6536 -0.4099 -0.3954 -0.3954 -0.3954 -0.3954 -0.3954 -0.3954 -0.1938	7.50	-1.2896			110.00	-0.1893		
	8.75	-0.6690			241.85	0.0444		
	10.00	0.6848						
		-0.6148						
	17.50	-0.6053						
	20.00	-0.5576						
	30.00	-0.4811						
	40.00	-0.4472						
	50.00	-0.4166						
	60.00	-0.4049						
	70.00	-0.3954						
	80.00	-0.3641						
	90:06	-0.3134						
	100.00	-0.2455						
	110.00	-0.1938						
	241.85	-0.0548						

(e) M = 0.74

			28 28	-0.0310	-0.0360	5/2010-	10000-	0.0135	0.0466	0.0747	0.1125	0.1742																																		
		Atterhodu	TX			419.15 461.15						0 20.009																																		
		de = 18∪ ⁷			1.0213 3							_	-1.9196 1 8044	1.0724	1.7960	-1.797.1-	-1.7456	-1.7179	-1.6510	-1.6424	-1.5520	-1.5223	-1.4959	-1.4502	1795/1-	0.4100	0014-0-	1321.0-	1940	0.2634	-0.2010	0.0628														
α = 0°		Porehody	XL		-106.57 1.			-					2.50									15.00 -1.									-	11.85 -0.1														
mfr = 0.40 and $\alpha = 0^{\circ}$			_						1	8	76	7								-	-	-	-						, ,	Ξ	=	24														
nfr -		Afterbodv	5		14 -0.0384						11 0.1176																																			
	ور ۲		×		2 384.14 2 410.13							10.000 1	व			3	•	3	0	4	*	0				- e-		. 6				~		-	• •					~	-	_	_	~ .	~ .	
		Forebody	5		79GN-1 6				-				1 0.9771					5 1.1135	_			1.4169		5 -1.8768			1 8507				_				1.440						_	_	_		9907-0-	• •
		64	XL	-187.47	11 331-	130.84	-106.57	66.06-	-74.21	-58.03	-41.85	- 33.76	10.02-	12.51-	-10.27	-5.13	-3.34	-2.05	-0 -0	-0.44	000	0.31	0.63	1.25	9. C		17	4.37	5.00	6.25	7.50	8.75	00.01	06.21	0971	20.02	30.00	40.00	50.00	60.09	70.00	80.00	00.06	100.00	10.011	279.84
		body	6	-0.0397	0.0470	-0.0521	0.0404	-0.0366	-0.0226	-0.0003	0.0179	0.00.0																																		
	.0	Afterbody	XI	343.16	419.13	457.12		\$45.76		583.74	596.41	10.600																																		
	a = 180°	vboc	CP CP	1.0913	1.0253	1.1157	1.0378	-0.3529	-1.5416	-1.8846	-2.0272	C1/072-	-2.0210	10861	-1.9775	-1.9666	-1.9331	-1.9090	-1.8389	-1.8243	-1.7136	-1.7132	6060.1-	11011/	0.3446	-0.3472	-0.3554	-0.3597	-0.3235	-0.2643	-0.2103	-0.0757														
ud α = 0,		Forebody	ХI	-187.47	-25.67	-10.27		0.0			1.25											8 8		8.9					90:06	_		241.85														
mfr = 0.31 and α = 0°		2		0.0560		-0.0474	-0.0408	-0.0334	-0.0166	660	0.0121	0,000																																		
Ę		Afterbody		343.16 -0. 384.14 -0.1							596.41 0. 600.07 0.1																																			
	ۍ ا ا			1.0915 34							07 21201	-	2060.1	1.0558	1.1162	1.1412	1.1160	1.0414	0.8454	885	83	201		287	514	66	ž	125	594	68	8	218	3 2	20	151	87	33	52	67	26	<u>e</u> :	8	= :		: 8	
		Ą				_	-				41.85 1.0						-3.34 1.1				_	0.31 -1.0201			2.50 2.0514						7.50 -1.8829	3133.1- 0.6			17.50 -1.6651							_	11 22 11 22 11 20 20 20 20 20 20 20 20 20 20 20 20 20			
			×	-187.47	-155.11	-130,84	-106.57	8,	2	ŝ, :	₹ 7	3 7	1 7	-17	9	ر ن	•	Ċ.	φ,	Υ			- ·		2		e,	4	vi	vci		× ⊆	5 5	1	17.	20	Ŕ	40.00	50.00	60.09	ē s	80.08	B) (6)	10.001	241	279.84
		Afterbody	9	-0.0456	-0.0452	-0.0495	-0.0444	-0.0483	-0.0374	6120:0-	110.0-																																			
	80°	After	X	384,14 384,14	419.13	457.12	507.77	545.76	571.08	4/ 19 C	10.040																																			
٤	a = 180°	Forebody	C C	1.0894	1.0576	1.1284	1.0113	-0.4600	-1.5095	0126.1-	14471	-1.4037	-1.3973	-1.4192	-1.3344	-1.4566	-1.4206	-1.3714	-1.5252	C2CC-1-		-1.3146	1.2492	-1.1195	-0.7981	-0.6543	-0.5631	-0.4719	-0.3918	-0.3243	10/7/0-	C09070-														
and α ≍ (Fore	XI.	-18/.4/	-25.67	-10.27	-2.05	0.00	0.31	6070 1	881	2.50	3.13	3.75	4.37	8	6.25	<u>S</u>		0.01	00.31	17.50	20.00			60:09	70.00	80.00	90.06	100.00	20100	C0.147														
mfr = 0.27 and α = 0°		dy.	CP 2000	1050.0-	-0.0499	-0.0429	-0.0444	-0.0518	-0.0464		0.0069																																			
8	•	Afterbody	XIT.						571.08																																					
	•0 = •		1						0600.1				1.0645	1.0842	1.1297	8071.1	0.000	0.7400	0.1007	2010-0	0456 1-	-1.3141	-1.4570	-1.4669	-1.5539	-1.5477	-1.4355	-1.4631	2037	-1.3949	10001	-1.3451	-1.2919	-1.2361	-1.1088	-1.1185	-1.0141	-0.9766	12980-	0.4012	C70010-	0.4718	1010	0.2731	-0.0829	-0.0802
		ě.	NL 187.1		-	-130.84			- 14.21																	3.13 -1.				1.025			12.50 -1.			20:00 -1,										279.84 -0.(
			÷	77	÷	7	÷.			6		1		•	•																	-	-	-	_	.4		4 1	-n 4	0 6	- 6	- 0	2	É	24	27

(c) Continued

		ody 20	-0.0028	0.0028	0.0082	0.0561	0.1001	0.1594	0.2043	0.2561	0.3290																																					
	ž	Afterbody	343.16	•	419.13	21.10					609.07																																					
	\$ = 180°	ody 20	0.9193		0.4771		0.5094	-0.5357	-1.0826	-1.3869	-1.4006	-1.2989	-1.2516	-1.1775	-1.1908	-0.8875	-0.5081	-0.5681	0.5995	0.6363	-0.6786	0.7006	-0.5785	0.5418	-0.4459	0.4096	-0.4023	0.5/4/	-0.3561	-0.3134	-0.2393	-0.1791	-0.0589															
id α = 0°		Forebody	X/L -187.47 (-25.67		-																17.50																									
mfr = 0.61 and $\alpha = 0^{\circ}$		<u>د</u>	-00103		0.0078	0.0588	0.1017	0.1583	0.2000	0.2506	0.3223																																					
ца Та		Afterb	X1L 00	•	419.13 0.0						0.0010																																					
	• = 0°	1	CP 0.9220 34		0.9182 41							0.4703	0.4655	0.5098	0.6609	0.9016	1.0225	1.1169	1.1399	1.0835	0.4462	-0.6065	-1.1479	99	-1.3334	-1.2500	-1.191	c/cl.1-	569	-0.9838	-0.6200	-0.5490	-0.7014	01:09:07	-0.622	-0.5896	-0.5329	-0.4637	-0.4316	-0.4075	-0.3983	-0.3807	-0.3537	-0.3069	-0.2384	-0.1750	-0.0447	0.0339
		Ър	X/L C -187.47 0.9			-106 57 0.8				41.85 0.5										-0.44 1.0	_												1.0- C1.8							50.00 -0.4			_	_	_			279.84 -0.0
		i	× 181-	-12	51-	ġ ġ	, P	rL-	ŝ	4	Ŗ	Ņ	7	÷	Ä	÷			7	Ŧ	-	•	•						•	•••	•		~ 2				· 74	T	4	۳î.	3	7	ã	æ	<u>s</u> .	Ξa	2	72
		Afterbody	-0007	-0.0146	-0.0017	59500	0.0789	0.1339	0.1744	0.2271	0.2999																																					
		After	X/L 343.16	384.14	419.13	21.105	545.76	\$71.08	583.74	596.41	609.07																																					
٩.	\ = 180°	Forebody	CP 0.9764	0.9135	0.6649	11437	0.2762	-0.8249	-1.3061	-1.5722	-1.5962	-1.6123	-1.5727	-1.5066	-1.4862	-1.4410	-1.3979	-1.3430	-1.2912	-1.2282	·1.0999	-0.6043	-0.5447	-0.5020	-0.4856	-0.4403	-0.4226	-0.5952	-0.3682	-0.3259	-0.2462	-0.1860	INCO:O-															
nd α = 0		Fore	X/L -187.47	-106.57	-25.67	17:01-	000	0.31	0.63	1.25	1.88	2.50	3.13	3.75	4.37	5.00	6.25	7.50	8.75	10.00	12.50	15.00	17.50	20.00	30.00	20:00 20:00	00:00	N:0/	80.00	00:06	100.00	110.00	241.85															
mfr = 0.54 and $\alpha = 0^\circ$		ody	CP -0.0224	-0.0138	-0.0045	0.0400	0.0786	0.1312	0.1729	0.2200	0.2941																																					
ā	•	Afterbody	X/L 343.16		419.13						609.07																																					
	•) = •	dy	CP 0.9756		0.9687							0.6675	0.6606	0.6993	0.8417	1.0245	0660'1	1.1464	1.1071	0.9776	0.2036	-0.9086	-1.3655	-1.6275	-1.6141	-1.5945	-1.5207	-1.4987	-1.4599	-1.4246	-1.3420	-1.3048	-1.29/9	11111	0.1410	0.5494	-0.5365	-0.4864	-0.4541	-0.4268	-0.4140	-0.3984	-0.3641	-0.3216	-0.2469	-0.1892	-0.0488	0.0416
		Ę.	X/L -187.47		-155.11 (1																5.9							50.00							Ċ	279.84
			_							-	~																																					
		Afterbody	-0.0150		0.0076			0.1082		0	0.2653																																					
	\ = 180°	Y.			419.13						10,000 1	_		~	~	~	~	_	-	-	~	~	_	_	~			_	<u>~</u>	~ .	-		_															
°.	•	Forebody	CP 0.9997			2/06/0	-										-1.5133													_	_	_	-0.06															
θ and α		Fo	XL -187.47	-106.57	-25.67	17'DJ-	000	0.31	0.63	1.25	1.88	2.50	3.13	3.75	4.37	5.00	6.25	7.50	8.75	10.00	12.50	15.00	17.50	20.00	30.00	50.00	60.00	10:02	80.00	8.0	00.00	110.00	241.83															
mfr = 0.49 and $\alpha = 0^{\circ}$		Afterbody	CP	-0.0182	960010-	0.0175	0.0664	0.1160	0.1518	0.1979	0.2653																																					
	* 0°		γI I M	384.14	419.13	401.124 401.12	545.76	571.08	583.74	596.41	609.07																																					
	•	-	CP 1014	1.0034	1.0026	0.9635	1616.0	0.8852	0.8421	0.7984	0.7788	0.7552	0.7659	0.7982	0.9243	1.0608	1.1249	1.1407	1.0608	0.9064	0.0569	-1.1253	-1.5230	-1.7101	-1.7048	-1.7052	-1.6852	-1.6417	-1.5845	-1.5899	-1.5165	-1.4673	-1.3885	8706.1-	1007 1-	11160	0.4994	-0.4681	-0.4665	-0.4500	-0.4368	-0.4087	-0.3886	-0.3374	-0.2642	-0.1961	-0.0620	-0.0521
		Fore	XIL -187.47	-171.29	-155.11	130.84	-90.39	-74.21	-58.03	-41.85	-33.76	-25.67	-23.11	-17.97	-10.27	-5.13	-3.34	-2.05	06.0-	44.0-	0.00	0.31	0.63	1.25	1 .88	2	3.13	3.75	4.37	5.00	6.25	7.50	8.75		0.71	3 5	20.00	10.00	40.00	50.00	8	70.00	80.00	90:06	00.00	00.01	241.85	79.84

			÷8	0.0075	0.0107	0.0286	0.0399	0.1310	0.1918	0.2362	0/ 87																															
			Afterbody	_			457.12 0				0 14:040																															
		\$ = 180°		~			-0.1027 45				-0.1850		-0.2112	-0.1870	-0.175	-0.1787	-0.2455	-0.2878	6/67/0	0.3652	-0.3605	-0.3290	-0.3173	0.00	0.3238	-0.2966	061	-0.1500	0.0258													
	ช = 0		Forebody			-25.67 -0.5	-			0.63 -0.0				3.75 -0.1									30.00					10.00														
	mfr = 0.80 and $\alpha = 0^{\circ}$		>														-		2 5		2	2	81	* *	28	80	85		241													
	mfr = (Afterbody	Ū			0.04442			0.2280																																
		8 #	¥ 5	343.16			21.164			583.74																																
		•	Forebody	Ŭ		1602.0	0.00.0	0.4403	0.3112	0.1240			-0.5822	-0.102	0.3391	0.5989	0.7799	1.0528	7961.1	1662.0	-0.0276	-0.1597	0.1570	101.00	-0.1937	-0.1700	0.2265	-0.2181	-0.3225	-0.2957	0.170	0.3606	-0.3468	-0.3233	-0.3374	-0.3333	-0.3247	-0.3072	-0.2773	-0.1482	-0.0303	-0.0213
			Foi	-187.47	-171.29	-155.11	100.57	66.06-	-74.21	-58.03	-33.76	-25.67	-23.11	16.11-	-5.13	-3.34	-2.05	06.Q	18	0.31	0.63	12	88.1 2 60	31	3.75	4.37	8.5	05.7	8.75	00.01	00'51	17.50	20.00	30.00	60.0 0	0.00	70.00	80.00	8.00	00.011	241.85	279.84
			Ą ĉ	0.0034	0,000.0	0.0214	0.0756	0.1270	0.1839	0.2311	0.3535																															
			Afterbody X/1. CP			419.13 0.0				583.74 0.7 506.41 0.7																																
-		q = 180°			•••	0.0453 41				-0.3431 58		-0.5201	-0.4029	5000 P	-0.3375	-0.3548	-0.3764	0.4178	1124-0-	0.4446	-0.4321	-0.4023	-0.3582 0.3676	-0.3613	0.3341	-0.3233	-0.2827	-0.1576	-0.0299													
ıcludeo	α= 0°		Forebody X/L CP			-25.67 -0.0				0.63 -0.3			3.13 -0.4					8.75 -0.4									90.00 100.00															
(e) Concluded	mfr = 0.74 and α						ŕ									-					-	~ ~	K 9	5.36	ř	æ (Ž	24													
U	mfr =		Afterbody A. CP			3 0.0183				4 0.2237																																
		•) = (N IX			9 419.13 1 457 17				3 583.74 4 506.41			_ •			0	~	~ ~			۲.	~ •			~	•			_					_			-		_			_
			Forebody A. CP			0.7919				1111 0 11111			-0.0741					1 1406				-0.4936				-0.3887				0.4114					10.3809			-0.3232			0.0376	697010-
			ST XI	-187.47	-171.29	-130.84	-106.57	-90.39	-74.21		-33.76	-25.67	-23.11	-10.27	-5.13	-3.34	-2.05		000	0.31	0.63	1.25	2.50	3.13	3.75	4.37	97.9 2.5	1.50	8.75	10.00	15.00	17.50	20.00	30.00		00.00	70.00	80.08	00.001	110.00	241.85	719.84
			ş D	0.0007	0.0027	06100	0.0696	0.1175	0.1782	0.2771	3476																															
			Afterbody XI, CP			419.13 0				596.41 C																																
		\$ = 180°	CP			0.2259 4				-0.8773 2 5773 2 5	-	-0.7553	-0.7213	-0.5666	-0.5357	-0.5050	-0.5396	67/50-	-0.5745	-0.5517	-0.4957	-0.4806 -0.4066	-0.3853	-0.3935	-0.3599	-0.3405	-0.2299	-0.1650	-0.0205													
	q α = 0°	1	X/L CP			-25.67 0		_		U-03 -0			0. 51.6 0. 57.6				2.5 2.5 2.5					20.00				00.08			41.85 -0													
	mfr = 0.68 and α = 0°								50	62 62	12													-	•		. =	-	ż													
	- Lin	•	Arrerbody L CP	•		12 0.0159			08 0.1720																																	
		• = 0°	×			171 457.12			668 571.08			9	8 2	68	25	0	5	87	75	36	2	58	32	8	4	ş 2	3 2	8	88	5	8	38	26	5 8	28	11	8	9/	33	26	5	2
		•	rorebody /L CP			11 0.8534 84 0.8171			21 0.6068				0.2000				05 1.0407					27.63.0- 22				37 -0.5640 10 -0.5763				30 -0.5617 50 -0.5026				0.4071				00.3476 00.301			55 -0.0493	
		1	NL S	-187,47	-171.29	11.661-	-106.57	60.39	-74.21	41.85	-33.76	-25.67	11.62-	-10.27	-5.13	¥.:-	-2.05	4 .0	0.00	0.31	0.63	67 I	: 2	3.13	3.75	4.37	6.25	1.50	8.75	10.00	15.00	17.50	20:00	00.00	50.00	60.00	70.00	00.08	00.001	110.00	241.85	

Continued	
TABLE VI.	

			λų A	-0.0323	-0.0334	-0.0249	-0.0021	0.0243	0.0606	6160.0	0.1933																																	
			Afterbody vn CP			419.13 -0				59641 0																																		
		\$ = 180°				0.9349 41			-1.2262 57			-1.7897	-1.7683	1.7128	-1.6997	-1.6310	1109'1-	569	5267	9//1	1000-1-	-1.3834	-1.2443	-0.3113	-0.3460	-0.3675	-0.3588	C/2C/0-	0.1975	-0.0615														
	α = 0°		Forebody vn CP			-25.67 0.9							3.13 -1.7							0621							80.08																	
	mfr = 0.40 and $\alpha = 0^{\circ}$															Ť		-	Ξ.			• •	ñ	ŝ	ð	~	60 C	° ⊆	2 =	24														
	- Ju		Afterbody			3 -0.0263				4 0.09/9																																		
		• = (),	JA 17			8 419.13 8 467.13				1 285./4 0 506.41		•			~	6	0	_		× <		. 4	2	-	4	0	<u> </u>	×		0		2 4			6	\$	、	•				1	.	4
			Forebody			1.0658		-		0.0480			0.9410				5 1.1220				010011- 1						7 -1.7129						0 14079					0.3000				_		4 -0.0524
			Fo V	-187.47	-171.29	-155.11	-106.57	-90.39	-74.21		-33.76	-25.67	-23.11	-10.27	-5.13	-3.34	-2.05	06.0	4 4 2	0.00	16.0	1.25	1.88	2.50	3.13	3.75	1.1	00:0 \$2.8	7.50	8.75	10.00	0221	05.61	20.00	30.00	40.00	50.00	00.00	00.0%	00'06	100.00	00.011	241.85	8.612
			vbo	-0.0457	-0.0502	0.0442	0.0408	-0.0352	0.0162	1000.0	0.0784																																	
			Afterbody vn rp			419.13				585.74																																		
2		\$ = 180°	λų α			1.0453				C/0/1-		-1.9670	-1.9274	-1.8424	-1.8483	-1.8153	-1.7912	-1.7557	-1.7279	-1.0324	1.6019	-1.5194	-1.3547	-0.5923	-0.3572	-0.2736	-0.2894	-0.2385	0.1931	-0.0697														
(f) M = 0.77	dα=0°		Forebody	-187.47	-106.57	-25.67	-2.05	000		1 25			3.13			6.25			00.01								00.08		00.011															
W (J)	mfr = 0.30 and α = 0 °		dy of			-0.0446	-0.0341	-0.0233	080	1010/0	0.0807																																	
	mfr		Afterbody			419.13 -0.0				585.74 U.L																																		
		°0 •	>	_	_	1.1041 415				1014 51001		1.0429	1.0466	1274	1.1531	1.1268	1.0515	0.8400	0.6241	-0.4042	000	-1.9096	-1.9339	261	232	-1.8852	-1.8664	070	-1.7574	-1.7405	-1.7147	-1.6485	1100.1-	-1.5236	-1.3623	-0.8325	-0.4554	0.3013	-0.2948	0.2927	-0.2401	-0.1986	-0.0788	0.0080
			Forebody							0.1 20.86-			-23.11 1.0								0555-1- 15-0 5775-1- 53-0							5.00 -1.8520 6.75 -1.8068					977- 00°CI					00.00 10.00 0.00 0.00						279.84 -0.0
			,	- 18 - 18	E.	-155.11	-106.57	8	r, i	ŝ 4	: Ę	-23	;; :	÷		Ÿ	Ģ	Ÿ	Υ.			,			•••					~	¥	23			Ŧ	¥	.	37	< 2	5 85	Ő	11	24	
			Afterbody	-0.0450	-0.0514	0.0458	-0.0439	-0.0432	-0.0290	0.0075	0.0507																																	
		180°	Afte	343.16	384.14	419.13	201.12	545.76	\$71.08	583.74	609.07																																	
	5	\$ = 180°	Forebody	1.1159	1.1031	1.0756	1.0312	-0.3327	-1.4830	5691.1-	6616.1-	-1.9672	-1.9222	00061-	-1.8988	-1.8512	-1.8497	-1.7677	-1.7491	-1.7004	1 6260	1,5102	-1.3721	-0.5392	-0.4196	-0.2827	-0.2600	10/7/0-	-0.1752	-0.0730														
	and α = 0°		For	-187.47	-106.57	-25.67	-2.05	0.00	0.31	0.03 1.75	1.88	2.50	3.13	5.5 11 4	5.00	6.25	7.50	8.75	10.00	12.50	09.61	20.02	30.00	50.00	60.09	70.00	80.00		110.00	241.85														
	mfr = 0.37 and α		v bod	-0.0566	-0.0540	-0.0525	-0.0432	-0.0417	-0.0320	-0.0216	0.0365																																	
	E	= 0°	Afterbody	343.16	384.14	419.13	10111	545.76	571.08	583.74 505.41	609.07																																	
		٠	yody Cu	1.1135	1.1135	1.1161	2017	1.0927	1.0814	1.0723	1.0748	1.0707	1.0859	1 1422	1.1544	1.1221	1.0358	0.7732	0.5903	-0.4629	+90CC-1-	11101-	-1.9549	-1.9656	-1.9817	-1.9421	-1.9072	00061-	1.7941	-1.7581	-1.7100	-1.6810	2550-1- ACEA 1-	-1.5388	-1.4365	-1.1390	-0.5162	0.4270	-0.2574	-0.2908	-0.2191	-0.2006	-0.0747	-0.0652
			Forebody	-187.47	-171.29	-155.11	100.57	90.39	-74.21	-58.03	-33.76	-25.67	-23.11	10.01-	-5.13	-3.34	-2.05	0 ;0	44	0.0	16.0	52.1	1.88	2.50	3.13	3.75	4.37	8.5	052	8.75	10.00	12.50	00.01	20.00	30.00	40.00	50.00	88	00.07	00.06	100.00	110.00	241.85	279.84

(f) Continued

•

			à c	-0.0075	0.0012	0.0123	107000	0.1098	0.1699	0.2169	2733	0.3450																																		
			XII.		•	419.13 0																																								
		• = 180°		٢		0.4940 4							-1.3487	-1.2207	-1.1445	C#70.1-	DCCD.1-	0.5650	2000	0.1430		0.010.0	10000	0.5581	-0.4742	-0.4329	-0.4254	-0.3952	-0.3692	-0.3233	-0.2448	0.1779														
α= 0°		•	X/L.			-25.67 0.			0.31 -0.														0.21							_		0.000														
mfr = 0.61 and α = 0°											2									-			•		. 71	÷.	35	7	ð	æ	ē:	Ē	ŗ													
шî.		Afterhodu		·		3 0.0142 7 0.01322						7 0.3349																																		
	٤		XI			419.13						609.07	_														_	_	_						_											
		Forehody	5			0/2/0								0.4899														-1.1217				2404.0	-0.6687	-0.6503	-0.7290	-0.6551	1000.0-	08/4/0-	-0.4310	-0.4194	-0.4023	-0.3655	-0.3217	0.2344		0.0352
		с <u>и</u>	X	187.47	-171.29	11.001-	-106.57	-90.39	-74.21	-58.03	41.85	-33.76	10.62-	11-62-1	1611-	11.5	11	20.0	060	27 C	000	0.31	0.63	1.25	1.88	2.50	3.13	3.75	4.37	8	(7-0 1	9C1	10.00	12.50	15.00	17.50	20.02	0.00	0005	60.09	70.00	80.00	90.00	100.00	241.00	279.84
		۸	15	-0.0083	0.0079	0.0119	0.0462	0.0860	0.1457	0.1885	0.2441	0.3175																																		
	9	Afterbody	ХL		384.14							609.07																																		
	d = 180°	dv - vb	C -	• •	0.9247 3	• •	•••						4/04-1-	8407F1-	01.36.10	-1.3168	-1.2972	-1.2074	-1.2029	-1.1137	-1.1364	-1.1001	+680'1-	-0.4974	-0.4148	-0.4478	-0.4462	-0.4177	-0.3818	-0.3570	COC7-0-	0.0486														
α = 0°		Forebody			-106.57 0		-2.05 1.					1.88									12.50 -1.								00.08 00.08 00.00																	
$\mathbf{mfr} = 0.64 \text{ and } \mathbf{\alpha} = 0^{\circ}$								28	87	8	ŧ.	*								-	-	-	-	7	Ē	ŝ	φ.		90 C	γč	2 =	54														
mfr =		Afterbody	9		1 0,000					4 0.1878		0.3104																																		
	°0 = 0		×		0 384.14 7 410.13							10.000			4	0	*			œ				-	•		.							~	_				_							
		Forebody			0.9890					9167.0 6		0.7071						1.1513											PC2C.1-							1210.1-			-0.4484	-0.4356	0.4132	-0.3843	1000 U-	0.1870	-0.0498	-0.0429
		P,	XL	-187.47	11 221-	-130.84	-106.57	90.06-	-74.21	-58.03		-35.70 -25.67	1116-	-17.97	-10.27	-5.13	-3.34	-2.05	0 6.0	40	0:0	0.31	0.63	1.25	1.88	2.50	3.13	C .	1.4	2.2	7.50	8.75	10.00	12.50	00.51		30.00	40.04	50.00	60:09	70.00	8.8	100.001	10.00	241.85	279.84
		Afterbody	сь	-0.0146	-0.0064	0.0007	0.0299	0.0693	0.1198	0.1640	0.12.0	0.2835																																		
	80°	After	ХI	343.16	419.13	457.12	507.77	545.76	2011.08	583.74 SOK A1		10.600																																		
	a = 180°	ody	C b	1.0140	0.7736	0.9326	1.1540	0.1868		CI/61-	1010	1.6113	-1.6085	-1.5333	-1.5311	-1.4802	-1.4160	1.3799	-1.3305	1.3004	-1.2523	1.2399	-1.2100	-1.1823	-0.3631	-0.4350	-0.4385	0014-0-	7876.0-	0.2545	0.1929	-0.0525														
$\mathbf{mfr} = 0.48 \text{ and } \alpha = 0^{\circ}$		Forebody	χ	-187.47	-25.67	-10.27	-2.05			60.0 1					4.37												00.00																			
= 0.48 a		ł,		0.0258		0.0060	0.0390	0.0760	6671.0	0.2127	1212.0	8//3																																		
т		Afterbody		343.16 -0. 364.14 -0.1				545.76 0.1																																						
	• 0 = •			1.0142 34									£6/	021	162	16/	367	532	782	365	265	568		ŝ		700	5	8	8	5	148	134	22	61/	2 2	24	36	75	5	2 2	2 2	2 2	4	18	2	16
		Ę,						.39 0.9338 71 0.0007																	88 -1.0084									50 -1.2719 00 1 2307		00 -1.1424					02314-77-01			_		14 -0.0416
		_	ž	187.47	-155.11	-130.84	9	56.06- 12.12	17.61	1818-	92.61.	-25.67	-23.11	19.11-	-10.27	-5.13	-3.34	-2.05	06.0-	4.0	0.0	0.31	0.63	1.25	1.88	DC-7	21.6 24.6	21 F	2	6.25	7.50	8.75	0.0	12.50	17.6	20.00	30.0	40:00	50.00	90.09 92	00.01	00.06	00:001	110.00	241.85	279.84

(f) Concluded

Afterbody XIL CP 343.16 00142 384.14 001042 384.14 001043 419.13 00335 457.12 00389 567.77 00389 567.77 00389 567.77 00389 567.70 01420 571.08 02044 596.41 0.3034 609.07 0.3034
 ↓
 0.381

 body
 N

 0.72
 N

 0.733
 0.5563

 0.733
 415

 0.7334
 433

 0.7335
 455

 0.7335
 455

 0.7335
 455

 0.7335
 455

 0.7335
 455

 0.7335
 455

 0.7335
 455

 0.7335
 455

 0.7335
 455

 0.7335
 455

 0.7335
 455

 0.7335
 455

 0.7335
 455

 0.7335
 455

 0.7335
 455

 0.7335
 455

 0.7337
 441

 0.7411
 100

 0.03374
 100

 0.03374
 100

 0.03373
 100

 0.000
 0.3377

 0.000
 0.3378

 0.000
 0.3378

 0.000
 0.3378

 0.000
 0.3378
 mfr = 0.80 and $\alpha = 0^{\circ}$ Fore 1027 - 2567 - 2567 - 2567 - 2567 - 2567 - 2567 - 25567 - 2006 - 57 - 1027 - 1027 - 1027 - 1026 - 2168 - 2168 - 2158 - 2158 - 2158 - 2158 - 2158 - 2158 - 2158 - 2158 - 2158 - 2158 - 2158 - 2158 - 2158 - 2158 - 2168 Afterbody X/L CP 343.16 0.0045 384.14 0.01045 384.14 0.01036 419.13 0.0265 419.13 0.0265 417 0.0315 547.08 0.14315 543.6 0.14315 566.41 0.2432 596.41 0.2994 • = 0,
 Forebody

 RAL
 CP

 RAL
 CP

 RAL
 CP

 RAL
 CP

 RAL
 CP

 Stritt
 0.7361

 155.11
 0.7361

 155.11
 0.7361

 155.11
 0.7361

 90.39
 0.6687

 90.39
 0.6687

 90.39
 0.6687

 90.39
 0.4552

 -1.105.7
 0.8563

 -1.11
 0.7056

 -1.137
 0.1212

 -1.137
 0.1212

 -1.1406
 0.1217

 -1.137
 0.10256

 -1.137
 0.10267

 -1.1406
 0.10874

 -1.1406
 0.10877

 -1.137
 0.10876

 -1.1406
 0.10877

 -1.23
 0.10876

 -1.23
 0.10876

 -2.24
 0.2540

 -2.313
 0.2540

 -2.31
 0.2540

 -2.31
 0.2540

 <th Afferbody VL CP 3.16 0.0075 13 0.0019 13 0.0049 13 0.0494 13 0.0494 13 0.0494 13 0.0494 13 0.0494 13 0.0495 0.0497 0.03930 0.2307 0.2307 X0L X419.15 384.14 419.13 457.12 567.77 583.74 583.74 596.41 609.07
 ♦
 180*

 Rorebody
 A

 X/L
 CP
 X/L

 187.10
 CB114
 X/I

 25.67
 0.8314
 419

 -106.27
 0.6776
 343

 -106.27
 0.6776
 343

 -25.67
 0.0534
 419

 -106.27
 0.0514
 419

 -102.17
 0.00
 0.8390
 541

 0.01
 0.8390
 541
 571

 0.01
 0.8396
 541
 571

 0.03
 0.04395
 541
 571

 0.12
 0.04395
 541
 571

 0.12
 0.04395
 541
 571

 0.12
 0.04395
 541
 571

 1.12
 0.04395
 511
 531

 3.13
 0.04395
 511
 531

 3.13
 0.04395
 511
 531

 3.13
 0.04395
 511
 531

 3.13
 0.04395
 531
 531

 mfr = 0.74 and $\alpha = 0^{\circ}$ Afterbody XL CP 143.16 00000 384.14 001000 384.14 001000 384.14 001001 4457.12 00041 4457.12 00041 54576 01359 5571.08 01355 586.41 01357 586.41 013576 586. •°0 = ♦
 Forebody

 XrL
 CP

 XrL
 CP

 XrL
 CP

 1:71.29
 0.8137

 1:55.11
 0.8071

 1:55.11
 0.8071

 1:55.11
 0.8073

 0:65.7
 0.8137

 -1:06.57
 0.8167

 -0:05.9
 0.5924

 -0:05.9
 0.5924

 -1:10.0
 0.8137

 -1:10.2
 0.2011

 -1:17.97
 0.0110

 -1:17.97
 0.0110

 -1:17.97
 0.0110

 -1:17.97
 0.0110

 -1:17.97
 0.0110

 -1:17.97
 0.0110

 -1:17.97
 0.0110

 -1:13.0
 0.0439

 -1:13
 0.4480

 0:13
 0.0439

 0:13
 0.4480

 0:13
 0.4480

 0:13
 0.4480

 0:13
 0.4480

 0:13
 0.4480

 0:13
 0.4480

 0:13
 0.4480

 Afterbody ML CP 3.16 0.0059 3.16 0.0059 13 0.0070 13 0.0070 13 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.2339 0.2339 0.2339 0.2339 0.2339 X/L 343.16 384.14 419.13 507.77 545.76 543.76 583.74 583.74 596.41 609.07 180° mfr = 0.68 and $\alpha = 0^{\circ}$ Fore 1023 - 25.67 - 106.57 - 25.67 - 106.57 - 2010 Afterbody XIL CP 343.16 0.0061 384.14 0.00137 419.13 0.0138 447.12 0.0138 567.77 0.0736 547.0236 543.76 0.1236 583.74 0.2236 583.74 0.2236 586.41 0.2301 609.07 0.3051 • = 0°
 Forebody

 Rorebody

 X1.
 CP

 183.11
 0.8755

 -187.12
 0.8725

 -187.11
 0.8525

 -155.11
 0.8530

 -165.67
 0.7530

 -165.67
 0.769

 -60.39
 0.0516

 -60.39
 0.0516

 -60.30
 0.6516

 -33.15
 0.3212

 -33.16
 0.2323

 -33.17
 0.6483

 -17.57
 0.2556

 -17.57
 0.2559

 -17.57
 0.2559

 -17.57
 0.2559

 -17.57
 0.2559

 -17.57
 0.2559

 -17.57
 0.2559

 -17.57
 0.2559

 -17.57
 0.2559

 -17.57
 0.2559

 -17.57
 0.2559

 -17.57
 0.2559

 -17.57
 0.2559

 -17.57
 0.2559

 -17.57
 0.2559

 -17.59
 0.2559

			dy	CP 0020	-0.0288	-0.0194	-0.0194	0.0043	1260.0	0.1089	0.1531	0.2166																																	
		•	Afterb	XIL XIL			,	507.77 0																																					
		4 = 180°		CP 10771				1.1312 5					-1.0889	70001-	6170	1305	-1.5452	-1.4871	-1.4788	-1.4342	-1.3836	-1.3769	-1.3574	1 1810	4674	-0.2822	-0.2978	-0.2978	-0.2834	0.2297	0.0600														
	α= 0°		reb	X/L -187.47			-	-2:05	•		1.25 -1.			1. 21.5									17.50							100:00															
	$\mathbf{mfr} = 0.40 \text{ and } \alpha = 0^\circ$								5 5	3 8	41	59											- (• •				~		¥ 1		•													
	-La		Ę	16 -0.0345			Ċ	77 0.0129				07 0.2159																																	
		• = 0		93 343.16			-	80 SOT.77				03 609.07	5	5	8	8	12	81	78	11	6	9 2	3 *		3	8	Ş	₹:	۹ :	e 8	. 8	\$	52	29 29	ç s	22	: =	76	5	0	X :	<u>^</u>	2 2	2	2
			тер	X/L CP 87.47 1.0793				37 I.0480 30 I M97		-		76 0.9503											1.25 -1.4984						26/C.1- UU.C	CEEC.1- C2.0					6476-1- 00							0.2819			
			-	X .181-	-171.29	-155.11	, si	12.001-	12 47-	-58.03	41.85	-33.76	10.02-	20 21"	-10.27		įų	-7.	Ģ	Ģ	ö	0	3-	: _	5	÷	÷	4	i i	0 -	940	10:00	12.50	15.00	00.11	30.00	40.00	50.00	60:09	70.00	80.08	00.06	00001	241.85	279.84
			Afterbody	-0.0374	-0.0425	-0.0389	3140.0-	-0.0213 71200-	0.0006	0.0254	0.0523	0.1057																																	
		= 180°	After	343.16 343.16	384.14	419.13	457.12	242.96	\$71.08	583.74	596.41	609.07																																	
62	۶.		Forebody	1.1155	1.0992	1.0588	1.1.588	-0.2627	-1.3194	-1.6544	-1.7800	-1.8319	19191	1211.	-1.7535	-1.7232	-1.7013	-1.6683	-1.6453	-1.6087	-1.5531	1626.1-	0/001-	-1.3024	-1.1092	-0.5869	-0.4276	-0.2659	0107.0-	-0.1459	-0.0677														
(g) M =0.79	and $\alpha = ($		Fore	-187.47	-106.57	-25.67	17.01-	60.7 7	16.0	0.63	1.25	1.88	31	375	4.37	5.00	6.25	7.50	8.75	0.0	12.50	00.01	20.02	30.00	S0.00	60.00	70.00	80.09			241.85														
(g)	mfr = 0.30 and $\alpha = 0^{\circ}$		Å č	-0.0489	-0.0453	0.0435	8/50/0	00130	0.0096	0.0264	0.0544	0.1072																																	
	e		Afterbody			419.13						609.07																																	
		• = 0.	φ δ	1.1163	0/11/1	1.1156	1 0001	1.0888	1.0800	1.0677	1.0551	1.0521	1 0612	1.0810	1.1388	1.1631	1.1390	1.0626	0.8656	0.6316	-0.3529	1 6467	10562.1-	-1.8013	-1.8035	-1.7992	-1.7798	07///1-	14041	-1.6552	-1.6410	-1.6113	-1.5222	-1.5164	1.4547	-1.2944	-1.1588	-1.0783	-0.5682	-0.3521	-0.2078	-0.1848	0.1576	-0.0714	0.0627
			Forebody	-187.47	-171.29	-155.11	10.001-	60.06-	-74.21	-58.03	41.85	-33.76	-23.11	-17.97	-10.27	-5.13		-2.05			8												12.50			30.00				00.02					279.84
			> 0	121	187	137	201	£ 19	265	67	87	32																																	
			Afterbody V/ CD			419.13 -0.0437					596.41 0.0																																		
		= 180		~		1.0828 419	-						120	-1.8116	-1.7976	838	615	278	<u>8</u> i	ę [152	787	i Ŧ	303	303	650	13	5 5	283	357	741														
	α= 0°		Forebody YA			-25.67 1.0						1.88 -1.8759 2 50 -1.8592			4.37 -1.7						12.50 -1.5857 15.00 -1.5665				50:00 -1.1303		70.00 -0.4413	10100 - 00.08 00.00 - 00.00			241.85 -0.074														
	mfr = 0.27 and $\alpha = 0^{\circ}$						•								•		-			= :				æ	¥.	3	* *	5 7		Ξ	241														
	나미		Afterbody 1. CP			3 -0.0483					0.0162																																		
		• = 0°	×				11.02 0				8 596.41		8		-	2	5	-	9 9	2 9				0	90	0			, e,	, m	6	~ 1		× •	. ~		s	. .	* 0	~ -			•		-
			Forebody M. CP		_	11 1.1257 24 1.1201						7 1.0848					1.1198				14711 - 14711							0 -1 7685					/04CT- 0						0 -0.7484				_		4 -0.0724
		I	Fo XЛ.	-187.47	-171.29	-130.84	10.61	-90.39	-74.21	-58.03	41.85	-35.70	-23.11	-17.97	-10.27	-5.13	-3.34	-2.05	060	4.0		0.63	1.25	1.88	2.5	3.1	57.E	75	6.25	7.50	8.75	00.01	06.71	12.51 17.51	20.00	30.00	40.00	50.0	00.00	0.07	0006	100.001	110.00	241.85	279.84

•

(g) Continued

Afterbody XIL CP 3.16 0.0048 3.16 0.0048 113 0.0084 12 0.00317 17 0.0693 1 0.1851 0.2310 0.2310 0.2318 0.2318 XL X133416 334.14 419.13 595.77 595.71 595.41 595.641 595.74 ♦ = 180°
 ▶ body
 ▶ body
 ▶ 180°
 > 0.9411
 > 0.9411
 > 0.8057
 > 384
 > 0.8057
 > 384
 > 0.5344
 > 90
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1092
 > 1.1014
 > 1.1014
 > 1.1014
 > 1.1014
 > **mfr = 0.61 and** $\alpha = 0^{\circ}$ Afterbody XL CP 343.16 0.0067 344.14 0.00131 344.14 0.00138 545.71 0.01326 545.76 0.12301 571.08 0.1263 556.41 0.2804 0.5805 0.5805 • = 0°
 Porebody

 XIL
 CP

 117.1.9
 0.901

 117.2.9
 0.901

 117.2.1
 0.9041

 1155.11
 0.9041

 119.0.4
 0.9156

 1155.11
 0.9041

 110.0.57
 0.8678

 -9.0.39
 0.8161

 -9.0.39
 0.8161

 -9.0.31
 0.6805

 -9.0.31
 0.6805

 -9.0.31
 0.6805

 -10.17
 0.6936

 -11797
 0.5918

 -11797
 0.5918

 -11797
 0.5918

 -11797
 0.5918

 -11797
 0.5918

 -11797
 0.5918

 -11797
 0.5918

 -11797
 0.5918

 -11127
 0.5918

 -11128
 -11179

 -11277
 0.5918

 -11277
 0.5918

 -11277
 0.5918

 -11277
 0.5918

 -11277
 0.5918

 0.1163
 0.5918< Afterbody XIL CP 43.16 00009 384.14 00009 457.12 00199 457.12 00199 457.70 00199 457.70 00518 457.70 00518 457.70 0.00518 365.70 0.00518 355.70 0.00518 365. 343.16 384.14 419.13 457.12 507.77 545.75 571.08 571.08 583.74 583.74 583.74 583.74 596.41
 ♦
 180°

 Forebody
 A

 X/L
 CP
 X/I

 187.1
 CP
 X/I

 187.1
 CP
 X/I

 187.1
 CP
 X/I

 187.1
 CP
 X/I

 197.2
 CP
 X/I

 106.57
 0.9357
 34.

