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Chapter 1

History of GaAs Solar Cell Development

1.1 Advantages of Gallium Arsenide

Gallium Arsenide (GaAs) has been of interest as a photovoltaic material for many years. This

interest arises primarily for three reasons. First, the bandgap of 1.42 eV at 300 K is very nearly ideal

for a photovoltaic device operating in our solar spectrum. Second, GaAs solar cells should be capable

of operating at higher temperatures than silicon (Si) cells. Third, GaAs solar cells are expected to be

very radiation resistant.

GaAs has a direct bandgap which

gives the material a high optical absorption lXlO 7

coefficient, tx. Figure 1.1 shows the

absorption coefficients of GaAs and Si as a lXlO 6

function of wavelength [1.1,1.2]. The a for

GaAs rises very steeply at the band edge (X lXlO 5

= .88 #m) to values greater than 104 cm t,

E lX10 4
whereas the absorption coefficient for Si rises

much more gradually because it is an indirect _-

bandgap material. Figure 1.2 displays the a.-u lX10 3
<

carrier concentration produced in GaAs and Si

with the Air Mass Zero" (AM0) spectrum lX10 2

incident. As this figure shows, 99% of the

AM0 solar photons will be absorbed in GaAs 1Xl 01

within 2.6 ttm of the front surface, whereas

for Si the AMO photons must penetrate to a lxlo-1
0

depth of 25 _m for 99% absorption. A

significant number of AM0 photons penetrate
Figure 1.1.

\
GaAs

Si

\

0.2 0.4 0.6 0.8 1.0

WAVELENGTH, microns

\

Optical Absorption Coefficients for
GaAs and Silicon

"Air Mass Zero is a term used to refer to the solar spectrum in both intensity and spectral content at a

distance of 1 AU from the sun.
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to depthsasgreatas200#m in Si, whichis whySi solarcellsmustbemademuchthickerthanGaAs
cells.

SinceGaAssolarcellscanbe

verythin,theymaybeexpectedto be

radiationresistant.In Si solarcells,

the major effect of particulate

radiation in degrading the

performance is the production of

defects in the lattice. These defects

then decrease the minority carrier

diffusion length. Si cells require

large minority carrier diffusion

lengths so that minority carriers

produced deep in the cell have a

reasonably high probability of
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Figure 1.2. Carrier Concentrations in GaAs and Silicon

with AM0 Spectrum Incident

diffusing to the junction. The thin GaAs solar cells do not require such long diffusion lengths, hence the

cells should be able to endure a significant amount of diffusion length degradation before cell performance

is affected. Since the initial minority carrier lifetime is low, a much larger particle fluence is required

to significantly reduce the existing recombination rate [1.3]. In addition, the probability of radiation

interaction with thin layers is small, so less degradation of those critically sensitive layers in the region

of the junction is to be expected.

Modern GaAs solar cells have indeed lived up to these expectations. Good quality GaAs solar

cells are being routinely produced which are as thin as 8 #m, although they do need to be fabricated on

thicker carrier substrates for mechanical strength. They have also proven to be very radiation resistant

to the electron and proton radiation encountered in the space environment, with one exception: they are

susceptible to damage by protons having energies near 300 keV because protons of this energy penetrate

to the junction region. Protons tend to produce most damage near the end of their path, so protons with

energies near 300 keV produce a lot of damage in the active area of the ceil. The small volume of

damage is significant in relation to the volume for light absorption and carrier generation. But most

proton energies found in the space environment do not stop in the relatively small photo generation
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volumeandwill producelessdamageto thecell. Mostof theseprotonswill beproducingtheir heavy

end-of-trackdamagemuchdeeperin thecell thanin thecritically sensitivephotogenerationregion.

ContrastingthisbehaviorwithhowSisolarcellsareaffectedby radiation,wenotethatprotonsof nearly

all energieswill causeregionsof damagesomewherein thelargephotogenerationvolume,soall proton

energieswill bemoreeffectivein damagingcellperformancethanwouldbethecasefor GaAscells. But

low energyprotonscanbestoppedby a modestamountof shielding,socoverglasseswith thicknesses

of 25#m or greaterareeffectiveinprotectingGaAscellsfromthemostdamagingprotons.

Theexpectedsuperiorperformanceathightemperaturearisesbecausethehighbandgapimplies

ahigheropencircuitvoltage(Vow)for GaAssolarcells(= 1volt for GaAsascomparedto --0.6 volt for

Si). Themostsensitivesolarcell electricalparameterto temperatureis Vow,andlike Si cells,thisVo_

decreaseswith temperatureat about2 mV/°C. Percentage-wise,thisdecreasetranslatesintoa lesser

decreasein poweroutputasafunctionof temperaturefor thecellwith thehigherV,,_.

1.2 EarlyWork 1954- 1964
Interestin theuseof GaAsasamaterialfor makingsolarcellsbeganaround1954whenasurvey

paperon "SemiconductingIntermetallicCompounds"waspublishedby Welker [1.4, 1.5]. Welker

publishedcurvesshowingtheoutputof aGaAs"photocell"asa functionof illuminationintensity,but
nodetailsof thecell constructionwereincluded.Theconstructionof thiscell wasno doubtbasedon

Welker'sstudiesof III-V compoundspublishedin 1953[1.6], which showedthat certainof these

compoundswerepromisingsemiconductormaterials. Welker'spioneeringwork was followedby

numerousotherstudiesonthepropertiesof III-V compounds.Thesestudieswerecollectedandreported

by Madelung[1.7] in 1964. Madelung'sreportalsoincludedanextensivebibliography.

In 1955,Gremmelmaierreportedthecharacteristicsof twoGaAssolarcellswhichhadmeasured

efficienciesof 1%and4% while illuminatedwith "sea-levelsunlight."[1.8] Thecellsweremadeof

polycrystallineGaAsby growingthin p-layers(0.01mm)onton-typesubstrates.Thesecells had

promisingphotovoltaicpropertiesandledGremmelmaierto predictmuchhigherefficienciesfor ceils

madefrom crystallinematerials.

In 1955,anRCAgroup,underfundingfromtheU.S.ArmySignalCorps,publishedatheoretical

studyon thesuitabilityof varioussemiconductormaterialsfor solarcelluse [1.9, 1.10]. Thisstudy
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showed that a number of III-V compounds (GaAs, indium phosphide (InP), aluminum antimonide (AISb))

and one II-VI compound, cadmium telluride (CdTe), should be capable of producing photovoltaic cells

with higher efficiencies than cells made from Si. Figure 1.3 from reference [1.10] summarizes the results

of their calculations. As the figure shows, they found that the efficiency is a strong function of both

temperature and bandgap. The general shape of these curves results from the fact that as the bandgap

increases, V_ increases, but I,, decreases because less of the solar spectrum can be absorbed. The two
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effectscombineto producea maximumin P_xfor materialswithbandgapsnear1.5 eV for devices

operatingnearroomtemperature.They concludedthatGaAsshouldbe the mostpromisingIII-V

compoundfor futuresolarcell development.TheRCAgroupfollowedup theirtheoreticalwork with

constructionof aworkingGaAssolarcell. Thiscell,madebydiffusingcadmium(Cd)inton-typeGaAs,

producedmeasuredefficienciesashighas6.5%[1.11], althoughthecell areawassmall(= 1mm2).

Therewasdifficulty inobtainingmaterialof sufficientlylowimpurityconcentrationandadequatelylarge

singlecrystalsamples.Measurementsandanalysisof thesecellspointedoutbothgoodandbadfeatures.

Onthepositiveside,theopencircuitvoltages,Vow,werein thevicinityof 0.9 V asexpected,andthe

seriesresistance,R_,wasreasonablylow, indicatingthattheyhada workablecontactsystem.Onthe

negativeside,thereversesaturationcurrent,Io,wasabout105timeslargerthanpredictedbytheory,and

theshortcircuitcurrent,I_ wasaboutafactorof 10lowerthanexpected.Theybelievedthelow I_ was

notcausedby carrierrecombinationatthesurfacebutwasdueto low minoritycarrierlifetimesin the

material,andthatthelow lifetimesweredueto defectsin theGaAscrystal.

A reportpublishedby Nasledovetal. in 1959revealedthattheSovietswerealsomakingGaAs

solarcells[1.12]. Theircellsweremadeonsmalln-typepolycrystallinewafersby diffusionof Cdusing

asealedampoulesystem.Thecontactsonthesecellsweremadebypressingtin intothediffusedlayer,

andtheresultingrelativelylargeseriesresistancenodoubtcontributedto thelow measuredefficiencies

of ---2.8 % on 1.8 mm 2 cells. The Soviets did improve their contact system in later cells, but made them

with very deep junctions ( = 10txm), which caused a very poor spectral response in the blue region and

detracted from their efficiency.

The work at RCA continued with the objective of improving GaAs material and cell technology.

A major goal was to develop cells which could operate at higher temperatures than Si cells. The RCA

group worked on several diffusion techniques, including the use of a two-temperature-zone sealed

ampoule, use of zinc (Zn) and Cd as diffusants, open-tube diffusion, resistance-heated furnaces, radiant-

heated furnaces, etc. Along with these variations, they experimented with various combinations of

diffusion process parameters, including diffusion time; temperature; dopant material and concentration;

and post-diffusion cooldown rates. Attempts were made to improve the minority carrier lifetimes

(estimated to be _ 101° sec) by post-diffusion treatments, such as annealing and low-temperature diffusion

of copper (Cu) or nickel (Ni) into the cell.
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Themosteffectivewayof improvingtheefficiencieswasfoundto bethereductionof thejunction

depthby a combinationof shallowdiffusionfollowedby surfaceetching. Evencrystalgrowing
techniquesweredevelopedsothatsuitablylargeandpurestartingcrystallinewaferscouldbeavailable

for cell fabrication.Crystaldopantsof bothtin (Sn)andgermanim(Ge)wereusedtoproduceann-type

basestartingmaterial. Techniquesweredevelopedfor vacuumdepositionof silvercontacts,followed

bysoldercoatingof thecontactsusingsolderpreforms,thusavoidingasolderdippingstepthathadbeen

foundto severelydegradecell performance.Quarter-waveantireflectioncoatingsof siliconmonoxide

(SiO) were developedand appliedby vacuumevaporation. All this work resultedin a steady

improvementin cellsizeandefficiency,culminatingin peakproductionlineefficienciesfor 2 x 2 cm2

cells of 8.5% in 1962. However,maximumcell efficienciesof 13 to 14%wereobserved[1.13].

Althoughmostof thesecellswerep/n, afewn/pcellswerefabricated.Then/pcellswereconsidered

promisingbecausetheelectronmobilitiesin GaAsaremuchhigherthanholemobilities,but thecell

efficienciesturnedout to belowerthanin thep/ncells. Epitaxialgrowthof GaAsonGaAswasalso

investigatedduringthistimeperiod,but thecellsmadeby thistechniquehadrelativelylow efficiencies
I1.5].

GaAs cell work continued at RCA under Air Force funding through the 1964 time period.

During this time a pilot line was established with the objective of optimizing production processes. New

crystal-growing techniques were pursued, notably the development of a gradient-freeze technique in which

the ampoule containing GaAs remained in a fixed place in a multizoned furnace. The furnace was

equipped with power supplies which were programmed to move a temperature profile along the ampoule.

This technique produced crystals of a more uniform quality, which is more suitable for a production line

environment. Junctions were produced by diffusion in an open tube using Zn as the diffusant in a carrier

gas of hydrogen. The procedure used produced junctions = 1.5 _m deep, but the front surface was

subsequently etched away leaving a junction depth of 0.5 #m. Vacuum-evaporated nickel-silver (Ni-Ag)

contacts were added to the cells, followed by vacuum evaporation of antireflection coatings of SiO. The

pilot line yielded cells of _ 9.5 % average efficiency. These cells were extensively tested in both proton

and electron radiation. It was found that under 5.6 MeV electron bombardment or under high energy

proton exposure to 1.8 to 9.5 MeV protons, these cells were superior in radiation resistance to n/p Si

cells. Wysocki [1.14, 1.15] found that the critical fluence (the fluence required to reduce cell efficiency

by 25%) for the GaAs cells was a factor of 10 higher than for Si ceils, the main degradation factor being

a rapid loss in I_. But the performance of the two cell types was comparable when exposed to 0.8 MeV
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electrons.TheGaAscellswereworsethanSicellswhentheexposurewasto lowenergyprotons(0.1

to 0.4 MeV). This wasexplainedby notingthatthe entireGaAscell operatingregionis nearthe

junction,andtherangesof theselowenergyprotonsaresuchthattheycometo restin thevicinityof the

junctionwheretheyproducemostof theirdamage.Thehigherenergyparticlestendto passon through

thecellswithoutproducingsuchdamagespikes,sotheyhavemuchlesseffectontheperformanceof thin

solarcells. However,Sicellshavemuchlowerlightabsorptioncoefficientsandnecessarilyrelyon the

deeperregionsof thecellsfor productionandcollectionof carriers. Hencetheyaredamagedmoreby

penetratingradiation. This explanationwas supportedby the experimentalspectralresponse

measurements,whichshowedthattheSicellsmainlylostredresponseafterirradiation,sincethecarriers

generateddeepin theSibythelongerwavelengthphotonshadever-increasingdifficulty in reachingthe

junctionby diffusion.Thespectralresponseof GaAscells,ontheotherhand,showedalossin theblue,

sincethelongerwavelengthsonlypenetratedto regionsverynearthejunction.

It is interestingto notethattheRCAworkersbegantorealizethatthelowminoritylifetimesseen

in GaAswererelatedto thedirectbandgapnatureof thematerial,andthatlifetimeslongerthan -- 10-8

secondscouldnotbeexpectedin GaAswithcarrierconcentrationsof theorderof 10_ cm-3. In apaper

comparingthestatusof GaAswithothermaterials,Loferski[1.16]postulatedthatdirectrecombination

processeswereprobablyoccurringin GaAsandlimitingthecelloutput.

Thetemperaturedependenceof GaAscell efficiencywasof greatinterestat thattime. GaAs

solarcellshadbeenpredictedto loseefficiencyat a lowerratethanSi cellsasoperatingtemperatures

wereraised[1.17]. Measurementsoncellsfromthepilot lineconfirmedthisprediction. It wasfound

thattheefficiencyfall-off wasbetween0.02to 0.03%per °C for GaAscells,whereasfor Sicellsthe

fall-off wasmeasuredto be0.035to 0.045%per °C. TheGaAscellswerealsoshownto besuperior

to Si cellsat lightlevelsup to 800mW/cm2.

A paralleleffortin developingGaAssolarcellsatTexasInstruments(TI) wasreportedin 1960

[1.18]. TheTI workersproducedp/ncellsusingtechniquesverysimilarto thoseusedat RCA. TheTI

cellswereproducedbydiffusingZnintothe1x 2cmsubstratestomakep/ncells.Theyusedelectroless

nickelto makethecontacts,andappliedantireflectioncoatingsof vacuum-deposited,quarter-waveSiO.

Efficienciesachievedwere _.7%,but it doesnotappearthatTI continuedwith theirGaAssolarcell

effort.
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A veryinterestingdevelopmentwas taking place at the Philco Applied Research Laboratory [ 1.19]

where Maxwell and coworkers observed that germanium (Ge) substrates might work well for the

deposition of GaAs solar cells since there is a very small lattice mismatch between the two materials and

they have very nearly equal coefficients of thermal expansion. The Philco group successfully deposited

good quality GaAs layers on Ge substrates. The growth method was to bubble pure hydrogen gas

through AsCla then pass the gas over metallic gallium which was held in the hot end of a two-zone

furnace. The resulting gaseous mixture was then passed over Ge blanks at the cool end of the furnace

and GaAs was deposited on the Ge. They found that the best quality GaAs layers resulted when grown

on Ge substrates oriented intermediately between the polar (111) and the nonpolar (100) faces. The dark

I-V diode characteristics measured for the grown material was very promising. Junctions were grown

on the 1 cm x 1 cm substrates by diffusion of Zn to a junction depth of 1-2 _tm. Back contacts were

made using tin and antimony (Sn-Sb) and the front contacts were made by the evaporation of gold and

silver (Au-Ag). Their cells were plagued by low shunt resistances. The shunt resistances could be

eliminated either by etching away nearly all the top layer at the expense of I_, which usually became

vanishingly small, or by cutting the cells into smaller pieces until the shunted area was removed. An I-V

curve of one of their small area cells (0.05 cm2), measured under illumination of a 100 mW/cm 2 tungsten

simulator, gave an efficiency of --2.5% with a fill factor of --0.68. In view of the fact that the

simulator they used was a very poor choice for measuring GaAs solar cells this growth technique was

seen to be promising, but apparently the group was not successful in curing their major shunting problem.

1.3 Hiatus 1964- 1972

Further development of GaAs solar cells essentially ceased in the U.S. between 1964 and 1972.

The GaAs ceils of that era could not compete with conventional Si cells for normal space mission

requirements. Cell costs were more than an order of magnitude higher than for Si cells, partly because

of the higher cost of starting material and partly because GaAs is inherently a much more difficult

material to work with than Si [1.5]. The efficiencies of these GaAs ceils were disappointingly low in

comparison to the theoretical predictions (maximum measured efficiency of 13% compared to the

theoretical efficiency of _ 26% shown in Figure 1.3).

The direct bandgap and high optical absorption coefficient of GaAs dictates that the cells should

be very thin and that junction depths need to be correspondingly shallow. With so much of the electrical

activity taking place near the front surface, the properties of the front surface are expected to play an
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importantrole in theperformanceof

these cells. The mathematical factor

which delineates the ability of the

front surface to act as a sink for

carriers is known as the surface

recombination velocity. It was

recognized by the early GaAs

workers that GaAs would probably

have large recombination velocities,

and that this might be preventing the

cells from approaching the maximum

theoretical efficiencies. The thin

emitter layers would cause such cells

to have high series resistances. Other

factors were postulated to be limiting

factors as well, such as the very short

minority carrier diffusion length, but

the diffusion lengths did not have to

be nearly as large as in silicon

because the distances the carriers had
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Figure 1.4. GaAs Solar Cell Efficiency vs. Surface

Recombination Velocity (from Ellis and Moss)

to travel were much smaller. Also poor quality GaAs would probably cause a significant amount of

carrier recombination in the junction region. In 1972 Ellis and Moss [1.20] showed theoretically that

surface recombination was indeed the most probable cause for the poor efficiencies obtained for GaAs

cells in practice. Figure 1.4, extracted from Figure 4 of reference [1.20] shows the effect that surface

recombination velocity has on GaAs solar cell efficiency. Although this calculation was made for n/p

cells, the conclusions are equally valid for p/n cells. Since values of surface recombination velocity in

the vicinity of 10 6 cm]sec are commonly found in GaAs, this could readily account for the low

efficiencies obtained in the early GaAs cells. Ellis and Moss showed that high surface recombination

velocities primarily degraded I_, but had very little affect on V_. To cure this problem, they proposed

the introduction of a concentration gradient in the emitter dopant. Such a gradient can produce an electric

field of the polarity required to nudge the minority carriers toward the junction. These authors also
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calculatedthattheroleof minoritycarrierdiffusionlengthin thesubstratematerialwasimportant,and
thatbettersubstrateswouldberequiredto exploitthefull potentialof GaAssolarcells.

1.4 Rebirth1972-

Up until 1970,all reportedGaAssolarceilshadbeenhomojunctioncells,wherethe same

material(GaAs)wasusedfor bothbaseandemitter. In 1970a Russiangroup[1.21] reporteda
heterojunctionsolarcell(heterojunctionsarejunctionsformedbetweentwosemiconductorswithdifferent

energygaps[1.22])consistingof ap-typeemitterof Ga__xAl_Asgrownonann-typebaseof GaAsby

liquid phaseepitaxy(LPE). These authors reported AM0 efficiencies of their cells in the 10 to 11%

range. Two papers by Woodall and Hovel [1.23, 1.24] followed shortly thereafter, describing a

heteroface cell consisting of a p-type Gal.xAIxAs layer on a p/n GaAs cell. (A heteroface cell is a p/n

homojunction cell to which a semiconductor having a larger energy gap has been added [1.22].) Woodall

and Hovel wrote: "The Gal_xAlxAs heterojunction system is probably unique among heterojunctions in

that very few interface states are expected to exist at the boundary between the two materials because of

their extremely close lattice match, while at the same time a growth technique is available that is capable

of producing high-quality single-crystal material of controlled doping level. The use of a Ga_.xAlxAs layer

on a GaAs substrate is therefore very attractive for solar-cell applications since the layer can be made

thick and heavily doped to reduce the series resistance, will be transparent to most wavelengths which

are absorbed efficiently by the GaAs, and should greatly reduce the recombination velocity at the GaAs

"surface" (i.e., the interface between the two materials)" [1.23]. They also noted that longer diffusion

lengths should be possible in the p-region because lower doping densities are required there when a highly

doped Ga__xAlxAs window is present.

The energy band structure of their cells is shown in Figure 1.5 [1.24]. The wide-gap front

structure will pass all photons with energies less than Es_, but those photons having energies less than Eg2

will be absorbed in the underlying GaAs device and produce hole-electron pairs there. Ga___AlxAs does

have a wide, indirect bandgap which is suitable for such a front structure. Hovel and Woodall [1.24]

found that the Ga_._AI_As bandgap increased as x increased, reporting an E_l of 1.69 eV for x = 0.23

up to an E_ of 2.094 eV for x = 0.86. At an x-value of =0.85 the GaAIAs layer has a highly absorbing

direct bandgap of 2.6 eV (X = 0.477 #m) and an indirect bandgap of 2.1 eV (X = 0.59 _m), and

transmits most of the light from the solar spectrum into the GaAs cell. These bandgap energies increase

with x, so that it is advantageous to use a high x-value and to make the GaA1As layer as thin as possible
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to allowmaximumlighttransmission

(seeFigure A.3 in the Appendix).

Figure1.5alsoillustratesstill another
attributeof the heterofacestructure.

The energy discontinuity AE_,

between the p-Ga,_xAlxAS and the

p-GaAs, prevents photogenerated

electrons in the p-GaAs layer from

entering the window layer and being

lost. This discontinuity arises from

the difference in electron affinities

(electron affinity is the energy

difference between the bottom of the

conduction band to the vacuum level
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Figure 1.5. Energy Band Diagram of an AlxGal_xAs/GaAs
Solar Cell

[1.22]) in the two materials. Hovel and Woodall grew several cells using LPE. They started with n-type

GaAs wafers with Si or Sn as dopants. The p-type layers were grown by placing the substrates in a melt

of Ga, A1, GaAs chunks, and Zn. During the growth of the Zn-doped Ga__xAlxAS layer, Zn diffused into

the n-type substrate and simultaneously formed a p-type layer in the GaAs region also. Cell efficiencies

between 11.7 and 12.8% were achieved with an AM0 light source. Their cells were small, =0.2 cm 2,

and they used much greater window thicknesses (2 to 20 #m) and junction depths (0.6 to 1.0 #m) than

have been found to be optimum today. But the authors demonstrated the principle of an effective

heteroface GaAs solar cell, and this work sparked a renaissance in GaAs solar cell research.

1.5 Development of LPE Growth Techniques

This work was followed by a substantial effort by Kamath, Loo, and Ewan at Hughes Research

Lab (HRL), beginning in 1974 under internal research and development (IR&D) funding, supplemented

by funding by the Air Force Aero Propulsion Lab (AFAPL) [1.25]. They used LPE techniques to make

their cells, but used beryllium (Be) as a dopant instead of Zn. They used a very large volume chamber

of GaAs solution and developed techniques for inserting graphite substrate holders into this "infinite melt"

solution for growing the epitaxial layers. The infinite-melt growth system improved the day-to-day

consistency and uniformity in their cells. The use of large quantities of GaAs became affordable because

of the increased demand for this material in LEDs and microwave diodes. The cost of GaAs dropped
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Figure 1.6. Design of Hughes Research Lab's AIGaAs/GaAs Solar Cell

from -_ $5/g in 1959 to $0.50/g in 1976. The HRL group addressed the problem of low diffusion lengths

in the available GaAs substrates by growing a high quality n-type buffer layer on the starting n-type GaAs

wafers. They found that a such a buffer layer of = 10 _m thickness resulted in considerable improvement

in cell efficiencies. A cross-section of the Hughes cell is shown in Figure 1.6. Considerable effort was

expended in optimizing the growth parameters, dopant concentrations, window compositions, window

thicknesses, junction thicknesses (since radiation damage was a major consideration), contact design, and

antireflection coatings.

Many results of this optimization are apparent from Figure 1.6. It is advantageous to use a high

value for x in the Gal_xAixAs structure to produce a high bandgap, hence they used an x of 0.87. Since

some light absorption does occur in this layer, this effect is minimized by making the layer very thin.

The radiation testing of these cells showed that the junction thickness, xj, should also be very thin.

Electron radiation experiments showed that cells made with junction depths of 0.3 #m lost 18 % of their

maximum power, Pm_x, after exposure to 1 x 1015 e/cm 2 of 1 MeV electrons, whereas cells with junction

depths of 0.5 ttm lost 14% after this exposure and cells with junction depths of 1.0 #m lost 58% [1.26].

So the junction depths were made as shallow as practical, yet deep enough to allow the application of a
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contact with enough rigor to permit soldering or welding. The antireflection coatings of tantalum

pentoxide (Ta_Os) and the Ag coated contacts were adapted from Si technology used for space cells.

The HRL group produced a cell with an AM0 efficiency of -_ 13% late in 1975, and by early

1977 the efficiency had increased to 17.5% [1.27] on a 2 x 2 cm solar cell. By 1978 these cells were

produced in some quantity, with average efficiencies of 16% routinely achieved (yield > 50%) and a

maximum efficiency of 18 %. The cells were used in a space-qualification testing program which included

electron and proton radiation testing, post-irradiation annealing, thermal cycling, humidity testing,

ultrasonic welding to the contacts, and contact pull strength tests. The HRL cells were found to be

superior to Si cells in all respects except weight, fragility, and cost.

Work progressed in many other laboratories as well. At IBM, Hovel and Woodall developed the

theory for computing spectral response and Ix of the Gal_xAIxAs/GaAs heteroface cells and compared their

theoretical results with experimental data [1.28]. They also attacked the problem of n-type substrates with

poor hole diffusion lengths by leaching out the lifetime killing defects in a Ga or Ga-AI melt. They also

made cells with junction depths greater than 1 #m so that almost all the light would be absorbed in the

high quality grown p-layer, thus minimizing the role of the substrate [1.29]. These same workers

explored the effect of junction depth on the cell's performance, making cells with junction depths between

0.05/xm and 0.3 tzm, but having no windows. A maximum efficiency of _ 11% was measured for the

cells with xj of 0.05 #m [1.30]. At AEG Telefunken in Germany, Huber and Bogus [1.31] produced

GaAs cells with aluminum arsenide (AlAs) windows in an attempt to minimize absorption losses in the

window, but only achieved efficiencies of =13.5%. Johnston and Callahan at Bell Telephone

Laboratories also made cells with AlAs windows by using vapor phase epitaxy, where their window layer

also served as the emitter. Their cells achieved efficiencies of = 18.5 % as measured in sunlight [1.32].

James and Moon at Varian pointed out that a thick Ga_.xA1xAs layer would be advantageous for

concentrator cells because it would reduce the series resistance. They built such cells and measured an

efficiency of 17.5 % (active area) in sunlight concentrated 284 times [1.33]. The effect of making very

thin Ga_.xAl_As windows was examined by Hovel and Woodall [1.30], who made windows as thin as

0.2 #m on cells which achieved efficiencies of 18.5%. The same effect was explored by Sahai et al. at

Rockwell [1.34], who used LPE to make Gal.xAl_As/GaAs cells with windows as thin as 0.05/_m and

incorporated dual layer AR coatings to achieve measured AM0 efficiencies of = 17%.
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On still anotherfront, anumberof papersbeganto appearon thedesignof concentratorcells

madefromGaAs[1.35,1.36,1.37]. Theseauthorsexplainedthathigherefficienciesareachievablewith

GaAscells underhigherconcentrationratios(with their necessarilyhigheroperatingtemperatures)

because(1) Iscincreasesas intensityincreasesandalsoat higheroperatingtemperaturesbecausethe

bandgapdecreasesat highertemperatures,(2)Vo_increasesbecauseof thehigherIx, yetVo_decreases

with temperatureat a slowerratethanit doesfor Si, and(3) thefill factor increasesbecausethe

generation-recombinationcurrentin thedepletionregionbecomesarelativelylessimportantpartof the

forwardbias current. In addition,someradiationdamagein GaAscells is expectedto annealat

temperaturesneartheprojectedoperatingtemperaturesof concentratorcells,soGaAscellswerefound

to beveryattractivecandidatesfor concentratorapplications.

Kamathet al. developedgraphitecassettescapableof holdingat least40 largeGaAswafersfor

scalingup theLPEprocessingto productionquantities.Theproblemsof assemblingGaAssolarcells

intopanelswereinvestigatedbySpectrolabastheymanufacturedsmallpanelsto beflownontheLIPS-II

andSanMarcosatellites.Theresultsof thiseffortwerereportedin 1984[1.38]. At aboutthesame

time,SpectrolabbegantransferringtheLPEtechnologyfromHughesResearchLabto theirfacility,and

in late1985establisheda productioncapabilityof 20,000cellsperyear. This facilityandtheprocess

stepsusedin productionaredescribedin reference[1.39]. Cellsmeasuring2 x 4 cmcellsandasthin

as125u,m were produced on this LPE production line. The production cells had average efficiencies of

18% with a maximum efficiency of =20%. The cells were thinned from a starting thickness of 250/xm

by an etch in a late stage of processing. A contact system was developed wherein the gridlines were

deposited directly on the p-GaAs surface, but the contact pads were deposited on top of the AIGaAs

window layer. This robust contact system allowed weldable contacts with more than adequate pull

strengths to be made to the cells [1.40, 1.41].

Theoretical work continued in modeling the electrical characteristics of the Ga__xAlxAs/GaAs cells.

Building on the work of Ellis and Moss [1.20] and Hovel and Woodall [1.28], the effect of a graded

bandgap was calculated by Hutchby et al. [1.42, 1.43] at NASA Langley and by Sutherland and Hauser

[1.44] at North Carolina State University. In England, Debney [1.45] also performed a theoretical

analysis of various GaAs structures, including the graded bandgap design, with regard to radiation

hardness. Kamath and coworkers also developed a computer model for predicting and optimizing the

performance of their cells [1.46].
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1.6 Developmentof OMCVDGrowthTechniques

In 1982,theAir Force,whohadbeenthemajorsponsorof theLPEGaAsworkatHRL,adopted

thephilosophythatmetallic-oxide-chemical-vapor-deposition(MOCVD)processingof GaAssolarcells

wouldbemoreamenableto large-quantitycell production,andtheybeganto supportworkat Applied

Solar Energy Corp. (ASEC) to develop GaAs solar cells using this technique. This program, called the

Manufacturing Technology for GaAs Solar Cells or (MANTECH) program, had goals focussing on the

ultimate production of large quantities (5000 cells per week) of large ( > 2 x 4 cm2), uniformly consistent

cells, with AM0 efficiencies over 16% and high radiation resistance. ASEC, with the help of

supplemental funding from a commercial solar panel builder, was very successful in this program. By

demanding a large quantity of GaAs substrates, ASEC was able to assist substrate suppliers in decreasing

the price by half for substrates and at the same time improving the quality and shape (near rectangular)

of the substrates.

The cell design developed for this program is shown in Figure 1.7 [1.47]. The design is very

similar to the cell design developed at HRL, but there are important differences. An example is the

deposition of front contacts to the p-GaAs layer, which avoids a possible loss of integrity if there is

subsequent moisture corrosion of the AIGaAs layer. As can be seen from the plots of light absorption

in Gal_xAlxAs (Figure A.2 in the Appendix), it is desirable to have an x-value as high as possible for

maximum window effect; but if x is too high the AIGaAs layer becomes hygroscopic and degrades

severely in humidity. A good balance between these competing requirements was found for x-values of

= 0.85. The dual antireflection (AR) coating using TiO2 and A1203 was designed considering the A1GaAs

layer itself to be a part of the AR system since it too was _-1/4 wavelength in thickness. A

comprehensive review of the role of the Gat_xAlxAS layer was published by the ASEC workers [1.48].

1000 cells were produced on a pre-production line by 1984. Cells from this line were used to establish

production yields and carry out space qualification tests. These tests included application of coverglasses,

tests of solderability and weldability to the contacts, contact adhesion, humidity tests, and radiation tests.

The cells met all the required specifications with the exception of the radiation specification, probably

because the p-n junction was slightly deeper (0.6 #m) than planned. Based on the knowledge gained from

the 1000-cell run, the cell design was changed and an additional 4000-cell production run was completed,

yielding average efficiencies of over 16.5 %. These cells, with junction depths decreased to < 0.5/_m,

succeeded in meeting the radiation specification, and ASEC concluded that they had a process capable

of manufacturing space-ready cells in large quantities [1.49].
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Figure 1.7. GaAs Solar Cell Structure Developed by ASEC

Although the AIGaAs/GaAs heteroface cells had leapfrogged the efficiencies of Si cells, they were

heavy. Since GaAs is quite fragile, the cells had to be made on fairly thick substrates, typically about

300 _m thick. Since the density of GaAs is about twice that of Si, the weight of these cells was

equivalent to the weight of a Si cell about 600 #m thick. Since Si cells were routinely made in

thicknesses of 200 #m, and sometimes as thin as 100 _m, the power-to-weight ratio of GaAs cells did

not compare favorably with Si cells. This problem was attacked by several workers who grew GaAs cells

on Ge substrates, or on Si substrates with thin intervening Ge layers [1.50 - 1.53].

In order to pursue the ideas of using an underlying substrate to grow GaAs solar cells, the Air

Force funded ASEC to develop rugged, thin GaAs cells in 1986. ASEC chose to use Ge as a substrate

because Ge and GaAs have very close lattice constants and thermal-expansion coefficients. Also Ge is

a much tougher material and costs about half as much as GaAs [1.54]. A major part of the early work
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was to passivate the Ge/GaAs

junction. This hasthedisadvantage

of not usingthe possibleadditional

output from the bottomcell. The

advantageof an inactive second

junction is that it allows a looser

specificationin the Ge substrate

properties,which is in turnreflected

in lower Ge costs[1.55]. It also

removestherequirementof havingto

matchthecurrentcollectedfromthe

GaAs junction with the current

collectedfromtheGaAs/Gejunction.

E
v

m

200-
uJ
rr
cE
D
0 100--

0

Figure 1.8.

The consequence of having

mismatched junctions is a kink in the

ONE-LIGHT

I I I I I
0.2 0.4 0.6 0.8 1.0 1.2

VOLTAGE, (V)

I-V Curves for a GaAs/Ge Solar Cell with an

Active GaAs/Ge Junction as Measured Under

Different Simulators (© 1990 IEEE, used with

permission)

I-V curve near P_,, which occurs when one junction becomes current saturated and goes into reverse

bias. The resulting I-V curve is the superposition of one I-V curve in forward bias with an I-V curve

in reverse bias, and the result is the kink. Such a cell may exhibit a normal I-V curve when measured

under a solar simulator with excessive output in the red end of the spectrum, but when measured under

true AM0, or with a simulator with a closer spectral match in the red, the kink will appear. An example

of the output of a developmental cell with an active Ge/GaAs junction as measured with a red-rich (one

light) simulator and with a red-neutral (two-light) simulator is shown in Figure 1.8 [1.56]. ASEC grew

a thin quantum barrier between the Ge layer and the GaAs layer to passivate this junction. The barrier

region incorporated an energy-band gradient layer by growing a thin AIGaAs layer immediately under

the base layer which acts as a minority-carrier reflector. By January of 1988, ASEC produced a 2 x 4

cm GaAs/Ge cell with an AM0 efficiency of 20.5 %, albeit on a relatively thick 200 ttm substrate [1.57].

The company then turned its attention to making thinner cells with large areas. Cells measuring 4 x 4

cm and 85/zm thick appeared by 1990 with efficiencies routinely in the 17.5% range. ASEC has

continued development of this cell design so that today, cells averaging over 19% efficiency are available

from their production line. As of this writing, cells are available from ASEC as large as 6 x 6 cm 2 and

as thin as 75 _m with efficiencies over 20% [1.58], including cells with all contacts on the rear surface

(coplanar back contacts either as a wraparound or a wrapthrough contact) with slightly reduced
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efficiencies[1.60], and theyhavedeliveredover4,000,000cm2 of high-efficiencyGaAs/GaAsor

GaAs/Ge cells. [1.61]. A thorough review of the implementation of this technology on a large number

of space solar arrays by a major aerospace panel manufacturer was given by Datum [1.62].

Spectrolab also began production of GaAs/Ge cells using an MOCVD reactor. Under U.S. Air

Force funding, they explored the use of this cell type with the GaAs/Ge junction both active and inactive.

With the second junction active, they computed that cell efficiency should improve by =4%, but to

achieve this the cell would have to have low recombination velocities at both the rear surface and the

emitter of the Ge layer, a thin Ge emitter, good optical coupling of the infrared wavelengths into the Ge

cell, long diffusion lengths in the Ge cell, and a highly reflecting back contact on the Ge cell. Dual-

junction cells with efficiencies of = 19% were reported [1.59]. Spectrolab grew an additional p + GaAs

cap on the AIGaAs window in the areas where the front contacts of titanium-palladium-silver (Ti-Pd-Ag)

were deposited, thereby preventing metal diffusion from the contacts into the thin junction during

interconnect attachment. Spectrolab also produced cells with inactive second junctions, achieving average

efficiencies of over 18%. Their cells ranged in size from 2 x 2 cm up to as large as 6.5 x 6.5 cm, and

some cells were fabricated with a wrapthrough contact system. GaAs/Ge cells measuring 2 x 4 cm were

used to assemble solar panels for the UOSAT-F satellite. The panels incorporated welded interconnects

on cells using the GaAs cap under the contacts described above, and panel efficiencies between 17.9%

and 18.6% were measured [1.63].

1.7 GaAs Solar Cells in Space

Other solar cell manufacturers around the world have produced GaAs cells. Japan launched an

engineering test satellite (ETS-V) in 1987 and two communication satellites in 1988 into synchronous

orbit with panels made with Japanese GaAs solar cells [1.64]. GaAs cells made by CISE in Italy and by

EEV in England were used to manufacture experimental panels launched into low-earth orbit in 1992

[1.65]. Cells made by CISE, manufactured by an LPE process using GaAs wafers, were also used on

the solar panels for ARSENE, a French satellite [1.66]. In England, the Defence Research Agency

(DRA) built experimental satellites (STRV-1 A and B) carrying GaAs solar cells from EEV and Epi

Materials Ltd. in England; Telefunken Systemtechnik in Germany; and CISE in Italy. Power for this

satellite was generated by panels bearing GaAs solar cells made by ASEC and Spectrolab [1.67].
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In the 1990s,GaAs cells have achievedan ever-increasingacceptanceby spacecraft

manufacturers.Array designershavebecomemoresophisticatedandarewilling to evaluatemore

advancedcell designsfor theirspecificmissionneeds.It hasbeenrecognizedthatthetrade-offstudies

betweenvarioussolarcell designsneedto gobeyondthecell level to thepanellevelor evento the

systemlevel,andfor somemissionstheadvantagegoesto GaAs. Oneof theadvantagesis thehigher

efficiencyremainingat end-of-life(EOL). For spacecraftflying at low-earthorbit (LEO), where

aerodynamicdragcanbeaproblem,it isadvantageousto usepanelsassmallaspossible,soGaAspanels

areanattractivechoice.Reduceddragandlowermomentof inertiaof thesmallerpanelsalsotranslate

intoareducedrequirementfor station-keepingfuel,neededtooffsetorbitaldecayandto maintainsatellite

orientation.Thereducedweightof thepanelscanalsoreducetheweightandcomplexityof thepanel

deploymentmechanisms.Evenif theGaAscellsareheavierthanSicells,thenetresultisoftenthatthe

totalsystemweightmaybe less. This typeof analysishasalsoshownin somecasesthateventhough

thecostof GaAscellsmaybeseveraltimesthatof Sicells,theoverallsystemcostusingGaAscellsmay

belower.

In the 1990s,NASAis operatingunderthephilosophyof makingsmaller,better,andcheaper

satellites.Thesesmallersatellitesoftenhavebody-mountedsolarpanels,withlimitedareasavailablefor

thepanels.In suchcasesthehigherefficiencyof GaAs/Gecellsmaybetheonlyoptionpossibleto meet

theareaandpowerrequirementsfor themission.Anotherinterestingadvantagefor GaAscellsoccurs

for missionswhereseveralsatellitesarecarriedintoorbitin asinglevehicle.Thehigher-efficiencyGaAs

cellsrequirelessstowagespaceand,in oneexample,enabledsixsatelliteswithGaAs/Gearraysto be

injectedintoorbit ascomparedto onlyfoursatellitesif Si cellarrayshadbeenused[1.68].

SeveralsatellitesareeitherunderdesignorhavebeenlaunchedwithGaAssolarpanels.Among

thesearesmallsatellitessuchasMiniatureSeekerTechnologyIntegration(MSTI), DeepSpaceProbe

ScientificExperiment(DSPSE),andtheUniversityof SurreySatellite(UoSAT). Thechoiceof GaAs

for thesesatelliteswasdrivenby powerconsiderations.TheIRIDIUM satellitesunderdevelopmentby

Motorolafor a telephonesystemareexamplesof commercialsatelliteswherethechoiceof GaAswas

drivenbystowageareaconsiderations.NASAmissions,wherethechoicewascostdriven,includeEarth

OrbitingSatellite(EOS),TropicalRainfallMeasuringMission(TRMM),FastAuroralSnapshot(FAST),

andSubmillimeterWaveAstronomySatellite(SWAS). Air ForcemissionswhichhavechosenGaAs
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arraysbecauseof powerconsiderationsincludeFollow-onEarlyWarningSystem(FEWS),andBrilliant
Eyes(BE).

It isclearthatGaAssolarcelltechnologyismatureandwidelyaccepted.Therecognitionof the

advantageof usinghigh-efficiencysolarcellshas led to increasedinterestin cascadecells. The

experiencein producingGaAscells usingMOCVD growthtechniqueshasshownthat only small
additionalgrowthtimesmaybeneededto addatopcellanda tunneldiodeto a bottomcell like GaAs.

Thehigherefficiencyof theseceils,eventhoughmorecostlyatthecelllevel,maywell leadto additional
reductionsin overallsystemweightsandcosts.
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Chapter2

PhotovoltaicEquations

In thischapter,wewill presentsomeof theequationsthatmayproveto beusefulfor anyone

workingwithGaAssolarcells. Wewill discussthesolarcellequationandthosefactorsthatarethemost

importantin affectingsolarcell performance.Sincesolarcell performanceis a strongfunctionof

temperature,andthisoccursprimarilybecauseof itsaffectonopencircuitvoltage,Vow,wewill examine

thetermsin thesolarcellequationthatareresponsiblefor thisbehavior.Theshort-circuitcurrent,I_c,

isalsoaffectedbytemperature,andthisdependencewill becoveredalso. A greatdealof thisdiscussion

isbasedon thebooksby Sze[2.1]andHovel[2.2].

2.1 BasicSolarCell Equation

Figure2.1 showsanequivalentcircuit of a solarcell. It maybe thoughtof asa current

generatorin parallelwith lossmechanisms.Thelightgeneratorgeneratesa current,IL- In thismodel

therearetwodiodesinparallelwiththelightgenerator.Thefirst dioderepresentsabias-dependentdark

I sc I 1c S

Figure 2.1.

I
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Equivalent Circuit of an Illuminated Solar Cell

current, which is assumed to be due to the diffusion of minority carriers into the junction from its

neighboring n- and p-type layers. The second diode represents a model for losses due to carrier

generation and recombination through defect centers located in the space-charge region. A third loss
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mechanismin parallelwith the light generatoris a shuntresistance,P_. Finally, thereis a series

resistance,Rs,arisingfrom theresistivityof thesemiconductormaterialandfromtheohmiccontacts

attachedto thecell. Thesolarcellequationincorporatingtheselossmechanismsisexpressedasfollows:

I = It - 11 - 12 - I h or

kr )

(2-1)

Historically, this is the equation that has been used to describe typical solar cell behavior. In this book,

the Boltzmann constant, k, will be expressed in units of eV/K when it is clear that a voltage is to be

calculated (eg V/kT or Eg/kT); otherwise, k will be expressed in units of Joule/K. T is the absolute

temperature, and at T = 300 K, kT = 0.026 volts. Most of the solar cell's temperature dependence

arises from the I0_and I02terms and will be discussed in subsequent sections. The light-generated current,

Ic, is the current density JL multiplied by the cell's illuminated area (excluding front contact area), but

the I0_ and I02 terms require their respective current densities to be multiplied by the total cell area. In

most of today's large-area cells, where the cell areas are at least 4 cm 2 and the top contact is only about

5 % of the total area, this distinction is usually not important. Typical values for Iol of 4 x 10 -19 A/cm 2

and 9 x 10_I A/cm 2 for I02 have been reported by Gillanders et al. for LPE cells made by Spectrolab

[2.3]. The generation-recombination term is derived from a simplified theory that probably overestimates

the value for I2. Section 2.3 discusses an alternate derivation for I2.

Figure 2.2 shows the ideal dark and illuminated I-V curves for a typical solar cell, with the

illuminated curve occurring in the fourth quadrant, signifying that the cell is delivering power to a load.

In the laboratory, this load is often a power supply capable of acting as a current sink. The current

directions shown in Figure 2.1 represent the illuminated configuration, and we use the + sign in the V

+ IRs terms of eq. (2-1). If the cell is placed in the dark, the IL term disappears, the power supply must

supply current to the cell, and the current through 1_ changes direction, so the - sign is appropriate in

the V + IR s terms.
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Current-Voltage Curves of a Solar Cell under Illumination and in the Dark

It is often useful to combine the two diodes in the model expressed by eq. (2-1) into a single

diode, as follows:

I = IL - Io ex _ ) -1 Rsh

(2-2)

where we have used the term Io to be a combination of Io_ and I02 and have introduced the A factor or

"ideality factor." The A factor will vary between 1 and 2, depending on whether the diffusion current

or the generation-recombination current is dominant. In most solar cells, the P_ term is small (Rs < 0.1

ohm) and the R_h term is large (R_h > 1 x 104 ohms). Under these assumptions the term on the right goes

away, as does the term involving R, resulting in:
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1 = I t - LO[exp( V

which is the basic solar cell equation most often used in practice. Again assuming small P_ and large Rsh ,

eq. (2-2) may be solved for the open circuit voltage, V,,_ (where I = 0):

Voc = AkTln Io +1 = AkTln( It (2-3)(Io

where we have taken the light-generated current, It. to be equal to the short-circuit current, Is_.

2.2 Diffusion Current

From eq. (2-3) it is apparent that Vo, is directly proportional to temperature and to In IL.

Experimentally, we know that V,,_ decreases with temperature, so it must follow that the temperature

dependence must be dominated by the behavior of l0 (either via I_, or I02, or both). In this section we

will look at the temperature dependence of I0_. The first loss mechanism, I_ in eq. (2-1), represents a

dark current that arises from the diffusion of carriers into the depletion layer from the neighboring p- and

n-type layers. The term J_,_ in the equation for J_ is known as the reverse-saturation current density

(because at large negative biases, the current density Jl is equal to Jo0, and is given by:

Jol- qDpp_° + qD"n"° (2-4)
Lp L ,,

This equation is an expression of the ideal diode law, first derived by Shockley [2.4], in which q is the

electronic charge, D,, and Dv are carrier diffusion coefficients for electrons and holes, Ln and Lp are

minority-carrier diffusion lengths for electrons and holes, P,,0 is the equilibrium concentration of holes

in an n-type semiconductor, and _ is the equilibrium concentration of electrons in a p-type

semiconductor. Equation (2-4) may be rewritten as:

Jol 211 1'2+ ,: qni -_D_ "_pJ NA
(2-5)

by using Lp = v/-D_, r p and L,, = x/,, r ,,. rp and r,, are the minority-carrier lifetimes, and we use the

law of mass action, np = n,-, It) find equilibrium values of n_ = n,-/pr, j _ n,_/NA by assuming that the
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equilibriumconcentrationof holesis _ thenumberof acceptors,NA, in p-type material. Similarly,

P,0 = n_2/n_o = ni2/ND for n-type material, ni is the intrinsic-carrier concentration and N A and Nr, are the

acceptor and donor concentrations in p- and n-type material, respectively.

In practice, one of the terms in eqs. (2-4) and (2-5) can usually be neglected, i.e. in an abrupt

p+n junction, where P,o _> npo, the second term is much smaller than the first. The temperature

dependence of the reverse-saturation current may be examined with the help of eq. (2-5). Considering

only the first term, eq. (2-5) reduces to:

I Dp n2i (2-6)
P.o = q _

Jol = qDp Lp Tp N o

If we now follow Sze [2.1] and assume that Dp/'rp is proportional to T _ where 3' is a constant, then we

may rewrite (2-6) as:

Jol : T 3 exp T 2 = T 5-) exp -
(2-7)

In writing this equation, we have used:

n i : np : N cN vexp -_

with 2 ( 2 _ mdek T] 3n
Nc:[ _ J Mc

and
2 n m_ k T] 3/2Nv = 2 --_ )

yielding
n i : 4.9x 1015 _-_2odh) M)/2 T 3n exp

where

n = occupied number of carriers in the conduction band

p = hole density near the top of the valence band

N_ = effective densities of states in the conduction band

Nv = effective densities of states in the valence band

rn_¢ = density-of-state effective mass for electrons

(2-7a)
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n_ --(ml'm2*m3")I/3

m:, etc.aretheeffectivemassesalongtheprincipalaxesoftheellipsoidalenergysurface.For

GaAs thissurfaceissphericallysymmetrical,so rn_ = m"

rr_ = density-of-stateeffectivemass of thevalenceband = (n_38 + n-_3:z)_

m_hand mhh are thelight-and heavy-holemasses

mo= the free-electronmass

Mc = thenumber of equivalentminima intheconductionband

E_ = bandgap energy

The room-temperature intrinsic-carrier concentration for GaAs is ---2 x 106 cm -3 in comparison

to the value for Si of ---.1.5 x 1050cm -3, the difference arising primarily from the difference in bandgap

energies.

The bandgap energy itself is a function of temperature and is given by reference [2.5]:

tX T 2
(2-8)e,(73 : e,(o) (r +

The values of Eg(0), tx, and fl are given in Figure A.4 in the Appendix, along with a plot of Eg vs. T.

In the temperature dependence expressed by eq. (2-7), the exponential term dominates, so Jo_

will increase exponentially with temperature. When eq. (2-7) is substituted in eq. (2-3) for Vo¢, it is

apparent that the exponential term in eq. (2-7) not only determines the temperature dependence of V,_,

but the value for Vo_ itself is largely governed by this term. Since IL increases with temperature, it will

also have a slight effect on V_'s temperature dependence, as will be discussed in Section 2.4.

In the case of GaAs cells with a Ga___AlxAs window, Hovel and Woodall [2.6] have computed

a modification to eqs. (2-4) and (2-5), as follows:
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JOl -

2
qn_

sinh at + Sg L_____$gcosh d

Dg Lg Dg Lg

Lg SgL__._8 sinh d + cosh d

Dg Lg Lg

qn_NdLpDPcoth( (H_D). I"p-(d+ W))

where the first term is the current density from the p-GaAs region and the second term is the contribution

from the base. H is the width of the cell, D is the width of the window layer, and W is the depletion

width. The contribution from the Gal_xAl_As layer has been assumed to be negligible. The g subscripts

refer to the properties of the minority carriers in the p-GaAs region, which has a thickness d; for example

Sg is the recombination velocity at the GaAIAs - GaAs interface. The p subscripts refer to minority

carriers in the n-GaAs region. The second term ---1 in the usual configuration, where the n-GaAs portion

is at least twice the diffusion length, but the first term lowers J0, by roughly a factor of 10, when

reasonable values are substituted in. However, the correction terms do not appear to modify the

arguments given above about the temperature dependence of J01.

2.3 Generation-Recombination Current

Under certain conditions the generation-recombination current, expressed as Io2in eq. (2-I), may

be the dominant solar-cell loss mechanism. In this case, the temperature dependence of Vo¢ will be

somewhat different and will be developed in this section. Io2 is an internal current flow due to the

generation and recombination of carriers that occur in the depletion layer. When the thermal equilibrium

of a physical system is disturbed (i.e., pn ;_ n_2), the system tries to return itself to equilibrium and this

so-called generation-recombination current is a manifestation of that process. In 1957, Sah, Noyce, and

Shockley developed a theory describing this generation-recombination current [2.7]. They made the

simplifying assumptions that the mobilities, lifetimes, and doping levels on both sides of the junction were

equal, and that the carrier recombination was due to the presence of a single recombination center at an

energy level, E t, near the intrinsic Fermi level. According to this theory the recombination rate, U (in

units of cm3/sec) is [2.8]:
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2

U = p n - ni (2-9)

(n +nt) T: + (p +Pl) z_o

where rp0 and r,0 are the hole and electron lifetimes in heavily doped n- and p-type material, and n_ and

p_ are the free-carrier densities that would occur if the Fermi level coincided with the trap level:

E t - Ec )n I = Ncex p _7_

Pl = Nvexp kT }

(2-10)

The recombination current in the depletion region can be calculated by integrating the recombination rate

over the depletion width:

fx x2J,g = q U'dx (2-11)
1

Under forward bias, minority carriers are injected from each side toward the center of the depletion

width, and recombine at recombination centers if a significant concentration of opposite carriers also

exists there. Recombination is the dominant process with forward bias, and the generation of carriers

in the depletion region is negligible in comparison. The recombination rate reaches a maximum at the

center of the depletion width and is given by:

Ideal Case: Jr= qniW exp(-_T) _ (2-12)

1:o (Vbi- V) 2

kT

for the case of equal mobilities, lifetimes, and doping levels on both sides of the junction, and where W

is the depletion layer width, and r0 (assumed = r_ = r,,0) is the lifetime in the depletion region. Vbi is

the built-in voltage of the junction, and V is the forward-bias voltage.

Under reverse bias, the injection of carriers into the depletion region is greatly diminished and

the generation current becomes dominant:
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Ideal Case: q n i W (2-13)
Jg - 2 Xo

In the more general case of the Sah-Noyce-Shockley (S-N-S) theory, the lifetimes on the two

sides of the junction and the energy position of the recombination centers were allowed to vary, but the

doping levels were kept the same. Under these assumptions the recombination current density under

forward bias is given by [2.8]:

Recombination Current (S-N-S): Jr =
vb,-v 2

kT

(2-14)

where the forward-bias voltage V is assumed to be restricted to the range V > 4kT, but remains at least

10kT less than Vb_. Here an average lifetime in the depletion region is computed from the lifetimes on

either side of the junction: r0 = (Zp0 7",,0)t/2. Under reverse bias, the generation current is given by:

Generation Current (S-N-S): [ (. qn iW Et-Ei + 1 In-- (2-15)

J' = 2 _ cosh k T 2 "r.o

Choo [2.9] has extended the theory to include the case where the doping levels and lifetimes are

different on either side of the junction. Hovel has examined this extended theory [2.8] and concluded

that the modification to eqs. (2-14) and (2-15) for generation and recombination currents is sufficiently

small that they are accurate within the limitations of the theory. Eqs. (2-14) and (2-15) should therefore

be used for Iz in eq. (2-1), depending on whether forward or reverse bias is applied. Note that I2 is

proportional to r_, whereas I t is proportional to ni2. Therefore Iz is expected to vary with temperature

through the weaker exponential term, exp(-Eg/2kT), in contrast to the It dependence of exp(-Eg/kT). We

also note that the recombination-generation currents are dependent on the depletion-layer width, W.

As a matter of historical interest we note that J02 is often written as:
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Jo2 qW= -- o VthNtn_ (2-16)
2

In the derivation of this equation it was assumed that there was a single trap in the middle of the gap with

a density N,. The lifetime in the depletion region, r, is related to the trap density through:

1 1
zp - and "_. - (2-17)

opvthN, o. vth N,

where on and % are the electron- and hole-capture cross sections, W is the width of the depletion region,

and vth is the thermal carrier velocity = (3kT/m') ta with m" the carrier effective mass. According to

Hovel [2.8], eq. (2-16) overestimates the magnitude of I2 by a factor of between 5 and 10, and is

therefore a less accurate formulation than eq. (2-14). However in either formulation, 12 has a 1/r

dependence, therefore a linear dependence on the trap density, N,. Since one of the effects of ionizing

radiation is to increase the trap density, we would expect to see 12increase after solar cells have been

exposed to a radiation environment.

The depletion width W, in eqs. (2-12 to 2-15), is related to the doping density, the temperature,

and the bias voltage. For an abrupt junction, the depletion width can be computed by using the following

expression (commonly known as the C-V formula) giving capacitance per unit area vs. applied voltage:

1 _ W _(2(Vb_±V-2kT))lt2C es q esNn (2-18)

In this formulation ¢s is the semiconductor permittivity (permittivity of free space multiplied by the

dielectric constant [see Tables A-1 and A-2 in the Appendix]), V_i is a built-in voltage arising because

of the charge distribution that exists on either side of a p-n junction, V is the applied bias voltage (use

the + sign for reverse bias, the - sign for forward bias), and NB is the doping density on the side of the

junction that is most lightly doped (e.g. NB = N^ if 1_o _- N^). Sze [2.1] gives values for Vbi between

1.2 and 1.4 volts for GaAs, increasing as the doping density increases from -_ 10_4to 10 j7 cm 3. If the

depletion layer has been formed by a linear gradation in the doping density, the width depends on applied

voltage as:
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I _ W (12(Vbi± V)) 113 (2-19)C es q % a

where a is the impurity gradient in units of cm -4.

2.4 Temperature Dependence of I_

A qualitative argument for the slow variation of I_ with temperature can be given [2.10]. When

the junction is suitably located and the diffusion lengths are sufficiently great, the short-circuit current

can be approximated by:

(2-20) Isc= qgo(Lp +Ln)

where go is the generation rate of electron-hole pairs per unit volume. Sze [2.1] gives the temperature

dependence of mobility, /_, as T l° in n-type and T 21 for p-type GaAs. Using _L = (Dr) la, and the

Einstein relation D = (kT/q)/,, we find that the temperature dependence of L is at most T -la. Hall,

Shockley, and Read [2.11, 2.12] have shown that the temperature dependence of the hole lifetime in the

n-type region is given by the following equation, when it is assumed that recombination is determined

by the existence of a single-level recombination center:

(eT-ek]=Xpol+exp( k 7 J
(2-21)

where r# is the hole lifetime in material in which all the traps are full, Er is the energy level of the trap,

and EF is the Fermi energy level. The electron lifetime in p-type material is:

E r + EF - 2 Ei)*, = %0 + "_t,oexp _ },-

(2-22)

where Ei is the intrinsic energy level. The Fermi level for an n-type semiconductor is near the

conduction band and the exponential term in eq. (2-21) is very small. The Fermi level decreases with

increasing temperature until it reaches the center of the bandgap. As doping levels increase, the rate of

Fermi level decrease becomes smaller, so the exponential term remains small until high temperatures are

reached and EF becomes nearly equal to Er. In a p-type semiconductor, the Fermi level is near the

valence band, and it rises toward mid-bandgap with temperature in an analogous fashion. Thus the

2-11



lifetimeis expectedto be relativelyconstantin temperatureregions of practical solar cell applications,

and the diffusion-length dependence is primarily determined by the temperature dependence of the

mobility.

Most of the dependence of I_ on temperature occurs because the bandgap decreases with

increasing temperature (see Figure A.4 in the Appendix). As the bandgap decreases, photons of longer

wavelength will be able to create electron-hole pairs, and more of the solar energy spectrum may be

utilized, causing an increase in lsc.

2.5 Spectral Response for p/n Solar Cells

The absorption of electromagnetic radiation, referred to as the optical injection of carriers, is

fundamental to the operation of a solar cell. In the absorption process, a photon is absorbed and an

electron-hole pair is created if the photon has energy greater than the bandgap energy. Optical energy

at wavelength h is continuously absorbed as it penetrates into the material, so that a light beam with

incident intensity F0 has intensity F after penetration to a depth x:

F = F0exp[-a(Z)x ] (2-23)

where o_(h) is the optical absorption in cm -_, and F0 is the number of incident photons per cm 2 per sec

per unit bandwidth. At a depth x, the generation rate is dF/dx, or:

GO.) = _(Jt) Fo [1-R(_.) l exp(-_(_.)x) (2-24)

where G(X) is the carrier generation rate at depth x, and R(X) is the reflection loss from the front surface.

The generation rate is equal to the loss rate, consisting of loss due to carrier recombination and due to

current flow. Considering electrons generated in unit volume of p-type material under low injection

conditions (light-produced carrier density ,_ nvo), which almost always holds for solar cell operating

conditions, the recombination rate is proportional to the number of excess electrons and inversely

proportional to the lifetime of the carriers. The current flow arises because of carrier diffusion, which

is a random thermal movement of particles under the influence of a concentration gradient. There will

be a particle flux in a direction opposite to and proportional to the concentration gradient, with the

diffusion constant D, being the proportionality constant, e.g. for electron current density:
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d(np - npo) in p-type cells (2-25)
Jn = q Dn dx

and for holes:

d(p,,-P,o) in n-type cells (2-26)
Jp = -q Dp d.x

where we have used the terminology (rip - np0) to be the excess carrier concentration, i.e. that induced by

the light. We assume here that there are no electric fields outside of the depletion layer that might be

induced by concentration gradients, etc. If there were, the current density equations would have an

additional term, e.g. for electrons = q_,rtp_.. The net particle loss out of the unit volume will be -dJn/dx.

Bringing this all together for electrons in p-type semiconductors and writing J for the current densities

we have:

np- npo 1 dJ
G().) ......

x q dx
p

(2-27)

and for holes in n-type material:

G(X) = Pn - P.O + 1 dip (2-28)

_p
q dx

In an n/p solar cell with uniform doping on each side of an abrupt-step junction, eqs. (2-24),

(2-26), and (2-28) may be combined as a one-dimensional description of the top n-type layer:

Dp d2(pn -Pno) (2-29)+ t_Fo(1 -R)exp(-_x) (P,,-P,,o) -0
dx 2 xp

The general solution to this equation is:

/ 0_/7o(1 - R) zp exp(-ax)

(g2Lp2 - 1)

(2-30)
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WeimposetwoboundaryconditionsforevaluatingtheconstantsA andB. Whencarriersreachthefront
surfacetheywill recombine,andthis isexpressedas:

d (pn - Pno)
Dp dx = Sp(Pn -P_o) at x :0 (2-31)

where Sp is a measure of the enthusiasm with which the carriers recombine at the surface. Sp, called the

surface recombination velocity, has units of cm/sec. At the junction, the minority carriers are swept up

by the strong electric field in the depletion region, so the second boundary condition is stated as:

Pn - Pno = 0 at x = xy (2-32)

where xj is the junction width. Using these boundary conditions, the excess hole density is found to be:

ct F0(1 - R) l:p l(Pn-Pno) = ((x2L2_l)
X

[-_-p + _ Lp sinh Sp Lp sinh+exp(-x_L+acoshXJ)[-_pxj shah-- +Lpcosh

L Lp

(2-33)

Differentiating eq. (2-33) with respect to x and using eq. (2-26), the hole current density at the junction

edge is found to be:

=IqFo(1-R)aLp]x

[S_L_ ) (S_L__h _Op +_Lp - oxp(-_x;)-b7 L

SpLp sinh xj + cosh xj

o, L, L

-_ _exp(-axj)

(2-34)

To find the electron current collected from the base, eqs. (2-24), (2-25), and (2-27) are used

with the boundary conditions:
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n - npo = 0 atx = xj + W (2-35)

d(np - npo) _ -S. (n_ - npo) at x = H (2-36)
D.. dx

where W is the width of the depletion region and H is the total width of the cell. Eq. (2-35) is analogous

to eq. (2-32) and states that the excess electron density vanishes at the edge of the depletion region, and

eq. (2-36) states that recombination takes place at the rear surface of the cell. Usually there is an ohmic

contact there and the recombination velocity is considered to be infinite.

Using these boundary conditions, the electron distribution in a uniformly doped p-type base is

given by:

e Fo(1 -R) x_(n - nt,o) = ( e2L_ - 1) exp[-_ (xj+ W)] ]
X

COS ' Ln -
exp[-e (x -xj- W)] -

S. L, osh - exp(- ctH') + shah -_,
Dn x

o.

: x - xi - W)sinh/ --

(2-37)

where H' = H -(xj + W) is the total base thickness.

The electron current at the junction edge is:
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J.
qF0(1 -R) aL,, exp[-a (xj + W)]](,:,"/.,_-1)

L,,

,,"- ,,"+ ,.,, xp ..)]
D n _ L Ln "

S.L si.h I-/"+coshI-/"
D L L

(2-38)

Some photocurrent is generated within the depletion region. Assuming that the field in this region

is high enough so that all the photogenerated carriers produced in this region are accelerated out and

therefore collected, the photocurrent generated in this region is given by:

Jdr = qF0(1 - R) exp(-ax)) [1 - exp(-_x W)] (2-39)

The total short-circuit photocurrent at a given wavelength is given by the sum of eqs. (2-34), (2-38), and

(2-39), and the spectral response is equal to this sum divided by qF0(1 - R).

2.6 Spectral Response for p/n Solar Cells with a Gal_xAlxAs Window

The above equations are appropriate for either Si or GaAs p/n solar cells. The equations may

be cast into the appropriate form for n/p cells by simply interchanging the p's and n's in the above

equations. However, they do not apply to GaAs cells with a Gal_xAlxAs window. Hovel and Woodall

[2-6] have worked out the equations pertaining to p/n GaAs ceils with a window, which include collection

from the Gav_AlxAs window. Their formulation is based on a solar cell with the energy band diagram

shown in Figure 2.3.

is-

The minority-carrier continuity equation for the photogenerated carriers in the Ga__xAlxAs layer

d2(np -
Oa npo) _ F o exp ( - 13x) (rip - npo)

dx 2 T a

(2-40)

In this and the following formulation, the a subscripts will pertain to the Ga__xAlxAs layer, and D will

denote its thickness. Sa is the surface recombination velocity, 7-a is the minority-carrier lifetime, D a is

the diffusion coefficient, La is the diffusion length, and/3 is the optical absorption coefficient.
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Figure2.3.
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Energy Band Diagram in Equilibrium of a p-Gal.xA1xAs/p-GaAs/n-GaAs Device

(© 1973 IEEE, used with permission)

The current collected from the Gaj.xAlxAs layer at the p-GaAs interface is given by:

qF°[3L_ ]
JD = X

( 1_2L_- 1)

( cosh---O] sinhO[3La +S a- 1 - exp(- [3D) - exp(-13D) --
L a _ L ) La

S %sinhD+coshD
La La La

- [3Laexp(- 13D) /

(2-41)

The boundary condition at the surface is:

d(np - npo) _ S_(np
Da dx

and at the interface the boundary condition is:

np - nt,o = 0

- npo) at x = 0
(2-42)

at x = D- (2-43)

The collection from the p-layer is dependent on the photons which pass through the Ga_.xAIxAs

layer with energy greater than the GaAs bandgap. The continuity equation for electrons produced in the

p-GaAs layer is:

2-17



d 2

Ds (np-np°) + aFoexp(-f_D) exp[-a(x-O)] (np-nrO - 0 (2-44)
dx 2

g

Here, the g subscripts are used for the p-GaAs layer, and d is used to denote its thickness. S8 is the

surface recombination velocity, zg is the minority-carrier lifetime, Ds is the diffusion coefficient, Lg is

the diffusion length, and _ is the optical absorption coefficient. The boundary condition at the interface

on the GaAs side is:

d ( np - npo) JD
D g - (2-45)

dx = Sg(np neo ) q

i.e. the current in the p-GaAs at the interface is equal to the component due to recombination at the

interface, minus the current injected from the alloy layer. The difference in the two boundary conditions

(2-45) and (2-43) is the result of the large (0.7 eV) energy barrier, AEo at the interface. The boundary

condition at the junction edge is:

np-npo = 0 at x = (D +d) (2-46)

The photocurrent at the junction edge arising from both the Gat.xAlxAs and GaAs layers is:

= [qFoexp(-_D)aLg 1J(o+d)[ (_2L_ _ 1) x

I a L + Sg zs ( 1 - exp (- a d) cash d _ exp (- n d) sinh d_g d
Sg-- sinh d ÷ cosh--

Lg L s Ls

+
(2-47)

Jo
d

S 8 _ sinh -- + cosh d
Lg Ls Lg

The last term in (2-47) describes how the current collected from the Gat_xA1,As layer is attenuated by the

surface recombination term Sg, and the minority-carrier lifetime in the p-layer, _-g.
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Thephotocurrentcollectedfromthedepletionregion,againassumingall photogeneratedcarriers

producedtherearecollected,is:

Jw = qFoexp(-f_D) (1 - exp(-a W) exp(-ad) (2-48)

The photocurrent collected from the base is:

J(D+d +W)

qFo(1-R) aL p

(_2L2- 1) exp[- 13D] exp[- a (d + 14,')]]x

O_Lp -

SpLp(c°shH'-Dp[Lp exp(-aSpLpsinhH'H'))+ sinh+coshH'H'+aLpLp exp (- a H') 1

Dp Lp Lp

(2-49)

which reduces to the following equation in the limit: H' > >

J(D+d+W)
qFoexp(-f_ D ) aLp exp-a(d+W)

(aLp + 1)

(2-50)

The total short-circuit current density is given by the sum of eqs. (2-47), (2-48), and (2-49). The

external spectral response, defined to be the short-circuit current density collected (mA/cm2), divided by

the light intensity (mW/cm _) incident on the external surface of the cell, is computed by:

JW+d) (_') + Jw_d÷V_ (_') + Jw(_') (2-51)
sR(z) :

Fo(_.)
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Chapter3

InstrumentationTechniquesfor MeasuringGaAsSolarCells

In thissection,thecommonlyusedinstrumentationtechniquesfor assessingradiationeffectsin

solarcellswill bediscussed,withemphasisonthose special procedures peculiar to the measurement of

GaAs solar cells. The most commonly used measurement in the analysis of radiation effects in solar cells

is the current-voltage characteristic under illumination. The major concern is the interaction of photons

in the semiconductor in order to produce hole-electron pairs. Since this interaction is strongly dependent

on optical wavelength, it is extremely critical that the light sources used for illumination match the solar

(or other) spectrum in which the cell is designed to be used.

3.1 Light Sources and Solar Simulators

The spectral irradiance of the sun at a distance of 1 astronomical unit (AU) is of primary

importance in solar cell analysis for solar cell applications in outer space. This irradiance, just outside

the Earth's atmosphere, is known as air mass zero (AM0), because it penetrates zero air mass at the point

of measurement. The astronomical unit is defined to be the average Earth-Sun distance of

1.49597890 x 108 km. The values of solar spectral irradiance proposed by Johnson [3.1] were used

extensively until about 1970. Johnson's results indicated that the solar constant (also referred to as the

total irradiance, or the luminosity) was 139.5 mW/cm 2, and also that the solar spectrum closely

approximated that of a 6000 K black body. Thekaekara et al. reviewed several high-altitude spectral

measurements of the Sun in 1971 [3.2] and published a solar irradiance spectrum, which became

commonly known as the Thekaekara spectrum, or more formally as the NASA SP 8005 spectrum.

Integration of the Thekaekara spectrum resulted in a total irradiance of 135.3 -t- 2.1 mW/cm 2. Labs and

Neckel reported values for the solar irradiance in 1968 [3.3], with revisions in 1981 [3.4] and 1984 [3.5].

They concluded that the solar constant lies between 136.8 and 137.7 mW/cm 2. In 1985, R.C. Willson

published a composite solar spectral irradiance at 1 AU [3.6], which was based on the best experimental

observations over the world at the time. This composite was based on the results of Donnelly and Pope

[3.7] for wavelengths between 0.2 and 0.3 _m; Arvesen, Griffin, and Pearson [3.8] for wavelengths

between 0.3 and 0.4 tzm and between 1.3 and 2.5/_m; and Labs and Neckel [3.3] for wavelengths

between 0.4 and 1.3 _m and between 2.5 and 3.0 t_m. Willson's composite spectrum is tabulated in

Table 3-1. The total irradiance used for calculating the numbers in the column headed "percentage of

total" was 136.8 mW/cm 2. In reference [3.6], Willson also tabulated the values measured for the total

3-1



Table 3-1. Solar Spectral Irradiance [Ref. 3.6] (used with permission of the author)

Lambda

(Microns)

0.205

0.215;

Flux

mW

cm"2-micron

1.10

4.83

Integral
0 to Lambda

(mW/cm"2

0.0055

0.0352

Percent

of

Total

00.004

00.026

Lambda

(Microns)

0.705

0.715

Flux
mW

cm"2-micron

142.0

138.0

Integral
0 to Lambda

(mW/cm" 2

64.8260

66.2260

Percent
of

Total

47.422

48.446
0.225 6.65 0.0926 00.068 0.725 136.0 67.5960 49.448

0.235 6.73i 0.1595 00.117 0.735 132.0 68.9360 50.429
0.245 6.011 0.2232 00.163 0.745 128.0 70.2360 51.380

0.255 9.98 0.3031 00.222 0.755 126.0 71.5060 52.309
0.265 29.20 0.4990 00.365 0,765 124.0 72.7560 53.223
0.275 21.20 0.7510 00.549 0.775 121.0 73.9810 54.119

0.285 18.30 0.9485 00.694 0.785 118.0 75,1760 54.993
0.295 58.50 1.3325 00.975 0.795 116.0 76.3460 55.849

0.305 53.70 1.8935 01.385 0.8051 114.0 77.4960 56.691

0.315 72.90 2.5265 01.848 0.815 110.0 78.6160 57.510

0.325 87.80 3.3300 02.436 0.825 108.0 79.7060
03.130102.000.335

0.345

58.307
4.2790

5.2875;

6,2960 i0.355
99.70

102.0

03.868

04.606

0.835 105.0 80.7710 59.086

0.845 101.0 81.8010 59.840

0.855 98.6 82.7990 60.570

0.365 115.0 7.3810 05.399 0.865 96.8 83.7760 61.285

0.375 113.0 8.5210 06.233 0.875 94.7 84.7335 61.985
0.385 106.0 9.6160 07.0341 0.885 92.4 85.6690 62.669

0.395 121.0 10.7510 07.865 0.895 92.0 86.5910 63.344
12.1710163.0 0.905

0.915

0.405

0.415

0.425

170.0
89,8

87.4
85.71166.0

08.903 87.5000

88.386010.12113.8360

15.5160

64.009

64.657
11.350 0.925 89.2515 65.290;

0.435 167.0 17,1810 12.568 0.935 84.1 90.1005 65.911

0.445; 193.0 18.9810 13.885 0.945 82.3 90.9325 66.520

0.455 201.0 20.9510 15.326 0.955 80.6 91.7470 67.116

0.465 199.0 22.9510 16.789 0.965 78.9 92.5445 67.699

0.475 199.0 24.9410 18.245 0.975 77.3 93.3255 68.270
0.485 189.0 26.8810 19.664 0.985 75.6 94.0900 68.830

0.495 196.0 28.8060 21.072 0.995 73.9 94.8375 69.376

0.505 190.0 30.7360 22.484 1.05
183.0 32.6010

34.4460
1.15

186.0

0,515

0.525

0.535

0.545

1.25

1.35

1.45

36.3360

0.555

66.1

54.0

44.7

38.4

32.3

23.849

192.0

98.6875

104.6925

109.6275

0.565

113.7825

117.3175

25.198
26.581

27.963186.0 38.2260

0.575

0.585 181.0
0.595 176.0

72.193

76.586

80.196

83.235

85.821
184.0 40.0760 29.317 1.55 27.5 120.3075 88.008

183.0 41.9110 30.659 1.65 23.7 122.8675i 89.881

183.0 43.7410 31.998 1.75 19.2 125.0125 91.450

1.85

0.605

0.615

0.625
0.635

174.0

45.5610

47.3460

33.329

34.635

35.915

15.2

13.1

10.66

8.44

7.22

6.04
5.30

37.177

0.645

171,0

38.410

39.617

40.802

49.0960

50.8210

52.5060

126.7325

128.1475
92.708
93.744

129.3355 94.613

130.2905 95.311

131.0735 95.884
54.1560
55.7760

166.0
164.0

160.0

1.95

2.05

2.15

2.25
2.35

2.45
131.7365

132.3035

96.369

96.784
0.655 152.0 57.3360 41.943 2.55 4.83 132.8100 97.154

0.665 156.0 58.8760 43.069 2.65 4.19 133.2610 97.484

0.675 152.0 60.4160 44.196_ 2.75 3.65 133.6530 97.771

2.850.685

0.695

149.0 61.9210

63.3910145.0

45.297 3.20

2.8146.372 2.95

133.9955

134.2960
98.022

98.241
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solar irradiance on several flights involving balloons, rockets, and spacecraft. The average value reported

for these measurements lies between 136.7 and 137.0 mW/cm 2. In 1985, Wehrli of the World Radiation

Center also published a very detailed composite AM0 spectrum [3.9]. Wehrli's spectrum covers the

wavelength range between 0.1995/_m and 10.075 #m, in small-wavelength steps (920 steps). This

spectrum is also based on the Neckel and Labs observations in the wavelength region between 330 and

869 nm, and appears to be in substantial agreement with Willson's spectrum. The Wehrli spectrum

integrates to a total solar irradiance of 136.7 mW/cm 2.

A plot showing both the Thekaekara spectrum and Willson's spectrum is presented in Figure

3.1. GaAs solar cells respond to wavelengths between 0.3 and 0.9/zm, and Si solar cells respond to

wavelengths between 0.3 and 1.2 #m, so it is apparent that these irradiance spectra deviate markedly in

the wavelength regions that are significant for solar cell applications.

300 I
I _ THEKAEKARA

52o0I-- ,,.

100 1 ,,

0t,,"
200 400 600 800 1000 1200

WAVELENGTH,nm

Figure 3.1. Comparison of the NASA SP 8005 and the Willson Composite AM0 Solar Spectra

3-3



There is evidence that the solar intensity varies over the course of a solar cycle. Willson and

Hudson reported the results of the total solar irradiance over a complete solar cycle [3.10] as measured

by their Active Cavity Radiometer lrradiance Monitor (ACRIM I), which flew on the Solar Maximum

Mission satellite during 1980 and 1989. They found that the total irradiance varied between

approximately 136.7 mW/cm 2 at the time of minimum sunspot activity and 136.9 mW/cm 2 at solar

maximum. A more recent publication [3.11] which includes data from the ACRIM II radiometer, which

was launched aboard the Upper Atmosphere Research Satellite (UARS) in 1991, supports the adoption

of a value of 136.8 mW/cm 2 for the solar constant.
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Normalized Spectral Irradiance of Spectrolab X25 Mark II Solar Simulator

The most common solar simulation technique in use today is the use of xenon arc lamps with

filters to remove undesired line spectra in the near-infrared region. Such simulators produce a spectrum

that has a very good overall match to the solar spectrum, but they have some intense line spectra in the

wavelength region above 750 #m. The spectral irradiance of two popular simulators, the Spectrolab X-25

and the Spectrolab XT10 simulators, are shown in Figures 3.2 and 3.3, along with plots of the AM0

spectrum. In these and the following figures showing normalized irradiances, the normalization was
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Figure 3.3. Normalized Spectral Irradiance of Spectrolab XT-10 Solar Simulator

performed by adjusting the entire measured simulator irradiance by a constant multiplicative factor so that

the power in the wavelength region between 0.3/_m and 1.090/_m was equal to the power of the AM0

spectrum in this same wavelength region. A simulation technique that is receiving a great deal of interest

and developmental effort is the use of a dual light source consisting of a filtered xenon arc lamp, as in

the simulators described above, with an additional tungsten lamp. Appropriate bandpass filters are

interposed in each light beam so that the xenon lamp produces the short wavelengths and the tungsten

lamp generates the long wavelengths, thereby eliminating most of the line spectra. Dual-light-source

simulators are expected to become more popular as the development of muitijunction heterostructure cells

reaches maturity. In a dual-junction cell for example, both the upper and the lower cell must be

illuminated by a spectrum that very closely matches its particular region of response, otherwise one or

the other of the cells will act as a load for the other cell and distort the measurement. The spectral

irradiance of a combination xenon-tungsten source simulator used by the Applied Solar Energy

Corporation is shown in Figure 3.4.
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Normalized Spectral Irradiance of ASEC Tungsten/Xenon Solar Simulator

Tungsten lamps have been used as light sources, both with and without some type of filtering,

but the spectral output of such sources is a very poor match to the solar spectrum. The peak output of

tungsten sources occurs in the red or near-infrared region, depending on the temperature of the tungsten

filament. Since this is the wavelength region of the solar cell response that is most changed by radiation,

the use of such sources is likely to show a much more severe cell degradation than would be shown in

the real environment. The spectral irradiance of a General Electric Model ELH lamp, which is a

tungsten-halogen projector bulb/reflector assembly operating at a high temperature, is shown in Figure

3.5. This lamp incorporates a dichroic reflector which lets most of the longer-wavelength light pass out

the rear surface of the bulb. It is clear that use of such a lamp as a simulator for examining solar cell

parameters could result in large measurement errors.

An important development in the field of solar simulation is the use of pulsed xenon arc lamps

for solar cell and solar array testing [3.12, 3.13, 3.14]. When xenon arc lamps are operated in a pulsed

mode at high current densities, the high intensity peaks in the 0.8 to 0.9 #m region are greatly attenuated,

as shown in the spectral irradiance curves shown in Figure 3.6. The pulsed-xenon simulators produce
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Normalized Spectral Irradiance of ELH Tungsten-Halogen Lamp

an overabundance of energy in the ultraviolet (UV) region, so a much better simulation of the AM0

spectrum is obtained by using a UV absorption filter. Figure 3.6 shows the output of a pulsed simulator

operated without a filter in comparison with the spectrum produced using a 1-mm-thick Schott" GG-395

filter [3.15]. This particular filter attenuates UV wavelengths below 0.395/_m, and the result is an

irradiance spectrum that closely matches the AM0 spectrum at wavelengths greater than 0.36/zm. The

onset of the spectral response for both Si and GaAs solar cells occurs at --0.36 _tm, so this filter is quite

suitable for solar cell measurements. Other filters are available from Schott with cutons at lower

wavelengths. These types of simulators are commonly known as Large Area Pulsed Solar Simulators

(LAPSS) because they have the capability of uniformly illuminating a large area (up to 5 m in diameter)

at source-to-target distances of -- 11 meters, with the full AM0 intensity. These systems produce a pulse

of light that lasts for -- 2 milliseconds. Solar cell or panel data can be accumulated during a time period

of -- 1 millisecond in the central portion of the pulse. The measurement therefore requires the use of an

electronic load which can sweep through the entire load voltage range during this time, together with a

fast data collection system that allows the simultaneous reading of the cell voltage, cell current, and

standard cell output (usually current) during the load sweep. In addition to the advantage of a close
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Normalized Spectral Irradiance of the JPL LAPSS with and without Schott UV
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spectral match to the Sun, these systems have the very desirable attribute of not heating up the test

specimen during measurement. This is a tremendous advantage for the measurement of solar panels

which have a very difficult temperature control problem under continuous AM0 illumination. A

disadvantage of the LAPSS simulator systems arises during the testing of Si solar cells made with back

surface fields (BSF). These cells have a very high capacitance that varies with bias voltage. This

capacitance is high enough so that it does not allow the cell output to follow the quickly changing load

voltage. The accurate measurement of BSF cells and panels requires breaking the load sweep into several

smaller load steps with a separate light pulse for each load range [3.16]. This has not been a problem

with GaAs solar cells because of the rapid decay of excess carriers.

The setting of solar simulator intensities to match the AM0 intensity is an extremely important

aspect of solar cell measurement. This is usually accomplished by the use of a solar cell which has been

calibrated to be used as an intensity standard. The short circuit current, I_, of a solar cell is directly

proportional to the light intensity falling on the cell, so these intensity standards are usually loaded to
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operatein theshort-circuitmodewith fixedresistors,theresistancevaluedependingonthecelltypeand

size. Primarystandardsfor this purposehavebeencalibratedaboarda varietyof flight vehicles,

includingthe Shuttle,high-flyingaircraft [3.17, 3.18,3.19], rockets[3.20, 3.21], andhigh-altitude

balloons.Secondarystandardsareproducedbysimultaneouslymeasuringaprimarystandardalongwith

thesecondarystandardin a solarsimulatorbeam. For thiscalibrationprocedureto beaccurate,the

secondarystandardmusthavea spectralresponsethatexactlymatchesthatof theprimarystandard.

Anothermethodof producingintensitystandardsrequirestheveryaccuratemeasurementof thecell's

spectralresponseandtheveryaccuratemeasurementof theirradianceof anilluminationsource.These

data,alongwitha measurementof theshortcircuitcurrentof thecell in theilluminationsourcecanbe

usedto calculatetheoutputof thecell in AM0 asfollows:

IL (AMO) = IL(simulator) •
f SR(_.) E(_.)spa_ ed;_ (3-1)

f SR(3.) E(3.)s_,,,. d_.

where SR is the measured spectral response of the cell under calibration. To produce calibration

standards of the accuracy required by most users today requires very difficult, accurate and painstaking

measurements of the quantities noted above. The primary standard cells commonly in use are generated

by a NASA/JPL program wherein solar cells are flown on high-altitude balloons. The cells are mounted

on a solar tracker, which is in turn mounted on top of the balloon, and the calibration data is telemetered

to a ground station. Measurements are taken while the balloon is at or above 120,000 ft. (36,600 m) and

within 1 hour of solar noon [3.22]. In 1984, a group of calibration standard cells were flown on the

Shuttle, then recovered and flown on a balloon. The two sets of measurements agreed to within 1% and

were considered to be a validation of the accuracy of the balloon flight calibration method [3.23]. When

the effects of atmospheric absorption are properly accounted for, the results of the calibrations performed

aboard the NASA Lewis high-altitude aircraft are in substantial agreement with the balloon flight data

[3.241.

3.2 Current-Voltage Characteristics

The measurement of current-voltage (I-V) characteristics is the primary means of evaluating a

solar cell. The evaluation is made by applying a load resistance across the illuminated cell, varying the

load resistance from zero to infinity, and measuring the resultant current into the load and the voltage

across the cell. The measurement is simple in principle, but attention to several practical details is

necessary to insure accurate results. The first requirement is a suitable fixture to hold the cell during the
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measurement.Thefixturemustincorporateelectricalcontactprobeswhichwill make proper contact to

the front cell contacts, and especially in the case of GaAs cells, not induce any damage to the underlying

shallow junction. Electrical and thermal contact with the rear cell surface is usually assured by applying

a vacuum to the cell through small holes suitably located in the fixture. That part of the fixture in contact

with the rear surface of the solar cell is made of an electrically (and thermally) conducting metal block

such as copper or brass.

The fixture must also provide some means of holding the cell at a fixed, controllable

temperature. The vacuum hold-down feature is normally sufficient to clamp the cell thermally to the

fixture. Control of the fixture temperature may be done by flowing water through passages in the fixture

(it's best if the water passages do not intersect the vacuum passages). The water source in this case

would be a temperature-controlled water bath. An alternate temperature-control method is the use of a

thermoelectric (TE) module installed between the fixture and its mounting surface. The TE module is

powered by a small power supply. The TE module has the advantage that it can either heat or cool the

fixture by reversing the polarity of the supply voltage, which is easily accomplished by using an

inexpensive temperature controller. The TE system can have a lower heat capacity than the water-cooling

system so that temperature changes may be made quickly. By carefully monitoring both the cell

temperature and the fixture temperature with the system under AM0 illumination, it has been found that

cell temperatures usually run between -_0.6°C and I°C warmer than the fixture, due to the thermal

impedance of the solar cell. Two standard cell measurement temperatures have been adopted. One,

28°C, was probably originally selected because it also happens to be 300 K, a nice round number. Many

laboratories use a measurement temperature of 25°C. This temperature is favored by solar cell

manufacturers because cell output is higher. Most measurements quoted in this publication were made

at 28°C.

To insure that the voltages measured are true voltages at the cell itself, a dual set of probes is

used for the top-surface probes. One set, which may be one or more probes depending on cell size and

configuration, is designed to carry cell current to the load. The external circuit connected to the current

probes may incorporate insertion elements such as low-resistance, precision resistors for measuring cell

current. The other set of probes carries no current and is used to measure cell voltage. Since connecting

the cell to a variable resistive load cannot yield a true short-circuit current reading, a power supply is

often used as a load. Variation of the power supply voltage then changes cell load. The power supply
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mustbecapableof sinkingcurrentat zerovoltage.Thepowersupplymaybeeitherabipolarsupplyor

twosuppliesconnectedin seriesoppositionto achieveshort-circuitcurrentmeasurement.In therecent

past,the cell voltageandcurrentprobeswereconnectedto anX-Y recorder,andthepowersupply

voltagewaschangedmanually. TheresultingI-V curveproducedon therecorderwasthenusedto

establishthe importantelectricalparameters.It is muchmorecommontodayto usea computerto

performthesechores.Thecomputerisusedto varythepowersupplythrougha suitablevoltagerange,
measurebothcurrentandvoltageat selectedloadpoints,plotthedata,andextractthedesiredelectrical

parametersfrom the digital data. Sincethecell currentwhenloadednearshort-circuitconditionis

proportionalto theilluminationintensity,thecurrentoutputwill followtheshort-termfluctuationsof the

arc-lamp-basedsimulators,andthecurrentplot is likely to beveryunevenin thisregion. It maybe

necessaryto takean averageof asmanyas30 currentreadingsat eachloadpoint in this region.

Maximumpower,P,_x,issimplyfoundbycomputingthepowerproducedateachloadpointandselecting

the maximumproduct. The seriesresistanceof a solar cell may also be determinedfrom I-V

characteristicsattwo or moredifferentilluminationlevels[3.25, 3.26].

3.3 Special Considerations for GaAs Solar Cells

There are several special considerations that must be given to the measurement of GaAs cell I-V

characteristics. The probes on the fixture should be designed to apply a pressure of no more than

180 pounds/in 2, otherwise the shallow junctions may be damaged [3.27]. One way of successfully

applying the requisite pressure is to build the probes out of phosphor bronze, so that the contact area is

a known, rectangular dimension. The use of a weight on a lever arm may then be used to apply the

required force. If the phosphor bronze contact assembly is made to be removable, then it is easy to

replace the probes with a geometry that will match any practical front-contact configuration.

When measuring the I-V characteristic of GaAs cells with a power supply acting as the load,

it is extremely important to be sure that at the time the probes make or break contact with the cell there

is zero voltage on the probes. Successful systems have assured this condition by programming the power

supply to deliver zero voltage or by shorting out the cell probes with a relay contact before cell insertion

or removal. The reason for these cautionary measures is that GaAs cells are easily damaged by transients

from some electronic loads. It is characteristic of voltage- or current-controlled power supplies to attempt

to maintain a programmed output at its terminals. If such power supplies are presenting a nonzero

voltage to the fixture when contact with the cell is made or broken, the power supply may force a very
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highvoltageto thecontactwithpossiblydisastrousresults. In additionto usingthemethodsdescribed

aboveto programzerovoltage,a bypassdiodemaybeconnectedin parallelwith theGaAscell under

test,sothattransientvoltagesof thewrongpolaritywill beshuntedbythediode.

SinceGaAscellsaresensitiveto reversebiasconditions,screeningmeasurementsof cells

intendedfor usein radiationtestingor ingeneralapplicationsmaybespecified.Solarcellmanufacturers

will generallyscreentheircellsbeforedelivery. Onescreeningprocedureis to testeachcell atreverse

currentsof _ 30%of Ix. Cellswhichwill beusedonsolarpanelsthatmightbeshadedduringspacecraft

operationmaybesubjectedto reversecurrentsashighasIx. Therefore,asecondscreeningof suchcells

usingreversecurrentsof = 110%to 167%timesIx is a reasonabletest. It hasbeenshownthatsuch

screeningmeasurementsneednotbeperformedat low temperatures,butscreeningtestsperformedat

temperaturessomewhataboveroomtemperaturemaybenecessaryto flagcellslikelyto fail underreverse

bias [3.28]. It is importantto rampup the reversecurrentssomewhatgraduallyin performingthe

screeningtests,ratherthanimmediatelyapplyingthefull outputpowerof a current-regulatedsupplyto

thesecells. Experiencehasshownthat(1)GaAscellsmadeonGesubstrateshavebeenlesssusceptible

toreversecurrentbreakdownthanGaAscellsmadeonGaAssubstrates,and(2)cellswhichhavepassed

reversebiasscreeningtestscanwithstandrepeatedexposureto reversebias,therebyreducingthechance
of operationaldegradation[3.29].

Themeasurementof GaAssolarcellsasa functionof temperature,usingconventionalsolar

simulators,hassomespecialproblems.Figure3.7showsthespectralresponseof a GaAs/Gesolarcell

measuredat a temperatureof 28°C, superimposedon thespectralirradianceoutputcurveof anX-25

solarsimulator. Thedashedlinesrepresenttheestimatedspectralresponseof thecellat temperatures

of + 100°Cand-100°C. This increasein responsetowardlongerwavelengthsathighertemperatureis

dueto the decreaseof bandgapwith temperature(seeFigureA.4 in the Appendix). At the higher

temperature,the spectralresponsebecomessensitiveto oneof the largeoutputlines in the xenon

spectrumandcausesa largerincreasein Ix with temperaturethanwouldoccurin naturalsunlight. As

thecell temperatureis lowered,thespectralresponsemovestowarda valley in thexenonspectrum,

resultingin a faster-than-normaldecreasein I_:. Theneteffectis thattheIx temperaturecoefficients

measuredin this temperaturerangewitha xenon-arc-basedsolarsimulatorarelikely to besomewhat
high.
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Figure 3.7. Comparison of the Irradiance of an X-25 Solar Simulator with the Spectral

Response of a GaAs Solar Cell

3.4 Spectral Response Measurements

Spectral response measurements are very useful for evaluating changes in solar cells due to

radiation effects. The spectral response (amps/watt) is a measure of the short-circuit current density

generated by the cell under a range of monochromatic illuminations at known power densities. The

spectral response is often reported in terms of relative units when absolute values of the incident light

intensities are not accurately known. Various schemes have been used to measure the spectral response

of solar cells. High-resolution-monochromators are used when extreme accuracy is desired. Narrow

bandpass filters can be used as a source of nearly monochromatic light also. When a monochromator is

used, there are two methods to normalize the solar cell output to the light intensity. Tungsten-halogen

light sources operating at high intensity (e.g. projector bulbs) are usually used in monochromators, and

the entrance slit width can be varied to control the optical power density illuminating the cell under test.

In some systems, the entrance slit width can be automatically controlled to maintain a constant optical

power density on the solar cell. An alternate approach is to maintain a constant slit width and allow the
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opticalpowerdensityonthecelltovarywithwavelength.Thisvariationisthenfactoredintothespectral

responsecalculation. Eitherprismor gratingmonochromatorsmaybe usedfor measuringspectral

response.A gratingmonochromatorrequirestheinsertionof filters to blockhigherorderwavelengths

andseveralfilters maybe requiredoverappropriatewavelengthregions. Oneadvantageof usinga

gratingmonocromatoris thatlargewavelengthrangescanbecoveredwithsuitablegratings. A prism

monochromatordoesnotrequirethehigh-orderfiltering,so itsuseis simpler. Onedisadvantagewith

this typeof monochromatoris thatatlongwavelengths,thechangein transmittedwavelengthbecomes

verysensitiveto rotationof theprismandmakeslongwavelengthcalibrationextremelycritical.

Onedisadvantageof thespectralresponsemeasurementtechniquesdescribedaboveis thatthe

solarcell responseis determinedat very low minority-carrierinjectionlevelsdueto the low light

intensitiesincidenton the cell. Solar cells irradiatedwith neutronsand protonshave response

characteristicswhicharedependentupontheconcentrationof injectedminoritycarriers. In suchcases

thecell mustbe illuminatedwitha lightsourcesimilarin intensityandspectralcontentto the intended

spaceenvironmentduringthe spectralresponseevaluation.This canbeachievedby choppingthe

monochromaticlight andmeasuringthetestcell outputwitha lock-inamplifiertunedto thechopper

frequency.A DC biaslightmaythenbeusedto illuminatethesolarcellto achievetherequiredinjection
level,but the lock-inamplifierwill not respondto theDC cellcurrent.

Somesolarcellsmadetodayconsistof twocellsstackedoneatoptheother,with thetopcell

respondingto shortwavelengthsandpassingthelong wavelengthsthroughto thebottomcell. The

bandgapof eachcell is chosento beoptimumfor its particularwavelengthrange. Whenthespectral

responseof suchacell is measuredwithouta biaslight, duringtheshortwavelengthmeasurementthe

bottomcellbecomesaloadfor thetopcelland,conversely,duringlongwavelengthmeasurementthetop

cell becomesa load for the bottomcell. In bothcasesthe spectralresponsemeasurementwill be

inaccurate. Theuseof a biaslight is necessaryduringthemeasurementof stackedcells,with the

insertionof suitablefilters to stimulatethe bottomcell with long-wavelengthDC-biaslight during

measurementof thetopcell, anda short-wavelengthbandpassfilter to illuminatethetopcell during

measurementof thebottomcell. If a triplebandgapcell is undermeasurement,theuseof threefilters
is required[3.30].
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3.5 Diffusion-LengthMeasurements
In Sisolarcells,thecurrentcollectionisdominatedbythebehaviorof theminoritycarriersin

thebaselayer. Theprimaryactionof radiationonSi cellsis thedegradationof diffusionlengthsin the

baselayer,whichismanifestedbydecreasesin theresponseto longwavelengths;howevertheeffectof

radiationon theemitterdiffusionlengthsis all but imperceptible.In suchcells,wherethedominant

actionis onlyononesideof thecell, themeasurementof diffusionlengthsis relativelystraightforward

andis discussedin somedetailin references[3.31and3.32]. In GaAssolarcells,however,radiation

affectsthediffusionlengthsin boththeemitterandbaseregionsandif anassessmentof radiationeffects

ondiffusionlengthsis to bemade,bothLpand_ needto bemeasured.