 23.67
 0.6882
 419

 0.01
 0.3833
 547

 2.025
 1.1377
 34

 1.137
 1.1396
 57

 1.255
 1.3864
 59

 1.138
 1.1396
 59

 1.138
 1.1396
 59

 1.138
 1.1396
 59

 1.138
 1.1396
 50

 3.13
 1.1396
 50

 3.13
 1.1396
 50

 3.13
 1.1396
 50

 3.13
 1.1396
 50

 3.13
 1.1396
 50

 3.13
 1.1396
 50

 3.13
 1.1396< mfr = 0.54 and $\alpha = 0^{\circ}$ Afterbody XL CP 343.16 -0.0143 384.14 -0.0143 384.14 -0.0037 419.13 0.0037 419.13 0.0037 897.77 0.0372 545.76 0.1040 571.08 0.1060 572.08 0.1060 572.08 0.10 • ∎ 0°
 Forebody

 Rorebody

 XL
 CP

 1171.29
 0.9974

 1155.11
 0.9974

 1155.11
 0.9974

 1155.11
 0.9974

 1155.11
 0.9974

 1155.11
 0.9974

 106.57
 0.8976

 -105.51
 0.9974

 -105.51
 0.9974

 -33.76
 0.7231

 -33.76
 0.7231

 -33.76
 0.7231

 -33.76
 0.7231

 -33.76
 0.7231

 -33.76
 0.7231

 -33.76
 0.7231

 -33.76
 0.7231

 -33.76
 0.7231

 -33.76
 0.7231

 -33.76
 0.7231

 -33.4
 1.1101

 -1739
 0.6894

 -1139
 0.7885

 0.04
 1.0160

 0.04
 0.0160

 0.05
 0.7483

 1.11
 1.1101

 -2540
 1.1260

 0. Afterbody VL CP 3.16 - 00093 3.16 - 00104 1.13 - 00008 12 - 00008 13 - 00008 13 - 000807 13 - 0.1329 1 - 0.1329 0 - 1197 0 - 1304 0 - 1300 X/L 343.16 419.13 567.77 597.108 583.74 583.74 596.41 609.07 180° ♦ = 18
 Rorebody
 XCL.
 CP
 102.7
 102.7
 102.7
 102.7
 102.7
 102.7
 102.7
 102.7
 102.9362
 102.3
 102.9363
 102.1
 102.9363
 102.1
 102.1
 102.1
 102.1
 102.1
 102.1
 102.1
 102.1
 102.1
 102.1
 102.1
 102.1
 125.1
 125.0
 125.1
 140.1
 125.1
 140.1
 125.1
 140.1
 125.1
 140.1
 125.1
 140.1
 125.1
 140.1
 126.1
 121.3
 125.0
 121.3
 125.0
 121.3
 125.0
 121.3
 125.0
 121.3
 125.0
 121.3
 125.0
 121.3
 125.0
 121.4
 126.1
 121.4
 125.0
 121.4
 125.0
 121.4
 125.0
 121.4
 125.0
 125.0
 125.0
 125.0
 125.0
 121.4
 126.1
 127.4
 10.00
 127.4
 10.00
 0.3435
 00.00
 0.3435
 00.00
 0.3435
 00.00
 0.3435
 00.01
 0.3435
 00.02
 0.3435
 110.00
 0.3435
 110.00
 0.3435
 0005
 0.3435
 0007
 0.3435
 0007
 0.3435
 110.00
 0.3435
 110.00
 0.3435
 110.00
 137.4
 137.4
 mfr = 0.49 and $\alpha = 0^{\circ}$ **•** = 0°
 Forebody

 Torebody

 XIL
 CP

 113511
 10381

 113511
 10381

 113511
 10381

 113511
 10381

 113511
 10381

 113511
 10381

 113511
 10381

 113512
 03804

 -33.35
 03807

 -33.35
 03807

 -33.35
 03807

 -33.35
 03807

 -33.35
 03807

 -33.35
 03807

 -33.35
 03807

 -33.35
 03807

 -33.35
 03807

 -33.35
 03807

 -33.35
 03807

 -1137
 0377

 -11407
 -33.31

 -11407
 -33.31

 -11407
 -1349

 -11407
 -1349

 -11407
 -1349

 -11407
 -1349

 -11407
 -1349

 -11407
 -13418

 -11407

(g) Concluded

				172	66	8	2 3	Q 2	ž	20	1	2	5																																			
		Afterbodv	5					C701.0 7																																								
	A = 180°		X	343.16	384.14	61.913	21.104	11.10C	\$71.08	187 14	17 965	60009																																				
5	•	Forebody	5	0.7442	0.5804	-0.7652	0.0170	1.0272	0.1747	0.0637	0.1585	1001.0-	-0.2118	0.1400	-0.1482	-0.1359	-0.1788	-0.1413	-0.2268	-0.2685	-0.2868	-0.3610	-0.3789	-0.3551	5675 D-			0.946.0		201C 0-	-0.2145	0.1455	0.0214															
nd α= (Fore	ž	-187.47	-106.57	10.62-	17.01-	000	0.31	0.63	1.25	1.88	2.50	3.13	3.75	4.37	5.00	6.25	7.50	8.75	10.00	12.50	B) (1	0521	8.8			00.02		8.00		00011	241.85															
mfr = 0.80 and $\alpha = 0^{\circ}$		dy	CP.	0:0061	0.0186	0.0541		0.1527	0.2169	0.2581	0.3090	0.3754																																				
ця Ш		Afterbody			384.14					583.74 0.		0 20.609																																				
	0 • •				1. 1990 J					_	_		_	207	031	525	584	ğ	172	Į	ê i	10/10/	i E	5.6			5	14		ž	103	66	016	610	524	<u> </u>	2 5	7 19	5 2	¥	8	69	47	24	17	86	7	51
		Forebody									Ċ	-					13 0.3584							7160-00 0000		1010 05									50 -0.3524					0 -0.3546				_	_	_		4 -0.0151
		-	×	-187.47	67.171-		-106.57	-90.39	-74.21	-58.03	-41.85	-33.76	-25.67	-23.11	19.11-	-10.27	-5.13	-3.34	-2.05				56	3 -	: -	2 0	i ~~	، ،	11.4	200	v	7.50	8.75	10.00	12.50	00.51			0.04	50.00	60.09	70.00	80.00	90:0	100.00	110.00	241.85	279.84
		vboc	G	0.0132	00000	0.0488	0.0902	0.1477	0.2121	0.2613	0.3170	0.3868																																				
	å	Afterbody	ž	343.16	410.11	457.12	507.77	545.76	571.08	583.74	596.41	609.07																																				
	6 = 180°	ъdу	e j	0.8237	0.000	0.2691	0.9796	0.8631	0.1053	-0.3570	-0.4854	-0.4874	-0.4404	-0.4218	0.3942	-0.3503	-0.3651	1040	0.4540	7527	1005		4408	-0.4161	3667	3922	-0.3823	-0.3771	-0.3480	-0.3086	-0.2230	-0.1573	-0.0249															
d α = 0°		Ę.		-18/.4/				0.00		0.63 -0							83					89		20.00				70.00			_	_	241.85 -0															
mfr = 0.74 and $\alpha = 0^{\circ}$								41	8	12	48	27													•	•.	Ū	•-	~	Ŭ,	Ξ	=	24															
- Le		terbo		0.0020		-				4 0.2512		1 0.3727																																				
	• = 0°	2		384 14	419.13	457.12	507.77	545.76	571.08	583.74	596.41	609.07																																				
		Forebody	CP CP	0.8281	0.8190	0.7739	0.6964	0.6086	0.5113	0.3710	0.1969	0.0989	-0.0316	1900.0-	-0.0145	6107.0	010010	00000	11115	1.1644	0 8796	0.0912	-0.3428	-0.4478	-0.4233	-0.3460	-0.3715	-0.3595	-0.3297	-0.4240	-0.3850	-0.3382	-0.4698	-0.4087	-0.4806	04475	-0.4205	-0.3935	-0.3848	-0.3871	-0.3798	-0.3767	-0.3470	1/06/0-	C 17.17	6/51.0-	11000	
		For		021121-	-155.11	-130.84	-106.57	-90.39	-74.21	-58.03	41.85	-33.76	-25.67	11.62-	1611-	17.01-	- - -		80	40	000	0.31	0.63	1.25	1.88	2.50	3.13	3.75	4.37	5.00	6.25	7.50	8.75	00.01	82	17.50	20.00	30.00	40.00	50.00	60.00	8	80.00	00.06		241.85	10.142	
		~ (. 5	12	14	96	38	67	27 S	£	9	8																																				
	•	Afterbody				12 0.0396																																										
	= 180°	-	. 5									10.400 1		o -			• •				*	_	•	•			_	•	~	~	_	~ ·	-															
°0 =	•	Forebody		17771									046/.0-1				10,506											-0.4063				-0.1686	-0.0454															
mfr = 0.68 and α =	1		-18747	-106.57	-25.67	-10.27	-2.05	0.00	15.0	690	57 I	29. -	NC 7	21.0	11.4	5	2. y	1.50	8.75	10.00	12.50	15.00	17.50	20.00	30:00	S 0.00	80.09	70.00	80.00	90.06	00.00	10.00	241.85															
nfr = 0.6			-0.0025	0.0105	0.0216	0.0417	0.0824	0.1363	0.130	0.2434	1167.0	0.3082																																				
-	°.	Anerbody VA	343.16	384.14	419.13	457.12	501.77	545.76	201110	505.74	14.000	10.600																																				
	٠	à S	0.8852	0.8887	0.8788	0.8442	0.7797	0.7114	2400.0	007Cm	0.1406		16620	0.2611	0.4832	0.7630	0.9120	1.0389	1.1380	1.1280	0.6955	-0.1874	-0.6175	-0.8432	.8290	-0.5466	.6062	5728	-0.5399	-0.6019	-0.5399	0.4414	-0.6210	-0.5162	6665	-0.5824	-0.5103	-0.4198	-0.4551	-0.4170	-0.4269	1991	0.1195	0.2550	-0.1658	0.0604	0.0504	
	Dambada.	YA.				-130.84																				2.50										17.50 -0.											_	
			7	-	-		-	•	•	•			• •	'	•																				. –		C.	-1	4,			- 01	. 0	<u> </u>	=	24	27	

(h) M = 0.82

		Afterbody		5 -0.0195				6 0.0469		4 0.1278		7 0.2379																																			
	\$ = 180°	ΨV	XL	343.16	419.13	457.12	507.77	545.76	90'1/C	583.74		609.07																																			
~	•	Forebody	C.	1.0914	7796.0	1.0826	1.1501	0.0155	C760-1-	-1.4129	10701-	-1.5759	-1.5526	-1.5380	-1.5255	-1.4913	-1.4248	-1.4136	-1.3673	-1.3434	-1.3089	-1.2917	-1.2565	-1.2274	-1.1163	-1.86.0-	1966.0-	-0.4385	-0.273	0.2010	0/01/0	0150.0-															
and α = (Fore	XL	-187.47	-25.67	-10.27	-2.05	0.00		0.63		2.50	115	3.75	4.37	5.00	6.25	7.50	8.75	10.00	12.50	15.00	17.50	20.00	30.00	20:00	00.09 00.09	00.07	80.08	00.06	00.001	241.85															
mfr = 0.40 and $\alpha = 0^{\circ}$		body	C.	-0.0316	-0.0167	-0.0036	0.0224	0.0545	10.00	0.1299	11/170	0.2375																																			
A	ۍ ۲	Afterbody	XI.	343.16	419.13	457.12	507.77	545.76	2011.02	583.74	1.040	609.07																																			
	• = 0°	ody	G	1.0942	1.0932	1.0817	1.0644	1.0444	10701	1.0013	21.200	0.9715	0.9700	06660	1.0838	1.1630	1.1778	1.1458	1.0108	0.8347	-0.0438	1.0987	-1.3956	-1.5329	-1.5591	-1.5278	-1.5411	-1.5206	-1.5131	-1.4807	-1.4230	13751	-1.3489	1.3049	-1.2751	-1.2606	-1.2306	-1.1232	-1.0042	-0.9610	-0.9031	-0.4554	-0.2612	10170	1921.0	002300	0.0450
		Forebody	хr	-187.47	-125.11	-130.84	-106.57	-90.39	14.2	-58.03		-33.76				-5.13	-3.34	-2.05									3.13																8.8				
						167	225	583	6	118	53	325																																			
		Afterbody		16 -0.0332	•••			·		74 0.0418		07 0.1325																																			
	\$ = 180°		~	1 343.16						0 583.74		0 609.07	. 4		. 6	4	-	\$	\$	ç	9	_	-	80	5	5	<u>ی</u>	2	5			e v	2														
°0	•	Forebody			10721					-1.5450		1.7140								1.5150											090770-0	_															
- α pue (Po	ž	-187.47	70'90'-	-10.27	-2.05	0.0	0.31	0.63	1	1.88		3.75	4.37	5.00	6.25	7.50	8.75	10.00	12.50	15.00	17.50	20.00	30.00	50.00	60.09	00.07	80.00	80.06 20.00	00.001	741.85															
mfr = 0.30 and $\alpha = 0^{\circ}$		Afterbody	c	-0.0419	CUMO.0-	-0.0308	-0.0194	-0.0052	6720.0	0.0418	16/0:0	0,1276																																			
	°0°		XL	343.16	384.14 419.13	457.12	507.77	545.76	571.08	583.74	14.040	609.07																																			
	*	•	р <mark>в</mark>	1.1297	1.1311	1.1250	1.1141	1.1036	1.0928	1.0792	10/0/	1.0668	01.071	1.0965	1.1500	1.1785	1.1525	1.0916	0.8982	0.6810	-0.2816	-1.3119	-1.5472	-1.6676	-1.6952	-1.6980	-1.6785	-1.6768	-1.6530	-1.6362	-1.0005	0490 I-	-1.5042	-1.4729	-1.4439	-1.4006	-1.3648	-1.2332	-1.1185	-1.0583	-0.9867	-0.9277	-0.4284		0.1255	13500	10000
		Forebody	ž	-187.47	47.171-	-130.84	-106.57	90.39	-74.21	-58.03	6.14	-33.76	11 20	-17.97	-10.27	-5.13	-3.34	-2.05	06:0-	40												0C1	10.00	12.50	15.00	17.50	20.00	30.00	40.00	50.00	60.00	70.00	80.00 80.00	0.00		241.85	170.84
		N		-0.0383	-0.0428	094	-0.0365	-0.0306	6010	0.0127	1750	0.0840																																			
		Afterbod		343.16 -0.0								0.0010									Ì																										
	d = 180°	1										-	5 2	844	160	202	742	80	138	536	110	574	486	8	169	203	243	656	11	828	826	2800															
(= 0°		Forebody			57 1.1200		-					1.88 -1.7824									12.50 -1.5011			20.00 -1.3999		50.00 -1.0703				_		00 -0.1860	_														
27 and o			X	-187.47	-106.57	-10.27	-2.05	ö	Ö	o.			4 -	i r	5 - 4	vi	Ś	-	œ	01	12	5	17.	ลี	g	8	8	ę	8	8	100.001	00:011	Ę														
mfr = 0.27 and $\alpha = 0^{\circ}$		Afterhodv	5	-0.0462	-0.0445	0.0365	-0.0289	-0.0241	-0.0060	0.0106	0.0341	0.0823																																			
-	ۍ =		TX.	343.16	384.14	457.12	507.77	\$45.76	571.08	583.74	596.41	609.07																																			
	•	•	6	1.1372	1.1365	1.1314	1.1243	1.1141	1.1073	1960.1	9680.1	1.0903	1060.1		1.1618	1.1494	1.1133	1.0323	0.8077	0.5963	-0.3665	-1.3775	-1.5765	-1.7156	-1.7343	-1.7500	-1.7412	-1.7220	-1.6869	-1.6787	1.6441	-1.6052	600C.1-	22151-	1 5022	-1.4564	-1,4238	-1.2693	-1.1676	-1.0815	-1.0232	-0.9801	-0.5121	0.3720	0.1444		752010-
		Forehody	XL	-187.47	-171.29	-130.84	-106.57	66.06-	-74.21	-58.03	-41.85	-33.76	10.07-	11.62-	-10.27	-5.13	-3.34	-2.05	80	-0.44	0.00	0.31	0.63	1.25	1.88	2.50	3.13	3.75	4.37	5.00	6.25	7.50	C/ 20	12 50	15.00	17.50	20.00	30.00	40.00	50.00	60.00	70.00	80.00	0006	00:001	10.01	241.85

.

0.9 X.1 0.9 Y.1 0.9 Y.1 0.9 Y.1 0.9 Y.1 0.9 Y.1 0.9 <th></th> <th>XX 0.072 X,16 -0072 X,14 -0072 Y,12 0.019 Y,77 0.0490 X,71 0.0490 X,71 0.0490 X,71 0.0490 X,1 0.1970 X,1 0.1970 X,1</th> <th>9 8 4 4 8 9 9 9 8 8 8 2</th>		XX 0.072 X,16 -0072 X,14 -0072 Y,12 0.019 Y,77 0.0490 X,71 0.0490 X,71 0.0490 X,71 0.0490 X,1 0.1970 X,1	9 8 4 4 8 9 9 9 8 8 8 2
Nill Nill <th< th=""><th></th><th></th><th>384,14 -0.0072 -171,29 419,13 -0.0076 -155,11 447,12 -0.0019 -156,57 545,76 -0.0916 -90,39 545,76 -0.0916 -90,39 545,76 -0.0916 -90,39 545,76 -0.0916 -90,39 545,76 -0.0916 -90,39 531,08 -1970 -156,57 542,13 -17,37 609,07 -0.3228 -41,85 536,77 -10,27 -17,37 -17,</th></th<>			384,14 -0.0072 -171,29 419,13 -0.0076 -155,11 447,12 -0.0019 -156,57 545,76 -0.0916 -90,39 545,76 -0.0916 -90,39 545,76 -0.0916 -90,39 545,76 -0.0916 -90,39 545,76 -0.0916 -90,39 531,08 -1970 -156,57 542,13 -17,37 609,07 -0.3228 -41,85 536,77 -10,27 -17,37 -17,
1 1			419,13 0.0036 - 155,11 407,77 0.04916 - 155,11 545,76 0.0916 - 90,39 545,76 0.0916 - 90,39 545,76 0.1906 - 70,23 585,41 0.2493 - 41,85 596,41 0.2493 - 41,85 596,41 0.2493 - 41,85 596,41 0.2493 - 41,85 535,77 535,77 609,07 - 17,97 - 12,94 - 12,54 - 12,55 - 12,54 - 12,55 - 1
9777 0000 2.05 17.79 0000 -0.07 <			50777 00490 - 106.57 545.76 0.0916 - 90.39 581.76 0.0516 - 90.39 581.74 0.1505 - 54.21 580.41 0.2493 - 41.85 596.41 0.2493 - 41.85 2009.07 0.1228 - 33.76 - 17.797 - 1.128 - 23.11 - 17.797 - 1.128 - 2.05 - 0.49 - 0.49
5435 0.118 0.00 0.401 5435 0.110 0.00 0.311 5435 0.110 0.01 0.311 5435 0.110 0.313 5435 0.111 1131 0.013 5435 0.113 0.113 0.113 0.113	······································		545.76 0.0916 - 90.39 581.74 0.1906 - 90.39 581.74 0.1906 - 54.21 586.41 0.2493 - 41.85 669.07 0.3328 - 41.85 7.31.76 17.97 - 17.97 - 17.97 - 17.97 - 17.97 - 17.97 - 17.97 - 17.97 - 17.97 - 17.97 - 0.04 -
91.06 01.01 0.03 01.01 <th0< td=""><td>······</td><td></td><td>571.08 01505 -74.21 588.37 0.1970 -54.23 586.41 0.1970 - 41.85 535.67 235.67 -17.94 -17.97 -17.94 -17.97 -17.94 -1</td></th0<>	······		571.08 01505 -74.21 588.37 0.1970 -54.23 586.41 0.1970 - 41.85 535.67 235.67 -17.94 -17.97 -17.94 -17.97 -17.94 -1
33.14 0.2161 0.63 1.013 33.14 0.2264 30.05 30.54 0.0264 30.54 0.0264			588.1 4 0.1970 58.8.03 588.1 4 0.1970 41.8.03 609.07 0.3228 23.67 23.67 23.67 17.97
50041 0.2011 1.23 -1.279 50041 0.2003 1.346 0.0003 50041 1.366 1.130 0.1103 1.131 0.0003 50041 1.366 0.166 0.0003 50041 0.2003 1.131 0.0003 50041 0.2003 1.131 0.0003 50041 0.2003 1.131 0.0003 50041 0.2003 1.10102 0.11103 0.0013 <th0< td=""><td></td><td></td><td>0000 001 001 001 001 001 001 001</td></th0<>			0000 001 001 001 001 001 001 001
0600 0.417 1.88 -1.347 60.07 0.337 0.507 0.517 0.507 1.187 1.197 0.507 1.187 1.197 0.507 1.187 1.197 0.507 1.187 1.197 0.507 1.187 1.197 0.507 0.517 0.507 0.517 0.507 0.517 0.507 <th0< td=""><td></td><td></td><td>0.021 23.67 23.67 23.67 23.67 23.67 23.67 23.67 23.67 23.67 23.67 23.67 23.67 20.89 0.00 0.00 0.00 0.01 1.25 2.15</td></th0<>			0.021 23.67 23.67 23.67 23.67 23.67 23.67 23.67 23.67 23.67 23.67 23.67 23.67 20.89 0.00 0.00 0.00 0.01 1.25 2.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.007 0.7055 0.71056 0.711656 0.711661 1.11261 1.11261 1.12666 0.213056 0.213050 1.200500 1.200500 1.20050000000000000000000000000000000000	· · · · ·	2.12 2.12 2.12 2.13 2.13 2.13 2.13 2.13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C00/L0 18750 10516 10516 11251 11721 10566 10566 10061 10061 12289 22289		1.21 1.21 1.22 1.22 1.22 1.22 1.22 1.22
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2341 0516 1,1297 1,1297 1,1461 1,14	· · · · ·	2010 1212 1212 1212 1212 1212 1212 1212
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.018 (1797) 1.1741 1.1461 1.1461 1.1461 1.1461 1.17411 1.17411 1.17411 1.17411 1.17411 1.17411 1.17411 1.17411 1.		215 215 215 215 215 215 215 215 215 215
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12910 1141 1461 1366 1395 1395 1395 1395 1395 1395 1395 1395		1.8 2.4 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	147 1461 1395 1395 1395 1395 1309 1309 1309 1309 1309 1309 1309 1309		2.02 2.03 2.03 2.03 2.03 2.03 2.03 2.03
7.30 1.1133 2.05 1.1459 7.5 1000 1.0810 0.44 1.0900 8.75 12.30 1.0811 0.44 1.0900 8.75 12.30 1.0811 0.44 1.0900 12.20 17.30 0.9975 0.1231 0.4872 12.20 17.30 0.9975 0.312 0.4872 12.20 17.30 0.9975 0.312 0.4872 12.20 2000 0.9975 0.312 1.0980 0.000 3000 0.327 2.313 1.0811 0.000 90.00 0.327 2.313 1.0811 0.000 80.00 0.337 2.313 1.0811 0.000 90.00 0.337 2.313 1.0811 0.000 80.00 0.337 0.331 0.000 0.000 10.00 0.334 0.334 0.000 10.00 <	1966 1966 1995 1995 1998 1998 1998 1998		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
8.73 -1.0361 -0.40 1.1709 8.73 12.00 -1.0311 -0.44 1.1094 0.00 12.00 -1.0321 0.00 0.5632 11739 17.30 -0.9871 0.00 0.5632 1739 17.30 -0.9872 0.01 0.6632 1739 17.30 -0.8039 0.05 0.603 2000 2000 -0.323 1.1081 0.00 3000 3000 -0.323 1.1081 0.00 3000 90.00 -0.333 1.1081 0.00 3000 90.00 -0.333 1.1081 7000 90.00 -0.333 0.003 3.15 -1.0863 9000 90.00 -0.333 1.1081 700 9000 90.00 -0.333 0.003 3.15 -1.0863 9000 90.00 -0.333 0.033 1.0610 9100 90.00 -0.334 8.75 -0.9037 9000 110.00 -0.334 0.033 1.0610 2.56 110.00 -0.334 9.0303 1.1000 9100 110.00 -0.334 0.034 91000 110.00 -0.431	64 2015 2015 2015 2015 2015 2015 2015 2015		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	888 898 900 100 100 100 100 100 100 100 100 100		000 001 12 12 12 12 12 12 12 12 12 12 12 12 12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2022 2007 2009 898 898		0.00 0.05 0.05 1.25 1.25 1.25
15.00 0.9871 0.31 0.4672 15.00 17.30 0.9999 0.03 0.6632 17.90 20.00 0.3727 2.39 1.0663 20.00 30.00 0.3727 2.39 1.0663 20.00 50.00 0.3727 2.30 1.0663 20.00 50.00 0.3727 2.39 1.0611 70.00 60.00 0.3732 3.13 -1.0789 60.00 70.00 0.4439 3.15 -1.0663 20.00 80.00 0.3339 5.00 1.0611 70.00 90.00 0.3339 5.00 1.0063 20.00 100.00 0.3339 5.00 1.0063 20.00 100.00 0.3339 5.00 1.0063 20.00 100.00 0.3339 5.00 0.0072 90.00 241.85 0.0374 8.73 0.8536 241.85 110.00 0.1677 0.8073 10.00 241.85 0.0374 0.3354 20.00 10.00 0.4691 17.50 0.8073 241.85 0.0374 0.8033 241.85 10.00 0.4691 17.50 0.8073 <td< td=""><td>670888</td><td></td><td>0.31</td></td<>	6 7 0888		0.31
2000 0.9753 11.46 2002 2000 0.3327 2.50 1.0960 3000 3000 0.3327 2.50 1.0963 3000 7000 0.3327 2.50 1.0789 60.00 7000 0.4489 3.73 1.0961 7000 7000 0.4487 3.13 1.0789 60.00 7000 0.4487 3.73 1.0961 7000 7000 0.4487 3.73 1.0967 90.00 7000 0.3339 5.73 1.0967 7000 9000 0.3339 5.73 -0.9877 90.00 100.00 0.3339 5.73 -0.9877 90.00 110.00 0.1746 7.59 0.7959 100.00 110.00 0.1746 8.75 -0.9077 90.00 110.00 0.1746 8.75 -0.9072 100.00 110.00 0.1875 175.00 0.8656 110.00 110.00 0.1877 175.00 0.4993 100.00 110.00 0.1867 0.0911 90.00 0.4493 110.00 0.4491 90.00 0.4493 90.00 110.00 0.4493 90.	888		1.25
3000 40000 11.05 2000 <	6600 8683		1.88
500 0.1327 2.50 1.081 500 7000 0.3439 3.13 -1.0789 500 7000 0.4129 3.13 -1.0789 500 80.00 0.4129 3.13 -1.0789 500 90.00 0.4129 3.13 -1.0789 500 90.00 0.4129 5.00 -1.0611 700 90.00 0.3399 5.00 -1.0611 700 90.00 0.3393 5.00 -1.0027 90.00 110.00 0.1746 7.35 -0.9032 110.00 1110.00 0.1746 7.35 -0.8072 110.00 241.85 -0.074 8.73 -0.8072 110.00 110.00 0.3334 17.50 -0.8072 110.00 241.85 -0.074 17.50 0.8393 241.85 110.00 0.3344 0.3344 20.00 -0.461 0.00 0.4611 90.00 0.4691 0.4691 0.4691 </td <td>2898</td> <td></td> <td></td>	2898		
60.0 0.392 3.13 -1.076 60.00 70.00 -0.439 3.75 -1.0611 700 80.00 -0.339 5.07 -0.987 60.00 80.00 -0.339 5.07 -0.987 60.00 80.00 -0.339 5.07 -0.987 80.00 90.00 -0.1346 7.53 -0.9027 90.00 110.00 -0.1346 7.53 -0.8032 110.00 110.00 -0.1346 7.53 -0.8032 110.00 241.85 -0.0374 8.73 -0.8033 110.00 241.85 -0.0374 8.73 -0.8033 241.85 10.00 -0.8077 17.50 -0.8072 110.00 11.50 -0.8077 17.50 -0.8072 241.85 00.00 -0.334 0.00 -0.8077 241.85 00.00 -0.4621 0.034 0.00 -0.4621 00.00 -0.4621 0.000 0.4691 0.008	314		067
70.00 0.4189 3.75 -1.001 70.00 90.00 0.4121 4.37 -0.987 90.00 90.00 0.3339 5.0 1.0027 90.00 90.00 0.3339 5.0 1.0027 90.00 110.00 0.1746 7.53 -0.9037 90.00 110.00 0.1746 7.53 -0.9032 1100.00 241.85 -0.0374 8.75 -0.9037 100.00 241.85 -0.0374 8.75 -0.9037 110.00 241.85 -0.0374 8.75 -0.9037 241.85 10.00 -0.8374 115.00 -0.8375 241.85 115.00 -0.8377 115.90 -0.8377 241.85 10.00 -0.8377 115.90 -0.8377 241.85 10.00 -0.4391 90.00 -0.4391 90.00 110.00 -0.4491 90.00 -0.4491 90.00 -0.4491 90.00 -0.4491 90.00 <t< td=""><td></td><td></td><td>3.13</td></t<>			3.13
80.00 0.4121 4.37 0.987 80.00 90.00 0.3339 5.00 1.0027 90.00 90.00 0.1342 6.23 0.9032 110.00 110.00 0.1746 7.3 0.9032 110.00 241.85 -0.0374 8.75 -0.8935 110.00 241.85 -0.0374 8.75 -0.8935 110.00 241.85 -0.0374 8.75 -0.8935 241.85 110.00 -0.7867 0.8935 241.85 100.00 241.85 -0.0374 8.75 -0.8972 110.00 241.85 -0.0374 17.50 -0.8972 110.00 17.50 -0.8977 17.50 -0.8977 241.85 17.50 -0.8977 17.50 -0.8977 241.85 18.00 -0.4691 6.00 -0.4691 6.00 19.00 -0.4691 6.00 -0.4691 6.00 -0.4691 10.00 -0.461 6.00 -0	.2179		3.75
90.00 0.3339 5.00 1.0027 90.00 100.00 0.3442 6.23 -0.9032 100.00 110.00 0.1746 7.30 -1.0027 90.00 110.00 0.1746 7.33 -0.8032 100.00 241.85 -0.0374 8.73 -0.8072 110.00 241.85 -0.0374 8.73 -0.8072 110.00 241.85 -0.0374 8.73 -0.8072 110.00 241.85 -0.0374 8.73 -0.8072 110.00 241.85 -0.0374 8.73 -0.8072 110.00 241.85 -0.0374 8.73 -0.8072 241.85 17.50 -0.3344 0.00 -0.3344 24.91 90.00 -0.4621 90.00 -0.4621 90.00 -0.4621 90.00 -0.4621 90.00 -0.4621 90.00 -0.4621 90.00 -0.4621 90.00 -0.4621 90.00 -0.4621 90.00 -0.4621 90.00	2234		4.37
100.00 0.2432 6.23 -0.9012 100.00 110.00 -0.1746 7.59 -0.9032 110.00 1110.00 -0.1746 8.75 -0.6536 241.85 110.00 -0.8933 10.00 -0.8933 241.85 110.00 -0.8933 10.00 -0.8933 241.85 12.50 -0.8072 115.00 -0.8977 241.85 13.50 -0.8037 10.00 -0.8937 241.85 10.00 -0.8374 0.0354 0.0354 241.85 11.50 -0.8377 10.00 -0.8021 241.85 2000 -0.7554 0.3354 0.0351 241.85 2000 -0.7631 10.00 -0.4631 260.00 -0.4631 90.00 -0.4631 90.00 -0.4631 90.00 -0.4631 90.00 -0.4631 90.00 -0.4631 90.00 -0.4631 90.00 -0.4631 90.00 -0.4631 90.00 -0.4631 90.00	1.1671	5.00	5.00
110.00 0.1746 7.50 -0.7969 110.00 241.81 -0.0374 8.73 -0.8636 241.85 241.81 -0.0374 8.73 -0.8636 241.85 15.00 -0.7657 15.00 -0.7657 110.00 15.00 -0.7657 17.50 -0.8836 241.85 15.00 -0.7657 17.50 -0.8877 241.85 17.50 -0.8877 17.50 -0.8877 241.85 17.50 -0.8877 20.00 -0.7657 241.85 17.50 -0.7887 20.00 -0.7647 241.85 2000 -0.7487 20.00 -0.7411 20.00 2000 -0.4411 20.00 -0.4411 20.00 2000 -0.4411 20.00 -0.4411 20.00 2000 -0.4411 20.00 -0.4411 20.00 2000 -0.4411 20.00 -0.4411 20.00 2000 -0.4411 20.00 -0.4411 20.00 2000 -0.4411 20.00 -0.4411 20.00 2000 -0.4411 20.00 -0.4411 20.00 2000 -0.4411 20.00 -0.4411 20.00	.1364		6.25
241.85 -0.0374 8.75 -0.8636 241.85 10.00 -0.8973 10.00 -0.8973 11.5.0 -0.8072 115.00 -0.8973 11.5.0 -0.7867 115.00 -0.7867 11.5.0 -0.7867 20.00 -0.7867 11.5.0 -0.7867 20.00 -0.7867 2000 -0.7867 20.00 -0.7867 2000 -0.7867 20.00 -0.4691 2000 -0.4691 2000 -0.4691 2000 -0.4621 2000 -0.4621 2000 -0.4621 2000 -0.4621 2000 -0.4621 2000 -0.4621 2000 -0.4621 2000 -0.4621 2000 -0.4621 2000 -0.4621 2000 -0.4621 2000 -0.4621 2000 -0.4621 2000 -0.4621 2000 -0.4621 2000 -0.4621 20000 -0.4621 20.002 <td>6690</td> <td></td> <td>7.50</td>	6690		7.50
10.00 -0.8393 12.50 -0.8072 15.00 -0.8072 15.00 -0.8077 2000 -0.7087 2000 -0.7087 2000 -0.3354 4000 -0.4411 5000 -0.4411 5000 -0.4419 6000 -0.4419 6000 -0.4419 2000 -0.4419 20000 -0.4419 20000 -0.4419 20000 -0.4419 20000 -0.4419 20000 -0.4	3887		8.75
12.50 17.50 17.50 2000 2000 2000 2000 2000 2000 2000 2	H 27		
15.00 17.40 80.00 80.00 80.00 110.00 110.00 80.00 110.00 110.00 110.00	0423		
17.50 2000 2000 4000 7000 8000 7000 11000 11000 241.85	1		
2000 4000 4000 5000 5000 7000 8000 11000 24185 24185	837		
000 4000 7000 7000 1000 10000 11000 241.85	38		
400 5000 7000 8000 7000 10000 11000	=		
500 7000 8000 7000 8000 11000 241.85	15		
6000 70.00 80.00 90.00 110.00 110.00 241.85	2		
70.00 80.00 90.00 110.00 241.85	2		
80.00 90.00 110.00 241.85	247		
1000 1000 11000 24135	087		
100.00 110.00 211.85 221	1516		
110.00	2460		
241.85	1704		
241.85			
	8750		
		6.2.3 (1.1364) 7.50 (1.0887) 8.55 (1.0887) 10.00 (1.0427) 15.00 (1.0441) 15.00 (1.0441) 17.50 (0.09317) 20.00 (0.3374) 40.00 (0.2374) 60.00 (0.2374) 60.00 (0.2374) 70.00 (0.2374) 80.00 (0.2374) 10.00 (0.1734) 24.185 (0.0442) 24.185 (0.044	6.55 7.56 8.75 10.00 12.50 17.50 2000 9.000 80.00 80.00 110.00 2.214.85 2.214.85 2.214.85

(h) Concluded

		× 1	7 5	0.0279	111	0.0619	108	0.1683	0.2376	0.2848	0.5592	0.4064																																			
		đ.	- CC-																																												
	\$ = 180°	2	MA IN	384.14	419.13	457.12	507.77	545.76	571.08	583.74	14:040	609.01																																			
8	•	Forebody	30	0.5882	-0.7255	-0.0299	0.8173	1.0110	0.4333	0.0257	C CI /0-	0.1972	01640	0.1598	0.1948	-0.1632	-0.1620	-0.2120	-0.2436	0.2999	-0.3713	-0.4150	-0.3740	-0.3417	-0.3421	-0.3809	-0.3759	-0.3835	-0.3421		1717.0	-0.0196															
= a pue		For	XL 187.47	106.57	-25.67	-10.27	-2.05	0.0	0.31	0.63	9	1.88 7 50	212	175	4.37	5.00	6.25	7.50	8.75	10.00	12.50	15.00	17.50	20.00	30.00	50.00	60.00	20.00	8.08	8.06		241.85															
mfr = 0.80 and $\alpha = 0^\circ$		Å.		0.0262	0.0418	0.0654	0.1122	0.1676	0.2324	0.2751	6676.0	0.3929																																			
Ąæ		terb	WL O									609:07 0																																			
	•0 = •		2 2 2 2			-						-0.8572 60	0.6580	-0.4473	-0.0219	0.4370	0.6525	0.8697	8060.1	1.1663	0666	297 297	-0.0020	6693	-0.1139	-0.1450	-0.1792	-0.1655	-0.1846	-0.1990	-0.1986	3578	-0.3096	-0.3937	-0.3674	916	-0.3550	-0.3503		-0.3012	0140.0-	2100.0-	0.3117	-0.2176	-0.1453	-0.0228	-0.0112
		Å.					-106.57 0.5					-33.76 0.8														2.50 -0.												30:00 90:00									
		i	X 181-	Ę	-155.11	130	ş	×,	7	ŝ, :	Ŧ	η ř	1.	1 -	ļ		Ŷ		Ŧ	7		-	Ū						•				-		-	-	~	~ •	• •	~	5 6	- 0	• •	2	=	24	27
		body		0.0210	0.0377	0.0522	0.1034	0.1602	0.2283	0.2795	0.5305	0.4045																																			
		Afterbody	XIL M I K	384.14	419.13	457.12	507.77	545.76	571.08	583.74	14.040	609:07																																			
	d = 180°	ody	CP	0.7107	0.0194	0.2697	1.0017	0.8832	0.1249	-0.3203	-0.48/8	0.5010	2104-0-	0.07C	0.3379	-0.3644	-0.3163	-0.3732	-0.4710	-0.4452	-0.4341	-0.5575	-0.5491	0.4770	-0.3904	0.4073	-0.4184	-0.4157	-0.3789	0.11.0	1077.0	0.0236															
d α = 0°		Forebody	X/L -187.47		·							1.88							8.75											8.8																	
$\mathbf{mfr} = 0.74 \text{ and } \alpha = 0^\circ$							55	26	99	26	8	50																																			
աք-		terb	IK DORK					76 0.1626				07 0.3920																																			
	• = 0	2	NT XI									5 609.07					-	-	~	_	v 0	2		•		1	2	~	•		A				0		_	о, г				- 0	• -	- 4		. yo	-
	•	Forebody	CP		0.8335	0.7917	0.7141	0.6248	0.5278	0.3874		0.1116	0.0010	0.0161	0.2720																	0.4916									0.414/						
		Foi	XL 18741	-171.29	-155.11	-130.84	-106.57	90.39	-74.21	-58.03	41.83	-33.76	10.02-	11.62-	-10.27	-5.13	-3.34	-2.05	0.0	4 4 O	0.00	0.31	0.63	1.25	1.88	2.50	3.13	3.75	4.37			2.5	10.00	12.50	15.00	17.50	20.00	30.00 20.00	B.04 20.05	50:05 20:00	00.00	0.0	00.00	00.001	110.00	241.85	279.84
		dy	CP	0152	0.0318	0.0463	10944	.1530	0.2209	0.2683	13254	0.3960																																			
		Afterbody	XIL XIL									00700																																			
	\$ = 180°		CP CP									-0.8616 64	-0.6150	7010-0-	-0.5657	-0.5235	-0.4165	-0.4694	-0.4981	-0.5292	-0.6036	-0.6197	-0.6768	-0.6415	-0.4067	-0.4449	-0.4388	-0.4293	-0.3910	-0.3272	-0.2321	00100															
α= 0°		Ę											27- AC7										17.50 -0.0								00.00																
mfr = 0.68 and $\alpha = 0^{\circ}$			-		-25.67	•			0						, 4	•	. •			2	11	-	2	×	×	8	3	¥	× i	× i		140															
mfr = 0		Afterbody	CP 20017	0.0141	0.0297	0.0508	0.0941	0.1523	0.2171	0.2617	0.3143	0.3866																																			
	= 0°		XL	384.14	419.13	457.12	507.77	S45.76	571.08	583.74	596.41	609.07																																			
	•		CP	0.9068	0.8989	0.8643	0.8043	0.7351	0.6601	0.5519	0.4347	0.3652	0.2838	CU/ 2.0	0 5000	0.8031	0.9473	1.0775	1.1697	1.1545	0.7035	-0.2009	-0.5946	-0.8263	-0.8379	-0.8137	-0.6161	-0.5840	-0.5530	-0.5342	-0.5250	0.5301	0100	-0.6171	-0.6376	-0.6710	-0.6600	0.4449	-0.4413	-0.4428	0.4437	-0.4550	0.1285	-0.2407 -0.2407	-0.1634	-0.0386	-0.0242
		Fore	λL γ	-171.29	-155.11	-130.84	-106.57	-90.39	-74.21	-58.03	41.85	-33.76	10.62-	11.62-	16.11-	115	1	-2.05	06:0-	44.0	000	16.0	0.63	1.25	1.88	2.50	3.13	3.75	4.37	5.00	6.25	00.1	0001	12.50	15.00	17.50	20:00	30.00	40.0 0	50.00	00.09	00.07	00.05	00.04	00.001	241.85	279.84

(i) M = 0.84

Introduction Introduction<			vbod	5	-0.0133	0.0170		0.0229	0.0594	0.1049	0.1438	0.1891	0.2547																																								
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $		5				384.14 419.13			\$45.76	571.08	583.74	596.41	609.07																																								
		1	vpo	G	1.1045	1.0712	1.0061	1.1574	0.1014	0.9725	1.3190	1.4181	1.4680	1 4505	1.4451	1.4262	1.4043	1.3484	64667	1447	EUV2-1	12114	1.1858	1.1709	1.0715	0.9176	0.8972	0.8698	0.2020	0.2509	0.1371	0.0362																					
	nd α = 0°		Foreb	XI	-187.47	10.001-	2011-	-2.05	000																																												
	r = 0.39 a		dy.				0018	0276	190	1126	.1454	1874	0107																																								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>f</u> a																																																				
		.0 ■ ●	, vb											9869	.0128	0680	.1758	.1862	8001	200	0408	0380	1516	4438	4590	4504	4576	1040	3761	3616	3203	3084	2718	2421	7717	CC01	101	9622	9281	6768	8705	8051	3352	2312	1403	0467	0374						
			Forebo																																												_						
Int-off and the factor of the factor														•		•																				•	•••		••	·		-		¥	= ;	Ä	2						
Int of 21 and 5 = 0 int of 21 and 5 = 0 Int of 21 and 2 = 0 int of 21 and 2 = 0 Int of 21 and 2 = 0 int of 21 and 2 = 0 Int of 21 and 2 = 0 int of 21 and 2 = 0 Int of 21 and 2 = 0 Int of 22 and 2 = 0 Int of 21 and 2 = 0 Int of 22 and 2 = 0 Int of 22 and 2 = 0 Int of 22 and 2 = 0 Int of 22 and 2 = 0 Int of 22 and 2 = 0 Int of 22 and 2 = 0 Int of 22 and 2 = 0 Int of 22 and 2 = 0 Int of 22 and 2 = 0 Int of 22 and 2 = 0 Int of 22 and 2 = 0 Int of 22 and 22 and 2 = 0 Int of 22 and 2 = 0 Int of 22 and 22 and 22 and 22 and 2 = 0 Int of 22 and 2 = 0 Int of 22 and			terbody				•																																														
Inf - 07 and c of a field of a		= 180°												_	_					_																																	
	°	٠	rebod																												-0.3307	-0.0360																					
after - 0.27 and 0 = 07 After - 07 <th <="" colspan="6" td=""><td>10 and α</td><td></td><td>Å.</td><td>אר אר</td><td>19781-</td><td>-25.67</td><td>-10.27</td><td>-2.05</td><td>0.0</td><td>0.31</td><td>0.6</td><td>(7.1 58 1</td><td>2.50</td><td>3.13</td><td>3.75</td><td>4.37</td><td>20.0 20.0</td><td></td><td></td><td>10.01</td><td>12.50</td><td>15.00</td><td>17.50</td><td>20.00</td><td>30:00</td><td>8.8</td><td>20.00</td><td>00.08</td><td>00.06</td><td>100.00</td><td>00:011</td><td>241.85</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>10 and α</td> <td></td> <td>Å.</td> <td>אר אר</td> <td>19781-</td> <td>-25.67</td> <td>-10.27</td> <td>-2.05</td> <td>0.0</td> <td>0.31</td> <td>0.6</td> <td>(7.1 58 1</td> <td>2.50</td> <td>3.13</td> <td>3.75</td> <td>4.37</td> <td>20.0 20.0</td> <td></td> <td></td> <td>10.01</td> <td>12.50</td> <td>15.00</td> <td>17.50</td> <td>20.00</td> <td>30:00</td> <td>8.8</td> <td>20.00</td> <td>00.08</td> <td>00.06</td> <td>100.00</td> <td>00:011</td> <td>241.85</td> <td></td>						10 and α		Å.	אר אר	19781-	-25.67	-10.27	-2.05	0.0	0.31	0.6	(7.1 58 1	2.50	3.13	3.75	4.37	20.0 20.0			10.01	12.50	15.00	17.50	20.00	30:00	8.8	20.00	00.08	00.06	100.00	00:011	241.85															
aft - 0.7 and t - 07 aft - 0.7 and t - 107 -10032 -10032 -10032 -10144 -101144 -10144	mfr = 0.5		rbody	CP CP	1250.0-	-0.0308	-0.0241	-0.0104	0.0070	0.0355	0.0556	1430.0																																									
Inf = 0.71 and $\alpha = 0^{\circ}$ $\phi = 10^{\circ}$ <th colsp<="" td=""><td></td><td></td><td>ARe</td><td>χI,</td><td>384.14</td><td>419.13</td><td>457.12</td><td>507.77</td><td>545.76</td><td>571.08</td><td>583.74</td><td>14.040</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td></td> <td>ARe</td> <td>χI,</td> <td>384.14</td> <td>419.13</td> <td>457.12</td> <td>507.77</td> <td>545.76</td> <td>571.08</td> <td>583.74</td> <td>14.040</td> <td></td>			ARe	χI,	384.14	419.13	457.12	507.77	545.76	571.08	583.74	14.040																																								
Infr = 0.7 and $\alpha = 0^{\circ}$ Shody Afterbody Shody Afterbody Afterbody Afterbody CP XL CP XL CP XL CP XL CP XL CP XL CP XL CP			ebody	CP CP	1.1439	1.1417	1.1344	1.1249	1.1170	1.1052	1.0034	1 0794	1.0846	1.0905	1.1112	1.1644	01211	1001	0.8999	0.6916	-0.2511	-1.2388	-1.4592	-1.5751	104C.1-	1 4000	1.5748	-1.5666	-1.5338	-1.5038	1.4790	-1.4592	-1.4538	CF201-	1.3269	-1.3058	-1.1761	-1.0783	-1.0045	-0.9639	-0.9574	-0.9256	0.4894	0.3748	1765.0-	-0.0418	-0.0438						
mtr = 07 $= 10^{\circ}$ The 10 mode $= 10^{\circ}$ The 10 mode $= 10^{\circ}$ The 1150 $= 10^{\circ}$ The 1150 $= 10^{\circ}$ The 1150 $= 10^{\circ}$ The 1150 $= 10^{\circ}$ $= 10^{\circ}$ The 2008 $= 10^{\circ}$ <th co<="" td=""><td></td><td></td><td>For</td><td>XI</td><td>171.29</td><td>-155.11</td><td>130.84</td><td>-106.57</td><td>-90.39</td><td>-74.21</td><td>58.03</td><td>92.15-</td><td>-25.67</td><td>-23.11</td><td>19.71</td><td>-10.27</td><td></td><td>500</td><td>89</td><td>0.44</td><td>0:0</td><td>0.31</td><td>0.63</td><td>52</td><td>88.1</td><td>3</td><td>57.6</td><td>4.37</td><td>5.00</td><td>6.25</td><td>7.50</td><td>8.75</td><td>10.00</td><td>8 2</td><td>17.50</td><td>20.00</td><td>30.00</td><td>40.00</td><td>50.00</td><td>60.09</td><td>70.00</td><td>80.00</td><td>80.06</td><td>00.001</td><td>241.05</td><td>29.192</td><td>719,84</td></th>	<td></td> <td></td> <td>For</td> <td>XI</td> <td>171.29</td> <td>-155.11</td> <td>130.84</td> <td>-106.57</td> <td>-90.39</td> <td>-74.21</td> <td>58.03</td> <td>92.15-</td> <td>-25.67</td> <td>-23.11</td> <td>19.71</td> <td>-10.27</td> <td></td> <td>500</td> <td>89</td> <td>0.44</td> <td>0:0</td> <td>0.31</td> <td>0.63</td> <td>52</td> <td>88.1</td> <td>3</td> <td>57.6</td> <td>4.37</td> <td>5.00</td> <td>6.25</td> <td>7.50</td> <td>8.75</td> <td>10.00</td> <td>8 2</td> <td>17.50</td> <td>20.00</td> <td>30.00</td> <td>40.00</td> <td>50.00</td> <td>60.09</td> <td>70.00</td> <td>80.00</td> <td>80.06</td> <td>00.001</td> <td>241.05</td> <td>29.192</td> <td>719,84</td>			For	XI	171.29	-155.11	130.84	-106.57	-90.39	-74.21	58.03	92.15-	-25.67	-23.11	19.71	-10.27		500	89	0.44	0:0	0.31	0.63	52	88.1	3	57.6	4.37	5.00	6.25	7.50	8.75	10.00	8 2	17.50	20.00	30.00	40.00	50.00	60.09	70.00	80.00	80.06	00.001	241.05	29.192	719,84					
mtr of $r = 0^{7}$ $r = 10^{7}$ $r = 0^{10}$ $r = 10^{7}$ $r = 10^{10}$			ody I	CP	0.0362	0.0345	0.0352	0.0285	1/100	0.0082	6 9 70 70 70	1074																																									
mtr = 0.27 and $\alpha = 0^{\circ}$ The 0.28 and $\alpha = 0^{\circ}$ Liston Anterbody Anterbody Anterbody Liston Anterbody Liston Anterbody Liston Anterbody Liston Anterbody Liston Anterbody Anterbody Colspan="2">Anterbody Liston Anterbody Liston Anterbody			Afterb																																																		
mfr = 0.27 and $\alpha = 0^{-2}$ mfr = 0.27 and $\alpha = 0^{-2}$ The 0.008 and $\alpha = 0^{-2}$ 11500 and $419,113 = 0.0388$ -2.06 111122 351,08 -0.0127 111122 351,08 -0.0127 1111122 351,08 -0.023 1.11122 351,08 -0.023 1.111122 351,08 -0.023 1.111122 356,04 0.023 1.111122 356,04 0.023 1.11112 3111 1.11112 3111 1.1111 3111 0.056 0.0200 1.11112 <td></td> <td>)81 = ¢</td> <td>λį.</td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>6379</td> <td>6203</td> <td>5746</td> <td>COP.</td> <td>5172</td> <td>4983</td> <td>.4639</td> <td>.4125</td> <td>.3778</td> <td>341</td> <td>3242</td> <td>1007</td> <td>9886</td> <td>9412</td> <td>9405</td> <td>7423</td> <td>4118</td> <td>3686</td> <td>0321</td> <td></td>) 81 = ¢	λį.			•			_					6379	6203	5746	COP.	5172	4983	.4639	.4125	.3778	341	3242	1007	9886	9412	9405	7423	4118	3686	0321																					
mfr = 0.27 a mfr = 0.27 a CP X/L L11032 L11123 <	id α = 0°	1	Forebc																																																		
 ◆ = 0[°] CP X.I. CP X.I. L1500 A.I. L1503 A.1.503 A.1.504 A.1.11775 L11122 S07.77 L11223 S07.77 L11223 S07.76 L11122 L11122 L11122 L11122 L11122 L11122 S07.76 L11122 L11122 L11122 L11122 L11122 L11122 L11122 L11122 L11122 L11124 L11124 L11125 <	= 0.27 ar		<u>></u>				305	12.38	5010	2010	640	100																		-	- ,	7																					
• body • CP CP CP CP CP CP CP CP CP CP	ц		Ę.																																																		
P		٠					_							1175	348	2	436	Ŧ	1522	8	1244	64.13	1658	500	100	214	057	856	101	395	000	50.00	040	926	625	18	262	763	259	676		115	90C		ŝ	204	940						
			der L				-						-	-																																							

(i) Continued

.

		ody	6	-0.0088	0.0086	0.0206	0.0591	0.1077	c1 1 0	0.2784	0.3591																																		
	°.	Afterbody		384.14			207.77	545.76 571.08	581 74																																				
	a = 180°	ody	CP	10055			1.1862	0.4371	0.0410	1.1692	-1.2171	-1.2033	-1.1595	1.1022	05301-	-1.0128	-0.9987	-0.9529	-0.9256	-0.8737	-0.8711	-0.8867	-0.8133	-0.6726	-0.6148	0.5388	-0.4517	0.4257	76000	01070	0.0354														
d α = 2.0°		Forebody	ž	-18/.4/				000																30:00				0.08																	
mfr = 0.49 and α = 2.0°		dy		0.0012		0.0297	0.0662	0.1100	0.1008	0.2423	0.2999																																		
Ę		Afterbo		384.14 0.				545.76 0. 51.08 0.			609.07 0																																		
	•0 = •	dy .		2 80cu.1				0.9810 5				0.8625	0.8603	2006.0	1 1471	1.1823	1.1815	1.0885	0.9373	0.1177	1506.0-	-1.2222	-1.3826	-1.3955	9809	-1.3826	C#06'1-	-1.3023	707611-	C85C 1-	-1.2411	-1.2226	-1.1866	5007-1-	11417	-1.0810	-0.9645	-0.9510	-0.9084	-0.8652	-0.4474	-0.2850	-0.2014	-0.0395	0.0343
		Ą		-171.29	_			-90.39						1 16/11-																		10:00 -1													
							•				_	•	•																													•			10
		Afterbody		68000-				0.1083																																					
	\ = 180°			384.14				545.76			-	-					~	-	~	~	_	-	_	~	<u>~</u>	~	-	~ ~	~ ~																
1.0°	÷	Forebody		5 SCU.1	-	č		0.3685						29071-														0 -0.3118																	
and α =		Fo	X	-187.47	-25.67	-10.27	-2.05	000	100	1.25	1.88	2.50	3.13	C		6.25	7.50	8.75	10.00	12.50	15.00	17.50	20.00	30.00	50.00	60:00 20 00	00.07	80.08		00011	241.85														
mfr = 0.49 and $\alpha = 1.0^{\circ}$		Afterbody	G	0,000	0.0082	0.0276	0.0661	0.1137	0.0044	0.2506	0.3152																																		
6	ا = 0		XI	343.16 384 14	419.13	457.12	507.77	545.76	PO-110	596.41	609.07																																		
	•	Forebody	G	1.0580	1.0560	1.0390	10101	0.9835	01020	0.8692	0.8543	0.8362	0.8399	12/8/0	1 1206	1.1786	1.1879	1.1123	0.9666	0.2159	-0.8432	-1.1606	-1.3229	-1.3463	-1.3209	-1.3206	1. JOOK	-1.2770	76071-	C821 1-	-1.1820	-1.1691	-1.1510	6HE1.1-	10001	0.9752	-0.9194	-0.8782	-0.8316	-0.8412	-0.4140	-0.2337	-0.1510	C860.0-	1750.0-
		For	XL	-171.29	-155.11	-130.84	-106.57	66.06	17.57	41.85	-33.76	-25.67	-23.11	16.11-	17:01-	1.5	-2.05	-0.90	-0.44	0.00	0.31	0.63	1.25	1.88	2.50	3.13	3.73	4.37	8.4	0.0	8.75	10.00	12.50	00.51	200	000	40.00	50.00	60.00	70.00	80.00	90.06 52.52	100.00	241.95	279.84
		vbv	G	-0.002	0.0109	0.0223	0.0608	0.1061	0.2128	0.2670	0.3384																																		
	•	Afterbo		343.16 -(545.76																																					
	6 = 180°	, th		1.0550 3			_	0.3391 5			_	-1.3261	-1.2897	59571-	10471-		.1482	-1.1003	.0844	-1.0506	-1.0818	-1.0488	-1.0473	0.9204	-0.7826	0.7859	1667.0-	-0.3513	-0.2230	0.1226	06000														
d α = 0°		Forebody		-187.47	-			000						5.5										30:00																					
mfr = 0.49 and $\alpha = 0^{\circ}$		V	_	0.0105			0.0619	0.1108	10/10	0.2620	0.3321																																		
ъfа		Afterbody		343.16 -0.0 364.14 -0.0				545.76 0.1																																					
	ມ =	•	×	1.0567 343							0.8475 60	0.8301	0.8245	0.8578	00001		1.1882	1.1265	0866.0	0.2323	-0.7719	-1.1137	-1.2843	-1.3074	-1.2922	-1.2625	-1.2625	-1.2393	-1.2119	-1.1/45	6000 F	6860	-1.0589	-1.0317	-1.0444	9C10-1-	-0.8436	-0.7626	-0.7650	-0.6980	-0.2744	-0.2350	-0.1969	-0.1283	-0.0428
		Forebody		-187.47 1.02		-130.84 1.0			-/4/1 000 000		-33.76 0.8				6'n /7'n-									1.88 -1.3									12.50 -1.0			0.1- 00.01								. .	241.85 -0.0 279.84 -0.0
			×	2 2 2	15	-130	10	×,	, ,	7 न	e.	2	?	÷	ŗ	4 N	,	7	7	-	-	-	-									H	-	- :	- 7	4 7	n 13		ð	Ä	¢Ċ	ð	2 :	= 7	5