OnetechniquethathasprovedsuccessfulinmeasuringthediffusionlengthsinGaAssolarcells

hasbeento makeameasurementof thespectralresponseof thecell. Theequationsdevelopedfor the

spectralresponseof thecell inChapter2areusedwithleastsquarefittingtechniquestofind thediffusion

lengthsthatbestfit theexperimentaldata. Useof this techniquerequiressomeknowledgeaboutthe

constructionof thecell. For instanceeq.(2-47)givesthecurrentcollectedatthep/njunctionfromthe

p-layersof Gat_xAlxASandGaAs.Tofindavalueof Lgthatfits themeasuredspectralresponse,onehas

to knowthewindowthickness,D andthejunctiondepth,d. Knowledgeof thedopingdensitywill give

avaluefor themobility,/_(seeFigureA.5 in theAppendix)whichcanbeusedwith theEinsteinrelation

D = (kT/q)tz,to find thediffusionconstant.Theuseof appropriateabsorptioncoefficients,f_,for the

Ga_.xAl_As(whichrequiresaknowledgeof x) andt_ for GaAs, along with an assumption for the surface

recombination velocity at the Gal_xAi_As/GaAs interface, permits an estimate to be made for L,. In actual

practice the effect of the GaAIAs layer is ignored in the fitting procedure except for its effect on

attenuating the light incident on the GaAs surface and for the optical role it plays in the reflectance of

the incident light beam [3.33]. An example of the use of this technique is given in reference [3.34].

Another method commonly used to measure the minority carrier diffusion lengths in GaAs

devices is the electron-beam-induced current (EBIC) technique. In this method, the sample is placed in

a scanning electron microscope (SEM) with the diode turned sideways so that the electron beam can be

traversed along the edge of the cell from the p-side into the n-side. During such a traverse, the current

collected from the p/n junction is measured. The subsequent plot of collected current vs. distance from

the junction is fit to the equation:
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For anexampleof thistypeof measurement on a GaAs diode see reference [3.35].

(3-2)

3.6 Irradiation Methods

The evaluation of solar cell radiation effects requires a wide range of specialized equipment and

instrumentation. The space radiation environment will expose solar cells to fluxes of primarily electrons

and protons. The exposure to heavier particles such as are found in cosmic rays is of sufficiently low

intensity that this is not an area of concern to the solar array designer. Charged-particle accelerators are

the primary sources for space-radiation simulation. The range of electron energies of interest is between

0.3 and 10 MeV. Electron or proton energies of 0.3 to 3 MeV are usually obtained with Van de Graaff

and Dynamitron accelerators. Higher electron energies are available from linear electron accelerators

(LINACs). Proton energies between 50 keV and 10 MeV are available from Van de Graaff or Tandem

Van de Graaff accelerators. Higher proton energies are available from cyclotrons. The performance of

low-energy proton irradiations (up to = 10 MeV) requires that the irradiation be performed in vacuum

to avoid excessive energy losses.

A successful radiation experiment must include accurate knowledge of the particle energy,

measurement of the cross-sectional beam intensity at the target plane, the beam intensity (flux) during the

irradiation, and the fluence (time integral of flux) given to the samples during the irradiation. The beam

intensity measurements are performed with a Faraday cup, and a current monitoring and integrating

instrument as discussed in reference [3.31]. The particle energy may be determined independently of the

dosimetry at the accelerator facility by either using the method described in [3.31] or by using a nuclear

reaction that has a sharp energy threshold.

Most radiation experiments involve the irradiation of several sample solar cells at the same time.

With the ever-increasing size of modern solar cells and the high cost of performing experiments at

particle accelerator facilities, it is important to utilize a particle beam that is broad in cross-sectional area.

A few accelerator installations are equipped with a rastering scheme to expose a large target plane. Since

most accelerators are not equipped with rastering capability, an alternate scheme of sending the beam

through an appropriate scattering foil may be used. Although use of the raster method to produce a large
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beamgivesvery intenseinstantaneousfluxes,it hasbeenfoundexperimentallythatfor 200keVprotons

incidentonSi solarcells,this methodproducedthesameresultsasa largeDC beamproducedwith

scatteringfoils. A charged-particlebeamexperiencesmultiplecollisionswith theelectroncloudasit

traversesthescatteringfoil. Thesecollisionsdeflectthebeamin sucha waythatthebeamprofileat a

downstreamtargetplanehasthe shapegivenby a circularGaussiandistribution. Theshapeof this

Gaussiandistributioncanbealteredsignificantlyby thechoiceof thematerialandthicknessof the

scatteringfoil. Thischoicewill dependonthetypeof chargedparticleandits energy.An appropriately

chosenfoil will producea very uniformbeamprofile in thecentralportionof thecircularGaussian

distribution.Thescatteringfoil materialandthicknessmustbechosenwithcare. If thefoil is toothick,

it mayproducea veryuniformbeamatthetargetplane,but thestragglingwill besoseverethatit may

causethebeamintensityto be solow thatthe irradiationtimewill beprolongedbeyondbudgetary

capacity.If thefoil is toothin, thebeamuniformitywill bepoor,andthereis increaseddangerof the

beamburningaholethroughthefoil. Asanexample,it hasbeenfoundthatanaluminumfoil of 125/_m

thicknesswill scatter1MeVelectronbeamsto giveaveryuniformdistribution(+ 5%)at adistanceof

30 inchesovera6-inchdiametertargetplane.Withthesamegeometry,a2 MeVelectronbeamrequires

a copperfoil --75 _m thick to give the same distribution. Foils for use in scattering proton beams are

much thinner than those required for electron beams because of the much greater penetrating power of

electron beams, and because the protons are much more difficult to deflect. The foil materials are limited

to those that can be fabricated into thin, pinhole-free foils that are also fairly tough and have reasonably

high heat conductivities. Gold, chromium, and titanium foils have been successfully used for scattering

proton beams. For example, in a geometry where the foil-to-target distance was 240 cm, with a target

area of 15 cm diameter, a chromium foil of 0.248 _m thickness was found to produce a 100 keV beam

with a beam uniformity of + 5 % over the target area. A 50 #m-thick gold foil was found to be

appropriate for scattering a 10 MeV proton beam in the same geometry. The methods outlined in

references [3.36, 3.37, and 3.38] may be used to calculate the scattering statistics of proton beams after

traversal of thin foils.
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Chapter4

GeneralRadiationEffects

In this chapterwe will discusssomeof the fundamentalprocessesoccurringin solarcells

exposedto ionizingradiation,suchasenergeticelectronsandprotons. A detailedtreatmentof the

interactionof radiationwith solarcellscanbefoundreferences[4.1,4.2, and4.3] andthereferences

citedthere,sothediscussionherewill belimitedto collectingtogetherthebasicequationsdescribing

radiationdamagein solarcellsandcertainparticularaspectsof damagein GaAssolarcells.

Themajortypesof radiationdamagephenomenainsolidswhichareof interesttothesolararray

designerare ionizationandatomicdisplacement.As a generalstatement,damageto thesolarcells

themselveswill almostalwaysbedueto atomicdisplacementswhichdisrupttheperiodicstructureof the

latticeandinterferewith themovementof minoritycarrierswithinthesemiconductor.Ionizationeffects

are importantin suchareasasthe darkeningof adhesivesandthe changein physicalpropertiesof

materialsusedin solararrayconstruction.

4.1 TheTheoryof RadiationDamage
The radiationthat is usuallyof interestin thestudyof degradationof materialsanddevices

consistsof energeticor fastmassiveparticles(i.e., electrons,protons,neutrons,or ions). Theoriginof

theseparticlesmaybeparticleaccelerators,thenaturalspaceradiationenvironment,nuclearreactions,

radioactivesources(asin applicationssuchasbetavoltaiccells),or secondarymechanismssuchasthe

interactionof gammarayswith electronsin a materialin sucha way thattheelectronsgainenough

energyto causedamagetothematerial(Comptonelectrons).Becausetheseparticleshavemass,energy,

andusuallycharge,theycaninteractin severalwayswithmaterials.As anenergeticchargedparticle

entersthesurfaceof amaterial,it slowsdownmoreor lesscontinuouslyby interactionswiththeelectrons

andnucleiiin thematerial.Thetypeof interactionsvarywith thespeedof theprojectile[4.2].

Therearebasicallytwotypesof interactionsof chargedparticleswithmatter:inelasticcollisions

andelasticcollisions.In aninelasticcollision,theprojectilelosesenergyandthetargetparticlegains

energy,but thesumtotalof kineticenergiesafterthecollisionisgenerallylessthanthekineticenergies

theparticleshadbeforethecollision. Theenergydifferencegoesintoexcitationof theelectronsin the

material,mostlyby ionization. Inelasticcollisionsareprimarilybetweentheincidentparticleandthe
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electroncloudof thetargetmaterial.Inelasticcollisionsarethemostprobableprocessin theinteraction

betweenspaceradiationandsemiconductormaterials,andaretheprimarymechanismfor energylossin

thetarget. Butoncethevelocityof themovingion ismuchlessthanthevelocitiesof theelectronsat

thetopof theFermidistribution,it is improbablethatelectronscanbeexcited.To withina factorof

approximatelytwo, theincidentparticlereachesthisvelocityat anenergy,in keV,whichis equalto its

atomicweight. This estimateis independentof the targetmaterial. Thus,the limiting energyfor
ionization,Ei, is about1 keVfor protons,2 keVfor deuterons,28keV for Si, and70 keVfor a Ga

atom. Belowtheseincidentenergiesthecollisionsareprimarilyelastic,so ionizationlossesmaybe

neglected.An elasticcollisionoccurswhentheincomingparticlecollideswitha targetatomgivingit

acertainamountofenergyandlosingthesameamountofenergyin theprocess.Thetotalkineticenergy

of theprojectile-targetsystemis conservedin elasticcollisions,andnoenergyis dissipatedin electron

excitation.Elasticcollisionsaretheinteractionsthatcausedisplacementdamage,whichis responsible
for thedegradationof solarcell performance.

4.1.1 DisplacementDamage

Wewill considerthedisplacementof atomsby elasticprocesseswhenthe incidentradiation

consistsof heavychargedparticles,andthenwewill seehowsomeof theequationsaremodifiedwhen

theincidentparticlesareelectronswithrelativisticvelocities. Elasticcollisionsarecommonlyclassified

accordingto theenergiesof theincidentparticles.At higherenergies,theincidentparticlecanpartially

penetratethe electroncloudsurroundingthetargetatom. SuchcollisionsareknownasRutherford

collisions. At lowerenergies,wheretheelectroncloudis notpenetrated,thecollisionsaretreatedas

thoughtheparticleswerehardelasticspheres,andtheseinteractionsareknownashardspherecollisions.

Thedisplacementscausedby theinteractionof theincidentcharged-particlebeamwith thetargetatoms

areknownasprimarydisplacements.It isquiteprobablethatthese"primaries"will haveenoughkinetic

energyto produceadditionaldisplacements,andtheseadditionaldisplacementsareknownassecondary

displacementsor sometimesknock-ons.Thesecondarydisplacementswill almostalwaysbeof thehard
spheretype.

In an elasticcollisionthe movingandstationaryatomsinteractwith a screenedCoulomb
potentialenergy,of theform:
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(Z 1Z2 q2) (4-1)
V(r) = exp(-r/a)

where r is the separation between the two atoms, ZL and Z2 are the atomic numbers of the moving and

target particles, respectively, and a is the screening radius given by the approximate relation:

a o
a - (4-2)

where ao is the Bohr radius of hydrogen (---5.3 x 10 -9 cm). If the energy of the incoming particle is high

enough, r will be quite small and eq. (4-1) reduces to the classical Coulomb repulsion between the two

charged particles. If the incident particle has sufficient energy to come closer than distance a to the target

particle, the collision will be of the Rutherford type, but if it has less than this energy, the collision will

be of the hard sphere type. This critical energy, EA, will be calculated below. In the equation below,

b represents the classical distance of closest approach (in the absence of screening) and is called the

"collision diameter."

b

2ZtZ2q 2 (4-3)

il v 2

In the above equation,/_ is the reduced mass, defined to be

MI M2 (4-4)
ix=

+M2)

and v is the velocity of the incoming particle.

The condition for Rutherford scattering to hold is for b ,_ a, i.e., the distance of closest approach

is ,_ than the screening radius. For the collisions to be of the hard sphere type, we require b_-a. A

critical energy, E^, occurring at the point where b=a can be calculated from (4-2) and (4-3) as follows

[4.4]:
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(M 1 + Mz)
E. = 2 E. ZI Z2 v/Z_3 + Z_ 3

ME (4-5)

where ER, the Rydberg energy = qE/(2a0) = 13.6 eV, and M_ and M2 are the masses of the incident and

struck particles, respectively. The collisions will become hard-sphere-like when the energy of the

incident particle becomes ,_ EA. We find that if protons are incident on GaAs, the collisions will be

hard-sphere-like if the proton energies are less than EA =2.8 keV, and for protons incident on Si, the

collisions will be hard-sphere-like if the incident energies are less than EA = 1.03 keV. Since we have

already seen that the limiting energy for ionization with protons incident on any material is = 1 keV, it

is apparent that these rules of thumb defining the various energy regimes are very approximate indeed.

In radiation-damage calculations, wherein displacement damage is of primary importance, one

of the most important considerations is the transfer of energy to an atom in the target. The maximum

energy transfer, Tm, will occur in a head-on collision, and from classical considerations involving

conservation of energy and momentum, this maximum kinetic energy transfer to the target atom can be

shown in the nonrelativistic case to be

4MIM 2
Tm - E (4-6)

(M ! + M2 )2

for an incoming particle of kinetic energy E and mass MI, incident on a target atom of mass M 2.

When electrons are the incident particles, they must have high velocities because of their small

mass in order to achieve sufficient energy to dislodge lattice atoms. A relativistic version of the above

equation must be used for Tm:

- --+2 cos 20 (4-7)
M2 m c2

where m = electron mass (1/1823 in atomic mass units)

M 2 = atomic weight of target atoms (69.72 for Ga, 74.91 for As, 28 for Si)

mc 2 = mass-energy equivalence of the electron (0.511 MeV)
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0 = scattering angle of the displaced atom with respect to the incident direction of the

electrons. 0 is related to the deflection angle q_ of the scattered electron by

4_ = a'-20

The maximum energy transfer will occur when 0 = 0. For example, the maximum energy a 1 MeV

electron can transfer to a Si atom is 155.0 eV, and the maximum energy a 1 MeV electron can transfer

to a Ga atom is 62.3 eV.

4.1.2 Atomic Displacements

Energetic electrons or protons entering an absorber lose almost all of their energy by collision

with the electron "cloud" in the absorber, and these collisions with the electrons determine the range of

the electrons or protons in the absorber. Only rarely does the energetic particle come close enough to

a nucleus for an energy exchange to occur. This may be visualized by considering that an atom has a

diameter of about 10-_ cm while the nucleus has a diameter of about 10 q3 cm. If we had an atom and

wished to see the nucleus, we would have to magnify it until the whole atom was the size of a large

room, and then the nucleus would be a bare speck which you could just about make out with the eye

[4.5]. Nevertheless, interactions with the nucleii do occur and when the incident particles come close

enough to a nucleus they can give it enough energy to permanently displace it from its lattice site. These

displaced atoms and their associated vacancies undergo other reactions which often involve dopant atoms,

and finally form stable defects which produce significant changes in the equilibrium carrier concentrations

and the minority carrier lifetime.

An energetic particle must have more than a specific threshold energy to be able to displace an

atom from its lattice site. The lattice atom itself must receive a certain energy, called the displacement

energy, for it to be removed sufficiently far from its site that it does not return there. In silicon,

displacement energies ranging between 11.0 and 12.9 eV have been measured [4.6, 4.7, and 4.8]. In

GaAs, the displacement energy is dependent on the orientation of the crystal with respect to the incident

angle of the energetic particles, and has been measured to be between 7.0 and 11.0 eV, with the average

displacement energy = 10 eV [4.9, 4.10].

The threshold energy, E,, and displacement energy, Ed may be calculated from eq. (4-6) for

protons:
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where

Et

Mp

Ed = displacementenergy(MeV)

= thresholdenergy (MeV)

= proton mass in atomic mass units

Et (4-8)

In a similar manner, and using the above definitions and eq. (4-7), the threshold energy for

electrons is given by:

2mEt(Et 1
- +2 C0_20 (4-9)

When protons are incident on an arsenic target (AMU = 69.72 and Ea = 10 eV), eq. (4-8) tells

us that the threshold energy is _ 179 eV. Since proton accelerators are not commonly available in this

energy range, the threshold energies are more readily measured using electrons. For example, when we

use eq. (4-9) to compute the electron energy threshold for a Ga target, we find that E, = 245 keV.

As mentioned above, Ed in GaAs

depends on the angle of incidence the

bombarding particles have with respect to the

crystalline structure. Pons and Bourgoin

[4.9] have found that the principal defects ._

caused by electron irradiation are caused by

the displacement of As atoms. By an A_, t

examination of Figure 4.1, we see that when

the beam is incident in the [111]Ga direction,

with energy just above E, it is difficult to

displace an As atom in the straight-ahead

direction (O ----0) because a Ga atom occupies

the space where the displaced As atom would
Figure 4.1.

Ga

[lll]As [lll]Ga

C

Zinc-blende structure of GaAs (from

Pons and Bourgoin)
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haveto go. However,whenthebeamis incidentin the[111]Asdirection, there is a large empty space

in the region where the displaced As atom would go, so displacements of As atoms will occur with

relative ease. These observations are consistent with the measurements performed by Pons and Bourgoin,

which show that the threshold energy, Ed for displacing an As atom in the [111]As direction is only 9 eV

and very nearly independent of the scattering angle O. When the bombardment occurs along the [111]Ga

direction, Ed is 11 eV for small values of O and decreases to Ed = 7 eV for larger values of 0. At higher

electron energies, and for thick targets such as solar cells, the angular dependence is expected to

disappear because the knocked-on atoms can have large scattering angles, and the empty spaces in the

lattice other than those just behind the As atoms are available as landing sites for the struck atoms. Also,

the electron beam loses its monodirectionality after penetrating a short distance into the lattice. Pons and

Bourgoin estimate that the displacement energy for GaAs, averaged over all directions, is = 10 eV.

4.1.3 Primary Displacement Cross Sections

When the collisions are in the Rutherford region (incident particle energy > E^), collisions

resulting in small energy transfers are the most probable. The differential cross section for kinetic energy

transfer from T to (T +dT) is given by:

MI 2 2 E_) dT
do = _ b2 dT _ 4 _ a 2 Z l Z2T2

(4-10)

where E is the energy of the incident particle. This equation is valid for collisions which result in the

maximum energy transfer, Tin, down to some small but finite lower limit, where electronic screening

cannot be neglected. In cases of present interest this lower limit lies well below that energy at which

atomic displacements can be produced [4.2]. If it is assumed that a struck atom is always displaced when

it receives an energy greater than Ed and is never displaced if it receives less than Ed, then the total cross

section for producing a displacement can be found by integrating the above equation with the following

result:
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o d

r:r,

f do =

T_T a

or G d --

2 2

16_ a_ Z_ 2,22(M,+ M2) 2 T2

2 2 2
2 M1 Z1 Z2 ER

4 _ a o
M 2 E E a

(4-11)

Hard-sphere collisions occur in the energy region where the incident particle has energy < E A.

In this case, all energy transfers from 0 to T m are equally probable, and the differential cross section for

kinetic energy transfer from T to (T + dT) [4.2] is:

dT

do = n a 2-_ (4-12)

where a_ is the diameter of the hard sphere, taken to be approximately the screening radius. The total

cross section for producing primary displacements in the hard sphere case is:

2 T=TM

n a I f 2 T -E a
o a - j dT = na 1 (4-13)

r r

When the incident particles are electrons, the scattering involved that causes displacements is

primarily due to the Coulomb interaction between the electron and the target nucleus in the Rutherford

scattering regime. However, it is necessary to modify the Rutherford scattering cross-section equation

to account for the relativistic velocities of the electrons. Relativistic Coulomb scattering has been treated

by Mott [4.11, 4.12] and in a simplified form by McKinley and Feshbach [4.13]. The

McKinley-Feshbach scattering cross section for values of kinetic energy transfer ranging from the

maximum, Tm, to the minimum capable of displacing an atom, Ed, is given in the following form by

reference [4.3]:

/ °2" lI'/ I "/] ,414,o d - -1 - ln--+n_tl3 2 -1 -In
4 --_d Ed -_d

with ot = Z2/137

b' = b/3,

b = distance of closest approach defined by eq. (4-3)
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V = (1- ¢32)-112

and fl = v/c, the ratio of the electron velocity to the speed of light

The quantity 7rb'2/4 may be expressed as:

rob "2 2( e 2 12 1 _ 2.495xlO-25(cm 2) 2

4 - _Z2 _mc 2) _4y4 _4y2 Z2

(4-15)

The total cross section for displacement rises steeply from zero at the threshold energy, to an

asymptotic value as the energy increases. The calculated displacement cross section for electrons on

GaAs is 98 x 10.24cm 2 for a bombardment energy of 0.5 MeV. This cross section rises to 163 x 10.24

cm 2 for 1 MeV electrons and then reaches a maximum at --5 MeV with a cross section of 218 x 10 24

cm 2. The reader is referred to reference [4.3] for more details in making this calculation.

4.1.4 Secondary Displacements

When an atom is knocked out of its lattice site, it may have considerable kinetic energy and

become a projectile itself. These energetic atoms knocked out of the lattice are known as "knock-ons"

and are fully capable of producing further displacements. Such interactions, e.g., of Ga knock-ons

colliding with Ga lattice atoms, will be of the hard-sphere collision type, since all Ga knock-ons will

certainly have energies well below the threshold limit of EA = 8 MeV given by eq. (4-5) using values

suitable for Ga-Ga interactions.

For particles above the threshold energy, the probability of an atomic displacement can be

described in terms of a displacement cross section along with an average number of secondary

displacements induced by the primary displacement. Using this concept, the number of displacements

can be estimated from the relationship:

N d = n,, Od'V• (4-16)

where N_ = number of displacements per unit volume

na = number of atoms per unit volume of absorber

= 4.42 x 1022 atoms/cm 3 in GaAs

tra -- displacement cross section (cm 2)
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average number of displacements per primary displacement including the

primary, averaged over the energy spectrum of primary knock-ons

radiation fluence (particles/cm 2)

Several theories have been presented for the calculation of secondary displacements. Even

though these theories use widely varying assumptions about the details of the collision process, they all

produce very similar results. The theory formulated by Kinchin and Pease [4.14] is widely accepted.

Assuming the secondary collisions occur by hard-sphere collisions, these authors have calculated the

number of displacements produced by a knock-on of energy T to be:

v(T) = I 0 < T< 2E d

T

v(T) - 2Ea 2E a < T< E i

Ei

v(T) - 2 Ed T> E_

(4-17)

The average number of displacements, }, is calculated by averaging v over the energy spectrum

of the knock-on atoms. In a form calculated by reference [4.2], } is:

/ )/l (4-18)

We can now compute the rate of displacement production for an incident particle of energy E

using eqs. (4-16) and (4-18), along with eq. (4-14) if the incident particles are electrons. If the incident

particles are protons we use eq. (4-11) instead of eq. (4-14) for the cross section. Some sample

calculations are shown in Table 4-1 for electrons incident on Si and GaAs, and in Table 4-2 when protons

are the incident particles. In these calculations we have used an Ed value of 12.9 eV for Si and 10 eV

for GaAs.

It is important to recognize that the values calculated for Nd in Tables 4-1 and 4-2 are

displacement rates produced by an incident particle of energy E. If these rates are multiplied by the
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Table 4-1. Displacement Rates for Incident Electrons

Energy

(MeV)

0.5

Silicon

T m ord _ Nd

(eV) 10 .24cm 2 Disp/cm

58 58.4 1.16 3.40

GaAs

T m o"d u Nd

(eV) 10 .24cm 2 Disp/cm

23 92.6 1.01 4.13

1.0 154 67.8 1.52 5.16 62 153.2 1.27 8.62

2.0 462 73.6 2.00 7.35 186 187.8 1.70 14.17

3.0 922 75.3 2.32 8.74 372 197.4 2.02 17.58

5.0 2300 76.3 2.76 10.5 927 201.7 2.44 21.80

10.0 8400 76.5 3.40 13.0 3390 201.2 3.08 27.33

Table 4-2. Displacement Rates for Incident Protons

Silicon GaAs

Energy T_ Od _ Nd Tm ad _ Nd
(MeV) (keV) (cm z) Disp/cm (keV) (cm z) Disp/cm

0.1 13.3 3.53E-19 3.63 64,012 5.6 9.00E-19 3.32 132,106

0.2 26.6 1.76E-19 3.97 35,051

0.3 39.8 1.18E-19 4.17 24,558

0.5 66.4 7.06E-20 4.43 15,634

1.0 132.8 3.53E-20 4.77 8,429

11.2 4.50E- 19 3.67 72,892

16.7 3.00E-19 3.87 51,270

27.9 1.80E- 19 4.12 32,788

55.8 9.00E-20 4.47 17,770

2.0 265.5 1.77E-20 5.12 4,520 111.5 4.50E-20 4.81 9,573

5.0 663.9 7.06E-21 5.58 1,969 278.8 1.80E-20 5.27 4,194

10.0 1328.0 3.53E-21 5.92 1,046 557.6 9.00E-21 5.62 2,235

incident particle fluence (particles/cm2), then the rates will be displacements per unit volume. The

displacement rate will change as the particle slows down. The total number of displacements produced

by an incident particle is an integral of the displacement rates over the energy range from E to 0 if the

particle stops in the material, and over E to E0 if the particle emerges from the target with energy E0.

A beam of 1 MeV electrons will travel 0.23 cm through Si and 0.12 cm through GaAs, distances which
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are much greater than the thickness of modern-day solar cells. On the other hand, if the bombarding

particles are 1 MeV protons, they will penetrate a distance of 15.6 t_m in Si and a distance of 11.8/_m

in GaAs, and will therefore come to rest inside a solar cell. The effects on the two different types of

cells are expected to be different, however, because the 1 MeV proton will come to rest in a very active

region of the Si solar cell, but will penetrate beyond the region of major activity in a GaAs solar cell.

Tables 4-1 and 4-2 show the dramatic difference in the damage distribution produced by electrons and

protons. As the energy of the electron decreases, it produces a slowly decreasing rate of

displacements/cm, but as the energy of a proton decreases, it produces a very rapidly increasing

displacement rate, so that most of the displacements are produced near the end of its trajectory.

Kinchin and Pease have calculated the total number of displacements, N,, produced by light ions

such as protons coming to rest in a target material. For the specific case of protons coming to rest in

Si, their formula reduces to:

P(Ex 106 - 563.7) + 281.9

12.9

6.85x 10 -5 [1 + ln(5162 E)]

In ( 12.68 E)

and E = proton energy (in MeV) valid for E _ 0.1 MeV

(4-19)

When the protons are incident on GaAs, the Kinchin and Pease formula for Nt is as follows:

Nt = P(Ex 106 - 503.5) + 251.8
10.0

with P = 6.07x 10 -5 [1 + In(2691 E)] (4-20)
ln(5.70 E)

and E = proton energy (in MeV) valid for E _ = 0.3 MeV

Note that these equations are not valid for low energies. Bulgakov and Kumakhov [4.15] also give a

relation for the total number of displacements, which has a wider range of validity but is more complex.

4.1.5 Ionization

Ionization occurs when orbital electrons are removed from an atom or molecule in gases,

liquids, or solids. Ionization is the primary mechanism for energy loss for energetic, charged particles
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traversing a target material. The unit measure of the incident intensity for ionizing radiation is the

roentgen. This amount of radiation will induce a charge of 2.58 x 10.4 coulomb/kilogram in air. The

roentgen is not a measure of the amount of energy actually absorbed by the material. The amount of

absorbed radiation dose in a material is commonly measured in units of rads. One rad of absorbed dose

occurs when an energy of 100 ergs is absorbed in one gram of material (100 ergs/gm = 0.01 joules/kg).

The preferred SI unit of absorbed dose is the gray (Gy), which is defined to be 1 joule/kg, and therefore

1 Gy = 100 rads.

The absorbed dose units are most commonly used in specifying the exposure of electronic parts

to gamma radiation (and also in the exposure of humans to radiation). However, by using the definition

of absorbed dose, it is possible to calculate the "rad exposure" of materials to charged-particle radiation

also. This is calculated by considering the radiation incident on a thin slice of material, having thickness

dx. Then, using the tabulated dE/dx (stopping power) tables for the incident particle at the irradiation

energy, the energy deposited in the slice of material is calculated. Finally, the deposited energy is

converted into units of rads and divided by 100 times the mass of the slice of material to yield rads. For

electrons or protons, this calculation and unit conversion results in the formula:

(de MeV-cm 2
Dose (rads) = 1.6x 10 -8 /

dx _ gm

(4-21)

To properly use this formula, the stopping power must be in units of (MeV-cm2)/gm. If the tabulated

stopping power is given in units of MeV/cm, for example, it can be converted to the proper units by

dividing by the density (in g/cm 3) of the absorber material. Note that this calculation is dependent on the

particle type (electron or proton), the particle energy, and the absorber material. When the absorbed dose

units are given as rads (Si) it means that the stopping powers for Si have been used in the calculation.

If the dose is given as rads (water), the stopping powers for water were used. Since the particle beams

lose energy as they penetrate the absorber, the value for dE/dx will change with depth, and the resultant

absorbed dose rate also changes with dose. For this reason, absorbed doses are commonly calculated to

be applicable to a surface absorbed dose only.

Values for the stopping power and range for electrons in various materials are tabulated in

references [4.16 and 4.17] and for protons in reference [4.18]. Plots of these values for both electrons

and protons in Si are given in reference [4.1]. Computer programs for calculating stopping powers and
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rangesin nearlyall materials have recently become available. A program called EPSTAR for electron

computations is available from reference [4.19] and a program for charged-ion calculations (including

protons) called TRIM is available from reference [4.20]. These programs have been used to compute

the stopping powers and ranges for electrons and protons in GaAs, which are plotted in Figures 4.2 and

4.3. The stopping powers are plotted in units of MeV-cm:/gm, and in cm for the ranges. The stopping

power and ranges are not a strong function of the atomic number of the absorber material. Since the

stopping power plots have been normalized for density, they may be used for materials with atomic

numbers similar to that of GaAs. If the range plots are to be used for materials of similar atomic

number, a density correction must be made by multiplying by the density of GaAs (5.320 g/cm3), and

then dividing by the density of the similar material.

The reduction of transmittance in solar-cell coverglasses is an important effect of ionizing

radiation. The darkening is caused by the formation of color centers (sometimes referred to as F-centers,

from the German word "farben," meaning color) in glass or oxide materials. Color centers are formed

when ionizing radiation excites an orbital electron to the conduction band. These electrons may become

trapped by impurity atoms to form relatively stable charged-defect complexes which can absorb light.

The use of fused silica (Corning 7940) for solar-cell coverglasses is a good choice because the color

centers formed in this material absorb light at UV wavelengths where the cells have no response.

Radiation produces many ionization-related effects in organic materials. These changes all result

from the production of ions, free electrons, and free radicals. As a result of these actions, transparent

polymers are darkened and crosslinking between main-chain members may drastically alter the mechanical

properties. The contemplated use of polymeric materials in solar arrays will require the array designer

to have knowledge of the ionization-related radiation effects in those materials.

The use of silicon dioxide as a surface passivation coating and dielectric material in silicon

devices results in a wide range of ionization-related radiation effects. The development of trapped

charges in the silicon dioxides can cause increased leakage currents, decreased gain, and surface channel

development in bipolar transistors and increased threshold voltages in metal oxide semiconductor field

effect transistors (MOSFETs). Ionizing radiation in silicon excites the electrons of the valence band to

the conduction band, creating electron-hole pairs in much the same way that carrier pairs are generated

by visible light. Although an optical photon of energy equal to or greater than 1.1 eV will create an
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electron-hole pair, roughly three times this amount of energy must be absorbed from an ionizing high-

energy particle to produce an electron-hole pair.
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Chapter5

RadiationEffectsin SolarCells

In thischapterwewill discusswhyradiationdecreasestheelectricalperformanceof solarcells.

Wewill reviewtheconceptof damageequivalenceandshowhowit isusedto relatetheradiationdamage

causedby particlesof oneenergyto thatcausedby particlesof anotherenergyor evenby particlesof

a differenttype. We will presentexperimentaldatashowinghow GaAs/Gesolarcellsdegradeafter

bombardmentwithelectronsandprotonsof variousenergies,andexplainhowthisdataisusedto derive

thedamagecoefficientsneededfor calculatingdamageequivalencesin bothnormallyincidentradiation

beamsand in omnidirectionallyincidentspaceradiation. We will thenshowhow to calculatethe

radiationdamageinducedin solarcellsby thespaceenvironment,wherethecellswill beexposedto

spectraof omnidirectionalelectronsandprotons.

5.1 DependenceonLifetimeandDiffusionLength
Solarcellsareusuallyirradiatedbothin thelaboratoryandinspaceattemperaturesnear30°C,

andtheresultingdefectsaresomewhatmobileatnearthis temperature.Thedefectswill tendto bond

with impurities,vacancies,or interstitialsthatalreadymaybe presentin thesemiconductor,andthe

resultingdefectscanbe quitestable. A reviewof thedefectsproducedin GaAsmaybe foundin

reference[5.1]. Althoughthisreviewrestrictsitselfto someof themorefundamentaldefects,it gives

an ideaof the proceduresinvolvedin measuringandidentifyingdefects. Thedefectsdiscussedare

intrinsicdefects,consistingof vacancies,interstitials,andantisitesin bothGaandAssublattices,along

withcomplexesformedbetweeneachotherandimpuritiesin thecrystal. A Gaantisitedefectis aGa

atomsittingin a latticepositionthatwouldnormallybeoccupiedby anAs atom. Thereareshorthand

labelsfor thesedefects.V_aandVA_areGaandAsvacancies,GaiandAS i are Ga and As interstitials,

while GaAs and Asia are Ga and As antisites. One of the most important defects formed in GaAs is

known as the EL2 defect. This defect is found in all GaAs material regardless of dopant or method of

growth. It appears to consist of a complex formed by an As antisite bonded with an As interstitial, i.e.

Asia - As1. The EL2 defect has two states which probably are of only academic interest to the solar array

designer, but nevertheless interesting. At very low temperatures, the EL2 defect can be made to

disappear by optical stimulus with a photon energy of 1.1 eV. This "disappearance" is thought to be a

transformation into a metastable defect, because it does not revert if the photoexcitation is removed and

the temperature remains low. However, if the crystal is heated to temperatures above 140 K, the defect
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reappears.Analysis suggests that the stable state consists of the existence of the As_, - Asi with the As

interstitial in the second-neighbor position, while in the metastable state, the As_ moves closer to the As_,.

The following defects have also been observed in GaAs material: (1) the VAs-As _ pair (or

Frenkel pair) which partially anneals at _220°C, because As interstitials begin to be mobile at that

temperature, and annealing much more thoroughly at 450°C; (2) the As vacancy, VAS, which is just a

special case of the VAs-ASi pair with the interstitial a longer distance away; (3) the As interstitial, As_,

which becomes mobile at temperatures above 220°C; (4) the As antisite, Asia , which is stable at

temperatures up to 950°C; (5) the Ga antisite, GaAs; (6) the divacancy, appearing to be Vca + V_

because its threshold energy of formation is twice that of the threshold for Frenkel pair formation;

(7) the As antisite - As vacancy complex, As_a-VAs, which is probably formed when a nearest-neighbor

As atom moves into a Ga vacancy. It is quite apparent that when a crystal contains two elements, each

on its own sublattice, it introduces a measure of complexity into the number and types of defects that can

be formed; and we have not even touched on the interaction of the above defects with the dopants

commonly used in GaAs solar cells.

Defects in semiconductors are often studied by use of the deep-level transient spectroscopy

(DLTS) technique. In performing these measurements, the junction capacitance of a small sample is

measured during a thermal scan of the sample. Interpretation of the capacitance vs. temperature curves

allows identification of the energy level and concentration of the defects within the forbidden gap. The

defects can be identified as to whether they are hole traps or electron traps, but unfortunately, this

technique does not identify the atomic nature of the defects. It can be useful in observing the behavior

of defects as a function of doping levels in the semiconductor, radiation history, annealing, etc. An

example of this technique applied to GaAs solar cells can be found in reference [5.2]. In this paper,

defect levels were observed in GaAs material which was doped with Sn, and in undoped material. After

the cells were irradiated with 1 MeV electrons, electron traps were found to occur at energy levels of

Ec-0.31, 0.71, and 0.90 eV (labeled E3, E4, and E5) and a hole trap at energy level _+0.71 eV in the

Sn-doped material. The authors studied the behavior of these traps as a function of electron flux rate,

fluence, annealing treatment, etc.

The main effect of the displacements produced by radiation is a disruption of the periodic lattice

structure, resulting in a decrease of the minority carrier lifetime. In modern GaAs solar cells that have
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their front surfacespassivatedwith anAlxGat_xAswindowsothatfront-surfacerecombinationis nota

majorproblem,thedecreaseinminoritycarrierlifetimeisthemajorradiation-sensitiveparameter.Since,

aswesawineq.(2.17),minoritycarrierlifetimesareinverselyproportionaltotherecombinationrates,

the reciprocallifetimecontributionscausedby varioussetsof recombinationcenterscanbe addedto

determinetheinverseof the lifetimeasfollows:

_ 1 1 (5-1)1 1 +__+__+...

wherer = finalminoritycarrierlifetime

_'0 = minority carrier lifetime before irradiation

% = minority carrier lifetime due to electron irradiation

rp = minority carrier lifetime due to proton irradiation

One of the most commonly used analytical tools for the determination of the particle type and

energy dependence of degradation in both Si and GaAs solar cells has been developed from the basic

relationship for lifetime degradation:

1_ 1 + (5-2)
T '_0

where _" = final minority carrier lifetime

To = minority carrier lifetime before irradiation

K, = damage coefficient (lifetime)

cI, = radiation fluence

However, minority-carrier diffusion length is a more applicable and more easily determined

parameter for solar cell analysis than minority carrier lifetime. We note from eqs. (2-34) and (2-36) that

the hole and electron currents, Jv and Jn, are proportional to diffusion lengths I., and L,. Using L 2 = Dr,

the above expression becomes:
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Z 2 2
Lo

(5-3)

where L

To

K_

KL

= final minority carrier diffusion length

= minority carrier diffusion length before irradiation

= damage coefficient (diffusion length)

= KJD

= radiation fluence

But the degradation of solar cells induced by radiation is most commonly measured in terms of

the common electrical parameters such as I_, Vo,, and Pm_x,since most laboratories are not equipped to

measure lifetimes or diffusion lengths. The situation is even more complicated for GaAs ceils because

radiation degrades both the p and n parts of the cell, so diffusion lengths would have to be measured in

both parts to adequately characterize the damage to the cell.

Experience has shown that the degradation of solar cell electrical parameters due to radiation

can usually be expressed as follows for the case of I_:

/ (5-4)

The ,I,x term represents the radiation fluence at which Isc starts to change to a linear function of the

logarithm of the fluence. The constant C represents the decrease in lsc per decade in radiation fluence

in the logarithmic region. As discussed in reference [5.3], the degradation in I_ may be expressed as a

function of L (through KL) in an equation which has the same form as eq. (5-4) as follows:

/_ = A-Blog(1 +K LLo2¢) (5-5)

Similar expressions may be obtained for Vo_ and P,_x, but their applicability to GaAs cells may be limited

because their derivation rests on an expression between a single diffusion length and the short circuit

current, I_ = A In L + B, which has questionable validity for cells having diffusion lengths degrading

at different rates on each side of the junction.
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5.2 TheConceptof DamageEquivalence

Thewiderangeof electronandprotonenergiespresentin thespaceenvironmentnecessitates

somemethodof describingtheeffectsof varioustypesof radiationin termsof aradiationenvironment

which canbeproducedunderlaboratoryconditions. The conceptof damageequivalencemaybe

discussedin termsof thevariationof ordinarysolarcellelectricalparametersasafunctionof radiation

fluence.In Figure5.1,weplotthedegradationof normalizedI_cof GaAssolarcellsafterirradiationwith

bothprotonsandelectronsof variousenergies.Theradiationwasproducedby electronandproton

acceleratorsandenteredthecellsat normalincidence.It isclearthatif webombardGaAscellswith a

fluenceof 3.8 x 10_ p/cm2of 1 MeVprotons,wewill reducethecell'sI_ to 80%of its startingvalue

(20%degradation);if webombarda similarcellwithafluenceof 3.6x 10_zp/cm2of 10MeV protons,

wecanreducethecell'soutputtothesameIscvalue. Or,wecouldhaveusedafluenceof 6 x 10_4e/cm2

of 1MeVelectronstoproducetheequivalentdegradation.Thefluencesrequiredto reduceasolarcell's

electricalperformanceto somespecifiedlevel(suchas80%of Is_0)aresometimesreferredto ascritical

fluences,_I,,.Wedeterminetheequivalentfluencefor 1MeVprotonsrelativeto 10MeVprotonsin the

first caseby ratioingthe10MeVfluencerequiredtoproducethegivendegradationto the1MeVfluence

requiredto producethesamedegradation.This isknownastherelative-damagecoefficientfor 1MeV

protonsand,for thecasecited,equals9.5. Similarly,wemayratiothe1MeVelectronfluencerequired

to produce20%degradationin I_ to the 10MeVprotonfluencerequiredto producethesameamount

of damage.Thisratiowill defineadamagecoefficientof 10MeVprotonsrelativeto 1MeVelectrons.

For theexampledescribedabove,thisratiois 167.

As isevidentfromFigure5.1,thisproceduremaybecarriedoutfor all thedegradationcurves

for eachenergy.Thesameproceduremaybecarriedoutfor Pm_xandVow.Wemayalsochooseanother

degradationlevelat whichto pick thefluencesfor theratiocalculation,andwewouldgetexactlythe

sameresultsaswedid with the20%degradationlevel,butonly if all thedegradationcurvessuchas

thoseshowninFigure5.1wereparallelto eachother. Sincethis isnotthecase,andparticularlyatlow

protonenergies,thecalculateddamagecoefficientswill dependonthereferencedegradationlevelchosen

for thecalculation.In practicethesecoefficientsarederivedby performingthecalculationat 4 or 5

differentdegradationlevels,thenestimatingaveragesfromthesevalues.

Thedifficultywith the low energyprotonsin establishingdamageequivalencyarisesbecause

therangeof protonsbelow= 1MeVinGaAsis lessthantheactivesolarcellthickness.Forthisreason,
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low energy protons produce nonuniform damage. This situation is further complicated by the fact that

the damage produced per unit pathlength is very high when proton energies are low. As a result, when

a low energy proton is stopped in a solar cell, a large amount of damage is concentrated at the end of

the track. The derivation of equivalent damage coefficients based on the critical fluence method outlined

above relates back to eq. (5-3), where it is assumed that the degradation of diffusion length is uniform

throughout the entire thickness of the cell. This will be true for electrons and protons with sufficient

energy to penetrate the cell (E _> 45 keV for electrons, and E _> 1 MeV for protons in GaAs solar cells).

This observation seems to be borne out by the curves of Figure 5.1, where the degradation curves

induced by particles that penetrate the solar cell are very nearly parallel.

By use of the critical-fluence damage coefficients, it is possible to construct a model in which

the various components of a combined radiation environment can be described in terms of a damage-

equivalent fluence produced by energetic particles of a single energy. 1 MeV electrons are a common

and significant component of space radiation, and 1 MeV is an energy which is easily achievable by most

electron accelerators. For this reason, 1 MeV electron fluence has been used as a basis of the damage-

equivalent fluences which describe solar cell degradation. Similarly, proton damage can be normalized

to the damage produced by protons of a specific energy. The proton energy employed for normalization

of relative damage should be an energy that occurs in the space environment, an energy that produces

relatively uniform damage, and an energy that is commonly available in accelerator laboratories. 10 MeV

protons fulfill these requirements and are therefore commonly used as a basis for calculating equivalent

proton damage in solar cells.

5.3 Calculation of Damage Coefficients for Space Radiation

The laboratory data used to calculate damage coefficients for normally incident beams of

electrons and protons is not directly applicable to space radiation effects because space radiation is

omnidirectional and because of the shielding provided by coverglasses mounted on the solar cells. In this

section, the analytical methods of calculating the damage effectiveness of each component of the space

radiation environment will be detailed. The damage effectiveness of space radiation is calculated relative

to normal incidence 1 MeV electrons and to 10 MeV protons on unshielded GaAs solar cells. It will

allow the reduction of all components of space radiation to an equivalent laboratory (normal incidence,

monoenergetic) irradiation. In this way, laboratory data can be used to predict the behavior of shielded

solar arrays in space.
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An omnidirectionalflux isdefinedasthenumberof radiationparticlesof a particular type and

energy that isotropically traverse a test sphere which has a cross-sectional area of 1 cm 2

(radius = 1A/-_r cm) per unit time. (The units do not have to be cm, but cm is a commonly used unit

for radiation calculations). The commonly used sources of space radiation literature tabulate the

environment in terms of omnidirectional fluxes, with units of particles/(cm2-day). We now follow

reference [5.4] in deriving the conversion of omnidirectional fluxes to unidirectional fluxes. Assume

a plane of area dA in space, with an incident omnidirectional flux of particles, cI,0. The portion of

omnidirectional flux that arrives at our test sphere per unit solid angle is ,I,0/4r , and (cI,0/4r)dl] is the

number of particles arriving at the test sphere within solid angle df]. The number of particles incident

on our plane at angle of incidence 0 is:

qb° (cos0 dA) dfl
dqb,, = 4x

_X

and qbn = 2 --qb° dA f0 )- 2 n sin 0 cos 0 dO4x

D0
giving ¢bn -

2

(5-6)

where the solid angle d_ = 27r sin0 dO. We have used integration limits of 0 to 7r/2 and multiplied the

result by 2 to account for the fact that flux incident on the top half of the plane should not cancel out the

flux incident on the bottom half.

The above derivation implies that the unidirectional flux is equal in intensity or "equivalent" to

the omnidirectional flux divided by 2. Likewise, if the unit plane area has infinite back shielding, the

unidirectional flux will be equal to 1/4 the omnidirectional flux. The above expression determines the

normal component of an omnidirectional fluence, that is, the fluence that would pass through the unit

plane area. This result is a conmaon derivation found in discussions of omnidirectional vs. normally

incident fluxes, but in order for the calculation to be useful for solar cells, we must also properly weigh

the damage effectiveness of all angular components.

The expression for the effectiveness weighted for all angular components of an omnidirectional

monoenergetic flux and assuming infinite back shielding, is as follows:

5-8



whereD(E,t) =

D(E0,0)=

t

E =

E o =

1 f_/2 D(Eo,O)2 n sin0cos0d0oCe,t) = Jo
(5-7)

relative damage coefficient of omnidirectional radiation particles with

energy E, relative to unidirectional 1 MeV electrons or 10 MeV protons

for a cell protected by a coverglass of thickness t.

damage coefficient of unidirectional radiation particles with angle of
incidence 0 and energy E0 relative to unidirectional 1 MeV electrons or

10 MeV protons.

shielding thickness. When t = 0, E = Eo

proton energy incident on the coverglass

proton energy as it enters the solar cell

Equation (5-7) must be further modified to reflect the energy loss in the coverglass.

A common solar panel configuration involves infinite back shielding provided by the solar panel

or spacecraft body and an optically transparent, finite shield covering the front surface of the cell. The

assumption of infinite back shielding is not valid for those designs where the solar panel consists of very

light substrates; and those cases will require separate treatment for the radiation incident on the rear

surface of the solar panels. If an omnidirectional flux of radiation particles with energy E is incident on

a solar cell shield of thickness t, the particles not stopped in the shielding will emerge from the shielding

with an energy of E0 and in our case, will enter the solar cell with that energy. The emerging energy

will be a strong function of the angle of incidence of the particle. The particle track length in the shield

is equal to t/cos0. The energy E0 of the emerging particle is found in a slightly roundabout manner.

First, we use tables of range vs. energy to find the range of the particle incident on the coverglass, R(E).

Subtract the pathlength of the particle in the glass, t/cos0 to find the residual range R(E0) the particle has

as it emerges from the coverglass and enters the cell. Again using the range-energy tables, find the

energy E0 corresponding to R(E0). This procedure is summarized as follows:

Eo(E,O,t) = R_I[R(E) - __t__t]cos0
(5-8)

where R-' is a convenient form used to represent an inverse function of the range-energy relation R(E).

Proton and electron range-energy data suitable for this calculation have been tabulated by Janni [5.5, 5.6],
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BergerandSeltzer[5.7,5.8] andmorerecentlyin theformof computerprogramsnamedTRIM [5.9]
andEPSTAR[5.10].