(i) Continued

		40	2 Ĉ	0.0116	0.0133	0.0468	0.0916	0.1479	0.2169	0.2681	0.3243	0.3969																																			
		Afterhody	XI.		384.14 0.							609.07 0.																																			
	• 18U°	nol = 6										_		ŝŝ	20	ŝ	015	56	18	01	181	11	151	ŝ	121	E13	124	5	8	3	83	8 5	5														
ზ = კ		e Forehody	L CP		57 0.8949 67 0.5458							1.88 -1.0671							8.75 -0.8064					00 -0.6806		00 -0.5513				_		0001-0- 01															
mfr = 0.61 and $\alpha = 0^{\circ}$			- IX		106.57	-10.27	-2.05	ö	Ö				4 ल	·	• •		i vo	1	eci	10:00	12.50	15.	17.50	20.00	30.00	50.00	60.00	70.00	80.00	Š Ş	00.001	741 85															
mfr = 0.		Afterhodv	9	0.0026	01100	0.0478	0.0906	0.1502	0.2162	0.2634	0.3100	0.3875																																			
	с. Т		X	343.16	384.14	457.12	507.77	545.76	\$71.08	583.74	10.00	609.07																																			
		Forebody	5	661610	0 9747	0.9472	0.8999	0.8500	0.7959	0.7208	0.0417	0.5862	0 5160	0.5788	0.7398	0.9595	1.0618	1.1536	1.1834	1.1327	0.5440	-0.3564	-0.8083	-1.0309	-1.0263	-1.0131	0.9960	-0.9702	-0.9237	0.9349	0.000	-0.8110	1667.0-	-0.7730	-0.7903	-0.7588	-0.7609	-0.6555	1250.0-	0.5840	107670	-0.4257	-0.3956	-0.2397	-0.1644	-0.0383	-0.0290
		Fore	XL	-187.47	1111	-130.84	-106.57	-90.39	-74.21	-58.03		-33.76	11.52	12.97	-10.27	-5.13	-3.34	-2.05	0.0-	40	0:00	0.31	0.63	1.25	1.88	2.50	3.13	3.75	£31	3		9C-1	10.00	12.50	15.00	17.50	20.00	90.00 60 00	3.9	8.8	0002	80.08	00.06	100.001	110.00	241.85	279.84
			_	¢;	88	12	36	29	37	8 8	2	5																																			
		Afterbodv	5		14 0.0206							0.3706																																			
	a = 180°		î	9 343.16		•		.,		7 583.74		10.400 c	. 0		2	*			_		•		80		•	•		~ ~	<u> </u>																		
ຍ "	•	Forebody	5		0.7263					-0.9647		0162.1- 1						-1:0413											0.2910																		
l and a		Fo	XL	-187.47	-25.67	-10.27	-2.05	0.00	0.31	0.63		2 50	3.13	3.75	4.37	5.00	6.25	7.50	8.75	10.00	12.50	15.00	17.50	20.00	30.00	50.00	60.09	00.07	00.08			241.85															
mfr = 0.54 and $\alpha = 0^{\circ}$		body	5	-0.0085	0.0133	0.0354	0.0759	0.1296	0.1930	0.2342	7697.0	0.3380																																			
B	°.	Afterbody	ž	343.16	419.13	457.12	507.77	545.76	571.08	583.74		10.500																																			
	• = 0°	ody	5	1.0270	1.0237	1.0027	0.9672	0.9304	0.8896	0.8357	0.7660	9017.0	0.7230	0.7570	0.8861	1.0510	1.1398	1.1856	1.1600	1.0579	0.3849	-0.5933	-0.9858	-1.1950	-1.2294	-1.1987	-1.1656	1.1405	-1.1105	044071	10061	-0.9746	-0.9835	-0.9964	-0.9686	-0.9178	-0.9388	0.8438		0.6142	0.3850	0.3173	-0.2969	0.2182	0.1589	-0.0350	0.0280
		Forebody	ХL	-187.47	155.11	130.84	106.57	-90.39		-58.03					-10.27	-5.13	-3.34	-2.05	0.00							2.50											20.02			8000				-		· .	1 48.612
						•						_																																-	- (
		erbody		-0.0283		õ				7817.0	0 1660	1000.0																																			
	♦ = 180°	V	XL	343.16 394.14	419.13	457.12		545.76	571.08	505./4	10 00 9	10.500																																			
3.1°	•	Forebody	C C	1.0527	0.7774	2606:0	1.1833	0.5026	-0.3680	-0.5305		-1.1532	-1.0938	-1.0623	-1.0090	-0.9936	-0.9273	-0.8552	-0.8379	-0.7983	1611.0	117/0	9617.0-	0.6528	0.5484	-0.4352	0.4809	2710.0	0.0412	0.2406	-0.1656	-0.0350															
= o pue		For	XI	-187.47	-25.67	-10.27	-2.05	000	0.31	1.25	1 1	2.50	3.13	3.75	4.37	5.00	6.25	7.50	8.75	00.01	12.50	00.01	06.1	20:0Z	800	50.00	8.00		0.00	100.00	00.011	241.85															
$\mathbf{mfr} = 0.49 \ \mathbf{and} \ \alpha = 3.1^{\circ}$		ody	c,	0.0136	0.0126	0:0304	0.0646	0.1075	20CLU	0.2272	0.2800	00070																																			
цш	•	Afterbody	хI	343.16				545.76																																							
	。0 = 0	dy		1.0592 3	-	-		0.9840 5			0.8799		0.8765	0.9113	1.0326	1.1528	1.1854	1.1765	1.0678	0.9059	0.0016		1607.1-	0/74-1-		-1.4355	CC:+1-	0074-1-	1, 1972	1.3585	-1.3304	-1.3050	7172	-1.2733	-1.2577	/0771-	-1.2074	-1.0497	-1.0185	-0.9641	-0.8340	-0.4277	-0.3923	-0.3034	-0.1914	-0.074 0.0774	AJ 70
		Forebody		-187.47 L	_			-0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -																			1.5																		110.00 -0.1		
			~	9 F	-12 -	Ę:	9 °	÷ ,	÷ 1	اہ ر	-	, ų	-7	7	Ļ		ŕ	•	τ'	۲ '				-	. (- 1	. •	. •			~	ž	-	<u> </u>	- 7	1	4 ¥	3	. 25	ĸ	æ	*	ĭ	Ξį	47	

Afterbody X/L CP 343.16 0.0034 384.14 0.0130 419.13 0.0340 419.13 0.0340 419.13 0.0328 547.12 0.1022 545.76 0.1628 545.76 0.1628 556.41 0.2355 586.41 0.3285 596.41 0.3285 609.07 0.4224
 →
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 =
 mfr = 0.67 and $\alpha = 2.0^{\circ}$ Forel X/L 100.05.57 - 25.67 - 106.57 - 25.67 - 106.57 - 106.57 - 106.57 - 106.57 - 106.57 - 10.53 - 1.28 - 2.25 - Afterbody X/L CP X/L CP 384.14 00270 384.14 00270 384.14 00271 419.13 00384 457.12 00011 5077 01096 545.76 01671 545.66 01671 545.66 01671 571.08 02341 571.08 02341 576.61 02393 596.41 02393 596.41 02393 • = 0
 Forebody

 Rotebody

 RAL
 CP

 117.3
 0.9260

 -157.1
 0.9260

 -157.1
 0.9260

 -157.1
 0.9260

 -157.1
 0.9260

 -157.1
 0.8273

 -90.3
 0.7653

 -14.1
 0.8717

 -90.3
 0.7653

 -14.2
 0.6091

 -14.2
 0.6091

 -17.41
 0.691

 -17.97
 0.4498

 -33.76
 0.4498

 -33.76
 0.4498

 -33.77
 0.3812

 -17.97
 0.4390

 -17.97
 0.4390

 -17.97
 0.4390

 -17.97
 0.4390

 -17.97
 0.4390

 -17.97
 0.4390

 -17.97
 0.4390

 -17.97
 0.4390

 -1.1382
 0.0470

 0.501
 0.5901

 0.51
 0.501

 1.1382
 0.0591

 0.1387
 </t Afterbody XIL CP 34314 00070 38414 00070 38414 00070 41913 00358 45712 00558 5077 01020 545.56 01626 5416 02333 59641 01345 59641 01345 59641 01345
 ♦
 180*

 Forebody
 CP
 X/L

 X/L
 CP
 X/L

 187.1L
 0.2882
 419

 102.01
 0.80613
 591

 0.02
 0.7864
 571

 0.03
 0.0428
 571

 0.0419
 591
 1.25
 0.6419
 591

 0.125
 0.6419
 591
 1.25
 0.6419
 591

 0.125
 0.0417
 1.12
 0.6419
 591
 502

 0.125
 0.0417
 512
 0.6413
 501
 501

 3.13
 0.6413
 502
 610
 502
 503

 3.13
 0.6413
 502
 0.5337
 502
 502

 11250
 0.5114
 117.50
 0.5337
 503
 503
 (i) Continued and $\alpha = 1.0^{\circ}$ mfr = 0.67 Afterbody XL. CP 343.16 00174 384.19 00338 457.12 00588 567.77 0.1067 545.76 0.1667 545.76 0.1667 545.76 0.1667 545.61 0.1371 60607 0.3970 60907 0.3970 • = 0°
 Forebody
 Forebody

 XGL
 CP

 XGL
 CP

 XGL
 CP

 171.29
 0.9758

 171.29
 0.9718

 155.11
 0.9195

 105.57
 0.8270

 -105.57
 0.8270

 -105.57
 0.8270

 -1105.7
 0.8251

 -111.70
 0.8270

 -111.71
 0.8170

 -111.71
 0.8202

 -111.71
 0.9325

 -111.71
 0.9325

 -111.71
 0.9325

 -111.71
 0.9325

 -111.71
 0.9325

 -111.71
 0.9325

 -111.71
 0.9325

 -111.71
 0.9325

 -111.72
 0.9325

 -111.73
 0.95925

 -111.73
 0.95925

 -111.73
 0.95925

 -111.73
 0.95925

 -111.73
 0.95925

 -111.73
 0.95925

 -111.73
 0.95925

 -Afterbody XIL CP 343.16 0.0176 384.14 0.01366 419.13 0.03966 419.13 0.03966 419.13 0.03956 419.13 0.0357 543.76 0.10666 571.08 0.2364 583.74 0.2388 596.41 0.2487 609.07 0.4162 180° ♦ = 18
 Porebody
 X/L
 CP
 187.47
 0.9252
 -187.47
 0.9253
 -25657
 0.3548
 -0.0553
 0.3548
 -0.0533
 0.31
 -0.0533
 0.31
 -0.0533
 0.31
 -0.0533
 0.31
 -0.0533
 0.31
 -0.0533
 0.31
 -0.0533
 0.31
 0.1334
 -0.0533
 0.31
 -0.0533
 0.31
 -0.0533
 0.31
 0.0533
 0.1334
 0.133
 0.133
 0.133
 0.133
 0.133
 0.1400
 0.1817
 0.0535
 0.0536
 0.0547
 0.0603
 0.0547
 0.0603
 0.0547
 0.0603
 0.0547
 0.0603
 0.0547
 0.0603
 0.0547
 0.0603
 0.0547
 0.0603
 0.0603
 0.0603
 0.0603
 0.0603
 0.0603
 0.0603
 0.0603
 0.0603
 0.0603
 0.0603
 0.0603
 0.0603
 0.0603
 0.0603
 0.0603
 0.0604
 0.0604
 0.0604
 0.0604
 0.0604
 0.0604
 0.0604
 0.0604
 0.0604
 0.0604
 0.0604
 0.0604
 0.0604
 0.0604
 0.0604
 0.0604
 0.0604
 0.0604
 0.0604
 0.0604
 0.0604
 0.0604
 0.0604
 0.0604
 0.0604
 0.0604
 0.0604
 0.0604
 0.0604
 0.0604</li **off** = 0.67 and $\alpha = 0^{\circ}$ Afterbody X.L. CP 34:16 00005 384.14 00105 419.13 00346 419.13 00346 419.13 00346 5977 0.1062 545.76 0.1642 545.76 0.1643 566.41 0.13331 586.41 0.13331 586.41 0.13331 586.41 0.4338 • = 0°
 Forebody
 Forebody

 X/L
 CP

 X/L
 CP

 X/L
 0.9238

 1155.11
 0.9202

 1155.11
 0.9217

 1155.11
 0.9273

 1106.57
 0.8865

 -101.64
 0.8865

 -101.65
 0.8735

 -101.65
 0.8735

 -101.1
 0.8865

 -3.13.17
 0.4687

 -3.13.17
 0.4683

 -41.18
 0.4683

 -17.97
 0.3561

 -17.97
 0.3673

 -2.51.1
 0.3673

 -2.51.1
 0.3673

 -2.51.1
 0.3673

 -0.5267
 0.3139

 -1.1797
 0.3673

 -0.527
 0.5273

 0.511
 0.5263

 0.523
 0.5299

 0.523
 0.5299

 11250
 0.5291

 1250
 0.5291

 1250
 0.5291

 1250
 0.5291

 1250
 <t

TABLE VI. Continued

61

Afterbody XIL CP 343.16 00198 384.14 00198 384.14 00298 384.14 00353 447.12 00353 597.77 00381 597.78 00381 597.80 0038 586.41 02391 58 **\$ = 180°**
 Forebody

 Rorebody

 105.7
 0.01135

 106.57
 0.2009

 106.57
 0.2009

 10127
 0.0008

 -2025
 0.008

 -2025
 0.008

 -2025
 0.008

 -2025
 0.008

 -2020
 0.3474

 0.01
 0.023

 0.123
 0.1728

 0.123
 0.1728

 0.123
 0.1728

 1.3
 0.1298

 2.3.0
 0.1170

 3.13
 0.1298

 2.13
 0.1298

 3.75
 0.0083

 3.75
 0.0083

 3.75
 0.0083

 5.00
 0.02399

 117.50
 0.23349

 112.50
 0.23349

 112.50
 0.42354

 112.50
 0.3264

 2000
 0.3264

 2000
 0.3264

 2000
 0.3264

 2000
 0.3264

 2000
 0.32 ofr = 0.82 and $\alpha = 0^{\circ}$ • = 0
 Forebody
 Prepbody

 XM.
 CP

 118.511
 0.0373

 118.511
 0.0373

 119.511
 0.0371

 119.511
 0.0371

 119.511
 0.0371

 119.511
 0.0371

 110.511
 0.0371

 -9.356
 0.6870

 -9.317
 0.1312

 -9.317
 0.1312

 -131.76
 0.6870

 -131.76
 0.6870

 -131.76
 0.6870

 -131.76
 0.6870

 -131.76
 0.6870

 -131.76
 0.6870

 -131.76
 0.6870

 -131.70
 0.6870

 -11797
 0.6870

 -11797
 0.6100

 -11797
 0.0138

 0.0441
 1.1788

 0.110
 0.1101

 0.230
 0.1387

 0.311
 0.1387

 0.312
 0.1387

 0.313
 0.1387

 0.314
 0.1387

 0.3200< Afterbody XL CP 343.16 00248 384.14 00271 384.14 00214 384.14 00214 385.77 01127 445.78 01769 571.08 02495 571.08 02495 571.08 02495 586.41 01327 699.07 04224
 ♦
 180°

 Porebody
 Al

 XU
 CP
 XI

 XU
 CP
 XI

 XU
 CP
 XI

 Au
 CP
 XI

 -1837
 0796
 334.

 -1837
 07361
 344.

 -106.57
 0.71961
 344.

 -106.57
 0.01309
 419.

 -106.57
 0.01309
 343.

 -105.51
 0.01309
 343.

 -105.51
 0.01640
 571

 0.11
 0.11640
 571

 0.11
 0.3088
 545

 0.11
 0.3088
 545

 0.11
 0.3088
 547

 0.11
 0.3088
 547

 1.12
 0.30318
 67

 1.13
 0.3048
 547

 1.13
 0.3049
 547

 1.13
 0.3049
 547

 1.13
 0.3049
 547

 1.13
 0.3049
 547

 1.13</t **nfr = 0.74 and** $\alpha = 0^{\circ}$ Afterbody XL. CP 343,16 00127 344,14 00127 344,14 00223 344,14 00228 419,13 00422 447,12 00669 567,10 01157 551,08 02442 551,08 02442 566,11 0,2403 566,11 0 ა • = ტ
 Forebody

 XL
 CP

 113511
 0.8556

 113551
 0.8556

 113551
 0.8556

 113551
 0.8153

 113551
 0.8153

 113551
 0.8153

 113551
 0.8153

 113551
 0.8153

 113551
 0.8153

 11355
 0.8153

 -88.03
 0.8153

 -88.03
 0.8258

 -1137
 0.0428

 -1137
 0.0172

 -1137
 0.0172

 -1137
 0.0172

 -1137
 0.0172

 -1137
 0.0172

 -1137
 0.0172

 -1137
 0.0174

 -1137
 0.0174

 -1137
 0.0134

 -1137
 0.0134

 -1137
 0.0134

 -1137
 0.0134

 -11387
 0.0134

 -1137
 0.0348

 -1137
 0.0348

 -1131
 0.03548

 180° **mfr = 0.67 and** $\alpha = 3.1^{\circ}$ Afterbody XL CP 3431 00382 384.14 00382 384.14 00382 419.13 00422 419.13 00422 417.12 01094 545.76 01719 545.76 01719 545.76 01719 545.41 0.2279 586.41 0.2279 586.41 0.2279 586.41 0.2279 586.41 0.2279 • = 0°
 Forebody

 XIL
 CP

 18731
 0.2213

 18741
 0.2213

 115511
 0.2212

 1155511
 0.2212

 1155511
 0.2212

 1155511
 0.2212

 1155511
 0.2212

 1155511
 0.2212

 115551
 0.2303

 -41.85
 0.5100

 -41.85
 0.5100

 -41.85
 0.5100

 -41.85
 0.5100

 -41.85
 0.5100

 -41.85
 0.5100

 -41.85
 0.5100

 -41.85
 0.5100

 -5.13
 0.4035

 -11797
 0.4515

 -11797
 0.4516

 -11797
 0.4517

 -11797
 0.4517

 -11797
 0.4518

 -11797
 0.4518

 -11797
 0.4205

 -11797
 0.4205

 -11797
 0.4205

 -11797
 0.4405

 -11791
 0.4205

TABLE VI. Continued

(i) Continued

Continued	
BLE VI.	
TA	

(i) Concluded

mfr = 0.84 and α = 2.0°

			a.	1	2	20	8	3 8	23	5 5	ž																																		
		đ		5 -0.0077						4 0.2204																																			
	þ = 180°	٩	ХL	343.16	419.13	457.12	507.77	545.76	571.08	583.74	70.609																																		
°.	•	Forebody	G	0.0778	-0.8044	-0.1617	0.7142	1.1282	0.7437	0.4090	0.1971	0.1916	0.1579	0.1051	117170	0.0885	0.0405	0.0344	-0.0620	-0.1313	-0.1617	-0.1647	-0.1814	-0.2110	-0.3038	-0.3383	1955.0	03160	-0.2029	-0.1380	-0.0158														
nd α = 3.		Fore	XI	-187.47	-25.67	-10.27	-2.05	0.00	16.0	0.63	881	2.50	3.13	51.E	1.4	8.5 9	9.1	8.75	10:00	12.50	15.00	17.50	20.00	90.00 1	20.02	00.00 00.01	00.01	8.00	100.001	110.00	241.85														
mfr = 0.81 and α = 3.0°		ş	G	0.0439	0.0455	0.0630	0.1055	0.1510	0.2060	0.2394	0.3265																																		
цГ		Afterb		343.16 0 384.14 0						583.74 C																																			
	و ≢ ∉			0.2196 34						-0.8099 58 -0.8013 58			-0.5018	-0.2704	0.1032	0.8083	0.0087	1588	1.1856	0.8479	0.0269	-0.4091	-0.5619	-0.5612	-0.4451	-0.4929	AF02 0.	-0.4688	-0.5167	-0.3810	-0.4903	-0.5381	-0.5837	0,6030	-0.6472	-0.6302	-0.6418	-0.4827	-0.3795	-0.4536	-0.4522	11410	-0.1440	-0.0227	0.0138
		ê								-58.03 -0.8						50 FT C-			0.44 1.					1.88		3.13								6 6 6 6 6 6											_
			×	-187.47	-155.11	-130.84	<u>9</u>	ġ,	÷.	ŝ	-	Ņ	-23	; :	÷.	γ.,		• 4	Ŷ	J	Ŭ	J	-							• -	-	ž	-			. .	4	\$	35		æ ?		2 =	24	27
		body	6	0.0068	0.0376	0.0510	0.0951	0.1406	0.1935	0.2319	0.3370																																		
	5	Afterbody	XI	343.16 384.14	419.13	457.12	11.105	545.76	571.08	583.74 506.41	10.609																																		
	4 = 180°	ody	СЪ	0.0834	0.7603	-0.1047	0.7368	1.1010	0.6378	0.2950	0.1032	0.0458	0.0924	0.0402	C870'0	0.0000	01000	0.0752	0.1291	-0.1806	-0.2525	-0.2276	-0.2336	-0.2573	-0.3247	-0.3614	0092.0	-0.3162	-0.2110	-0.1387	0.0276														
mfr = 0.84 and α = 2.0°		Forebody		-187.47						0.63						0) (2) (2)										8.8 9.9			_	_															
0.84 and							45	16	¥	93 86		2																																	
Та		Afterbody		16 0.0326						74 0.2393																																			
	° 1		×	343.16						583.74 506.41			_								_	_	_								_		_				-	_	_						~
	•	Forebody	CP	0.1892	0.0679	-0.0782	-0.1761	-0.2648	-0.3027	-0.5305	0.7614	-0.6021	-0.5399	-0.3173	1/01.0	0.2220	0.0518	1.1320	1.1765	0.9182	0.0909	-0.2107	-0.3650	-0.3637	-0.3202	-0.3785	01111	511C.0-	-0.3706	-0.3136	-0.4603	-0.505	-0.5124	1066.0-	C402 0.	-0.5513	-0.4118	-0.4494	-0.4991	-0.5066	0.4496	-0.3334	-0.1441	0.0327	0.0223
		For	χŗ	187.47	-155.11	-130.84	-106.57	-90.39	-74.21	-58.03	-33.76	-25.67	-23.11	-17.97	/7:01-	51.0- 11.1-	50	060	4.0	0.00	0.31	0.63	1.25	1.88	2.50	3.13	5.5	2 8 V	6.25	7.50	8.75	10:00	12.50	15.00		30.00	40.00	50.00	60.00	70.00	80.00	00.00	00001	241.85	279.84
		y.	6	0.0145	0.0399	0.0510	1660.0	0.1410	0.1955	0.2353	LOLL																																		
		Merbod		343.16 0.0								>																																	
	a = 180°							_					8	88	64	8 8	3 5	2 8	3	5	65	76	16	54	15	28		5 C F	[43	80	22														
= 1.0°	-	Forebody		0.1085						53 0.2287						0.0000				50 -0.2991						00 -0.4014				_															
mfr = 0.83 and α = 1.0°		24	ž	-187.47	-25.67	-10.27	-2.05	0.0	0.31	0.63	881	2.50	3,13	3.75	16.4	00.5 V. V	19	518	10.00	2	15.00	17.50	20.	В.	50.00	80.09 80.09			100.001	110.00	241.85														
fr = 0.85		Afterbody	G	0.0209	0.0406	0.0614	0.1012	0.1510	0.2022	0.2370	C0/770																																		
8	5		XI	343.16	419.13	457.12	507.77	545.76	571.08	583.74	10 000	10.000																																	
	0 = 0		G	0.1703	0.0132	0.0953	-0.1962	-0.2601	-0.3152	-0.4197	1002.07	-0.6451	-0.5688	-0.3525	0.0668	0.4816	00100	11335	1.1846	0.9658	0.2473	-0.1101	-0.2354	-0.2489	-0.2423	-0.3116	7077.0-	9782.0-	0.2839	-0.2585	-0.3976	-0.3762	-0.4032	-0.5188	0.4801	1001 0-	-0.4288	-0.4675	-0.4381	-0.4788	0.4099	-0.3469	-0.1510	<i>ccm</i> or	-0.0133
		Forebody	XL	-187.47	-155.11					-58.03					-10.27	-5.13		060	0.44	00.0	0.31		1.25	1.88	2.50	3.13	2	15.4 10.5	6.25	7.50	8.75	10.00	12.50	15.00		30.02	40.00	50.00	60.09	70.00	80:00	88	00.001	241.85	279.84
				•	. ,	•	•																																						

Afterbody X/L CP 343.16 -0.0020 344.14 -0.0070 344.14 -0.0019 345.17 0.0019 567.17 0.0172 545.76 0.0172 545.76 0.0172 545.76 0.0152 545.10 0.0152 545.10 0.0152 545.10 0.0152 545.10 0.0152 545.10 0.0152 545.10 0.0152 545.10 0.0259 555.10 0.0259 555.10000000000000000000 φ = 180°
 Rorebody
 Protebody

 106.57
 1.1186

 -105.567
 1.0002

 -105.57
 1.0002

 -105.57
 1.0002

 -105.71
 1.1083

 -105.71
 1.1083

 -105.71
 1.1083

 -105.71
 1.1083

 0.00
 0.1419

 0.13
 -0.8799

 0.13
 -0.8799

 0.13
 -1.2348

 1.13
 -1.3018

 1.13
 -1.3018

 1.13
 -1.3018

 1.13
 -1.3018

 1.13
 -1.3018

 1.13
 -1.3018

 1.13
 -1.3018

 1.13
 -1.2018

 1.13
 -1.2018

 1.23
 -1.2018

 1.23
 -1.2018

 1.23
 -1.2018

 1.23
 -1.2018

 1.23
 -1.2018

 1.23
 -1.2018

 1.23
 -1.2018

 1.23
 -1.2018

 1.23
 ufr = 0.39 and $\alpha = 0^{\circ}$ Afterbody CL CP 3.16 -00124 13 -00004 13 -00005 10 -0005 1 XCL 343.16 384.14 457.12 597.77 545.76 541.08 541.08 571.08 571.08 571.08 571.08 571.08 571.08 571.08 571.08 °0 = ¢
 Forebody

 Xu.
 CP

 197.1
 1.1203

 197.1
 1.1203

 197.1
 1.1203

 197.1
 1.1203

 197.1
 1.1203

 197.1
 1.1203

 197.1
 1.1203

 197.1
 1.1203

 197.1
 1.1203

 197.6
 1.0303

 90.3
 1.0313

 10.1
 1.0303

 10.1
 1.0313

 11.1
 1.0313

 11.1
 1.0313

 11.1
 1.0313

 11.1
 1.0313

 11.1
 1.0313

 11.1
 1.0313

 11.1
 1.0313

 11.1
 1.0313

 11.1
 1.0313

 11.1
 1.0313

 11.1
 1.11720

 11.1
 1.11720

 11.1
 1.11720

 11.1
 1.11720

 11.1
 1.11720

 11.1
 1.11122

 11.1
 Afterbody XIL CP 343.16 -0.0093 384.14 -0.0137 419.13 -0.0137 419.13 -0.0137 567.77 0.0035 567.77 0.0035 567.77 0.0035 567.77 0.0035 567.71 0.0035 567.71 0.0035 567.71 0.0035 567.70 0.0035 566.41 0.1275 609.07 0.1881 180° bady CP CP CP 111527 111528 1125888 1125888 1125888 11258888 11258888 1125888 1125888 1125888 1125888 1125888 11258888 11 (j) M = 0.87**mfr = 0.31 and** $\alpha = 0^{\circ}$ XIL 343.16 384.14 457.12 5571.08 583.74 583.74 596.41 596.41 •= 0-Forebody 1.29 11592 5.51 11592 5.51 11592 5.53 11592 5.53 11592 5.53 11592 5.53 11592 5.53 11595 5.53 11595 5.53 11505 5.54 10882 5.56 10882 5.56 10882 5.56 10882 5.56 10882 5.57 10982 5.51 1106 5 XGL XGL 111123 111123 111123 111123 111123 111123 111123 111123 1123 112 Afterbody XIL CP 343.16 0.0092 384.14 0.0023 384.14 0.0023 384.14 0.0023 419.13 0.0196 597.7 0.00150 545.76 0.00150 545.76 0.00131 545.74 0.00480 586.74 0.00791 696.07 0.1347 °08 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 4 = 1
 mfr = 0.27 and $\alpha = 0^{\circ}$ Afterbody XIL CP 343.16 00196 344.14 002196 344.14 002191 419.13 0.0247 419.13 0.0247 419.13 0.0027 545.76 0.0029 545.76 0.0023 555.76 0.0023 **•** = 0°
 Forebody

 XII.
 CP

 18731.
 11646

 18731.
 11646

 195511.
 11656

 195511.
 11656

 195511.
 11656

 195511.
 11656

 195511.
 11656

 106557
 111354

 -933.76
 11234

 -33.76
 11234

 -33.76
 11234

 -33.76
 11234

 -33.76
 11234

 -33.76
 11234

 -33.76
 11234

 -33.76
 11234

 -33.17
 11245

 -11297
 11455

 -33.11
 11455

 -11297
 11455

 -11291
 11364

 -33.13
 1.5303

 -11291
 1.1612

 -1231
 1.1364

 -1305
 1.1364

 -131
 1.1364

 -1323
 1.1384

 -1323
 1.1384

 -1333
 1.5333

FABLE VI. Continued

(j) Continued

		ارو	0.00%	0.0132	0.0278	174010	0.1435	02120	0.2611	0.3149	0.3872																																					
		Ę.																																														
	4 = 180°	~	X/L 343.16		419.13						-	_			_	. .	_				_										-	~																
0	÷	Forebody	CP 10405	0.9804	0.7433		0.485.4	0.4318	0.8658	1.0927	-1.1437	-1.1297	-1.1022	-1.0618	4/ MO 1-	-1.0259		-0.9631	1866.0-	8016.0-		01040	2018.0-	100.0	1907.0-	SEUC OF	0.670	2017.0-		0.2294	-0.1307	-0.0316																
= nd a		For	X/L -187.47	-106.57	-25.67	17:01-	CO 7-	12.0	0.63	1.25	1.88	2.50	3.13	3.75	15.4	3,5	67.0	1.50	8.75	10.01	00.21			0.07	895	000	20.00	00.08	00.00	100.00	110.00	241.85																
mfr = 0.54 and $\alpha = 0^\circ$		dy	CP -0011	0.0109	0.0265	20000	0.1451	0.7115	0.2537	0.3088	0.3781																																					
Ē		terb	X1. 143.16		419.13 0																																											
	• •		CP LOAD		1.0375 41							0.7429	1401	0.7740	0.8892	1.0710		1.1952	1.173	01/01	0.6769	907000	01060		-1 1243	1 0777	10696	222	110	06660-	-0.9546	-0.9383	-0.9051	-0.9032	-0.8973	-0.8716	-0.8591	-0.7732	-0.7370	-0.05 /0	-0.6924	-0.0649	-0.4007	7736.0	01169	0.0142	0.0263	
		ą.																	_	4) 4) 4)																					0000 0000 0000							
			X/L 187.47	-171.29	-155.11	100.64				4	EE-	-25	-23	÷:	- -	÷.	., ·	ς ι ,	ų.	γ.						• •			, -	. •	,-	~	ž	2		-	2	× :	4 8	F 1	88	< 8	68		: Ξ	24	5.7	
		body	CP	-0.0034	0.0131	0.0245	7/00/0	0.1968	0.2371	0.2974	0.3781																																					
		Afterbody	NT R	384.14	419.13	21.164	11.100	100	581.74	596.41	609.07																																					
	\$ = 180°	dy	CP 0208	1.0216	0.8127	C0+670	1.2004	0.410.9	0,8770	-1.0948	-1.1272	-1.1274	-1.1100	-1.0578	-1.0141	-1.0065	606.6.0-	-0.8831	-0.8845	0.8239	C7C2/0-	0678.0-	1078.0-	0.6610	21090	100.01	0.6160	20,0270	22000	-0.5084	-0.1559	-0.0257																
α = 2.0°		Forebody	X1.		-	-	50.2															8.5		0.07																								
mfr = 0.49 and α = 2.0°							8 8			. 12	23																																					
=fr - (terbe	CP CP				1 U.U760																																									
	ъ в	z	х Х	_		-	11.10C 0					_		~	_	<i></i>	~	~		~ •												_		2	_		<u>.</u>			N (. .	~ .	~ ~	• •		- c	, _	
	·	Forebody	6	1.0747	1.0709	1.0534	0.0280	9040 0	0014:0	0.8971	0.8846	0.8749	0.8821	0.9197			1.1948						140																				-0.8002					
		For	X/L	-171.29	-155.11	-130.84	-100.57		-78.03	41.85	-33.76	-25.67	-23.11	-17.97	-10.27	-5.13	4C.E-	-2.05	6.9	14-0- 14-0-0	0.00	15.0	0.0	9	8. C		21.0	C2 7		529	1.50	8.75	10.01	12.50	15.00	17.50	20.00	30:00	40.00	B:05	60.09 20 20	V0.07	00.08			24185	279.84	
		dy	CP CP	9400	0.0188	0.0289	1690.0	01947	2101.0	0.2844	0.3570																																					
		erb	XI XI	Ū			507.77 C																																									
	\$ = 180°		CP Defe				1.1995 50						-1.2065	-1.1701	-1.1810	-1.1389	-1:0941	-1.0620	-1.0428	-1.0046		C266-0-	10.070	16/6/1-	0.10415	141.0	-0.76/0	0.7741	1.1.1.0	1070.01	-0.2103	-0.0273																
α=0°		reb.					-2.05 1.1																	10- 00-02							_																	
$mfr = 0.49 and \alpha = 0^{\circ}$			-				-						-	•	•	•1	0	-		2:	3 :	4		4 7	* 5	4 1	57	< 3	89		Ξ	24																
mfr = 0		Afterbody	CP CP	0.0029	0.0143	0.0334	0.0720	0771.0	0.7267	0.2789	0.3467																																					
	°0°		УГ ХГ	384.14	419.13	457.12	501.77	0/.040	80.17 C	596.41	609.07																																					
	•		CP 1 CP	1.0715	1.0677	1.0521	1.0245	6166.0	61050	0.8776	0.8588	0.8424	0.8492	0.8724	0.9927	1.1206	1.1810	1.2005	1.1345	1.0034	0.2941	-0.6717	-1.0252	2011	C617.1-	C661.1-	C0/11-1		1	1000	1 0578	-1.0239	-1.0418	-0.9689	-0.9855	1679.0-	-0.9589	-0.8299	-0.8229	-0.7583	-0.7529	-0.7518	-0.7630	8+C/-0-	0.5035	0.040	2470.0-	
		Fore	TXT.	-171.29	-155.11	-130.84	-106.57		14.41	41.85	-33.76	-25.67	-23.11	-17.97	-10.27	-5.13	1 .5	-2.05	6.0	4	000	0.31	0.63	2	2 CO	2	5.15		4.4	00:0 9 5 9	150	8.75	10.00	12.50	15.00	17.50	20:00	30.00	40.00	50.00	60.00	70.00	80.00	00.06	00.001	00.011	210.142	

(j) Continued

			>	<u>م</u>	1000	132	0.0623	165		127	5	58	06																																			
			ar þ										0.4430																																			
		e = 180°	<	N,	384 14						583.74	596.41	609.00																																			
8		•	Porebody	6. C	1904-0	0.2649	0.4455	1.0361	0.8978	0.2068	-0.2591	0.3782	-0.1ZU2	1902 0.	0.2557	1345.0-	-0.2532	-0.2101	-0.2664	-0.3093	-0.3538	-0.3383	-0.4381	-0.4884	-0.4693	-0.3559	-0.4259	-0.4500	-0.4923	-0.5120	-0.5422	-0.3096	007170-															
nd a = 2			Por	X	106.57	-25.67	-10.27	-2.05	000	0.31	(i i i i i i i i i i i i i i i i i i i	1.25	8.5		3.75	4.17	5.00	6.25	7.50	8.75	10:00	12.50	15.00	17.50	20.00	30.00	50.00	60.00	70.00	80.00	00.06		241.85															
mfr = 0.68 and α = 2.0°			ě č	1000	0.0367	0.0513	0.0750	0.1220	0.1849	0.2527	5067	0.4470	201																																			
-La		•	Afterbody							0 2011/0		0 14.060																																				
	:	ື =												29	8	8	65	24	56	ŝ	66	33	8	73	57	8	5	2 9	ç :	2 6	¢ F	2 2	8	33	8	x :	2 5	2 2	2 5		=		1	\$	5	0		
			Forebody					57 0.8408														0 0.6235						3 -0.9422							0.7668													-0.0218
		•		187 A.1	-171.29	-155.11	-130.84	106.57		17'6/-	39.14	C0.1	-25.67	-23.11	-17.97	-10.27	-5.13	-3.34	-2.05	96.Q	4	0.0	0.31	0.63	1.25	1.88	2.5		C	1		1.50	8.75	10.00	12.50	15.00		10.02	40.04	50.00	60.00	70.00	80.00	00:06	100.00	110.00	241.85	279.84
			20	0.0218	0.0280	0.0458	0.0662	0.1171	01010	0 3060	0 3627	0.4306																																				
	٤		NA.	343.16	384.14	419.13		27.100																																								
	A - 19	- 19() - 19()		0.9401				0.7676						-0.6922	-0.5711	-0.5431	-0.4824	-0.4143	4207	-0.4570	-0.4523	-0.4910	-0.5617	-0.5851	0.5804	-0.5563	6865.0-	19619	0.600	0.4756	-0.2415	0.1166	-0.0321															
ια = (°		Porshody	XI.			-25.67 0																		17.50 -0.									241.85 -0.															
mfr = 0.68 and α = 0°							•		. –		2										-				5		r i	57	< 8	58	ğ	Ξ	241															
mfr -		Afterhody	6	C		0.0426			-																																							
	ی ۳	2	XI	343.16	384.14	419.13	21.1C+	545.76	571.08	583.74	596.41	609.07																																				
	-	Forebodv	5	0.9385	0.9434	0.9341	0.8416	0.7749	0.7021	0.6001	0.4895	0.4160	0.3413	0.3159	0.3531	1655.0	0.8285	1086.0	1.1028	1.1309	6/17	0.000	0.000	1406.0	107/ 0-	0.6050	00.00	0.5509	-0.5116	-0.5065	-0.5298	-0.4685	-0.4683	-0.4746	20120	0.6004	-0.5986	-0.5762	0.5701	-0.5324	-0.5712	CIIC-0-	10,000	01000	61770	00351	1610.0	
		For	ž	-187.47	-171.29	11.001-	10, 10	-90.39	-74.21	-58.03	41.85	-33.76	-25.67	-23.11	-17.97	17.01-	ç.	1 1 1 1	6 8 7		\$	3	5	0.03	(7.1 1	8. S	3 =	3.75	4.37	5.00	6.25	7.50	8.75	80	82						00.00						279.84	
			_	11		= 5	: 1	. 2	2	2	•	6																																				
		Afterbody		Ξ.		0.0411		6 0.1665																																								
	\$ = 180°		ХЛ			457 17						609:07																																				
సి	٠	Forebody	G	0.9911	0.9143	C10C-0	1671.1	0.6280	-0.1911	-0.6948	-0.9037	-0.9765	1096 (0-	-0.9155	1806.0-		0.6040	D 74BA	0.765		1902.0	01010	0.000	-0.6716	0.6147	-0.6082	-0.6089	-0.5935	-0.6103	-0.6039	-0.2635	-0.1272	-0.0323															
and a =		Poi	XL	-187.47	10.001-	-10.27	-2.05	0.00	0.31	0.63	1.25	1.88	2.50		() f	5	20.0	95	5.8		5	8	17 50	20.00	30.00	S0.00	60.00	70.00	80.00	90:06	00.001	110.00	241.85															
mfr = 0.61 and $\alpha = 0^{\circ}$		ody	CP CP	1600'0	0.0240	0.0554	0.1044	0.1678	0.2345	0.2818	0.3362	0.4082																																				
Ĩ	c	Afterbody			41013							609.07 0																																				
	•0 = ♦				0.08789 0								0.5601	21cc.0	1242.0	0 9658	1.0745	624	1.1905	1294	0.5801	175	261	263	624	592	106	2 0	<u>8</u> 0	562	210	98 S	60 E	3 2	2	375	122	33	t a	5	3 19	8	4	9	75	15	33	
		Ę.																													25 -0.7616								00 0 00014						0 -0.1075		4 -0.0233	
			×	-187.47	11 331-	-130.84	-106.57	-90.39	-74.21	-58.03	41.85	-33.76	10.62-	11.62-	-10.27	-	16.6-	-2.05	06.0-	44.0	õ	0.31	õ	-	1	2	e.	ň	4.37	8	6.25		C/-9	12.50	15.00	17.50	20.00	90.00 50.00	8.8	8.8	00.07	80.00	90:06	100.00	110.00	241.85	279.8	

(j) Concluded

		body	G	0.0267	0000	0.0400	0.1085	0.1571	0.2142	0.2536	0.2990	0.3564																																						
	80°	Afterbody	XI	343.16	384.14	457 17	11.108	545.76	571.08	583.74	596.41	609.07																																						
\$	• = 180°	Forebody	G	0.1364	-0.1786	2840.0	0.9043	1.0201	0.4342	0.0302	-0.1628	-0.0789	-0.1549	-0.1007	-0.1128	-0.1351	-0.1523	-0.1014	1161.0-	-0.2543	-0.2511	-0.3037	-0.4258	-0.4265	-0.4060	-0.3306	-0.4269	-0.4434	-0.4836	-0.5084	-0.5095	-0.2069	-0.1071	-0.0141																
send α = (Fore	ХI	-187.47	106.57	10.62-	2.05	000	0.31	0.63	1.25	1.88	2.50	3.13	3.75	4.37	5.00	6.25	7.50	8.75	10.00	12.50	15.00	17.50	20.00	30.00	50.00	60:09	70.00	80.00	90.06	100.00	110.00	241.85																
mfr = 0.84 and $\alpha = 0^{\circ}$		body	G	0.0189	0.0309	0.045A	0.1062	0.1581	0.2123	0.2477	0.2896	0.3447																																						
-	ۍ ا	Afterbody	Хľ	343.16	384.14	CI /214	11.105	545.76	571.08	583.74	596.41	609.07																																						
	•0 = ♦	Forebody	C.	0.1376	0.0677	10000	0161.0-	0.2437	-0.2780	-0.3611	-0.8392	-0.7639	-0.6263	-0.5487	-0.3421	0.0870	0.4660	0.7075	0.8935	1.1245	1.1883	0.9932	0.3268	0.0543	-0.1232	-0.0829	-0.0842	-0.1660	-0.1082	-0.1149	-0.1660	-0.2022	-0.1852	-0.2905	-0.2962	-0.3407	-0.4241	-0.4232	-0.4151	-0.3503	-0.3806	-0.4219	-0.4402	-0.4998	-0.5189	-0.5373	-0.2161	-0.1123	-0.0201	-0.0089
		Fore	XL	-187.47	-171.29		106.57	66.06-	-74.21	-58.03	41.85	-33.76	-25.67	-23.11	-17.97	-10.27	-5.13	-3.34	-2.05	0.0	4 4	0.00	0.31	0.63	1.25	1.88	2.50	3.13	3.75	4.37	5.00	6.25	7.50	8.75	10.00	12.50	15.00	17.50	20.00	30.00	40.00	50.00	60.09	70.00	80:00	90.06	100:00	110.00	241.85	279.84
		Afterbody	C.	0.0312	0.0341	01000	0 1266	0.1921	0.2638	0.3164	0.3725	0.4416																																						
	-08	After	ž	343.16	384.14	419.15	11.00	545.76	571.08	583.74	596.41	609.07																																						
•	a 180°	Forebody	CP.	0.8784	0.7545	01100	10187	0.9150	0.2086	-0.1848	-0.4474	-0.3909	-0.3975	-0.3493	-0.2919	-0.3291	0.2578	-0.2522	-0.3081	-0.3658	-0.4144	-0.4669	-0.4963	-0.5243	-0.5082	-0.4927	-0.4589	-0.4521	-0.4916	-0.5247	-0.5347	-0.2333	-0.1191	-0.0165																
snd α = 0		Fore	XI	-187.47	-106.57	10.01	50 67	000	0.31	0.63	1.25	1.88	2.50	3.13	3.75	4.37	5.00	6.25	7.50	8.75	10.00	12.50	15.00	17.50	20.00	30.00	50.00	60.09	70.00	80.00	90:06	100.00	110.00	241.85																
mfr = 0.74 and $\alpha = 0^{\circ}$		Afterbody	6	0.0176	0.0335	1860.0	0.1275	0.1928	0.2628	0.3095	0.3647	0.4273																																						
	°0°		XL	343.16	384.14	451.13	11.005	\$45.76	571.08	583.74	596.41	609.07																																						
	•	•	5	0.8827	0.8817	0.6766	0.7550	0.6725	0.5767	0.4368	0.2666	0.1706	0.0360	0.0213	0.0818	0.3342	0.6780	0.8545	1.0119	1.1772	1.1997	0.9008	0.1375	-0.3081	-0.3561	-0.3484	-0.3315	-0.3618	-0.3030	-0.2768	-0.3056	-0.3084	-0.2547	-0.4050	-0.4226	-0.4584	-0.4775	-0.5102	-0.4677	-0.4658	-0.4651	-0.4283	-0.4625	-0.4927	-0.5236	-0.5390	-0.2676	1611.0-	-0.0191	-0.0060
		Forebody	ХL	-187.47	-171.29	11.001	10.001	-90.39	-74.21	-58.03	41.85	-33.76	-25.67	-23.11	-17.97	-10.27	-5.13	-3.34	-2.05	06'0-	44.0	0.00	0.31	0.63	1.25	1.88	2.50	3.13	3.75	4.37	5.00	6.25	7.50	8.75	10.00	12.50	15.00	17.50	20:00	30.00	40.00	50.00	60.09	70.00	80.00	90.00	100.00	110.00	241.85	279.84

Afterbody XI. CP 343.16 00163 384.14 000163 449.13 00167 449.13 00167 449.13 00239 5677 00239 5677 00231 545.76 00321 545.77 00321 545.76 00321 545.77 00321 545.76 00321 545.76 00321 545.76 00321 545.76 00321 545.76 00321 545.76 00321 545.76 00321 545.76 00321 545.77 00321 545.76 00321 545.77 00321 555.77 00321 555.77 00321 555.77 00321 555.77 00321 555.77 00321 555.77 00321 555. **20°**
 Forebody

 Rorebody

 X.L.
 CP

 108.57
 1.11321

 -108.57
 1.11321

 -108.57
 1.11321

 -200
 1.11847

 -102.7
 1.1248

 -200
 0.1658

 0.00
 0.1658

 0.13
 -3114

 1.8
 -1.2931

 1.8
 -1.2931

 1.8
 -1.2331

 1.8
 -1.2331

 3.13
 -1.2136

 1.13
 -1.2305

 3.13
 -1.2305

 3.13
 -1.2305

 3.13
 -1.2305

 5.00
 -1.0116

 7.50
 -1.1063

 8.7
 -1.1308

 8.7
 -1.1308

 8.7.5
 -1.0304

 9.000
 -0.0426

 9.000
 -0.0241

 9.000
 -0.0241

 9.000
 -0.0241

 9.000
 -0.0241

 9.000
 -0.0241

 9.000
 nfr = 0.89 and $\alpha = 0^{\circ}$ Afterbody XI. CP 343.16 0.0044 344.14 0.00044 384.14 0.00054 49.13 0.0116 457.12 0.0251 557.7 0.0569 557.7 0.0569 557.7 0.0569 557.7 0.0569 557.8 0.1481 556.4 0.2306 609.07 0.2306 °0 = ¢
 Forebody

 Torebody

 TAL
 CP

 113511
 11320

 113511
 11320

 113511
 11320

 113511
 11320

 113511
 11320

 113511
 11320

 113511
 11320

 113521
 11320

 1100557
 11000

 58103
 10003

 4183
 10003

 4183
 10048

 -11797
 10048

 -11797
 10048

 -11291
 10048

 -11291
 10048

 -11291
 10189

 -11291
 10189

 -11291
 10191

 0.01
 0.1001

 0.031
 0.1091

 0.04
 0.866

 0.05
 1.1281

 0.1236
 1.1291

 0.1236
 1.1291

 0.1236
 1.1291

 0.1236
 1.1291

 0.1237
 1.2335

 1.233
 1.233 **mfr = 0.32 and** $\alpha = 0^{\circ}$ Afterbody X/L CP 343.16 00037 384.14 000037 384.14 000004 419.13 0.0006 897.77 0.0251 545.76 00532 545.77 00532 545.76 00532 545.76 00532 545.77 00532 545.76 00532 545.77 00532 545.76 00532 545.76 00532 545.76 00532 545.76 00532 545.76 00532 545.76 00532 545.76 00532 545.76 00532 545.76 00532 545.76 00532 545.77 00532 545.76 00532 545.77 00532 545.76 00532 545.77 00532 545.76 00532 545.76 00532 545.76 00532 545.76 00532 545.76 00532 545.76 00532 545.77 00532 545.76 00532 545.76 00532 545.76 00532 545.76 00532 545.76 00532 545.76 00532 545.76 00532 545.76 00532 545.76 00532 545.76 00532 555.70 00550 555.70 00550 555.70 00550 555.70 00550 555.70 00550 555.70 00550 555.70 00550 555.70 0055.70 00550 555.70 00550 555.70 005500000000000000000 • • 0
 Forebody