5.4 ElectronSpaceRadiationEffects

Theevaluationof D(E0,0)isnecessaryto completethe integrationof eq. (5-7). Recently,an
extensiveseriesof electronirradiationsof GaAs/Gesolar cells was undertakenat JPL. The

experimentallyderivedvaluesfor D(E0,O)resultingfrom thisworkareshownin Figure5.2. Thetop

curveshowsthedamagecoefficientsfornormallyincidentelectrons.Thelowercurves,depictingdamage

coefficientsaproposto onmidirectionallyincidentradiation,arecalculatedfromtheexperimentalcurve

asdescribedbelow. Electronsin theMeVenergyrangeproduceuniformdamagealongtheirtracksand

manyof themwill easilypenetratetheactivevolumeof aGaAssolarcell. Forthisreason,theamount

of displacementdamageproducedby a high energyelectronis proportionalto thetotal track length

producedin thecell. Thelengthof anindividualelectrontrackin asolarcell isproportionalto 1/cos0,
therefore:

D(Eo, O) - D(E°'O) (5-9)
cos 0

However, the number of electrons intercepted by the cell is proportional to its projected area normal to

the direction of the incident radiation, i.e., occos0, therefore the cos terms cancel out and the damage

induced in the solar cell is independent of 0. The fact that MeV electron damage of unshielded Si solar

cells is independent of the angle of incidence was confirmed experimentally by Barrett [5.11]. The same

arguments hold for high energy protons, which easily penetrate solar cells, and the independence of

damage to angle of incidence was confirmed by Anspaugh and Downing [5.12] for both Si and GaAs

solar cells.

Equation (5-7) may therefore be written as follows for electrons:

D(E,t) - 1 fo_/2 D(Eo,O ) 2nsin0 dO4_
(5-10)

Equation (5-10) can be evaluated with the aid of eq. (5-8) to find _, and the upper curve of Figure 5.2

to evaluate D(E0,0). Equation (5-10) has been integrated numerically for various values of shielding
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thickness,t, andtheresultsareplottedasthelowercurvesin Figure5.2. Thisprocesswasperformed

separatelyfor eachof theparametersI_, Vow,andPm_x.Theresultsarealsotabulatedin Table5-1. It

wasfoundthatthesamesetof damagecoefficientswasapplicableto all 3 parameters,sothereisonly

onesetof damagecoefficientsfor electronsonGaAs.

5.5 ProtonSpaceRadiationEffects

Forprotonspaceradiation,theevaluationof eq.(5-7)ismorecomplexthanfor electrons.Two

problemsarisein thetreatmentof spaceprotonswith energieslessthanthatrequiredto penetratethe

activevolumeof thesolarcell. Oneproblemexistsbecausetherelativedamageconstantsbasedon I_

differ quitemarkedlyfromthosebasedonVo_andPm_=atlowprotonenergies,sowenowhavetwosets

of damagecoefficientsto compute.Thesecondproblemisthatat lowprotonenergiesthedegradation

curvesvs. protonfluence(e.g., Figure5.1) arenot parallelwith the degradationcurvesat higher
energies, thereby ensuring some

degreeof inaccuracy. The proton

damage coefficients for highly

penetratingenergiesof 10 MeV or

higher can be assumedto be

independentof theangleof radiation

incidenceasdiscussedabove.

Thephysicaldistributionof

low energyprotondamageis known

to benon-linearalongthepathof the

bombardingproton,withmostof the

damageconcentratedneartheendof

the track. The high damage
concentrationnear the end of the

protontrack allowsthe construction

d

(j

(] V R

C 8LL

Figure 5.3. Geometries Used in Omnidirectional Proton

Damage Coefficient Calculation

of a simple damage model for the prediction of the effect of angle of incidence on low energy proton

damage in Si or GaAs solar cells. It is assumed that the effect of a low energy proton, of arbitrary angle

of incidence and energy, is roughly equal to that of a normally incident proton with a range equal to the

perpendicular penetration of the non-normally incident proton, as illustrated in Figure 5.3. Therefore,
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to afirst approximation,wecanusetheknowndamagecoefficientfor thenormallyincidentprotonof

energyE. for theprotonenteringwithenergyEoatangle0. But the proton incident at the slant angle

will produce more damage in the cell because its track is longer, so it should have a larger coefficient

than the normally incident proton. To compensate for this, the total number of displacements N_(E0) for

the off-normal proton, and N_(En), for the normally incident proton, are calculated using the Kinchin and

Pease model (discussed in Chapter 4). The ratio, N_(E0)/N_(E.), is used as a compensation factor to

improve on the estimate for D(Eo,0), as follows:

N_t( Eo) (5-11)
D(Eo, O) = D(E_,O) Nta(e_ )

where D(Eo,0)=

D(En,0) =

relative damage coefficient for protons entering a solar cell with energy

E0 at an angle #

relative damage coefficient for a proton of normal incidence (O = 0) with

range En (range equal to R(Eo cos 0)

N_(Eo) = the total number of displacements created by a proton entering the solar

cell with energy E0

Ntd(E,) = the total number of displacements created by a proton entering the solar

cell with energy En

cos 0 = unit cell projected area

E. = R-I[R(Eo) cos0]

Eo = proton energy as it emerges from the coverglass and enters the solar cell

When the range of a proton of energy E0 incident on a solar cell at angle 0 exceeds the cell

thickness divided by cos 0, the proton will penetrate the cell. This case is entirely analogous to the case

previously discussed for high energy electrons, so that:

D(Eo, O) (5-12)
D(E°'O) - cos0

Equations (5-11) and (5-12) allow the evaluation of eq. (5-7) for infinite backshielding as follows:
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D(E,t)- 1
4_ °PD(Eo,O 2n sinO dO

+ fe N, (Eo)1__ -£ D(E ,O) 2_sinO cosOdO
4 _ p Ntd (En)

(5-13)

where 0p = the angle of incidence for which a proton of energy E will just penetrate
both the coverglass and the solar cell.

The first term in eq. (5-13) represents the case when the proton completely penetrates the

coverglass and the solar cell, while the second term applies when the proton penetrates the coverglass but

stops in the cell. This integration has been done by machine using the experimentally derived D(Eo,0)

values for I,: and for Vow, Pm_ shown in Figure 5.4. Separate integrations were done for D(E0,0) values

based on I,: and on Vow, Pm_. D(E,t) values calculated by eq. (5-13) are a function of solar cell thickness.

However, evaluations made with several solar cell thicknesses revealed that the dependence on cell

thickness is very slight, and for practical purposes the results can be considered independent of thickness.

The results of numerical integrations of eq. (5-13) are shown in Figures 5.5 and 5.6. The same data is

displayed in tabular form in Tables 5-2 and 5-3.

The values of relative damage constants for omnidirectional fluences of protons on shielded solar

cells allow a space proton environment to be reduced to an equivalent fluence of normally incident 10

MeV protons on unshielded GaAs solar cells. Experimental studies of GaAs solar cells have indicated

that a fluence of normally incident 10 MeV protons produces damage in I_ that can be approximated by

a fluence of 1 MeV electrons, which is 400 times that of the 10 MeV proton fluence. A similar factor

for degradation of Vo_ was found to be 1400 and for P_x the factor is 1000. Note that these values are

quite different than was found for Si where all three factors for all three cases were equal to 3000.
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Table 5-1. Electron Damage Coefficients for GaAs Solar Cells

Shield Thickness, Mils

Energy

(Mev) 0 0 1 3 6

Nor
12 20 30 60

0.15 5.00E-06 2.500E-06 0.0 0.0 0.0

0.16 1.00E-05 5.000E-06 0.0 0.0 0.0

0.17 2.00E-05 1.000E-05 9.582E-07 0.0 0.0

0.18 5.00E-05 2.500E-05 2.932E-06 0.0 0.0

0.19 1.00E-04 5.000E-05 6.978E-06 0.0 0.0

0.20 2.00E-04 1.000E-04 1.679E-05 7.415E-07 0.0

0.22 5.00E-04 2.500E-04 6.805E-05 5.762E-06 0.0

0.24 1.00E-03 5.000E-04 1.818E-04 2.974E-05 6.795E-07

0.26 1.00E-02 5.000E-03 5.399E-04 9.434E-05 5.553E-06

0.28 2.50E-02 1.250E-02 3.622E-03 2.535E-04 2 769E-05

0.30 4.40E-02 2.200E-02 9.504E-03 1.794E-03 8

0.32 6.00E-02 3.000E-02 1.693E-02 5.463E-03 3

0.36 1.20E-01 6.000E-02 3.612E-02 1.724E-02 5

0.0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

541E-05 1.232E-07

417E-04 1.916E-06

163E-03 4.519E-05

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0 0

0.0 0 0

0.0 0 0

0.0 0 0

0.0 0 0
0.40 1.70E-01 8.500E-02 6.181E-02 3.674E°02 1 533E-02 1.154E-03 1.186E-06 0 0

0.45 2.50E-01 1.250E-01 9 577E-02 6.445E-02 3 643E-02 8.242E-03 5.982E-05 0.0

0.50 3 20E-01 1.600E-01 1 318E-01 9.744E-02 6.232E-02 2.290E-02 2.608E-03 1.527E-06

0.60 4 60E-01 2.300E-01 1 999E-01 1.619E-01 1.215E-01 6.664E-02 2.393E-02 2.558E-03

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.70 6 00E-01 3.000E-01 2 693E-01 2.286E-01 1.835E-01 1.190E-01 6.257E-02 2.076E-02 0.0

0.80 7 30E-01 3.650E-01 3 348E-01 2.940E-01 2.467E-01 1.756E-01 1.088E-01 5.335E-02 1.348E-05

0.90 8 60E-01 4.300E-01 3 993E-01 3.574E-01 3.083E-01 2 332E-01 1.595E-01 9.337E-02 4.126E-03

1.00 1 00E÷00 5.000E-01 4 677E-01 4.227E-01 3.704E-01 2 908E-01 2.117E-01 1.381E-01 1.951E-02

1.20 1 25E+00 6.250E-01 5 943E-01 5.486E-01 4.947E-01 4 090E-01 3.198E°01 2.330E-01 7.296E-02

1.40 1 50E÷00 7.500E-01 7.185E-01 6.715E-01 6.146E-01 5 246E-01 4.295E-01 3.345E-01 1.429E-01

1.60 1.74E+00 8.700E-01 8.384E-01 7.907E-01 7.334E-01 6 396E-01 5.394E-01 4.369E-01 2.222E-01

1.80 1.99E+00 9.950E-01 9.615E-01 9.112E-01 8.516E-01 7 539E-01 6.482E-01 5.402E-01 3.063E-01

2.00 2.20E+00 1.100E+00 1.069E+00 1.022E+00 9.643E-01 8 673E-01 7.590E-01 6.445E-01 3.939E-01

2.25 2.50E+00 1.250E+00 1.215E÷00 1.165E÷00 1.103E÷00 9.999E-01 8.875E-01 7.711E-01 5.040E-01

2.50 2.80E+00 1.400E+00 1.279E+00 1.249E+00 1.203E+00 I.IIgE+00 1.017E+00 8.984E-01 6.175E-01

2.75 3.05E+00 1.525E÷00 1.478E÷00 1.417E+00 1.341E+00 1.226E+00 1.111E÷00 1.002E+00 7.295E-01

3.00 3.30E+00 1.650E+00 1.614E+00 1.568E+00 1.501E+00 1.390E+00 1.262E+00 1.123E+00 8.334E-01

3.25 3.60E+00 1.800E+00 1.760E÷00 1.710E+00 1.637E+00 1.523E÷00 1.395E+00 1.260E+00 9.354E-01

3.50 3.80E÷00 1.900E÷00 1.867E+00 1.825E+00 1.760E+00 1.654E÷00 1.530E÷00 1.389E+00 1.058E÷00

3.75 4.10E+00 2.050E+00 2.008E+00 1.959E+00 1.885E+00 1.770E+00 1.644E+00 1.509E+00 1.174E+00

4.00 4.40E+00 2.200E+00 2.156E+00 2.106E+00 2.030E+00 1.909E+00 1.771E+00 1.628E+00 1.289E+00

4.50 4.90E+00 2.450E+00 2.408E÷00 2.362E+00 2.291E+00 2.172E+00 2.033E+00 1.882E+00 1.514E+00

5.00 5.40E+00 2.700E+00 2.656E+00 2.610E+00 2.540E+00 2.416E+00 2.276E+00 2.122E+00 1.747E+00

5.50 5.80E+00 2.900E+00 2.858E+00 2.818E+00 2 755E+00 2.638E+00 2.502E+00 2.352E+00 1.970E+00

6.00 6.30E+00 3.150E+00 3.102E+00 3.056E+00 2 987E+00 2.859E+00 2.716E÷00 2.561E+00 2.182E+00

7.00 7.20E+00 3.600E+00 3.550E+00 3.506E÷00 3 440E+00 3.307E+00 3.166E+00 3.005E+00 2.600E+00

8.00 8.10E+00 4.050E÷00 3.996E+00 3.951E÷00 3 884E+00 3.748E+00 3.601E+00 3.433E+00 3.011E+00

9 00 9.00E+00 4.500E+00 4.442E÷00 4.396E+00 4 328E+00 4.191E+00 4.033E+00 3.856E+00 3.418E÷00

i0 00 9.80E+00 4.900E+00 4.840E÷00 4.798E+00 4 733E÷00 4.602E+00 4.444E+00 4.269E+00 3.824E+00

15 00 1.38E÷01 6.900E÷00 6.823E÷00 6.777E÷00 6.709E+00 6.574E+00 6.393E+00 6.203E+00 5.704E÷00

20 00 1.73E÷01 8.650E+00 8.560E+00 8.S16E+00 8.450E+00 8.318E÷00 8.142E+00 7.926E+00 7.408E÷00

25 00 2.05E+01 1.025E÷01 1.015E+01 1.010E+01 1.004E÷01 9.909E÷00 9.735E÷00 9.514E÷00 8.976E÷00

30 00 2.37E+01 1.185E÷01 1.173E+01 1.169E+01 1.161E+01 1.147E÷01 1.129E÷01 1.106E+01 1.047E+01

40 00 2.95E+01 1.475E+01 1.461E+01 1.456E+01 1.449E+01 1.434E÷01 1.415E+01 1.392E÷01 1.327E÷01
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Table5-2. ProtonDamageCoefficientsfor GaAsSolarCells-- I_:

Energy

(Msv) 0 0 1

Nor

0.020 1.00E-01 0.00 0.00 0.00 0.00

0.025 1.00E+01 1.885E-01 0.00 0.00 0.00

0.030 6.50E+01 2.186E÷00 0.00 0.00 0.00

0.035 1.25E+02 7.022E÷00 0.00 0.00 0.00

0.040 1.45E÷02 1.246E+01 0.00 0.00 0.00

0.045 1.52E÷02 1.701E+01 0.00 0.00 0.00

0.050 1.56E÷02 2.066E÷01 0.00 0.00 0.00

0.055 1.52E÷02 2.349E÷01 0.00 0.00 0.00

0.060 1.48E÷02 2.560E÷01 0.00 0.00 0.00

0.070 1.30E÷02 2.806E÷01 0.00 0.00 0.00

0.080 1.13E+02 2.887E+01 0.00 0.00 0.00

0.090 1.00E+02 2.877E÷01 0.00 0.00 0.00

0.100 9.00E+01 2.821E÷01 0.00 0.00 0.00

0.200 4.65E÷01 1.897E+01 0.00 0.00 0.00

0.300 3.10E÷01 1.477E+01 0.00 0.00 0.00

0.400 2.32E÷01 1.221E÷01 0.00 0.00 0.00

0.600 1.60E÷01 7.742E+00 0.00 0.00 0.00

0.800 1.20E÷01 5.749E+00 0.00 0.00 0.00

1.000 9.80E÷00 4.610E÷00 0.00 0.00 0.00

1.200 8.10E+00 3.851E÷00 0.00 0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

1.300 7.50E÷00 3.560E+00 8.283E°01

1.400 7.00E+00 3.315E+00 3.344E÷00

1.600 6.10E÷00 2.914E+00 4.011E÷00

1.800 5.45E÷00 2.597E÷00 3,695E÷00

2.000 4.85E÷00 2.347E+00 3.384E÷00

2.200 4.50E÷00 2.139E+00 3.070E÷00

Shield Thieknems, Mils

3 6

2,400 4.10E+00 1.961E+00 2.784E÷00 0.00 0.00

2.600 3.80E÷00 1.816E÷00 2.538E+00 8.575E-01 0.00

2.800 3.50E+00 1.683E+00 2.325E+00 1.604E+00 0.00

3.000 3.35E+00 1.596E+00 2.138E+00 2.063E+00 0.00

3.200 3.15E÷00 1.503E+00 1.975E÷00 2.039E÷00 0.00

3.400 2.95E÷00 1.413E÷00 1.837E÷00 1.973E÷00 0.00

3.600 2.80E+00 1.342E÷00 1.722E+00 1.899E+00 0.00

3.800 2.65E÷00 1.273E÷00 1.620E÷00 1.811E÷00 0.00

4.000 2.55E÷00 1.233E+00 1.521E÷00 1.724E÷00 8.558E-01

4.200 2.40E+00 1.157E+00 1.439E÷00 1.635E+00 1.134E÷00

4.400 2.30E+00 I.IIOE÷00 1.370E÷00 1,564E÷00 1.160E÷00

4.600 2.20E+00 1.063E÷00 1.298E+00 1.487E÷00 1.153E÷00

4.800 2.12E+00 1.025E÷00 1.227E+00 1.414E+00 1.175E+00

5.200 1.95E+00 9.450E-01 1.123E÷00 1.298E÷00 1.298E+00

12 20 30 60

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0,00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0,00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0,00 0.00 0,00 0.00

0.00 0.00 0.00 0.00

0,00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0,00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0,00 0.00 0.00

0.00 0,00

0.00 0.00

0.00 0.00

0,00

0.00

0.00

0.00

5.600 1.82E+00 8.838E-01 1.028E+00 1.188E+00 1.230E÷00 0.00

6.000 1.70E+00 8.269E-01 9.618E-01 1.095E÷00 1.158E÷00 5.747E-01

6.400 1.60E÷00 7.792E-01 8.899E-01 1.007E+00 1.086E÷00 6.661E-01

6.800 1.50E÷00 7.318E-01 8.381E-01 9.438E-01 1.017E+00 7.922E-01

7.200 1.42E+00 6.928E-01 7.731E-01 8.831E-01 9.575E-01 8.016E-01

7.600 1.35E+00 6.594E-01 7.402E-01 8.238E-01 8.971E-01 8.778E-01 0.00

8.000 1.28E÷00 6.262E-01 6.977E-01 7.624E-01 8.465E-01 8.545E-01 2.305E-01

9.000 1.14E÷00 5.586E-01 6.011E-01 6.640E-01 7.347E-01 7,787E-01 7.459E-01

i0.000 1.00E÷00 4.911E-01 5.594E-01 6.148E-01 6.800E-01 7.238E-01 7.284E-01 0.00

ii.000 9.40E-01 4.613E-01 4.922E-01 5.299E-01 5.909E-01 6.401E-01 6.329E-01 3.661E-01

12.000 8.60E-01 4.226E-01 4.427E-01 4.696E-01 5.055E-01 5.652E-01 5.839E-01 4.471E-01

13.000 8.00E-01 3.931E-01 4.188E-01 4.347E-01 4.642E-01 5.124E-01 5.359E-01 5.136E-01

14.000 7.50E-01 3.686E-01 3.847E-01 3.989E-01 4.295E-01 4.701E-01 4.918E-01 4.895E-01 0.00

15.000 7.00E-01 3.441E-01 3.551E-01 3.799E-01 4.067E-01 4.206E-01 4.570EM01 4.636E-01 8,524E-02

16.000 6.60E-01 3.246E-01 3.431E-01 3.526E-01 3.722E-01 3.914E-01 4.230E-01 4.316E-01 2.732E-01

18,000 5.90E-01 2.902E-01 3.018E-01 3.115E-01 3.263E-01 3.531E-01 3.709E-01 3.827E-01 3,019E-01

20.000 5.40E-01 2.656E-01 2.736E-01 2.851E-01 2.913E-01 3.085E-01 3.242E-01 3.417E-01 3.367E-01

22.000 S.00E-01 2.459E-01 2.507E-01 2.577E-01 2.715E-01 2.827E-01 3.012E-01 3.108E-01 3.115E-01

24.000 4.60E-01 2,264E-01 2.304E-01 2.412E-01 2.439E-01 2.538E-01 2,643E-01 2.753E-01 2.895E-01

26.000 4.40E-01 2.165E-01 2.186E-01 2.242E-01 2.301E-01 2.349E-01 2,415E-01 2.545E-01 2.683E-01

28.000 4.10E-01 2.018E-01 2.043E-01 2.092E-01 2.133E-01 2.258E-01 2.262E-01 2.356E-01 2.454E-01

30.000 3.85E-01 1.895E-01 1.916E-01 2.006E-01 2.016E-01 2.126E-01 2.162E-01 2.228E-01 2.294E-01

34.000 3.55E-01 1.747E-01 1.758E-01 1.801E-01 1.882E-01 1.912E-01 1.929E-01 1.972E-01 2.067E-01

38.000 3.30E-01 1.624E-01 1.633E-01 1.653E-01 1.683E-01 1.736E-01 1,718E-01 1.777E-01 1.887E-01

42.000 3.05E-01 1.501E-01 1.509E-01 1.527E-01 1.535E-01 1.568E-01 1.625E-01 1.642E-01 1.665E-01

46.000 2.85E-01 1.403E-01 1.409E-01 1.422E-01 1.462E-01 1.470E-01 1.504E-01 1.518E-01 1.607E-01

50.000 2.70E-01 1.329E-01 1.333E-01 1.342E-01 1.369E-01 1.370E-01 1.382E-01 1.407E-01 1.440E-01

55.000 2.50E-01 1.230E-01 1.234E-01 1.243E-01 1.264E-01 1.285E-01 1.280E-01 1.308E-01 1.348E-01

60.000 2o40E-01 1.181E-01 1.183E-01 1,187E-01 1.196E-01 1.209E-01 1.230E-01 1.232E-01 1,266E-01

65.000 2.25E-01 1.107E-01 I.IIOE-01 I.II5E-01 1.124E-01 1.165E-01 1.149E-01 1.178E-01 1.207E-01

70.000 2.18E-01 1.073E-01 1.074E-01 1.077E-01 1.082E-01 1.104E-01 I.II5E-01 1.102E-01 1.117E-01

80.000 2.00E-01 9.843E-02 9.856E-02 9.883E-02 9.926E-02 1.00BE-01 1.003E-01 1.017E-01 1.036E-01

90.000 1.87E-01 9.203E-02 9.212E-02 9.230E-02 9.259E-02 9.326E-02 9.529E-02 9.541E-02 9.542E-02

i00.000 1.78E-01 8.760E-02 8.766E-02 8.778E-02 8.796E-02 8.839E-02 8.961E-02 8.880E-02 9.020E-02

130.000 1.58E-01 7.776E-02 7.779E-02 7.785E-02 7.795E-02 7.816E-02 7.846E-02 7.893E-02 8.036E-02

160.000 1.44E-01 7.087E-02 7.089E-02 7.093E-02 7.099E-02 7.112E-02 7.129E-02 7.153E-02 7.375E-02

200.000 1.35E-01 6.644E-02 6.645E-02 6.646E-02 6.649E-02 6.654E-02 6.661E-02 6.671E-02 6.707E-02
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Table5-3. ProtonDamageCoefficientsfor GaAsSolarCells-- Pm_x,Vo¢

Shield Thickness, Mils
Energy

{Mev) 0 0 1 3 6
Nor 12 20 30 60

0.020 1.00E-01 0.00 0.00

0.025 1.10E÷00 3.504E-02 0.00

0.030 4.40E+00 1.900E-01 0.00

0.035 1.15E+01 5.793E-01 0.00

0.040 2.35E+01 1.323E÷00 0.00

0.045 3.35E÷01 2.376E+00 0.00

0.050 4.00E÷01 3.512E+00 0.00

0.055 4.60E+01 4.631E+00 0.00

0.060 5.00E÷01 5.690E+00 0.00

0.070 5.40E+01 7.508E+00 0.00

0.080 5.70E+01 8.966E+00 0.00

0.090 5.80E+01 1.013E+01 0.00

0.I00 5.80E+01 1.104E÷01 0.00

0.200 4.40E÷01 1.283E+01 0.00

0.300 2.90E+01 1.123E÷01 0.00

0.400 2.00E÷01 9.781E+00 0.00

0.600 1.27E+01 6.271E+00 0.00

0.800 9.30E+00 4.608E+00 0.00

1.000 7.40E+00 3.647E+00 0.00

1.200 6.30E+00 3.034E+00 0.00

1.300 5.90E+00 2.807E+00 1.954E-01

1.400 5.50E+00 2.611E+00 2.227E÷00

1.600 5.00E+00 2.305E+00 2.866E+00

1.800 4.50E+00 2.070E+00 2.771E÷00

2,000 4.20E+00 1.890E+00 2.553E+00

2.200 3.80E+00 1.735E+00 2.334E+00

2.400 3.60E+00 1.632E+00 2.139E÷00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0,00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00

0.00

0.00

0.00

2.600 3.35E+00 1.527E+00 1.973E÷00 4.618E-01

2.800 3.15E+00 1.442E÷00 1.825E+00 1.306E+00

3.000 3.00E÷00 1.373E÷00 1.705E+00 1.544E+00

3.200 2.80E+00 1.294E+00 1.598E÷00 1.528E+00

3.400 2.65E÷00 1.230E+00 1.505E+00 1.507E÷00

3.600 2.50E+00 1.168E+00 1.423E+00 1.468E÷00

3.800 2.40E÷00 1.123E+00 1.346E÷00 1.420E÷00 0.00

4.000 2.30E+00 1.072E÷00 1.273E+00 1.370E+00 5.910E-01

4.200 2.20E+00 1.028E÷00 1.212E+00 1,321E÷00 8.959E-01

4.400 2.10E+00 9.870E-01 1.159E÷00 1.269E+00 9.438E-01

4.600 2.00E+00 9.431E°01 1.109E÷00 1.223E÷00 9.566E-01

4.800 1.93E÷00 9.120E-01 1.064E÷00 1.169E+00 9.768E-01

5.200 1.80E+00 8.527E-01 9.783E-01 1.084E÷00 1.034E+00

5.600 1.65E+00 7.880E-01 9.081E-01 1.006E+00 1.002E+00 0.00

6.000 1.50E+00 7.209E-01 8.357E-01 9.363E-01 9.588E-01 3.840E-01

6.400 1.45E÷00 6.966E-01 7.743E-01 8,714E-01 9.109E-01 5.509E-01

6.800 1.35E+00 6.512E-01 7.290E-01 8.104E-01 8.622E-01 6.679E-01

7.200 1.30E+00 6.263E-01 6.838E-01 7.615E-01 8.161E-01 6.843E-01

7,600 1.23E+00 5.946E-01 6.469E-01 7.141E-01 7.704E-01 7.207E-01 0.00

8.000 1.19E+00 5.764E-01 6.241E-01 6,746E-01 7.266E-01 7.110E-01 1.844E-01

9.000 1.08E÷00 5.246E-01 5.557E-01 5.987E-01 6.423E-01 6.603E-01 6.049E-01

10.000 1.00E÷00 4.856E-01 5.278E-01 5.587E-01 5.979E-01 6.216E-01 6.348E-01 0.00

11.000 9.40E-01 4.578E-01 4.808E-01 5.039E-01 5.371E-01 5.580E-01 5.368E-01 3.042E-01

12,000 9.00E-01 4.397E-01 4.488E-01 4.608E-01 4.808E-01 5.104E-01 5.037E-01 3.847E-01

13.000 8.70E-01 4.249E-01 4.327E-01 4.364E-01 4.539E-01 4.698E-01 4.738E-01 4.361E-01

14.000 8.40E-01 4.101E-01 4.160E-01 4.213E-01 4.350E-01 4.442E-01 4.452E-01 4.244E-01 0.00

15.000 8.20E-01 4.002E-01 4.030E-01 4.091E-01 4.171E-01 4.177E-01 4.214E-01 4.091E-01 7.178E-02

16.000 8.00E-01 3.924E-01 4.051E-01 4.050E-01 3.995E-01 4.014E°01 4.042E-01 3.941E-01 2.328E-01

18.000 7.60E-01 3.728E-01 3.771E-01 3,778E-01 3.778E-01 3.871E-01 3.834E-01 3.712E-01 2.652E-01

20.000 7.40E-01 3.629E-01 3.660E-01 3.733E-01 3.681E-01 3.598E-01 3.553E-01 3.459E-01 3.028E-01

22 000 7.20E-01 3.530E-01 3.555E-01 3.581E-01 3.517E-01 3.586E-01 3 430E-01 3.378E-01 3.005E-01

24 000 7.00E-01 3.445E-01 3.454E-01 3.461E-01 3.470E-01 3.394E-01 3 332E-01 3.319E-01 2.995E-01

26 000 6.90E-01 3.396E-01 3.394E-01 3.405E-01 3,376E-01 3.366E-01 3 245E-01 3.195E-01 2.964E-01

28 000 6.80E-01 3.347E-01 3.343E-01 3.348E-01 3.323E-01 3.300E-01 3 201E-01 3.110E-01 2.896E-01

30 000 6.70E-01 3.297E-01 3.306E-01 3.347E-01 3.325E-01 3.262E°01 3 197E-01 3.123E°01 2.851E-01

34 000 6.50E-01 3.199E-01 3.206E-01 3.213E-01 3.223E-01 3.268E-01 3 188E-01 3.126E-01 2.827E-01

38.000 6.40E-01 3.150E-01 3.153E-01 3.150E-01 3.149E-01 3.128E-01 3.070E-01 3.007E-01 2.832E-01

42.000 6.30E-01 3.100E-01 3.104E-01 3.111E-01 3.095E-01 3.064E-01 3.082E-01 2.989E-01 2.840E-01

46.000 6.20E-01 3,051E-01 3.054E-01 3.061E-01 3.064E-01 3.054E-01 3.039E-01 2.989E-01 2.830E-01

50.000 6.10E-01 3.002E-01 3 005E-01 3.011E-01 3.022E-01 3.014E-01 2.985E-01 2.951E-01 2.804E-01

55.000 6.00E-01 2.953E-01 2 955E-01 2.959E-01 2.967E-01 2.955E-01 2.921E°01 2.891E-01 2.827E-01

60.000 5.95E-01 2.928E-01 2 929E-01 2.931E-01 2.936E-01 2.919E-01 2.943E-01 2.906E-01 2.835E-01

65.000 5.90E-01 2.904E-01 2 905E-01 2.906E-01 2.910E-01 2.914E-01 2.905E-01 2.865E-01 2.793E-01

70.000 5.80E-01 2.854E-01 2 856E-01 2.860E-01 2.865E-01 2.876E-01 2.862E-01 2.825E-01 2.762E-01

80.000 5.75E-01 2.830E-01 2 830E-01 2.831E-01 2.832E-01 2.837E-01 2.817E-01 2.827E-01 2.748E-01

90.000 5.62E-01 2.766E-01 2.767E-01 2.769E-01 2.771E-01 2.777E-01 2.787E-01 2.769E-01 2.748E-01

100.000 5.60E-01 2.756E-01 2.756E-01 2.756E-01 2.757E-01 2.758E-01 2.762E-01 2.741E-01 2.706E-01

130.000 5.42E-01 2.667E-01 2.668E-01 2.668E-01 2.669E-01 2.671E-01 2.674E-01 2.678E-01 2.664E-01

160.000 5.40E-01 2.658E-01 2.658E-01 2.658E-01 2.658E-01 2.658E-01 2.658E-01 2.659E-01 2.654E-01

200.000 5.25E-01 2.584E-01 2.584E-01 2.584E-01 2.585E-01 2.585E-01 2.587E-01 2.588E-01 2.593E-01
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5.6 MiscellaneousRadiationEffects

5.6.1 Low EnergyProtonIrradiationof PartiallyCoveredSolarCells

Someearlysatelliteswerelaunchedintosynchronousorbitwithcoverslidesthatwerenotquite

largeenoughto completelycoverthe solarcells. Two suchsatellites,ATS-F1and InteisatII-F4,

experiencedimmediate,unpredictedsolarpaneldegradationsoonafterreachingsynchronousaltitude.

Subsequentinvestigationsrevealedthatthedegradationwasdueto irradiationof thesmallexposedareas

by theintenselow energyprotonsexistingat synchronousaltitude[5.3,5.13-5.17]. It wasfoundthat

cellsirradiatedwith low energyprotonsthroughnarrowspacesin theirshielding(gaps)exhibitedlarge

lossesin Pmax and Vow, but their I-V curves near I_ remained unchanged. This behavior was explained

by a model consisting of two solar cells in parallel, wherein one cell is large and shielded, while the other

is small and exposed to radiation. The irradiated cell may be damaged heavily in the junction region by

the creation of a large number of recombination centers. This induces a large recombination-generation

current, I02, causing a loss in Vo_ (cf. eq. 2-3). The I-V curve resulting from this model matched the

experimental data quite well. It also showed that if the onboard power management system was designed

to operate on the Vo_ side of maximum power, this type of cell damage could cause large losses in power

available to the spacecraft.

There is nothing in the above model which would indicate that GaAs cells should be immune

from this phenomenon, and several workers did indeed perform low energy proton irradiations of GaAs

solar cells through small gaps [5.18 - 5.21]. The first test was performed at JPL [5.18] on four GaAs

cells from the Mantech line. These cells were placed in fixtures which shielded all the cell surface except

for the busbar and -_ 125 _m of GaAs just inside the busbar. The cells were exposed to 200 keV protons

in two steps, to fluences of 1 x 1011 and 1 x 1012 p/cm 2, with I-V characteristics measured after each

step. Following this, the cells were exposed to the same two fluences with 500 keV protons, then again

with 1 MeV protons. The cells exhibited = 5 % degradation in both Pm_xand V,_, but not in I_, thus

duplicating the behavior of Si cells. Approximately 3 % of the degradation occurred after the 200 keV

exposure and an additional 1% after each of the higher energy irradiations.

Another test of this phenomenon was performed at JPL in 1991 [5.19] using GaAs/Ge cells from

ASEC. These cells were protected by 12-mil thick coverglasses that entirely covered the cell and part

of the busbar. As shown in Figure 5.7, the silver busbar is 6 #m thick, which is slightly less than the

range of 1 MeV protons. There is also a small exposed area of GaAS just outside the busbar, _ 2 mils
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wide. This is deliberately designed in

the cell geometry to leave clearance

for a saw cut after processing. In

this experiment, eight samples were

irradiated with 500 keV protons to a

fluence of 1 x 10 t3 p/cm 2. Although

these protons could not penetrate the Ag 6

busbar, they nevertheless produced an

average degradation in cell power of

11%, with a loss in Vo_ of 3.5%, but
Figure 5.7.

no loss in I_, (see Figure 5.8) typical

of low energy proton gap irradiations.

It is clear that the exposed gap is a vulnerable area.

.002" _-_ _ Coverglass

/" /r " // ,/_

CaAs/Oe Solar Cell y
U /

GaAs/Ge Solar Cell and Coverglass Geometry

Used in Low Energy Proton Gap Irradiations

More recently, Scott and Marvin [5.20] performed similar low energy proton irradiations on

ASEC cells similar to those used in the 1991 JPL irradiations. These cells also had the 2-mil wide gaps

outside the busbar. They irradiated the cells to successively higher fluences, up to a total of

1 x 1014 p/cm _. As the irradiation proceeded, they found that P,_ at first degraded very rapidly, then

stopped degrading, and after this point began to improve with irradiation. The fluences at which minima

occurred varied with proton energy, varying from 1 x 1013 to 3 x 1013 p/cm 2, for 50 keV to 200 keV

protons. The initial power loss is explained by an increase in leakage current through the small shunt

diode, through the creation of recombination centers in the junction region. At higher doses, the

resistance of the heavily damaged material increases and reduces the current flow through the leakage

area. These authors also found that the cells' power degradation increased as the length of the exposed

gap was increased. The decrease is rapid for small gap lengths, but as the length increases the damage

produced by a constant incident fluence is proportional to exp(-at) and effectively saturates for gap

lengths over ---2 cm. Since the power loss due to the presence of gaps is proportional to the cell

perimeter, and the cell power is proportional to cell area, the authors concluded that the use of larger area

cells would be advantageous because the ratio of cell area to perimeter length increases with cell size.

The results from all these studies strongly suggest that the unprotected area near the busbar is very

vulnerable to low energy proton damage and steps should be taken to protect it when launching into a

proton-rich environment.
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Figure5.8.
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After lx10 13 p/cm2

500 keY Protons

0 I I I I
0 0.4 0.8 1.2

Voltoge, V

GaAs/Ge Solar Cell Performance after Irradiation with 500 keV Protons to a

Fluence of 1 x l0 B p/cm 2

5.6.2 Radiation Rate Effects

When solar cells are irradiated with accelerators, they are always irradiated at a much greater

flux rate than experienced in space. Cells irradiated with electrons to fluences between 1 x 10_5and

1 x 1016 e/cm 2 are usually irradiated with fluxes in the order of 1 x 10 it e/cm2-sec, so that the radiation

times are no more than a few hours. A beam of 1 MeV electrons at a flux of 1 x 10" e/cm2-sec will

cause the temperature of a GaAs solar cell to rise at a rate of =0.2°C/sec if the cell is not attached to

a thermal sink (assuming half the electrons stop in a 2 x 2 cm cell, 0.02 cm thick). Even when the cell

is thermally attached to a heat sink, it is possible that some internal heating may occur inside the cell

during the irradiation, perhaps annealing some of the radiation damage during the irradiation. This could

then turn out to be a poor simulation of the behavior to be expected in space.
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ThreedifferentexperimentswereperformedatJPLto investigatethepossibilityof arateeffect

in theelectronirradiationof GaAscells. Thefirst experiment[5.22],performedin 1978onLPEcells

madeby HughesResearchLab, involvedthe slow irradiationof two setsof cells to fluencesof

1x 1015e/cm2. Onesetwas irradiatedat a temperatureof 28°C, andthe othersetwasheld at a

temperatureof 126°C.Thefluxrateswerelow,2 x 101°e/cm:-sec,sothatthetotalirradiationtimewas

13.5hours.At theendof theseirradiations,theelectricalcharacteristicsof eachsetof cellswerefound

to beidentical.Thecellsirradiatedat28°Cwereannealedat 129°Cfor 15hoursandremeasured.The

cell characteristicsdid not improve. All theaboveI-V characteristicsalsoagreedwith cellsirradiated

attheusuallaboratoryflux ratesof -_2 to 5 x 1015e/cm2,sothepossibilityof internalcell heating(and

annealing)duringlaboratoryirradiationtestingwasconcludedtobeunlikely.Thesecondexperimentalso

involvedHughesLPEcells. Two cells,with 12mil coverglassesattached,wereirradiatedat 80°Cto

5successivefluences,to atotal1MeVelectronfluenceof 6 x 10_4e/cm2[5.23]. Onecellwasirradiated

ata flux rateof 2 x 109e/cm2-sec,andtheotherat2 x 10I' e/cm2-sec.Nodifferencewasobservedin

theelectricalperformance.

ThethirdJPLstudywasperformedin 1991[5.24],usingGaAs/Gesolarcellsof then-current

vintagefrom theASEC. Duringthis investigation,36cellsweredividedinto twogroups. Thefirst

groupof cellswasirradiatedwith1MeVelectronsto threesuccessivefluencesof 1x 10'4,5 x 1014,and

1x 10'5 e/cm z, at a flux rate of 5 x 101° e/cm2-sec for the first irradiation, and at 2 x 1011 e/cm2-sec for

the second two fluences. The second group was irradiated at 1/10 the above flux rates. In each case,

the cells were attached to a temperature-controlled heat sink with Apiezon H vacuum grease, and the heat

sink was maintained at 28°C during all the irradiations. The cells were measured after each set of

fluence levels. All electrical parameters of the solar cells, namely I_, V,_, Imp, Vmp , Pmax, and fill factor

degraded identically (to within 1%) in each case. Although even the slow rate used in this experiment

is one or two orders of magnitude higher than flux rates experienced in space, the results confirm that

rate effects are not a prime issue of concern.

A related study was reported by Loo et al. [5.25], in which LPE GaAs solar cells were

irradiated to four fluences up to a maximum of 1 x 10 '5 e/cm 2 at low flux rates, but here the cells were

irradiated at much higher temperatures, 150°C and 200°C. Flux rates used were 2 x 10 9 and 4 x 101°

e/cmZ-sec, so that the irradiation at the low flux rate required an irradiation time of 139 hours. Their data

shows that at fluences up to 1 x 10H e/cm 2 there was not much difference in the power degradation,
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regardlessof theflux orcell temperatureused,andtheresultsalsocomparedfavorablywith irradiations

performedat roomtemperatureandhigherflux rates. However,thecellsirradiatedfor 139hoursto

1x 10'5 e/cm 2 at 200°C degraded to a P/P0 of 90%, while all cells irradiated at higher fluxes and lower

temperatures degraded to a P/P0 of 80%. But after a post-irradiation anneal at 200°C for 40 hours, all

cells ended up with identical P/P0 of 90%. The authors concluded that the radiation damage in the cells

was due to annealing at 200°C, and the much longer annealing time associated with the low fluxes is

primarily responsible for the apparently lower degradation rate.

5.6.3 Annealing of Irradiated GaAs Cells

At an early stage of development, electron-irradiated GaAs solar cells were found to be capable

of annealing at temperatures on the order of 200°C to 300°C [5.26 - 5.29]. In a radiation study of the

early Hughes LPE cells, Loo et al. [5.28] found that cells irradiated with 0.7, 1.0, and 1.9 MeV electrons

recovered significantly at annealing temperatures of 210°C in time periods on the order of 10 hours.

They found that annealing improved the cell's spectral response, indicating that there was recovery of

the diffusion length. The dark I-V characteristics of the irradiated cells showed a significant increase in

current due to production of recombination centers in the junctions, making them somewhat leaky. The

leakage current recovered to very nearly its pre-irradiation value after the annealing. The behavior of

the defect levels in GaAs cells irradiated with 1 MeV electrons and subsequently annealed was reported

in reference [5.2].

Heinbockel et al. [5.30] proposed that the simultaneous irradiation and annealing of GaAs solar

cells could be very advantageous. Soon thereafter, Loo et al. [5.31] reported the annealing characteristics

of Hughes LPE GaAs cells irradiated with 200 keV protons, along with several annealing treatments.

200 keV was selected because the damage induced in GaAs solar cells in this particular cell structure

(xw = xj = 0.5 txm) had been found to be particularly severe. In their continuous annealing experiments,

where the cells were held at temperatures as low as 150°C during irradiation, they found the radiation-

induced power loss was greatly decreased. These workers found, that in contrast to electron-irradiated

GaAs cells, there was very little damage recovery at post-irradiation annealing temperatures of 200°C.

However, in a subsequent paper [5.32] these same workers reported that annealing of proton damage was

quite effective. In these annealing experiments, a periodic annealing schedule was used, wherein

irradiations were interspersed with annealing, as well as irradiation to the total cumulative fluence given

in the periodic annealing experiments, culminating with a one-shot anneal at the prescribed temperature.
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Theseworkersfoundthat:(1) thesameP_x/P,_0wasobtainedfromtheperiodicannealingtreatmentas

obtainedif thecellsareirradiatedto thecumulativefluence,thenannealed;(2) therewassubstantial

improvementin cell performancewhentheannealingtemperaturewasaslow as200°C;(3) therewas

a moderateimprovementin performancewhentheannealingtemperatureswereraisedto 300°Cand

400°C;and(4)performancerecoverycouldbeenhancedby theinjectionof minoritycarriersinto the

cellsduringannealing,eitherby photoinjection(concentratedlight at 5 suns)or darkforward-current

biasingat 125mA/cm2. Injection-assisted annealing appears to be confirmed by a study of the defect

levels in electron irradiated GaAs by Stievenard and Bourgoin [5.33], who found significant annealing

of one of the electron traps (E5 at Ec-0.83 eV) at an injection current of 1.3 A/cm 2, but at a very low

temperature of 57°C. The authors did not report whether there was an associated improvement in the

I-V characteristic.

A study of GaAs solar cell annealing after irradiation with 8.3 MeV protons and 1 MeV

electrons was performed at JPL using Hughes LPE cells [5.34]. In this study the solar cells were

annealed after irradiation using isochronal anneals of 30 minutes in a nitrogen atmosphere. The annealing

results are plotted as a function of unannealed fraction defined as:

X 0 - X t
f(x) - (5-14)

xo - x,

where X0 is the pre-irradiation value of the photovoltaic parameter, X_ is the value after irradiation, and

Xt is the value after annealing at temperature t. In plots of this type, improvement of cell performance

after annealing causes the value of f(x) to decrease. The results of the annealing experiments are shown

in Figure 5.9. The figure shows the results after irradiation with 8.3 MeV protons to a fluence of

1 x 1013 p/cm 2 and after an irradiation with 1 MeV electrons to a fluence of 1 x 1015 e/cm 2. This data

shows that recovery from electron-induced damage has a very rapid onset at _ 200°C, but proton-induced

damage seems to have a much more gradual onset at about the same temperature. After treatment to

temperatures above 375°C all GaAs cells showed deterioration in I_, Vow, and P_. Since other

investigators have not reported such severe degradation at these temperatures, the cell deterioration may

be due in part to the nitrogen atmosphere used during the annealing.
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All the annealing studies discussed above were performed on early vintage GaAs solar cells

manufactured by Hughes Research Lab with the LPE process. A study performed in 1988 by Chung

et al. [5.35] examined the annealing of some early GaAs cells made by ASEC on both GaAs and Ge

substrates. The cells were irradiated in steps of 1 x 10 ]6 e/cm 2, tO a total fluence of 1 x 1017 e/cm 2, with

annealing between each step at 250°C for 1 hour in a nitrogen atmosphere. Parallel experiments were

performed at annealing temperatures of 300°C and 350°C. These early cells did not have high

efficiencies by today's standards (16.5 % for the GaAs/GaAs cells and 13.6 % for the GaAs/Ge cells), but

the results should be indicative of modern cell behavior. The 1 x 1016 e/cm 2 irradiation/anneal results
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have been converted to unannealed fractions and plotted on Figure 5.9. Their results appear to parallel

the earlier results for LPE cells. Since GaAs cells are annealable at relatively low temperatures, it may

be possible to design annealable panels for some space missions.
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Chapter6

ElectricalPerformanceof GaAsSolarCells

In thischapterwewill presentdatashowingthedegradationof GaAssolarcellsfrom various

manufacturersasafunctionof 1MeVelectronfluence.Wewill presentthebehaviorof GaAssolarcells

asa functionof solarintensity,cell temperature,andirradiation,andwill alsoreportsomeGaAssolar

cell flightdata.

6.1 1MeV ElectronRadiationData
All the irradiationsand electricalmeasurementsthat follow were performedat the JPL

Dynamitron/SolarCellLaboratoryusingthetechniquesoutlinedin Chapter2. Thecellswereheldata

temperatureof 28°Cduringtheirradiation.Eventhoughweobservednegligiblechangeinperformance

dueto annealingat temperaturesof 60°C,themeasurementsreportedhereweremadeaftera 20-hour

annealat 60°C. Figures6.1 through6.10 are plots of the behaviorof ASEC GaAs/Gecells

manufacturedin 1990.Tencellswereirradiatedandmeasuredincumulativefluences.Averagesof the

electricalparameterswerecalculated.Cubicsplinefits to theseaveragevaluesareplottedin thefigures.

ThesecellshadanAIGaAswindowthicknessof 0.05/xm,ajunctiondepthof 0.40/_m,a GaAsbuffer

layerof 8/_m, andwereconstructedwithdualantireflectioncoatings.Thebusbarconsistedof a thin

stripalongoneedgeandtwocontactpads.Thecurrentandmaximumpowervalueshavebeendivided

bythetotalcell area(includingbusbar)for theplotsto giveIxffCm2andP_ffcm2. Thebusbarareaon

these2 x 2 cm2cellswas0.13cm2;therefore,a slightadjustmentmaybedesirablewhenapplyingthese

valuesto sampleswithdifferentcell andbusbarareas.

Usingleast-squarepolynomialfits, thevaluesofnormalizedcellperformancetakenfromFigures

6.6through6.10werefit to equationsof theform:

m

y = _ a i [ln(_)]i (6-1)
i=0

where Y is a solar cell electrical parameter, ln(_) is the logarithm (base e) of the total 1 MeV electron

fluence (e/cm2), ai are the parameters determined by the least square fits, and m is the degree of

polynomial which was determined to give the best fit for parameter Y. The values found for the
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parametersaretabulatedinTable6-1. Thesefitsarenotthesamefitsusedin thecubicsplinefittingused

in theplotting;however,theagreementbetweenthetwofitting techniquesturnsoutto besurprisingly

good. As a cautionarynote,thesefitshavebeenmadefor 1MeV electronfluencesout to a maximum

fluenceof 1 x 1016 e/cm 2, and should not under any circumstances be used to calculate the degradation

at higher fluences.

As GaAs cells manufactured by Spectrolab became available, they were also irradiated and

measured. Their performance as a function of 1 MeV electron fluence is plotted in Figures 6.11 through

6.20. These cells were made in 1993 with an AIGaAs window thickness of 0.05 #m, a junction depth

of 0.40 #m, a buffer layer of 1 #m, and dual antireflection coatings. Sample size for these measurements

was five cells. The busbars on the Spectrolab cells consisted of a wide strip along one edge. The cell

area was 4 cm 2 and the busbar area was 0.18 cm 2. Least-square fits to the normalized data for the

Spectrolab cells are listed in Table 6-2.

The data in Figures 6.1 through 6.20 is intended to be used with the calculations of total 1 MeV

equivalent fluence, computed for various space radiation environments, to predict on-orbit solar cell

performance. The manufacturers are constantly improving their cells, and the data shown here may or

may not be representative of the cells currently in production. It is highly recommended that samples

be taken from current production lines and checked at one or two fluences to assess how well their

behavior is represented by these curves.

Much of the data presented in this handbook is based on GaAs cells made by Hughes Research

Laboratory using the LPE process. We have also presented a great deal of data on cells made by ASEC

with the MOCVD process. This has primarily been because these cells were available in quantity for

performance of the experiments. Figures 6.21 through 6.30 are plots which compare the performance

of the later Hughes LPE cells (vintage _ 1984) with some early (vintage = 1984) ASEC MOCVD cells.

These figures also show the performance at fluence levels as high as 1 x 1017 e/cm 2. The current and

power performance at extremely high fluences does not continue to decrease linearly with the logarithm

of the fluence, but levels off at fluences higher than 1016 e/cm 2, perhaps indicating a saturating of defect

levels which affect the minority carrier diffusion lengths.
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Table6-1. Least-SquareFits to theNormalizedElectricalParametersof ASECGaAs/Ge
CellsIrradiatedwith 1MeV Electrons(seeEq.6-1)

Fit

Coeff. I_c/Isco Voc/Vo_o Pmax/Pmax0 I_p/I_p0 V_p/V_po

ao

al

a2

a3

a4

as

-3.21012E+1

2.87190E+0

-7.16821E-3

-6.15155E-3

2.13215E-4

-2.19063E-6

-6.93638E+0

1.06168E+0

-5.38317E-2

1.23296E-3

-I.08219E-5

-2.63101E+2

4.08797E+I

-2.50093E+0

7.53995E-2

-I.I1568E-3

6.43817E-6

-9.23637E+I

1.27738E+1

-6.54682E-I

1.49083E-2

-1.27378E-4

1.40839E+2

-2.28925E+I

1.49427E+0

-4.86444E-2

7.90489E-4

-5.13603E-6

Table 6-2. Least-Square Fits to the Normalized Electrical Parameters of Spectrolab GaAs/Ge
Cells Irradiated with 1 MeV Electrons (see Eq. 6-1)

Fit

Coeff. Isc/Isco Voc/Voco Pmax/Pmax° Imp/Imp° Vmp / Vmp0

ao

a_

a2

a3

a4

a5

-2.61758E+2

4.08147E+I

-2.50241E+0

7.55032E-2

-I.I1673E-3

6.43804E-6

2.59327E+2

-4.19118E+I

2.70466E+0

-8.67942E-2

1.38569E-3

-8.81256E-6

-1.46904E+2

2.39582E+I

-1.53609E+0

4.86061E-2

-7.56180E-4

4.59927E-6

-3.94407E+2

6.25491E+I

-3.91923E+0

1.21426E-I

-1.85668E-3

I.I1787E-5

4.60191E+2

-7.37150E+1

4.70944E+0

-1.49715E-i

2.36935E-3

-1.49430E-5
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6.2 GaAsSolarCellBehaviorwithTemperatureandSolarIntensity

In thissectionwewill showthebehaviorof ASECGaAs/Gecellsasafunctionof temperature

(-120°Cto + 140°C),incidentsolarintensity(5to 250mW/cm2),and1MeVelectronirradiation(after

fluencesof 0, 1x l0 t4and1.1x 1015e/cm2). Thesecellswereof 1992vintageandhada window

thicknessof 0.06_m, a junction thicknessof 0.45#m, anda dual antireflection(AR) coatingof
TiOx- AI203. Thecellsizewas2 x 2 x 0.02cm. For theseexperiments,sevencellswerebondedto

a copperplatewith RTV560,a siliconerubbercompoundmadebyGeneralElectric. A thermocouple

wasbondedto thebusbarof a dummycell mountedon theplateto enabletemperaturemeasurements.

Duringtheirradiations,thecopperplatewasmountedonatemperature-controlledtargetplaneandheld

atatemperatureof 28°Cduringtheexposures.Theplatewasmountedonanothertemperature-controlled

surfacein avacuumsystemfor thetemperature/intensitymeasurements.AnX-25L simulatorwasused

asthelight sourceandilluminatedthecellsthrougha7940fused-silicawindowin thevacuumchamber.

A balloonflight standardcell wasalsomountedin thechamberfor settingthesimulatorintensity.The

standardcellwasmountedon itsowntemperatureblockandheldat28°Cthroughoutthemeasurements.

Theresultsof theelectricalmeasurementsprior to irradiationaretabulatedin Tables6-3through

6-9. Thenumbersin thetablesareaveragevaluesof thesevencellsmeasured.Theintensitieswere

measuredwith referenceto theThekaekarastandardof 135.3mW/cm2,sofor increasedaccuracy,the

reportedintensityvaluesshouldbeadjustedupwardbytheratioof 136.8/135.3(abouta 1%adjustment).

Thecurrentandmaximumpowervalues,Ix, In,p, and Pm_xhave all been divided by the cell area, which

in this case was 4 cm2. Figures 6.31 through 6.33 are plots of I_, Vo,, and Pm_xas a function of

temperature, and Figures 6.34 through 6.36 are plots of the same parameters as a function of intensity.

The continuous curves are least-square fits to the data using either second or third degree polynomials.

The data for these same cells, after the 1 MeV electron irradiation to 1 x ltY4 e/cm _ is shown in Tables

6-10 through 6-16, and in Figures 6.37 through 6.42; the data following the 1 MeV electron irradiation

to 1.1 x 10_5e/cm 2 is shown in Tables 6-17 through 6-23, and in Figures 6.43 through 6.48.
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Table6-3. IJcm2vs.TemperatureandIntensity, Pre-Irradiation

Temp,

-120

-i00

-80

-60

-40

-20

0

20

40

60

80

i00

120

140

oC

Solar Intensity, mW/cm 2

5.0 15.0 25.0 50.0 I00.0 135.3

1.05

1.03

1.03

1.05

1.10

i.i0

1.15

1.15

1.18

1.15

1.15

1.20

1.23

1.25

250.0

3 13

3 15

3 18

3 25

3 25

3 33

3 30

3 43

3 45

3 50

3.58

3.65

3.70

3.75

5.18 10.35 20.43 28.80 51.10

5.28 10.38 20.70 28.28 52.00

5.40 10.50 21.10 28.43 52.83

5.48 10.70 21.23 28.73 53.55

5.53 10.83 21.58 28.95 53.90

5.55 10.90 21.75 29.20 54.48

5.58 ii.00 21.68 29.05 54.15

5.63 ii.i0 21.93 29.60 54.83

5.75 11.43 22.48 30.58 55.83

5.83 11.55 22.93 31.08 56.90

5.95 11.75 23.43 31.63 57.95

6.10 12.00 23.85 32.33 58.95

6.20 12.18 24.15 32.90 59.98

6.28 12.35 24.55 33.45 61.08

Table 6-4. Vo¢ vs. Temperature and Intensity, Pre-Irradiation

Temp,

-120

-i00

-80

-60

-40

-20

0

20

40

60

8O

I00

120

140

Solar Intensity, mW/cm 2

oC 5.0 15.0 25.0 50.0 100.0 135.3
250.0

1066.9 1144.9 1174.4 1213.3 1249.3 1259.6 1287.9

1042.1 1116.1 1146.5 1183.5 1218.7 1227.9 1254.6

1013.5 1086.2 1116.1 1152.5 1186.2 1195.5 1221.7

982.3 1053.2 1082.9 1118.7 1151.4 1161.8 1186.3

950.4 1017.6 1047.2 1082.8 1115.2 1125.8 1150.8

912.1 980.0 1009.5 1045.2 1077.8 1089.3 1114.2

874.5 939.7 970.3 1006.6 1039.0 1050.8 1076.3

832.5 900.6 930.2 966.7 1000.2 1013.0 1038.6

791.0 858.8 889.8 928.0 961.7 975.9 1000.5

742.9 815.7 847.8 886.7 921.5 935.7 962.0

696.5 773.2 805.3 845.2 881.5 895.9 922.9

650.3 728.6 762.3 803.4 840.4 855.9 882.8

602.2 683.6 718.6 760.2 798.6 814.6 842.7

552.5 637.9 673.4 716.9 756.6 772.6 801.4
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Table6-5. ]mp/Cm2 VS. Temperature and Intensity, Pre-Irradiation

Temp,

-120

-I00

-80

-60

-40

-20

0

20

40

6O

8O

i00

120

140

oC

Solar Intensity, mW/cm 2

5.0 15.0 25.0 50.0 i00.0 135.3

2.88

2.90

2.90

3.00

3.03

3 00

3 00

3 13

3 15

3 15

3 18

3.18

3.23

3.18

0.93

0.93

0.93

0.93

0.98

0 98

1 00

1 00

1 03

1 00

1 00

1.03

1.03

1.03

4.78 9.58 19.08 25.60

4.88 9.65 19.40 26.08

4.98 9.83 19.85 26.45

5.05 9.93 20.03 26.88

5.08 10.05 20.28 26.98

5.08 10.20 20.40 27.03

5.08 10.23 20.33 27.25

5.18 10.20 20.35 27.53

5.28 10.55 20.78 28.03

5.25 10.60 21.00 28.68

5.38 10.70 21.48 28.98

5.43 10.75 21.63 29.28

5.43 10.83 21.70 29.55

5.50 10.80 21.75 29.40

250.0

48.28

48.90

50.33

50.78

50.70

51.48

50.75

51 35

51 93

52 75

53 28

53 53

54 18

55.03

Table 6-6. VmpVS. Temperature and Intensity, Pre-Irradiation

Temp,

mW/cm 2

°C 5.0 15.0 I00.0 135.3

Solar Intensity,

25.0 50.0

998.2 1046.7

975.0 1019.0

947.6 985.5

917.1 960.9

886.9 924.0

859.2 884.8

817.1 843.5

770.3 813 0

730.4 766 2

696.7 726 3

646.1 684 4

607.6 647 7

567.7 604 1

515.5 566 8

-120 878.7 958.6

-100 855.5 940.0

-80 832.3 921.5

-60 820.7 883.5

-40 782.5 847.4

-20 751.8 828.1

0 715.0 785.5

20 678.7 733.8

40 632.8 694.0

60 587.7 654.8

80 536.5 619.8

i00 497.8 577.8

120 450.0 527.0

140 407.7 491.6

1091.1

1063.6

1024.4

991.7

959.2

921.0

882 2

846 3

807 3

770 2

723 9

686 5

646 3

607.4

iii0.0

1075.8

1040.9

1000.5

971.5

940.0

898.5

856.3

820.7

779.2

739.4

706.5

665.8

631.4

250.0

1129.6

1107.4

1062.4

1033.5

1003.2

960.7

927.9

887.7

850.4

809.9

773.7

735.5

695.9

650.0
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Table6-7. Pm_x/Cmz vs. Temperature and Intensity, Pre-Irradiation

Solar Intensity, mW/cm 2

Temp,

-120

-i00

-80

-60

-40

-20

0

20

4O

60

8O

i00

120

140

oC 5.0 15.0 25.0 50.0 i00.0 135.3 250.0

0.81

0.79

0.77

0.76

0.76

0.73

0.72

0.68

0.65

0.59

0.55

0.51

0.46

0.41

2.76

2.72

2.68

2.65

2.57

2 49

2 36

2 30

2 19

2 06

1 96

1 83

1 70

1.57

4.77

4.75

4.71

4.63

4.50

4.36

4.15

3.98

3 85

3 66

3 48

3 29

3 07

2 83

10.04

9.85

9.68

9.54

9.29

9.01

8.63

8.29

8 09

7 70

7 32

6 96

6 55

6 12

20.80

20.64

20.35

19.85

19.45

18.77

17.94

17.23

16 77

16 18

15 56

14 85

14 02

13 21

28.41

28.06

27.54

26.89

26.22

25.41

24.49

23.56

23.00

22.35

21.41

20.69

19.68

18.58

54.54

54.16

53.48

52.48

50.88

49.44

47.08

45.58

44.15

42.72

41.23

39.36

37.70

35.78

Table 6-8. Fill Factor vs. Temperature and Intensity, Pre-Irradiation

Temp,

-120

-i00

-80

-60

-40

-20

0

20

4O

60

8O

i00

120

140

oC

Solar Intensity, mW/cm 2

5 . 0 15 . 0 25 .0 50 . 0 100 . 0 135 . 3 250 .0

0 771

0 772

0 773

0 772

0 774

0 768

0 760

0 748

0 739

0.721

0.708

0.690

0.671

0.651

0.731

0 733

0 732

0 732

0 727

0 724

0 717

0 708

0.703

0.688

0.671

0.650

0.627

0.600

0 784

0 783

0 784

0 783

0 779

0 777

0 766

0 760

0.751

0.741

0.726

0.709

0.689

0.669

0.798 0.815 0.809

0.801 0.817 0.808

0.800 0.813 0.810

0.796 0.812 0.806

0.793 0.808 0.805

0.791 0.801 0.799

0.779 0.797 0.790

0.773 0.785 0.786

0.763 0.776 0.777

0.751 0.766 0.768

0.736 0.753 0.755

0.722 0.741 0.748

0.707 0.727 0.734

0.691 0.711 0.718

0.829

0.830

0.828

0.826

0.820

0.815

0.808

0 800

0 790

0 780

0 771

0 756

0 746

0 731
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Table6-9. Efficiencyvs.TemperatureandIntensity,Pre-Irradiation

Temp,

-120

-I00

-80

-60

-40

-20

0

20

40

60

8O

i00

120

140

oC
Solar Intensity, mW/cm 2

5.0 15.0 25.0 50.0 i00.0 135.3

16.23

15.80

15.30

15.08

15.11

14.49

14.38

13.59

13 03

ii 80

I0 88

i0 19

9 18

8 27

18.39

18.13

17.84

17.63

17.11

16.61

15.73

15.33

14.56

13.75

13.08

12.21

11.30

10.43

19.09

18.98

18.85

18.51

18.00

17.43

16 59

15 93

15 41

14 63

13 91

13 17

12 29

II 33

20.07

19.69

19.36

19.08

18.59

18.03

17.26

16 59

16 18

15 40

14 64

13 92

13 10

12 24

20.80

20.64

20.35

19.84

19 45

18 77

17 94

17 23

16 77

16 18

15 56

14 85

14 02

13 21

21.00

20.74

20.36

19.87

19.38

18.78

18.10

17 41

17 00

16 51

15 83

15 29

14 54

13 73

250.0

21.82

21.66

21.39

20.99

20.35

19.77

18.83

18.23

17.66

17.09

16.49

15.75

15.08

14.31
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Table 6-10. IJcm 2 vs. Temperature and Intensity, after 1 x 10 _4e/cm 2

Solar Intensity, mW/cm 2

Temp, °C 5.0 15.0 25.0 50.0 I00.0 135.3 250.0

0.93

0.95

0.98

1 00

1 03

1 O5

1 05

1 O5

1 08

1 i0

1 13

1 13

1 18

1 20

2 83

2 93

2 95

3 00

3 05

3 08

3 18

3 18

3 20

3 25

3 30

3 43

3 48

3.55

-120

-I00

-80

-60

-40

-20

0

20

40

60

8O

i00

120

140

4.80

4.80

4 93

5 00

5 O8

5 13

5 20

5 28

5 33

5 48

5 58

5 68

5 8O

5 85

9.35

9.60

9.93

9 95

i0 13

i0 25

i0 35

I0 28

i0 55

i0 73

II 00

II 30

ii 50

11.70

18.43

18.93

19.13

19.55

20 23

20 53

20 53

20 68

21 05

21 58

22 03

22 43

22 90

23 43

25.20

25.45

26 38

26 85

27 25

27 60

27 83

27 98

28 60

29 38

29 93

30 73

31 48

32.03

46.70

47.83

48.85

50.08

50.53

51.10

51.35

51.45

52.48

53.85

54.63

55.50

56.40

57.68

Table 6-11. Vo_ vs. Temperature and Intensity, after 1 x 10 t4 e/cm 2

Temp,

-120

-I00

-80

-60

-40

-20

0

20

40

60

80

I00

120

140

Solar Intensity, mW/cm 2

oC 5.0 15.0 25.0 50.0 i00.0 135.3

1132 8

1104 5

1072 0

1038 8

1004 1

964 3

925 8

884 8

843 0

800 0

755 9

711 8

665 5

619.6

1054.8

1031 6

1004 5

974 8

940 8

904 1

864 0

821 4

778 3

733 9

688 6

640 1

593 0

543 7

1161 8

1130 3

1097 5

1062 7

1026 5

989 0

950 0

910 3

869 3

829 1

785.3

742.0

697.2

651.6

1195.2

1162 4

1128 8

1092 7

1056 4

1019 5

981 0

941 6

902 6

862 7

820 6

778 9

735.7

691.9

1225.3

1191.9

I157.1

1121 1

1085 0

1047 7

1010 9

971 8

932 5

893 4

852 9

811.8

770.3

727.4

1239.0

1204 7

1169 4

1133 4

1096 9

1059 6

1021 6

984.7

945.4

906.0

865.6

825.6

783.9

742.4

250.0

1261.4

1227.5

1193.0

1156.7

ii19.9

1083.1

1045.6

1007.8

969.7

931.2

892.1

851.8

811.8

770.4
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Table 6-12. Imp/Cm 2 vs. Temperature and Intensity, after 1 x 1014 e/cm 2

Temp,

-120

-i00

-80

-60

-40

-20

0

20

40

60

80

I00

120

140

Solar Intensity, mW/cm 2

°C 5.0 15.0 25.0 50.0 i00.0 135.3

2 .

2.

2.

2.

2.

2

2

2

2

2

2

2

3

3

55

68

68

73

78

8O

88

88

88

9O

9O

98

00

O3

0.80

0 83

0 85

0 88

0 90

0 9O

0 93

0 90

0 93

0 93

0 98

0.95

0.98

0.98

4.40

4.40

4.53

4.58

4 70

4 73

4 75

4 80

4 80

4 95

4 98

5 O5

5 08

5 08

250.0

8.55 17.08 23.50 43.65

8.83 17.60 23.88 45.10

9.20 17.90 24.68 46.23

9.25 18.35 25.25 47.53

9.45 18.85 25.45 47.75

9.48 19.25 25.80 48.23

9.60 19.18 26.03 48.20

9.45 19.28 26.00 48.40

9.68 19.48 26.50 49.35

9.83 19.88 29.50 49.90

9.93 20.13 27.60 50.33

10.08 20.33 27.98 50.98

10.30 20.53 28.53 51.20

10.30 20.95 28.60 51.88

Table 6-13. Vmp VS. Temperature and Intensity, after 1 x 1014 e/cm 2

Solar Intensity, mW/cm 2

Temp, oC 5.0 15.0 25.0 50.0 i00.0

870.8

850 7

824 1

805 6

779 3

745 2

706 7

667 3

625 7

582.3

534.8

491.9

447.0

401.0

948

927

908

878

849

813

777

736

696

652

612

572

520

474

-120

-i00

-80

-60

-40

-20

0

20

4O

6O

8O

i00

120

140

981.5

961.1

938 4

911 6

874 6

842 8

806 2

764 4

725 9

681 4

641 3

594 1

552 9

508 4

1037.7 1077.6

I010 0 1049 2

979 4 1014 3

946 6 977 6

908 7 950 2

880 1 907 7

838 7 871 5

800 9 831 5

759 8 793.2

717 4 752.4

680 0 712.7

640.4 670.8

587.1 632.4

549.6 585.2

135.3 250.0

1092

1057

1030

993

964

924 2

882 9

847 6

805 6

769 2

722 0

685 8

642 0

604.5

.I 1122.5

3 1086.2

1 1051.3

4 1013 7

0 981 0

944 4

910 3

866 3

824 2

792 4

750 7

708 4

670 2

629 1
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Table 6-14. Pmax/cm 2 vs. Temperature and Intensity, after 1 x 1014 e/cm 2

Temp,

Solar Intensity, mW/cm 2

oc 5.0 15.0 25.0 50.0 i00.0 135.3
250.0

-120 0.71 2.43 4.32 8.88 18.42 25.67 49.00

-I00 0.71 2.48 4.24 8.92 18.46 25.24 48.99

-80 0.71 2.44 4.24 9.02 18.16 25.43 48.59

-60 0.70 2.41 4.19 8.77 17.95 25.09 48.16

-40 0.70 2.37 4.10 8.58 17.91 24.54 46.86

-20 0.68 2.28 3.97 8.33 17.47 23.86 45.56

0 0.65 2.24 3.83 8.05 16.73 22.99 43.90

20 0.61 2.11 3.67 7.58 16.03 22.04 41.94

40 0.58 2.00 3.50 7.35 15.45 21.36 40.68

60 0.55 1.90 3.37 7.04 14.96 20.78 39.55

80 0.52 1.78 3.19 6.74 14.35 19.94 37.78

100 0.47 1.70 3.00 6.45 13.63 19.19 36.12

120 0.44 1.57 2.81 6.05 12.99 18.32 34.32

140 0.39 1.44 2.58 5.66 12.27 17.29 32.64

Table 6-15. Fill Factor vs. Temperature and Intensity, after 1 x 1014 e/cm 2

Temp,

-120

-i00

-80

-60

-40

-20

0

2O

4O

60

8O

i00

120

140

Solar Intensity, mW/cm 2

oc 5.0 15.0 25.0 50.0 i00.0 135.3

0.759 0.774

0.765 0.780

0.769 0.786

0.770 0.788

0.771 0.786

0.767 0.782

0.762 0.776

0.754 0.765

0.742 0.754

0.729 0.741

0.716 0.729

0.695 0.713

0.677 0.694

0.656 0.676

0.720

0.721

0.723

0.725

0 724

0 718

0 715

0 706

0 696

0 683

0.670

0.649

0.628

0.600

0.795

0.800

0.804

0 805

0 803

0 798

0 792

0783

0 772

0 760

0 747

0 733

0.715

0.699

250.0

0.816 0.822 0.832

0.818 0.823 0.834

0.820 0.824 0.833

0.819 0.824 0.831

0.816 0.821 0.828

0.812 0.816 0.823

0.805 0.809 0.817

0.798 0.799 0.809

0.786 0.790 0.799

0.776 0.781 0.788

0.764 0.769 0.775

0.749 0.756 0.764

0.736 0.742 0.749

0.720 0.727 0.734
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Table6-16. Efficiencyvs.TemperatureandIntensity,after1 x 1014 e/cm 2

Temp,

-120

-i00

-80

-60

-40

-20

0

20

40

6O

8O

i00

120

140

Solar Intensity, mW/cm 2

°C 5.0 15.0 25.0 50.0 I00.0 135.3

16.20

16.54

16.26

16.03

15.76

15.19

14.93

14.08

13 33

12 63

ii 87

ii 30

i0 43

9 59

14.14

14.26

14.20

13.99

13.89

13 56

12 96

12 13

ii 53

i0 91

i0 31

9.41

8.77

7.79

17.27

16.96

16.96

16.74

16.41

15.89

15.33

14 66

13 97

13 48

12 75

12 00

Ii 22

10.32

17.76

17.84

18.03

17.53

17.17

16.66

16.09

15.15

14.69

14.08

13.48

12.90

12.11

11.32

18.42

18.46

18.16

17.95

17.91

17 47

16 73

16 03

15 44

14 96

14 35

13 63

12.99

12.27

18.97

18.66

18.79

18.54

18.14

17.63

16.99

16.29

15.79

15.36

14.74

14.18

13.54

12.78

250.0

19.60

19.60

19.44

19.27

18.74

18.22

17.56

16.77

16.27

15.82

15.11

14.45

13.73

13.06
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Table 6-17. Isc/Cm2 vs. Temperature and Intensity, after 1.1 x 10 Is e/cm 2

Temp,

-120

-i00

-80

-60

-40

-20

0

20

40

60

80

i00

120

140

Solar Intensity, mW/cm 2

oC 5.0 15.0 25.0 50.0 i00.0 135.3

2.48

2.48

2.53

2.58

2.63

2.68

2 70

2 73

2 78

2 85

2 90

2 93

3 00

3 05

0.80

0.83

0.83

0.85

0.88

0.88

0 90

0 90

0 93

0 93

0 95

0 98

1 00

1 03

4.15

4.10

4.20

4.25

4.35

4.45

4.48

4 55

4 65

4 73

4 80

4 90

5 00

5 I0

8.20

8.20

8.28

8.35

8.65

8.75

8 78

8 80

8 93

9 18

9 33

9 50

9 70

9 90

16.30

16.70

17.08

17.33

17.68

17.85

17 88

17 83

18 38

18 7O

19 05

19 38

19 88

20 28

21 60

22 28

22 63

23 20

23 55

23 80

23 70

24 08

24 55

25 00

25 55

26.13

26.73

27.48

250.0

41 88

42 58

42 93

43 88

44 73

45 75

46 23

46 30

46 93

47 93

49.08

49.88

51.40

52.20

Table 6-18. Vo_ vs. Temperature and Intensity, after 1.1 x 1015e/cm 2

Temp,

-120

-100

-80

-60

-40

-20

0

20

40

60

8O

i00

120

140

Solar Intensity, mW/cm 2

oc 5.0 15.0 25.0 50.0 I00.0 135.3 250.0

1106.4

1072 8

1038 4

1002 8

965 5

926 2

886 3

845 6

803 5

759.9

715.2

669.8

623.7

576.1

1034.8

1010.2

981 5

950 3

914 3

876 9

836 3

793 4

749 3

703 2

655.8

607.2

557.3

506.9

1129.6

1093 4

1058 1

1021 7

984 4

945 9

906 2

866 4

825.1

782.7

739.9

695.7

650.3

604.3

1154.6

Ii17 4

1081 1

1044 1

1007 9

970 1

931 2

892 2

852 2

811.5

769.9

727.2

683.3

638.9

I178 6

i140 9

1104 2

1067 6

1031 1

994 7

956.7

918.1

879.6

840.2

799.5

757.5

715.7

672.6

1187.6 1205.9

I150.6 1168.6

1113.3 ll31.1

1077.0 1094.3

1039.9 1058.1

1003.8 1022.9

965.6 985.8

927.8 948.6

889.6 910.8

850.1 872.9

810.0 833.2

769.6 793.1

728.2 753.2

686.8 712.3
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Table6-19. Imp/Cm2 VS. Temperature and Intensity, after 1.1 x 10 '5 e/cm 2

Temp,

-120

-i00

-80

-60

-40

-20

0

20

40

60

8O

I00

120

140

oc

Solar Intensity, mW/cm 2

5.0 15.0 25.0 50.0 i00.0 135.3 250.0

0.73

0.73

0.73

0.75

0.75

0.78

0.78

0.80

0.80

0.80

0.80

0.80

0.83

0.80

3.75 7.50

3.73 7.48

3.83 7.65

3.88 7.70

3.98 8.00

4.03 8.10

4.05 8.10

4.15 8.15

4.23 8.25

4.25 8.40

4.35 8.45

4.38 8.58

4.40 8.60

4.48 8.78

2 .20

2.20

2.25

2.30

2.35

2.43

2 43

2 45

2 53

2 55

2 58

2 58

2 60

2 58

15.08

15.50

15.90

16 23

16 55

16 65

16 73

16 55

17 i0

17.30

17.40

17.68

17.85

17.98

20.10

20.85

21.23

21.80

22.05

22.35

22.28

22.48

22.93

23. 00

23 .60

23. 90

24.13

24.60

39.38

40 18

40 65

41 50

42 35

43 13

43 60

43 65

43.85

44.70

45.40

45.98

46.93

47.35

Table 6-20. Vmp VS. Temperature and Intensity, after 1.1 x 10 '5 e/cm 2

Temp, °C 5

-120

-100

-80

-60

-40

-20

0

20

40

60

8O

I00

120

140

852

837.4

817.5

799.9

759.4

729.4

690.3

648.9

614.9

572.9

530.4

484.4

429.4

387.6

.0 15.0

.6 937.2

915 0

889 2

861 0

830 1

791 7

751 6

712 8

664.3

620.4

577.2

533.2

493.1

446.6

Solar Intensity, mW/cm 2

25.0 50.0 I00.0 135.3 250.0

963.6 1013.3 1055.8 1064.4

938.4 993.0 1023.5 1032.7

922.1 954.4 989.5 998.1

888.1 922.7 950.6 962.2

855.4 886.8 914.9 927.5

819.6 850.1 880.9 886.2

781.2 809.0 835.6 842.2

735.6 766.0 799.5 805.7

693.2 721.1 752.9 761.8

654.2 684.2 712.9 726.6

604.4 642.7 673.9 677.5

559.5 596.3 627.3 638.4

518.9 555.4 588.6 601.5

469.2 507.0 547.8 557.4

1082.8

1048.1

i010 0

976 4

937 7

902 4

860 4

818 3

783 2

740 2

699 6

656 7

617 0

573.7
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Table6-21. Pr_x/cm2vs.TemperatureandIntensity,after1.1x 1015 e/cm 2

Solar Intensity, mW/cm 2

Temp, °C 5.0 15.0 25.0 50.0 I00.0 135.3 250.0

2.06

2 02

2 02

1 99

1 96

1 92

1 83

1 75

1 68

1.59

1.49

1.38

1.28

1.16

-120

-I00

-80

-60

-40

-20

0

20

40

60

8O

i00

120

140

3.63

3 50

3 53

3 45

3 40

3 31

3 17

3 06

2 92

2 78

2 62

2.45

2.29

2 .i0

0 61

0 61

0 60

0 59

0 58

0 57

0 54

0 52

0 49

0 45

0 42

0.39

0.35

0.31

7.60 15.91

7 43 15 87

7 31 15 75

7 12 15 43

7 ii 15 14

6 88 14 68

6 56 13

6 24 13

5 96 12

5 74 12

5 44 Ii

5 ii ii

4 78 i0

4 45 9

21.40 42.65

21.53 42.12

21.19 41.06

20.98 40.55

20.45 39.71

19.81 38.93

98 18.76 37.53

24 18.11 35.72

88 17.48 34.35

33 16.71 33.10

73 15.99 31.77

09 15.27 30.20

51 14.52 28.97

86 13.71 27.18

Table 6-22. Fill Factor vs. Temperature and Intensity, after 1.1 x 10t5 e/cm 2

Temp,

-120

-i00

-80

-60

-40

-20

0

20

40

60

8O

I00

120

140

Solar Intensity, mW/cm 2

°C 5.0 15.0 25.0 50.0 i00.0 135.3 250.0

0.730 0.754 0.775

0.732 0.763 0.782

0.736 0.769 0.791

0.734 0.771 0.792

0.732 0.771 0.792

0.728 0.772 0.788

0.723 0.764 0.782

0.716 0.758 0.774

0.705 0.748 0.762

0.692 0.736 0.751

0.674 0.719 0.737

0.652 0.701 0.719

0.628 0.683 0.702

0.602 0.658 0.680

0.803 0.828

0 810 0 833

0 816 0 836

0 817 0 834

0 816 0 831

0 810 0 826

0 803 0 818

0 793 0 809

0 783 0.796

0.771 0.784

0.756 0.770

0.740 0.756

0.722 0.738

0.703 0.723

0.834

0.839

0.841

0.839

0.835

0.829

0.820

0.811

0 800

0 786

0 773

0 759

0 745

0 726

0.844

0.846

0.845

0.844

0.839

0.832

0.823

0.813

0.803

0.791

0. 777

0.763

0.748

0.730
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Table 6-23. Efficiency vs. Temperature and Intensity, after 1.1 x 1015 e/cm 2

Solar Intensity, mW/cm 2

Temp, °C 5.0 15.0 25.0 50.0 I00.0 135.3

12.20 13

12.15 13

12.05 13

11.85 13

11.56 13

11.31 12

10.81 12

10.29 II

9.75 Ii

9.07 I0

8.44 9

7.73 9

6.98 8

6.20 7

.75 14.51 15.20 15.91 15.81

.49 14.01 14.87 15.87 15.91

.43 14.11 14.62 15.75 15.66

.28 13.80 14.23 15.42 15.50

.04 13.60 14.21 15.14 15.12

.78 13.24 13.76 14.67 14.64

.16 12.67 13.11 13.98 13.87

.68 12.24 12.47 13.24 13.39

17 11.69 11.92 12.88 12.92

59 ii. Ii 11.48 12.33 12.35

92 10.49 10.87 11.73 11.82

19 9.79 10.23 11.09 11.29

53 9.14 9.57 10.51 10.73

70 8.40 8.89 9.86 10.13

-120

-i00

-80

-60

-40

-20

0

20

40

60

80

i00

120

140

250.0

17.06

16.85

16.42

16.22

15.88

15.57

15.01

14.29

13.74

13.24

12.71

12.08

11.59

10.87
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Chapter7

SpacecraftFlightDatafor GaAsSolarArrays

7.1 NTS-II

A very brief referenceto GaAssolarcellsflown on thissatellitewasmentionedin reference

[7.1]. At thetimeof thatwriting(May1981),NTS-IIhadbeenon-orbitfor morethan3yearswithLPE

GaAssolarcellsmadeby HughesResearchLab(HRL). Thereferencestatedthatthepowerlosswas

muchlessthanpredicted,eventhoughthecelljunctionsweredeep( -- 1 _m). It was speculated that on-

panel annealing may have occurred because the panel temperatures were running -- 100°C. At that time,

it was too early to compare the degradation rate of the cells with damage coefficient theory.

7.2 LIPS-II

This satellite was launched by the Naval Research Laboratory (NRL) in February 1983 into a

600 nmi circular orbit with 63 ° inclination. It carried a panel of 300 LPE GaAs solar cells made by

HRL. The cells were arranged in 3 parallel strings of 100 cells each. Each string consisted of 25 cells

in series by 4 cells in parallel. The performance of the panel was discussed in references [7.2] and [7.3].

The initial on-orbit measurement of this panel showed a power loss of _7% as compared to the

prelaunch measurement; this could be accounted for by the loss of one of the parallel strings. (Damage

to only one cell in the string could cause this loss). Other difficulties included the ability to take

measurements only sporadically, the absence of an accurate measurement of the panel's temperature (it

was known to vary between -45°C and +45°C), and the possibility of reflections off part of the

spacecraft body (the plume shield). No comparisons of actual performance with predicted performance

could be made with confidence.

7.3 LIPS-Ill

LIPS-Ill was launched in the spring of 1987 into a circular orbit with an altitude of 1100 km and

an inclination of 63 °. There were two experiments which measured GaAs solar cells on this spacecraft.

One was a joint experiment by the Applied Solar Energy Corp. (ASEC) and the U. S. Air Force,

described in reference [7.4], and the other was an experiment by the Boeing company, which measured

GaAs and CulnSe2 cells described in reference [7.5].
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TheASEC/AirForceexperimentutilizedbothGaAsandGaAs/Gesolarcells. TheGaAscells

haddeepjunctionsandtheGaAs/Gecellswerefromtheearlyeffortsat ASECto makesuchcells. The

experimentalsoincorporatedsomeSi solarcellsfor reference.Theresultsof theASEC/Air Force

experimentweredisappointing.Theinitialon-orbitperformancedid notagreewiththeprelannchdata.

Indeed,thereweretwosetsof prelaunchdata,andneitherof theseagreedwiththeon-orbitdata,nordid

theyagreewitheachother,sotherewassomeuncertaintyinestablishinginitialI-Vcurves.Thereported

datacollectionwasinfrequent,thatis, 9 timesbetweenflightdays12and175. Paneltemperaturesran

between80°C and 90°C. The GaAs cells degraded to values of 0.913, 1.0, and 0.93 times the "initial"

values of I,_, Vow, and P_,_ respectively, whereas degradation predictions based on the methods in this

handbook predict degradations of 1% or less in all parameters. In view of the fact that 1) the panels were

apparently assembled in haste with possible attendant mechanical damage, 2) the prelaunch data is

somewhat uncertain, 3) and the GaAs/Ge cells may have had unmatched, leaky GaAs/Ge junctions, it is

hard to draw solid conclusions from this experiment. Even so, the experimenters have posed the

possibility that there may be more radiation in this orbit than predicted by the radiation models.

The Boeing GaAs panel had three n/p concentrator cells manufactured by the MOCVD process

and one planar p/n cell made with the LPE process. No data on junction depths was reported. All cells

were protected with ceria doped microsheet (CMX) coverglasses, 12 mils thick. The on-orbit behavior

of two of the concentrator cells and the planar cell was measured over a 965-day period. The

experimenters measured a degradation in power of _ 2.2 to 4.5 % per year, whereas the predictions are

for only ---1% per year. This reinforces the ASEC/Air Force group's postulate that the actual

environment may be more severe than the modeling predictions.

7.4 High Efficiency Solar Panel (HESP) on the Combined Release and Radiation Effects Satellite

(CRRES)

The results of this experiment were reported in references [7.6 and 7.7]. The CRRES satellite

was launched on July 25, 1990 into an elliptical orbit with an apogee of 35,000 km, a perigee of 350 km,

and an inclination of 18.2 ° . The spacecraft ceased functioning on October 12, 1991 after 1067 orbits.

The solar cell radiation damage experiment consisted of two panels of cells. One panel, called

the ambient panel, left the panel at the equilibrium temperature it reached in space. The annealing panel

consisted of four annealing experiments. Each experiment consisted of 2 strings of cells, 4 cells per
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string. Threeof theseexperimentswereprogrammedto a specificannealingschedule.Thefourth

experimentwas allowedto reachand maintainspaceambienttemperature. The ambientpanel

incorporated10strings(4 cellsperstring)of GaAs/Gecellswithcoverglassesof two materials(CMX

andquartz)rangingin thicknessfrom 3.5to 30mils. Thecellswereof theASECMOCVDtypewith

junctiondepthsof 0.47_m. TheambientpanelalsoincorporatedtwoSicellstrings,(5cellsperstring).

Onestringwasmadeof SpectrolabK4-3/4cellswhichwere200/_mthick,andtheotherstringwasmade

of SpectrolabK7-3/4cellswhichwere62/xmthick. Theambientpanelreachedtemperaturesof ---90°C

while in the Sun and dropped to -50°C during each eclipse.

The annealing panel utilized LPE cells with junction depths between 0.5 and 0.6 tzm. The cells

were made by HRL in the 1983 to 1984 time period. Interconnections on these cells were made by

ultrasonic welding, and all the cells had quartz coverglasses except for one string, which utilized ceria-

doped microsheet (CMX) coverglasses. The first group, consisting of two strings of LPE cells, was held

at a constant 170°C. The second group of two strings was designed to be heated to a temperature of

250°C for 30 minutes, once each week. The third group of two strings was designed to allow heating

of the cells to a temperature of ---190°C by means of forward-current biasing for 30 minutes once each

week. The fourth group of two strings remained at space ambient temperature. Each group had a set

of GaAs/Ge cells protected by 6-mil (150/_m) thick coverglasses and another set of GaAs/Ge cells

protected by 12-mil (300/xm) thick coverglasses.

Spectrometers aboard this spacecraft measured the differential proton energy spectrum in 24

energy channels logarithmically spaced from 1 to 100 MeV, and the electron fluence in the energy range

between 1 and 8.3 MeV. The data from these spectrometers permitted the correlation of observed solar

cell degradation to the radiation levels they actually experienced.

The results after 30 days in orbit were reported by reference [7.6], and after mission termination

in reference [7.7]. The authors emphasize that the proton and electron radiation belts are very dynamic,

and they can change dramatically when solar flares and geomagnetic storms occur. The accurate

prediction of solar cell degradation over short periods of time is therefore all but impossible. The period

from the beginning of the mission until orbit 587 was a quiet solar period. During the early part of this

quiet time (orbits 0 through 400), the solar cell performance of all strings degraded approximately

monotonically, but the degradation leveled off between orbits 400 and 600. This levelling off was
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matchedby a levellingoff of the integratedprotonandelectronfluencesmeasuredduringthis time.

Then, a large solar proton event occurred on March 22, 1991 (orbit no. 584). Soon thereafter a storm

began and actually created a second inner proton radiation belt [7.8]. After this event, the levelling off

of the solar cell degradation ceased, and the cells began degrading at approximately the same rate as

observed during orbits 0 through 400.

Other observations reported by these authors are as follows. The GaAs/Ge solar cells degraded

at lower rates than did either type of Si cell. The thin K7-3/4 cells degraded initially much faster than

the K4-3/4 cells, due to degradation of the back surface field. Even so, the thin cells always had a higher

Pr_x than the thicker Si cells, throughout the duration of the flight. Annealing of the GaAs/Ge cells

showed mixed results. In all cases, annealing of the cells with 150-/zm-thick coverglasses was more

effective than it was for cells with the 300-ttm-thick coverglasses. The most effective annealing method

was the weekly, forward-bias annealing at 190°C, followed by the weekly, thermal annealing at 250°C,

then the constant thermal annealing at 170°C. The 170°C thermal annealing only gave a marginal

improvement in cell behavior over the cells maintained at the ambient temperature of = 100°C. There

was no difference in power loss in cells protected by quartz or CMX coverglasses, as long as the

coverglass thicknesses were the same. There was also no difference in cell performance observed

between soldered and welded interconnects. No attempt was made to calculate cell degradation from the

measured radiation levels.

7.5 EURECA

This satellite was launched on July 31, 1992 into a 508-km circular orbit and was retrieved in

August 1993 [7.9, 7.10]. The spacecraft carried a flight experiment named the Advanced GaAs Solar

Array (ASGA) that was primarily made of GaAs and GaAs/Ge solar cells manufactured by CISE (Italy)

and LPE GaAs cells by EEV (United Kingdom). The experiment consisted of two arrays; a planar array

and a concentrator array. The planar array had six strings of various types of cells, coverglasses, and

interconnects. Each string had three 2 x 2 cm cells, connected in series. The concentrator panel

consisted of three Cassegrainian concentrators, each focusing on one 0.25 cm 2 round GaAs cell.

According to theory, there should be almost no cell degradation in this orbit. After 239 days in

orbit, the most degradation observed in the planar cells was 2.2 % in a 300-/_m-thick LPE cell with a deep

junction (Xj = 0.8 #m) and a very thin (50 #m) coverglass. The concentrator cells degraded
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significantly.TheCISEcellslostI_veryrapidlyduring the first 60 days and ended up with IJI_0 values

of 0.729 and 0.796 after 226 days in orbit. The EEV concentrator cell displayed much less current

degradation, measuring IJI_0 of 0.933 after 226 days. The rapid decrease in response of the CISE cells

was possibly due to the fact that the cell's active region was 4 mm in diameter, while the concentrator

spot diameter was 4.5 nun in diameter. The concentrator spot would have strongly illuminated the

interconnectors and may have contributed to cell contamination. Both the CISE cells and the EEV cell

may have lost output because of contamination of the mirrors.

7.6 STRV-1 A and B

These spacecraft were launched together into a geostationary transfer orbit, (nominally 200 x

36000 km, with an inclination of 7 °) on June 17, 1994. A complete description of the experiment was

given in reference [7.11]. The spacecraft carried a flight experiment designed to measure the degradation

of many types of solar cells, including several GaAs cells. Unfortunately, the experiment experienced

a failure and no data is available directly from the experiment. However, four of the power producing

solar panels for the STRV-1B were populated with GaAs solar cells and it was possible to measure the

panel current at 28 V as a function of time, from each panel [7.12]. The panels are made up of 40 cells

in a series string, hence 28 V across the panels corresponds to a voltage drop of 700 mV across each cell.

For cells with high shunt resistances, the current at 700 mV can be assumed to be a reasonably accurate

approximation for short circuit current, Is,. Figure 7.1 is a plot of one such panel powered by Spectrolab

GaAs/Ge cells. These cells measured 1.8 x 6.3 cm x 200-_tm thick, and were covered with 500-/zm-thick

coverglasses. The experimental data is plotted as open diamonds, and the predicted behavior is plotted

as the solid line. The prediction is based on the AP8 environment together with an equivalent fluence

calculation based on the methods outlined in this book [7.13]. Figure 7.2 is a similar plot for a panel

powered by ASEC GaAs/Ge cells. The ASEC cells measured 4 x 4 cm x 90-#m thick, and were covered

with 500/zm-thick-coverglasses. As the figures show, the observed cell degradation matches the

predicted degradation very well.

7.7 UoSAT-5

The UoSAT-5 spacecraft was launched into a 770-km Sun-synchronous orbit on July 16, 1991

[7.14]. It carried a solar cell experiment consisting of various types of Si, GaAs, and InP solar cells

from the United Kingdom, Europe, and the United States. This experiment had difficulties with

measuring cell temperatures and the I-V curve near Vc_; also the Isc measurements were confounded by
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varyingcontributionsfromtheEarth'salbedo.Theexperimentalmeasurementsafter1yearin orbitwere

reported[7.14]. Thelargestdegradationobservedin GaAscell shortcircuitcurrentwas0.5%andin

maximumpowerwas1.5%. Theorypredictsthatthereshouldbenodegradationof GaAscellsin this
orbit.

7.8 PASP-PLUSExperimenton theAdvancedPhotovoltaicandElectronicExperiments(APEX)
Spacecraft

TheAPEXspacecraftwaslaunchedonAugust3, 1994intoanellipticalorbitwithanapogeeof

2537km, perigee363km, andan inclinationof 69.9°. The PASP-PLUSexperimentaboardthis

spacecraftcarried 16 photovoltaicexperiments,severalof which were designedto measurethe

performanceof GaAssolarcells. A detaileddescriptionof the cells andmodulesis presentedin

reference[7.15].Thespacecraftalsohaditsownonboarddosimeters,sotheactualradiationenvironment

couldbecomparedto theenvironmentpredictedbythemodels.Theradiationenvironmentin thishighly

ellipticalorbit is dominatedby protonsandthecelldegradationinducedbyelectrons,in comparison,is

negligiblefor all practicalpurposes.Theresultsafterthe first 3 monthsin orbit werereportedin

reference[7.16]andresultsafter6 monthsin orbitwerereportedin references[7.17,7.18,and7.19].

Experiments4 and6 hadidenticalGaAs/Gesolarcellswith coverglasseswhichwere3.5-milsthick.

Experiment4 hada stringconfigurationof 5 cellsinseriesand4 in parallel.Experiment6 hada string

of 4 in seriesand3 inparallel. Figures7.3and7.4areplotsof thenormalizedmaximumpower,Pmax,

of thesetwoexperimentsvs. time. Thecirclesaretheexperimentalmeasurementsandthesolidline is

thepredictedP_ behaviorusingAP8andanequivalentfluencecalculation.Thebeginningefficiencies

notedon thefiguresarederivedfromgroundmeasurementsprior to launch.Figure7.5 isa plotof the

normalizedP_ vs.timeobservedfor theGaAs/GecellsonExperiment11. Thecellsin thisexperiment

were178-/_mthickandused150-_m-thickCMX coverglasses.Theeightcellsin thisexperimentwere

connectedwith2cellsinparalleland4 in series.Theplotsfromall threeof theseexperimentsshowthat

thepredictiontendsto beslightlyconservative,butdeviatesno morethan2-3%from the observed

behavior.All threeexperimentsshowa rapidpowerlossin thefirst fewdaysafterlaunchfollowedby

whatappearsto beaslightrecovery.Thereasonfor thisbehavioris, asyet, unknown.

7.9 AdvancedSolarCellOrbitTest (ASCOT) Flight Experiment

The ASCOT flight experiment was launched into a highly elliptical orbit in 1995. The purpose

of ASCOT was to flight test six advanced solar cell types in a high-radiation, proton-dominated space

7-6



environment.Thetestcellsincludedthreedifferenttypesof GaAs/Gecells,aGaAs/CISdesign,and two

types of Si cells, one 200-#m thick and the other 50-#m thick. The GaAs cells were protected by 300-

#m coverglasses. Each Si cell type was protected by a mix of both 300-#m and 760-#m coverglasses.

Four modules of five series-connected cells were flown for each of the six cell types, so there were a total

of 24 modules on the spacecraft. Details of the spacecraft and the orbit are not available, but it has been

calculated that one year in the ASCOT orbit would produce an equivalent fluence of 2.2 x 10 _5e/cm 2 in

Si cells with 300 #m coverglasses. [7.20].

The measured behavior of one of the GaAs/Ge cell types after part of one year in orbit is

presented in Figure 7.6 [7.21]. The figure depicts normalized maximum power (Pm_x) of both the

GaAs/Ge cells on the ASCOT experiment (open diamonds), and the power degradation of GaAs/Ge cells

flown on the PASP-Plus experiment (open squares). The PASP-Plus data is the same data shown in

Figure 7.3, with the abscissa scale changed from days in orbit to 1 MeV equivalent electron fluence. The

solid line is a prediction of the degradation behavior of these ceils based on a radiation calculation using

the AP8 model and an equivalent fluence calculation. Figures 7.7 and 7.8 are similar plots for

normalized open circuit voltage (Vow)and normalized short circuit current for the same cells. In addition,

Figure 7.8 includes the behavior of one of the STRV-1B solar panels. It would appear that the data from

the space-based experiments is in satisfactory agreement with the theoretical predictions.
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Chapter8

TheSpaceRadiationEnvironment

TheradiationenvironmentneartheEarthconsistsof electronsandprotonstrappedin theEarth's

geomagneticfield andprotonsproducedby solar flares. There is a minor component of radiation

received from galactic cosmic rays. Although these highly energetic, sometimes heavy ions are quite

important in inducing single-event upsets in integrated circuits, their influence on solar panels is

negligible. In interplanetary space, only the solar flare protons are of importance in affecting solar panel

performance. Jupiter, Saturn, and Uranus also have magnetic fields and trapped radiation belts which

must be taken into account for missions that approach these planets. A great deal of the text for this

chapter was taken from chapter 5 of reference [8.1]. A wealth of information on this subject is also

available from recent reviews by Garrett and coworkers [8.2, 8.3].