 Forebody

 X1L
 CP

 115511
 11608

 115511
 11608

 115511
 11608

 115511
 11608

 115511
 11608

 115511
 11608

 115511
 11608

 110057
 11420

 -90.39
 114207

 -11207
 11207

 -11207
 11307

 -11207
 11307

 -11207
 11307

 -11207
 11307

 -11307
 11307

 -11307
 11307

 -11307
 11307

 -11307
 11307

 -11307
 11307

 -11307
 11307

 -1131
 11307

 -1131
 11307

 -1131
 11307

 -1131
 11307

 -1131
 11307

 -1131
 11307

 -1131
 11307

 -1131
 11306

 -11314
 11314</t 08 ♦ = 11 Forebody X/L CP -187.47 1.1789 -106.57 1.1657 -106.57 1.1657 -106.77 1.1657 -2.05 1.10974 0.00 -0.1047 0.00 -0.1047 0.01 -0.1047 0.01 -0.1047 1.25 -1.1010 0.01 -1.1047 1.25 -1.1010 0.01 -1.1047 1.25 -1.1047 1.20 -1.1047 1.20 -1.1042 1.20 -1.2022 1.200 -0.12382 1.200 -0.12382 1.200 -0.12382 1.200 -0.12382 1.200 -0.8758 8.0000 -0.8758 8.0000 -0.87 **mfr = 0.27 and** $\alpha = 0^{\circ}$ Afterbody X/L CP 343.16 0.0112 344.14 0.0003 344.14 0.0002 345.70 0.0023 567.71 0.0002 567.71 0.0023 567.71 0.0023 567.71 0.0026 566.41 0.1076 609.07 0.1670 **•** = 0° body CP CP (1778) (1778) (1778) (1778) (1778) (1778) (1775) (1775) (1714 Parety 1874 - 1874 - 1874 - 19511 - 19511 - 19511 - 19511 - 19511 - 1951 - 1955 - 1956

[ABLE VI. Continued

= 0.89

(k) M :

ů	= 180°	Forebody Afterbody	UT 243.16	0.9993 384.14 0.0200	457.12	1.2108 507.77	0.5324 545.76	-0.3653 571.08	-0.8017 583.74 0.2769	14/06C 0970/1-	10.200 10201-							-0.8696				-0.8349							0400.0-																
mfr = 0.54 and $\alpha = 0^{\circ}$		For	-187.47	-106.57	-10.27	-2.05	0:00	0.31	0.63		2.50	3.13	3.75	4.37	5.00	6.25	7.50	8.75	10.00	12.50	15.00	17.50	20.00	30.00	50:00	80.09	20:02	80.08			241.85														
mfr = 0.6		Afterbody		0.0206			0.1610		0.2703		-																																		
	♦ = ()°	Ÿ,		1 384.14					583.74				_	_	•	-	•	~	~	~	•	5	•	_	•		_		• •					~		•	~	-	~	•		~	~	~ .	
		Ą		1.0589					0.8701																			1186.0- /				0.8483							_	_					-0.0044
		8 X	-187.47	-171.29	-130.84	-106.57	90.09-	-74.21	-58.03		01.00- 13.56-	-23.11	T9.71-	-10.27	-5.13	-3.34	-2.05	06.0-	-0.44	00:0	0.31	0.63	1.25	1.88	2.50	3.13	3.75	15.4	00.0 20.2	C7:0	57.8	10.00	12.50	15.00	17.50	20.00	30.00	40.00	50.00	60.00	20.02	80.00	00.06	00.001	10.01
		Afterbody	-0.0070	0.0075	0.0377	0.0823	0.1392	0.2070	0.2580	2020.0																																			
		After	343.16 343.16	384.14	457.12	507.77	545.76	571.08	583.74	14:040	10.200																																		
•1	• = 180°	Forebody	1.0827	1.0372	0.9588	1.2127	0.5035	-0.3565	-0.7713	- 0000	4960-1-	-1.0045	-0.9757	-0.9568	-0.9082	-0.8733	-0.8469	-0.8407	-0.8101	-0.7812	-0.7937	-0.7579	-0.7450	-0.6220	-0.6008	0.3900	0.5904	0.6388	0.650.0-	-0.6774	10000														
mfr = 0.49 and $\alpha = 2.1^{\circ}$		Fore	-187.47	-106.57	-10.27	-2.05	000	0.31	0.63	9 8	2 (0	3.13	3.75	4.37	5.00	6.25	7.50	8.75	10.00	12.50	15.00	17.50	20:00	30.00	50.00	80.09	70.00	80.08			241.85														
r = 0.49 a		dy Sec	0.0333	0.0276	0.0521	0.0917	0.1410	0.1954	0.2319	1612.0	0K7C-0																																		
ç		Afterbody	ALL 343.16	384.14			\$45.76	571.08	583.74	14-040	10.600																																		
	• = () ₀	ody 20	1.0878	1.0875		1.0431	1.0167	0.9880	0.9497	C14:0	0.8961	0.8995	0.9342	1.0549	1.1614	1.2043	1.2065	1.1159	0.9700	0.2002	-0.7480	-1.0475	-1.2076	-1.2169	-1.2138	-1.2086	·1.1996	-1.1807	1 1706	000011-	-1.001	-1.0683	-1.0525	·1.0273	-1.0460	-1.0048	-0.9462	-0.8711	-0.8378	-0.8399	-0.8351	-0.8352	-0.8270	0.8268	0.5330
		Forebody	-187.47	-171.29	130.84	-106.57	-90.39	-74.21	-58.03	20.14	01.00	-23.11	19.71-	-10.27	-5.13	-3.34	-2.05	06:0-	4.0-	00.00								4.31									30.00				00:00	80.00	90:06 52 55	00:001	110.00
		ody 1	0.0198	0.0167	0.0418	0.0840	0.1378	0.2026	0.2514	COUC:0	<i>ciic</i> .0																																		
	\$	Afterbody	343.16	384.14	457.12	507.77	545.76	\$71.08	583.74	14-040	10.404																																		
	\$ = 180°	уð С	1.0847							6071-1-		-1.1264	-1.0899	-1.0814	0.0540	-1.0137	1.0032	-0.9686	-0.9478	0.9014	0.9241	-0.9248	-0.9133	-0.7882	0.7415	-0.7161	-0.7171	-0.7227	-0.7471	0.7014	0.0014														
ud α = 0°		Forebody	-187.47		-10.27				0.63																	80.09		- 808 808			- 00.011														
mfr = 0.49 and $\alpha = 0^{\circ}$		dy S	0003	0.0142	0.0450	0.0872	0.1416	0.2029	0.2460	0.2201	1600																																		
Ju		terbo	343.16 0							0 14:060																																			
	•0 ≈ ♦		1.0855									0.8655	0.8961	1.0020	1.1439	1.1909	1.2113	1.1509	1.0346	0.3473	-0.6184	-0.9669	-1.1304	-1.1447	-1.1242	-1.1205	-1.0957	-1.0929		-1.0194	0.0060	-0.9807	-0.9372	-0.9312	1466-0-	-0.9075	-0.8094	-0.7549	-0.7353	-0.7305	-0.7203	-0.7382	-0.7189	-0.7618	-0.7034
		۰ و	-			-	-	0	00	ه د	<u>ہ</u> د	, ¢	-17.97 0															4.37																	110.00

(k) Continued

Afterbody X/L CP 343.16 0.0403 384.19.13 0.0403 419.13 0.0647 457.12 0.0870 457.10 0.01433 557.70 0.1433 557.70 0.1433 557.70 0.21374 553.74 0.3374 553.74 0.3374 553.74 0.3374 553.74 0.3374 553.74 0.3374 553.74 0.3374 553.74 0.3374 553.74 0.3374 553.77 0.4600 **081** = **0**
 Rorebody
 Rorebody

 XAL
 CP

 198.37
 0.8944

 106.57
 0.8944

 -35.67
 0.8944

 -35.67
 0.8941

 -20.01
 0.2371

 -20.01
 0.2371

 -2.01
 0.2371

 0.01
 0.2247

 0.01
 0.2247

 0.13
 0.2247

 0.13
 0.2247

 0.13
 0.2247

 1.18
 0.1229

 3.13
 0.2275

 3.13
 0.2286

 3.13
 0.2286

 3.13
 0.2286

 3.13
 0.2286

 3.13
 0.2286

 3.13
 0.2286

 3.13
 0.2286

 5.00
 0.2386

 6.25
 0.1977

 8.75
 0.2386

 112.50
 0.4897

 112.50
 0.4897

 5000
 0.4895

 6000
 0.5497

 80000
 0.5497

 of r = 0.74 and $\alpha = 0^{\circ}$ Afterbody VL CP 3.16 0.0299 13 0.0038 13 0.0038 13 0.0438 13 0.0438 13 0.0438 13 0.0438 13 0.0438 0.0431 0.2817 0.2817 0.4481 X/L 343.16 343.16 384.14 419.13 457.12 507.77 545.76 571.08 583.74 596.41 609.07 • = 0°
 Forebody

 Xu.
 CP

 135.11
 0.891

 135.11
 0.891

 135.11
 0.891

 135.11
 0.891

 135.11
 0.891

 135.11
 0.891

 135.11
 0.891

 135.11
 0.891

 -105.12
 0.891

 -105.13
 0.891

 -105.14
 0.891

 -105.15
 0.891

 -10.81
 0.891

 -1179
 0.689

 -1179
 0.681

 -1179
 0.681

 -1179
 0.681

 -1179
 0.681

 -1179
 0.681

 -1179
 0.681

 -1179
 0.632

 0.411
 0.0321

 0.411
 0.0332

 0.441
 0.1182

 0.441
 0.1132

 0.441
 0.1236

 0.441
 0.1236

 1.2126
 0.29113

 0.133
 0.1113

 0.143< Afterbody XfL CP XfL CP 343.16 00366 384.14 00389 419.13 00389 419.13 00389 419.13 00389 457.12 00371 457.12 00371 457.12 00371 571.08 0.2345 586.41 0.3245 586.41 0.3245 586.41 0.3245 80 ♦ = 18 Prebody X.C. Prepedaty 187.47 106.57 105.77 105.77 105.77 105.77 105.77 105.77 105.77 105.77 105.77 105.77 105.77 105.77 105.77 105.77 105.76 112.40 112.50 112 (k) Continued **nfr = 0.68** and $\alpha = 0^{\circ}$ Afterbody XL CP 343.16 00259 344.14 00359 344.14 003545 419.13 00845 419.13 00845 419.13 00845 547.10 1349 545.76 01379 545.76 013169 545.76 013169 566.41 01316 •0 **=** €
 Rorebody

 XIL
 CP

 117.1.30
 0.9579

 117.1.30
 0.9579

 117.1.30
 0.9579

 117.1.30
 0.9579

 1155.11
 0.9579

 1105.51
 0.9579

 1105.51
 0.9573

 1105.51
 0.9573

 1105.51
 0.9573

 1105.51
 0.5953

 -33.76
 0.4484

 -33.76
 0.4484

 -33.71
 0.5956

 -117.97
 0.3954

 -117.97
 0.3954

 -117.97
 0.3954

 -117.97
 0.3954

 -117.97
 0.3954

 -117.97
 0.3954

 -117.97
 0.3954

 -117.91
 0.3954

 -111.100
 0.3633

 -111.1180
 0.3633

 -111.1180
 0.3633

 -111.1180
 0.4403

 -112.94
 0.4119

 -112.94
 0.4403

 -113.9
 0.5316

 -113.9< Afterbody XL CP 343.16 0.0287 384.14 0.0387 384.14 0.03801 419.13 0.0580 447712 0.0580 447712 0.0580 5477 0.1183 54576 0.1836 551.08 0.2547 586.41 0.3644 0.3644 0.3644 mfr = 0.61 and $\alpha = 0^{\circ}$ Fore 8.25.67 - 1.25.67 - 2 Afterbody XL CP XL CP 43.1.6 00205 384.14 00325 419.13 00465 419.13 00465 419.13 00465 457.12 0079 567.7 01239 545.76 02531 586.41 0.3547 586.
 Forebody
 CP
 CP

 1.29
 1.0127
 1.0127

 1.29
 1.0127
 1.0127

 1.21
 1.0068
 0.9806

 1.21
 1.00127
 1.0127

 1.21
 0.10127
 0.0127

 1.21
 0.10127
 0.0127

 1.21
 0.1012
 0.9806

 1.21
 0.11
 0.9805

 1.21
 0.11
 0.9805

 2.31
 0.0316
 0.0316

 2.32
 0.05176
 0.05176

 2.33
 0.05176
 0.05176

 2.31
 0.05095
 0.05176

 2.31
 0.05095
 0.05176

 2.31
 0.05095
 0.05177

 2.31
 0.05095
 0.05277

 2.31
 0.05111
 0.05217

 2.31
 0.05217
 0.07095

 2.31
 0.05217
 0.07095

 2.31
 0.05217
 0.07179

 2.31
 0.05217
 0.07196

 2.31
 0.05216
 0 **•** = 0,

FABLE VI. Continued

(k) Concluded

.

mfr = 0.81 and $\alpha = 0^{\circ}$

MIL = V. 01 and 0 = 0	V = V Afterhodv Forehodv	The second secon	343.16 0.0235 -187.47 0.1395 3	384.14 0.0383 •106.57 -0.1685 384.14	419.13 0.0521 -25.67 -0.5360 419.13	457.12 0.0791 -10.27 0.1312 457.12	507.77 0.1218 -2.05 0.9324 507.77	545.76 0.1733 0.00 1.0264 545.76	571.08 0.2294 0.31 0.4415 571.08	583.74 0.2662 0.63 0.0676 583.74	73UE 396.41 U.5067 1.23 -0.0592 396.41 U.5133 2839 AMD 7 0.3736 1.69 -0.0509 AMD 7 0.3730		515	3.75 -0.0719	1218 4.37 -0.1068	5.00		7.50	8.75		0071 0091	05.61	20.00	30.00	0858 50.00 -0.3966	60.09	70.00	. 80.00 	0006	100.001	1200 110.00 -0.4058	C0-11-7	2946	4060	4218	4067	4239		1614	4817	5355	5492	5822	5037	mu
		× ×	4	0.0559 384.14	-0.0066 419.13						10.0301 396.41		-0.5012	-0.2798	0.1218	0.5285	0.7156	0.9283	1.1111	1.1932	0.3604	0.0887	-0.1065	-0.0709	-0.0858	-0.0690	-0.0972	-0.1300	-0.1547	-0.1510	-0.1260	-0.2823	-0.2946	-0.4060	-0.4218	-0.4067	-0.4239	04143	-0.4491	-0.4817	-0.5355	-0.5492	-0.5822	-0.5037	-0.0213
	Porchady	XI	-187.47	-171.29	-155.11	-130.84	-106.57	-90.39	-74.21	-58.03	22.14	01.00-	-23.11	11.97	-10.27	-5.13	-3.34	-2.05	-0.90	0 4 8	8.6	100	1.25	1.88	2.50	3.13	3.75	4.37	83	6.25	130	0.0	12.50	15.00	17.50	20.00	30.00	000	0009	70.00	80.00	90:06	100:00	110.00	241.85

Afterbody VL CP VL CP 116 0.0855 13 0.0451 13 0.0451 13 0.0451 1 0.0773 0.1804 0.1222 0.1804 0.2557 0.2557 0.2557 XL 343 16 384.14 419.13 507.77 545.76 545.76 533.74 585.71.08 583.74 595.41 596.41 °08 ♦=11
 Preebody
 XL
 CP
 187.47
 1.1431
 -106.57
 1.1151
 -106.57
 1.1151
 -106.57
 1.1151
 -106.57
 1.1252
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 -11562
 nfr = 0.40 and $\alpha = 0^{\circ}$ Afterbody 7L CP 3.16 0.0439 13 0.0375 13 0.0375 13 0.0391 13 0.0391 13 0.0391 13 0.0391 0.0391 0.0391 0.0393 0.0343 0.0343 X/L 343.16 384.14 457.12 567.77 545.76 571.08 583.74 583.74 595.41 609.07 **0** = **0**
 Forebody

 Rarebody

 R7.1
 Forebody

 1355.11
 11420

 1371.29
 11440

 1305.11
 11420

 1305.11
 11420

 1305.11
 11420

 1305.11
 11420

 1305.11
 11420

 1305.11
 11330

 1305.11
 11330

 -33.76
 10229

 -33.76
 10229

 -33.76
 10229

 -117.97
 10492

 -33.36
 10229

 -33.37
 10229

 -33.37
 10229

 -33.37
 10229

 -33.36
 10229

 -33.31
 112232

 -33.31
 112232

 -33.31
 11229

 -33.31
 11229

 -33.31
 11229

 -33.31
 11229

 -33.31
 11290

 -33.31
 11290

 -33.31
 11290

 -33.31
 11290

 -1250< ♦= 180° ECP X ECP X 1.11586 384 1.11586 384 1.11586 384 1.11586 384 1.11586 384 1.11586 384 1.11595 507 1.11516 557 0.00514 577 1.11516 587 0.00514 577 1.11516 587 0.00514 577 1.11516 587 0.00514 (I) M = 0.92**ufr = 0.32 and** $\alpha = 0^{\circ}$ Foreb 255 7 25567 7 25567 7 25567 7 25567 7 2556 7 2556 7 2556 7 2556 7 Afterbody X/L CP X/L CP 384.14 0.0350 384.14 0.0342 419.13 0.0342 419.13 0.0345 587.71 0.0355 587.71 0.0355 587.70 0.0355 586.41 0.2057 586.41 0.2057 586.41 0.2057 586.41 0.2057 **•** = 0°
 Forebody

 XIL
 CP

 183.11
 1.1764

 193.41
 1.1764

 193.41
 1.1764

 193.61
 1.1764

 193.61
 1.1764

 193.61
 1.1764

 193.64
 1.1764

 193.64
 1.1764

 193.64
 1.1366

 193.65
 1.1398

 -133.76
 1.1080

 -133.76
 1.1080

 -133.76
 1.1080

 -133.76
 1.1080

 -133.76
 1.1080

 -133.76
 1.1080

 -133.61
 1.1181

 -11737
 1.1391

 -11737
 1.1391

 -11737
 1.1391

 -11737
 1.1391

 -11743
 1.1391

 -11743
 1.1391

 -11743
 1.1391

 -11743
 1.1391

 -11743
 1.1391

 -11743
 1.1391

 -11743
 1.2361

 -111753
 1.2363</td body CP 0.0726 0.0472 0.0352 0.0352 0.0319 0.0319 0.0352 0.0319 0.0319 0.0352 0.0319 0.0353 0.0319 0.0353 0.0353 Aftert XC 343.16 384.14 419.13 419.13 457.12 545.76 541.20 541.08 583.74 586.41 609.07 80° **ufr = 0.27 and** $\alpha = 0^{\circ}$ Fore 8.01 (1000) 11.23 (11.23) Afterbody X/L CP 343.16 0.04631 384.14 0.04631 384.14 0.04323 419.13 0.03222 419.13 0.03225 597.71 0.0340 545.76 0.0535 553.74 0.1099 585.74 0.1099 586.41 0.1492 596.41 0.1492 **♦** = 0°
 Forebody

 Rorebody

 RXL
 CP

 173.1
 1.1912

 173.1
 1.1912

 173.1
 1.1912

 173.1
 1.1912

 173.1
 1.1912

 173.1
 1.1912

 173.1
 1.1912

 173.1
 1.1861

 173.1
 1.1861

 173.1
 1.1861

 173.2
 1.1763

 1741
 1.1627

 23.5
 1.1749

 1749
 1.1749

 1749
 1.1749

 1741
 1.1627

 23.5
 1.1344

 1749
 1.1486

 1749
 1.1749

 1749
 1.1749

 1749
 1.1749

 1749
 1.1749

 1749
 1.1749

 1749
 1.1749

 1749
 1.1749

 1749
 1.1749

 1749
 1.1749

 1749
 1.1749

 1749
 1.1749
 </tr

TABLE VI. Continued

			çç	0.0145	0.0261	0.0561	0.1002	0.1581	0.2833	0.3439	0.4251																															
			Afterbody X/L CP						583.74 0		609.07																															
		\$ = 180°	çç		1.0524 3				-0.7028 5		-0.9802	-0.0408	-0.9082	-0.8853	-0.8774	-0.8343	-0.7664	0.7319	-0.7055	-0.7261	-0.7516	-0.6085	-0.5816	-0.5541	-0.5538	-0.6013	0.6410	-0.6146	0.0443													
	α = 2.0°		Forebody X/L CP		-				1 Y 1		1.88										11.50					80.08			241.85													
	mfr = 0.49 and $\alpha = 2.0^{\circ}$		ş e			0.0708	0.1100	0.1639	0.2622	0.3063	0.3657																															
	ца Га		Afterbody X/I. CP			419.13 U. 457.12 O.			0 80.1/6		609.07 0																															
		•0 = 0		ç		1.1005 4			c 02001			01100	0.9443	1.0622	1.1801	1.2191	22221	0.9940	0.2561	-0.6720	-0.9642	1458	-1.1458	.1295	-1.1126	-1.1078	-1.0719	-1.0218	-1.0248	1.0140	0.9738	-0.9690	-0.9568	-0.8803	-07070-	0.7802	-0.7950	-0.7915	-0.7813	-0.7623	0.0920	0.0581
			Forebody X/I. CP			-155.11 1			-74.21 1			0 10.02-					- 702				0.63		2.50							00.01			20.00									279.84
							,																																			
			Afterbody M. CP			3 0.0450 2 0.0575			18 0.2289																																	
		\$ = 180°	ſ			419.13 4 457.12			20 571.08 20 583.74		5 609.07	2 3	. 22		"	33	2 2		6	6\$	5	1 5	: 8	8	22	\$ 9	8,5	38	26													
inued	* 1.0°	•	Forebody			67 0.8660 27 1.0014			0.31 -0.3906			2.50 -1.0389					7.50 -0.8626				17.50 -0.7891					80.00 -0.6543			.85 0.0526													
(I) Continued	mfr = 0.49 and $\alpha \times 1.0^{\circ}$		Fo		`	-10.27						ri •	- -	4	Ś	Ŷ	r" •	° C	12.50	15.	17.50	8.97 10.07	38	8	70.00	80.08	00.001	110.00	241.85													
U	mfr = 0.4		Afterbody			9 0.0496			8 0.2258																																	
		• = 0°	UV IN			8 419.13 5 457.17			571.08			~				•		* ~	. n	2	~ `	~ a	h 01		_	~ `		· 4	-	4.	* *		F		<u>.</u>	4 4			e 5	2 9	9	-
		•	Forebody	_	-	1.0998			1.0029				7 0.9335					4 1.0197				5 -1.0983				7 -1.0657				0 -0.9614						0 -0.7374			0 -0.7466			1640.0491
			43	-187.47	-171.25	-155.11	-106.57	6 .06-	-74.21	41.85	-33.76	-25.67	11.62-	-10.27	-5.13	-3.34	-20	F	0000	0.31	0.63	C7:1	2 50	3.13	3.75	4.37	20.0 20.0	7.50	8.75	00.01		17.50	20.00	90.06 20.00	40.04 10.05	0009	70.0	80.00	80.06 10 10 10	000011	241.85	279.84
			vboc an	0.0408	0.0359	0.0463	0.1027	0.1585	0.2271	0.3320	0.4043																															
		80°	Afterbody	343.16	384.14	419.13	507.77	545.76	571.08	596.41	609.07																															
	٩.	a = 180°	Forebody	1.0973	1.0533	0.8818	1.2248	0.4231	-0.4862	11001-	-1.0742	1.095	-1.0535	86001-	-1.0039	-0.9457	-0.9262	0.902	-0.8433	-0.8770	-0.8627	-0.8603		-0.6689	-0.7001	-0.6930	10.700	-0.6781	0.0588													
	and a = 0°		Fore	-187.47	-106.57	-25.67	2.05	0:0	0.31	1.25	1.88	2.50	3.13	6.4	895	6.25	7.50	5/3 0001	12.50	15.00	17.50	20.00		00.09	70.00	80.00	0.06	00.011	241.85													
	0.49		vb S	0.0341	0.0359	0.0439	0.1045	0.1609	0.2262	0.3237	0.3911																															
	4		×	-	-																																					
	mfr = 0.49 and	0°	Afterb	~		419.13	201.77	545.76	571.08	596.41	609.07																															
	mfr =	•= 0°	Afterb		384.14		1.0555 507.77			0.9133 59641		0.8791	0.8805	0.500	1.1563	1.2088	1.2251	1.1691	0.7458	-0.5519	1168.0-	-1.0512	-1.0404	00001-	-1.0255	-1.0152	-0.9935	-0.9337	-0.9267	-0.9092	-0.9013	-0.8482	-0.8518	-0.7618	-0.7258	06190	-0.6835	-0.7056	-0.7114	-0.6805	0.0616	0.0379
	nfr -	• = 0°	rebody Afterb	343.16 343.16	1.0997 384.14	1.0970		1.0261	0.9957		0.8981		-23.11 0.8805				-2.05 1.2251			0.31 -0.5519			96/071- 88/1 90901 09 C				5:00 -0.9935					17 50 -0.8482						80.00 -0.7056		0000 - 00001		_

Afterbody VL CP VL CP 1.16 0.0478 1.3 0.0693 1.3 0.0693 1.3 0.0693 1.3 0.0830 1.3 0.0334 0.02379 0.02379 0.02379 0.02379 0.02779 0.02779 XIL 343.16 384.14 419.13 567.12 567.108 583.74 583.74 583.74 569.07 596.41 596.61 and a = 0° nfr = 0.61 Afterbody X/L CP 343.16 0.0371 384.14 0.0457 419.13 0.0628 457.12 0.0876 457.12 0.0876 557.7 0.1393 545.76 0.2313 545.76 0.2313 545.76 0.2313 556.41 0.3769 0.2316 566.41 0.3769 0.2316 0.2316
 Porebody

 X/L
 CP

 X/L
 CP

 X/L
 CP

 X/L
 CP

 X/L
 CP

 355.11
 1.0286

 355.11
 1.0286

 355.11
 1.0286

 355.11
 1.0286

 355.11
 1.0286

 355.11
 1.0286

 355.11
 1.0286

 355.11
 1.0286

 355.11
 1.0286

 351.1
 0.5973

 351.1
 0.5938

 351.1
 0.69938

 351.1
 0.69938

 351.1
 0.69938

 351.1
 0.69938

 351.1
 0.69938

 351.1
 0.69938

 351.1
 0.69938

 361.1
 0.69358

 37.9
 0.66358

 361.1
 0.6492

 37.9
 0.66358

 361.2
 0.79928

 37.3
 0.79928

 37.3
 0.70128

 37.3 • = 0. Afterbody XGL CP XGL CP 343.16 0.0443 384.14 0.0403 419.13 0.0529 419.13 0.0529 497.10 0.1193 597.10 0.1193 595.14 0.1303 596.14 0.3003 596.14 0.3003 596.14 0.3003 **a** = 180°
 Forebody

 X/L
 CP

 187.37
 1.0714

 198.74
 1.0714

 106.57
 0.7808

 -25.67
 0.7808

 -25.67
 0.7808

 -20.07
 0.9445

 0.01
 0.3112

 0.03
 0.7426

 1.28
 0.9844

 0.63
 0.7426

 1.28
 0.9844

 0.5441
 0.9843

 1.23
 0.9940

 3.13
 0.9943

 3.13
 0.9943

 3.13
 0.9943

 3.13
 0.9943

 3.13
 0.9943

 3.13
 0.9943

 5.00
 0.9943

 8.75
 0.9313

 8.75
 0.9313

 8.75
 0.8133

 8.75
 0.9312

 110:00
 0.7710

 110:00
 0.6643

 90:00
 0.6643

 90:00
 0.6643

 90:00
 0.6643

 90:00
 mfr = 0.54 and $\alpha = 0^{\circ}$ • ≈ 0°
 Forebody

 XL
 CP

 187.1
 10729

 187.1
 10729

 187.1
 10729

 197.1
 10729

 197.1
 10739

 197.1
 10739

 197.1
 10739

 906.57
 10130

 906.57
 10130

 907.09
 10130

 918.72
 0.9416

 -54.21
 0.8905

 -133.76
 0.8905

 -11797
 0.8905

 -23.11
 0.1797

 -11797
 0.8905

 -23.11
 0.7315

 -11797
 0.8406

 -11797
 0.8406

 -11797
 0.8406

 -11797
 0.8406

 -11797
 0.8406

 -11797
 0.8406

 -11797
 0.8406

 -11791
 0.7385

 -11792
 0.9446

 -11793
 0.9746

 -11794
 0.7385

 0.044
 1.1074

 Afterbody XIL CP XIL CP 343.16 0.0002 384.14 0.0203 419-13 0.0407 419-13 0.0407 419-13 0.0407 419-13 0.0407 5977 0.1001 545.76 0.1582 545.76 0.1582 556.41 0.1284 586.41 0.3460 596.41 0.3460 609.07 0.4302
 ↓
 180*

 Xut
 CP
 Xut

 Xut
 CP
 Xut

 Xut
 CP
 Xut

 1877
 1.0007
 343.

 -1807
 343.
 -106.7
 343.

 -1807
 343.
 -106.67
 343.

 -106.57
 1.0006
 343.
 -109.53
 345.

 -102.14
 0.9133
 547
 0.013
 547

 0.01
 0.0133
 547
 0.01413
 551

 0.03
 0.0313
 547
 0.01413
 551

 0.03
 0.0314
 571
 0.0204
 60

 1.12
 0.0833
 59
 1.133
 50

 3.13
 0.0303
 60
 60
 60

 3.13
 0.0303
 60
 60
 60

 3.13
 0.0303
 60
 60
 60

 3.13
 0.0304
 60
 60
 60

 3.13
 0.0304
 60
 60
 60

 mfr = 0.49 and $\alpha = 3.1^{\circ}$ Afterbody XL CP 343.1 00777 384.14 00597 419.13 00599 4177.12 00734 50777 01135 56777 01135 5677 01635 567.10 01635 566.41 02519 566.07 0348 $\phi = 0^{\circ}$
 Rorebody

 XIL
 CP

 18/31
 1.008

 19/351
 1.008

 19/351
 1.008

 19/351
 1.008

 19/351
 1.008

 19/351
 1.008

 19/351
 1.008

 19/351
 1.008

 -3/35
 0.9327

 -4/18
 0.0923

 -4/18
 0.0923

 -4/18
 0.0923

 -117/97
 0.9922

 -117/97
 0.9922

 -117/97
 0.9925

 -117/97
 0.9925

 -117/97
 0.9925

 -117/97
 0.9925

 -117/97
 0.9925

 -117/97
 0.9925

 -117/97
 0.9925

 -117/97
 0.9925

 -117/97
 0.9925

 -117/97
 0.9925

 -117/97
 0.9226

 0.04
 0.7116

 0.31
 -1.1950

 0.31
 -1.1950

 1.1352
 -1.1950

TABLE VI. Continued

(l) Continued

(I) Continued

Afterbody X/L CP 343.16 0.0527 384.14 0.0527 384.14 0.0573 457.12 0.1007 457.12 0.1007 457.12 0.1010 545.76 0.2383 585.41 0.4153 586.41 0.4153 586.41 0.4153 586.41 0.4153
 →
 180°

 →
 →
 ×

 →
 ×
 ×

 0.04y
 ×
 ×

 0.917
 ×
 ×

 0.917
 ×
 ×

 0.917
 ×
 ×

 0.9355
 ×
 ×

 0.9355
 ×
 ×

 0.9355
 ×
 ×

 0.9355
 ×
 ×

 0.9355
 ×
 ×

 0.9355
 ×
 ×

 0.9355
 ×
 ×

 0.9355
 ×
 ×

 0.9313
 ×
 ×
 ×

 0.91198
 ×
 ×
 ×

 10.02313
 0.02333
 ×
 ×

 10.02
 0.02333
 ×
 ×

 10.02
 0.4451
 ×
 ×

 10.03
 0.4451
 ×
 ×

 10.03
 0.5383
 ×
 ×

 10.03
 0.5383
 ×
 ×

 10.03
 mfr = 0.74 and $\alpha = 0^{\circ}$ Forel: 87.1 8.1.1 8.1.1 1.1.2 Afterbody X/L CP 343.16 0.0420 384.14 0.0575 419.13 0.0753 419.13 0.0753 419.13 0.0753 419.13 0.0753 5677 0.1691 545.76 0.2902 545.76 0.2908 556.41 0.4051 609.07 0.4051 ~0 = **\$**
 Forebody

 Torebody

 TAL
 CP

 TS11.29
 0.9179

 -155.11
 0.9088

 -155.11
 0.9086

 -155.11
 0.9087

 -155.11
 0.9087

 -165.11
 0.9087

 -165.11
 0.9087

 -1707
 0.0127

 -20.39
 0.7146

 -21.11
 0.0223

 -21.12
 0.2233

 -21.13
 0.2233

 -21.17
 0.0997

 -21.17
 0.0928

 -21.17
 0.0233

 -21.17
 0.0233

 -21.17
 0.0393

 -11797
 0.0392

 -211797
 0.0392

 -211797
 0.0392

 -211797
 0.0393

 -211797
 0.0393

 -211797
 0.0393

 -211797
 0.0393

 -211797
 0.0393

 -211797
 0.0393

 -211797
 0.0393

 -211807
 0.02140

 Afterbody XIL CP 3.16 0.0237 1.13 0.0045 1.13 0.0042 1.13 0.0042 1.13 0.0042 1.3 0.0425 1.3 0.0425 1.3 0.0425 5 0.2359 0.4411 0.4411 0.4411 180° ▶ 187 ± 105
 ▶ 187 ± 106.57
 ▶ 25.67
 ▶ 187.47
 ▶ 109.714
 ▶ 109.714
 ▶ 109.714
 ▶ 105.77
 ▶ 102.77
 ▶ 102.77
 ▶ 102.77
 ▶ 102.77
 ▶ 102.77
 ▶ 102.76
 ▶ 102.76
 ▶ 102.76
 ▶ 102.76
 ▶ 102.76
 ▶ 102.77
 ▶ 102.76
 ▶ 102.76
 ▶ 102.76
 ▶ 102.77
 ▶ 102.76
 ▶ 102.77
 ▶ 102.76
 ▶ 102.76
 ▶ 102.77
 ▶ 102.76
 ▶ 102.77
 ▶ 102.76
 ▶ 102.77
 ▶ 102.76
 ▶ 102.77
 ▶ 102.76
 ▶ 102.76
 ▶ 102.77
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.72
 ▶ 102.73
 ▶ 102.74
 ▶ 102.74
 ▶ 102.74
 ▶ 102.74
 ▶ 102.72
 ▶ 102.74
 ▶ 102.72
 ▶ 102.74
 ▶ 102.72
 ▶ 102.74
 ▶ 102.74
 ▶ 102.72
 ▶ 102.72
 ▶ 102.74
 < **mfr = 0.68 and** $\alpha = 2.1^{\circ}$ Anerbody XII. CP 343.16 00674 384.14 000674 419.13 00775 419.13 00775 419.13 00755 457.12 01031 567.77 0.1569 545.76 0.23228 545.76 0.23228 556.41 0.3372 556.41 0.3472 556.3472 556.41 0.3472 556.41 0.3472 556.41 0.3472 556.410 • = 0°
 Forebody

 XL
 CP

 187.1.
 09730

 187.1.
 09730

 171.29
 09731

 171.21
 09379

 171.21
 09379

 171.21
 09379

 171.21
 09379

 171.21
 09379

 170.21
 0591

 180.21
 0591

 180.21
 04135

 21.10
 04435

 21.11
 04435

 21.11
 04435

 21.11
 04435

 21.11
 04435

 21.11
 04435

 21.11
 04435

 21.11
 04435

 21.11
 04435

 21.11
 04435

 21.11
 04435

 21.11
 04435

 21.23
 04061

 21.24
 04061

 21.25
 04661

 21.26
 04779

 21.29
 04661

 21.29
 04661

 21.29
 06 Afterbody XIL CP 343.16 0.0513 384.14 0.0513 384.14 0.05724 419.13 0.0724 419.13 0.0724 5977 0.1517 545.76 0.2206 571.08 0.2946 596.41 0.4051 609.07 0.47051 80° ♦ = 11
 Forebody
 XL. CP
 187.47
 187.47
 187.47
 197.56.57
 197.58
 10.27
 11315
 10.26
 11315
 10.26
 11315
 10.26
 11315
 10.26
 10.26
 11315
 10.26
 11315
 10.26
 11315
 10.26
 11315
 10.26
 11315
 10.26
 11315
 10.26
 11315
 10.26
 11315
 10.27
 11315
 10.26
 11315
 10.26
 11315
 10.26
 1132
 1132
 1132
 1132
 1133
 113
 113
 114
 114
 114
 114
 115
 110
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 114
 mfr = 0.68 and $\alpha = 0^{\circ}$ Afterbody X/L CP 34X/L CP 38X.14 0.0397 384.14 0.0395 419.13 0.0654 419.13 0.0653 419.13 0.0553 567.77 0.1517 545.76 0.23181 571.08 0.2912 583.74 0.3393 596.41 0.3941 609.07 0.4611 •0 = **•**
 Forebody

 Rorebody
 CP

 X/L
 CP

 113511
 0.958

 113511
 0.9563

 113511
 0.9564

 113511
 0.9564

 113511
 0.9564

 113511
 0.9764

 113511
 0.9764

 113511
 0.9764

 -0039
 0.8135

 -0039
 0.8135

 -11337
 0.4395

 -33.5
 0.4395

 -33.4
 0.0308

 -33.4
 0.0106

 -33.4
 0.0105

 -33.4
 0.0106

 -33.4
 0.0106

 -33.4
 0.0106

 -1139
 0.4325

 -1139
 0.4325

 0.04
 1.2135

 0.05
 0.4325

 0.04
 1.2134

 0.05
 0.4325

 0.04
 1.2134

 0.05
 0.4325

 0.05
 0.4325

 0.06
 0.4325

 0.07<

TABLE VI. Concluded (1) Concluded

	٠	= 0°			a = 180°	180°			•	0 = 0 ₀			d = 180°	180°	
For	Forebody	Ane	Afterbody	For	Forebody	After	Afterbody	For	Forebody	Aner	Afterbody	For	Forebody		Afterbody
71/2	10		- C-	TX I	-	ž	сь	XI		XI	с,	ХL	5	ХL	G
171.29	0.0782	384.14	0.0541	-18/4/	0.1319	343.16 384.14	0.0492	-187.47	0.1945	343.16	0.0649	-187.47	0.1025	343.16	0.0264
-155.11	0.0140	419.13	0.0676	-25.67	0.4798	419.13	0.0703	67-171-		41013	1500.0	10:001-	-0.1482	384.14	0.0466
-130.84	-0.0807	457.12	0.0936	-10.27	0.1606	457.12	0.0884	-130.84	00200-	457.12	80000	10.63-	0.060.0	457 17	0.0878
-106.57	-0.1435	507.77	0.1401	-2.05	0.9320	507.77	0.1380	-106.57	-0.1388	501.17	0.1480	-2.05	0.8633	201.17	0.1352
-90.39	-0.1935	545.76	0.1931	0:00	1.0518	545.76	0.1912	-90.39		545.76	0.2015	0.0	1.1286	545.76	0.1871
-74.21	-0.2171	571.08	0.2485	0.31	0.4409	571.08	0.2497	-74.21	-0.2252	\$71.08	0.2562	0.31	0.6327	\$71.08	0.2464
-58.03	-0.3585	583.74	0.2852	0.63	0.0932	583.74	0.2919	-58.03		583.74	0.2931	0.63	0.3544	583.74	0.2861
41.85	-0.7097	596.41	0.3262	1.25	-0.0381	596.41	0.3363	-41.85	-0.6302	596.41	0.3325	1.25	0.1621	596.41	0.3319
-33.76	-0.6273	609.07	0.3816	1.88	-0.0865	609.07	0.3926	-33.76	-0.5413	10:009	0.3839	1.88	0.1351	609.07	0.3924
-25.67	-0.4906			2.50	-0.1283			-25.67	-0.4073			2.50	0.0944		
-23.11	-0.4252			3.13	-0.0698			-23.11	-0.3498			3.13	0.1001		
-17.97	-0.2256			3.75	-0.0927			-17.97	-0.1306			3.75	0.1038		
-10.27	0.1711			4.37	-0.0621			-10.27	0.2555			4.37	0.0863		
-5.13	0.5641			5.00	-0.0968			-5.13	0.6284			5.00	0.0507		
-3.34 4	0.7629			6.25	-0.0762			46. E-	0.8371			6.25	0.0747		
-2.05	0.9539			7.50	-0.1486			-2:05	1.0197			7.50	0.0044		
06.0	1.1570			8.75	-0.1738			0.0	1.1884			8.75	0.0508		
40	1.2194			10.00	-0.2445			0.44	1.2184			10.00	0.080.0-		
000	1.0175			12.50	-0.2367			0.00	0.9456			12.50	-0.1631		
0.31	0.3700			15.00	-0.3394			0.31	0.2005			15.00	-0.2152		
0.63	0.0710			17.50	-0.3906			0.63	-0.2117			17.50	-0.2371		
123	-0.0759			20.00	-0.3655			1.25	-0.3267			20.00	-0.1834		
80	-0.0533			30:00	-0.3781			1.88	-0.3122			30.00	-0.2412		
067	-0.0412			20.00	-0.4082			2.50	-0.2728			50.00	-0.3146		
	-0.1058			00.00	-0.4313			3.13	-0.2954			60.09	-0.3582		
2.5	-0.0687			70.00	-0.4645			3.75	-0.2936			70.00	-0.4036		
4.37	-0.0828			80.00	-0.5059			4.37	-0.2668			80.00	-0.4638		
8.5	-0.0922			90.00	-0.5282			5.00	-0.2782			90:06	-0.4875		
0.23	-0.1362			100:00	-0.5686			6.25	-0.2704			100.00	-0.5298		
81	-0.1079			110.00	-0.5289			7.50	-0.2171			110.00	-0.4905		
C 20	000770-			241.85	0.0168			8.75	-0.3038			241.85	0.0115		
00.01	0167.0-							00.01	-0.3472						
0071	710770-							12.50	-0.4041						
								15.00	-0.4779						
	60 C D-							17.50	-0.4682						
								20.00	-0.4981						
8.0	10,100							00.00	-0.4875						
800	10.4086							40.00	(110)						
200	0000							0.00	-0.5336						
	0776-0-							00.09	-0.5238						
	0.4062							20:02	-0.5379						
00.00	0.6740							80.00	-0.5849						
	00000							00.06	-0.6068						
	11730							100.00	0.6194						
24146	10000							110.00	-0.5733						
C0.142	1400.0							241.85	0.0182						
D'417	111/0							279.84	0.0129						

TABLE VII. PRESSURECOEFFICIENTS ONMODEL WITH NACA 1-85-100INLET AND A CONTRACTION RATIO OF 1.250

(a) M =0.79

٠		36	8600.0	90900	0.0809	1357	0.2004	0.2462	2962	0.3613																																			
•	Afterhodv	5			245.83 0.					290.28 0.																																			
6 = 180°		Î				_					E 9	76	5	14	524	530	866	86	512	830	174	ē ā	870	089	2	TAR	98	238	032	914	Š.	337													
2	ę Forehody	Ē		10006-0 50 020020 50									2.50 -1 - 06.5		4.38 -1.1524								50 -0.2028				00 -0.1360			_	-	17 -0.0337													
7 and α	ţ.	ž	-94.32	67.28- AT AL	-11.26	4.51	06:0-	0:00	0.31	0.62	2:	1.88		i i		5.0	ò	1	òci	10.00	12.50	15.00	06.11		40 00	0005	00.09	70:00	80.00	90.06	100.001	129.													
mfr = 0.67 and $\alpha = 0^{\circ}$	Afterhody	C a	0.0005	0.0094	0.0445	0.0816	0.1354	0.1961	0.2354	0.2859	0.3477																																		
	49.0	XIL	13.61	190.28	223.61	245.83	262.50	273.61	279.17	284.72	290.28																																		
°0 •	= etex	e e	0.8898	0.9058	0.9013	0.8662	0.8034	0.7431	0.6618	0.5504	0.4388	0.3804	0.3192	0.2301	0 5450	0.8254	0.9694	1.0982	1.1664	1.1329	0.5784	-1.5876	-1.6186			10261-	-1.2415	-1.1996	-1.1601	-0.8708	-0.4419	-0.1935	7781-0	0.2111	0.2041	-0.1991	-0.1629	-0.1467	-0.1345	-0.1289	-0.1167	-0.1068	-0.0605	-0.0574	-0.0188
	Ponchady	XIL	-94.32	-82.25	-68.05	-57.40	-46.76	-39.66	-32.56	-25.46	-18.36	- 4.81	-11.26	-10.14	87. 15 P	-2.25	-1.46	06.0-	-0.39	-0.19	0:00	0.31	0.62		80-1 50-5	2.5	3.75	4.38	5.00	6.25	7.50	8.75	0.01	00.21	17 50	20.00	30.00	40.00	50.00	60.00	70.00	80.00	00:00	11.671	145.83
		è e	0.0178	0.0285	00000	0.1435	0.1992	0.2374	0.2797	0.3307																																			
		X/L C			10.012				284.72 0.3																																				
ot ≍ 180°	- 190	^									134	652	278	980 		145	2	66	520	-0.5461	743	-0.1584	-0.1517	710	6/0	1001.0-	-0.1379	-0.1237	0.1040	-0.0902	-0.0508	0.0301													
	. Farthard	rorebody AL CP		25 0.9099									2.50 -1.5278		24/5.1- 5/.5 2745 1- 81 A			7.50 -1.1899					17.50 -0.1									29.17 -0.0													
7 and α	μ	×1	-94.32	-82.25	6/ 10 1	451	06.0-	0	0	Ö	- i -	<u> </u>	~ `	n i	ń 4		i e		80	Q	12	5.	1.5	9,8	33	3 5	8 8	2	.	8	8	129													
mfr = 0.67 and α = -2.0°		Afterbody KI, CP	-0.0205	0.0013	0.0149	0.0792	0.1335	0.1949	0.2385	0.2936	0.3668																																		
	5	Anei XI.	173.61	190.28	1912	245.83	262.50	273.61	279.17	284.72	290.28																																		
0) = ♥	•	ody CP	0.8914	0.9066 0.9100	1016:0	0.8614	0.8015	0.7385	0.6523	0.5409	0.4136	0.3415	0.2586	0.2263	66770	0 7317	10144	10413	1.1622	1.1597	0.6856	-1.4665	-1.4429	-1.5412	1.2091	00/10/1-	2015 0-	-0.3042	-0.2658	-0.2225	-0.2306	-0.2358	-0.2288	-0.2369	1017.0-	0.1818	-0.1413	-0.1351	-0.1150	-0.1243	-0.1084	-0.1048	-0.0481	-0:0301	-0.0148
	-	Korebody X/I. CP	-94.32	-82.25	CI.CI-	-57.40	46.76	-39.6E	-32.56	-25.46	-18.36	-14.81	-11.26	-10.14	997/-		146	6	-0.39	-0.19	0.00	0.31	0.62	9	88.1	5	21.6	4	5.00	6.25	7.50	8.75	10.00	12.50	8.6	0002	00.00	40.04	50.00	60.09	70.00	80.00	100.00	129.17	145.83
	-	Å C	0.0042	0.0164	100028	0.1220	0.1822	0.2261	0.2736	0.3321																																			
و		Afterbody X/I. CP			223.61																																								
180	• = 180°	λ D D D D D D D D D D D D D D D D D D D			0.8725 2				_	-1.7758 2	-1.6348	-1.5787	-1.5826	4195	-1.3587	0776-1-	9890	1088	2121	4182	1,2058	1,1714	-0.1580	1679	1691		01410	1241	1601	-0.0922	0.0544	-0.0545													
α= 0°	•	Forebody X.C. CP			46.76 0.		-	-	0.31 -1.				2.50 -1										17.50 -0																						
mfr = 0.61 and $\alpha = 0^{\circ}$			•	•		•					62																-				-	-													
mfr -		Afterbody	•			1 0.0359 E					8 0.3239																																		
٤	• = 0°	Ψv,	-	_		10.622					7 290.28		~	_		. .		• •	.			_	2	-	~ ·		~ ^	• ~	• •			-				× •	• •	4 45	, ao		7	2	•0	4	0
•		Forebody	0.9402	0.9515	0.9560	1052.0						0.5592				0.014U				08001				-1.6274		-1.5158		BLCC 1-			8666.0-		-0.4733		0.1863		01647			0.1533			•		
		For	-94.32	-82.25	-75.15	-68.05	14.16 14.14	99.02-	-32.56	-25.46	-18.36	-14.81	-11.26	-10.14	-7.88		27	9.1		29	0.00	0.31	0.62	1.25	1.88	2.50	3.12	C . C		6.25	7.50	8.75	10.00	12.50	15.00	17.50	20.05	40.00	00.05	00.09	20:02	80.00	100.00	129.17	145.83

٠

(a) Concluded

•

		Afterhodu	XI. CP	0				262.50 0.1511				290.28 0.3784																																					
0	A - 100	Forebody A	0	_								•	-1.2490	-1.2469	-1.1739	-0.9736	1161.0-	-0.2801		1467.0-	0777.0-	-0.2455	10170-	-0.2491	01010	0.1870	1631.0-	20110		1787	1071.0	-0.1038	-0.0861	-0.0460	-0.0276														
andiα ≃		For	XI	-94.32	-82.25	-46.76	-11.26	4.51	06'0-	0.00	0.31	0.62	1.25	1.88	2.50	3.12	C		8.6 7			0.01	3	12.30	3 5		89	808	3	8.0	20.00	80.00	90:06	100.001	129.17														
mfr = 0.74 and $\alpha = 0^{\circ}$		Afterbody	5	0.0039	0.0179	0.0304	0.0532	0.0954	0.1489	0.2124	0.2520	0.3056	0.3687																																				
	ور ۲		XI	173.61	190.28	206.94	223.61	245.83	262.50	273.61	21.612	284.72	290.28																																				
	•	Forebody	0	0.8220	0.8442	0.8502	0.8351	0.7893	0.7092	0.6291	00200	0.11.0	0.2056	791170	101070			0.6480	0.8415	1 0024	1 1484	1 1613	0.35.0	-1.4212	-1.4071	-1.2804	-1.1661	-1.1158	-1.0254	-0.9463	-0.5590	-0.3307	-0.2407	-0.2196	-0.2459	-0.2452	-0.2593	-0.2348	-0.2122	0.1940	0110	0.1354	-0.1237	-0.1213	0.1129	9660.0-	0.0499	0.0300	0.0172
		Fore	хr	-94.32	-82.25	-75.15	-68.05	-57.40	2.4	90.6 <u>6</u> -	0076-	06.07-	-18.30	19.41-	07.11-	101-		2.25	-1.46	06.0-	01.01	610-	000	0.31	0.62	1.25	1.88	2.50	3.12	3.75					8.75	10.00		00-CI		20.02			20:00				Ċ		145.83
																							,																										
		Afterbody	9	0.0035	0.0217	0.0374	6610.0	0.1328	0041-0	0.0101.0	91/10/10	C010.0																																					
	180°	After	ХL	190.28	206.94	10.522	143.65	19 51.0	10.614	11.612	300.78	01.024																																					
•1	4 = 180°	Forebody	6	0.8914	96060	744/10	0.412.0	105201	1909.0	PUDE 1	1 4355	OFIL I		90011	-0.8068	-0.3582	-0.2510	-0.2430	-0.2329	-0.2264	-0.2287	-0.2228	-0.2283	-0.2125	-0.1860	-0.1750	-0.1375	-0.1260	-0.1209	-0.1209	-0.1083	-0.0957	-0.0878	0.0452	-0.0283														
ind $\alpha = 2$.		Fore	Хľ	56.35	C7 78-		17 II-		88	3.0	690	12	3	99 C	112	3.75	4.38	5.00	6.25	7.50	8.7S	10.00	12.50	15.00	17.50	20.00	30.00	40.00	50.00	60.09	70.00	80.00	80.06		1.421														
mfr = 0.67 and $\alpha = 2.1^{\circ}$		Afterbody	6	0.0138	0.11.0	0707070	0.0881	0.1410	0.1960	0.2330	0.2718	0 1158																																					
E	♦ = 0°	Aner	ž	10.671	87.UK	13 51	10.611	262.50	273.61	279.17	284.72	290.28																																					
	•	Forebody	3	0.0001	0.0106	0.0040	0 8681	0.8067	0.7483	0.6684	0.5686	0.4653	0.4180	0.3868	0.3742	0.4247	0.6154	0.8917	1.0236	1.1312	1.1639	1.0986	0.4439	-1.6743	-1.7162	-1.6658	-1.5669	-1.5232	-1.4559	-1.3922	-1.3447	-1.3317	-1.2490	-1.1062	-U.69/9	01110	0.2217	0.1416	0.1478	0.1658	0.1586	0.1400	19110	00110	91110	0.0566	00000	and and a	cu20.0
		For	XL XL	75.44	\$1 \$L	50 BY	-57.40	46.76	-39.66	-32.56	-25.46	-18.36	-14.81	-11.26	-10.14	-7.88	4.51	-2.25	-1,46	0.00	-0.39	-0.19	00:0	0.31	0.62	1.25	1.88	2.50	3.12	3.75			67 D		0.00	09 61	0051	17.50	20.00	30.00			00.09				1 9 1 7		

			. 8	61	<u>5</u> 2	s 2	1 2	8	10	28																																			
		Afterbody	Ŷ				0.1584																																						
		₹;	190.28	206.94	223.61	245.83	19.672	279.17	284.72	290.28																																			
٩.	\$ = 180°	Forebody	1.0526	1.0614	1.0127	17200	1.1915	0.2688	-1.6302	-1.7129	1660.1-	16104	-1.5498	-1.4468	-1.4346	-1.3503	-1.3068	-1.2641	-1.1924	-1.1496	-1.0638	2566.0	67 6 670	0.1530	0.0559	1160.0-	-0.1139	-0.1190	-0.1084	-0.0900	-0.0438	+8+0'0-													
mfr = 0.49 and $\alpha = 0^{\circ}$		Fore	-94.32	-82.25	46.76	07.11-	1.90	00.0	0.31	0.62		2 SO	3.12	3.75	4.38	5.00	6.25	7.50	8.75	10:00	12.50	15.00	NC 11	00'07	40.00	50.00	60.00	70.00	80.00	<u>8</u> .0	100.00	11.671													
- 0.49 a		λų δ	-0.0142	-0.0026	0.0076	607	0.1064	0.1623	0.1995	0.2452	6706.0																																		
mfr		ferb					262 50 011 012 0242				200.28 0.2																																		
	• = 0.	,										8 8	02	92	23	46	68	31	69	80	8	5 3	47	8 2	20	603	180	Š.	113	5	Ş :	2 9	202	. 53	14	44	37	111	351	207	102	8	<u>8</u>	¥ :	Î.
		ě	2 10530				10001 00	Ť				0.8400			51 0.9623		46 1.1668							0CU0.1- C2.1		3.12 -1.5503			5.00 -1.3671			CI/I.I- C/.8							_	_					10H010- 52
		~ ;	ML 99	-82.25	-75.15	ž,	04-7 C-	-39.6	-32	-25.46	8	-14.61	-10.14	-7.88	4.51	-2.25	-1.46	96.O-	-0.39	-0.19	800	0.31	70.0	11		r.	Ċ,	4	3	ν ο ΄		C/.8		15.00	17 50	20.00	30:00	40.00	50:00	60.09	20:02	80.00	00:001	129.17	140.65
		ody 50	-000 0000	0.0077	0.0180	0.0519	1471	0.1847	0.2336	0.2925																																			
		Afterbody	X/L 190.28		223.61	245.83	202.50	279.17	284.72	290.28																																			
	4 = 180°	Å.	10	.0627	1.0138	0.8397	1 1807	0.2149	-1.6639	-1.7279	-1.6643	-1.64/9	-1.6268	-1.5630	-1.4723	-1.4536	-1.3685	1.3062	-1.2398	-1.2071	-1.1216	-1.0634	-1.0192	-0.7246 0.7846	-0.0432	-0.0741	0.1058	-0.1047	-0.1032	-0.0851	-0.0476	-0.0355													
х = -1.0°		Forebody	x17 84 13				194					29.0																		÷		- LI'6Z													
mfr = 0.49 and α = -1.0°				,	`	•	5.00		8	25	24																					-													
mfr = 0.		Afterbody	1 -00%				3 0.0553				8 0.3124																																		
	• = ()°	2	17X				245.83				290.28	_			_	_	_				_							_										_	•		÷	_	-	an i	~
		Forebody	40 j	1.0595	1.0618	1.0562	06001	0.9809	0.9467	0.8994	0.8533	0.8280	0.8014	0.8471	0.9549	1.1059	1.1679	1.1914	1.1375	1.0231	0.3184	-1.6130	1.6494						-1.3165				CH0010								•			,	0.01390
		For	XIL N	-82.25	-75.15	-68.05	-57.40	19.66	-32.56	-25.46	-18.36	-14.81	-10.14	-7.88	4.51	-2.25	-1.46	-0.90	-0.39	-0.19	0.0	0.31	0.62	() 8	2.50	3.12	3.75	4.38	5.00	6.25	7.50	8.75	00701	0051	3 5	2000	30.05	40.00	50:00	60.00	70.00	80.00	100.00	129.17	145.83
		ody	CP Det	0.0157	0.0257	0.0569	0.0959	1794	0.2196	0.2755																																			
	و	Afterbody	X/L				262.50																																						
	4 = 180°	dy					1.0205				-1.6955	-1.6862	.0007 6816	-1.6443	5778	-1.5312	.4418	.3761	3234	.2924	-1.1959	.1639	6660	9398	-0.465	-0.0555	0876	-0.097	-0.0975	-0.0909	-0.0497	0.0415													
t = -2.1°		Forebody													4.38 -1															90:00															
mfr = 0.49 and α					-				: 53	2	-																			-	-	-													
nfr = 0.		Afterbody	CP				0.0613																																						
-	ئ ہے گ		Ъ,	190.28			245.83				290.28					_				_	-				-				-	~	~	~	~ .							-	ŝ	•	_		7
	•	Forebody	CP		1.0616	1.0580	16001					0.8292	0.000	1873		1.0860		1.1862							8010-1- 1007 1-									0,000										Ċ	-0.034
		For	Z i	-82.25	-75.15	-68.05	-57.40	30.66	-32.56	-25.46	-18.36	-14.81	07.11-	7.88	4.51	-2.25	-1.46	-0.90	-0.39	-0.19	0.00	0.31	0.62	1.25	250	2 C C	3.75	4.38	S.00	6.25	7.50	8.75	00.01	06.21	10°C1	00.11	20.02	40.00	50.00	60.00	70.00	80.00	00'001	129.17	145.8

(b) M = 0.84

		vbv	G	-0.003	0.0050	CE10/0	0.1041	0.1659	0.2148	0.2723	1.3497																														
	•	Afterbody			206.94		262.50			284.72 (
	6 = 180°	dy _			1.0588 2							1.486.1	-1.4387	-1.3263	-1.2473	-1.2077	-1.1755	-1.1159	1196	-0.9075	-0.8170	200	760710-	8	1278	-0.1366	0.1200	01171	0860.0-	-0.0395	-0.0467										
α = 3.1°		Forebody			82.25 I. 46.76 I						0.62							6.25 7 50 -1.							40.00						29.17 -0.0										
mfr = 0.49 and $\alpha = 3.1^{\circ}$				·						86	<u>e</u> =	:								-					•			~ 00	õ	10	2										
= ţu		Afterbody			28 0.0093						72 0.1719																														
	° •	-	~ :		87 20694	_					40 284.72		5	53	59	3	89 : 89 :	= =	: =	t 3	2 2	2 3	. 2	15	z		3 6		57	z	2		2 2	2 9	2 3	. 2	Ŷ	Ŧ	5	5 1	2 3
		Ą			1.0574				0		16 0.9140 16 0.8820							112171 04					10.8045		0 -0.8484					0 -0.8084			VC18.0- 0							0 -0.1455	
		-	ХГ ХГ	27 H	27.28-	89	-57.40	46.76	-39.6	-32	-18 36	14 81	-11.26	-10.14	-7.88	4.51	-2.25	99 196 (-	6.0	-0.19	0.00	16.0	1.25	1.8	2.50		5 F 78	9 <u>9</u>	6.25	7.50	8.75	10:00	00.21	17.50	20.00	30.00	40.09	50.00	60.09	70.00	
		body	CP CP	6/00/0	0/00/0	0.0575	0.1059	0.1640	0.2111	0.2655	7865.0																														
		Afterbody	XI	87'DKI	223.61	245.83	262.50	273.61	279.17	284.72	87.067																														
5	♦ = 180°	Forebody	CP CP	17001	1.0112	0.7886	0.9351	1.1888	0.3838	-1.5811	0625.1-	-1.5305	-1.5072	-1.4013	-1.3338	-1.2902	1067.1-	-1.1112	-1.0356	-0.9797	-0.8867	1082.0-	-0.4193	-0.0872	0.1019	-0.1287	-0.1221	-0.1144	-0.0967	-0.0398	0.0434										
$d \alpha = 2.0$		Forel	ž		-46.76	-11.26	451	-0.90	0.00		1.25		2.50				86				12.50					8.00				00:00											
mfr = 0.49 and $\alpha = 2.0^{\circ}$		đy	CP CP	10000	1100	0:0306	0.0638	1059	0.1500	1829	0.2754																														
ł		Afterbody						_		0 11.612																															
	ی ۹ =									Z ZDS600			0.8578	0.8644	0.9047	1.0180		1.1855	1.0921	0.9477	1,6871	-1.7329	-1.6757	-1.6692	-1.6600	17601-	-1.5354	-1.4935	-1.4340	-1.3556	2026.1-	-1.1780	1.1149	-0.9952	0.9107	-0.3916	-0.1200	0.0499	0.0617	0.0957	10000
		Forebody	XL NL				_			-0.22.50					_						0.00				2.50						1.1			17.50 -0.5				50.00 -0.0			
			1				-	r			7 7	·	-	Ŧ																	-				3	Ē	4	v r, v	0 r	- 00	· 9
		Afterbody			0.0208			Ö	00	64 G7-D	CC7C-0																														
	\$ = 180°	¥,	· 2				262.50	273.61		201.78																															
1.0°	•	Forebody	2 2			0.7989	-			1 6024		-1.5820				06001				-1.0700			-0.6548				-0.1279	-0.1187	-0.1022	-0.0489	60mm-										
and a =	I	8 i	A/L 94.12	82.25	46.76	-11.26	4.51	0.0	000	15.0 C80	1.25	1.88	2.50	3.12	3.75	8. 4	5.25	7.50	8.75	00.01	0051	17.50	20.00	30.00	8.9	00.00	70.00	80.00	00.06	00.00	11.67										
mfr = 0.49 and $\alpha = 1.0^{\circ}$		body	000	-0.005	0.0058	0.0268	0.0626	0.1041	0.1559	0.242	0.2904																														
8	°.	Afterbody	NL 13.61	190.28	206.94	223.61	245.83	262.50	273.61	11.412	290.28																														
	•	Forebody	1.0452	1.0587	1.0603	1.0574	1.0411	1.0108	0.9829	19050	0.8579	0.8447	0.8275	0.8403	0.8952	10440	1.1758	1.1843	1.1001	0.9629	11.6577	-1.7012	-1.6603	-1.6371	-1 5700	-1.5333	-1.4846	-1.4417	-1.3782	1.3026	12115	-1.1233	-1.0581	-0.9888	-0.9380	-0.2927	-0.0513	-0.0/48	-0-10-0 -0-1-39	0.1091	-0.0551
										96-76-	-18.36	-14.81			-7.88		1.46	8 0	-0.39	0.19								2:00		2. 2							- 40.00				

Continued

(b) Continued

		~		z :	. 2	5	8	8	ខ្ល	2 9																																			
		Afterbody		0.0294		0.1075				0.3660																																			
	• = 180°		XI	190.28	223.61	245.83	262.50	273.61	11.612	290.28																																			
•	11 🗢	Forebody	G	0.9209	0.8380	0.3959	0.6494	1.1479	0.5425	-1.5477	1.4848	-1.3996	-1.3488	-1.2913	6877.1	1.1660	1 1053	1 0592	-1.0154	-0.994	-0.9184	-0.8696	-0.3882	-0.1988	-0.0883	0.1171	-0.1308	-0.1356	-0.1242	0.100	0.0441	-0.0277													
α=-2.1		Fore	ž	-94.32	-46.76	-11.26	4.51	0.00	0.0	0.62	1.25	1.88	2.50	3.12	c :	9. 1	22 Y	150	8.75	10.00	12.50	15.00	17.50	20.00	30.00	40.00	50.00	808	8.0	0.00		129.17													
mfr = 0.67 and α = -2.1°		N,	. <u>P</u> .	-0.0127	071070	0.0564	0.1005	0.1579	0.2271	0.3293	0.4027																																		
afr =		Afterbody		173.61 -0.0						284.72 0.																																			
	0° =									0.5795 28.			0.3034	0.2544	10	0.4614	08/90	74 7	1.1823	2	0.7543	-1.2697	829	052	110	-1.0008	990	-0.9311	913	0.6530	400 U	449	0.1364	028	-0.2094	6.1903	820	210	0.1258	249	-0.1156	051	M92	0.0261	0.0072
		Forebody		32 0.9205	2666-0 57.26- 2666-0 51.27-					-32.30 0.5						4.0 10.4 2.4														877 A.					15.00 -0.2		20.00							·	145.83 -0.0
			×	-94.32	2 F.	89-	-51	¥ i	Ŗ	ç, ç	1 2	4	÷	Ş '		۹ſ			, ,	, q	0	0	0	-	-	~			•••				Ξ	2		5	2	* *	¥ Ə	1.2	5 F	ž	ĕ	2	4
		vbod	5	0.0160	0.0457	0060.0	0.1470	0.2137	0.2584	0.3084																																			
	°0	Afterbody	ХL	190.28	223.61	245.83	262.50	273.61	279.17	284.72																																			
	6 = 180°	odv.	6	0.9721	0.9040	0.5236	0.7462	1.1675	0.5318	-1.4800	-1.4516	-1.4050	-1.3633	-1.2779	-1.2190	1.2020	0110	-1 0057	6066 0-	0.9354	0.8616	-0.7618	-0.2733	0.2194	0.1109	-0.1301	-0.1308	-0.1330	-0.1253	0.1110	CC 2010	-0.0176													
d α = 0°		Forebody	хī		-46.76	-11.26		0.00		 				3.12		, , ,								20.00						0.02															
mfr = 0.61 and $\alpha = 0^{\circ}$. 0.	247	00083	0.0493	954	0.1500	0.2104	0.2544	0.3614																																		
L H		Afterbody	5																																										
	°0 = 0		×		2 206 94					4 279.17			s	0						、	v	ŝ	0	•		\$	80	-	5	st e	2 3	2 9	2	5	0	e.	2	<u>ی</u>		2 4	2.50	. 6	Ē	2	2
		Forebody	ð		0.9873					0.7914						0.7387									-1.3667						4640 T							0.1045				_			3 -0.0245
		Fo	X	-94.32	5778-	-68.05	-57.40	-46.76	-39.66	-32.56	-18.36	-14.81	-11.26	-10.14	-7.88		SAL 1			0.0	0.0	0.31	0.62	1.25	1.88	2.50	3.12	3.75	4.38	2,5	0.25	27. B	10.00	12.50	15.00	17.50	20.00	88	8.0	0.00	20.02	80.08	100.001	129.17	145.83
		٩v	5	0:0040	417010	7270.0	0.1250	.1850	.2270	12747																																			
		Afterbo	XIL CP			245.83 0	Ţ	273.61 0	-	284.72 0 700.72 0	•																																		
	oh = 180°			_	0.0599 20			1.1862 2		-1.5641 21		-1.5221	-1.4951	-1.4324	-1.3427	000	00211	-1.1204		0950	9460	-0.8792	8234	-0.4669	0764	6160:0-	1193	-0.1322	-0.1289	-0.1115	-0.1012	1400													
ູນ = ນ		Forehod	CP CP	94.32 1.(11.26 0.7				11 11												15.00 -0.				40.00						0 11 00													
mfr = 0.55 and α = 0°			×	¢.				,												-	-	-	-	2	f)	4	ŝ	Ŷ	~		• •	2 2	2												
mfr = (Afterhody	10	•	0.0014					0.2230																																			
	ې ا		XL	173.61	190.28	223.61	245.83	262.50		279.17																																		_	_
	•	ę Farehadu		1.0185	1.0284	1.0271	1.0049	0.9653	0.9297	0.8830	0 7673	0.7405	0.7048	0.7059	0.7372	0.8800	0100.1	1.1395	1701-1	8070	0.3835	-1.5341	-1.5840	-1.4986	-1.4776	-1.4490	-1.4162	-1.3423	-1.2884	-1.2634	-1.1820	6/60 ⁻¹ -	10101-	-0.9498	-0.8923	-0.8092	-0.5597	-0.0711	0.1007	0.11.0-	12851.0-	-0.1122	0.0612	-0.0414	-0.0314
		MAR	X	-94.32	-82.25	-68.05	-57.40	46.76	-39.66	-32.56	91: 21-	-14.81	-11.26	-10.14	-7.88	4.51	-2.25			6. Q	000	0.31	0.62	1.25	1.88	2.50	3.12	3.75	4.38	2:00	6.25		c/.8	12.50	15.00	17.50	20.00	30.00	40:04 00:04	20.00		80.00	100.00	129.17	145.83

(b) Continued

rbody CP 0.0099 0.0302 0.00583 0.10565 0.1632 0.1632 0.2312 0.2312 0.2319 0.4119

	●	Aftert 23.61 23.61 25.83 25.83 25.83 25.50 25.50 25.50 25.50 25.50 25.50	CP CP	Fore	<pre></pre>	180° After	Afterbody		•	= 0° Afterhodv			• × 180°	5U0			-	• = 0°			6 = 180°	
12			ody CIP 0.0071	Fore	body	After	:body		- du	After	-			2				,				2
			0001	A/		5	-	Forebody	00uy		y Doo	Fore	Forebody	Afterbody	vboc	Pore	Forebody	Afterhody	hadv	North	Enrohody	44444
			0.0071	2	G	ML	3	XI,	ð	XI	C.	ХL	G.	λ	5	XL	5	XL	20	XI.) C	XU.
				94.32	0.9243	190.28	0.0252	94.33	0.9241	173.61	0.0055	-94.32	0.9238	190.28	0.0212	94.32	0.9221	173.61	0.0119	-94.32	0.9224	190.28
			00116	92.94	0.8371	223.61	0.0400	(777 <u>8</u> -	00450	20.28	0.0199	-82.25	0.9422	206.94	0.0365	-82.25	0.9397	190.28	0.0155	-82.25	10#6:0	206.94
			0.0562	-11.26	0.3622	245.83	0.1066	58.05	11160	273.61	2600	- 10 - 11	0.8390	223.01	0.0562	-75.15	0.9436	206.94	0.0295	46.76	0.8375	223.61
			0.1029	4.51	0.6192	262.50	0.1663	-57.40	7668.0	245.83	1010	15 17	01020	C87547	0.1628	65:80-	0.000	223.01	0.0526	-11.26	0.3064	245.83
			0.1600	06:0	1.1316	273.61	0.2351	-46.76	0.8344	262.50	0.1624	060	1.1202	19112	0.110	20-10- 20-20-	0.6197	C8.CP2	0.1019	5	0.5444	262.50
			0.2274		0.5935	279.17	0.2791	-39.66	0.7750	273.61	0.2288	000	0.6373	279.17	0.2791	39,66	1969.0	19112	0.7767	8	/ (20)-1	10.612
			0.2728		-1.4259	284.72	0.3288	-32.56	0.6992	279.17	0.2735	0.31	-1.3796	284.72	0.334	-32.56	0.7064	27017	0.2682	0.0	4140/0	11.612
	4609 4082 184		0.3278		-1.4963	290.28	0.3862	-25.46	0.5954	284.72	0.3268	0.62	-1.4446	290.28	0.4014	-25.46	0.6051	284.72	10155	10.01	LOLC 1	21.407
	184	290.28	0.3972		-1.4160			-18.36	0.4829	290.28	0.3894	1.25	-1.3689			-18.36	0.4940	290.28	01110	70'N	101061-	\$7.0x7
	3184			1.88	-1.3388			-14.81	0.4351			1.88	-1.2641			-14.81	0.4506			66 1	01671	
					-1.2641			-11.26	0.3406			2.50	-1.2216			-11.26	0.3800			09 C	10071	
	0.2978				-1.2309			-10.14	0.3201				-1.1483			-10.14	0.3726			1	1 0568	
	0.5545				-1.1946				0.3812				-1.0943			-7.88	0.4232			175	80001	
	0.5391				-1.1225				0.5817			4.38	-1.0401			1.51	0.6131			4.18	C (000 U	
	0.8033				-1.1149				0.8487				-1.0054			-2.25	0.8967				0740	
	0.9566				-1.0459			-1.46	1.0100				-0.9785			-1.46	1.0232				10180	
	6260				-0.9838			0.00	1.1102				-0.9114			06.0-	1.1329				0.9047	
	1.1894				-0.9176			-0.39	1.1889				-0.8730			0.39	1.1907				10000	
	1.1786				01060				1.1588				-0.7862			-0.19	1.1483				0 1067	
	11601			12.50	-0.8545				0.6587				-0.4885			000	0.5757				0.1147	
	5755.I-				-0.3524				-1.3814				-0.1811				-1.4281			15.00	0.1494	
	5,5,7			05.11	-0.2627				-1.3938				-0.1014			0.62	-1.4524				-0.1557	
	-1.2039				-0.0957				-1.3587				-0.0929				-1.4064				0.1660	
1. 00.0	C761.1-				0.1290				-1.2779				-0.1457			1.88	-1.3341			30.00	0.1476	
	5011-1- 1 0132				5551.0-				1.1867				-0.1412				-1.2700				0.1380	
	09101				5051-0				-1.1515				-0.1298				-1.2093				-0.1288	
	60 IO				1761-0-				-1.1229				-0.1353			3.75	-1.1603				0.1280	
	1006.0-				1571.0				-1.0454				-0.1202				-1.1420				-0.1185	
	190				C C C C C C C C C C C C C C C C C C C				110011-				0.1069				-1.0832			_	-0.1007	
	202				074010-				-0.565				-0.0907				-1.0477			00:06	-0.0834	
	-0.7530			129.17	0.02.66				0.0783			00.001	0.0439				-1.0237			100.00	-0.0384	
	-0.2976								-0.8186			11.271	-770-D-			6.5 6	8606.0			129.17	0.0213	
	-0.1487								-0.6809								C1060					
	-0.1512								-0.2149								04107					
	-0.1507								-0.1387								01540					
	-0.1493								-0.1033								0.0933					
	0.1490								0.1443								1010					
	-0.1385							_	-0.1406								-0.1264					
_	-0.1247								-0.1347								0.1253					
0,00	-0.1331							_	-0.1348								-0.1241					
	2121.0-							_	-0.1217								0.1122					
	-0.1030								-0.1088							_	0.0978					
									-0.0543							_	0.0492					
	00000								0.0328							129.17	0.0255					
_	5							145.83 4	0.0127							145.83	0.0128					

(b) Continued

Afterbody VL CP 3.28 0.0276 94 0.0409 93 0.106013 9 0.1779 0.2485 0.2485 0.2515 0.4171 X/L 190.28 2206.94 223.61 245.83 245.83 262.50 279.17 279.17 284.72 284.72 284.72 284.72
 ↓
 180°

 Dody
 X

 Dody
 X

 A
 200

 Body
 X

 A
 X

 A
 X

 A
 X

 A
 X

 A
 X

 Body
 X

 A
 X

 A
 X

 Body
 206

 Body
 206

 Body
 206

 Constraint
 206

 Dottage
 207

 Dottage
 207

 Dottage
 207

 Dottage
 207

 Dottage
 0.07755

 Dottage
 0.07755

 Dottage
 0.02077

 Dottage
 0.02077

 Dottage
 0.02077

 Dottage
 0.01775

 Dottage
 0.01775

 Dottage
 0.01775

 Dottage
 0.01775

 Dottage
 0.01775

 Dottage
 0.01775

 mfr = 0.74 and $\alpha = 0^{\circ}$ Afterbody XI. CP XI. CP 190,28 0.0090 190,28,61 0.0640 225,61 0.0640 225,63 0.0173 247,361 0.2442 273,61 0.2442 273,61 0.2442 279,17 0.2875 279,17 0.2875 279,17 0.2875 279,28 0.4098 **•** = 0°
 Forebody

 XAL
 CP

 XAL
 CP

 XAL
 CP

 XAL
 08544

 XAL
 08544

 2123
 08739

 673
 08739

 46.76
 0.7416

 973.55
 08813

 46.76
 0.7416

 973.55
 0.8639

 46.76
 0.7416

 10.13
 0.02430

 14.81
 0.1365

 -11.26
 0.3739

 -11.26
 0.3739

 -11.26
 0.0351

 -11.26
 0.0351

 -11.26
 0.1373

 -11.26
 0.1373

 -12.23
 0.05639

 -12.24
 0.0311

 -12.25
 0.05639

 -12.25
 0.05739

 -12.25
 0.05739

 -12.25
 0.05364

 0.01
 0.11373

 0.26
 0.1323

 1.230
 0.1323

 1.230
 0.1323

 1.230</td Afterbody VL CP 9.28 0.0114 6.1 0.0221 6.1 0.0232 83 0.1009 7 0.2887 7 0.2880 9.4411 9.42287 7 0.2880 XL 190.28 223.61 245.83 245.83 245.83 245.72 279.17 284.72 284.72 284.72
 0
 180°

 0
 20
 20

 0
 212
 190

 0
 212
 190

 0
 212
 190

 0
 212
 190

 0
 212
 190

 0
 10
 10
 200

 0
 1
 1
 1
 223

 1
 1
 1
 1003
 236

 2
 1.003
 237
 236
 237

 3
 0.1003
 237
 236
 237

 3
 0.1003
 237
 236
 237

 3
 0.5574
 0.0264
 236
 237

 3
 0.5574
 0.0264
 236
 237

 3
 0.5574
 0.0264
 236
 237

 3
 0.5574
 0.0264
 236
 247

 3
 0.5574
 0.2240
 530
 0.1197

 3
 0.5574
 0.0260
 0.1197

 3
 0.52 mfr = 0.67 and $\alpha = 3.1^{\circ}$ Pore 2000 11200 11 Afterbody XL CP (73.6) 0.0381 190.28 0.0382 205.94 0.0424 225.56 0.0454 245.83 0.1136 245.26 0.1679 273.56 0.2546 273.56 0.2546 273.56 0.2544 273.56 0.2594 274.56 0.2594 275.56 0.2594 **0** = **0**°
 Forebody

 Forebody

 AXL
 CP

 -9.431
 -09116

 -82.25
 09316

 -57.40
 039306

 -57.40
 039306

 -9.451
 03916

 -57.40
 039306

 -9.56
 07013

 -9.56
 07013

 -9.56
 07014

 -9.56
 07013

 -9.56
 0.7013

 -1.816
 0.7013

 -1.818
 0.4443

 -1.818
 0.4443

 -1.818
 0.4443

 -1.81
 0.4434

 -1.81
 0.4434

 -1.81
 0.4434

 -1.81
 0.4434

 -1.81
 0.7033

 -2.25
 0.99553

 -1.84
 1.1084

 0.00
 0.11864

 0.01
 1.0193

 0.1250
 0.9955

 1.250
 0.9955

 1.250
 1.230

 2.25
 0.1093

 1.250
 <td Afterbody XL CP 0.28 0.0117 (54 0.0351 61 0.0355 83 0.0399 1 0.2394 1 0.2394 1 0.2394 1 0.2394 0.4146 X/L 190.28 206.94 223.61 245.83 262.50 262.50 273.61 279.17 284.72 284.72 284.72 284.72 284.72 180° mfr = 0.67 and $\alpha = 2.0^{\circ}$ Fore 2000 112 40000 112 4000 112 40000 112 40000 112 40000 112 400 • = 0,
 Forebody

 X.L.
 CP

 X.L.
 CP

 X.L.
 CP

 X.L.
 CP

 X.L.
 CP

 2515
 0.9427

 2515
 0.9427

 2515
 0.9427

 2515
 0.9427

 46.76
 0.8948

 46.76
 0.8949

 255.46
 0.8949

 255.46
 0.8949

 255.46
 0.8943

 255.46
 0.6016

 255.46
 0.6016

 255.46
 0.6016

 255.47
 0.4621

 255.4
 0.4621

 0.1126
 0.4621

 0.20
 1.1472

 0.20
 1.1472

 0.20
 1.1472

 0.21
 1.1472

 0.25
 1.1472

 0.25
 1.1472

 0.26
 1.1436

 0.27
 1.1432

 0.26
 1.1436

 1.2810
 0.5413

 1.281
 1.28

(b) Continued

		-		57	27	8	2	2 E	38	3 🖻	8																																		
		A Markad	0		0.0427	0.0578				0.28	0.3408																																		
			ž	190.28	206.94	223.61	240.83	19 575	270 17	284.72	290.28																																		
2		• = 180° hode	10	0.2670	0.1649	-0.1798	86/0/0-	0,000	0.9033	-1.0368	-1.0932	-0.9166	-0.8053	-0.6746	0.1017		-0.1628	0.2213	0.2180	0.2086	-0.2287	-0.2498	-0.2161	0.1965	-0.1736	-0.1488	1171.0	-0.1181	0 1000	-0.0925	0.0814	-0.0375	0.0190												
nd α=0		Forme	XIL CP	-94.32	-82.25	40.79	07-11-	6	000	0.31	0.62	1.25	1.88	05.2	21.0									17.50				88				100.00													
mfr = 0.84 and α = 0°		Ŷ	r B	0.0123	0.0244	10000	0.1000	0.1470	0.2008	0.2339	0.2743	0.3291																																	
1 L		Afterhoo	CP CP		190.28 0.							290.28 0.3																																	
	و ا		^										8 :	a F		3	16	24	8	8	76	2		8:	2 2	8 5	1 2		2 2	! £	3	9	2. 1	~ <u>-</u>	- 1				4	ç	*		• •		
		Forebody			9/81.0 5								-0.8200									0 0.8777								0.1989				M7770- 0			0.1781						8940-0-		0.0066
		Pe .	XL	-94.32	57-78-		-57.40	-46.7	-39.6	-32.5	-25.4	-18.36	-14.81	A7111	-7.88	4.51	-2.25	4.1-	06:0-	0.39	-0.19	0.00	6.9	20'n	7 8		1.7	1.75		5.00	6.25	1.50	8.75		11.00	17.50	20.00	30.00	40.00	50.00	00.00	00.07	00.00	120.17	145.83
		ody	сь С	0.0291	#1#010	866070	0.1475	0.2019	0.2437	0.2857	0.3414																																		
	۶	Afterbody		190.28 XX							290.28																																		
	6 = 180°		6	0.2795			_					-1.11.1-	-0.9181	-0.8889	-0.7947	-0.7158	-0.6107	-0.1489	1914	1759	2128	-0.2412	1069		1526	1352	1249	1245	1130	-0.0972	0.0872	-0.0359	001												
t = - .1°		de la											2 40 F									12.50							70.00 -0.		j	00.00													
mfr = 0.83 and α = - .]°				•		•						-									ā .			- 7	1.75	4	ň	3	7)ě	8	<u>s</u> ;	51												
nfr = O.f		Ę		0.000	-				-		0.2687	N 25 N																																	
H	• = 0.	Ŵ	ž	10.01	206.94	223.61	245.83	262.50	273.61	279.17	284.72	97.047																																	
	٠	Forebody	5	0 1833	0.1228	0.0597	-0.0741	-0.2007	-0.2684	90000	0.010	CUCC-0-	0.6310	-0.6118	-0.4206	-0.0186	0.4356	0.6654	0.8775	1.1146	1.1833	0.9302 -0.8906	07160	-0.7610	-0.6242	-0.4736	-0.1859	-0.2273	-0.2165	-0.2129	-0.2102	0.1077	0.1875	-0.1935	-0.2052	-0.1652	-0.1605	0.1294	0.1143	611.0-		0.0925	0.0449	-0.0202	-0.0009
		For	5	-82.25	-75.15	-68.05	-57.40	46.76	-39.66	-32.56	04-07-	18.61-	-11.26	-10.14	-7.88	4.51	-2.25		6.0	0.30	2.0	0.11	0.62	1.25	1.88	2.50	3.12	3.75	4.38	8.9	0.25	0C'1	10.00	12.50	15.00	17.50	20.00	30.00	40.00		800		_	_	145.83
			. 9	2	\$	"	74	χ,	8 9	2 9	2																																		
		Afterbody		4 0.0479																																									
	4 = 180°	₹;			~			_		71.462			_			_		_																											
2.1°	٠	Forebody	0.000		-0.1857	-0.612	0.1239	0586.0	0.80/4	CK01-1-	01111			-0.9675	-0.9166	-0.8576	1068.0-	6668.U-	017070-	C8C1-0-	1081 0	-0.2116	-0.1854	-0.1902	-0.1702	-0.1451	-0.1422	-0.1281	-0.1240	-0.0963	2000.0-	0.0178													
and α = .		£ ;	1.10	-82.25	-46.76	-11.26	12.4		N N	10.0	1.25	1.88	2.50	3.12	3.75	4.38	B	0.0		0.01	12 50	15.00	17.50	20.00	30.00	40.00	\$0.00	60.09	20:00	80.08	00.001	129.17													
mfr = 0.88 and α = -2.1°		vbo tr	1000	0.0203	0.0353	0.0563	0.0980	0.1403	0761-0	2022.0	0.3262																																		
mfr		Afterbody	_		206.94		245.83				290.28																																		
	• = 0.	ð g					0.0553					-0.8893	-0.6668	-0.6535	-0.4525	-0.0604	0,0100	0.10.0	1 0862	1.1820	0.9724	-0.8110	-0.6117	-0.5028	3470	1954	1454	-0.1862	9551	-0.14/0	1447	-0.1549	1618	-0.1707	1574	-0.1372	855	-0.1061	046	-0.1057	-0.097	-0.0948	-0.0428	-0.0213	620
	•	Forebody				-68.05 0. 0. 0.		10 49 00				-14.81 -0.														2.50 -0.			1.02 80.4 1.02 80.4		7.50 -0.1			12.50 -0.1		17.50 -0.1									0.0
			, di	νņ		ų.		r "		; ;	-	÷	÷	-	•	•					-	-	-									~	Ξ	1	- 1	- 2	4 8	< 3	5	8	5	8	8	129	69

(b) Concluded

Afterbody XL CP XL CP 20928 00145 20504 00382 245.83 00919 262.50 0.1372 273.61 0.1387 273.61 0.1387 273.61 0.1387 273.61 0.1387 273.61 0.2287 273.71 0.2287 273.61 0.2287 273.61 0.2287 273.61 0.2287 273.61 0.0287 273.71 0.0287 274.71 0.0287 274.71 0.0287 274.71 0.0287 274.71 0.0287 274.71 0.0287 274.71 0.02777 274.71 0.02777 274.71 0.02777 274.71 0.02777 274.71 0.02777 274.71 0.02777 274.71 0.02777 274.71 0.02777 274.71 0.02777 274.71 0.027777 274.71 0.02777 274.71 0.02777777777777777777 180° ●
 ■ 004
 ■ 004
 ■ 004
 ■ 01985
 ■ 0.1985
 ■ 0.1985
 ■ 0.1985
 ■ 0.0993
 ■ 0.0993
 ■ 0.0993
 ■ 0.0993
 ■ 0.0993
 ■ 0.0993
 ■ 0.0993
 ■ 0.0993
 ■ 0.0993
 ■ 0.0993
 ■ 0.0993
 ■ 0.0993
 ■ 0.0993
 ■ 0.0993
 ■ 0.0993
 ■ 0.0993
 ■ 0.0993
 ■ 0.0993
 ■ 0.0993
 ■ 0.0993
 ■ 0.0993
 ■ 0.0934
 ■ 0.0934
 ■ 0.0934
 ■ 0.0934
 ■ 0.0934
 ■ 0.0934 **mfr = 0.83 and** $\alpha = 3.1^{\circ}$ Afterbody XI. CP 173.61 0.0452 190.28 0.03459 206.94 0.0459 205.34 0.0662 233.61 0.0662 262.30 0.1076 262.30 0.1076 262.30 0.1076 273.756 0.2100 279.17 0.2144 279.72 0.2244 **0** = **0**
 Forebody XGL
 CP

 XGL
 CP

 XGL
 CP

 XGL
 CP

 75.15
 0.1996

 82.25
 0.2497

 -57.40
 0.1075

 -65.6
 0.1075

 -65.6
 0.1075

 -65.6
 0.1075

 -65.6
 0.1075

 -65.6
 0.1075

 -65.6
 0.2477

 -12.55
 0.26165

 -12.8
 0.2497

 -14.8
 0.2497

 -14.8
 0.2497

 -14.8
 0.2497

 -14.8
 0.2497

 -14.8
 0.2497

 -14.8
 0.2497

 -14.8
 0.2497

 -11.73
 0.1734

 0.31
 1.1734

 0.31
 1.1734

 0.31
 1.1734

 0.32
 1.2464

 1.32
 0.1093

 3.12
 1.1033

 3.13
 1.1034

 3.14
 0.01407

 body CP 0.0178 0.0378 0.0504 0.0924 0.1954 0.1954 0.1954 0.2357 0.2357 0.2357 Afterb XL 190.28 206.94 205.94 245.83 265.50 279.17 284.72 290.28 180° mfr = 0.83 and $\alpha = 2.0^\circ$ **Fore X.I. X.I. X.I. X.I. X.I. X.I. 4.6**,76 **4.6**,76 **0.00 0.01 1.126 0.01 1.126 0.01 1.126 1.127 1.126 1.127 1.126 1.127 1.127 1.126 1.127 1.127 1.127 1.127 1.127 1.126 1.127 1.126 1.127 1.127 1.126 1.127 1.126 1.127 1.127 1.127 1.126 1.127 1.126 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.126 1.127** Afterbody XG. CP 7X1. CP 19028 00378 19028 00348 206.94 00448 225.56 003651 225.56 003651 225.56 01054 262.20 01053 277.56 01553 277.56 02563 277.56 02563 277.56 02563 277.56 02563 277.56 02560 278.57 0260 278. 0
 Forebody

 XrL
 CP

 XrL
 CP

 XrL
 CP

 XrL
 CP

 XrL
 CP

 XrL
 CP

 251.5
 0.1495

 46.76
 0.1679

 46.76
 0.1679

 46.76
 0.1679

 46.76
 0.1679

 45.1
 0.1697

 14.81
 0.7861

 14.81
 0.7301

 14.83
 0.7361

 14.81
 0.7363

 14.83
 0.7364

 0.144
 0.7963

 11.125
 0.7364

 0.144
 0.7963

 1.187
 0.09809

 0.191
 1.1918

 0.101
 0.1925

 0.11
 0.1925

 0.11
 0.1935

 0.11
 0.1925

 0.11
 0.9309

 1.125
 0.9309

 1.125
 0.9309

 1.125
 0.9400

 1.125
 0.9400
 80° ■ = 1
 ⇒ = 1
 ○ 0.0241
 ○ 0.1845
 ○ 0.1845
 ○ 0.1845
 ○ 0.9408
 ○ 0.9975
 ○ 0.9975
 ○ 0.9975
 ○ 0.9975
 ○ 0.9975
 ○ 0.9975
 ○ 0.9410
 ○ 0.1997
 ○ 0.1997
 ○ 0.1997
 ○ 0.1997
 ○ 0.1997
 ○ 0.1997
 ○ 0.1997
 ○ 0.1997
 ○ 0.1997
 ○ 0.1997
 ○ 0.1997
 ○ 0.1997
 ○ 0.1997
 ○ 0.1997
 ○ 0.1181
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1181
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187
 ○ 0.1187 $mfr = 0.83 and \alpha = 1.1^{\circ}$ Afterbody X/L CP 173.6 00272 190.28 00326 206.94 00422 223.61 0.0628 223.56 0.0028 223.56 0.1047 262.50 0.1907 262.50 0.15048 223.51 0.22048 223.52 0.23048 226.28 0.3314 262.28 0.03214 262.28 0.0321 **0** = **0** rebody CP CP 0.1314 0.22034 0.22034 0.22034 0.22034 0.23035 0.23035 0.2344 0.2303 0.2344 0.2335 0.2344 0.2335 0.2344 0.2335 0.2344 0.2335 0.2344 0.2335 0.2344 0.2335 0.2344 0.2335 0.2344 0.2335 0.2335 0.2335 0.2335 0.2337 0.2338 0.2334 0.2344 0.2338 0.2344 0.23714 0.2

Afterbody VIL CP 7.28 -0.0030 94 0.0028 1 0.0273 1 0.0273 0 0.1197 1 0.1834 0.2385 0.2385 XJL 190.28 206.94 223.61 245.83 262.50 279.17 279.17 284.72 284.72 284.72
 ♦
 180°

 Rerebody
 A

 44.3
 1.061
 209

 44.3
 1.061
 900

 -46.5
 1.0241
 206

 -46.5
 1.0241
 206

 -46.5
 1.0241
 206

 -46.5
 1.0241
 206

 -46.5
 1.0241
 206

 -46.5
 0.9081
 275

 -0.90
 1.2007
 279

 0.01
 1.2007
 279

 0.021
 1.4713
 275

 0.12017
 279
 0.0421

 1.2617
 279
 1.1080

 2.3.0
 1.1478
 286

 2.3.1
 1.1483
 21617

 2.3.0
 1.1476
 238

 2.3.1
 1.1080
 21617

 2.3.1
 1.12617
 246

 2.3.1
 1.12617
 248

 2.3.1
 1.1317
 248

 2.3.1
 1.1483
 256

 2.3.1
 1.1486
 256

 nfr = 0.49 and $\alpha = 2.1^{\circ}$ Afterbody XL CP 173.6 00057 190.28 00095 205.94 00196 205.94 00196 223.56 0.0762 223.56 0.1191 273.61 0.1702 225.51 0.2444 2028 0.2044 **0** = **0**
 Forebody

 Xut
 CP

 -94.3
 1.0657

 -75.15
 1.0733

 -75.15
 1.0733

 -75.15
 1.0733

 -75.15
 1.0733

 -57.40
 1.0343

 -57.40
 1.0343

 -57.40
 1.0343

 -57.40
 1.0343

 -32.56
 0.9826

 -32.56
 0.9826

 -14.81
 0.8820

 -11.26
 0.8926

 -11.46
 1.1907

 -11.46
 1.1905

 -11.46
 1.1907

 -11.46
 1.1905

 -0.31
 -1.2056

 -0.31
 -1.2056

 -1.1907
 0.9997

 -1.1907
 0.9997

 0.01
 0.2192

 0.21
 -1.2056

 1.23
 -1.2056

 1.23
 -1.2056

 1.23
 -1.2056

 2.23
 -1.2056

 2.23
 -1.2056

 2.24
 -1.2056

 Afterbody XCL CP 190.28 00040 206.94 00172 205.94 00172 245.83 00678 245.53 00678 245.53 00678 245.53 002194 245.73 0.1170 273.61 0.1760 273.61 0.1760 273.61 0.1760 273.61 0.1760 273.61 0.1760 273.61 0.1760 273.61 0.1760 273.61 0.1760 273.61 0.1760 273.61 0.1760 273.73 0.02194 273.73 0.02194 273.73 0.02194 273.73 0.02194 273.73 0.02194 273.73 0.02194 273.73 0.02194 273.73 0.02194 273.73 0.02197 273.73 0.02194 273.75 0.02194 273.75 0.02194 273.75 0.02194 273.75 0.02194 273.75 0.02194 273.75 0.02194 273.75 0.02194 273.75 0.02194 273.75 0.02194 273.75 0.02194 273.75 0.02194 273.75 0.02194 275 0.02194 275 0.02194 275 0.02194 275 0.02194 275 0.0219 and a = 0° Foreh Foreh 2.50 2.50 2.50 0.00 0.01 1.12 2.50 0.02 1.12 2.50 0.02 1.12 2.50 0.02 1.12 2.50 0.02 2.50 0.02 mfr = 0.49 Afterbody XAL CP 17.40 00118 190.28 0.00124 205.94 0.0124 205.94 0.0124 225.86 0.0124 225.86 0.0124 225.86 0.0126 225.96 0.1196 227.3.61 0.1766 2273.61 0.0118 2273.61 0.0118 2273.61 0.0118 2273.61 0.0118 2273.61 0.0114 2273.61 0.0114 2273.61 0.0114 2273.61 0.0114 2273.61 0.0114 2273.61 0.0114 2273.61 0.0114 2273.61 0.0114 2273.61 0.0114 2273.61 0.0114 2273.61 0.0114 2273.61 0.0114 2273.61 0.0114 2273.61 0.0114 2273.61 0.0114 2273.61 0.0114 2273.61 0.0114 2273.61 0.0114 2273.61 0.0116 2273.61 0.0116 2273.61 0.0116 2273.61 0.0116 2273.61 0.0116 2273.61 0.0116 2273.61 0.0116 2273.61 0.0116 2273.61 0.0116 2273.61 0.0116 2273.61 0.0216 2273.71 0.0216 2275.71 0.0216 2275.71 0.02 • = 0°
 Forebody

 X/L
 CP

 -94.3
 1.0650

 -82.3
 1.0650

 -82.3
 1.0733

 -75.15
 1.0723

 -57.40
 1.0723

 -57.40
 1.0723

 -99.52
 1.0723

 -57.40
 1.0724

 -99.66
 0.9919

 -25.54
 0.99189

 -25.54
 0.9803

 -25.54
 0.9803

 -10.14
 0.8620

 -11.126
 0.8402

 -11.127
 0.00

 -11.126
 0.8403

 -11.126
 0.8403

 -11.127
 0.00

 -11.126
 0.8403

 -11.127
 0.00

 -11.126
 1.1391

 0.01
 0.10923

 0.02
 1.1257

 0.23
 1.1256

 1.23
 1.1257

 1.23
 1.1257

 1.23
 1.1257

 1.23
 1.1257

 1.23
 1.1257

 Afterbody XIL CP XIL CP 206.94 00118 206.54 00130 245.83 00074 245.83 00074 245.83 0074 245.50 01199 273.61 0.1199 273.61 0.1199 277.51 0.2909 27028 0.30028 80° mfr = 0.49 and $\alpha = -2.0^\circ$ Afterbody X/L CP 7X/L CP 19028 0.0008 19028 0.0008 205.94 0.0130 223.61 0.0790 223.61 0.0796 225.50 0.1192 225.17 0.2826 225.50 0.11924 225.51 0.2826 226.26 0.3826 226.27 0.2826 226.26 0.3826 226.26 0.3826 226.26 0.3826 226.26 0.3826 226.26 0.3826 226.26 0.3826 226.26 0.3826 226.26 0.3826 226.26 0.3826 226.26 0.3826 226.26 0.3826 226.26 0.3826 226.26 0.3826 226.26 0.3826 226.26 0.3826 226.26 0.3826 226.26 0.3826 226.26 0.3826 226.26 0.3826 227.20 0.3826 226.26 0.3826 226.26 0.3826 227.26 0.3826 227.36 0.3826 227.36 0.3826 227.36 0.3826 226.36 0.3726 227.36 0.3266 227.36 0.3266 227.36 0.3266 227.36 0.3266 227.36 0.3286 227.36 0.3286 227.36 0.3286 227.36 0.3286 227.36 0.3286 227.36 0.3286 227.36 0.3286 227.36 0.3286 227.36 0.3286 226.376 0.3286 226.376 0.3286 227.36 0.3286 226.376 0.3286 227.36 0.3286 226.376 0.3286 227.36 0.3286 226.376 0.3286 227.36 0.3286 2 • = 0°
 Forebody

 X.D.
 CP

 94.3.
 1.0313

 82.23
 1.0713

 82.24
 1.0714

 -6.56
 1.0731

 -6.57
 1.0714

 -5.54
 0.9954

 -6.56
 1.0731

 -6.57
 1.0311

 -6.56
 1.0731

 -6.56
 1.0321

 -3.25.46
 0.99954

 -1.813
 0.8075

 -1.813
 0.8075

 -1.814
 0.8173

 -1.1126
 0.8173

 -1.1126
 0.8173

 -1.1126
 0.8173

 -1.1127
 0.9370

 0.201
 1.1503

 0.201
 1.1503

 0.201
 1.1503

 0.201
 1.1503

 0.201
 1.1601

 1.253
 1.0533

 3.12
 1.1233

 3.13
 1.1233

 3.13
 1.1243

 3.13
 1.1243

 3.13
 1.12433

TABLE VII. Continued

(c) M = 0.87

86

(c) Continued

Afterbody XL CP 0.28 0.0261 6.94 0.0425 6.94 0.0425 8.9 0.1176 51 0.2397 7 0.2397 7 0.3397 7 0.4215 X/L 190.28 206.94 223.61 245.83 262.50 279.17 279.17 284.72 284.72 284.72 284.72
 ♦
 180°