8.1 Geomagnetically Trapped Radiation

The Earth's magnetic field is essentially that of a dipole. The dipole may be thought of as arising

from a bar magnet lying near the center of the Earth, but displaced = 436 km from the center, in the

direction of the Pacific Ocean [8.4]. It has a magnetic moment of = 8 x 10z5 Gauss-cm 3, and the

magnetic field has a maximum value of =0.6 Gauss near the polar cap and a minimum value of =0.3

Gauss near the equator at the Earth's surface. It is tilted = 11.5 ° with respect to the Earth's axis of

rotation, and an extension of the bar magnet axis would intersect the surface of the Earth near Greenland

at 78.5 ° N, 70.1 o W (the geomagnetic north pole) in the northern hemisphere, according to the 1965

IGRF magnetic field model of the Earth. This offset and tilt of the magnetic field also explains why the

geomagnetic equator does not coincide with the Earth's geographical equator. The position of the

imaginary bar magnet changes fairly rapidly with time. The geomagnetic North Pole is currently drifting

westward at a rate approaching 0.1 degree per year. The imaginary bar magnet is thought to have been

displaced some 285 km from the Earth's rotational axis since 1845, as compared to the 436-km

displacement today. These changes are extremely rapid on a geologic time scale. To make matters even

more complicated, reference [8.2] shows that at an altitude of 400 km above the Earth there are two

maxima in the magnetic field in the northern hemisphere and two minima near the geomagnetic equator.

The largest of these minima occurs in the South Atlantic Ocean and is responsible for high values of the

trapped radiation in this region, thus the origin of the term "South Atlantic Anomaly." Models of the

Earth's magnetic field, including the time variation (the term EPOCH is used to specify the year
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describedby themodel),havebeendevelopedundertheauspicesof theInternationalUnionof Geodesy

andGeophysics.TheyareupdatedperiodicallyandareavailablefromtheNationalSpaceScienceData

Center[8.5]. Thesemagneticfield modelsplay a very importantrole in themodelingof theEarth's

radiationbelts.Becauseof therapidtimevariationof themagneticfield,it is importantto usetheproper

magneticfield EPOCHwhenmakingcalculationswith the modelsof the Earth'strappedradiation
environment.

The planetary magnetic fields are entirely responsible for the presence of the trapped radiation

zones surrounding those planets that have magnetic fields. The Earth's trapped radiation fields are known

as Van Allen belts, named for their discoverer. Electrons trapped in the Earth's field range in energy

from a few keV to -_ 7 MeV, and protons range in energy from a few keV to = 500 MeV. Energies

higher than these have been observed, but not in sufficient quantity to concern the solar panel designer.

The origin of these trapped particles is most probably the solar wind. Since the particle energies in the

solar wind are quite low, they have to be accelerated by some mechanism to reach the energies they have

in the Van Allen belts. The primary acceleration mechanism is thought to be local time variations in the

Earth's magnetic field. See reference [8.4] for a discussion of the various variations of the Earth's

magnetic field.

Charged particles trapped in the Earth's magnetic field undergo three types of motion. First, they

are subject to the Lorentz force, F = q(v x B). (Bold letters here denote vector quantities). If we

consider the velocity vector, v to have two components, one along the local magnetic field line and one

perpendicular to the field line, then the Lorentz force does not act on the component of v which is parallel

to B, so it undergoes no acceleration along that direction. However, it does act on the perpendicular

component of v and causes the particle to rotate in a circle. The circular component of motion has a

radius, r called the Larmor radius, and an oscillation frequency called the cyclotron frequency or Larmor

frequency. The particle therefore moves in a helical path and spirals about a magnetic field line. The

angle between v and B is known as the pitch angle, ct.

The fact that the Earth's magnetic field diminishes with radial distance gives rise to a second type

of force which is called longitudinal drift [8.6, 8.7]. Figure 8.1 (taken from reference [8.3]) illustrates

a positively charged particle moving in a magnetic field with a strong component and a weak component.

As the particle moves from a region of high field strength to a region of lower field strength, the Larmor

8-2



radiusincreases,sothatit returnsto

the region of high field strength

fartherto the right in thefigure. In

theEarth'smagneticfield, thisaction

canbe seento causethe charged

particlesto undergoa longitudinal

drift. Positivelychargedparticles

will drift to the westandelectrons

will drift to the east. This drift is

reinforcedby theactionof theEarth's

electricfield. This field is radially

directednear the Earth and points

from dawn to dusk at greater

distances,thusaddingto drift force

S Mognetic Field Strength B 2

x x x x x x x x x x x x x x x x x x
X X X X X X X X X X X X X X X X X X

x x xX X X X
t l l

x,xx 'W xx'x
X X ×

X X X X X X X X X

MGgnetic Field Strength B_

(B 2 >B 1 , Therefore R2<R 1)

Figure 8.1. Motion of a Positive Charged Particle in a

Magnetic Field of Two Intensities Giving Rise
to a Gradient

induced by the magnetic field gradient.

Another motion experienced by charged particles in the Earth's magnetic field arises because of

the gradients along the magnetic field

line and is responsible for the

trapping of the particles. If one were

to pick up a magnetic field line near

the equator and follow it poleward,

the magnetic field will curve in

towards the Earth and increase to a

maximum at the pole. Figure 8.2,

taken from reference [8.3] illustrates

the resulting force on a particle

moving in a converging magnetic

field. Due to the convergence, there

is a component of the magnetic field

which is perpendicular to the circular

motion of the particle and therefore

Bii

Bl F. = evBl

= evB,,

Figure 8.2. Forces on a Charged Particle in a Converging

Magnetic Field. F I Acts Along the Magnetic
Field and is Responsible for "Mirroring"
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exertsa forceawayfrom theconvergingregion. This forcebecomesstrongerastheparticlemoves

poleward,decreasingthepitchangleof theparticleuntilatsomepointthepitchanglebecomes90°. At

this point, called the mirror point, the force on the particle away from the pole is at its strongest and

forces the particle to change direction and spiral back in the opposite direction. The particle goes back

into the opposite hemisphere until it reaches another mirror point and again reverses itself. This bouncing

back and forth between mirror points is the third type of motion characteristic of trapped particles. If

the mirror points happen to occur at low altitudes where they can be scattered by the Earth's atmosphere,

the particle density will soon diminish to a very low value. This is the reason that there are essentially

no trapped particles occurring at equatorial altitudes below = 300 km. Table 8-1, taken from reference

[8.4] gives an idea of the scale of these phenomena for 1 MeV electrons and 1 MeV protons at an altitude

of 2000 km near the equator.

Table 8-1. Characteristic Orbital Parameters for Trapped 1 MeV Electrons and 1 MeV

Protons at 2000 km Altitude Near the Equator [8.4]

Type Radius Larmor Period Bounce Period Drift Period

(cm) (sec) (sec) (min)

1 MeV e- 3 x 104 7 x 10.6 0.10 53

1 MeV p+ 1 x 106 4 X 10 .3 2.2 32

Models for describing the Van Allen radiation belts in quantitative terms have been developed

over the years and extensively documented [8.8 - 8.20]. The models all use the B,L coordinate system

introduced by Mcllwain in 1961 [8.21]. This coordinate system consists of the magnetic field, B, and

the integral invariant, I, which can adequately relate measurements made at different geographic locations.

The quantity I is the length of the field line between mirror points weighed by a function of the magnetic

field along the line and is an adiabatic invariant of the motion. Mcllwain introduced the magnetic shell

parameter, L = f(B,I), analogous to a physical distance in a dipole field. In a dipole field, L is

equivalent to the distance from the center of the Earth in the magnetic equatorial plane. The L parameter

is measured in units of Earth radii (mean radius = 6371.2 km; equatorial radius = 6378.2 km). The

beauty of the (B,L) coordinate system is that, with some exceptions, the trapped radiation is identical at

all the geographical points which have the same B,L value. The use of the B and L parameters therefore
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allows the mapping of the three-dimensional trapped radiation environment onto a two-dimensional

coordinate system. B and L can be transformed to polar coordinates by the following relations:

[

M ] 4 3R . R = Lcos 2_.
B- R 3 _ ---_- ,

(8-1)

where M is the magnetic dipole moment of the Earth, and _, is the magnetic latitude. In order to apply

this concept to the Earth's field, which is not a simple dipole, Mcllwain expanded the parameter L into

a polynomial function of a variable which is a function of I, B, and M, so that the trapped particles can

be represented in terms of two dimensions instead of three.

The responsibility for assembling the available data on the Earth's trapped radiation has fallen

on the National Space Science Data Center (NSSDC) in Greenbelt, Maryland. Workers at the NSSDC

continue to construct and update models of the radiation environment. This data is regarded as the best

consolidated source of information available on trapped radiation environments and are used as the single

source of data on this subject in this publication. Their work may be consulted in publications listed in

references [8.8 through 8.20]. Reference [8.20] is a particularly valuable review of the modeling activity

by this group between 1964 and 1991.

8.1.1 Trapped Protons

The AP8 proton model by Sawyer and Vette is the most recent model from the NSSDC

describing the Earth's trapped-proton environment [8.18]. The trapped protons are encountered between

---1.2 Rc (Earth radii) and 6.6 R_ (synchronous altitude). The highest energies are found closest to Earth,

peaking at about L -- 1.5 P_. The largest proton concentrations at intermediate energies peak at about

L = 2 P_, and the energy spectrum becomes softer (relatively less high energy protons) as the L value

increases. At synchronous altitude, the spectrum is so soft that practically no protons with energies

greater than 2 MeV exist. Since 2 MeV protons have a range of =45/_m in typical coverslide materials,

they are not of concern to the solar panel designer unless there are exposed gaps where the solar cell is

not completely covered. The AP8 model was issued in two versions, AP8-MAX and AP8-MIN, which

describe the proton distributions at the maxima and at the minima of the I 1-year solar cycle. There are

good theoretical reasons for changes in the trapped radiation belts induced by the solar cycle. These

changes have been verified by experimental observations, but only at low altitudes in the vicinity of the
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atmosphericcutoff regions.Nochangesof consequencehavebeenobserved in the heart of the proton

belts or at synchronous altitude, since the observed variations with time are no larger than the variations

between radiation detectors on different satellites [8.22]. The AP8-MIN model was generated from data

taken in the 1964 time period, and the AP8-MAX model used data from the 1970 time period.

Therefore, when using these models, it is important to use an EPOCH of 1964 when making calculations

with AP8-MIN, and an EPOCH of 1970 for calculations for AP8-MAX. Use of the wrong EPOCH in

these calculations can induce errors of as much as an order of magnitude in the calculated spectra. The

difference in the predicted radiation levels between solar minimum and solar maximum is seen in the

models to occur only at altitudes below = 2000 km. The fluxes are higher at solar minimum than at solar

maximum for the AP8 proton models.

8.1.2 Trapped Electrons

Trapped electrons with energies of a few hundred keV extend to the outer boundary of the

magnetosphere, which fluctuates between altitudes of 8 to 10 Earth radii. There are two intense regions:

an inner zone extends between L values of 1.2 and 2.8, with a peak at _ 1.4 Re. The outer zone extends

between L values of 3 and 11, and peaks at _ R, = 4 to 5.

The outer zone is a very dynamic region of space where some particles are stably trapped but

others are considered to be pseudo-trapped, because their lifetimes are shorter than the drift time around

the Earth. However, strong external galactic and solar sources supply electrons to this region of space

so that substantial fluxes are always present. In this zone, the flux has large, short-term, temporal

variations related to the local time as well as a long-term change in average flux associated with a solar

cycle.

The current model for trapped electrons, AE8, was issued in its computer form in 1983 and

documented in 1991 [8.19]. It is a merging of the older AE4 model for the outer zone electrons with

models AE5P and AE6 for the inner zone electrons. A transition region between the zones was

completely reconstructed. The AEI7-HI and AEI7-LO models which had been in interim use for several

years had never been verified and were abandoned [8.19, 8.20]. AE8 was issued in two versions,

SOLMAX and SOLMIN, describing the trapped electrons at solar maximum and solar minimum,

respectively. The AE8 models have been used in the orbital integrations and calculations of GaAs solar

panel degradation in Chapter 9. As with the proton models, it is important to use the correct magnetic
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field EPOCH in making calculations with the AE8 models. The recommendation is to use a magnetic

field EPOCH of 1964 for AE8-MIN and an EPOCH of 1970 for AE8-MAX. In contrast to the AP8

models, the AE8-MAX model gives higher fluxes for solar maximum than AE8-MIN during solar

minimum.

Since the geomagnetic equator is tilted with respect to the equator defined by the Earth's rotation,

there is a longitudinal dependence on the fluence incident on a spacecraft at synchronous orbit [8.21].

The practical effect of this dependence on solar panels populated with Si solar cells was calculated in

reference [8.1]. It was found that there are two maxima and two minima in the radiation intensity vs.

longitude dependence, with the maxima occurring at 170 ° West and 20 ° East, and the minima occurring

at 70 ° West and 110 ° East. It was found that the highest fluence was experienced at a longitude of 160 °

West, and the least fluence at 70 ° West. Chapter 9 includes a summary of orbital integration results for

satellites in circular orbits at various altitudes and inclinations. A special calculation is presented in the

last four tables of the chapter, reflecting this longitudinal dependence of radiation exposure as a function

of longitude. The data in these tables show that the difference in 1 MeV equivalent fluences affecting

panel degradation is approximately a factor of two, depending on the coverglass thickness used. Hughes

Aircraft Company has built a large number of satellites that are operating in synchronous orbit. Lee

Goldhammer of Hughes has verified that there is indeed a longitudinal dependence, and has verified that

satellites in orbit near 160 ° West have experienced more solar panel degradation than those near 70 °

West [8.23].

One of the basic difficulties with the AE/AP models is the changing of the Earth's magnetic field.

If one considers a given point in the geocentric coordinate system, this point experienced a certain

magnetic field in 1964 when the minimum models were generated and on a long-term time averaged

basis, it also experienced given values for the electron and proton fluence-energy spectra. Today, the

magnetic field at that point has changed and, consequently, the fluence-energy spectra have changed also.

But we still calculate values for the fluence-energy spectra as they were at that point in 1964. For this

reason alone it is apparent that there are uncertainties in the use of the models.

Other models have been developed, more recently, based on the results of the radiation

spectrometers flown on the CRRES spacecraft. This satellite was launched on July 25, 1990 and failed

on October 12, 1991. It was in a highly elliptical orbit, 350 km by 33,000 km at an inclination of 18.2 °.

8-7



It carrieda complete set of radiation detectors and was in an ideal orbit for mapping the trapped radiation

belts. The premature failure of the spacecraft only allowed the accumulation of data during solar

maximum, but it generated sufficient data to allow a fresh look at modeling the trapped radiation and to

allow a comparison with the AE8 and AP8 models. The results of this modeling may be found in

references [8.24 - 8.26] and a brief summary of the modeling activity is given in reference [8.2]. The

CRRES data was divided into two parts. The first part, called the "quiet period," covered the time period

from July 27, 1990 to March 19, 1991. The second part, called the "active period," covered the time

from March 31, 1991 to October 8, 1991. The separation of the quiet and active periods is based on an

intense solar particle event that occurred on March 24, 1991, and the subsequent solar wind shock which

rearranged the inner magnetosphere radiation populations. These experimenters have found differences

between the CRRES models and the AE8 and AP8 models to be as much as 3 orders of magnitude at

times near the "slot" region (L-_ 2.5). The "slot" region is the region between the inner (mostly proton)

belt and the outer electron belt. There appear to be two major differences that occur at low L values.

The first is attributable to a second, highly variable proton belt in the region L= 1.8 and L=4 that is

present in the CRRES active model, but not in the AP8 models. The second difference is due to a lack

of high-energy electrons in the AE8 models, that are present in the CRRES models. At high L values,

the CRRES experimenters found that the AE8 model is typically higher than the CRRES measurements

at all L values above _ 3.4.

8.2 Trapped Radiation at Other Planets

Jupiter, Saturn, and Uranus have magnetic fields of some consequence and also have trapped

radiation belts. The magnetic field at Jupiter is the strongest magnetic field in the solar system (--8

Gauss at the poles as compared to --0.6 Gauss at the Earth's poles). The trapped radiation belts near

Jupiter are therefore much more intense than they are at Earth. The Jovian magnetic field and particle

distributions were measured by Pioneers 10 and 11 and by Voyagers 1 and 2 during their encounters.

These measurements, along with theoretical considerations, have given rise to models of the trapped

radiation belts at Jupiter [8.29]. A model of the fields and trapped radiation at Saturn has been

developed, and some information about the fields and trapped radiation of Uranus has recently become

available, but the information has not been published [8.30]. Enough information should be available

to calculate the effect of the Jovian radiation belts on spacecraft solar panels as it flies by or goes into

orbit around Jupiter. The intense belts at Jupiter would require such solar panels to be very well shielded

if they are to survive an extended mission at this planet.
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8.3 SolarFlareProtons

TheSunproduceseventsonitssurfaceknownassunspots.Sunspotsareproducedin aperiodic

fashion,withapproximatelyan11-yearcyclebetweenmaxima.Thesunspotcycleconsistsof anactive

timeof about7 years,duringwhichsolarflareeventsareprobable,andaquiescentperiodof 4 years

whensolarflareeventsarerare. Theactiveperiodusuallybeginsabout2yearsprior totheyearof solar

maximum,andlaststhroughthefourthyearafterthemaximum.Themaximafor thelast3 solarcycles

asreportedby reference[8.31]areshownin Table8-2. Wenotethatthetimebetweenpeaksfor cycles

21and22was10yearsratherthantheaverage11years. Suchvariancesbetweenthepeaktimesare

common.

Table8-2. SolarCycleMaxima[8.31]

Cycle Number Peak Occurrence

20 1968.9

21 1979.9

22 1989.9

23 2001. (7)

The occurrence of solar flare proton events is of a statistical nature. A spacecraft flying during

the active part of the cycle may cruise along intercepting protons from numerous small flares, then be

hit with a large event that totally overwhelms all other radiation it may receive during the mission. The

statistics of the events have been studied thoroughly, especially during the past 3 solar cycles when we

have had spacecraft available to measure the radiation in space. Each cycle adds to the data available and

each cycle spawns a new and improved solar proton model. King made a probabilistic study of the solar

proton fluence levels based on the 1966-1972 data [8.32]. He allowed for anomalously large (AL) events,

assuming they had fluence-energy spectra given by the very large solar proton event of August 1972.

The smaller, or ordinary (OR) events were assumed to obey a log normal distribution. A computer code,

SOLPRO [8.33] was developed to calculate the expected fluence during a mission. The result depended

on the time and length of the mission (i.e., whether there would be a dominating AL event) and on a

probability factor. The probability factor is assumed by users of the code. If a spacecraft designer

wishes to design a spacecraft for a fluence such that there is a 99% probability that the computed
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radiationlevelwill notbeexceededduringthemission,hewouldinputa 99%confidencelimit to the

computerprogram.Thiswill naturallyresultinamuchhigherfluencethanif hewereto selectan80%

confidencelimit. Theadjustmentof theseconfidencelimitsis thereforebasedonhowmuchriskaflight

projectwishesto assume.

King'smodelwasrevisedby Feynmanet al. [8.34]basedon theprotondataavailablefroman

additionalsolarcycle(upuntil 1985).Thismodelis in theNSSDCdatabaseandhasbeenwidelyused.

A morerecentmodelhasbeendevelopedbyFeynmanandhercoworkers[8.31]whichaddsthedatafrom

onemoresolarcycle,andin theauthor'swords"hasbeenableto useadatasetcollectedbya singleset

of experimentsoversucha longperiodof timethatthepopulationof majoreventsis probablywell

sampled."Thedatabasecomesfrom a seriesof closelyrelatedinstrumentson theIMP 1, 2, and3,

OGO1, andIMP 5, 6, 7, and8 seriesof spacecraft.Averagefluxesabovethresholdenergiesof 1,4,

10,30, and60 MeV weremeasured.Themodelproducedby Feynmanet al., knownastheJPL91

model,is distilledintoFigures8.3 through8.7. (Notethatthecorrespondingfiguresfrom reference

[8.31]hadanerror in thelabelingof abscissa.In thepaperthefluencewaslabeledwithunitsof cm-2

srt. Thecorrectunitsarecm-2,asdepictedin Figures8.3 through8.7). Theplotsmaybeusedto

predictthe integralfluenceasa functionof confidencelevelandexposuretime. To usethefigures,

locatetheprobabilitydesiredon theordinate,usingprobability= (1- confidencelevel),thenreadthe

integralfluencefor thedesiredexposuretime. Forexample,aconfidencelevelof 0.99(99%)translates

to aprobabilityof 0.01(1%)thatthefluencereadfromthefigurewill beexceededduringthemission.

Theexposuretimemustbecorrelatedto thetimeof solarmaximum.Asanexample,if a7-yearmission

is to takeplacewhichwouldincludethe4 yearsduringsolarminimum,thentheexposuretimeused

shouldonlybe3 years.Thecalculatedintegralfluencespectraarefor a distanceof 1AU fromtheSun.

For other radial distancesfrom the Sun,an interplanetarycharged-particleworkinggroup [8.35]

recommendedthatfor distanceslessthan1AU, thefluenceshouldbemodifiedbyaninversecube(1/R3)

dependence,andfor radialdistancesgreaterthan1 AU, thefluenceshouldbemodifiedby an inverse

square(1/R2)dependence.Thatis, for distanceslessthan1 AU, computetheaverage1/R3for the

missionandmultiplytheresultsfromthefiguresbythatnumber.Similarly,for distancesgreaterthan

1 AU, performthecalculationfor the averageinversesquaredependence.The 1/R3dependenceis

intendedto calculatea worst-casescenario.In mostcasesit will probablyoverestimatetheradiation

environment,particularlyfor missionsthatgoveryneartheSun. In their 1993paper,Feynmanetal.
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[8.31] suggested using an inverse square dependence for all radial distances, stating that this should result

in a "most probable" estimate rather than a "worst-case" estimate.

A Fortran program, "Solar Flare Estimator (SPE)" was developed by Feynman and Spitale [8.36]

to perform the above steps by machine. It estimates proton integral fluences during the period from 1988

through 2010. It will perform these calculations either at 1 AU or in interplanetary space. The starting

time and mission length must be input to the program. The program will calculate the radiation exposure

for the most widely used confidence levels of 50 %, 75 %, 90 %, 95 %, and 99 %. At the present time,

there is no formal mechanism in place for distributing this program, but it may be available by contacting

the authors.

There are other approaches to estimating the solar flare proton environment for spacecraft

missions. One such approach is to design the solar panels for the total proton fluence observed during

one of the recent solar cycles. This approach will usually result in a more benign environment than

would be calculated by any of the above probabilistic models. Such an approach has worked well for

several of the spacecraft designed by Hughes Aircraft Company [8.37]. Table 8-3 lists the total proton

fluence observed from major solar proton events between September 1986 and July 1995. The data

covers most of cycle 22, but must be considered preliminary, since cycle 22 had not ended in July 1995

[8.38]. For comparison, Table 8-3 also lists the fluence-energy spectra given by the SPE program as a

function of various confidence levels. For the purposes of this calculation the mission was assumed to

start in July 1988 with a duration of 7 years so that it was exposed to the full time period of solar

maximum activity. As the table shows, the program's 75 % confidence level calculates fluence values that

are quite close to measured fluences. Calculations based on higher confidence levels overestimated the

measured fluences, and the calculation at the 50% confidence level underestimated the measured values.
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Table8-3.

Dateof
Event

CumulativeFluence-EnergySpectrafor theMajorFlaresduringSolarCycle22

,I,(> 1 MeV) cI,(> 5 MeV) cI,(> 10 MeV) ,I,(> 30 MeV) 4(> 60 MeV)

11/08/87 6.93 E08 1.17 E08 3.08 E07 1.20 E06 2.64 E05

3/08/89 2.14 El0 3.54 E09 1.11 E09 4.91 E07 4.03 E06

4/11/89 4.79 E09 7.33 E08 2.03 E08 4.69 E06 6.26 E05

5/01/89 2.51 E09 1.94 E08 4.18 E07 1.28 E06 4.24 E05

8/12/89 3.14 El0 1.30 El0 7.85 E09 1.52 E09 2.11 E08

9/29/89 9.91 E09 5.43 E09 3.78 E09 1.39 E09 4.79 E08

10/19/89 1.03 Ell 3.90 El0 1.92 El0 4.24 E09 1.21 E09
11/27/89 1.89 El0 5.94 E09 2.21 E09 1.31 E08 6.30 E06

3/19/90 5.98 E09 1.88 E09 7.19 E08 2.17 E07 9.87 E05
4/28/90 4.32 E08 1.69 E08 7.34 E07 4.80 E06 3.32 E05

5/21/90 2.46 E09 6.32 E08 3.57 E08 1.38 E08 5.98 E07

8/01/90 3.10 E09 5.40 E08 1.71 E08 7.41 E06 8.61 E05
1/31/91 3.00 E09 3.96 E08 8.45 E07 1.28 E06 1.72 E05

3/23/91 4.24 El0 1.63 El0 9.51 E09 1.78 E09 1.64 E08

5/13/91 1.39 E09 3.21 E08 1.38 E08 1.82 E07 3.72 E06

6/04/91 3.10 El0 6.32 E09 3.20 E09 7.85 E08 2.00 E08

6/29/91 2.93 El0 5.04 E09 1.20 E09 3.00 E07 4.02 E06
8/25/91 5.16 E09 5.84 E08 1.27 E08 3.41 E06 4.99 E05

5/09/92 1.95 El0 2.78 E09 6.60 E08 1.32 E07 1.08 E06

6/25/92 1.60 E09 5.35 E08 2.87 E08 4.77 E07 9.53 E06

2/20/94 1.63 El0 3.82 E09 9.92 E08 4.13 E06 5.06 E05

Total 3.54 Ell 1.37 Ell 5.20 El0 1.02 El0 2.36 E09

Data from H. Sauer, NOAA Boulder, Events with Peak 10-MeV Proton Integral

Fluxes > 100 Protons/(cm2-s-sr)

SPE

Confidence
Level 4(> 1MeV) 4(> 4 MeV) 4(> 10MeV) 4(> 30MeV) 4(> 60MeV)

0.99

0.95

0.90
0.75

0.50

9.86 Ell 5.55 Ell 2.33 Ell 8.92 El0 4.19 El0

6.85 Ell 2.66 Ell 1.04 Ell 3.47 El0 1.51 El0

5.81 Ell 1.93 Ell 7.45 El0 2.21 El0 9.97 E09

4.70 Ell 1.25 Ell 4.64 El0 1.15 El0 5.19 E09

3.93 Ell 8.72 El0 2.74 El0 6.52 E09 2.81 E09
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Solar flare proton events are associated with phenomena on the Sun known as coronal mass

ejections. These ejections occur at fairly localized places on the Sun, and as the Sun rotates, the sites

of the ejections rotate with it. When one of these ejections occurs, the associated high-energy protons

are ejected into space and they follow the field lines of the interplanetary magnetic field. The field lines

emanate from the Sun and any particular field line may be described as an Archimedean spiral. The field

line coming from the Sun that intersects the Earth originates from a so-called "foot point" on the Sun

which is _ 57 ° to the east of the Earth-Sun line (west of central meridian [the receding limb as seen from

Earth]). If the ejection occurs at this point on the Sun, the protons will immediately propagate to the

Earth. The proton intensity seen at Earth will rise very rapidly, with the first protons arriving an hour

or so after the flare. These protons are likely to be highly anisotropic since they are travelling along the

magnetic field line. The protons released by ejections occurring at other sites on the Sun will propagate

along magnetic field lines that miss the Earth. For this reason, variations as large as 100 in the particle

fluxes from the same flare at different points around the Earth's orbit have been observed. However,

the protons released at other than the foot point site can still reach the Earth, but they must first diffuse

through the solar corona to the foot point before they propagate toward the Earth. When this occurs, the

proton intensity at the Earth will rise at a less rapid rate, and their arrival may be delayed as much as

Flare

Spiral Field Line

Earth

Sun - Earth Line

Coronal Propagation

Figure 8.8. Propagation of Solar Flare Protons from Sun to Earth
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10 hours or so. In either event, the solar proton intensity rises to a maximum after a time determined

by the solar longitude of the ejection and by the propagation time along the spiral, which is an inverse

function of the particle velocity. After the maximum intensity occurs, the flux tends to become isotropic,

and decays with an approximate 1/e relationship. There is, however, a tendency for a second peak in

the flux to occur some 3 or 4 days later. The geometry of the solar flare proton propagation is illustrated

in Figure 8.8 [8.39].

This chapter has given a broad-brush treatment of the important aspects of the space radiation

environment, but references have been included that may be consulted for additional, more detailed study.

In the next chapter, we will discuss the procedures that may be used with these models to calculate the

effect of the space radiation environment on GaAs solar panels.
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Chapter9

GaAsSolarArrayDegradationCalculations

9.1 GeneralProcedure

In thepreviouschapters,thethreebasicelementsrequiredto performsolararraydegradation

calculationsweredeveloped.Thefirst of theseelementsis degradationdatafor GaAssolarcellsafter

irradiationwith 1MeV electronsat normalincidence.Thesecondelementis thecalculatedtablesof

relativedamagecoefficientsfor omnidirectionalelectronandprotonexposure.Thethird elementis the

definitionof thespaceradiationenvironmentfor theorbitof interest.Thischapterwill covertheuseof

thisdatato performasolararraydegradationcalculation.Thediscussionin thischaptercloselyfollows

thetreatmentgivenin theSolar Cell Radiation Handbook [9.1].

The relative damage coefficients allow the conversion of various energy spectra of omnidirectional

space electrons and protons into equivalent fluences. The equivalent fluences are based on normal

incidence, monoenergetic irradiations for which the degradations of the solar cells are characterized in

laboratory measurements. The process of weighting an integral energy spectrum of electrons for a given

orbit can be described by the following equation:

na

_tu, v, = _ [4_(>E) - _(>E+ AE)] • D(E,t) (9-1)
E-0

where cI,1ucv c = the damage equivalent 1 MeV electron fluence (e/cm2-year)

q,(> E)- q,(> E + AE) = the isotropic particle fluence having energies in a small energy

increment greater than energy E (e/cm2-year)

D(E,t) the relative damage coefficient for isotropic fluences of energy E
incident on solar cells shielded by coverglasses of thickness t

(dimensionless)

The quantities ,I,(> E) - ,I,(> E + AE) for a range of energies are also known as the difference spectrum.

This spectrum can be generated from an integral fluence-energy spectrum (the type most commonly

quoted) for any energy increments desired.
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Equation(9-1) is also applicableto isotropicproton spaceenvironments,but the damage

coefficientsas definedhere convertthe protonspectrato equivalent10 MeV fluencesof normal

incidence.Oncethe 10MeV equivalentprotonfluenceshavebeencalculated,theymaybeconverted

to 1MeV equivalentelectronfluencesbymultiplyingbythefactorslistedin Table9-1.

Table9-1. ConversionFactorsfor Protonsto Electronsfor GaAsSolarCells
(Convertingfrom 10MeVProtonsto 1MeVElectrons)

Parameter Factor

Pm_x 1000
Vo_ 1400
I_ 400

Theabovevaluesareapproximationswhichmustbemadefor thepurposeof combiningelectronand

protondamage.As weobservedin thediscussionassociatedwith Figure5.1, thedegradationcurves,

asafunctionof variousenergiesof bothprotonsandelectrons,wouldhaveall hadto beparalleltoeach
otherfor theabovefactorsto holdwithgreatprecision.

Anadditionalcomplicationarisesincalculatingequivalentfluencesforprotonenvironments.The

damagecoefficientsdescribingsolarcelldegradationarequitedifferentfor I,_thantheyarefor P,_ and

Vow,andfor thisreasontwosetsof damagecoefficientswerederivedfor protondegradationin Chapter

5. Thisdifferswith thecalculationsof electrondamagecoefficients,wherewe foundthatonlyoneset

wasnecessaryfor all thecellelectricalparameters.Thisrequirementfor onesetof damagecoefficients

for electronirradiationandtwosetsfor protonirradiationwasalsofoundtobetruefor Sicells. Butwith

GaAscells,afterthetwo setsof equivalent,normal10MeV protonfluenceshavebeencalculated,we

mustapplythefactorslistedin Table9-1 to computeequivalent1MeV electronfluences,andweend

upwithasetof three1MeVequivalentfluencesfor theprotondegradationcalculation.Thecalculation

for the1MeVequivalentfluencefor omnidirectionalelectrons,computedseparately,mustthenbeadded

to eachof thethree1MeVequivalentfluencescomputedfor protons.Thestateof thecell degradation

maythenbeassessedby consultingthecurvesinChapter6, whichshowdegradationvs. 1MeVelectron
fluence.
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9.2 Rear-IncidenceRadiation

Theomnidirectionaldamagecoefficients,D(E,t),havebeencalculatedwith theassumptionthat

aninfinitelythickshieldprotectstherearsurfaceof thesolarpanel.Thisconditionisapproximatelymet

for body-mountedsolararraysof spinningspacecraft,butisnotgenerallytruefor spacecraftwith "wing-

type"solarpanels.With theeverincreasingpopularityof makinghighpower-to-weightratiopanels,the

protectivesubstratesof thepanelsbecomethinnerandthinner,andtheremaybe asmuchradiation
incidenton thecellsfromtheirrearsurfacesasfromtheirfrontsurfaces.Thecalculationof theeffect

of rear-surfaceradiationisnotwellestablished,butsomeworkatJPLonSisolarcells(reference[9.2])

indicatedthatcertainequivalentrear-shieldingthicknessescouldbeassumed,dependingon thetypeof

solarcell inuse. SinceGaAs/GesolarcellsaregrownonrelativelythickGesubstratesandGaAs/GaAs

cellsare likewisegrownon relativelythick GaAssubstrates,while theactivecell areais only a few

micronsthick, it shouldbeaccurateto assumethatwhateverstructureis beneaththeactiveGaAscell

shouldbeconsideredasshielding.In orderto accountfor therear-incidenceradiation,theshieldingon

therearsurfacesmustbecomputed.Thisisdoneby addingup thethicknessesof thepanels,thepanel-

to-celladhesive,thesolarcellrearcontact(silverwill probablybe themostimportantingredient),and

thethicknessof theGeorGaAscellsubstrates.Multiplythethickness(incm)of eachitemby itsdensity

(g/cm3)to converteachthicknesstounitsof g/cm2. Addthethicknessesin g/cm2units,thenconvertthis

thicknessto anequivalentcoverglassthicknessbydividingbythecoverglassdensityof 2.2g/cm3, which

was used to calculate the orbital damage coefficients and degradation tables in this chapter. The

equivalent fluence incident on the solar cell due to a coverglass of this thickness (interpolation between

the tabulated values will probably be necessary) should then be added to the equivalent fluence incident

on the front surface of the cell. An example of this procedure will be given in Section 9.5.

9.3 Rough Degradation Calculations

For circular orbits, Vette et al. [9.3, 9.4] have performed time integrations for both electrons and

protons. Their calculations include convenient energy ranges, various altitudes, and inclinations of 0 °,

30 ° , 60 ° , and 90 ° . They have performed the computations for both solar maximum and solar minimum

conditions. The average daily omnidirectional integral fluences are presented in the form of carpet plots

in reference [9.3] and in tables in reference [9.4]. A rough determination of the equivalent fluence can

be made by using the procedure described by eq. (9-1) and the factors given in Table 9-1. An example

of such a calculation for a spacecraft flying in a 3000 nmi circular orbit at an inclination of 0 ° is

presented in Table 9-2, where the equivalent 1 MeV electron fluence due to the AP-8 proton
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environmentis calculatedfor threecoverglassthicknesses.Thefluence-energy spectrum for this orbit

at Solar Minimum was read from the carpet plots in reference [9.3]. The proton damage coefficients for

the 3 coverglass thicknesses were taken from Table 5-3. We have used the proton damage coefficients

appropriate for either Pm,x or Vow. The calculation for 1 MeV equivalent fluence is completed by

multiplying by a factor of 1000 for the Pm_xdegradation, and by a factor of 1400 for the Vo_ degradation.

A similar procedure would be used for computing the Ix performance for these cells, with the exception

that we would use damage coefficients appropriate for Ix degradation (see Table 5-2) and multiply the

10 MeV equivalent proton fluence by a factor of 400 to compute the equivalent 1 MeV electron fluence.

Several observations can be made about the calculation shown in Table 9-2. The largest

contribution to the equivalent fluence for the 6 mil cover calculation occurs in the 4 to 6 MeV energy

range. The damage coefficient is zero for energies below 4 MeV and is changing rapidly between 4 and

6 Mev, so large errors can be made in using coarse energy steps in the energy regions where the damage

coefficients change rapidly. A similar observation may be made for the 12-mil coverglass calculation,

where the largest contribution to the total appears between 6 and 8 MeV, and the damage coefficients are

changing rapidly in that region. Also in the 30-mil coverglass calculation, the damage coefficients

become nonzero at = 11 MeV and the largest contribution to the total fluence is between 10 and 15 MeV.

Table 9-2 also shows that the contributions to the equivalent fluence become increasingly less important

as the energy increases. The computer calculations, to be discussed later, use the same calculational

procedure as illustrated in the spreadsheet, with two important exceptions. The energy increments taken

are much smaller, and the interpolation methods used are different. In our spreadsheet calculation, we

used eyeball interpolation to estimate the appropriate damage coefficients, whereas the computer uses a

formal interpolation procedure. The results of the machine calculation for this orbit are also shown in

Table 9-2. The agreement, considering the differences in the two procedures, and also that entirely

different orbit generating programs were used, is quite satisfactory.

9.4 Computer-Calculated Equivalent Fluence

The rough calculations discussed above can be improved in accuracy and speed with the aid of

a computer. Although the quantity computed is exactly the same as before, the selection of difference

fluence and the matching damage coefficient can be programmed to achieve higher accuracy and more

consistent results. The increased accuracy is achieved mainly by the use of finer energy increments, and

by using interpolation schemes matched to the interpolated functions. For example, when finding the
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integralfluencevs.energyat energylevelsbetweenthetabulatedvaluesgivenbytheorbitalintegration

routine,it hasbeenfoundto bemoreaccuratetousealinearinterpolationof log ,:I,vs. linearE for the

electronspectraandto usea linearinterpolationof log,I,vs. logE for the integralprotonspectra.

Tables9-4 through9-57havebeencalculatedby computingorbital coordinatesfor various

circularorbits,convertingthespatialcoordinatesintoB,L coordinates,calculatingthecontributionsto

boththeelectronandprotonfluencespectraat eachposition,andthenconvertingthesefluence-energy

spectrainto 1MeVequivalentelectronfluencesappropriatefor 8differentcoverglassthicknesses.The

orbital integrationsareperformedusingequationsdevelopedin reference[9.5] to computeappropriate

trajectoriesfor Earth-orbitingspacecraft.Theseorbitalcalculationsareestimatedto giveaccuraciesof

generallyafewtensof kilometersin altitude,+ 1 ° in latitude or longitude, and + 1 minute in time. The

conversion to B,L coordinates uses routines developed at the National Space Science Data Center [9.6,

9.7]. As discussed in Chapter 8, the Earth's magnetic field is changing fairly rapidly with time and,

therefore, the detailed distribution of the trapped radiation belts also changes. It is important to use a

magnetic field model appropriate for the time around which the models were constructed [9.8]. The

radiation models used in these calculations were AE8MIN, AE8MAX, AP8MIN, and AP8MAX,

depending on whether the calculation was for the minimum or maximum of the solar cycle. The

appropriate times to use for these models are 1964 for AE8MIN and AP8MIN and 1970 for AE8MAX

and AP8MAX [9.9]. Calculation of the proton and electron fluence at each point in B,L space was

performed by the NSSDC program SOFIP [9.10]. The program EQGAFLUX, listed as Table A-10 in

the Appendix, is used for converting the fluence-energy spectra into 1 MeV equivalent fluence using the

tabulated D(E,t) values.

A comparison of the values computed by AE8MIN and AE8MAX shows that the AE8MIN values

are slightly lower than the values computed using AE8MAX. This is generally true at all altitudes. The

situation is reversed for the AP8 models, however, where the values calculated using AP8MIN are higher

than those given by AP8MAX. The differences in the AP8 models are only significant at altitudes below

= 1000 nmi. For these reasons, we have included complete tables (all altitudes) for electron calculations

at both solar minimum and solar maximum. Values for the calculation using AP8MIN for altitudes below

1000 nmi are appended to the complete tables for AP8MAX.
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Thefinal four tablesin this chapterare the resultsof computing the equivalent fluences at

synchronous altitude as a function of longitude. There is a variation in radiation exposure with longitude,

because the magnetic equator is tilted with respect to the geocentric equator, with the two maxima and

two minima in radiation levels. The maxima occur near 160 ° west longitude and 20 ° east longitude, and

the minima occur near 70 ° west longitude and 110 ° east longitude. This longitude dependence is not

important for spacecraft orbiting at lower altitudes because they will sweep through all longitudes and will

experience a time-averaged exposure.

9.5 Example of Calculation for Rear-Incidence Radiation on a Thin Solar Panel

Suppose the spacecraft flying in the previously considered 3000 nmi circular orbit had solar

panels with flexible substrates. In such a configuration there will be a significant amount of radiation

reaching the solar cells through the rear surfaces. We proceed by cataloging the materials on the rear

surface of the solar cells, along with their densities, and convert all the thicknesses into units of g/cm 2.

Suppose the panel substrate under consideration is made up of the materials shown in Table 9-3:

Table 9-3. Catalog of Materials and Thicknesses for an Example Substrate

Material Thickness Density Thickness

( cm ) ( g/cm 3 ) ( g/cm 2 )

Kapton 50. E-4 1.47 7.35 E-3
Adhesive 50. E-4 1.80 9.00 E-3

Silver 10. E-4 10.50 1.05 E-2

Germanium 100. E-4 5.36 5.36 E-2

Total 8.05 E-2 g/cm 2

Equivalent Coverglass Thickness
(Divide by 2.2 g/cm 3) 3.66 E-2 cm

(14.4 mils)

The procedure outlined in the table demonstrates how the various material thicknesses are

converted to an equivalent coverglass thickness of 14.4 mils (366 #m). The density of 2.2 g/cm 3,

appropriate for 7940 fused silica, was used because that material density was used in the calculation of

the damage coefficient tables and for the orbital integration results tabulated later in this chapter. Suppose

that the cells on our panel are protected with 12-mil-thick CMG coverglasses. This material has a density
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of2.554g/cm3(seeTableA-5 in theAppendix).Theyarethereforeequivalentto7940coverglassesthat

are (2.554/2.2)timesasthick, or 13.9mils thick. We nowrefer to Table9-7, wheretheresultsof

orbital integrationsfor variouscircularorbitsat 0° inclination are tabulated for the proton degradation

of P,_x. According to this table, a panel with infinite backshielding and protected with 12-mil-thick

coverglasses (7940) will experience an equivalent 1 MeV electron fluence of 1.56 El6 e/cm 2, and if the

coverglass thickness is 20 mils, the equivalent fluence will be 6.26 El5 e/cm 2. The equivalent thickness

protecting the front surface of our example panel is 13.9 mils, and a linear interpolation shows that the

equivalent fluence incident on the cell would be 1.34 El6 e/cm z. A similar consideration for the 14.4-

mil-thick equivalent thickness protecting the rear cell surface yields an equivalent fluence of 1.28 El6

e/cm _. We add these two values together to find a total equivalent 1 MeV electron fluence of

2.62 El6 e/cm 2. We should now repeat this procedure with Table 9-4 or Table 9-5 (depending on which

part of the solar cycle is of concern) to calculate the additional equivalent fluence contributed by the

trapped electrons, however, in this case, the electron contribution is so totally overwhelmed by the

protons that this step can be ignored. We now consult Figure 6.10 to see how much power will remain

after 1 year in this orbit, and we find that this value is off scale. An estimate of the approximate

degradation can still be made, however, by consulting Figure 6.30. Although the degradation curves

illustrated in this figure were not derived from modern cells, we can use the shape of the curve beyond

the 1.0 El6 e/cm 2 electron fluence point to estimate the degradation. Figure 6.10 shows that the P,_

degradation at a fluence of 1.0 El6 e/cm z gives a Pm_x/Pr_0 of _0.4. If we translate the bottom curve

of Figure 6.30 upward, we estimate that the PmJPm,_o for a fluence of 2.6 El6 e/cm z would be _0.30.
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APPENDIX

TableA-1. SomeUsefulPhysicalConstants_')

To

AU

AMU

N A

a0

k

q

rn_

R

G0

hc/q

h

n_

E R

c

Or

kT

X

Absolute Zero

Astronomical Unit

Atomic Mass Unit

Avogadro constant

Bohr Radius

Boltzmann constant

Electron Charge

Electron rest mass

Gas Constant

Permeability of vacuum

Permittivity of vacuum

Photon energy per unit wavelength

Planck constant

Proton rest mass

Rydberg Energy (q2 [esu]/2%)

Speed of Light in vacuum

Stefan-Boltzmann constant

Thermal energy at 300 K

Wavelength of 1-eV quantum

-273.16

1.4959789 x 10s

1.66057 x 10-27

931.5016

6.02205 x 1023

5.29177 x 10 II

1.38066 x 10.23

8.61735 x 10s

1.60219 x 10 19

4.80286 x 10-1°

9.10953 x 10-at

1/1822.8874

0.51100

1.98719

1.25664 x 10-6

8.85419 x 10-12

1.23985

6.62618 x 10-_

4.13570 x 10is

1.67265 x 10.27

938.2796

2.17991 x 10-_8

13.60580

2.99792 x 108

5.67032 x 10-s

0.0259

1.23977

°C

km

kg
MeV

mol -t

m

joule/K
eV/K

coulomb (joule/eV)

esu ([dyne] 1/2- cm)

kg
AMU

MeV

cal/(mol-K)

henry/m

farad/m

eV/X(#m)

joule-sec
eV-sec

kg
MeV

Joule

eV

m/sec

watts/(m2-K 4)

eV

_m

Most of these values are from NBS Special Publication 398, August 1974
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TableA-2. Propertiesof GaAs,Si, andGeat 300K(a_

Properties GaAs Ge Si
Atoms/cma

Atomic Number (Z)
Ga

As

4.42 x 102_ 4.42 x 10z2 5.0 x 102_

Avg. = 32 32 14
31

33

Atomic Weight (M)
Ga

As

Bandgap Energy (eV)

Breakdown Field (V/cm)

Carrier Conc. (Intrinsic, cm -3)

Crystal Structure

Debye Length (Intrinsic,/xm)

Debye Temperature (K)

Density (g/cm 3)

Density of States (Effective)

Conduction Band, N c (cm -3)

Valence Band, Nv (cm 3)

Dielectric Constant (es/E0)

Displacement Energy, Ed (eV)

Effective Mass, m'/m o

Electrons

Holes

144.63 72.60 28.09
69.72

74.91

1.424 0.66 1.12

--4x 105 =105 --3x 105

1.79 x 106 2.4 x 1013 1.45 x 101°

Zincblende Diamond Diamond

2250 0.68 24

370 K _bl

5.317 _c) 5.3267 2.328

4.7 x 1017 1.04 x 1019 2.8 X 1019

7.0 x 10t8 6.0 x 10 TM 1.04 x 10x9

13.1 16.0 11.9

7- 11 13 11 - 12.9

Avg: 10

0.067 m_" = 1.64 m," = 0.98

m_" = 0.082 n_" = 0.19

m_" = 0.082 mlh" = 0.044 m_" = 0.16

mm" = 0.45 m_" = 0.28 rn_" = 0.49

From Sze, Physics of Semiconductor Devices, John Wiley, New York, 1981 unless otherwise noted.

b S. Adachi, "GaAs, AlAs, and AlxGa__xAS: Material Parameters for use in Research and Device

Applications," Journal of Applied Physics, 58, R1, 1985.