 ♦
 180°

 CP
 X

 0.9359
 206

 0.9359
 206

 0.9359
 206

 0.9359
 206

 0.9356
 247

 0.9356
 247

 0.9356
 247

 0.3356
 247

 1.1311
 27

 1.1311
 27

 0.3356
 247

 1.1344
 266

 1.1344
 27

 1.1344
 27

 1.12843
 27

 1.12844
 266

 1.12845
 27

 1.12845
 27

 1.12845
 27

 1.12845
 27

 1.12845
 27

 27
 0.0911

 28
 0.11056

 0.000
 0.11256

 0.000
 0.11256

 0.000
 0.11256

 0.000
 0.11256

 0.001
 0.11256

 0.01177

 < mfr = 0.67 and $\alpha = 0^{\circ}$ **Poreb 7.1.** Afterbody XGL CP 173.600093 190.28000093 190.280000077 205.31000077 225.31000077 225.31000077 225.3100077 225.3100077 225.30001179 2273.61002490 2292730028004300 229273004300 • = 0°
 Forebody

 XnL
 CP

 XnL
 CP

 XnL
 CP

 XnL
 CP

 XnL
 CP

 XnL
 CP

 27.5.15
 0.9371

 27.5.15
 0.9371

 27.5.15
 0.9371

 27.5.15
 0.9371

 27.5.15
 0.9371

 27.6.0
 0.8227

 29.6
 0.7945

 20.6111
 0.8237

 21.46
 0.9451

 21.48
 0.4530

 21.48
 0.4511

 21.48
 0.4510

 21.48
 0.4511

 21.48
 0.4511

 21.44
 1.177

 0.451
 0.4530

 21.12
 0.4511

 0.1235
 0.1235

 0.1236
 0.1272

 0.1234
 0.0501

 0.1235
 0.0284

 0.1235
 0.0294

 0.1235
 0.0284

 0.1235
 0.0284

 0.1035
 180° ♦ = 1 2027 2027 2027 2028 20289 20299 20099 2009 **mfr = 0.61 and** $\alpha = 0^{\circ}$ Forel 12.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11. Afterbody XL CP 173.6 0.0078 190.28 0.0116 205.94 0.0316 223.61 0.0552 245.83 0.1034 255.80 0.1034 2 °0 = 0
 Forebody

 Xr.L.
 CP

 Xr.L.
 CP

 Xr.L.
 CP

 Xr.L.
 CP

 Xr.L.
 CP

 Xr.L.
 CP

 25:3
 0.9953

 57:40
 0.9513

 -95:56
 0.8110

 -32:56
 0.8111

 -32:56
 0.8111

 -32:56
 0.8111

 -10.14
 0.9552

 -10.14
 0.5552

 -10.14
 0.5552

 -10.14
 0.5552

 -11.26
 0.5643

 -11.26
 0.5643

 -11.27
 0.5938

 -11.26
 0.5643

 -11.27
 0.5938

 -11.26
 0.5643

 -11.27
 0.5938

 -11.27
 0.2039

 0.01
 0.17219

 0.12
 1.2114

 1.26
 1.2114

 1.26
 1.2114

 1.27
 0.1172

 0.11
 0.1202

 1.23
 Afterbody XL CP XL CP 20594 00267 20594 00267 20536 00451 262.50 01394 262.50 01394 262.50 01394 262.50 01394 264.72 02900 29573 29573 0350 80° ● # 18
 Prombody
 X/L
 CP
 X/L
 CP
 X/L
 CP
 (11.26
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.27)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (11.26)
 (1 mfr = 0.55 and $\alpha = 0^{\circ}$ 0 = **0**
 Forebody

 X.L.
 CP

 -9. 32.
 C0335

 -57.40
 10435

 -57.40
 10435

 -57.40
 10435

 -57.40
 10188

 -57.40
 10188

 -35.55
 10344

 -35.56
 0.8920

 -35.56
 0.8920

 -35.56
 0.8920

 -35.56
 0.8920

 -148.36
 0.7834

 -148.36
 0.7834

 -111.26
 0.7342

 -14.81
 0.7432

 -14.81
 0.7433

 -14.81
 0.7434

 -14.81
 0.7434

 -14.81
 0.7434

 -14.81
 0.7434

 -14.81
 0.7434

 -14.81
 0.7435

 -14.81
 0.7434

 -14.81
 0.7435

 -11.1256
 0.3974

 -12.31
 1.1256

 -12.31
 1.1256

 -12.31
 1.1256

 -12.31
 1.1256
 </

(c) Concluded

mfr = 0.73 and $\alpha = 0^{\circ}$

I						100	
For	Forebody	After	Afterbody	Por	Forebody	After	Afterbody
XI	6	XI.	6	ž	9 0	ž	9
94.32	0.8793	173.61	0.0137	-94.32	0.8804	190.28	0.0321
-82.25	0.9009	190.28	0.0302	-82.25	0.9018	206.94	0.0528
-75.15	0.9034	206.94	0.0464	-46.76	0.7722	223.61	0.0703
-68.05	0.8913	223.61	0.0742	-11.26	0.0771	245.83	0.1241
-57.40	0.8476	245.83	0.1274	-4.51	0.3892	262.50	0.1914
46.76	0.7730	262.50	0.1898	06:0-	1.0672	273.61	0.2630
-39°66	0.6981	273.61	0.2584	0.0	0.7675	279.17	0.3122
-32.56	0.5985	279.17	0.3063	0.31	-1.1451	284.72	0.3672
-25,46	0.4586	284.72	0.3578	0.62	-1.2343	290.28	0.4336
-18.36	0.2945	290.28	0.4220	1.25	-1.1146		
14.81	0.2106			1.88	-1.0380		
-11.26	0.1074			2.50	-0.9740		
-10.14	0.0742			3.12	-0.9430		
-7.88	0.1049			3.75	-0.8777		
4.51	0.3778			4.38	-0.8447		
-2.25	0.7061			5.00	-0.8232		
-1.46	0.9006			6.25	-0.7823		
0:0-	1.0509			7.50	-0.7303		
-0.39	1.1919			8.75	-0.6715		
-0.19	1.1978			10:00	-0.6163		
8	0.7756			12.50	-0.1499		
0.31	-1.1635			15.00	-0.1320		
0.62	-1.1721			17.50	-0.1424		
1.25	-1.1293			20.00	-0.1248		
1.88	-1.0282			30.00	-0.1517		
2.50	-0.9851			40.00	-0.1352		
3.12	-0.9268			50.00	-0.1345		
3.75	-0.8530			60:09	-0.1312		
4.38	-0.8486			70.00	-0.1148		
5.00	-0.8470			80.00	-0.1033		
6.25	-0.7672			90.00	-0.0843		
7.50	-0.7650			100.001	-0.0359		
8.75	-0.5161			129.17	-0.0183		
10.00	-0.6597						
12.50	-0.3878						
15.00	-0.1398						
17.50	-0.1253						
20.00	-0.1428						
30.00	-0.1461						
4 0.0	-0.1425						
20.00	-0,1269						
60.00	-0.1331						
70.00	-0.1251						
80.00	-0.1084						
100.00	-0.0474						
29.17	-0.0210						
10.01	0.000						

		è e	0.0045	0.0235	0.0382	0.1390	0.2058	0.2557	0.3128	0.3849																																
		đ.			223.61 0					290.28 0																																
	4 = 180°										2	213	429	6	22	120	920	390	838	185	029	5		8	596	616	619	6) 6	<u>8</u> 2	324												
= 2.0°		Å.	2 1:0803		6 1.0389					52 -1.4758 55 -1.3943					92111 00		50 -0.9920					00110-00							90/000 00													
and a		ά, ε λ	4 NF	-82.25	46.76	15 4	06.0-	0:00	0.31	0.62	: 2	2.50	3.12	3.75	8.4 8.0	00.C	150	8.75	10.00	2	15.00		0007	40.04	50.00	60.00	70.00	80.00	00:06	129.17												
mfr = 0.49 and α = 2.0°		Afterbody	0.0279	0.0229	0.0276	0.0878	0.1365	0.1914	0.2270	0.2716	0.40.0																															
E	చి	Aher	X/L 173.61	190.28	206.94	10.022	262.50	273.61	279.17	284.72 200.78																																
	0 = 0	ody	CP 1.0817	1.0904	1.0911	1.0715	1.0433	1.0182	0.9880	0.9451	0 0010	0.8946	0.8977	0.9337	10451	4701.1	1.2043	1.1158	0.9687	0.2433	-1.5079	-1.5417	-1.4775	-1.4639	-1.4476	-1.4301	-1.3744	-1.3310	-1.2719	-1.1735	-1.1387	-1.0686	-1.0313	0.9721	-0.7829	-0.6715	-0.1613	-0.0277	26000	00130	-0.0255	-0.0266
		Forebody	X1. 91.32	82.25	-75.15	63.62 19 10	46.76	-39.66	-32.56	-25.46			-10.14	-7.88	2.5	Q7-	8	-0.39	-0.19					2.50			4.38		6.25					00.01	30.00	40.04	3 0.00	60.09 20.00	00.02	00.001	129.17	145.83
				-																																						
		Afterbody	0.0146 0.0146	0.0289	0.0392	01300	0.2002	0.2449	0.2973	0.3607																																
	.081	Afte	X/L 190.28	206.94	223.61	243.85	273.61	279.17	284.72	290.28																																
•	\$ = 180°	Forebody	CP 1.0812	1160'1	1.0446	0.6380	1.2137	0.3430	-1.4362	-1.5203	28071-	-1.4189	-1.3746	-1.3139	-1.2423	-1.2289	10841	-1.0372	-1.0194	-0.9458	6616.0-	-0.8269	0618.0-	-0.5404	-0.0770	-0.0172	-0.0252	-0.0411	0.0487	-0.0242												
mfr = 0.49 and α = 0°		Fore	X/L	-82.25	-46.76	97.11-	8	0.00	0.31	0.62	3	2.50	3.12	3.75	4.38	8	C7 0	8.75	10.00	12.50	15.00	17.50	20.02	80.04	50.00	60.00	70.00	80.00	90.00 20.00	129.17												
- 0.49 m		2	CP 10004	0.0093	0.0230	0.0445	1397	0.2006	0.2417	0.2921	0700																															
ца Г		Afterbody	_			223.61 0.0				284.72 0.5																																
	•0 = ♦		~ -								-		8	26	1	83	5 3	5	52	16	584	72	20	2 ¥	12	£	1 21	129	525	e y	118	675	883	-0.8780	270	188	-0.0943	-0.0156	-0.0303	0.0742	0.0264	0.0246
		Forebody	CP CP			1.0866			-		00.000			-			11111 00							1.86 -1 1966						7.50 -1.11/0 8.75 -1.0466												
		G.	۲ ۲	82.25	-75.15	-68.05 	92.9 4	-39.66	-32.56	-25.46	00.81-	-	-10.14	-7.88	5.4	-2.25	9-1- -	6.0-	-0.19	0:0	0.31	0.62		- ~	1	iri	4	ŝ	Ċ	- o	ġ	12.50	15.00	17.50	00.05	₹ ₹	50	60.09	70.00		129.17	145.83
		vbv	CP 0.0184	0.0252	0.0387	0.0793	CICI-0	0.2278	0.2737	0.3269																																
		Afterbody			-			_																																		
	¢ = 180°		_				12111 2				-1.4976	-1.4876	4955	-1.4523	4128	1166	2002	17071-	345	-1.0729	0127	-0.9708	.9196	116/-0-	1154	1560	0.0068	-0.0112	-0.0264	0000												
- -2.1°		Forebody					1 1 1					1.86 -1. 2.50 -1					1. 22.0									_	70.00	_		00.00												
mfr = 0.49 and α = -2.1°			~ `	• •								•							-			-		~ 4		. •		•		92	:											
fr = 0.4		Afterbody	CP CP	0.0027	0.0165			0.2015			0.3731																															
2	• = 0°		X	190.28	206.94	223.61	245.83	273.61	279.17	284.72	290.28																															
	•	Forebody	C D	1.0871	1.0923	1.0855	1.0690	1.0126	0.9740	0.9280	0.8744	0.8203	0.8264	0.8416	0.9545	1.0949	1.1637	1.2028	1 0674	0.4307	-1.3769	-1.4318	-1.3528	1.3347	711011-	02211-	-1.1393	-1.1042	1040.1-	8610.0-	9008 0	-0.8162	-0.7840	-0.7336	-0.7003	-0.5564	-0.0413	-0.0713	-0.0822	-0.0761	-0.0366	-0.0276
		Fore	ž	-82.25	-75.15	-68.05	57.40 46.76	99.66	-32.56	-25.46	-18.36	14.81	-10.14	-7.88	4.51	-2.25	-1.46	06-07 07	60 Q	000	0.31	0.62	1.25	1.88	2.5	11.0	4.38	5.00	6.25	7.50	10.01	12.50	15.00	17.50	20.00	30.00	\$0.05 00.05	60:00	70.00	80.00	100:00	145.83

•

TABLE VII. Continued

(d) M = 0.89

		2	5	0.0342	05400	5	0.1961	0.2710	0.3222	0.3783	0.4404																																		
		Afterbody																																											
	4 = 180°	<	^	190.28			• •				290.28				_				_																										
°0.	•	Forebody		F/ C6:0		0.3759	0.6102	1.1427	0.7113	1.2051	-1.271	1681-1-			-0.9734	-0.9296	-0.9004	-0.8144	-0.7830	770/ 0-	-0.6683	0.6301	-0.5839	-0.5606	-0.0673	-0.0739	-0.1055	0.1242	2011.0-	-0.0850	-0.0364	-0.0175													
and a =		Fo	XI	2.44	-46.76	-11.26	4.51	-0.90	000	0.31	0.02	C7 1	2.50	3.12	3.75	4.38	5.00	6.25	7.50		12.50	15.00	17.50	20.00	00.00	40.00 1	808		00.07	00.06	100.001	129.17													
mfr = 0.67 and $\alpha = 0^{\circ}$		ody	e e	001010	0.0514	0.0812	0.1336	0.1967	0.2682	0.31.54	800570	C 47 4 10																																	
8		Afterbody	X.		206.94			_		11.617																																			
	•0 = 0	Ş.					_		0.8137 2				0.3911	0.3710	0.4244	0.6085	0.8806	1870-1	12126	1014	0.6975	-1.2092	-1.2321	-1.1740	-1.1164	-1.04/2	0.0718	01.0	-0.9053	-0.8499	-0.8196	1788	-0.7488	-0.6969	-0.6662	-0.6245		-0.0/0/	0000-0-0	1000		2 2	141	6	0.0186
		Forebody	27 7		_				39.60 33.55					-10.14 0.							-						21.5 21.5 21.5			6.25 -0.8															Ċ
						ę	νņ.	Υ [•]			? -	· -	÷	-	•	1	ŕ			T	•	·				•			•,	ĩ		æ	2	2:	<u> </u>	28	2 2	3	25	3	3 6	2 9			17.671
	•	Afterbody	CP 0.00	0.0486	0.0686	0.1203	0.1830	0.2532	0.3541	0.4155																																			
		Affect	X/L	206.94	223.61	245.83	262.50	2/3.01	11.612 784 77	200.28																																			
	• = 180°	A do	10004	1.0152	0.9370	0.5774	0.7776	3081.1	1 3147	1492	-1.2810	-1.2067	-i.1824	-1.1466	-1.0676	6670'I-	1066.0-	0.8844	-0.8561	-0.8319	-0.7632	-0.7462	-0.6948	1000.0-	1900.0-	0,0000	-0.0898	-0.0982	-0.0944	-0.0815	0.0340	-0.0296													
mfr = 0.61 and $\alpha = 0^{\circ}$	6	rorebody	ML 94.32	-82.25	-46.76	-11.26									5. F					10:00			5.5 5.5 2.5						_	_	_	29.17													
. 0.61 an			6	54	2	2	1 2	66	; ;	8	89																		-		=	-													
L H		du una	Ŭ			51 0.0642																																							
1	• •0 = ♦	>	4 173.61			2 223.61						~	_							_																									
	Forshode					1.0122				0.7556	0.6749	0.6372	0.5770	18/ 5/0	2600.0	0.000	1.1063	1.1840	1.2047	1.1470	0.5867	-1.2838	1 2015	-1 2146	-1.1451	-1.1226	-1.0753	-1.0299	-0.9861	-0.9564		0109.0-	0.7210	-0.7415	-0.6738	-0.6755	-0.5523	-0.0575	-0.0557	-0.0959	-0.0926	-0.0933	-0.0489	-0.0303	
	þ	2	9.32	-82.25	-75.15	07.80-	92.98	99.66-	-32.56	-25.46	-18.36	-14.81	-11.26	-10.14	8.7		-1.46	0.0	-0.39	-0.19	0.0	15.0	20:0	1.88	2.50	3.12	3.75	4.38	5.00	6.25	2	0.00	5 61	12 00	17 50	20.00	30.00	40.00	50.00	60.09	70.00	80.00	100.00	129.17	
	Ą	28	0.0205	0.0347	0532	CI 401	070	2698	3201	3817																																			
	Afterho	XI. CP		206.94 0.1	•		273.61 0.5	0	0	0																																			
500) - V	ž.		-						_		82	Z :	88	3 3	5 7	85	ŧ	66	17	5	88 50	8 =	. 8	67	10	ž	38	8	2 4	2 2	8 5	2													
5	• • Forebody	ن ب	32 1.0474		76 0.9986			_				88 -1.3464				00 -1.1185					0 -0.8188									0//0/0- 0															
$\alpha = 0.39 \text{ and } \alpha = 0.5$		XI	-94.32	-82.25	40.76	4	06.0-	0	0.31	0	2	1.68	4	n r	4.38	5.00	6.25	7.50	8.75	10:00	12.50	17.1	20.00	30.0	40.00	50.00	60:09	20.00	00.08		1001														
	Afterbody	5	0.0011	0.0174	0.0547	0.1037	0.1603	0.2234	0.2645	0.3126	0.3770																																		
		χΓ	173.61	190.28		245.83	262.50	273.61	279.17	284.72	290.28																																		
	5 • •	CP CP	1.0478	1.0527	0/60.1	1.0306	0.9936	0.9613	0.9151	0.8597	0.8052	0.11.9	012405	0.7853	0.9086	1.0871	1.1685	1.2114	1.1848		-1.3781	-1.4215	-1.3477	-1.3180	-1.2914	1.2685	-1.1921	-1.1380	-1.0368	1.0012	-0.9494	-0.9321	-0.8068	0.7820	-0.7566	-0.7290	-0.6103	-0.4145	0.0306	-0.0438	-0.0631	-0.0782	0.0510	-0.0289	0.0130
•	ğ																				- Ŧ		- ¥		- A -	÷.		1.1			Ŷ	- 4	Ŷ	Ŷ	÷	ب	Ψ.	ب	-		۔ د	Q, I	، چ	9	c

(d) Concluded

		Afterbody		0.0416			-			0.3189																																						
	\$ = 180°	Ψ¥	XIL	190.28	223.61	245.83	262.50	273.61	279.17	284.72	07.047																																					
۶	*	Forebody	C.	0.2729	-0.1587	-0.5411	0.1338	0.9720	0.9328	0.8864	1104.0-	0.8/14		0.669.0	7900-0-	1000	1000.0-	0.000.0-	190017-0	4014-0	0/11/0-	107.0	0.2478	016/10	01810	-0.1611	0.1473	-01189	10110-	-0.1261	01080	0.0016	0.0368	-0.0148														
and $\alpha = ($		Fore	XI	-94.32	-46.76	-11.26	4.51	06.0-	000	0.31	70.0	9 8	80. 1	00.4			2 2 2		C7-D					201	0000	30.00	40.00	0005	0009	00.00	80.00	0000	100.001	129.17														
mfr = 0.81 and $\alpha = 0^{\circ}$		body	G	0.0212	0.0541	0.0799	0.1241	0.1768	0.2333	0.2697	2710.0	0.50/8																																				
G	ۍ ۳	Afterbody	XI	173.61	206.94	223.61	245.83	262.50	273.61	279.17	71.407	87.067																																				
	•	body	C.	0.2853	0.1442	0.0756	-0.0917	-0.1607	-0.2132	-0.2197	0.00	-0.7410	7000-0-	2014-0-		4707.0	6671.0	6/7C'0	0.7897	C60670	5	17171	00000	PERCENT	92180-	-0.7990	-0.7592	0 7242	0.6640	-0.5835	0 5808	0.6421	-0.4349	-0.5140	-0.3904	-0.1941	-0.1843	-0.2142	-0.1890	-0.1576	-0.1459	-0.1286	-0.1351	-0.1191	-0.1076	-0.0395	-0.0199	-0.0047
		Forebody	хı	-94.32	-15.15	-68.05	-57.40	-46.76	-39.66	-32.56	04-07-	-18.30	10.41-	07'11-	+1.01-	00.1-		C7:7-	-1.40	0.0	6.0- 01.0	41.7 7	M :0	50	1.25	1.88	2.50	112	175	4.38	8	2C 9	7.50	8.75	10:00	12.50	15.00	17.50	20.00	30.00	40.00	50.00	60.00	70.00	80.00	100.00	129.17	145.83
		rbody	5	0.0424	0.0862	0.1429	0.2112	0.2861	0.3381	0.3932	1.45 /4																																					
	80°	Afterbody		190.28 0.0424							F/CE/N 97/067																																					
¢	a = 180°		XI		223.61	245.83	262.50	273.61	279.17	284.72	87.047	-1.02.34	2000-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	-0.9190	0.000.0	C/70'D-	-0.7900	06//1.0-	-0.6885	-0,092.5	-0.6300		860C-0-	1111 D	7/1C/D-	-0.1186	145	CSCI 07	1000	-0.1238	1010	2010- 10-0000	-00316	P600 (P-														
and α = 0°	\$ = 180°		CP X/L	190.28	0.7929 223.61	0.0938 245.83	0.3875 262.50	1.0774 273.61	0.7885 279.17	-1.0678 284.72	87.067 / 101.1-		2,004,0- 03,0		0008-0- 21.6			0.01 - 01.02			8. /3		5400.0- 06.21																									
afr = 0.73 and $\alpha = 0^\circ$	\$ = 180°	Forebody	X/L CP X/L	0.9007 190.28		-11.26 0.0938 245.83	4.51 0.3875 262.50	-0.90 1.0774 273.61	0.00 0.7885 279.17	0.31 -1.0678 284.72	87'067 /101'1- 70'0																																					
mfr = 0.73 and $\alpha = 0^\circ$		Afterbody Forebody	CP X/L CP X/L	-94.32 0.9007 190.28	0.0596 46.76 0.7929 223.61	0.0884 -11.26 0.0938 245.83	0.1445 -4.51 0.3875 262.50	0.2121 -0.90 1.0774 273.61	0.2842 0.00 0.7885 279.17	0.3287 0.31 -1.0678 284.72	07:067 /1011- 700 72870	57.1																																				
mfr = 0.73 and $\alpha = 0^{\circ}$	φ = 0° ♦ = 180°	Afterbody Forebody	X/L CP X/L CP X/L	0.0274 -94.32 0.9007 190.28	206.94 0.0596 -46.76 0.7929 223.61	223.61 0.0884 -11.26 0.0938 245.83	245.83 0.1445 -4.51 0.3875 262.50	262.50 0.2121 -0.90 1.0774 273.61	273.61 0.2842 0.00 0.7885 279.17	279.17 0.3287 0.31 -1.0678 284.72	27/067 / 10/11- 70/0 77827 0/10/11 10/142	0.4452 1.25	1.00	06.2	21.6	C1.6		00.0	670 572	DC'/	C/ 19	0.01			0000	000	40.00			00.02		00.00		129.17		-0.5536	-0.5434	-0.5616	-0.3820	-0.1113	-0.1317	-0.1307	-0.1379	-0.1227	-0.1088	-0.0427	-0.0131	0.0014

Afterbody XIL CP 190.28 00396 206.94 00592 205.94 00395 245.83 01355 245.83 01355 245.83 01355 257.50 02044 2768 279.13 03768 279.13 03768 279.13 03768 279.28 04377 body 10215 10215 10215 10215 10215 10215 102618 102618 11215 **nfr = 0.61 and** $\alpha = 0^{\circ}$ Foreb XCL 70:00 10 Afterbody GL CP 3.61 0.0201 2.8 0.0366 2.4 0.0366 3.4 0.0361 3 0.1352 3 0.1352 0.27344 0.2734 0.27344 0.27344 0.27344 0.27344 0. X/L 173.61 190.28 206.94 205.93 245.83 262.50 273.61 273.61 273.61 273.61 273.61 284.72 284.72 284.72 284.72 • = 0°
 Rorebody

 X1L
 CP

 -35.15
 10175

 -35.15
 10175

 -35.15
 10376

 -57.40
 10006

 -57.40
 10006

 -57.40
 10006

 -57.40
 10006

 -57.40
 10006

 -57.40
 10006

 -32.56
 0.9973

 -32.56
 0.9973

 -32.56
 0.9973

 -10.14
 0.6001

 -7.25
 1.0169

 -11.126
 0.2003

 -11.126
 1.2006

 -11.127
 0.011

 -12.41
 0.6421

 -14.81
 0.6401

 -11.126
 1.2006

 -11.127
 0.11195

 -12.223
 0.0601

 0.01
 1.1236

 1.224
 1.1237

 0.231
 1.2247

 0.231
 1.2247

 0.231
 1.2247

 0.231
 1.2247

 0.231
 1.2247

 Afterbody XGL CP 190.28 00330 20694 00493 20594 00493 20536 00465 245.83 01187 262.50 0.1809 233.61 0.2340 239.71 0.2347 273.61 0.0347 273.61 0.0347 273.72 0.0347 273.73 0.0347 273.73 0.0347 273.7377 0.0347 273.737 0.0347 273.7370 50 ♦ = 18 **Forebody X.C. P. 223 1.0667 -8.2.3 -8.2.3 -8.2.3 -8.2.3 -8.2.4 -8.2.3 -1.0667 -8.2.3 -1.0667 -4.8.9 -4.8.9 -4.8.9 -4.8.9 -4.8.9 -4.8.9 -4.8.9 -4.8.9 -4.8.9 -4.8.9 -4.8.9 -4.8.9 -4.8.9 -4.8.9 -1.2.9.4 -1.2.9.4 -1.2.9.9 -1.1.3.7** and $\alpha = 0^{\circ}$ nfr = 0.55 0°≂¢
 Forebody

 Korebody

 94.32
 1.0760

 -25.15
 1.0760

 -57.40
 1.0780

 -57.40
 1.0780

 -57.40
 1.0780

 -57.40
 1.0780

 -57.40
 1.0780

 -57.40
 1.0780

 -57.40
 1.0481

 -57.56
 0.8377

 -14.81
 0.8050

 -12.55.46
 0.8774

 -11.12
 0.07742

 -11.12
 0.07742

 -11.12
 0.07742

 -11.12
 0.07791

 -11.12
 0.07791

 -11.12
 0.0791

 -11.12
 0.0791

 -11.12
 0.0791

 0.11
 -1.2146

 0.11
 -1.2146

 0.11
 -1.2146

 0.11
 -1.2146

 0.11
 -1.2146

 0.11
 -1.2146

 0.11
 -1.2146

 0.11
 -1.2146

 0.11
 -1.2146

 Dody CP 0.0278 0.0402 0.0566 0.1593 0.1593 0.1593 0.258 0.2258 0.3241 Aftert X/L 190.28 206.94 223.61 245.83 262.50 273.16 279.17 284.72 284.72 290.28 ▲ 180°
 ▲ 180°
 ▲ 280
 ■ 480
 ■ 10980
 ■ 10980
 ■ 10980
 ■ 10984
 ■ 10984
 ■ 10984
 ■ 10984
 ■ 10984
 ■ 10984
 ■ 10984
 ■ 10984
 ■ 10984
 ■ 10984
 ■ 10984
 ■ 10984
 ■ 10984
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ 10988
 ■ **nfr = 0.49 and** $\alpha = 0^{\circ}$ For the second s Tbody CP 0.0168 0.0417 0.0584 0.1034 0.1034 0.1034 0.2665 0.3149 0.3806 Aftert XG. 173,61 190,28 206,94 205,94 205,94 262,50 273,51 273,5 **0** = **0**
 Forebody

 Xut
 CP

 75.15
 1.082

 75.15
 1.092

 75.15
 1.012

 57.40
 1.0863

 57.40
 1.0163

 57.40
 1.0115

 57.40
 1.0115

 57.40
 1.0115

 57.40
 1.0115

 57.40
 1.0115

 57.40
 1.0115

 57.40
 1.0115

 57.40
 1.0115

 57.41
 1.0115

 57.45
 0.9925

 -14.81
 0.8934

 -111.20
 0.8934

 -111.20
 0.8934

 -111.20
 0.3935

 -111.20
 0.3934

 -111.21
 1.1067

 0.01
 0.3945

 1.123
 1.2305

 1.231
 1.2305

 1.231
 1.2305

 1.231
 1.2305

 1.231
 1.2305

 1.231
 1.2305

 1.231
 1.2305

 <

TABLE VII. Continued

(e) M = 0.92

		٨	6	0.0682	0.0871	0.1925	0.2526	0.2948	0.3376 0.3950																																
		đ.																																							
	\$ = 180°	¥	۲۲ XL	206.94	223.61	245.85			284.72 290.28												_					_															
۶.	*	Forebody	9	0.1744	0.1344	0.1795	0.9762	0.9356	-0.9276	0.8349	-0.7793	-0.7064	-0.6008	0.5416	-0.5427	-0.5585	-0.4547	-0.1873	2000 U-	-0.3705	-0.2170	-0.1604	-0.1526	-0.1378	-0.1493	-0.1273	10.01.54	0.0299	-0.0045												
nd α = (Fore	72	-94-32 -82-25	-46.76	2. F	0.00	0.00	0.31	1.25	1.88	2.50	3.12	C F	5.00	6.25	7.50	8.75	00.01	15.00	17.50	20.00	90.0 4	50.00	60.00	70.00	00.08	100.001	129.17												
mfr = 0.81 and $\alpha = 0^{\circ}$		v	CP	C160.0	0.0657	0.1390	0.1922	0.2499	0.2874	0.3862																															
mfr		terb							279.17 0.7 284.72 0.7																																
	•0 • = •					76 223.61 57 245.83						88	: : :	7 S	8	Ş	69	88	8 F	28	4	\$;	5	76	88	5 3	5 4	3 5	76	42	128	4	8 8	1 19	88	133	178	130	74	51	8
		Forebody		0.1987		0.0476			5 -0.1906					PC41-0- 8				9 1.1806				5 -0.8149					1065.0-0				0 -0.4028		0.3820 0						_	0.0313	
		Fo	ž	-82.25	-75.15	-68.05	46.76	-39.66	-32.56	91.81.	-14.81	-11.26	-10.14	451-	-2.25	-1.46	06:0-	0.39	0.00	0.31	0.62	1.25	2.50	3.12	3.75	4.38	00.S	7.50	8.75	10.00	12.50	15.00	00.05	30.00	40.00	50.00	60.00	70.00	80.00	00:001	145.83
		dy	6	0.0728	0.0965	0.1593	0.3089	0.3602	0.4166 0.4803	1001																															
		Afterbody				245.83 0. 262 50 0.			284.72 0 200.79 0																																
											122	9 3	155	5/4 146	ŝ	532	220	34	019230	183	-0.4407	-0.4512	17/0/0-	-0.1069	-0.1241	-0.1201	-0.0998	0.0205	0:0030												
°0 •		Forebody		32 0.9167 25 0.9366		26 0.1164 st 0.4413			0.31 -0.9719					3.10 - 0.10/4 9.10 - 91.4												_	80.00 00.00 00.00														
/3 and o			X	-94.32	4	11.26	6.0	0.00	00	- c		7	ei i	-1-4	i vi	ø	1	ec ç	2 2	1 23	17	20:00	84	8	8	2	88	88	129.17												
mfr = 0.73 and α = 0°		Afterbody	6	0.0499	0.0688	0.1008	0.2318	0.3059	0.3523	04450																															
-	•		Хľ	173.61	206.94	223.61	262.50	273.61	279.17	201.79	07.747																														
	0																																						~	. .	
	•0 = •	ody		1 1719.0	0.9392	0.9269	0.8116	0.7366	0.6390	2402.0	0.2492	0.1480	0.1077	0.1858	0.7483	0.9350	1.0708	1.2147	0.2204	0.9914	-1.0233	-0.9626	-0.55/5	-0.7950	-0.7712	-0.7421	0.7337	101910-	-0.6253	-0.5712	-0.4982	-0.5026	-0.5015	24040	10.00	0.1038	-0.1287	-0.1265	-0.1032	-0.0344	00100
	0 = 0	Forebody	СЪ			-68.05 0.9269 67.40 0.0269			-32.56 0.6390					-7.88 0.1858					-0.19 1.2204					3.12 -0.7950			5.00 -0.7337						17.50 -0.5015					70.00 -0.1265			145.83 0.0100
	0 = 0	Forebody	X/L CP	1719.0 25.90- 1710 0 22.28	-75.15	-68.05 57.40	46.76	-39.66	-32.56	94° 61.																															
	0 = 9	Forebody	X/L CP	0.9353	-75.15		0.2968 -46.76	0.3477 -39.66		94° 61.																															
		Afterbody Forebody	CP X/L CP	1719.0 25.90- 1710 0 22.28	0.0916 -75.15	-68.05 57.40	0.2968 -46.76	0.3477 -39.66	-32.56	04-107- 0004-0 90 81-																															
q	et = 180° et = 0	Afterbody Forebody	VL CP XIL CP	190.28 0.0468 -94.32 0.9171 206.94 0.0672 -82.25 0.9353	223.61 0.0916 -75.15	245.83 0.1511 -68.05	0.2968 -46.76	279.17 0.3477 -39.66	284.72 0.4025 -32.56	04-107- 0004-0 90 81-	18.41-	-11.26	-10.14	-7.88		-1.46	06:0-	-0.39		0.31	0.62	1.25		3.12	3.75		5.00		8.75	10.00											
$\mathbf{nd} \ \alpha = 0^{\circ}$		Afterbody Forebody	CP X/L CP X/L CP	0.9722 190.28 0.0468 -94.32 0.9171 0.9266 206 94 0.0672 -82.25 0.9353	0.8904 223.61 0.0916 -75.15	245.83 0.1511 -68.05	1.1563 273.61 0.2968 46.76	0.7271 279.17 0.3477 -39.66	-1.1198 284.72 0.4025 -32.56	04577 00040 97067 1991.1- 91.81 00111	18.41-	-0.9614 -11.26	-0.9433	-0.9054 -7.88	225	-0.7657 -1.46	-0.7380	-0.7115 -0.39	9.0- 000	0.000	-0.5789 0.62	-0.5414 1.25	2 50	3.12	-0.0708 3.75	-0.0894 4.38	-0.0881 5.00	0520 0520 0520 0520 0520 0520 0520 0520	8.75	10:00											
$\bullet 0.87 \text{ and } \alpha = 0^{\circ}$		Forebody Afterbody Forebody	VIL CP XIL CP XIL CP	-94.32 0.9722 190.28 0.0468 -94.32 0.9171	46.76 0.8904 223.61 0.0916 -75.15	-11.26 0.3892 245.83 0.1511 -68.05		0.00 0.7271 279.17 0.3477 -39.66	0.31 -1.1198 284.72 0.4025 -32.56	04:07- 0004:0 97:067 /99:11- 70:0 90:01:1 90:1	18.8-1-00000 - 1.0260	-0.9614 -11.26	-0.9433	-0.9054 -7.88	-0.8440 -0.8180	-0.7657 -1.46	-0.7380	-0.7115 -0.39	-0.6802 -0.19	0.000	-0.5789 0.62	-0.5414 1.25	-0.4099 1.88	3.12	-0.0708 3.75	-0.0894 4.38	-0.0881 5.00	0520 0520 0520 0520 0520 0520 0520 0520	-0.0075 8.75	10:00											
mfr = 0.67 and $\alpha = 0^{\circ}$		Forebody Afterbody Forebody	CP X/L CP X/L CP X/L CP	0.0306 -94.32 0.9722 190.28 0.0468 -94.32 0.9171 0.0468 -94.32 0.9353	0.0645 -46.76 0.8904 223.61 0.0916 -75.15	0.0943 -11.26 0.3892 245.83 0.1511 -68.05	0.2215 0.90 1.1563 273.61 0.2968 46.76	0.2937 0.00 0.7271 279.17 0.3477 -39.66	0.3394 0.31 -1.1198 284.72 0.4025 -32.56	04:07- 004:0 97:047 /991:1- 70:0 01:040:0 96:81- 04:050 07:041 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	06:01- 18:41- 18:41-	-0.9614 -11.26	-0.9433	-0.9054 -7.88	-0.8440 -0.8180	-0.7657 -1.46	-0.7380	-0.7115 -0.39	-0.6802 -0.19	0.000	-0.5789 0.62	-0.5414 1.25	-0.4099 1.88	3.12	-0.0708 3.75	-0.0894 4.38	-0.0881 5.00	0520 0520 0520 0520 0520 0520 0520 0520	-0.0075 8.75	10:00											
$\mathbf{mfr} = 0.87$ and $\alpha = 0^\circ$		Afterbody Afterbody Afterbody Forebody	NAL CP XAL CP XAL CP XAL CP	173.61 0.0306 -94.32 0.9722 190.28 0.0468 -94.32 0.9171 100.78 0.0468 -94.32 0.9171 100.79 100.79 100.79	206.94 0.0645 -46.76 0.8904 223.61 0.0916 -75.15	223.61 0.0943 -11.26 0.3892 245.83 0.1511 -68.05	245.85 0.122.9 4.20 0.004.2 202.90 0.2968 46.76 7.26.76 0.2215 40.90 1.1563 273.61 0.2968 46.76	273.61 0.2937 0.00 0.7271 279.17 0.3477 -39.66	279.17 0.3394 0.31 -1.1198 284.72 0.4025 -32.56	284.77 0.5916 0.00 1.02 1.1867 290.26 0.4000 2.84.72 0.592	02:01. 22:00 82:000 82:000 82:00 82:00 82:00 82:00 82:00 82:00 82:00 82:00 82:00 82:	2.50 -0.9614 -11.26	3.12 -0.9433 -10.14	3.75 -0.9054 -7.88	4.08 -0.0449 5.00 -0.8180 -2.25	6.25 -0.7657 -1.46	7.50 -0.7380 -0.90	8.75 -0.7115 -0.39	10.00 -0.6802 -0.19	15.00 -0.6229 0.31	17.50 -0.5789 0.62	20.00 -0.5414 1.25	34.00 -0.4699 1.88 40.00 -0.1823 2.50	50.00 -0.0381 3.12	60.00 -0.0708 3.75	70.00 -0.0894 4.38	80.00 -0.0881 5.00 0.00 0.0010 5.00	6770 0620179 001004 US 2 0620107 001001	129 17 -0.0075 8.75	10:00	12.50	15:00	17.50			80.00	00'09	20:02	80.00	100000	145.83
mfr = 0.67 and $\alpha = 0^{\circ}$	▲ = 180°	Afterbody Afterbody Forebody	CP XI. CP XI. CP XI. CP XI. CP	0.0306 -94.32 0.9722 190.28 0.0468 -94.32 0.9171 0.0468 -94.32 0.9353	0.9904 206.94 0.0645 -46.76 0.8904 223.61 0.0916 -75.15	0.9803 223.61 0.0943 -11.26 0.3892 245.83 0.1511 -68.05	0.2215 4.20 0.263 273.61 0.2968 46.76	0.8296 273.61 0.2937 0.00 0.7271 279.17 0.3477 -39.66	0.7573 279.17 0.3394 0.31 -1.1198 284.72 0.4025 -32.56	0.0515 284.72 0.3916 0.02 1.1567 290.26 0.4030 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24	06:01- 18:41- 18:41-	0.4087 2.50 -0.9614 -11.26	0.4098 3.12 -0.9433 -10.14	0.4444 3.75 -0.9054 -7.88	-0.8440 -0.8180	1.0416 6.25 -0.7657 -1.46	0.00-0.7380 0.7380	1.2290 8.75 -0.7115 -0.39	1.2050 10.00 -0.6802 -0.19	0.000	-1.1464 17.50 -0.5789 0.62	-1.1151 20.00 -0.5414 1.25	34.00 -0.4699 1.88 40.00 -0.1823 2.50	-0.9078 50.00 -0.0381 3.12	-0.8955 60.00 -0.0708 3.75	-0.8496 70.00 -0.0894 4.38	-0.8186 80.00 -0.0881 5.00	0520 0520 0520 0520 0520 0520 0520 0520	-0.7764 R2917 -0.0075 8.75	0.01	-0.6323	-0.6093	-0.6092	00.07 (2.65) (0.00) (0.		00005 8010 U	-0.0621 60.00	-0.0867 70.00	-0.0882 80.00	-0.0368	

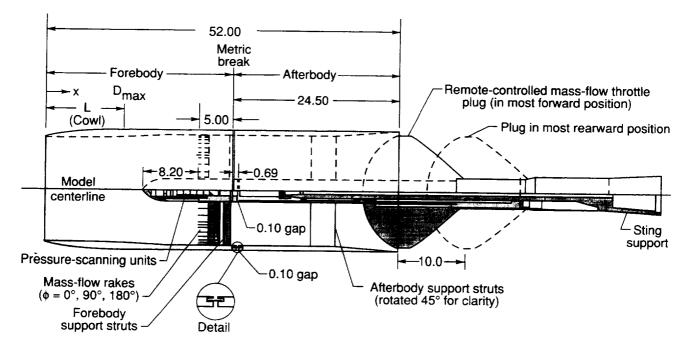
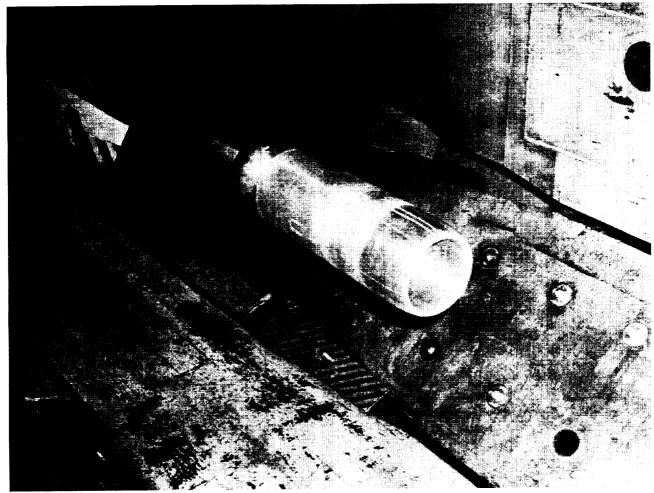



Figure 1. Simplified cross-sectional sketch of complete model. Linear dimensions are in inches.

L-82-11463

Figure 2. Complete model installed in 16-Foot Transonic Tunnel test section.

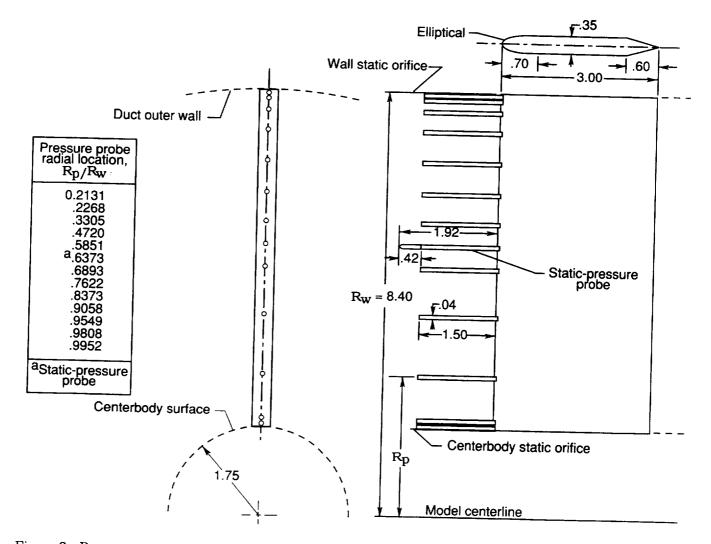


Figure 3. Pressure instrumentation (on struts at $\phi = 0^{\circ}$, 90° , and 180°) used to obtain data for mass-flow computations. Linear dimensions are in inches.

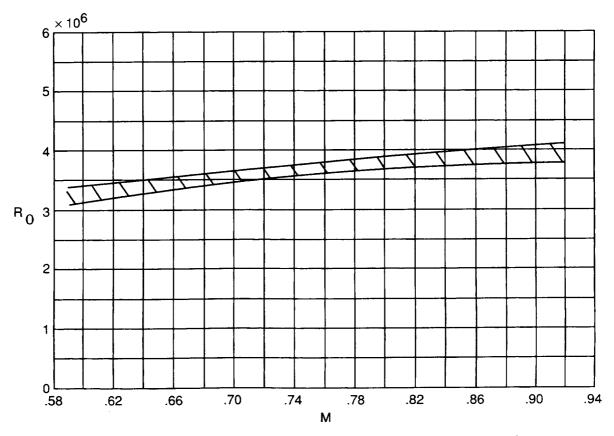
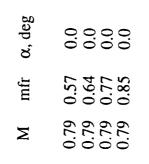
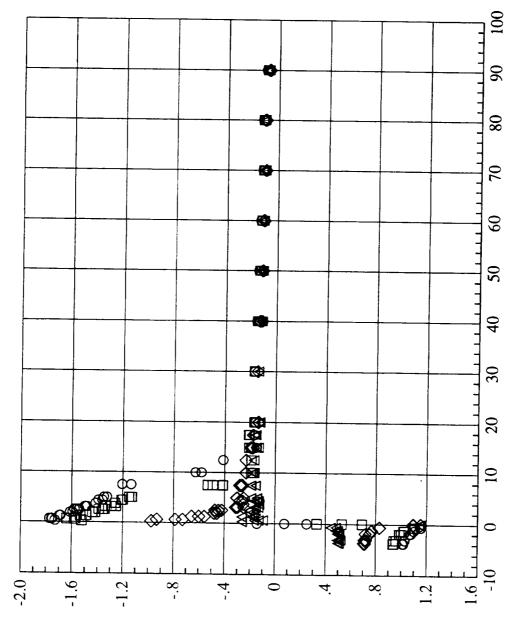
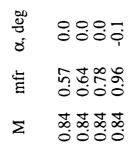
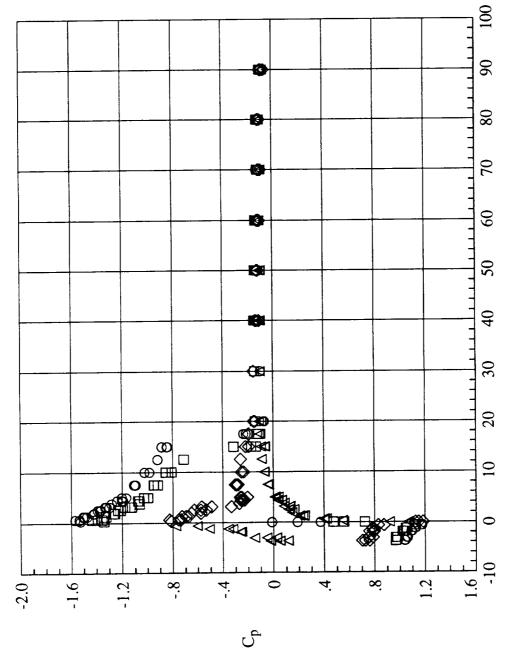



Figure 4. Variation of test Reynolds number with free-stream Mach number.

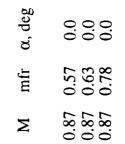

Figure 5.- Pressure coefficient variation with X/L for the NACA 1-85-100 inlet with a contraction ratio of 1.009 for several mass-flow ratios at $\alpha = 0^{\circ}$. Data combined from $h = 0^{\circ}$ 00° and 120° maridians

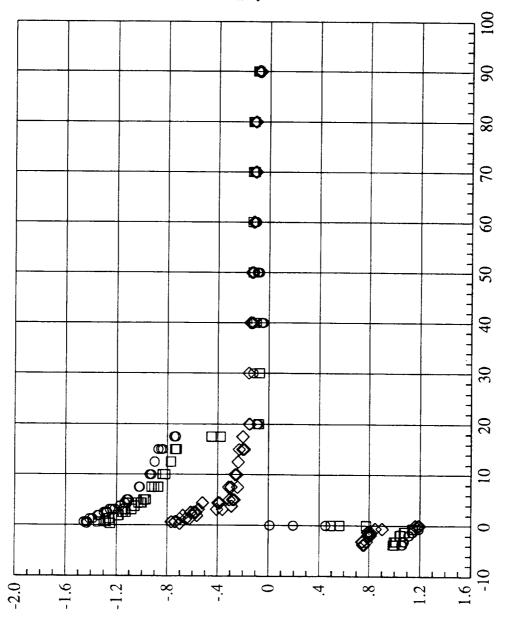
(a) M = 0.79.


X/L, percent



ۍ C

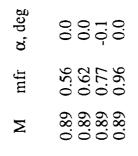

0 □ ◊ ⊲

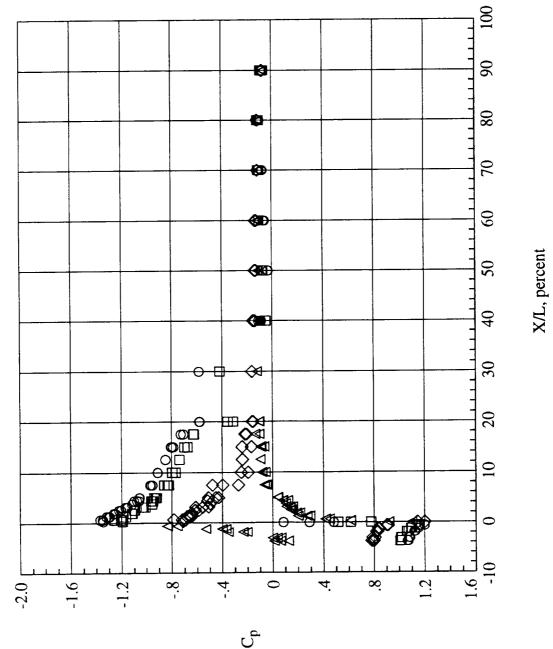

(b) M = 0.84.Figure 5.- Continued.

X/L, percent

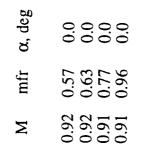
99

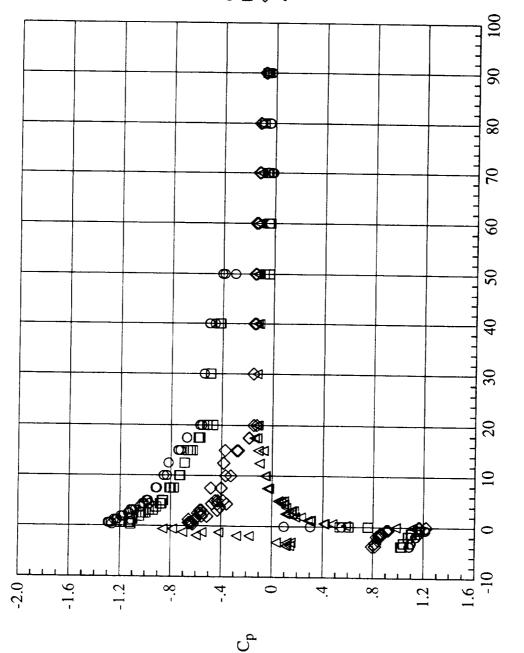
$$\circ \Box \diamond$$



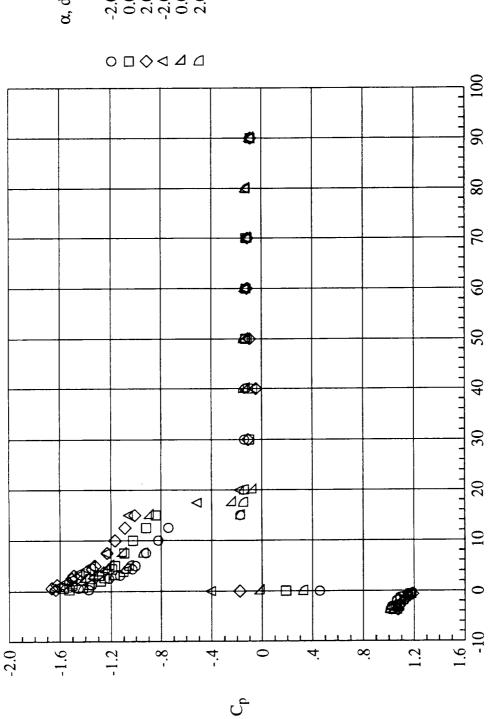


X/L, percent


 $^{\rm C}_{\rm D}$


0 □ ◊ ⊲

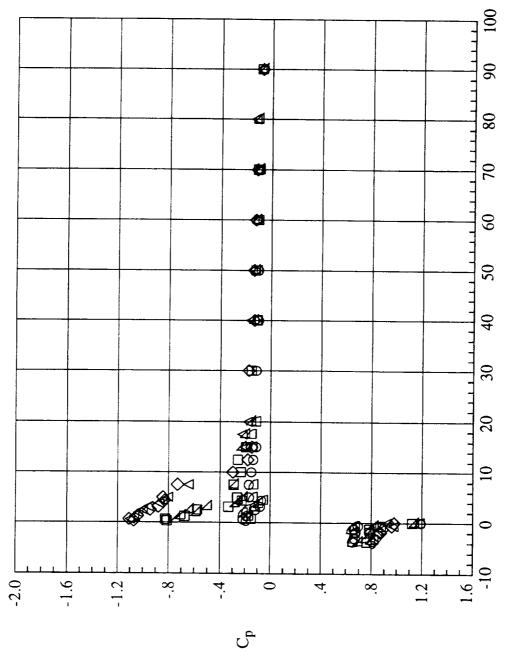
(d) M = 0.89. Figure 5.- Continued.


-

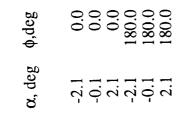
102

Figure 6.- Pressure coefficient variation with X/L along the $\phi = 0^{\circ}$, and 180° meridians for the NACA 1-85-100 inlet with a contraction ratio of 1.009 at several angles of attack.

(a) M = 0.84 and mfr = 0.57.


X/L, percent

φ,deg				180.0	80.	
α, deg	-2.0	0.0	2.0	-2.0	0.0	2.0


α, deg φ, deg -2.1 0.0 0.0 0.0 2.0 0.0 2.0 180.0 2.0 180.0 2.0 180.0

 $\circ \Box \diamondsuit \triangleleft \varDelta \Box$

(b) M = 0.84 and mfr = 0.78. Figure 6.- Continued.

X/L, percent

 $\bigcirc \Box \diamondsuit \triangleleft \varDelta \Box$

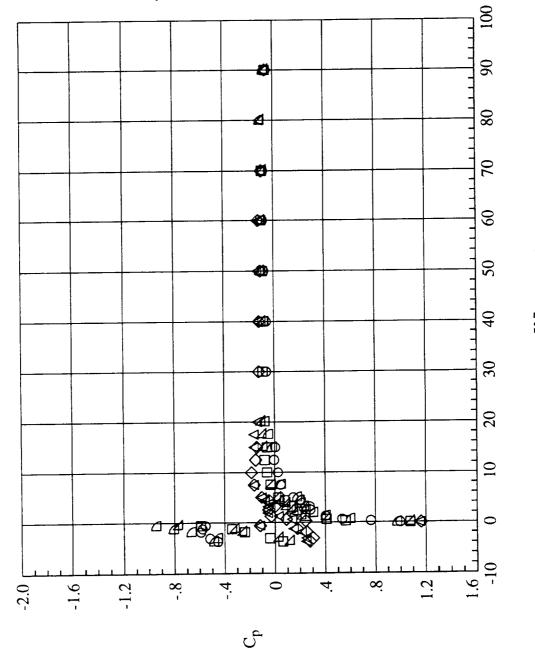
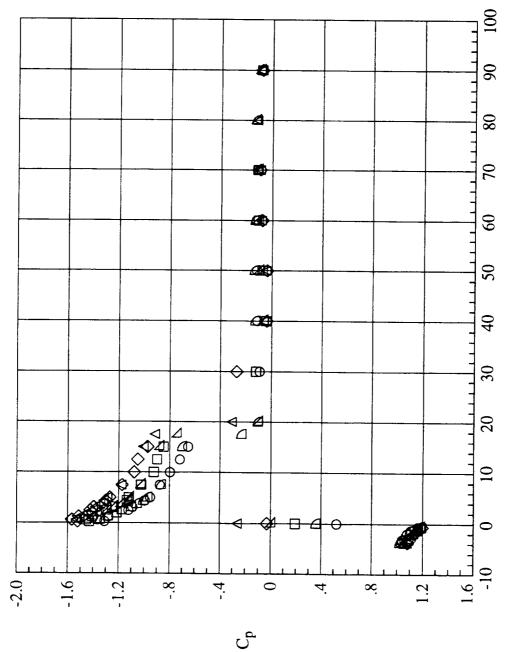



Figure 6.- Continued.

(c) M = 0.84 and mfr = 0.95.

α, deg φ, deg
-2.0
0.0
0.0
0.0
2.1
0.0
2.1
180.0
2.1
180.0

 $\bigcirc \Box \diamondsuit \triangleleft \varDelta \Box$

(d) M = 0.87 and mfr = 0.57. Figure 6.- Continued.

X/L, percent

α, deg φ,deg -2.1 0.0 0.0 0.0 2.1 180.0 0.0 180.0 2.1 180.0

 $\bigcirc \Box \diamondsuit \triangleleft \varDelta \Box$

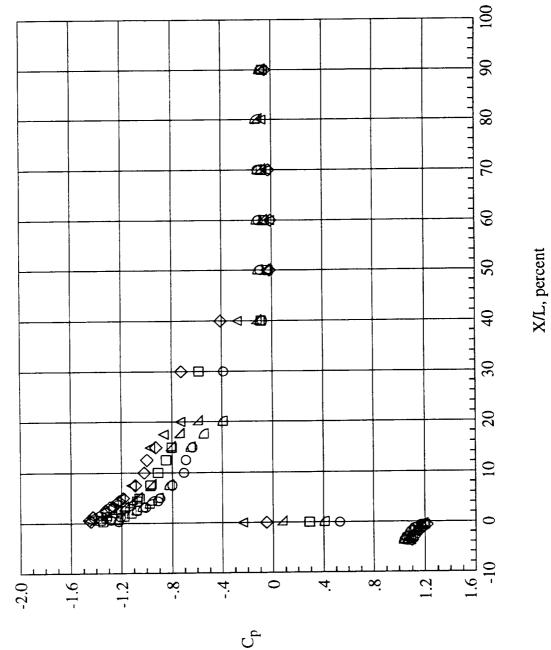
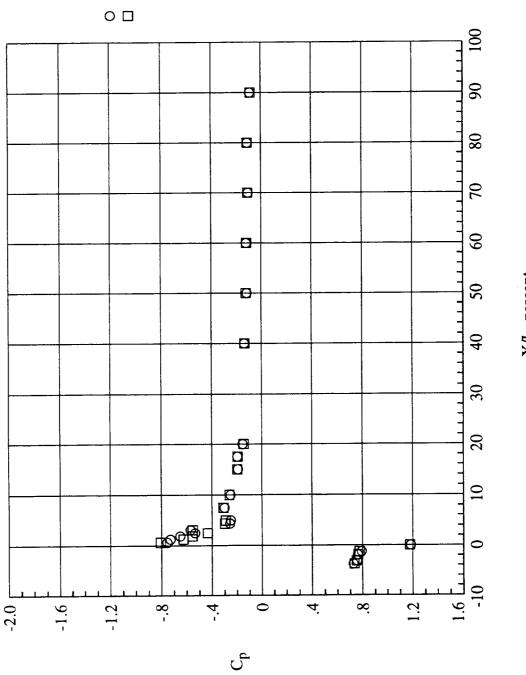



Figure 6.- Concluded.

α, deg 0.0 3.1 (a) M = 0.84 and mfr = 0.57.

X/L, percent

α, deg 0.0 3.0

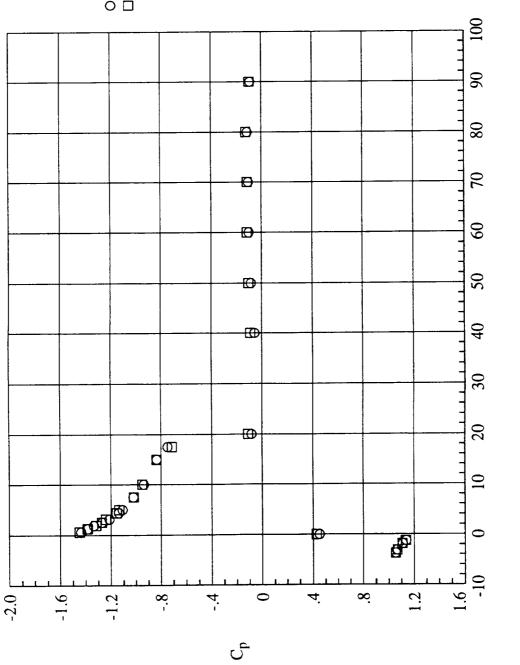
.

·

Figure 7.- Continued.


(b) M = 0.84 and mfr = 0.78.

X/L, percent



(c) M = 0.84 and mfr = 0.95.

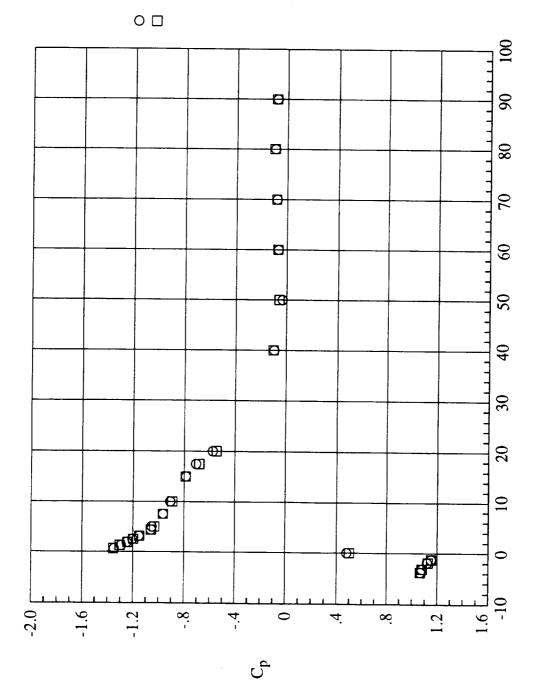
X/L, percent

α, deg -0.1 3.0

α, deg 0.0 2.1

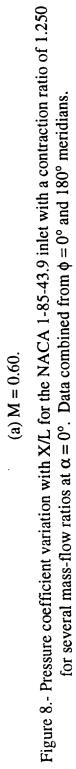
0 🗆

Figure 7.- Continued.

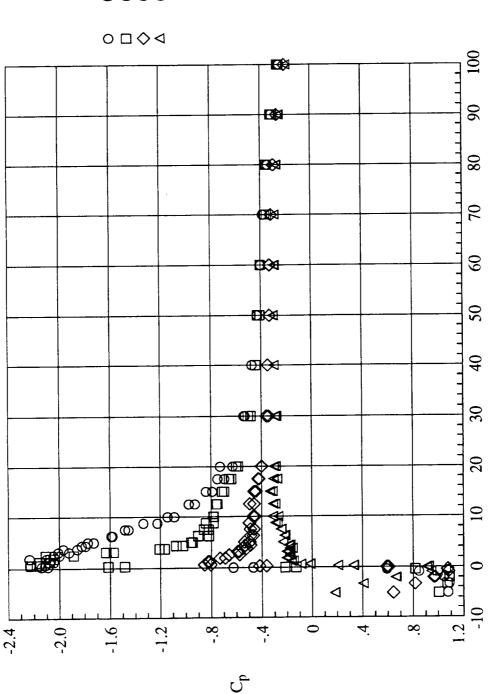

(d) M = 0.87 and mfr = 0.57.

X/L, percent

(e) M = 0.89 and mfr = 0.57.


X/L, percent

α, deg 0.0 2.1


112

.

X/L, percent

M mfr α, deg 0.60 0.40 0.0 0.59 0.69 0.0 0.59 0.82 0.0

○□◇⊲

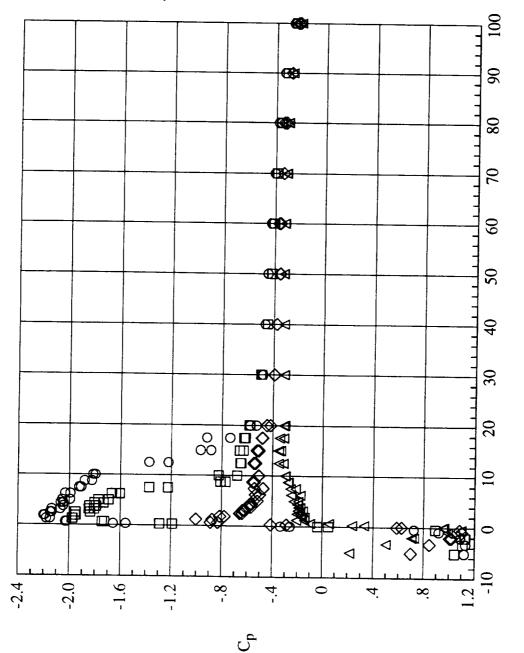
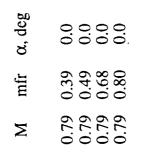



Figure 8.- Continued.

X/L, percent (b) M = 0.69.

0 □ ◊ ⊲

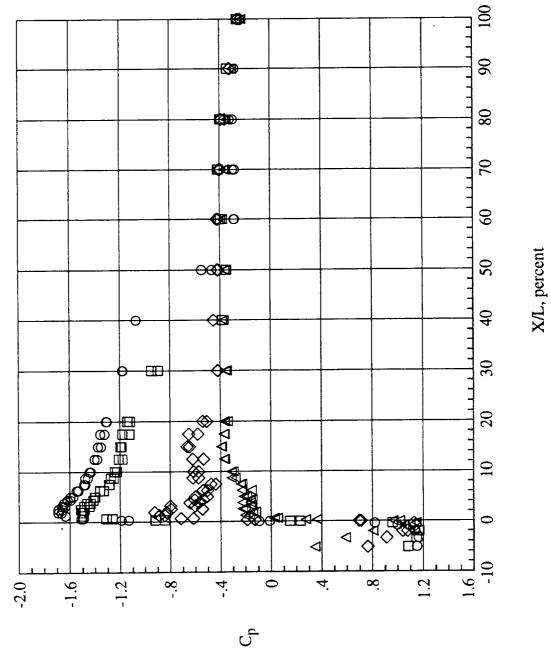
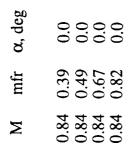
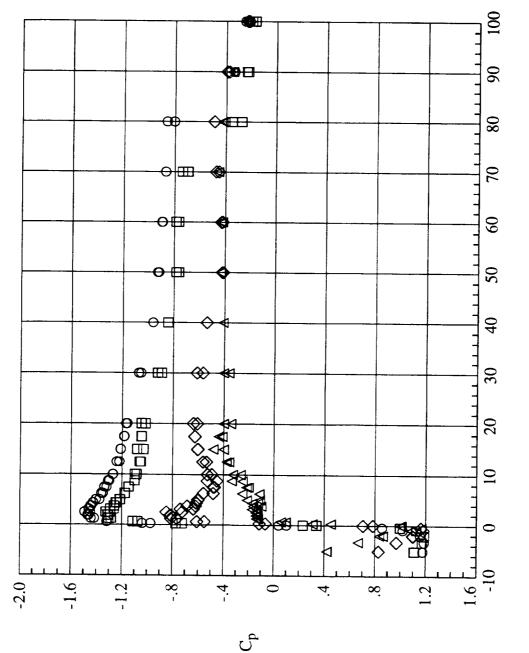
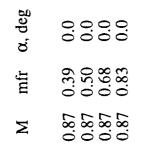
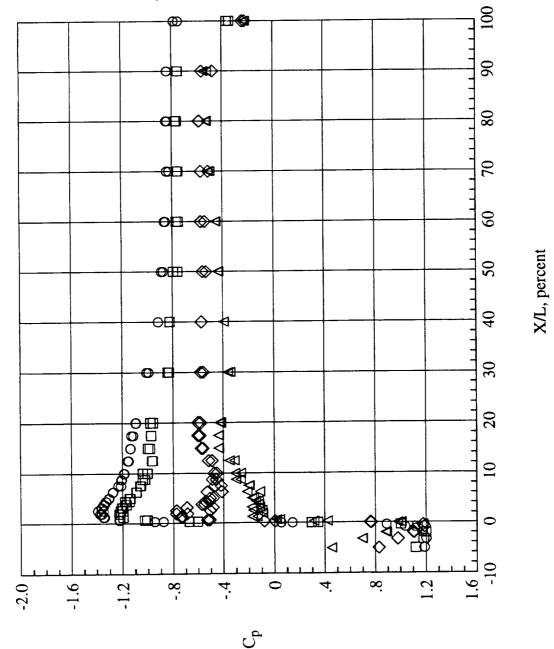




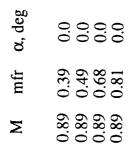
Figure 8.- Continued.

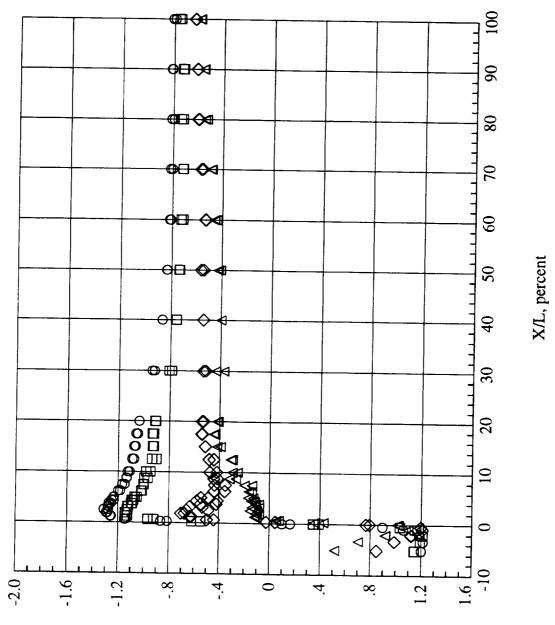
(c) M = 0.79.



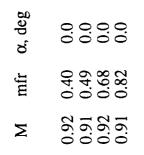


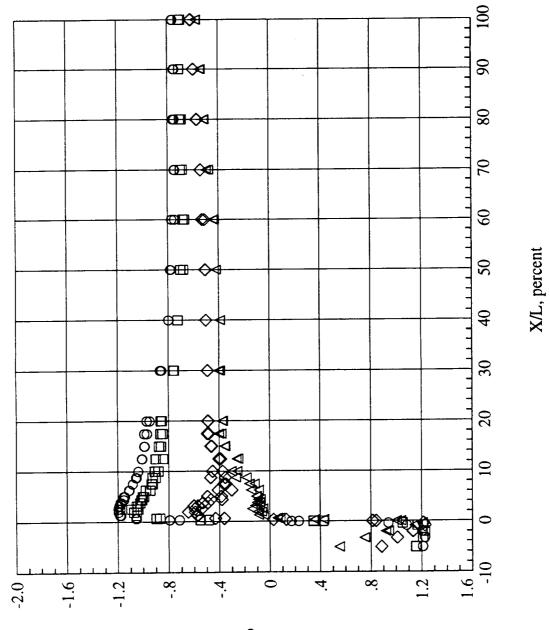
(d) M = 0.84. Figure 8.- Continued.


X/L, percent


 $\circ \Box \diamond \triangleleft$

(e) M = 0.87. Figure 8.- Continued.





C_p

Figure 8.- Continued.

0 □ ◊ ⊲

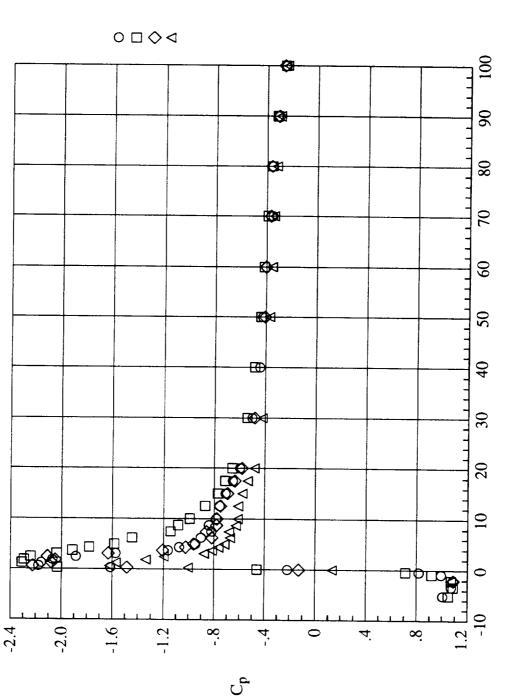

Cp

Figure 8.- Concluded.

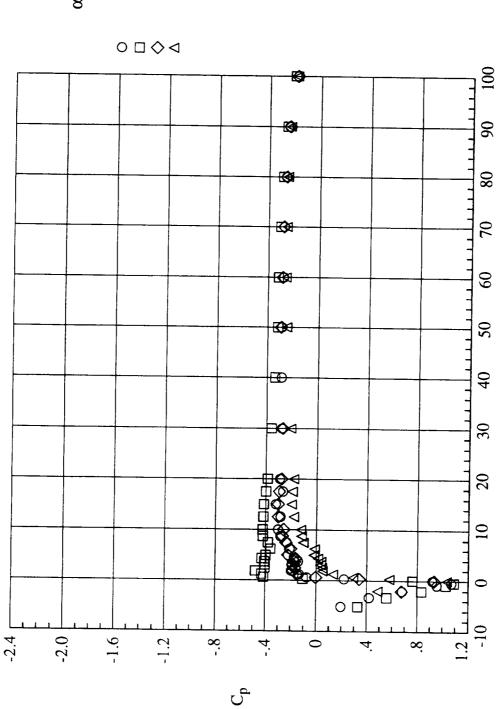
Figure 9.- Pressure coefficient variation with X/L along the $\phi = 0^{\circ}$, and 180° meridians for the NACA 1-85-43.9 inlet with a contraction ratio of 1.250 at two anoles of attack

(a) M = 0.60 and mfr = 0.50.

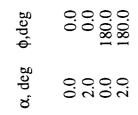
X/L, percent

α, deg φ, deg
0.0
0.0
0.0
0.0
180.0
2.0
180.0

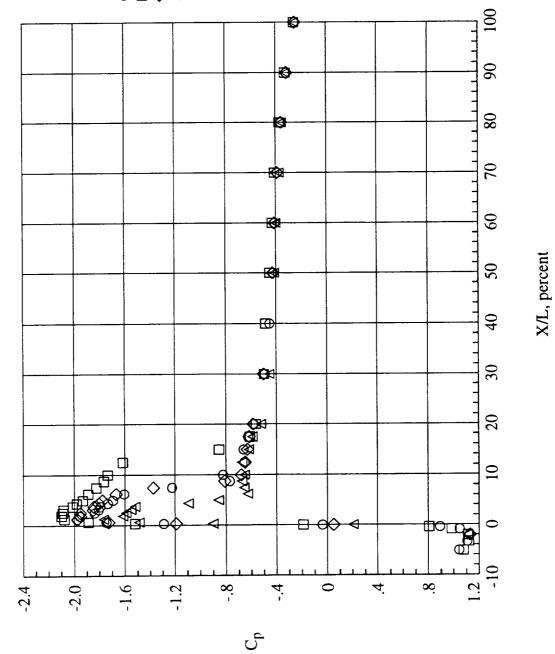
Figure 9.- Continued.


(b) M = 0.59 and mfr = 0.69.

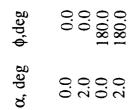
.


Figure 9.- Continued.

(c) M = 0.59 and mfr = 0.82.


X/L, percent

α, deg φ, deg
 0.0
 0.0
 0.0
 0.0
 0.0
 180.0
 2.0
 180.0



0 □ ◊ ⊲

(d) M = 0.69 and mfr = 0.49.

○□◇⊲

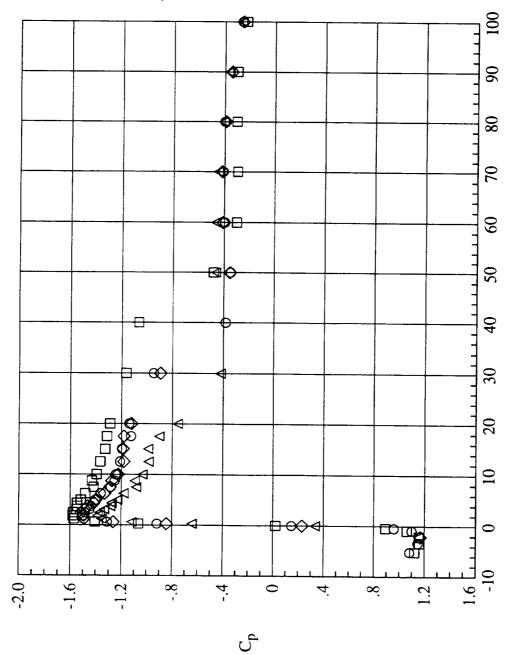
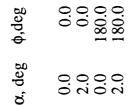
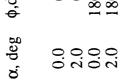
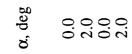





Figure 9.- Continued.

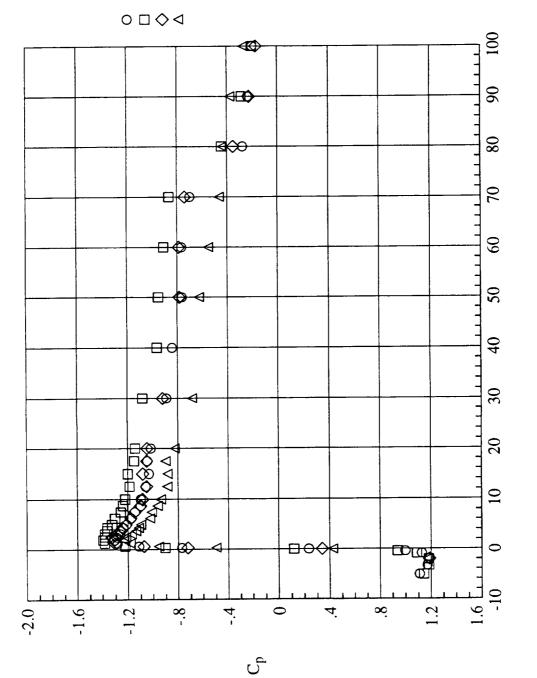
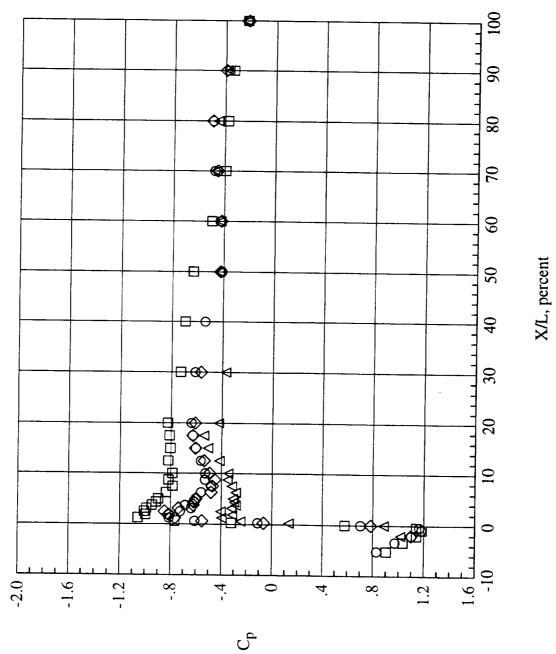


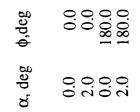
Figure 9.- Continued.

(f) M = 0.84 and mfr = 0.49.

 α, deg
 φ, deg


 0.0
 0.0

 2.0
 0.0


 0.0
 180.0

 2.0
 180.0

○□◊⊲

(g) M = 0.84 and mfr = 0.67.

0 □ ◊ ⊲

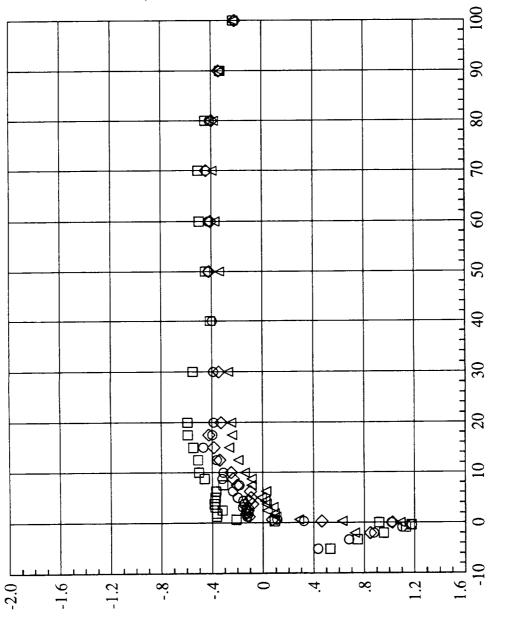
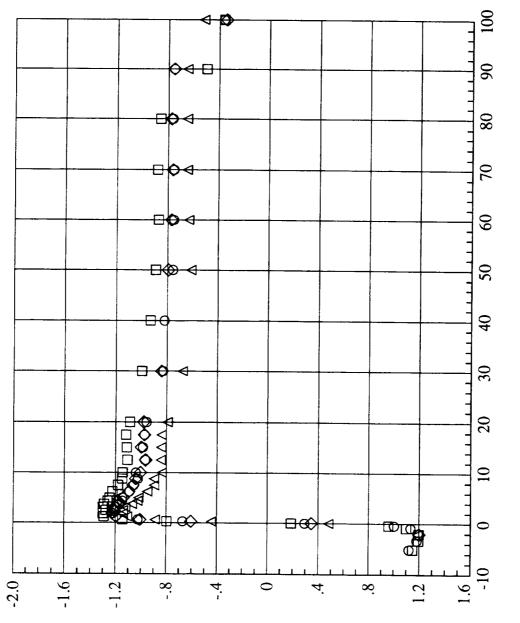


Figure 9.- Continued.

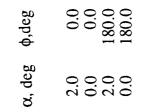
(h) M = 0.84 and mfr = 0.83.



 $_{\mathrm{p}}^{\mathrm{c}}$

α, deg φ,deg 0.0 0.0 2.0 0.0 0.0 180.0 2.0 180.0

,


 $\circ \Box \diamondsuit \triangleleft$

 $^{\rm C}_{\rm p}$

(i) M = 0.87 and mfr = 0.49.Figure 9.- Continued.

X/L, percent

0 □ ◊ ⊲

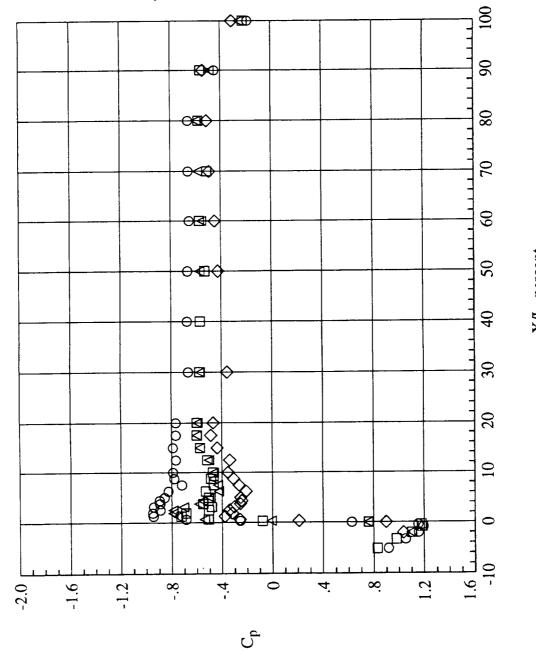
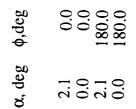
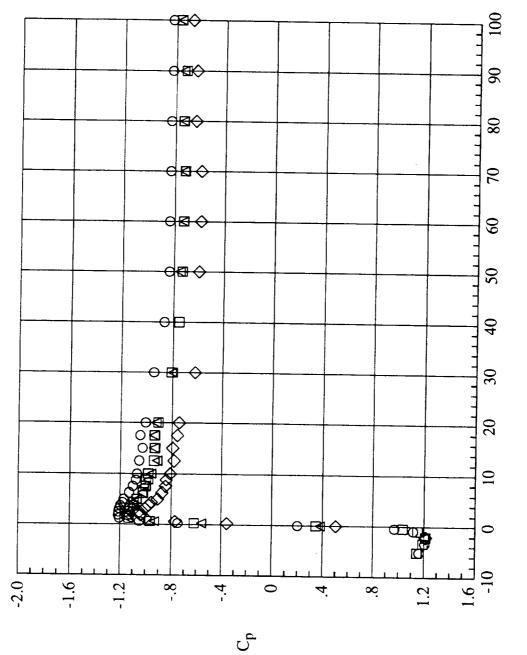




Figure 9.- Continued.

(j) M = 0.87 and mfr = 0.67.

 $\circ \Box \diamondsuit \triangleleft$

(k) M = 0.89 and mfr = 0.49.Figure 9.- Continued.

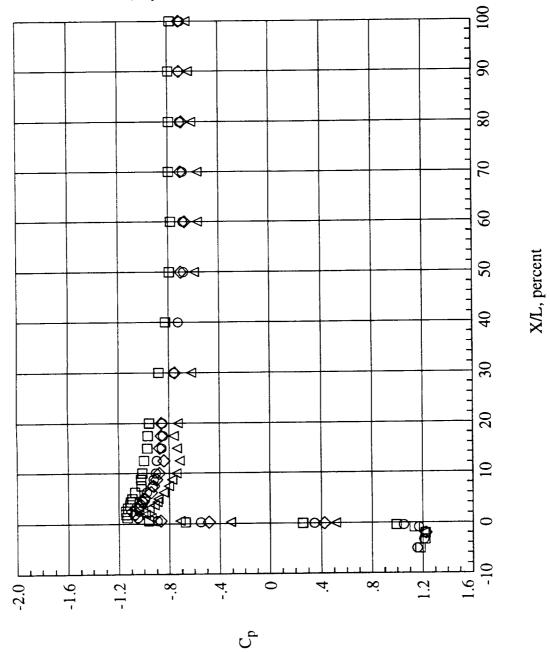
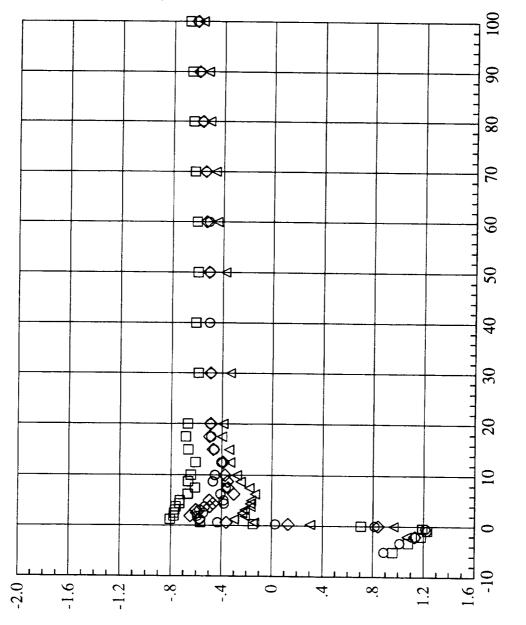


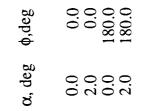
Figure 9.- Continued.

 α, deg
 φ,deg


 0.0
 0.0

 2.1
 0.0

 0.0
 180.0


 2.1
 180.0

0 □ ◊ ⊲

 $_{\rm p}$

Figure 9.- Continued.

0 □ ◊ ⊲

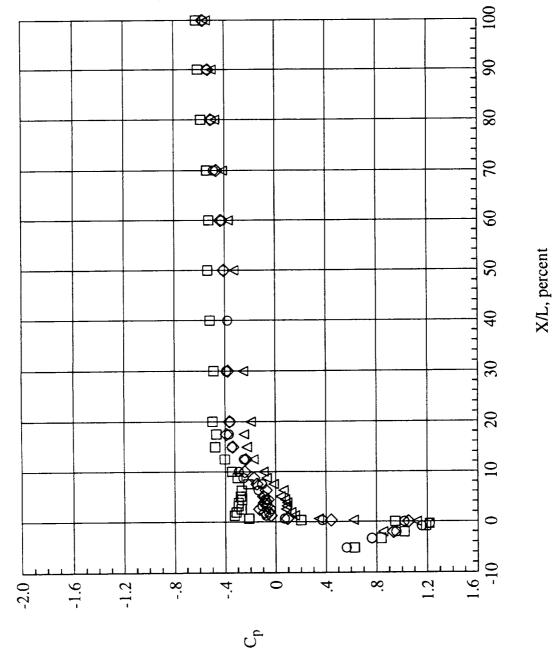
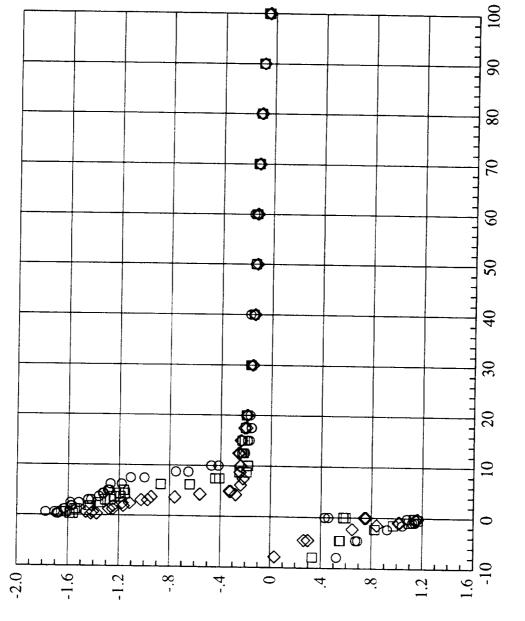


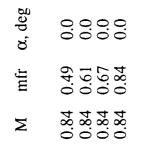
Figure 9.- Concluded.

(n) M = 0.92 and mfr = 0.82.

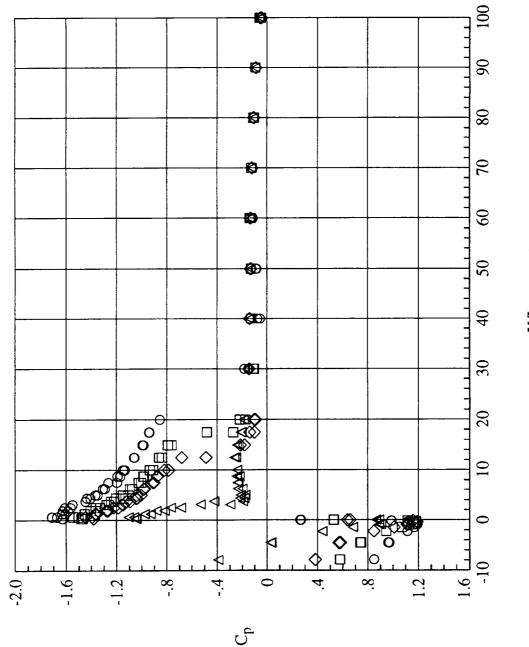
for several mass-flow ratios at $\alpha = 0^{\circ}$ Data combined from $h = 0^{\circ}$ and 120° maridions

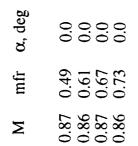
Figure 10.- Pressure coefficient variation with X/L for the NACA 1-85-100 inlet with a contraction ratio of 1.250




X/L, percent

 α , deg 0.0 0.0 mfr 0.61 0.67 0.74 0.79 0.79 0.79 Σ


 $\circ \Box \diamond$



0 □ ◊ ⊲

(b) M = 0.84.

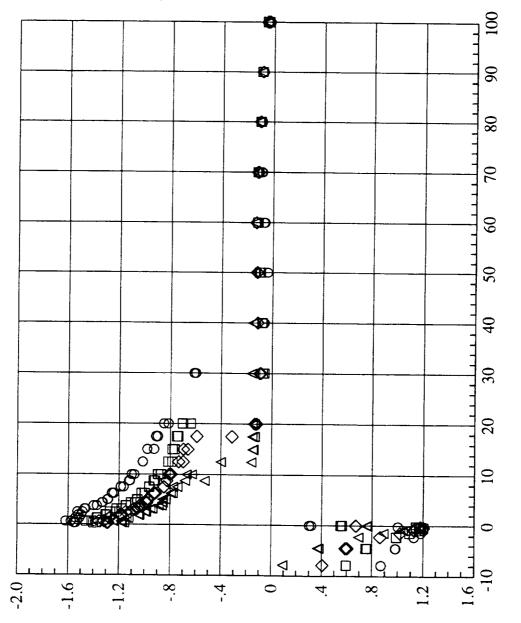
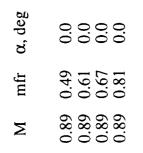



Figure 10.- Continued.

(c) M = 0.87.

X/L, percent

C

○□◇⊲

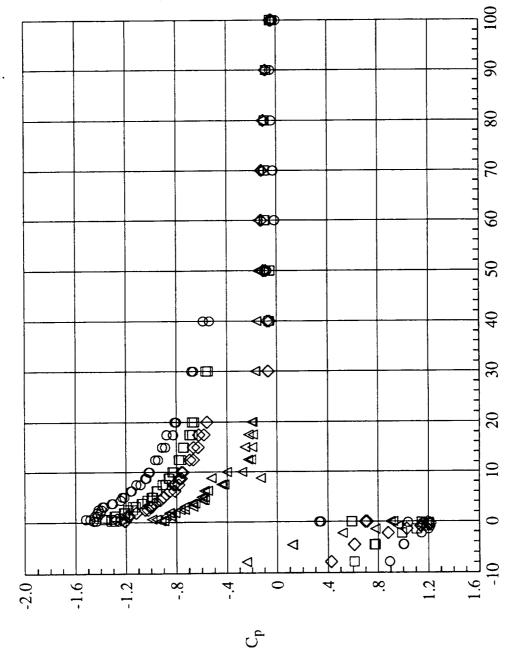
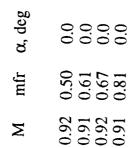



Figure 10.- Continued.

○□◇⊲

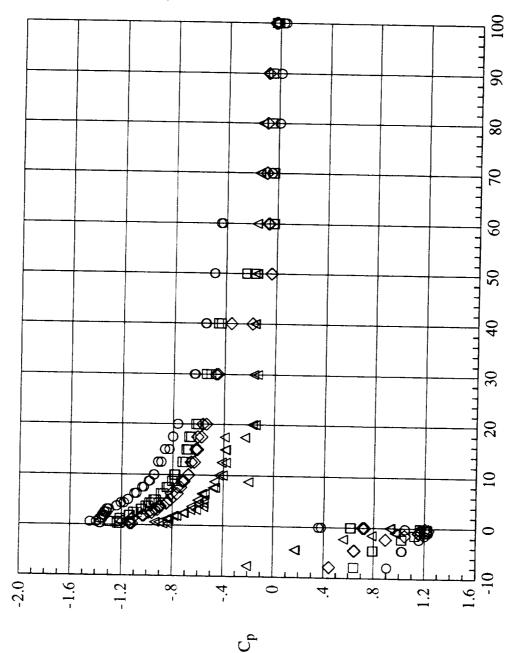
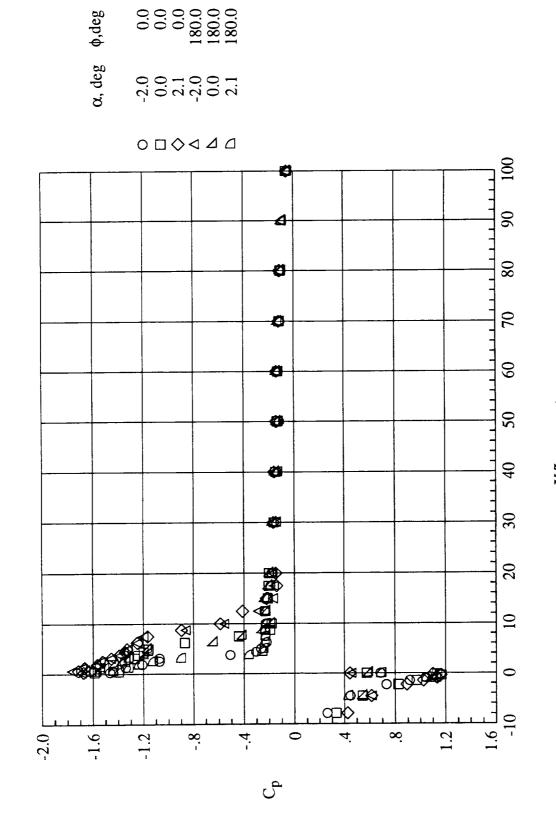


Figure 10.- Concluded.


(e) M = 0.92.

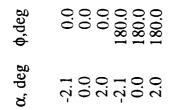
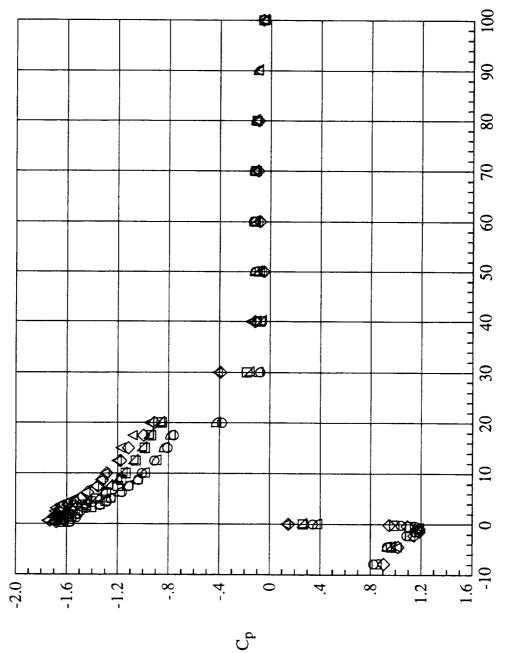
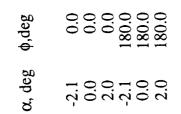

X/L, percent

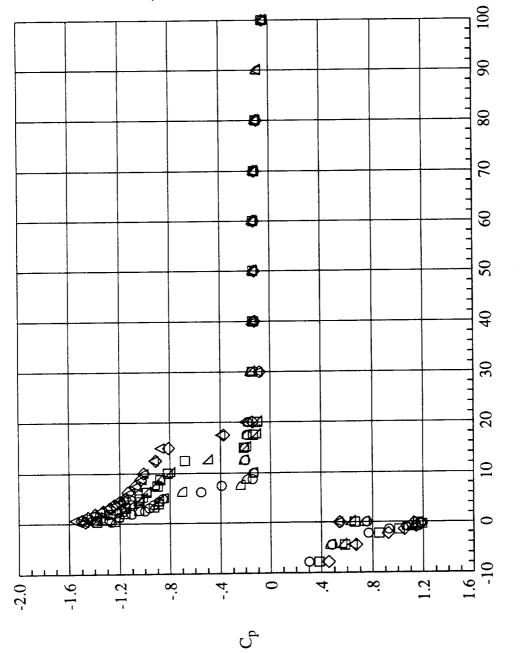
Figure 11.- Pressure coefficient variation with X/L along the $\phi = 0^{\circ}$, and 180° meridians for the NACA 1-85-100 inlet with a contraction ratio of 1.250 at several angles of attack.


(a) M = 0.79 and mfr = 0.67.

X/L, percent



 $\circ \Box \diamondsuit \triangleleft \varDelta \Box$



(b) M = 0.84 and mfr = 0.49.Figure 11.- Continued.