J.S. Blakemore, "Semiconducting and Other Major Properties of Gallium Arsenide," Journal of Applied
Physics, Vol. 53, R123, 1982.
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TableA-2. Propertiesof GaAs,Si, andGeat300K (Cont'd)_a_

Properties GaAs Ge Si

ElectronAffinity, X (V)

IonizationPotential,Avg. (eV) (b)

Lattice Constant (A)

Melting Point (°C)

Minority Carrier Lifetime (s)

Mobility, Drift (cm2/V-s)

Electrons (_n)

Holes (_p)

Optical Phonon Energy (eV)

Resistivity, Intrinsic (Ohm-cm)

Specific Heat (J/g-°C)

Thermal Conductivity (W/cm-°C)

Thermal Diffusivity (cm2/s)

Thermal Expansion Coefficient

(AL/LAT, K -1)

4.07 4.0 4.05

385.1 350.0 173.0

5.6533 5.64613 5.43095

1238 937 1415

10-8 10 3 2.5 X 10 3

8500 3900 1500

400 1900 450

0.035 0.063 0.037

10s 47 2.3 x 105

0.35 0.31 0.7

0.46 0.6 1.5

0.24 0.36 0.9

5.73 x 10-6 (c) 5.8 x 10-6 2.6 x 10-6

a From Sze, Physics of Semiconductor Devices, John Wiley, New York, 1981 unless otherwise noted.

b From Seltzer, EPSTAR Program.

c J.S. Blakemore, "Semiconducting and Other Major Properties of Gallium Arsenide," Journal of Applied

Physics, Vol. 53, R123, 1982.
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TableA-3. Propertiesof GaAsandGa__,AlxAsat 300K(')

Properties GaAs Al_Gat_xAs

Bandgap Energy (eV)

Debye Temperature (K)

Density (g/cm 3)

Electron Affinity X (eV)

Lattice Constant (_,)

Melting Point (°C)

Thermal Expansion Coefficient

(AL/LAT, K -I)

Specific Heat (J/g-°C)

1.424

370

5.360

4.07

5.6533

1238

1.424 + 1.247x (0 < x < 0.45)
1.900 + 0.125x + 0.143x 2

(0.45 < x < 1.0)

370 + 54x + 22x 2

5.36- 1.6x

4.07- 1.1x (0 _< x < 0.45)

3.64- 0.14x (0.45 < x < 1.0)

5.6533 + 0.0078x

1238- 58x + 560x2 _b)
1238 + 1082x - 560x 2(c)

6.4 x 10-6 (6.4 - 1.2x) x 10_s

0.34 0.34 + 0.13x

a From S. Adachi, "GaAs, AlAs, and AlxGa__xAs: Material Parameters for use in Research and

Device Applications," Journal of Applied Physics, 58, R1, 1985, unless otherwise noted.

b This gives the solidus-surface curve [M.B. Panish and M. Ilegems, Progress in Solid State
Chemistry, 7, 39, Pergamon, Oxford, 1972].

c This gives the liquidus-surface curve, [M.B. Panish and M. Ilegems, Progress in Solid State

Chemistry, 7, 39, Pergamon, Oxford, 1972].
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Band Gap Energy vs. Aluminum Concentration, x, in Ga_.xAlxAS

J. Ewan et al., Proc. of the 11th IEEE Photovoltaic Specialists Conf., 409, 1975.

(© 1975 IEEE, used with permission)
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C.D. Thurmond, J. Electrochem. Soc., 122, No. 8, 1133, 1975.
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Figure A.5.

Data Source:

Drift Mobility of Electrons and Holes in GaAs at 300 K vs. Impurity
Concentration

S.M. Sze, Physics of Semiconductor Devices, Second Edition, John Wiley &

Sons, New York, 1981.
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Table A-4. Indices of Refraction of Some Common Solar Cell Materials at 300 K

1. Si and GaAs (_(b_

Wavelength rh rh
(nm) Si GaAs

0.40 6.0 4.15

0.45 4.75 4.8

0.5 4.25 4.4

0.6 3.9 3.85

0.7 3.75 3.65
0.8 3.65 3.62

0.9 3.6 3.6

1.0 3.5 3.5

1.1 3.5 3.46

2. Indices of Refraction of Miscellaneous Materials at X = 589 nm

Material n

MgF2 1.38

Organic Film 1.4
SiO2 1.46

A1203 1.76

SiOx 1.8-1.9

Si3N 4 2.05

Ta205 2.2
ZnS 2.36

TiO2 2.62
CMG Coverglass (c) 1.516

CMX Coverglass 1.5265

CMZ Coverglass 1.49
Fused Silica 1.46-1.51

aEncyclopedia of Chemical Technology, Kirk-Othmer, Eds., Vol. 18, Wiley, New York, 1964.

bB.O. Seraphin and H.E. Bennett, Semiconductors and Semimetals, Willardson and Beers, eds., Vol.
3, Academic Press, New York, 1967.

cCoverglass Data from Product Specification Reports, PS 400, Issue 1, PS 401, Issue 2, and PS 292,

Issue 4, Pilkington Space Technology, United Kingdom.
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TableA-5. PhysicalandOpticalPropertiesof CoverglassMaterials

PhysicalProperty CMX(a_(b) CMZ(O CMG(a) FusedSilica

Density(g/cm3
ThermalExpansionCoeff.(1/°C)
YoungsModulus(N/m2)
Poisson'sRatio
BulkResistivity,20-60°C(f]-m)
SurfaceResistivity,100°C(m/o)
50%Cut-onPoint,150-_mthick(nm)
a, SolarAbsorptance,150-#mthick

(_ = 250- 2500nm),withAR
en, Normal emittance,

150-#m thick, with AR

eh, Hemispherical emittance,
150-/xm thick, with AR

rh, Refractive Index

2.605 2.385 2.554

5.6x10 -6 3.67x10 -6 5.6x10 -6

7.5x10 l° 7.05x10 l° 7.87x10 t°

0.22 0.19 0.175

2.2x1012 1.0xl014 5.0X1011

1.9x1016 > 1016

355 + 5 350 + 5 345 + 5

0.06 0.053 0.04 0.01

0.86 0.845 0.845

2.2

0.55x10 -6

7.16x101°

0.16

0.815 0.78

1.5265 1.49 1.516 1.46-1.51

aCMX, CMZ, and CMG coverglass materials were developed by Pilkington in the United Kingdom.

All three materials are basically borosilicate glasses, doped with cerium dioxide to prevent the

formation of color centers by electron and proton irradiation. All three are furnished with

antireflection coatings.

b "Product Specification for Manufacture and Quality Assurance of CMX Solar Cell Coverglasses
with Antireflection Coating," Pilkington Report No. PS292, Issue 4, 1991. CMX glass was

developed for use in space for solar cell coverglasses and optical solar reflectors.

c "Product Specification for Manufacture and Quality Assurance of CMZ Solar Cell Coverglasses with

Antireflection Coating," Pilkington Report No. PS 400, Issue 1, 1991. CMZ glass was developed

for use in space as a coverglass for silicon solar cells.

d "Product Specification for Manufacture and Quality Assurance of CMG Solar Cell Coverglasses
with Antireflection Coating," Pilkington Report No. PS 401, Issue 2, 1992. CMG glass was

developed for use in space as a coverglass for GaAs solar cells.
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TableA-6. Ranges,StoppingPowers,andStragglingof ProtonsIncidenton GaAs

Stopping Units

Proton

Energy

i0 00 keV

12 00 keY

14 00 keV

16 00 keV

18 00 keV

20 00 keV

22 00 keY

24 00 key

26 00 key

28 00 keY

30 00 keY

33 00 keV

36 00 keV

40 00 keV

45 00 keV

50 00 keV

55 00 keV

60 00 keY

65.00 keY

70.00 keV

80.00 keY

90.00 keV

100.00 keV

Ii0.00 keV

120.00 keV

130.00 keV

140.00 keV

150.00 keV

160 00 keV

170 00 keV

180 00 keV

200 00 keY

220 00 keV

240 00 keV

260 00 keV

280 00 keV

300 00 keV

330 00 keV

360 00 keV

400 00 keV

450 00 key

500 00 keV

550 00 keV

600.00 keY

650.00 keV

700.00 key

800.00 key

900.00 key

1.00 MeV

i.i0 MeV

1.20 MeV

1.30 MeV

1.40 MeV

1.50 MeV

1.60 MeV

= MeV / (mg/cm2)

dE/dx dE/dx Projected

Elec. Nuclear Range

..............................

1.369E-01

1.486E-01

1.593E-01

1.691E-01

1.783E-01

1.870E-01

1.952E-01

2 030E-01

2 085E-01

2 109E-01

2 131E-01

2 161E-01

2 188E-01

2.221E-01

2.255E-01

2.284E-01

2.309E-01

2.329E-01

2.346E-01

2.359E-01

2.377E-01

2.386E-01

2.387E-01

2.381E-01

2 371E-01

2 356E-01

2 338E-01

2 318E-01

2 295E-01

2 270E-01

2 244E-01

2 190E-01

2 135E-01

2 079E-01

2 025E-01

1 972E-01

1 921E-01

1 849E-01

1 782E-01

1 701E-01

i 612E-01

1 534E-01

1 466E-01

1 406E-01

1 352E-01

1.304E-01

1.220E-01

1.150E-01

1.090E-01

1.037E-01

9.911E-02

9.498E-02

9.126E-02

8.789E-02

8.480E-02

2 096E-03

1 932E-03

1 795E-03

1 679E-03

1 580E-03

1 493E-03

1 417E-03

1 350E-03

1 289E-03

1 235E-03

1 185E-03

1 I19E-03

1 061E-03

9 938E-04

9 222E-04

8 614E-04

8 092E-04

7 636E-04

7.236E-04

6.880E-04

6.275E-04

5.779E-04

5.314E-04

4 965E-04

4 663E-04

4 399E-04

4 167E-04

3 960E-04

3 775E-04

3 608E-04

3 457E-04

3 193E-04

2 969E-04

2 778E-04

2 612E-04

2.466E-04

2.337E-04

2.169E-04

2.026E-04

1.864E-04

1.697E-04

1.560E-04

1.445E-04

1.347E-04

1.263E-04

1.189E-04

1.066E-04

9.677E-05

8.872E-05

8.200E-05

7.629E-05

7.137E-05

6.709E-05

6.333E-05

5.999E-05

930

1098

1262

1422

1578

1730

1879

2024

2168

2311

2454

2669

2884

3171

3529

3887

4245

4603

4960

5318

6035

6755

7479

8208

8944

9687

1 04

1 12

1 20

1 27

1 35

1 51

1 68

1.85

2.03

2.21

2.39

2.68

2.98

3.40

3.95

4.53

5.14

5.78

6.45

7.14

8.59

10.15

11.79

13.52

15.34

17.24

19.23

21.29

23.43

Longitudinal Lateral

Straggling Straggling

A 584 A 697 A

A 640 A 776 A

A 689 A 849 A

A 732 A 916 A

A 772 A 977 A

A 807 A 1035 A

A 840 A 1089 A

A 870 A 1139 A

A 897 A 1187 A

A 924 A 1233 A

A 949 A 1278 A

A 984 A 1343 A

A 1018 A 1406 A

A 1060 A 1487 A

A 1109 A 1584 A

A 1155 A 1676 A

A 1199 A 1766 A

A 1240 A 1852 A

A 1279 A 1937 A

A 1316 A 2018 A

A 1388 A 2177 A

A 1456 A 2329 A

A 1519 A 2476 A

A 1580 A 2620 A

A 1639 A 2760 A

A 1695 A 2898 A

um 1750 A 3034 A

um 1804 A 3168 A

um 1857 A 3302 A

um 1909 A 3435 A

um 1960 A 3567 A

um 2066 A 3831 A

um 2172 A 4096 A

um 2276 A 4363 A

um 2381 A 4632 A

um 2485 A 4904 A

um 2591 A 5180 A

um 2759 A 5602 A

um 2929 A 6033 A

um 3172 A 6624 A

um 3497 A 7389 A

um 3828 A 8183 A

um 4164 A 9005 A

um 4506 A 9855 A

um 4854 A 1.07 um

um 5207 A 1.16 um

um 6096 A 1.35 um

um 6987 A 1.55 um

um 7882 A 1.75 um

um 8787 A 1.97 urn

um 9702 A 2.19 um

um 1.06 um 2.41 um

um 1.16 um 2.65 um

um 1.25 um 2.89 um

um 1.35 urn 3.14 um
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TableA-6. Ranges,StoppingPowers,andStragglingof ProtonsIncidentonGaAs(Cont'd)

Proton

Energy

1.70 MeV

1.80 MeV

2.00 MeV

2.20 MeV

2.40 MeV

2.60 MeV

2 80 MeV

3 00 MeV

3 30 MeV

3 60 MeV

4 00 MeV

4 50 MeV

5.00 MeV

5.50 MeV

6.00 MeV

6.50 MeV

7 00 MeV

8 00 MeV

9 00 MeV

10 00 MeV

Ii 00 MeV

12 00 MeV

13 00 MeV

14 00 MeV

dE/dx dE/dx

Elec. Nuclear Range

..............................

8 198E-02

7 937E-02

7 470E-02

7 065E-02

6 708E-02

6 392E-02

6 108E-02

5 853E-02

5 513E-02

5 216E-02

4 873E-02

4 512E-02

4 207E-02

3.946E-02

3.719E-02

3.521E-02

3.345E-02

3.048E-02

2.805E-02

2.603E-02

2.451E-02

2.307E-02

2.179E-02

2.065E-02

5.701E-05

5.434E-05

4.972E-05

4.587E-05

4.261E-05

3.980E-05

3.737E-05

3.523E-05

3.248E-05

3.014E-05

2.754E-05

2.488E-05

2.272E-05

2.092E-05

1.940E-05

1.810E-05

1.697E-05

1.511E-05

1.363E-05

1.243E-05

1 143E-05

1 059E-05

9 874E-06

9 251E-06

Projected Longitudinal

Straggling

1 45 um

1 55 um

1 81 um

2 08 um

2 34 um

2 61 um

2 87 um

3 15 um

3 65 um

4 15 um

4 93 um

6 03 um

25.65 um

27.94 um

32.74 um

37.84 um

43.22 um

48.88 um

54.81 um

61.01 um

70.81 um

81.19 um

95.91 um

115.71 um

137 03 um

159 84 um

184 i0 um

209 78 um

236 87 um

295 13 um

358 76 um

427 63 um

501 32 um

579 62 um

662'.69 um

750.49 um

7.11 urn

8.20 um

9.29 um

i0.41 um

11.54 um

15.01 um

18.38 um

21.73 um

25.08 um

28.46 um

31.90 um

35.40 um

15

16

17

18

20

22

24

00 MeV 1.963E-02

00 MeV 1.872E-02

00 MeV 1.789E-02

00 MeV 1.714E-02

00 MeV 1.583E-02

00 MeV 1.472E-02

00 MeV 1.377E-02

26.00 MeV 1.295E-02

28.00 MeV 1.223E-02

30.00 MeV 1.160E-02

33.00 MeV

36.00 MeV

40.00 MeV

45.00 MeV

50.00 MeV

55.00 MeV

60.00 MeV

65.00 MeV

70.00 MeV

80.00 MeV

90.00 MeV

i00.00 MeV

1.077E-02

1.007E-02

9.280E-03

8 473E-03

7 813E-03

7 264E-03

6 799E-03

6 399E-03

6 053E-03

5 481E-03

5 028E-03

4 661E-03

8 705E-06 843.00 um

8 223E-06 940.17 um

7 795E-06 1.04 mm

7 411E-06 1.15 mm

6 751E-06 1.37 mm

6 204E-06 1.62 mm

5 743E-06 1.88 mm

5 349E-06 2.16 mm

5 008E-06 2.46 mm

4 710E-06 2.77 mm

4.326E-06 3.27 mm

4.003E-06 3.81 mm

3.643E-06 4.58 mm

3.279E-06 5.63 mm

2.984E-06 6.78 mm

2.739E-06 8.02 mm

2.533E-06 9.34 mm

2.358E-06 10.76 mm

2.206E-06 12.26 mm

1.956E-06 15.50 mm

1.759E-06 19.06 mm

1.599E-06 22.92 mm

38.98 um

42.64 um

46.37 um

50.19 um

62.25 um

74.04 um

85.79 um

97.62 um

109.61 um

121.79 um

146.20 um

170.39 um

209 86 um

266 67 um

322 18 um

377 56 um

433 35 um

489 84 um

547 18 um

738 22 um

919 30 um

1 i0 mm

Multiply Stopping by

5.3168E+02

1.0000E+00

1.0000E+03

1.0000E+03

1.0742E+02

for Stopping Units

MeV / mm

keV / (ug/cm 2)

keV / (mg/cm 2)

MeV / (g/cm 2)

L.S.S. reduced units

Lateral

Straggling

3.40 um

3.66 um

4.20 um

4 78 um

5 37 um

5 99 um

663 um

7 30 um

8 34 um

9.43 um

i0 97 um

13 00 um

15.17 um

17.46 um

19.88 um

22.42 um

25.08 um

30.74 um

36.86 um

43.41 um

50 36 um

57 68 um

65 39 um

73 48 um

81 94 um

90 79 um

i00 00 um

109 59 um

129 87 um

151 59 um

174 74 um

199 28 um

225.20 um

252.46 um

295.85 um

342.15 um

408.32 um

497.91 um

594.88 um

698.97 um

809.91 um

927.47 um

1.05 mm

1.32 mm

1.61 mm

1.92 mm

Table A-6 was computed using the Trim program written by J.P. Biersack, and J.F.

Ziegler (Version 91.14)
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TableA-7. Ranges,StoppingPowers,andStragglingof Electrons Incident on GaAs

Composition (Constituent Z : Fraction by weight)

31: 0.467247 33: 0.532753

<Z/A> = 0.442411 I = 385.1 eV DENSITY = 5.320E+00 g/cm3

ENERGY

MeV

0.00100

0.00125

0.00150

0.00175

0.00200

0.00250

0.00300

0.00350

0.00400

0.00450

0.00500

0.00550

0.00600

0.00700

0.00800

0.00900

0.01000

0.01250

0.01500

0.01750

0.02000

0.02500

0.03000

0.03500

0 04000

0 04500

0 05000

0 05500

0 06000

0 07000

0 08000

0 09000

0.10000

0,12500

0.15000

0.17500

0.20000

0.25000

0.30000

0.35000

STOPPING POWER CSDA

COLLISION RADIATIVE TOTAL RANGE

MeV cm2/g MeV cm2/g MeV cm2/g g/cm2

3.850E+01

3.703E+01

3.511E+01

3.318E+01

3.138E+01

2.825E+01

2.569E+01

2.359E+01

4.967E-03

5.570E-03

6 098E-03

6 569E-03

6 995E-03

7 737E-03

8 368E-03

8 916E-03

3.850E+01

3.704E+01

3.511E+01

3.319E+01

3.138E+01

2.826E+01

2.570E+01

2.360E+01

2 184E+01

2 035E+01

1 908E+01

1 798E+01

1 701E+01

1 540E+01

1.410E+01

1.303E+01

9.399E-03

9.829E-03

1.021E-02

1.056E-02

1.088E-02

1.144E-02

1.192E-02

1.233E-02

2 185E+01

2 036E+01

1 909E+01

1 799E+01

1 702E+01

1 541E+01

1.411E+01

1.304E+01

1.213E+01

1.040E+01

9.163E+00

8.224E+00

7.486E+00

6.395E+00

5.625E+00

5.050E+00

1 269E-02

1 343E-02

1 400E-02

1 445E-02

1 482E-02

1 539E-02

1 581E-02

1 615E-02

1.214E+01

1 042E+01

9 177E+00

8 238E+00

7 501E+00

6 411E+00

5 641E+00

5 066E+00

4.602E+00

4.244E+00

3.950E+00

3.705E+00

3.496E+00

3.161E+00

2.903E+00

2.699E+00

1.643E-02

1.667E-02

1.689E-02

1.708E-02

1.725E-02

1.757E-02

1.787E-02

1.814E-02

4 619E+00

4 261E+00

3 967E+00

3 722E+00

3 513E+00

3 179E+00

2.921E+00

2.717E+00

532E+00

227E+00

019E+00

870E+00

757E+00

600E+00

497E+00

426E+00

1.839E-02

1.900E-02

1.959E-02

2.019E-02

2.081E-02

2.211E-02

2.349E-02

2.497E-02

2.551E+00

2.246E+00

2.039E+00

1.890E+00

1.778E+00

1.622E+00

1.521E+00

1.451E+00

1 299E-05

1 959E-05

2 652E-05

3 385E-05

4 159E-05

5 841E-05

7.698E-05

9.731E-05

1.193E-04

1.431E-04

1.684E-04

1.954E-04

2.240E-04

2.859E-04

3.538E-04

4.276E-04

5.071E-04

7.302E-04

9.865E-04

1.275E-03

1.593E-03

2.317E-03

3.151E-03

4.088E-03

5 123E-03

6 251E-03

7 469E-03

8 771E-03

1 015E-02

1 315E-02

1 644E-02

1 999E-02

2.380E-02

3.428E-02

4.599E-02

5.875E-02

7.241E-02

1.019E-01

1.338E-01

1.675E-01

RADIATION DENSITY

YIELD EFFECT

DELTA

6 450E-05

7 949E-05

9 323E-05

1 064E-04

1 194E-04

1 452E-04

1 709E-04

1 968E-04

2.227E-04

2.486E-04

2.747E-04

3.007E-04

3.268E-04

3.788E-04

4.307E-04

4.823E-04

5.337E-04

6.606E-04

7.851E-04

9.073E-04

1.027E-03

1.260E-03

1.484E-03

1.700E-03

1.909E-03

2.112E-03

2.310E-03

2.502E-03

2.689E-03

3.051E-03

3.398E-03

3.731E-03

4 053E-03

4 811E-03

5 516E-03

6 179E-03

6 806E-03

7 981E-03

9 075E-03

1 011E-02

4.118E-04

5.145E-04

6.171E-04

7.196E-04

8.220E-04

1.026E-03

1.231E-03

1.434E-03

1.638E-03

1.840E-03

2 043E-03

2 245E-03

2 447E-03

2 849E-03

3 250E-03

3 650E-03

4 048E-03

5 037E-03

6 018E-03

6 990E-03

7 955E-03

9 863E-03

1.174E-02

1.360E-02

1.543E-02

1.724E-02

1.903E-02

2.080E-02

2.255E-02

2.601E-02

2.941E-02

3.275E-02

3.605E-02

4.414E-02

5.202E-02

5.976E-02

6.737E-02

8.232E-02

9.701E-02

I.II5E-01
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Table A-7. Ranges, Stopping Powers, and Straggling of Electrons Incident on GaAs (Cont'd)

ENERGY

MeV

STOPPING POWER CSDA

COLLISION RADIATIVE TOTAL RANGE

MeV cm2/g MeV cm2/g MeV cm2/g g/cm2

RADIATION DENSITY

YIELD EFFECT

DELTA

0.40000 1.375E+00 2.651E-02 1.402E+00 2.026E-01 1.1lIE-02 1.260E-01

0 45000 1.337E+00 2.813E-02 1.365E+00 2 388E-01 1.207E-02 1.403E-01

0 50000 1.309E+00 2.980E-02 1.338E+00 2 758E-01 1.300E-02 1.547E-01

0 55000 1.287E+00 3.154E-02 1.318E+00 3 135E-01 1.392E-02 1.691E-01

0 60000 1.270E+00 3.332E-02 1.303E+00 3 516E-01 1.482E-02 1.835E-01

0 70000 1.246E+00 3.705E-02 1.283E+00 4 290E-01 1.660E-02 2.125E-01

0 80000 1.232E+00 4.097E-02 1.273E+00 5 073E-01 1.834E-02 2.417E-01

0.90000 1.223E+00 4.505E-02 1.268E+00 5 861E-01 2.006E-02 2.711E-01

1.00000 1.218E+00 4.929E-02 1.268E+00 6.649E-01 2.178E-02 3.007E-01

1.25000 1.216E+00 6.041E-02 1.277E+00 8.616E-01 2.604E-02 3.747E-01

1.50000 1.221E+00 7.218E-02 1.293E+00 1.056E+00 3.029E-02 4.480E-01

1.75000 1.229E+00 8.449E-02 1.313E+00 1.248E+00 3.455E-02 5.198E-01

2.00000 1.238E+00 9.724E-02 1.335E+00 1.437E+00 3.880E-02 5.896E-01

2.50000 1.257E+00 1.238E-01 1.381E+00 1.805E+00 4.729E-02 7.227E-01

3.00000 1.275E+00 1.516E-01 1.426E+00 2.161E+00 5.575E-02 8.472E-01

3.50000 1.291E+00 1.804E-01 1.472E+00 2.506E+00 6.414E-02 9.635E-01

4.00000 1.306E+00 2.099E-01 1.516E+00 2.841E+00 7.244E-02 1.073E+00

4.50000 1.319E+00 2.400E-01 1.559E+00 3.166E+00 8.064E-02 1.175E+00

5.00000 1.331E+00 2.706E-01 1.602E+00 3.483E+00 8.872E-02 1.272E+00

5.50000 1.343E+00 3.016E-01 1.644E+00 3.791E+00 9.667E-02 1.363E+00

6.00000 1.353E+00 3.331E-01 1.686E+00 4.091E+00 1.045E-01 1.450E+00

7.00000 1.371E+00 3.971E-01 1.768E+00 4.670E+00 1.197E-01 1.611E+00

8.00000 1.386E+00 4.623E-01 1.849E+00 5.223E+00 1.345E-01 1.757E+00

9.00000 1.400E+00 5.286E-01 1.929E+00 5.753E+00 1.487E-01 1.892E+00

I0.00000 1.412E+00 5.957E-01 2.008E+00 6.261E+00 1.623E-01 2.016E+00

12.50000 1.438E+00 7.665E-01 2.204E+00 7.449E+00 1.944E-01 2.289E+00

15.00000 1.458E+00 9.407E-01 2.399E+00 8.536E+00 2.238E-01 2.522E+00

17.50000 1.475E+00 I.II8E+00 2.593E+00 9.538E+00 2.507E-01 2.726E+00

20.00000 1.490E+00 1.297E+00 2.787E+00 1.047E+01 2.754E-01 2.906E+00

25.00000 1.514E+00 1.661E+00 3.174E+00 1.215E+01 3.194E-01 3.217E+00

30.00000 1.533E+00 2.030E+00 3.562E+00 1.363E+01 3.574E-01 3.481E+00

35.00000 1.548E+00 2.403E+00 3.952E+00 1.497E+01 3.905E-01 3.711E+00

40.00000 1.561E+00 2.780E+00 4.342E+00 1.617E+01 4.198E-01 3.915E+00

45.00000 1.573E+00 3.160E+00 4.733E+00 1.728E+01 4.459E-01 4.100E+00

50.00000 1.583E+00 3.543E+00 5.125E+00 1.829E+01 4.693E-01 4.268E+00

55.00000 1.592E+00 3.927E+00 5.519E+00 1.923E+01 4.904E-01 4.424E+00

60.00000 1.599E+00 4.314E+00 5.913E+00 2.011E+01 5.096E-01 4.568E+00

70.00000 1.613E+00 5.091E+00 6.704E+00 2.169E+01 5.432E-01 4.829E+00

80.00000 1.625E+00 5.874E+00 7.498E+00 2.310E+01 5.718E-01 5.059E+00

90.00000 1.635E+00 6.660E+00 8.295E+00 2.437E+01 5.964E-01 5.266E+00

i00.00000 1.643E+00 7.451E+00 9.094E+00 2.552E+01 6.179E-01 5.453E+00

125.00000 1.661E+00 9.438E+00 I.I10E+01 2.801E+01 6.615E-01 5.855E+00

150.00000 1.676E+00 1.144E+01 1.311E+01 3.008E+01 6.949E-01 6.189E+00

175.00000 1.688E+00 1.344E+01 1.513E+01 3.185E+01 7.214E-01 6.474E+00

200.00000 1.698E+00 1.546E+01 1.715E+01 3.340E+01 7.431E-01 6.724E+00

To convert ranges in g/cm 2 to cm, divide by 5.32 g/cm 3.

Table A-7 was computed using the EPSTAR program written by S.M. Seltzer.
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TableA-8. Ranges,StoppingPowers,andStragglingof ProtonsIncidentonCMGGlass

Stopping Units = MeV / (mg/cm 2) CMG Density = 2.554 g/cm _

Proton

Energy

i0.00 keV 2.486E-01

12.00 keV 2.697E-01

14.00 keV 2.889E-01

16.00 keV 3.066E-01

18.00 keY 3.232E-01

Elec. Nuclear Range
....................... _ ......

dE/dx dE/dx Projected Longitudinal

Straggling

20.00 keV 3.388E-01

22.00 keY 3.535E-01

24.00 keV 3.675E-01

26.00 key 3.798E-01

28.00 keV 3.899E-01

30.00 keV 3.993E-01

33.00 keV 4.123E-01

36.00 keV 4.240E-01

40.00 keV 4.378E-01

45.00 keV 4.525E-01

50.00 keV 4.647E-01

55.00 keV 4.746E-01

60.00 keV 4.826E-01

65.00 keY 4.889E-01

70.00 keV 4.936E-01

80.00 keV 4.992E-01

90.00 keV 5.005E-01

i00.00 keY 4.987E-01

ii0.00 keV 4.945E-01

120.00 key 4.885E-01

130.00 keV 4.813E-01

140.00 keV 4.732E-01

150.00 keV 4.646E-01

160.00 keV 4.557E-01

170.00 keV 4.466E-01

180.00 keV 4.375E-01

200 00 keV 4.197E-01

220 00 keV 4.026E-01

240 00 keV 3.865E-01

260 00 keV 3.715E-01

280 00 keY 3.576E-01

300 00 keV 3.447E-01

330.00 keV 3.272E-01

360.00 keV 3.116E-01

400.00 keY 2.934E-01

450.00 keV 2.740E-01

500.00 keV 2.575E-01

550.00 keY 2.434E-01

600.00 keV 2.311E-01

650.00 keY 2.203E-01

700.00 keV 2.107E-01

800.00 keV 1.944E-01

900 00 keV 1.810E-01

4.091E-03

3.665E-03

3 330E-03

3 058E-03

2 832E-03

2 642E-03

2 478E-03

2 336E-03

2.211E-03

2.100E-03

2.002E-03

1.871E-03

1.759E-03

1.631E-03

1.497E-03

1.385E-03

1.291E-03

1.210E-03

1.139E-03

1.077E-03

9.730E-04

8.889E-04

8.193E-04

7.607E-04

7. 106E- 04

6. 672E-04

6.293E-04

5.958E-04

5.659E-04

5.392E-04

5.151E-04

4 732E-04

4 382E-04

4 083E-04

3 825E-04

3 601E-04

3 403E-04

3.147E-04

2.929E-04

2 684E-04

2 434E-04

2 229E-04

2 058E-04

1 913E-04

1 789E-04

1.680E-04

1.501E-04

1 358E-04

1 241E-04

1 144E- 04

1 062E-04

9 918E-05

9 307E-05

1458 A 576 A

1702 A 618 A

1934 A 653 A

2157 A 684 A

2372 A 710 A

2579 A 734 A

2780 A 755 A

2974 A 774 A

3163 A 791 A

3348 A 807 A

3530 A 821 A

3797 A 842 A

4057 A 860 A

4397 A 883 A

4811 A 908 A

5215 A 931 A

5612 A 951 A

6003 A 970 A

6389 A 988 A

6773 A 1004 A

7534 A 1038 A

8294 A 1068 A

9056 A 1096 A

9825 A 1124 A

1.06 um 1150 A

1.14 um 1175 A

1.22 um 1200 A

1.30 um 1225 A

1.39 um 1250 A

1.47 um 1275 A

1.56 um 1300 A

1.74 um 1361 A

1.93 um 1424 A

2.12 um 1488 A

2.33 um 1554 A

2.54 um 1622 A

2.76 um 1691 A

3.10 um 1820 A

3.47 um 1953 A

3.98 um 2165 A

4.67 um 2474 A

5.40 um 2787 A

6.17 um 3103 A

6.99 um 3424 A

7.85 um 3749 A

8.75 um 4080 A

10.67 um 5122 A

12.75 um 6128 A

14.97 um 7118 A

17.33 um 8105 A

19.83 um 9096 A

22.47 urn 1.01 um

25.23 um I.Ii um

1 00 MeV 1.696E-01

1 i0 MeV 1.599E-01

1 20 MeV 1.514E-01

1 30 MeV 1.440E-01

1 40 MeV 1.373E-01

Lateral

Straggling

769 A

844 A

910 A

970 A

1023 A

1072 A

1117 A

1158 A

1197 A

1233 A

1267 A

1314 A

1359 A

1414 A

1476 A

1534 A

1588 A

1638 A

1686 A

1731 A

1817 A

1897 A

1974 A

2048 A

2120 A

2190 A

2260 A

2330 A

2400 A

2469 A

2539 A

2681 A

2827 A

2976 A

3129 A

3287 A

3450 A

3704 A

3970 A

4343 A

4838 A

5365 A

5922 A

6507 A

7120 A

7759 A

9113 A

1 06 um

1 21 um

1 37 um

1 54 um

1 72 um

1 91 um
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TableA-8.

Proton

Energy

1.50 MeV

1.60 MeV

1.70 MeV

1.80 MeV

2.00 MeV

2.20 MeV

2.40 MeV

2.60 MeV

2.80 MeV

3 00 MeV

3 30 MeV

3 60 MeV

4 00 MeV

4 50 MeV

5 00 MeV

5 50 MeV

6.00 MeV

6.50 MeV

7.00 MeV

8.00 MeV

9.00 MeV

i0.00 MeV

II.00 MeV

12.00 MeV

13.00 MeV

14.00 MeV

15.00 MeV

16.00 MeV

17.00 MeV

18.00 MeV

20.00 MeV

22.00 MeV

24.00 MeV

26.00 MeV

28.00 MeV

30 00 MeV

33 00 MeV

36 00 MeV

40 00 MeV

45 00 MeV

50 00 MeV

55 00 MeV

60 00 MeV

65.00 MeV

70.00 MeV

80.00 MeV

Ranges, Stopping Powers, and Straggling of

dE/dx dE/dx Projected

Elec. Nuclear Range

..............................

8.770E-05

8.296E-05

7.873E-05

7.493E-05

6.840E-05

6.297E-05

5.839E-05

5.446E-05

5.105E-05

4.806E-05

4.422E-05

4 098E-05

3 736E-05

3 368E-05

3 070E-05

2 822E-05

2 613E-05

2 435E-05

2280E-05

2.025E-05

1.824E-05

1.661E-05

1.525E-05

1.412E-05

1.314E-05

1.230E-05

1.156E-05

1.091E-05

1.033E-05

9.818E-06

8.932E-06

8.198E-06

7.581E-06

7.053E-06

6.598E-06

6.199E-06

5.688E-06

5 258E-06

4 780E-06

4 296E-06

3 904E-06

3 581E-06

3 309E-06

3 076E-06

2 876E-06

2 546E-06

28.13

31 16

34 31

37 59

44 50

51 90

59 77

68 ii

76 89

86 13

I00 82

116.49

138.87

169.20

202.11

237.54

275.45

315 81

358 57

451 12

552 96

663 90

783 26

910.79

1.05

1.19

1.34

1.51

1.67

1 85

2 23

2 64

3 08

3 55

4 06

4 59

5 44

6.35

7.67

9.48

11.44

13.57

15.86

18.30

20.89

26.50

um

um

um

um

um

um

um

um

um

um

um

um

um

urn

um

um

um

um

um

um

um

um

um

um

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

1.314E-01

1.260E-01

1.211E-01

1.166E-01

1.087E-01

1.020E-01

9.611E-02

9.096E-02

8.640E-02

8.233E-02

7.698E-02

7.235E-02

6.708E-02

6.158E-02

5.700E-02

5.312E-02

4.978E-02

4.688E-02

4.434E-02

4.007E-02

3.662E-02

3.376E-02

3 164E-02

2 958E-02

2 780E-02

2 623E-02

2 485E-02

2 361E-02

2 250E-02

2 151E-02

1 977E-02

1 832E-02

1709E-02

1.602E-02

1.510E-02

1.429E-02

1.323E-02

1.234E-02

1.135E-02

1.034E-02

9.512E-03

8.827E-03

8.248E-03

7.753E-03

7.324E-03

6.618E-03

Protons Incident on CMG Glass (Cont'd)

Longitudinal Lateral

Straggling Straggling

1.21

1.32

1.42

1.53

1.87

2.21

2.54

2.86

3.19

3.52

4.20

4.86

5.94

7.51

9.03

10.53

12.04

13.55

15.09

20.42

25 46

30 42

35 34

40 27

45 27

50 35

55 52

60 80

66 17

71.65

91.09

109.71

128.05

146.35

164.75

183.33

222.68

261.15

325.64

419.41

509.74

598.97

688.19

777.95

868.53

1.19

um

um

um

um

um

um

um

um

um

um

urn

um

um

um

um

um

um

um

um

um

um

um

um

um

um

um

um

um

um

urn

um

um

um

um

um

um

um

um

um

um

um

um

um

um

um

mm

2 i0 urn

2 30 um

2 51 um

2 72 um

3 17 um

3 65 um

4.15 um

4.67 um

5.23 urn

5.80 um

6 71 um

7 67 um

9 04 um

i0 87 um

12 84 um

14 94 um

17 18 urn

19 54 um

22 04 urn

27.39 um

33.24 um

39.56 um

46.32 um

53.49 um

61.09 um

69.13 um

77.58 um

86.46 urn

95.75 um

105.45 um

126.08 um

148.30 um

172.09 um

197.42 um

224.26 um

252 57 um

297 78 um

346 19 um

415 58 um

509 85 um

612 21 um

722 35 um

840 01 um

964.92 um

I.I0 mm

1.38 mm

90.00 MeV 6.060E-03 2.287E-06 32.67 mm 1.49 mm

100.00 MeV 5.608E-03 2.078E-06 39.37 mm 1.79 mm

...........................................................

Multiply Stopping by for Stopping Units

5.3168E+02

1.0000E+00

1.0000E+03

1.0000E+03

1.0742E+02

MeV / mm

keV / (ug/cm 2)

keV / (mg/cm 2)

MeV / (g/cm 2)

L.S.S. reduced units

Table A-8 was computed using

Ziegler (Version 91.14)

1.69 mm

2.02 mm

the Trim program written by J.P. Biersack, and J.F.
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TableA-9. Ranges,StoppingPowers,andStragglingof ElectronsIncidentonCMGGlass

<Z/A> = 0.490296 I = 150.4 eV
DENSITY = 2.554 g/cm _

ENERGY STOPPING POWER CSDA RADIATION DENSITY

COLLISION RADIATIVE TOTAL RANGE YIELD EFFECT

DELTA

MeV MeV cm2/g MeV cm2/g MeV cm2/g g/cm2

0.01000 1.717E+01

0.01250 1.454E+01

0.01500 1.268E+01

0.01750 1.130E+01

0.02000 1.022E+01

0.02500 8.649E+00

0.03000 7.555E+00

0.03500 6.745E+00

0.04000

0.04500

0.05000

0.05500

0.06000

0.07000

0.08000

0.09000

0.i0000

0.12500

0.15000

0.17500

0.20000

0.25000

0.30000

0.35000

6 357E-03

6 541E-03

6 674E-03

6 774E-03

6 854E-03

6 982E-03

7 082E-03

7.164E-03

1 718E+01

1 454E+01

1 269E+01

1 130E+01

1 023E+01

8 656E+00

7 562E+00

6 752E+00

6.120E+00

5.623E+00

5 217E+00

4 879E+00

4 594E+00

4 137E+00

3 787E+00

3 510E+00

7.236E-03

7.300E-03

7.361E-03

7.419E-03

7.476E-03

7.589E-03

7.700E-03

7.810E-03

6.128E+00

5.630E+00

5.225E+00

4.887E+00

4.601E+00

4.144E+00

3.795E+00

3.518E+00

3.286E+00

2.877E+00

2.599E+00

2.400E+00

2.250E+00

2.042E+00

1.906E+00

1.812E+00

7.918E-03

8.188E-03

8 462E-03

8 740E-03

9 027E-03

9 637E-03

i 029E-02

1 098E-02

3.294E+00

2.885E+00

2.608E+00

2.409E+00

2.259E+00

2.052E+00

1.917E+00

1.823E+00

1.742E+00

1.690E+00

1.650E+00

1.619E+00

1.594E+00

1.559E+00

1.535E+00

1.520E+00

1.171E-02

1.247E-02

1.327E-02

1.409E-02

1.494E-02

1.671E-02

1.858E-02

2.052E-02

1 754E+00

1 702E+00

1 663E+00

1 633E+00

1 609E+00

1 575E+00

1 554E+00

1.541E+00

0 40000

0 45000

0 50000

0 55000

0 60000

0 70000

0 80000

0 90000

.384E-04 1.943E-04 0.000E+00

973E-04 2.375E-04 0.000E+00

818E-04 2.793E-04 0.000E+00

910E-04 3.198E-04 0.000E+00

124E-03 3.592E-04 0.000E+00

658E-03 4.351E-04 0.000E+00

277E-03 5.079E-04 0.000E+00

979E-03 5.781E-04 0.000E+00

3.757E-03

4.609E-03

5.532E-03

6.523E-03

7.578E-03

9.872E-03

1.240E-02

1.514E-02

6.460E-04

7 I19E-04

7 760E-04

8 385E-04

8 996E-04

I 018E-03

1 132E-03

1.242E-03

1.808E-02

2.622E-02

3.536E-02

4.535E-02

5.608E-02

7.938E-02

1.046E-01

1.314E-01

1.349E-03

1.604E-03

1.844E-03

2.072E-03

2.290E-03

2.701E-03

3.090E-03

3.463E-03

.594E-01

884E-01

181E-01

485E-01

793E-01

422E-01

061E-01

708E-01

3.824E-03

4.177E-03

4 525E-03

4 868E-03

5 209E-03

5 886E-03

6 560E-03

7 235E-03

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

4.221E-03

2 lllE-02

4 041E-02

6 130E-02

8 333E-02

1 062E-01

1 537E-01

2 026E-01

2 519E-01
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TableA-9. Ranges,StoppingPowers,andStragglingof ElectronsIncidentonCMGGlass(Cont'd)

ENERGY STOPPING POWER CSDA RADIATION DENSITY

COLLISION RADIATIVE TOTAL RANGE YIELD EFFECT

DELTA

MeV MeV cm2/g MeV cm2/g MeV cm2/g g/cm2

1.00000 1.510E+00

1.25000 1.499E+00

1.50000 1.497E+00

1.75000 1.501E+00

2.00000 1.507E+00

2.50000 1.522E+00

3.00000 1.537E+00

3.50000 1.551E+00

i0

12

15

17

20

25

3O

35

40

45

50

55

60

70

80

90

i00

4 00000

4 50000

5 00000

5 50000

6 00000

7 00000

8 00000

9 00000

00000

50000

00000

50000

00000

00000

00000

00000

00000 1

00000 1

00000 1

00000 1

00000 1

00000 1

00000 1

00000 1

00000 1

565E+00

577E+00

588E+00

599E+00

608E+00

625E+00

640E+00

653E+00

664E+00

688E+00

707E+00

723E+00

737E+00

759E+00

776E+00

791E+00

2 254E-02

2 784E-02

3 347E-02

3 935E-02

4 547E-02

5 826E-02

7 169E-02

8 563E-02

9 999E-02

1 147E-01

1 296E-01

1 449E-01

1 604E-01

1 919E-01

2 242E-01

2 571E-01

2 905E-01

3 757E-01

4 630E-01

5 519E-01

6 420E-01

8 254E-01

1 012E+00

1 201E+00

1.533E+00 5.359E-01 7.913E-03 3.012E-01

1.526E+00 6.995E-01 9.624E-03 4.221E-01

1.531E+00 8.631E-01 1.136E-02 5.377E-01

1.540E+00 1.026E+00 1.312E-02 6.472E-01

1.553E+00 1.188E+00 1.491E-02 7.507E-01

1.580E+00 1.507E+00 1.854E-02 9.413E-01

1.609E+00 1.821E+00 2.224E-02 I.II3E+00

1.637E+00 2.129E+00 2.598E-02 1.269E+00

1.665E+00 2.432E+00 2.976E-02 1.413E+00

1.692E+00 2.729E+00 3.355E-02 1.546E+00

1.718E+00 3.023E+00 3.736E-02 1.669E+00

1.743E+00 3.312E+00 4.117E-02 1.785E+00

1.768E+00 3.596E+00 4.498E-02 1.893E+00

1.817E+00 4.154E+00 5.258E-02 2.092E+00

1.864E+00 4.698E+00 6.013E-02 2.272E+00

1.910E+00 5.228E+00 6.762E-02 2.435E+00

1.954E+00 5.745E+00 7.502E-02 2.584E+00

2.064E+00 6.990E+00 9.312E-02 2.912E+00

2.170E+00 8.171E+00 1.106E-OI 3.191E+00

2.275E+00 9.296E+00 1.274E-01 3.434E+00

2.379E+00 1.037E+01 1.435E-01 3.649E+00

2.584E+00 1.239E+01 1.738E-01 4.019E+00

2.788E+00 1.425E+01 2.018E-01 4.330E+00

2.991E+00 1.598E+01 2.276E-01 4.599E+00

803E+00 1.392E+00 3.195E+00

813E+00 1.584E+00 3.398E+00

823E+00 1.778E+00 3.601E+00

831E+00 1.973E+00 3.804E+00

838E+00 2.169E+00 4.008E+00

851E+00 2.564E+00 4.415E+00

863E+00 2.961E+00 4.824E+00

872E+00 3.361E+00 5.234E+00

881E+00 3.763E+00 5.644E+00

1 760E+01

1 911E+01

2 054E+01

2 189E+01

2 317E+01

2 555E+01

2 772E+01

2 971E+01

3 155E+01

2.515E-01 4.835E+00

2.737E-01 5.047E+00

2.944E-01 5.239E+00

3.137E-01 5.414E+00

3.317E-01 5.575E+00

3.646E-01 5.862E+00

3.937E-01 6.114E+00

4.198E-01 6.338E+00

4.433E-01 6.540E+00

Table A-9 was computed using the EPSTAR program written by S.M. Seltzer.
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Table A-10. Equivalent Fluence Program for GaAs Solar Cells

EQGAFLUX

PROGRAM FOR COMPUTING EQUIVALENT FLUENCE FROM SPACE ELECTRON
AND PROTON ENERGY SPECTRA AND RELATIVE DAMAGE COEFFICIENTS

FOR THE PURPOSE OF ESTIMATING GaAs SOLAR CELL DEGRADATION.

MACHINE / FORTRAN FEATURES NECESSARY *

NAMELIST INPUT/OUTPUT *

INPUT UNIT (CARD READER) IS FORTRAN UNIT 5 *

OUTPUT UNIT (PRINTER) IS FORTRAN UNIT 6 *
BLOCK DATA SUBPROGRAM *

PROGRAM WRITTEN FOR UNIVAC 1108 (FORTRAN 4 COMPATIBLE) *

ALPHANUMERIC INPUT/OUTPUT ( 'A' FORMAT ) ASSUMES *
6-CHARACTER CAPABILITY. HOLLERITH STRINGS ARE USED AS *

CHARACTER COUNT ( 5HABCDE ) AND AS QUOTE STRINGS. *

PARAMETER KE=47,KP=77

COMMON/DAMAGE/EMEV(KE),EDET(KE,8),PMEV(KP),PISC(KP,8),PVOC(KP,8)

DIMENSION TIMIN(2), TIMOUT(2)

DIMENSION HEADER (14) ,THICK (8), COND (2)

DIMENSION ED (KE) ,PI (KP), PV (KP)

DIMENSION ESPEC(70,2) ,PSPEC(70,2)

DIMENSION EQUIVE(8) ,EQVIOI(8) ,EQVIOV(8) ,EQVIOP(8)
DIMENSION EMLN (KE) ,PMLN (KP)

DIMENS ION EPTOTV (8 ) ,EPTOTI (8 ), EPTOTP (8 )
DIMENSION ESPLN(70,2) ,PSPLN(70,2)

DIMENS ION TTHICK (8 ) ,ITHICK (8 )

INTEGER PAGE, PCKE (8 ) ,PCKP (8 )

DATA THICK/0.,5.59E-3,1.68E-2,3.35E-2,6.71E-2,1.12E-I,I.675E-I,

"3.35E-I/

DATA NESPEC/O/,NPSPEC/O/,NSTEP/2/,IDIAG/O/

DATA PEDRI,PEDRV/4OO.,14OO./,PCKE,PCKP/16*O/,INTFLG/O/

DATA PEDRP/1000./

DATA TIMIN/12HDAY /, TIMOUT/12HI YEAR /,

* TMULT/365.2422/

NAMELIST /MIKE/ NESPEC,ESPEC,NPSPEC,PSPEC,NSTEP,TIMIN, TIMOUT

*,TMULT,PEDRI,PEDRV, PEDRP,PCKE,PCKP, IDIAG, INTFLG

INPUT VARIABLES *

HEADER ALPHANUMERIC RECORD (80 CHARACTERS)

THE FOLLOWING ARE NAMELIST VARIABLES

PUNCH NAMELIST ITEMS STARTING IN COLUMN 2

TO IDENTIFY CASE. *

NPSPEC NUMBER OF INPUT DATA FOR ELECTRON AND PROTON *NESDEC,
ENERGY SPECTRA.

ESPEC(I,J),PSPEC(I,J) INTEGRAL ENERGY SPECTRUM OF SPACE
ELECTRON AND PROTON ENVIRONMENTS. J=l ENERGY IN MEV.