X/L, percent

 $\circ \Box \Diamond \triangleleft \varDelta \Box$

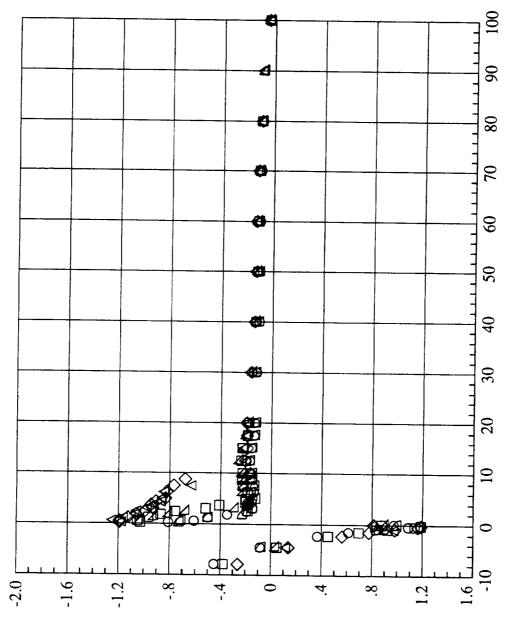
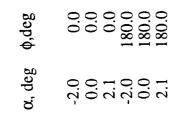
(c) M = 0.84 and mfr = 0.67.

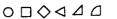
Figure 11.- Continued.

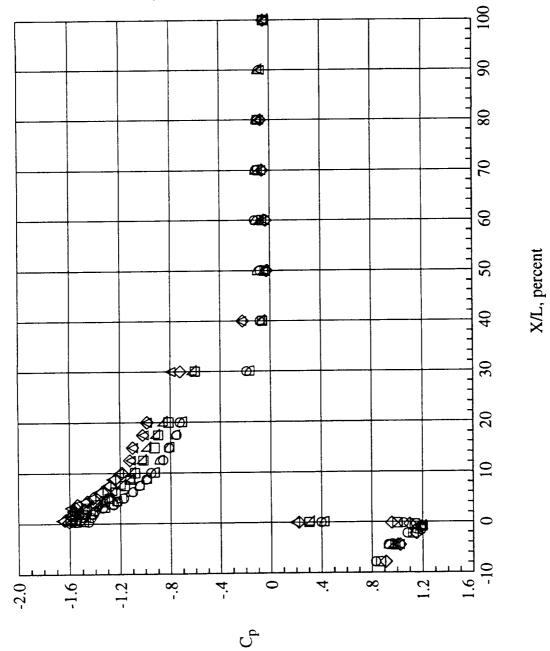
X/L, percent

α, deg φ, deg
-2.1
0.0
0.0
0.0
2.0
0.0
2.0
180.0
2.0
180.0
2.0
180.0

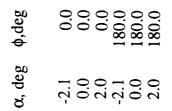
 $\circ \Box \diamondsuit \triangleleft \varDelta \Box$


Figure 11.- Continued.


(d) M = 0.84 and mfr = 0.83.

X/L, percent


С_р

⁽e) M = 0.87 and mfr = 0.49.Figure 11.- Continued.

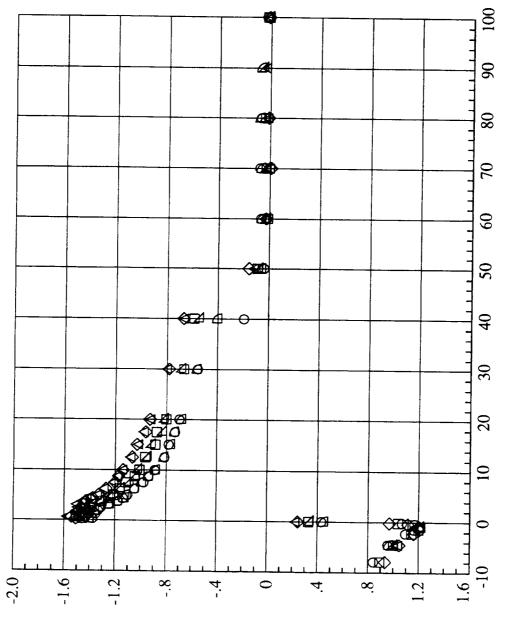
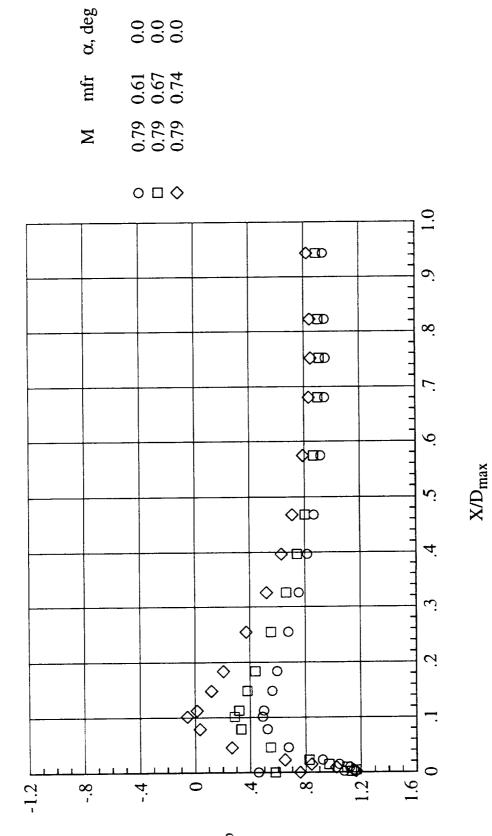


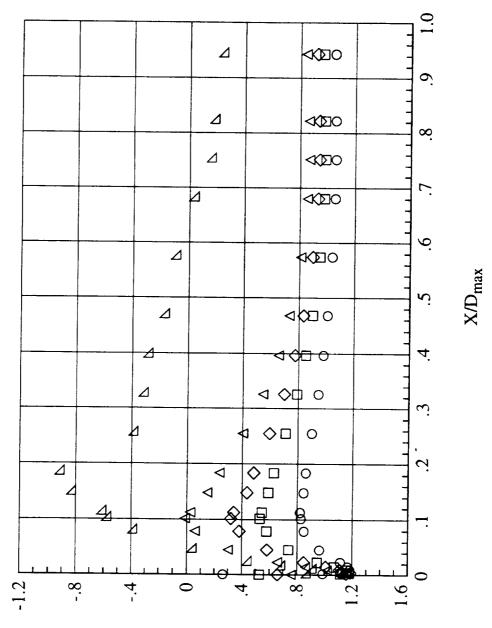
Figure 11.- Concluded.


(f) M = 0.89 and mfr = 0.49.

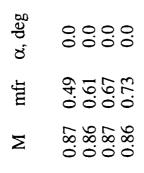
X/L, percent

С_Р

NACA 1-85-100 inlet with a contraction ratio of 1.25 for several mass-flow ratios at $\alpha = 0^{\circ}$. Figure 12.- Pressure coefficient variation with X/D in the contraction and diffuser portions of the


(a) M = 0.79.

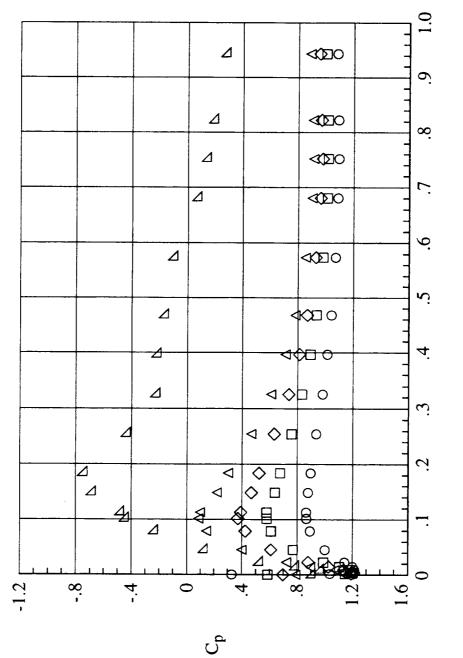
0.0 0.0

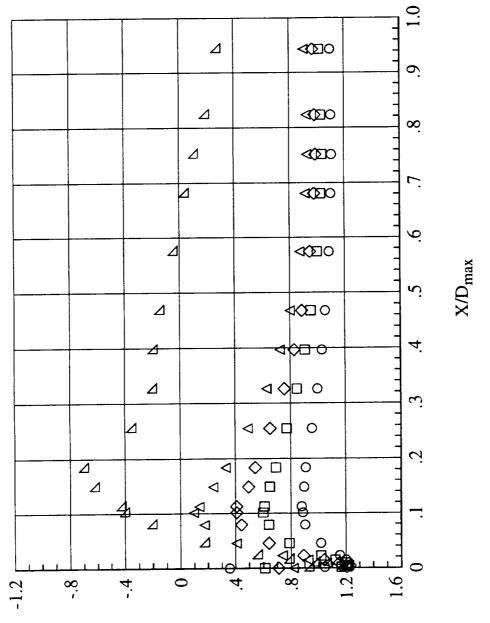

С^р

α, deg	0.0 0.0 0.0
mfr	0.49 0.61 0.67 0.74 0.84
Μ	$\begin{array}{c} 0.84\\ 0.84\\ 0.84\\ 0.84\\ 0.84\\ 0.84\end{array}$

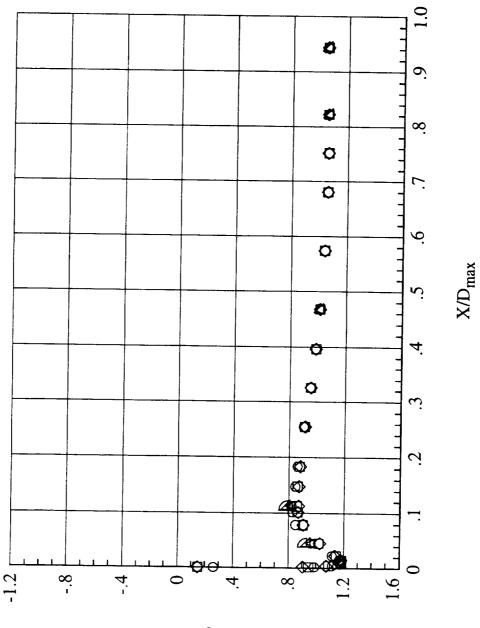
(b) M = 0.84. Figure 12.- Continued.

С^р


 $\circ \Box \diamond \triangleleft$


α, deg	0.0
mfr	0.49 0.61 0.67 0.73 0.81
W	0.89 0.89 0.89 0.89 0.89

X/D_{max}

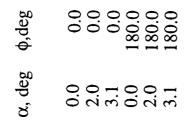

α, deg	0.0 0.0 0.0 0.0
mfr	0.50 0.61 0.67 0.73 0.73
M	0.92 0.91 0.92 0.92 0.91

(e) M = 0.92. Figure 12.- Concluded.

NACA 1-85-100 inlet with a contraction ratio of 1.25 for several mass-flow ratios and angles of attack. Figure 13.- Pressure coefficient variation with X/D in the contraction and diffuser portions of the

(a) M = 0.84 and mfr = 0.49.

0.0 0.0 0.0 180.0 180.0


0.0 3.1 3.1 3.1 3.1

 $\bigcirc \Box \diamondsuit \triangleleft \varDelta \Box$

φ,deg

α, deg

Cp

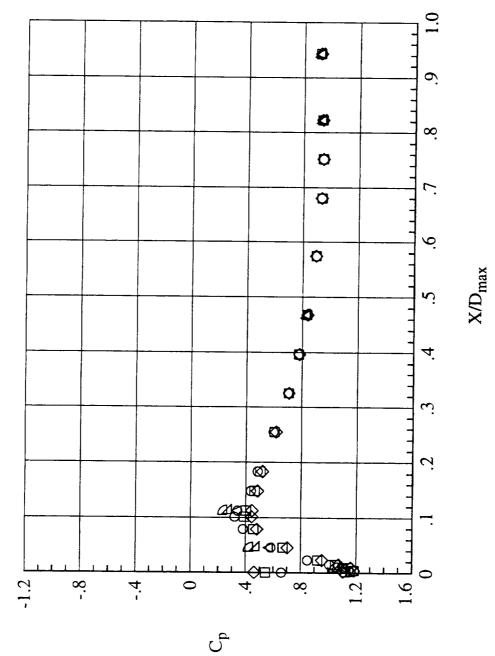


Figure 13.- Continued.

(b) M = 0.84 and mfr = 0.67.

φ,deg	0.0 0.0 180.0 180.0 180.0
α, deg	0.0 3.1 3.1 3.1 3.1

 $\circ \Box \diamondsuit \triangleleft \varDelta \Box$

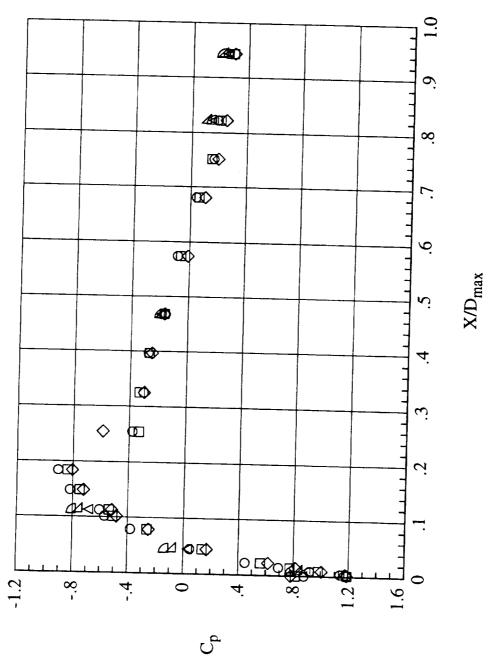


Figure 13.- Continued.

α, deg φ, deg
0.0
0.0
2.1
0.0
2.1
180.0
2.1

0 □ ◊ ⊲

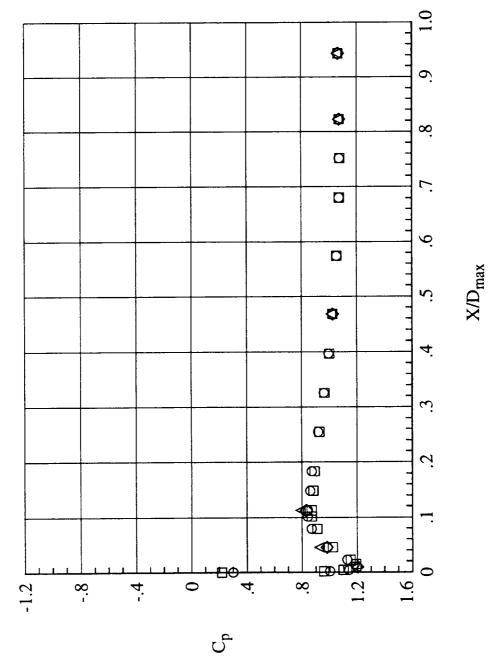
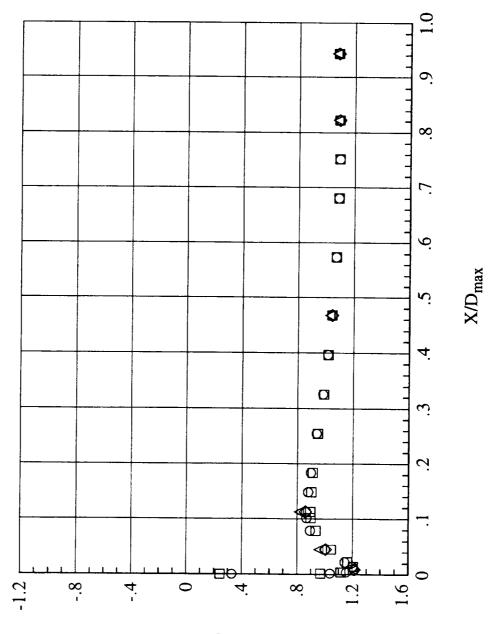


Figure 13.- Continued.

 α, deg
 φ, deg

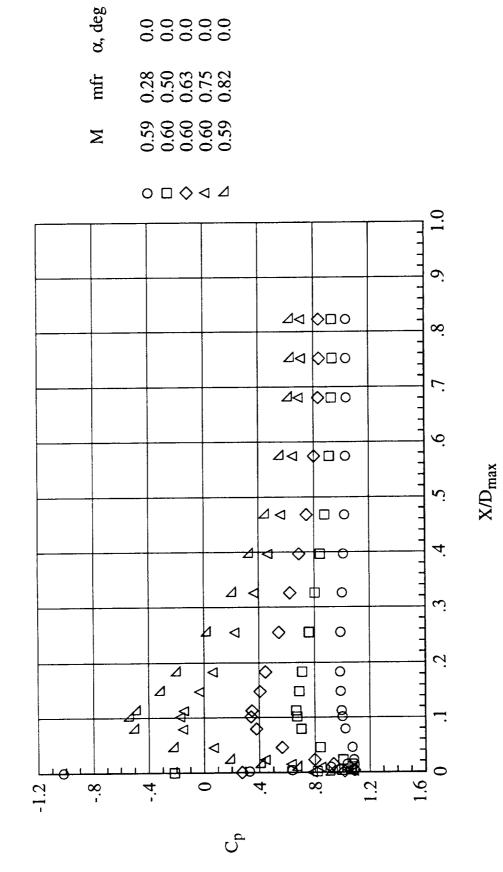

 0.0
 0.0

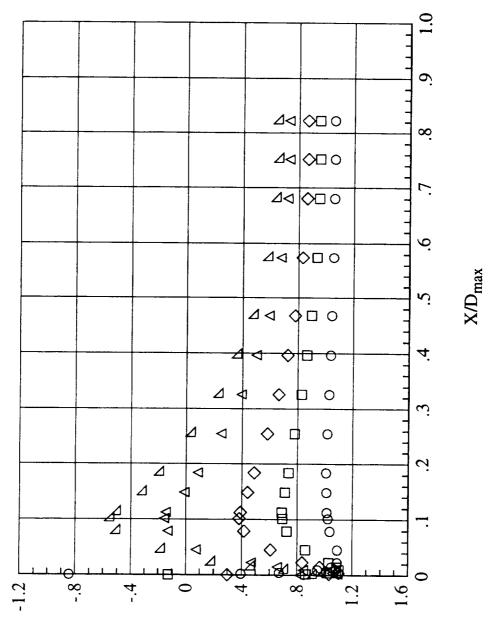
 2.0
 0.0

 0.0
 180.0

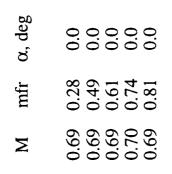
 2.0
 180.0

 $\circ \Box \diamond \triangleleft$




(e) M = 0.89 and mfr = 0.49.

NACA 1-85-43.9 inlet with a contraction ratio of 1.25 for several mass-flow ratios at $\alpha = 0^{\circ}$. Figure 14.- Pressure coefficient variation with X/D in the contraction and diffuser portions of the


(a) M = 0.60.

α, deg	0.0000000000000000000000000000000000000
mfr	0.27 0.50 0.62 0.75 0.81
Μ	0.64 0.64 0.64 0.64 0.64

(b) M = 0.64. Figure 14.- Continued.

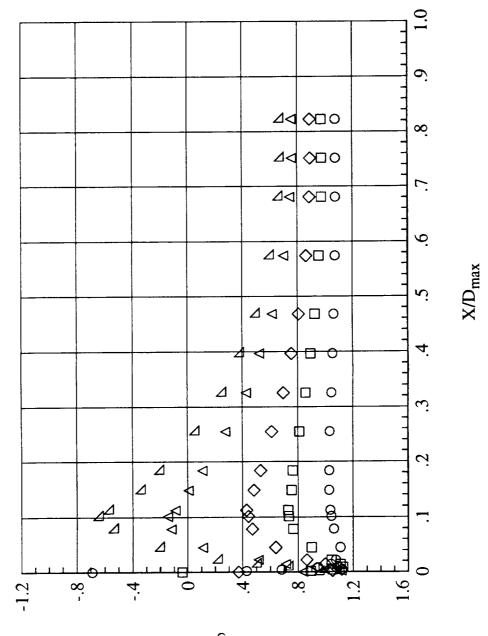
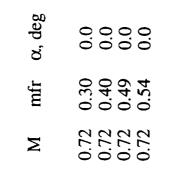



Figure 14.- Continued.

(c) M = 0.69.

 C_p

 $\circ \Box \Diamond \triangleleft$

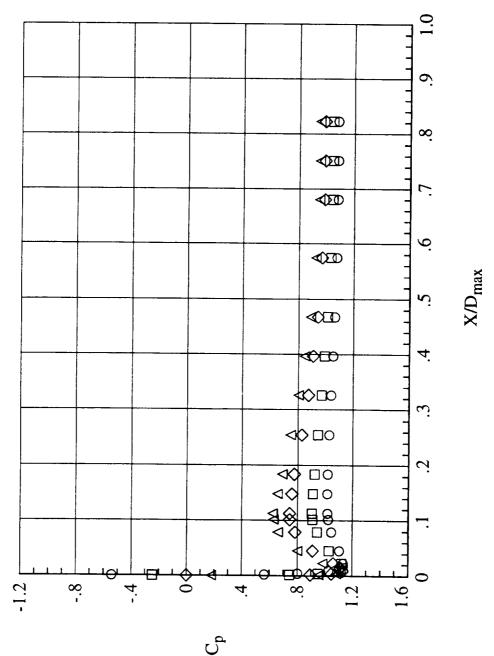
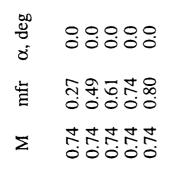



Figure 14.- Continued.

(d) M = 0.72.

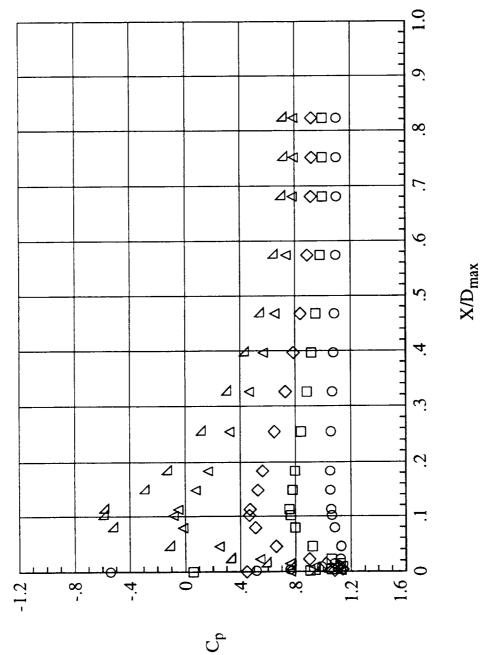
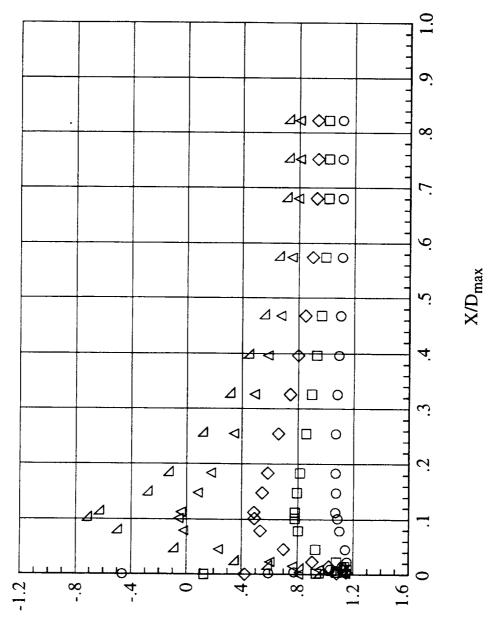
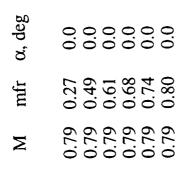



Figure 14.- Continued.


(e) M = 0.74.

α, deg	0.0 0.0 0.0
mfr	0.27 0.48 0.61 0.74 0.80
Μ	0.77 0.77 0.77 0.77 0.77

(f) M = 0.77. Figure 14.- Continued.

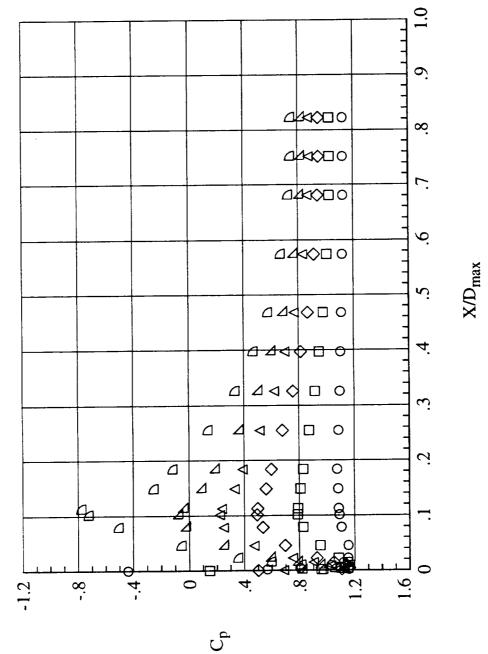


Figure 14.- Continued.

(g) M = 0.79.

α, deg	0.0 0.0 0.0 0.0
mfr	0.27 0.49 0.61 0.74 0.80
Μ	0.82 0.82 0.82 0.82 0.82

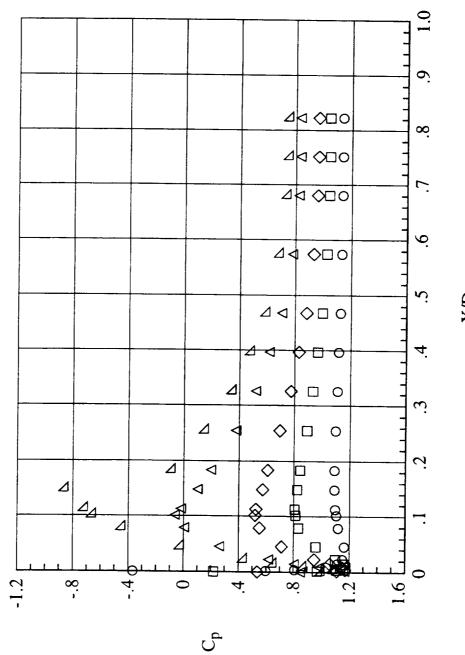
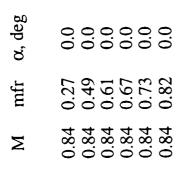



Figure 14.- Continued.

(h) M = 0.82.

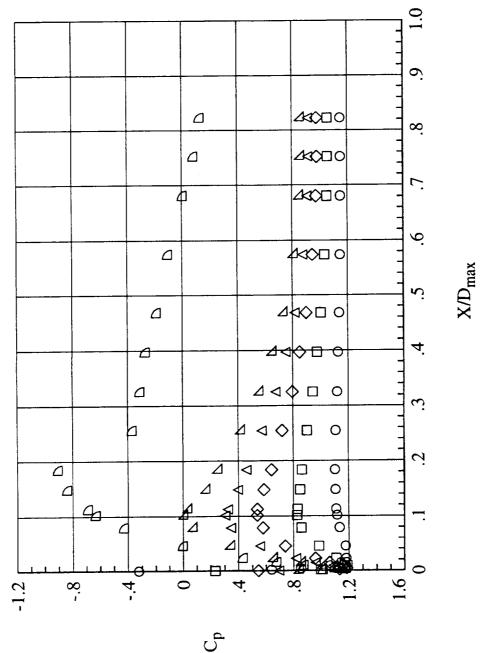


Figure 14.- Continued.

(i) M = 0.84.

α, deg	0.0	0.0	0.0	0.0	0.0	0.0
mfr		0.50				
M		0.87				

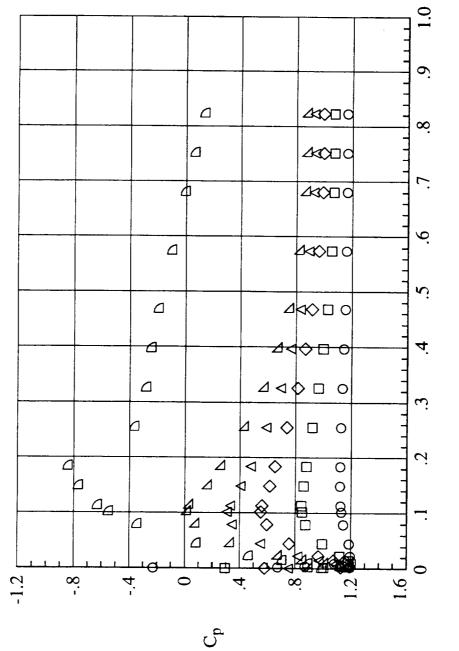
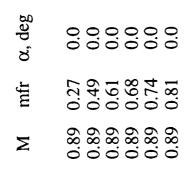



Figure 14.- Continued.

(j) M = 0.87.

X/D_{max}

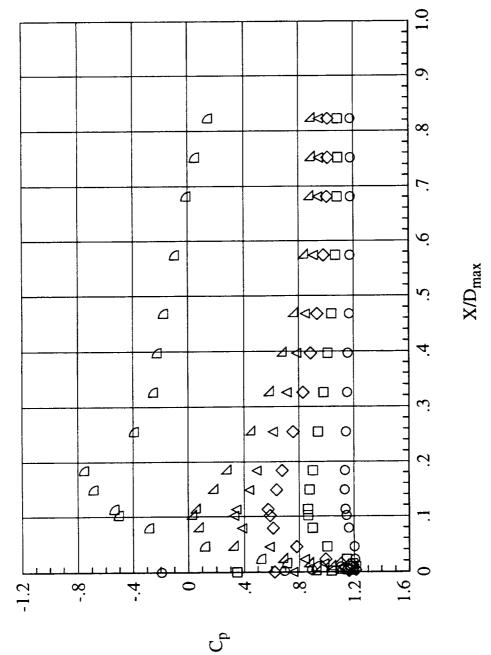
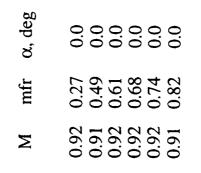



Figure 14.- Continued.

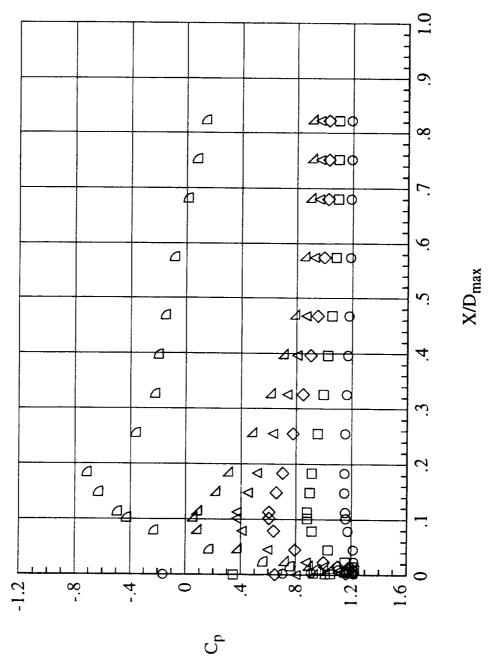
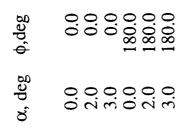
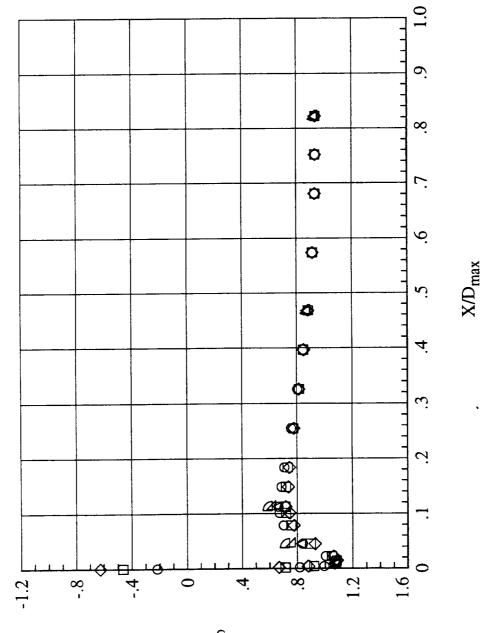
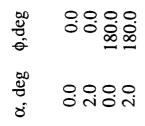



Figure 14.- Concluded.


(1) M = 0.92.

NACA 1-85-43.9 inlet with a contraction ratio of 1.25 for several mass-flow ratios and angles of attack. Figure 15.- Pressure coefficient variation with X/D in the contraction and diffuser portions of the


(a) M = 0.60 and mfr = 0.50.

 $\bigcirc \Box \diamondsuit \triangleleft \varDelta \Box$

 $\mathbf{C}_{\mathbf{p}}$

○ □ ◊ ⊲

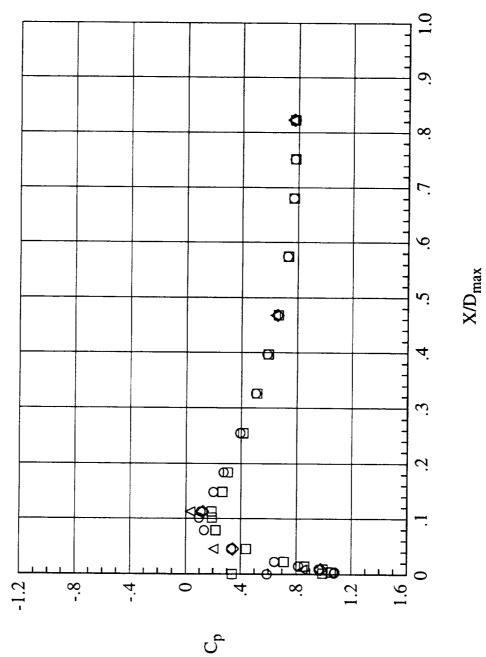
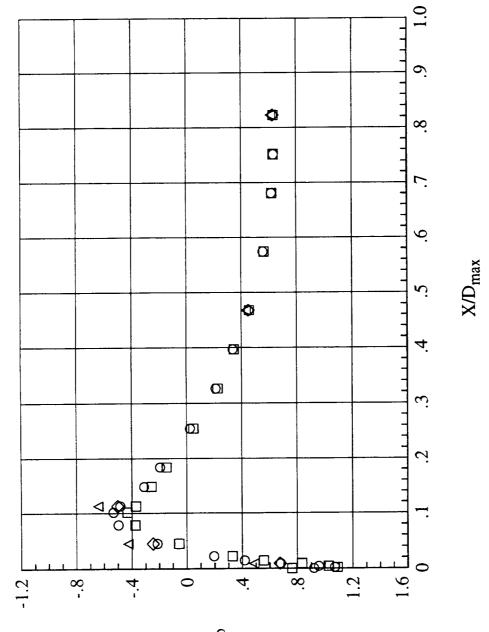



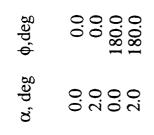
Figure 15.- Continued.

(b) M = 0.60 and mfr = 0.69.

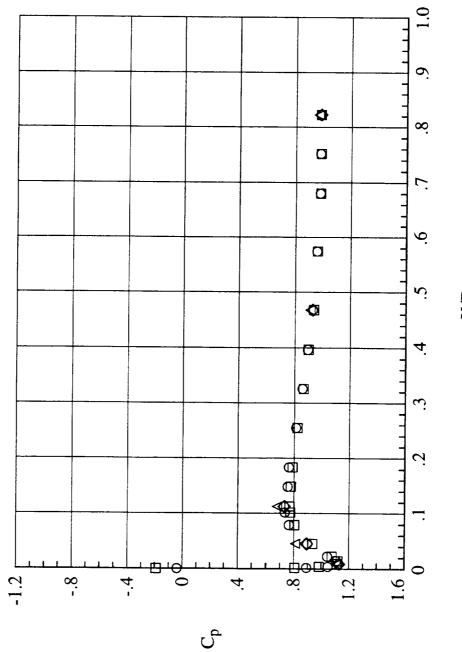
α, deg φ, deg
0.0
0.0
0.0
180.0
2.0
180.0

0 □ ◊ ⊲

(c) M = 0.60 and mfr = 0.82.


Figure 15.- Continued.

 $^{\rm C}_{\rm p}$

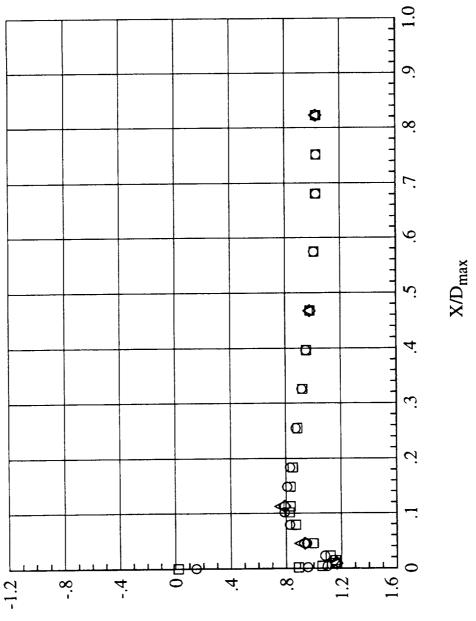

Figure 15.- Continued.

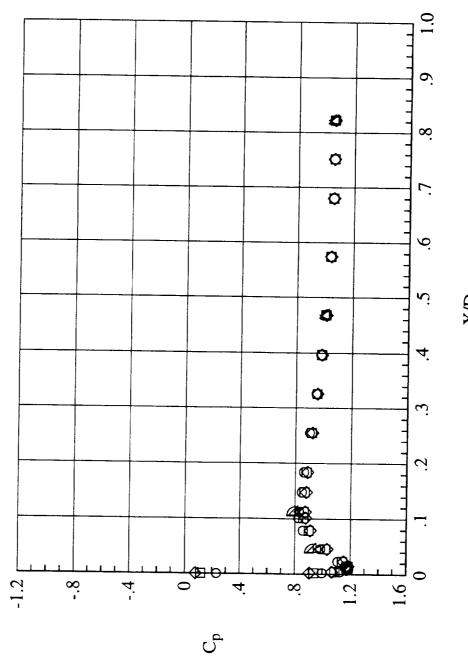
(d) M = 0.69 and mfr = 0.49.

 $\circ \Box \diamond \triangleleft$

0.0 0.0 180.0 180.0 α , deg ϕ , deg 0.0 2.0 2.0

0 □ ◊ ⊲



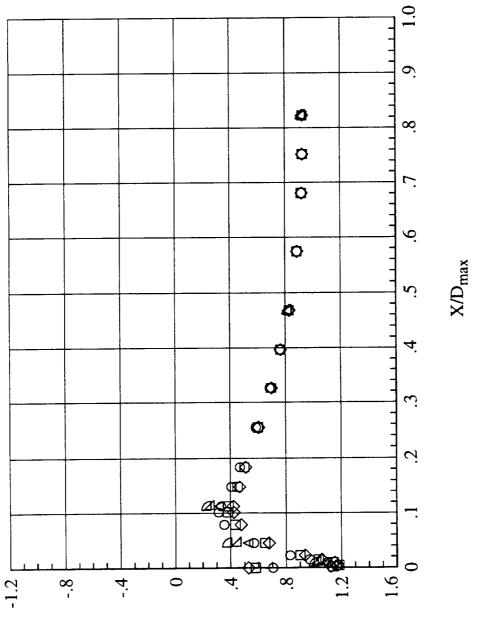

Figure 15.- Continued.

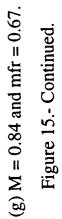
(e) M = 0.79 and mfr = 0.49.

 $_{\rm p}$

φ,deg	0.0 0.0 180.0 180.0 180.0
α, deg	0.0 3.1 3.1 3.1 3.1

 $\circ \Box \diamondsuit \triangleleft \varDelta \Box$





φ,deg	0.0	0.0	0.0	80	180.0	80
α, deg	0.0	2.0	3.1	0.0	2.0	3.1

Cp

φ,deg	0.0 0.0 180.0 180.0 180.0
α, deg	0.0 3.0 3.0 3.0

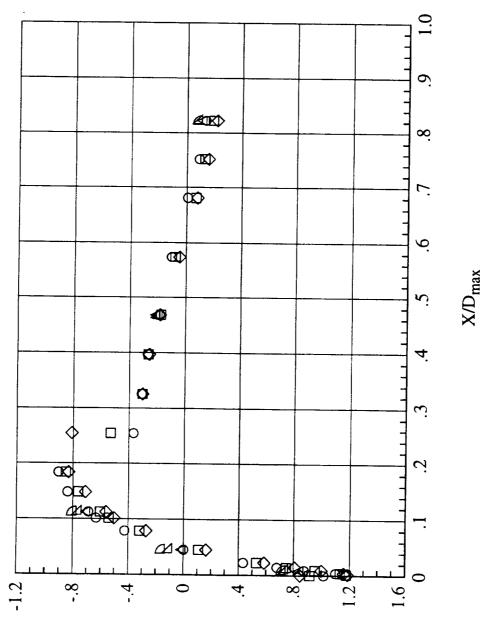


Figure 15.- Continued.

(h) M = 0.84 and mfr = 0.81.

α, deg φ, deg 0.0 0.0 2.0 0.0 2.0 180.0 2.0 180.0

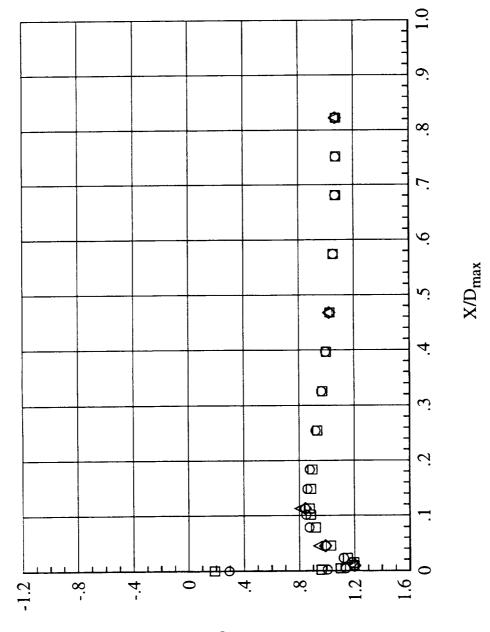
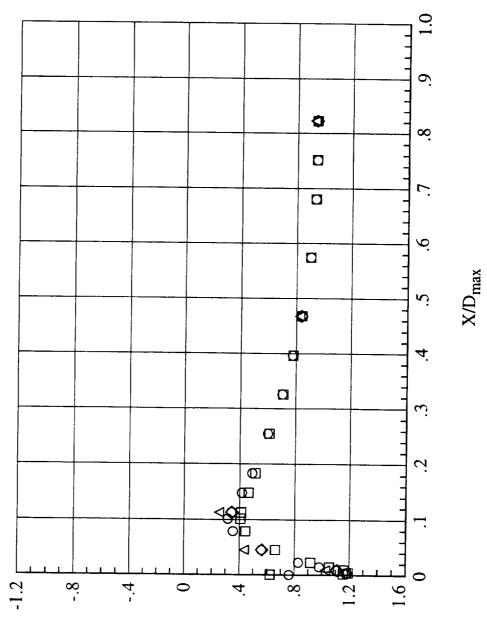


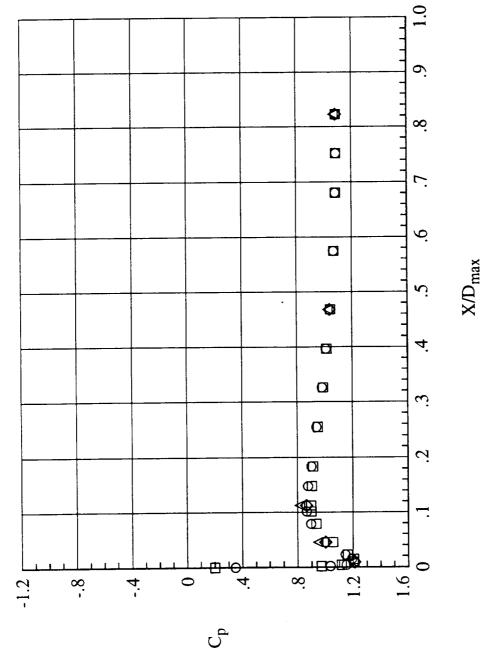
Figure 15.- Continued.

(i) M = 0.87 and mfr = 0.49.

α, deg φ, deg
0.0
0.0
0.0
180.0
2.0
180.0

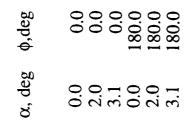
0 🗆 🔷 🗠




Figure 15.- Continued.

(j) M = 0.87 and mfr = 0.68.

C_p


0.0 0.0 180.0 180.0 α , deg ϕ , deg 0.0 2.1 2.1 2.1

0 □ ◊ ⊲

(k) M = 0.89 and mfr = 0.49.

Figure 15.- Continued.

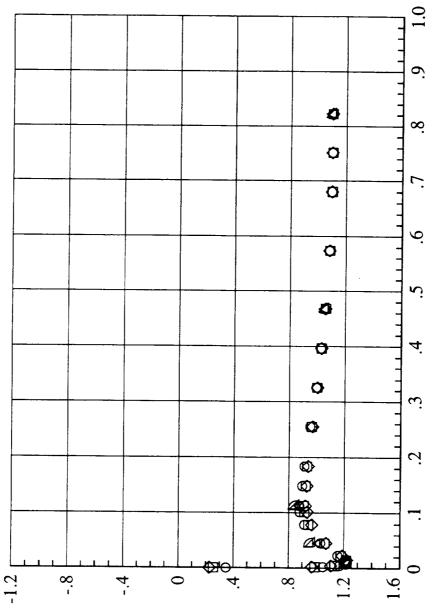


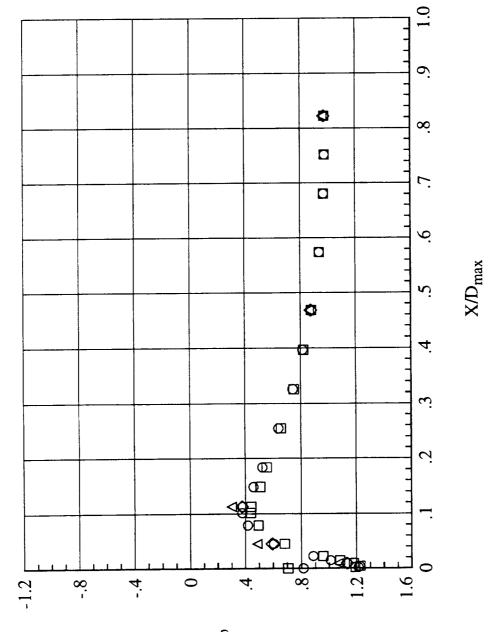
Figure 15.- Continued.

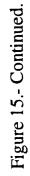
(1) M = 0.91 and mfr = 0.49.

X/D_{max}

 $^{\rm C}_{\rm p}$

 α, deg
 φ,deg


 0.0
 0.0


 2.1
 0.0

 2.1
 180.0

 2.1
 180.0

0 □ ◊ ⊲

(m) M = 0.92 and mfr = 0.68.

α, deg φ, deg
0.0
0.0
0.0
180.0
2.0
180.0

0 🗆 🔷 🗠

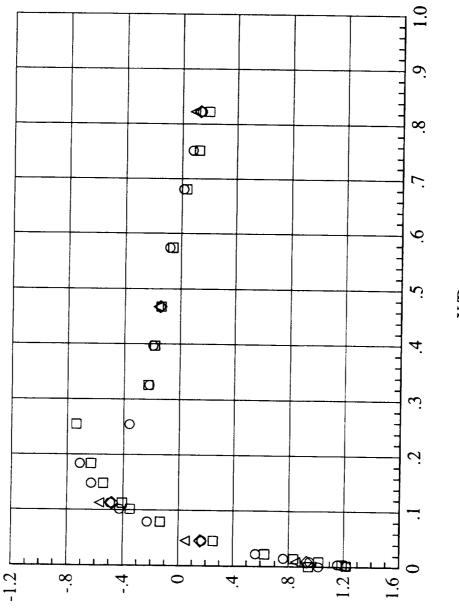


Figure 15.- Concluded.

(n) M = 0.92 and mfr = 0.82.

X/D_{max}

REPORT DOCUMENTATION PAGE				Form Approved OMB No. 0704-0188			
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Ariington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.							
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND					E AND DAT	D DATES COVERED	
		November 1996		Technical N			
4. TITLE AND SUBTITLE				4 1			
A Wind Tunnel Investigation Numbers Up to 0.92	norinree	NACA 1-Series in	nets at N	Aacn	538-0	5-13-01	
6. AUTHOR(S)					ł		
Richard J. Re and William H	<. Abeyou	inis					
7. PERFORMING ORGANIZATION NA	ME(S) AND	ADDRESS(ES)		· · · · · · · · ·	8. PERFC	DRMING ORGANIZATION	
NASA Langley Research C Hampton, VA 23681-0001	enter				REPO	RT NUMBER	
9. SPONSORING / MONITORING AGE	NCY NAME	S) AND ADDRESS(ES)				SORING / MONITORING	
National Aeronautics and S	pace Adm	ninistration					
Washington, DC 20546-00	01				NASA	TM-110300	
11. SUPPLEMENTARY NOTES		•		·····	<u> </u>	·····	
12a. DISTRIBUTION / AVAILABILITY S	STATEMENT				12b. DIST	RIBUTION CODE	
Unclassified - Unlimited							
Subject Category 02							
13. ABSTRACT (Maximum 200 words)							
Pressure distributions on three NACA 1-Series inlets have been obtained in the Langley 16-Foot Transonic Tunnel. The cowl diameter ratio (ratio of cowl highlight diameter to cowl maximum diameter) was 0.85 for all three inlets. The cowl length ratio (ratio of cowl length to cowl maximum diameter) was 1.0 for two of the inlets (NACA 1-85-100) and 0.439 for the other (NACA 1-85-43.9) inlet. One of the inlets with a cowl length ratio of 1.0 had an internal contraction ratio (ratio highlight area to throat area) of 1.009 and the other two inlets had a contraction ratio of 1.250. All three inlets with a contraction ratio of 1.250 had a longitudinal row of static pressure orifices on the top and bottom external cowl surfaces. The two inlets with a contraction ratio of 1.250 had a longitudinal row of static pressure orifices on the diffuser surface.							
14. SUBJECT TERMS		·				15. NUMBER OF PAGES	
NACA 1-series inlets					181		
Inlets					16. PRICE CODE		
Axisymmetric inlets					A09		
17. SECURITY CLASSIFICATION OF REPORT		TY CLASSIFICATION			TION	20. LIMITATION OF ABSTRACT	
OF REPORT OF THIS PAGE OF ABSTRACT Unclassified Unclassified Unclassified							
NSN 7540-01-280-5500						Standard Form 298 (Rev. 2-89)	