J=2 INTEGRAL FLUX IN PARTICLES PER SQUARE CENTIMETER

PER UNIT TIME. INPUT SPECTRAL DATA IN ASCENDING ORDER,

LOWEST ENERGY FIRST, HIGHEST LAST.
NSTEP NUMBER OF POINTS BETWEEN ENERGY ENTRIES OF RELATIVE
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Table A-10. Equivalent Fluence Program for GaAs Solar Cells (Cont'd)

* DAMAGE COEFFICIENTS FOR INTERPOLATION (DEFAULT VALUE = 2)*
* TIMIN 12 CHARACTER HOLLERITH STRING WHICH DESCRIBES TIME *

* INTERVAL REPRESENTED BY INPUT SPECTRA. FOR EXAMPLE IF *

* INPUT SPECTRA REPRESENT FLUENCES PER DAY *

* TIMIN = 12HDAY *

* IF INPUT SPECTRA REPRESENT FLUENCE PER SECOND *

* TIMIN = 12HSECOND *

* TMULT _ER OF 'TIMIN' UNITS FOR WHICH EQUIVALENT FLUENCE *
* IS TO BE COMPUTED. FOR EXAMPLE IF INPUT SPECTRA *

* REPRESENT FLUENCE PER HOUR AND EQUIVALENT FLUENCE IS *
* TO BE COMPUTED FOR 24 HOURS *

* TMULT = 24. *

* (TMULT SHOULD BE INPUT SUCH THAT TMULT = TIMOUT/TIMIN) *
* TIMOUT 12 CHARACTER HOLLERITH STRING WHICH DESCRIBES TOTAL *

* TIME OF EXPOSURE AND IS THE PRODUCT OF 'TIMIN' UNITS *

* AND TMULT. FOR EXAMPLE IF TIMIN = 'i DAY' AND *

* TMTJLT = 365.2422 *

* TIMOUT = 12HI YEAR *
* ................................................ *

* INCLUDE ALL 12 CHARACTERS IN THE NAMELIST INPUT *

* INCLUDING TRAILING BLANKS. *
* ................................................ *

* IF TIMIN = 'i MONTH' AND MISSION DURATION IS 34.2 *

* MONTHS *

* TIMOUT = 12H34.2 MONTHS *

* OR TIMOUT = 12HI MISSION *
* ................................................ *

* INCLUDE ALL 12 CHARACTERS IN THE NAMELIST INPUT *

* INCLUDING TRAILING BLANKS. *
* ................................................ *

* **NOTE** DEFAULT VALUES ARE: *

* TIMIN = 12HDAY *

* TM_JLT = 365.2422 *
* TIMOUT = 12HI YEAR *

* PEDRI DAMAGE RATIO BETWEEN PROTONS AND ELECTRONS FOR ISC. *

* (DEFAULT VALUE = 400.) *

* PEDRV DAMAGE RATIO BETWEEN PROTONS AND ELECTRONS FOR VOC *

* (DEFAULT VALUE = 1400.) *
* PEDRP DAMAGE RATIO BETWEEN PROTONS AND ELECTRONS FOR PMAX *

* (DEFAULT VALUE = I000.) *

* PCKE, PCKP FLAGS TO CAUSE PRINTING OF DIFFERENTIAL FLUENCE, *

* DAMAGE COEFFICIENTS, EQUIVALENT FLUENCE, ETC. FOR *
* ELECTRONS (PCKE) AND/OR PROTONS (PCKP). 8 VALUES FOR *

* EACH VARIABLE MAY BE INPUT CORRESPONDING TO COVER GLASS *

* THICKNESSES (DEFAULT VALUE=0 FOR NO PRINT. *

* SET=I FOR PRINT.) *

* IDIAG FLAG TO PRINT NAMELIST INPUT AS A DIAGNOSTIC AID. *

* (DEFAULT VALUE = 0 FOR NO PRINT. SET = 1 FOR PRINT. ) *

* INTFLG FLAG TO ESTABLISH LIMITS OF INTEGRATION *

* WHEN INTFLG = 0 INTEGRATION PROCEEDS OVER ALL ENERGIES *

* FOR WHICH DAMAGE COEFFICIENTS ARE AVAILABLE AND INPUT *

* SPECTRA ARE EXTRAPOLATED IF NECESSARY. *

* WHEN INTFLG = 1 INTEGRATION PROCEEDS ONLY OVER THE INPUT *

* ENERGY RANGE, NAMELY, ENERGY INTERVALS ESPEC(I,I) TO *

* ESPEC(NESPEC,I) AND PSPEC(I,I) TO PSPEC(NPSPEC, I) *
* DEFAULT VALUE = 0 *
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Table A-10. Equivalent Fluence Program for GaAs Solar Cells (Cont'd)

PAGE=0

READ HEADER CARD (IDENTIFIER INFORMATION)

READ(5,20,END=9999) HEADER

INITIALIZE TOTAL FLUENCE VECTORS

DO ii I=l, 8

EPTOTV(I) =0.

EPTOTP (I) =0 .

EPTOTI (I)=0.

READ INPUT DATA (NAMELIST 'MIKE')

READ(5,MIKE)

IF(IDIAG .EQ. 0) GO TO 12

PAGE=PAGE+I

WRITE(6,25) HEADER,PAGE

WRITE(6,MIKE)

CONTINUE

IF(NESPEC .EQ. 0 .AND. NPSPEC .EQ. 0) THEN

GOTO I00

END IF

IF(NESPEC .NE. 0) THEN

PAGE=PAGE+I

WRITE(6,25) HEADER,PAGE

WRITE(6,32)TIMIN, ((ESPEC(I,J),J=I,2),I=I,NESPEC)

TAKE LOGS OF ELECTRON FLUENCES

DO i01 J=I,NESPEC

ESPLN(J,2) = ALOG(ESPEC(J,2))

END IF

IF(NPSPEC .NE. 0) THEN

PAGE=PAGE+I

WRITE(6,25) HEADER,PAGE

WRITE(6,33)TIMIN, ((PSPEC(I,J),J=I,2),I=I,NPSPEC)

TAKE LOGS OF PROTON ENERGIES AND FLUENCES

DO 106 J=I,NPSPEC

PSPLN(J,I) = ALOG(PSPEC(J,I))

PSPLN(J,2) = ALOG(PSPEC(J,2))

END IF

107 DO 9000 L=I,8

181

183

185

187

190

TAKE LOGS OF RELATIVE DAMAGE

IF(NESPEC .EQ. 0) GO TO 190

DO 187 K=I,KE

IF(L .GT. i) GO TO 181

EMLN (K) =ALOG (EMEV (K))

IF(EDET(K,L))I83,183,185

ED (K) =- 50.

GO TO 187

ED (K) =ALOG (EDET (K, L) )

CONTINUE

IF(NPSPEC .EQ. 0) GO TO 200

DO 150 K=I,KP

IF(L .GT. I) GO TO 125

PMLN(K)=ALOG(PMEV(K))

COEFFICIENTS AND RELATED ENERGIES
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Table A-10. Equivalent Fluence Program for GaAs Solar Cells (Cont'd)

125 IF(PISC(K,L) )130,130,135

130 PI(K)=-50.
GO TO 140

135 PI (K) =ALOG (PISC (K, L) )

140 IF (PVOC (K, L) ) 145,145,147

145 PV(K) =-50.
GO TO 150

147 PV(K) =ALOG (PVOC (K,L))

150 CONTINUE

COMPUTE EQUIVALENT FLUENCE FOR ELECTRON SPECTRUM
(BYPASS IF NO ELECTRON SPECTRUM)

200 LINE=I

IF(NESPEC .EQ. 0) GO TO 400

EQUIVE(L) = 0.0
ELLIM = ESPEC(I,I)

EULIM = ESPEC(NESPEC, I)

ITERATE OVER ALL ENERGY INCREMENTS

DO 300 K=1,46
DIFF=EMLN (K+l) -EMLN (K)

DELTA=DIFF/NSTEP

DEL2=DELTA/2.

DO 300 I=I,NSTEP
SPECI=EMLN(K)+DELTA*(I-I)

DSPEC=SPECI+DEL2

EK=EXP(SPECI)

EKI=EXP(SPECI+DELTA)

PERFORM LINEAR INTERPOLATION OF PHI VS. E (SEMI-LOG)

CALL INTP(EK, PHII,ESPEC(I,I),ESPLN(I,2),NESPEC)

CALL INTP(EKI,PHI2,ESPEC(I,I),ESPLN(I,2),NESPEC)
PHI1 = EXP(PHII)

PHI2 = EXP(PHI2)

PERFORM LINEAR INTERPOLATION OF ELECTRON

DAMAGE COEFFICIENTS VS. E (LOG-LOG)

CALL INTP(DSPEC,DI,EMLN(1) ,ED(1) ,KE)

D=EXP (DI)

IF(D .LT. I.E-4) D=0.0

USE RESTRICTED INTEGRATION LIMITS IF INTFLG .GT. 0

IF ( INTFLG .EQ. 0 ) GO TO 201

IF(EK .LT. ELLIM .OR. EKI .GT. EULIM) GO TO 202
GO TO 201

202 PHI1 = 0.0

PHI2 = 0.0

201 DPHI = PHI1 - PHI2
PROD = DPHI * D

SUM PRODUCTS OVER ALL ENERGY INCREMENTS

EQUIVE(L) = EQUIVE(L) + PROD

IF(PCKE(L) .EQ. 0) GO TO 300

PRINT INTERMEDIATE CALCULATIONS OF DIFFERENTIAL FLUX, RELATIVE
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Table A-10. Equivalent Fluence Program for GaAs Solar Cells (Cont'd)

DAMAGE COEFFICIENT, AND EQUIVALENT FLUENCE

IF(LINE .NE. l) GO TO 50

PAGE=PAGE+I

WRITE (6,25) HEADER, PAGE

WRITE (6,26) THICK(L)

WRITE (6,30)

50 DSPECI=EXP(DSPEC)

WRITE(6,10)EK,EKI,PHII,PHI2,DPHI,D,DSPECI,PROD,EQUIVE(L)

LINE=LINE+I

IF(LINE .GE. 50) LINE=I

300 CONTINUE

COMPUTE EQUIVALENT FLUENCE FOR PROTRON SPECTRUM

(BYPASS IF NO PROTON SPECTRUM)

400 IF(NPSPEC .EQ. 0) GO TO 9000

LINE=I

EQVlOI(L) = 0.0

EQVI0V(L) = 0.0

EQVI0P(L) = 0.0

PLLIM = ALOG(PSPEC(I,I) )

PULIM = ALOG(PSPEC(NPSPEC,I))

DO 500 K=I,76

DIFF=PMLN(K+I)-PMLN(K)

DELTA=DIFF/NSTEP

DEL2=DELTA/2.

DO 500 I=I,NSTEP

SPECI=PMLN(K)+DELTA*(I-I)

SPEC2=SPECI+DELTA

DSPEC=SPECI+DEL2

PERFORM LINEAR INTERPOLATION OF PHI VS. E (LOG-LOG)

CALL INTP(SPECI,PHII,PSPLN(I,I),PSPLN(I,2),NPSPEC)

CALL INTP(SPEC2,PHI2,PSPLN(I,I) ,PSPLN(I,2) ,NPSPEC)

PHI1 = EXP(PHI1)

PHI2 = EXP(PHI2)

PERFORM LINEAR INTERPOLATION OF DAMAGE COEFFICIENT VS. E(LOG-LOG)

CALL INTP(DSPEC,DCI,PMLN(1),PI(1),KP)

CALL INTP(DSPEC,DCV,PMLN(1),PV(1),KP)

DISC=EXP(DCI)

DVOC=EXP(DCV)

IF(DISC .LT. I.E-4) DISC=0.0

IF(DVOC .LT. I.E-4) DVOC=0.0

IF(INTFLG .EQ. 0) GO TO 401

USE RESTRICTED INTEGRATION LIMITS IF INTFLG .GT. 0

IF(SPECI .LT. PLLIM .OR. SPEC2 .GT. PULIM) GO TO 402

GO TO 401

402 PHI1 = 0.0

PHI2 = 0.0

401 DPHI = PHI1 - PHI2

PRODI=DPHI*DISC

EQVIOI(L) = EQVIOI(L) + PROD1

EQVIOV(L) = EQVlOV(L) + DPHI*DVOC

EQVIOP(L) = EQVIOP(L) + DPHI*DVOC

IF(PCKP(L) .EQ. 0) GO TO 500

IF(LINE .NE. i) GO TO 60
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Table A-10. Equivalent Fluence Program for GaAs Solar Cells (Cont'd)

PAGE =PAGE + 1

WRITE (6,25) HEADER, PAGE

WRITE (6,41) THICK(L)

WRITE (6,40)
EK=EXP (SPECI )

EKI =EXP (SPEC1 +DELTA)

DFXDCV = DPHI*DVOC

DSPECI=EXP (DSPEC)

WRITE (6, i0) EK, EKI, PHI1, DPHI, DISC, DVOC, DSPECI, PROD1, DFXDCV,

*EQVIOI (L) ,EQVlOV (L)

LINE=LINE+I

IF(LINE .GE. 50) LINE=I

CONTINUE
CONTINUE

PRINT CALCULATION SUMMARY

PAGE =PAGE + 1

WRITE (6,25 ) HEADER, PAGE

WRITE (6,2) (THICK(J) ,J=l, 8)

DO 520 J=l,8
TTHICK (J) =THICK (J) "178. 8908766+. 5

ITHICK (J) =TTHICK (J)

CONTINUE

WRITE (6,22) (ITHICK(J) ,J=l,8)

DO I000 K=I,8

EQUIVE (K) = EQUIVE (K) * TMULT

CONVERT i0 MEV PROTONS TO EQUIVALENT 1 MEV ELECTRONS USING PEDRV
AND PEDRI

EQVIOI (K) = EQVlOI (K) * TMI/LT * PEDRI

EQVIOV(K) = EQVIOV(K) * TMULT * PEDRV
EQVIOP(K) = EQVIOP(K) * TMULT * PEDRP

CONTINUE

IF(NESPEC .EQ. 0) GO TO 2000

WRITE (6,3) (EQUIVE (J) ,J=l, 8)

DO 2001 I=i,8
EPTOTV (I )=EPTOTV (I ) +EQUIVE (I )+EQVl 0V (I )

EPTOTP (I) =EPTOTP (I) +EQUIVE (I) +EQVIOP (I)

EPTOTI (I) =EPTOTI (I) +EQUIVE (I) +EQVlOI (I)
CONTINUE

IF(NPSPEC .EQ. 0) GO TO 3000

WRITE (6,4) (EQVI0V (J) ,J=l,8)

WRITE (6,6) (EQVlOP (J) ,J=l, 8)
WRITE(6,5) (EQVlOI(J),J=I,8)

IF(NESPEC .EQ. 0) GO TO 3000

WRITE (6,28)
WRITE (6,29) (EPTOTV (J) ,J=l, 8)

WRITE (6,34) (EPTOTP (J) ,J=l,8)

WRITE(6,31) (EPTOTI(J),J=I,8)

CONTINUE

WRITE (6,43) TIMOUT, TMULT
GO TO I00

2 FORMAT(IH0,'SHIELD THICKNESS (GM/CM2)',4X8(IPEI0.3))

3 FORMAT(IH0,'ELECTRON FLUENCE'/IH ,2X'EQUIV 1 MEV ELECTRONS/CM2',

* 2XS(IPEI0.3))
4 FORMAT(IH0,'PROTON FLUENCE'/IH ,2X'EQUIV 1 MEV ELECTRONS/CM2'/

* IH ,16X'VOC',I0X8(IPEI0.3))
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5 FORMAT(IH ,16X'ISC',I0X8(IPEI0.3))

6 FORMAT(IH ,15X,'PMAX',IOX, 8(IPEI0.3))

i0 FORMAT(lIE12.4)

20 FORIVLAT(13A6,A2)

22 FORMAT(IH ,17X,' ( MILS ) ',8Ii0)

25 FORMAT(IHI,14A6,16X4HPAGE,I4/)

26 FORMAT(IH ,' (ELECTRON SPECTRUM)',IOX'COVER SLIDE THICKNESS =',

* FI0.5,' GM/CM2'/)

27 FORMAT(IHI,31HSOLAR FLARE PROTON SPECTRUM FOR, I2,1X,A6,AL,

* 'EVENT(S)'51X,4HPAGE,IX, I3/)

271 FORMAT (IHI,'SOLAR FLARE PROTON SPECTRUM FOR',A6,AL,'EVENT',

* 51X,'PAGE',IX,I3/)

272 FORMAT (IH ,LX,17HMISSION DURATION=, FL.I,8H MONTHS.

* /LX,17HCONFIDENCE LEVEL=, I3, 9H PERCENT.

* //13X,6HENERGY, 10X,13HINTEGR2LL FLUX

* /14X, LH(MEV),7X,2OHPROTONS/CM2-MISSION. /)

28 FORMAT(IH0,'TOTAL FLUENCE (ELECTRONS + PROTONS)'/

* IH ,2X'EQUIV 1 MEV ELECTRONS/CM2')

29 FORMAT(IH ,16X'VOC' ,10X8 (IPEI0.3))

34 FORMAT(IH ,15X, 'PMAX' ,10X,8(IPEI0.3))

30 FORMAT(LX,3HEK , 9X,3HEKI,9X,3HFXl, 9X,3HFX2,9X,3HDFX, 9X

* ,3HDCI,9X,7HEINTERP, LX,7HDFX*DCI,LX,6HEQFLUX / )

31 FORMAT(IH ,16X'ISC',I0X8(IPEI0.3))

32 FORMAT(IH0,26X,'ELECTRON'/

*IH ,10X,'ENERGY',I0X,'FLUENCE'/

*IH ,10X, ' (MEV)',IIX,' (ELECTRONS/CM2-',2A6,')'//

*(IH ,0PFI6.3,1PEI8.4))

33 FORMAT(IH0,26X,'PROTON'/

*IH ,10X,'ENERGY',I0X,'FLUENCE'/

*IH ,10X, ' (MEV)',IIX,' (PROTONS/CM2-',2A6,')'//

*(IH ,0PFI6.3,1PEI8.4))

37 FORMAT(0PF20.3,1PE20.4)

40 FORMAT(LX,2HEK, 10X,3HEKI,9X,3HFXl,9X,3HDFX,9X,3HDCI,9X,3HDCV,

*9X,7HEINTERP, LX,7HDFX*DCI,LX,7HDFX*DCV, LX,4HEQFI,8X,4HEQFV / )

41 FORMAT(IH ,' (PROTON SPECTRUM)',IOX,'COVER SLIDE THICKNESS =',

* Fl0.5,' GM/CM2'/)

43 FORMAT(IH0,'TIME OF EXPOSURE: ',2A6/3X,' (TMULT = ',IPEI2.5,')')

44 FORMAT(IHI)

9999 CONTINUE

WRITE (6,44)

STOP

END

SUBROUTINE INTP (XT, YT, X, Y, N)

* LINEAR INTERPOLATION SUBROUTINE *

l0

12

DIMENSION X(1) ,Y(1)

DO i0 I=l, N

II=I

IF(XT .LE. X(I)) GO TO 12

CONTINUE

IF(II .EQ. i) II=2

IM=II- 1

YT=Y(IM)+(XT-X(IM))*(Y(II) -Y(IM))/(X(II) -X(IM))

RETURN

END
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C

C

C

C

C

C

C

C

C

C

BLOCK DATA

PARAMETER KE=47,KP=77

COMMON/DAMAGE/EMEV (KE) , EDET (KE, 8 ) , PMEV (KP) , PISC (KP, 8 ) , PVOC (KP, 8 )

EMEV - ELECTRON ENERGIES FOR DAMAGE COEFFICIENT TABLE EDET

* 2.200E-01,2.400E-01

* 3.600E-01,4.000E-01

* 8.000E-01,9.000E-01

* 1.800E+00,2.000E+00

* 3.250E+00,3.500E+00

* 5.500E+00,6.000E+00

* 1.500E+01,2.000E+01

DATA (EMEV(I),I=I,47)

* /I.500E-01,1.600E-01 1.700E-01,1.800E-01

2.600E-01,2.800E-01

4.500E-01,5.000E-01

1.000E+00,1.200E+00

2.250E+00,2.500E+00

3.750E+00,4.000E+00

7.000E+00,8.000E+00

.2.500E+01,3.000E+01

1.900E-01,2

3.000E-01,3

.6.000E-01,7

1.400E+00,I

2.750E+00,3

.4.500E+00,5

9.000E+00,1

.4.000E+01/

000E-01,

200E-01,

000E-01,

600E+00,

000E+00,

000E+00,

000E+01,

0. GM/CM2 COVER GLASS DAMAGE COEFFICIENTS

DATA (EDET(I)

* /2.500E-06

* 2.500E-04

* 6.000E-02

* 3.650E-01

* 9.950E-01

* 1.800E+00

* 2.900E+00

* 6.900E+00

I= 1,47)

5.000E-06

5.000E-04

8.500E-02

.4.300E-01

1.100E+00

1.900E+00

3.150E+00

8.650E+00

1.000E-05,2.500E-05,5.000E-05,1

5.000E-03,1.250E-02,2.200E-02,3

1.250E-01,1.600E-01,2.300E-01,3

5.000E-01,6.250E-01,7.500E-01,8

1.250E+00,1.300E+00,1.525E+00,1

2.050E+00,2.200E+00,2.450E+00,2

3.600E+00,4.050E+00,4.500E+00,4

1.025E+01,1.185E+01,1.475E+01/

000E-04

000E-02

000E-01

700E-01

650E+00

700E+00

900E+00

0.00559 GM/CM2 COVER GLASS DAMAGE COEFFICIENTS

DATA

* /o
* 6

* 3

* 3

* 9

* 1

* 2

* 6

(EDET (I)

000E+00

805E-05

612E-02

348E-01

615E-01

760E+00

858E+00

823E+00

I= 48,94)

0.000E+00

1.818E-04

6.181E-02

3.993E-01

1.069E+00

1.867E+00

3.102E+00

8.560E+00

9.582E-07

5 399E-04

9 577E-02

4 677E-01

1 215E+00

2 008E+00

3 550E+00

1 015E+01

2 932E-06,6

3 622E-03,9

1 318E-01,I

5 943E-01,7

1 279E+00,I

2 156E+00,2

3 996E+00,4

1 173E+01,I

978E-06,1.679E-05

504E-03,1.693E-02

999E-01,2.693E-01

185E-01,8.384E-01

478E+00,1.614E+00

408E+00,2.656E+00

442E+00,4.840E+00

461E+01/

0.0168 GM/CM2 COVER GLASS DAMAGE COEFFICIENTS

DATA

* /o
* 5

* 1

* 2

* 9

* 1

* 2

* 6

(EDET ( I )

000E+00

762E-06

724E-02

940E-01

II2E-01

710E+00,

818E+00,

777E+00,

I=95,141)

0.000E+00

2.974E-05

3.674E-02

3.574E-01

1.022E+00

1.825E+00

3.056E+00

8.516E+00

0 000E+00

9 434E-05

6 445E-02

4 227E-01

1 165E+00

1 959E+00

3 506E+00

1 010E+01

0 000E+00

2 535E-04

9 744E-02

5 486E-01

1 249E+00

2 106E+00

3 951E+00

1 169E+01

000E+00

794E-03

619E-01

715E-01

417E+00

362E+00

396E+00

7.415E-07

5.463E-03

2.286E-01

7.907E-01

1.568E+00

2.610E+00

4.798E+00

.456E+01/

0.0335 GM/CM2 COVER GLASS DAMAGE COEFFICIENTS

DATA (EDET(I) ,I=142,188)

* /0.000E+00,0.000E+00,0.000E+00,0.000E+00,0

* 0.000E+00,6.795E-07,5.553E-06,2.769E-05,8

* 5°I63E-03,1.533E-02,3.643E-02,6.232E-02,1

* 2.467E-01,3.083E-01,3.704E-01,4.947E-01,6

* 8.516E-01,9.643E-01,1.103E+00,1.203E+00,1

.000E+00,0.000E+00,

.541E-05,3.417E-04,

.215E-01,1.835E-01,

.146E-01,7.334E-01,

.341E+00,1.501E+00,
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C

C

C

C

C

C

C

C

C

Table A-10. Equivalent Fluence Program for GaAs Solar Cells (Cont'd)

1.637E+00,1.760E+00,1.885E+00,2.030E+00,2.291E+00,2.540E+00,

2.755E+00,2.987E+00,3.440E+00,3.884E+00,4.328E+00,4.733E+00,

6.709E+00,8.450E+00,1.004E+01,1.161E+01,1.449E+01/

0.0671 GM/CM2 COVER GLASS DAMAGE COEFFICIENTS

DATA (EDET(I),I=I89,235)

/0.000E+00,0.000E+00,0.000E+00,0

0.000E+00,0.000E+00,0.000E+00,0

4.519E-05,1.154E-03,8.242E-03,2

1.756E-01,2.332E-01,2.908E-01,4

7.539E-01,8.673E-01,9.999E-01,1

1.523E+00,1.654E+00,1.770E+00,1

2.638E+00,2.859E+00,3.307E+00,3

6.574E+00,8.318E+00,9.909E+00,1

000E+00,0

000E+00,1

290E-02,6

090E-01,5

II9E+00,1

909E+00,2

748E+00,4

147E+01,I

0.112 GM/CM2 COVER GLASS DAMAGE COEFFICIENTS

000E+00,0

232E-07,1

664E-02,1

246E-01,6

226E+00,I

172E+00,2

191E+00,4

434E+01/

000E+00,

916E-06,

190E-01,

396E-01,

390E+00,

416E+00,

602E+00,

DATA

* /o
* 0

* 0

* 1

* 6

* 1

* 2

* 6

(EDET(I),I=236,282)

000E+00,0.000E+00,0.000E+00,0.000E+00,0.000E+00,0.000E+00,

000E+00,0

000E+00,1

088E-01,I

482E-01,7

395E+00,I

502E+00,2

393E+00,8

000E+00,0.000E+00,0.000E+00,0.000E+00,0.000E+00,

186E-06,5.982E-05,2.608E-03,2.393E-02,6.257E-02,

595E-01,2.117E-01,3.198E-01,4.295E-01,5.394E-01,

590E-01,8.875E-01,1.017E+00,1.111E+00,1.262E+00,

530E+00,1.644E+00,1.771E+00,2.033E+00,2.276E+00,

716E+00,3.166E+00,3.601E+00,4.033E+00,4.444E+00,

142E+00,9.735E+00,1.129E+01,1.415E+01/

0.1675 GM/CM2 COVER GLASS DAMAGE COEFFICIENTS

DATA

* /o
* 0

* 0

* 5

* 5

* 1

* 2

* 6

(EDET (I)

000E+00

000E+00

000E+00

335E-02

402E-01

260E+00

352E+00

203E+00

I=283,329)

0.000E+00

0.000E+00

0.000E+00

9.337E-02

6.445E-01

1.389E+00

2.561E+00

7.926E+00

000E+00,0.000E+00,0.000E+00,0.000E+00,

000E+00

000E+00

381E-01

711E-01

509E+00

005E+00

514E+00

0.000E+00,0.000E+00,0.000E+00,

1.527E-06,2 558E-03,2.076E-02,

2.330E-01,3 345E-01,4.369E-01,

8.984E-01,I 002E+00,1.123E+00,

1.628E+00,I 882E+00,2.122E+00,

3.433E+00,3 856E+00,4.269E+00,

1.106E+01, I 392E+01/

0.335 GM/CM2 COVER GLASS DAMAGE COEFFICIENTS

DATA (EDET (I )

* /0.000E+00

* 0.000E+00

* 0.000E+00

* 1.348E-05

* 3.063E-01

* 9.354E-01

* 1.970E+00

* 5.704E+00

I=330,376)

0.000E+00

0.000E+00

0.000E+00

4.126E-03

3.939E-01

1.058E+00

2.182E+00

7.408E+00

0.000E+00

0.000E+00

0.000E+00

1.951E-02

5.040E-01

1.174E+00

2.600E+00

8.976E+00

0.000E+00

0.000E+00

0.000E+00

7.296E-02

6.175E-01

1.289E+00

3.011E+00

1.047E+01

0.000E+00

0.000E+00

0.000E+00

1.429E-01

7.295E-01

1.514E+00

3.418E+00

0.000E+00,

0.000E+00,

0.000E+00,

2.222E-01,

8.334E-01,

1.747E+00,

3.824E+00,

1.327E+01/

PMEV - PROTON ENERGIES FOR DAMAGE COEFFICIENT TABLES PISC AND PVOC

DATA (PMEV(I)

* /2.000E-02

* 5.000E-02

* 1.000E-01

* 1.000E+00

* 2.000E+00

* 3.200E+00

I=i,77)

2 500E-02,3.000E-02,3.500E-02,4.000E-02

5 500E-02,6.000E-02,7.000E-02,8.000E-02

2 000E-01,3.000E-01,4.000E-01,6.000E-01

1 200E+00,1.300E+00,1.400E+00,1.600E+00

2 200E+00,2.400E+00,2.600E+00,2.800E+00

3 400E+00,3.600E+00,3.800E+00,4.000E+00

4.500E-02

9.000E-02

8.000E-01

1.800E+00

3.000E+00

4.200E+00
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C

C

C

C

C

C

C

C

C

C

C

C

Table A-10. Equivalent Fluence Program for GaAs Solar Cells (Cont'd)

4.400E+00,4.600E+00,4.800E+00,5.200E+00,5.600E+00 6

6.400E+00,6.800E+00,7.200E+00,7.600E+00,8.000E+00 9

1.000E+01,1.100E+01,1.200E+01,1.300E+01,1.400E+01 1

1.600E+01,1.800E+01,2.000E+01,2.200E+01,2.400E+01 2

2.800E+01,3.000E+01,3.400E+01,3.800E+01,4.200E+01 4

5.000E+01,5.500E+01,6.000E+01,6.500E+01,7.000E+01 8

9.000E+01,1.000E+02,1.300E+02,1.600E+02,2.000E+02/

000E+00

000E+00

500E+01

600E+01

600E+01

000E+01

PISC PROTON DAMAGE COEFFICIENTS (SHORT-CIRCUIT CURRENT)

0. GM/CM2 COVER GLASS DAMAGE COEFFICIENTS

DATA (PISC(I) ,I= 1,77)

* /0.000E+00,1 885E-01

* 2.066E+01,

* 2.821E+01,

* 4.610E+00

* 2.347E+00

* 1.503E+00

* I.I10E+00

* 7.792E-01

* 4.911E-01

* 3.246E-01

* 2.018E-01

* 1.329E-01

* 9.203E-02

2 349E+01

1 997E+01

3 851E+00

2 139E+00

1 413E+00

1 063E+00

7 318E-01

4 613E-01

2 902E-01

1 895E-01

1 230E-01

8 760E-02

2 186E+00

2 560E+01

1 477E+01

3 560E+00

1 961E+00

1 342E+00

1.025E+00

6.928E-01

4.226E-01

2.656E-01

1.747E-01

1.181E-01

7.776E-02

7 022E+00

2 806E+01

1 221E+01

3 315E+00

1 816E+00

1 273E+00

9.450E-01

6.594E-01

3.931E-01

2.459E-01

1.624E-01

I.I07E-01

7.087E-02

1.246E+01

2.887E+01

7.742E+00

2.914E+00

1.683E+00

1.233E+00

8.838E-01

6.262E-01

3.686E-01

2.264E-01

1.501E-01

1.073E-01

6

1.701E+01

2.877E+01

5.749E+00

2.597E+00

1.596E+00

1.157E+00

8.269E-01

5.586E-01

3.441E-01

2.165E-01

1.403E-01

9.843E-02

.644E-02/

0.00559 GM/CM2 COVER GLASS DAMAGE COEFFICIENTS

DATA

* /o
* 0

* 0

* 0

* 3

* 1

* 1

* 8

* 5

* 3

* 2

* 1

* 9

(PISC (I)

000E+00

000E+00

000E+00

000E+00

384E+00

975E+00

370E+00

899E-01

594E-01

431E-01

043E-01

333E-01

212E-02

I= 78,154)

0.000E+00

0.000E+00

0.000E+00

0.000E+00

3.070E+00

1.837E+00

1.298E+00

8.381E-01

0.000E+00

0.000E+00

0.000E+00

8.283E-01

2.784E+00

1.722E+00

1.227E+00

7.731E-01

0.000E+00

0.000E+00

0.000E+00

3.344E+00

2.538E+00

1.620E+00

1.123E+00

7.402E-01

4.922E-01 4.427E-01,4.188E-01

3.018E-01,2.736E-01,2.507E-01

1.916E-01,1.758E-01,1.633E-01

1.234E-01,1.183E-01,1.110E-01

8.766E-02,7.779E-02,7.089E-02

0.000E+00

0.000E+00

0.000E+00

4.011E+00

2.325E+00

1.521E+00

1.028E+00,9

6.977E-01,6

.3.847E-01,3

.2.304E-01,2

1.509E-01,I

1.074E-01,9

.6.645E-02/

0.000E+00

0.000E+00

0.000E+00

3.695E+00

2.138E+00

1.439E+00

618E-01

011E-01

551E-01

186E-01

409E-01

856E-02

0.0168 GM/CM2 COVER GLASS DAMAGE COEFFICIENTS

DATA (PISC(I)

* /0.000E+00

* 0.000E+00

* 0.000E+00

* 0.000E+00

* 0.000E+00

* 2.039E+00

* 1.564E+00

* 1.007E+00

* 6.148E-01

* 3.526E-01

* 2.092E-01

* 1.342E-01

* 9.230E-02

I=155,231)

0.000E+00,0.000E+00,0.000E+00

0.000E+00,0.000E+00,0.000E+00

0.000E+00,0.000E+00,0.000E+00

0.000E+00,0.000E+00,0

0.000E+00,0.000E+00,8

1.973E+00,1.899E+00,1

1.487E+00,I

9.438E-01,8

5.299E-01,4

3.115E-01,2

2.006E-01,I

1.243E-01,I

8.778E-02,7

414E+00,I

831E-01,8

696E-01,4

851E-01,2

801E-01,1

187E-01,I

785E-02,7

000E+00

575E-01

811E+00

298E+00

238E-01

347E-01

577E-01

653E-01

II5E-01

093E-02

000E+00

000E+00

000E+00

000E+00

604E+00

724E+00

188E+00

.624E-01

.989E-01

.412E-01

.527E-01

.077E-01

0.000E+00

0.000E+00

0.000E+00

0.000E+00

2.063E+00

1.635E+00

1.095E+00

6.640E-01

3.799E-01

2.242E-01

1.422E-01

9.883E-02

.646E-02/
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C

C

C

C

C

0.0335 GM/CM2 COVER GLASS DAMAGE COEFFICIENTS

DATA

* /o
* 0

* 0

* 0

* 0

* 0

* 1

* 1

* 6

* 3

* 2

* 1

* 9

(PISC (I)

000E+00

000E+00

000E+00

000E+00

000E+00

000E+00

160E+00

086E+00

800E-01

722E-01

133E-01

369E-01

259E-02

I=232,308)

0 000E+00,0

0 000E+00 0

0 000E+00 0

0 000E+00 0

0 000E+00 0

0 000E+00 0

1 153E+00 1

1 017E+00 9

5 909E-01 5

3.263E-01 2

2.016E-01 1

1.264E-01 1

8.796E-02 7

000E+00

000E+00

000E+00

000E+00

000E+00

000E+00

175E+00

575E-01

055E-01

913E-01

.882E-01

.196E-01

.795E-02

0.000E+00,0

0.000E+00,0

0.000E+00,0

0.000E+00 0

0.000E+00 0

0.000E+00 8

1.298E+00 1

8.971E-01 8

4.642E-01 4

2.715E-01 2

1.683E-01 1

1.124E-01 1

7.099E-02 6

0.0671 GM/CM2 COVER GLASS DAMAGE COEFFICIENTS

DATA

* /o
* 0

* 0

* 0

W

(PISC(I)

000E+00

000E+00

000E+00

000E+00

0 000E+00

0 000E+00

0 000E+00

6 661E-01

7.238E-01

3.914E-01

2.258E-01

1.370E-01

9.326E-02

I=309,385)

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

7.922E-01

6.401E-01

3.531E-01

2.126E-01

1.285E-01

8.839E-02

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

8.016E-01

5.652E-01

3.085E-01

1.912E-01

1.209E-01

7.816E-02

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

8.778E-01

5.124E-01

2.827E-01

1.736E-01

1.165E-01

7.112E-02

0.112 GM/CM2 COVER GLASS DAMAGE COEFFICIENTS

DATA (PISC (I) ,

* /0.000E+00,

* 0.000E+00,

* 0.000E+00,

* 0.000E+00,

* 0.000E+00,

* 0.000E+00,

* 0.000E+00,

* 0.000E+00,

* 7.284E-01,

* 4.230E-01,

* 2.262E-01,

* 1.382E-01,

* 9.529E-02,

I=386,462)

0.000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

6 329E-01

3 709E-01

2 162E-01

1 290E-01

8 961E-02

0.000E+00

0.000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

5 839E-01

3 242E-01

1 929E-01

1 230E-01

7 846E-02

0.000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

5 359E-01

3 012E-01

1 718E-01

1 149E-01

7 129E-02

0.1675 GM/CM2 COVER GLASS DAMAGE COEFFICIENTS

DATA (PISC (I)

* /0.000E+00

* 0.000E+00

* 0.000E+00

* 0.000E+00

* 0.000E+00

* 0.000E+00

* 0.000E+00

I=463,539)

0 000E+00,0

0 000E+00,0

0 000E+00,0

0 000E+00,0

0 000E+00,0

0 000E+00,0

0 000E+00,0

000E+00,0

000E+00,0

000E+00,0

000E+00,0

000E+00,0

000E+00,0

000E+00,0

000E+00,0

000E+00,0

000E+00,0

000E+00,0

000E+00,0

000E+00,0

000E+00,0

000E+00

000E+00

000E+00

000E+00

000E+00

558E-01

230E+00

.465E-01

.295E-01

.439E-01

.535E-01

.082E-01

0.000E+00%

0.000E+00,

0.000E+00

0.000E+00

0.000E+00

1.134E+00

1.158E+00

7.347E-01

4.067E-01

2.301E-01

1.462E-01

9.926E-02

.649E-02/

.000E+00

.000E+00

.000E+00

.000E+00

.000E+00

.000E+00

.000E+00

.545E-01

.701E-01

.538E-01

.568E-01

.104E-01

0.000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

5 747E-01

7 787E-01

4.206E-01

2.349E-01

1.470E-01

1.008E-01

.654E-02/

.000E+00

.000E+00

.000E+00

.000E+00

.000E+00

.000E+00

000E+00

305E-01

918E-01

643E-01

625E-01

II5E-01

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

7.459E-01

4.570E-01

2.415E-01

1.504E-01

1.003E-01

661E-02/

000E+00,0

000E+00,0

000E+00,0

000E+00,0

000E+00,0

000E+00,0

000E+00,0

000E+00

000E+00

000E+00

000E+00

000E+00

000E+00

000E+00
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C

C

C

C

C

C

C

C

C

C

C

C

C

Table A-10. Equivalent Fluence Program for GaAs Solar Cells (Cont'd)

* 0.000E+00

* 0.000E+00

* 4.316E-01

* 2.356E-01

* 1.407E-01

* 9.541E-02

0.000E+00,0.000E+00,0.000E+00,0.000E+00,0.000E+00,

3.661E-01,4.471E-01,5.136E-01,4.895E-01,4.636E-01,

3.827E-01,3.417E-01,3.108E-01,2.753E-01,2.545E-01,

2.228E-01,1.972E-01,1.777E-01,1.642E-01,1.518E-01,

1.308E-01,1.232E-01,1.178E-01,1.102E-01,1.017E-01,

8.880E-02,7.893E-02,7.153E-02,6.671E-02/

0.335 GM/CM2 COVER GLASS DAMAGE COEFFICIENTS

DATA (PISC (I)

* /0.000E+00

* 0.000E+00

* 0.000E+00

* 0.000E+00

* 0.000E+00

* 0.000E+00

* 0.000E+00

* 0.000E+00

* 0.000E+00

* 2.732E-01

* 2.454E-01

* 1.440E-01

* 9.542E-02

I=540,616

0.000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

3 019E-01

2 294E-01

1 348E-01

9 020E-02

)
0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00,0

0.000E+00,0

0.000E+00,0

0.000E+00,0

0.000E+00 0

0.000E+00 0

0.000E+00 0

0.000E+00 0

0.000E+00 8

,3.367E-01,3.115E-01,2.895E-01 2

,2.067E-01,1.887E-01,1.685E-01 1

,I.266E-01,1.207E-01,1.117E-01 1

,8.036E-02,7.375E-02,6.707E-02/

000E+00

000E+00

000E+00

000E+00

000E+00

000E+00

000E+00

000E+00

524E-02

683E-01

607E-01

036E-01

PVOC - PROTON DAMAGE COEFFICIENTS (VOC AND PMAX)

0. GM/CM2 COVER GLASS DAMAGE COEFFICIENTS

DATA (PVOC (I )

* /0.000E+00

* 3.512E+00

* 1.104E+01

* 3.647E+00

* 1.890E+00

* 1.294E+00

* 9.870E-01

* 6.966E-01

* 4.856E-01

* 3.924E-01

* 3.347E-01

* 3.002E-01

* 2.766E-01

I= 1,77)

3.504E-02

4.631E+00

1.283E+01

3.034E+00

1.735E+00

1.230E+00

9.431E-01

6.512E-01

4.578E-01

3.728E-01

3.297E-01

2.953E-01

2.756E-01

1.900E-01,5.793E-01,1.323E+00

5.690E+00,7.508E+00,8.966E+00

1.123E+01,9.781E+00,6.271E+00

2.807E+00,2.611E+00,2.305E+00

1.632E+00,1.527E+00,1.442E+00

1.168E+00,1.123E+00,1.072E+00

9.120E-01,8 527E-01,7.880E-01

6 263E-01,5

,4 397E-01,4

,3 629E-01,3

,3 199E-01,3

,2 928E-01,2

,2 667E-01,2

946E-01,5.764E-01

249E-01,4.101E-01

530E-01,3.445E-01

150E-01,3.100E-01

904E-01,2.854E-01

7

5

4

3

3

2

658E-01,2.584E-01/

2 376E+00

1 013E+01

4 608E+00

2 070E+00

1 373E+00

1 028E+00

209E-01

246E-01

002E-01

396E-01

051E-01

830E-01

0.00559 GM/CM2 COVER GLASS DAMAGE COEFFICIENTS

DATA (PVOC(I)

* /0.000E+00

* 0.000E+00

* 0.000E+00

* 0.000E+00

* 2.553E+00

* 1.598E+00

* 1.159E+00

* 7.743E-01

* 5.278E-01

* 4.051E-01

* 3.343E-01

* 3.005E-01

* 2.767E-01

I _.

0

0

0

0

2

1

1

7

4

3

3

2

,2

78,154

000E+00

000E+00

000E+00

000E+00

334E+00,2.139E+00

505E+00,1.423E+00

109E+00,1.064E+00

290E-01,6.838E-01

808E-01,4.488E-01

771E-01,3.660E-01

306E-01,3.206E-01

955E-01,2.929E-01

756E-01,2.668E-01

)
,0.000E+00,0.000E+00

,0.000E+00,0.000E+00

,0.000E+00,0.000E+00

,I.954E-01,2.227E+00

1.973E+00

1.346E+00

9.783E-01

6.469E-01

4.327E-01

0.000E+00

0.000E+00

0.000E+00

2.866E+00

1.825E+00

I°273E+00

9.081E-01

6°241E-01

4.160E-01

3.555E-01 3.454E-01

3.153E-01,3.104E-01

2.905E-01,2.856E-01

2.658E-01,2.584E-01/

0 000E+00

0 000E+00

0 000E+00

2 771E+00

1 705E+00

1 212E+00

8 357E-01

5 557E-01

4 030E-01

3 394E-01

3 054E-01

2 830E-01

0.0168 GM/CM2 COVER GLASS DAMAGE COEFFICIENTS
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C

C

C

C

C

C

C

C

C

C

Table A-10. Equivalent Fluence Program for GaAs Solar Cells (Cont'd)

DATA (PVOC (I )

* /0.000E+00

* 0.000E+00

* 0.000E+00

* 0.000E+00

* 0.000E+00

* 1.528E+00

* 1.269E+00

* 8.714E-01

* 5.587E-01

* 4.050E-01

* 3.348E-01

* 3.011E-01

* 2.769E-01

I=155,231)

000E+00

000E+00

000E+00

000E+00

000E+00

507E+00

223E+00

I04E-01

039E-01

778E-01

347E-01

959E-01

756E-01

0.000E+00,0.

0.000E+00,0.

0.000E+00,0.

0.000E+00,0.

0.000E+00,4.

1.468E+00 i.

1.169E+00 i.

7.615E-01 7.

4.608E-01 4.

3.733E-01 3.

3.213E-01 3.

_2.931E-01 2.

2.668E-01 2.

000E+00,0.

000E+00,0.

000E+00,0.

000E+00,0.

618E-01,I.

420E+00,I.

084E+00,I.

141E-01,6.

364E-01,4.

581E-01,3.

150E-01,3.

906E-01,2.

658E-01,2.

0.0335 GM/CM2 COVER GLASS DAMAGE COEFFICIENTS

DATA (PVOC(I)

* /0.000E+00

* 0.000E+00

* 0.000E+00

* 0.000E+00

* 0.000E+00

* 0.000E+00

* 9.438E-01

* 9.109E-01

* 5.979E-01

* 3.995E-01

* 3.323E-01

* 3.022E-01

* 2.771E-01

I=232,308)

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00 0.

0.000E+00 0.

9.566E-01 9.

,8.622E-01 8.

,5.371E-01,4.

,3.778E-01,3.

,3.325E-01,3.

,2.967E-01,2.

,2.757E-01,2.

0.000E+00,0.

0.000E+00,0.

0.000E+00,0.

0.000E+00,0.

000E+00,0.

000E+00,0.

768E-01,I.

161E-01,7.

808E-01,4.

681E-01,3.

223E-01,3.

936E-01,2.

669E-01,2.

000E+00 0.

000E+00 0.

000E+00 0.

000E+00 0.

000E+00 0.

000E+00 5.

034E+00 i.

704E-01 7.

539E-01 4.

517E-01 3.

149E-01 3.

910E-01,2.

658E-01,2.

0.0671 GM/CM2 COVER GLASS DAMAGE COEFFICIENTS

DATA (PVOC (I )

* /0.000E+00

* 0 000E+00

* 0 000E+00

* 0 000E+00

* 0 000E+00

* 0 000E+00

* 0 000E+00

* 5 509E-01

* 6.216E-01

* 4.014E-01

* 3.300E-01

* 3.014E-01

* 2.777E-01

I=309,385)

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

6.679E-01

5.580E-01

3.871E-01

3.262E-01

.2.955E-01

.2.758E-01

0 000E+00,0.

0 000E+00,0

0 000E+00,0

0 000E+00,0

0 000E+00,0

0 000E+00,0

0 000E+00,0

6 843E-01,7

5 104E-01,4

3 598E-01,3

3 268E-01,3

2 919E-01,2

2 671E-01,2

000E+00,0.

000E+00,0

000E+00,0

000E+00,0

000E+00,0

000E+00,0

000E+00,0

207E-01,7

698E-01,4

586E-01,3

128E-01,3

914E-01,2

658E-01,2

0.112 GM/CM2 COVER GLASS DAMAGE COEFFICIENTS

DATA (PVOC (I )

* /0.000E+00

* 0 000E+00

* 0 000E+00

* 0 000E+00

* 0 000E+00

* 0 000E+00

* 0 000E+00

* 0 000E+00

I=386,462)

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00,0

0 000E+00 0

0 000E+00 0

0 000E+00 0

0 000E+00 0

0 000E+00 0

0 000E+00 0

0 000E+00 1

000E+00

000E+00

000E+00

000E+00

306E+00

370E+00

006E+00

746E-01

0.000E+00

0.000E+00

0.000E+00

0.000E+00

1.544E+00

1.321E+00

9.363E-01

5.987E-01

213E-01,4.091E-01

461E-01,3.405E-01

IIIE-01,3.061E-01

860E-01,2.831E-01

584E-01/

000E+00

000E+00

000E+00

000E+00

000E+00

910E-01

002E+00 9

266E-01 6

350E-01 4

470E-01 3

095E-01 3

865E-01 2

585E-01/

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

8 959E-01

588E-01

423E-01

171E-01

376E-01

064E-01

832E-01

000E+00

000E+00

000E+00

000E+00

000E+00

000E+00

000E+00 3

IIOE-01 6

442E-01 4

394E-01 3

064E-01 3

876E-01 2

585E-01/

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

840E-01

603E-01

177E-01

366E-01

054E-01

837E-01

000E+00

000E+00

000E+00

000E+00

000E+00

000E+00

000E+00

844E-01

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

6 049E-01
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Table A-10. Equivalent Fluence Program for GaAs Solar Cells (Cont'd)

* 6.348E-01,
* 4.042E-01,

* 3.201E-01,

* 2.985E-01,

* 2.787E-01,

0.1675 GM/CM2

DATA

* /o
* 0

* 0
* 0

* 0

* 0

* 0

* 0

* 0

* 3

* 3
* 2

* 2

0.335

DATA

* /o
* 0

* 0

* 0

* 0

* 0

* 0

* 0

* 0

* 2
* 2

* 2

* 2

END

5.368E-01,5.037E-01,4.738E-01,4.452E-01,4.214E-01,

3.834E-01,3.553E-01,3.430E-01,3.332E-01,3.245E-01,
3.197E-01,3.188E-01,3.070E-01,3.082E-01,3.039E-01,

2.921E-01,2.943E-01,2.905E-01,2.862E-01,2.817E-01,
2.762E-01,2.674E-01,2.658E-01,2.587E-01/

COVER GLASS DAMAGE COEFFICIENTS

(pvoc (i),
000E+00,

000E+00,

000E+00,

000E+00,

000E+00,

000E+00,

000E+00,
000E+00

000E+00

941E-01

IIOE-01
951E-01

769E-01

I=463,539)
0 000E+00

0 000E+00

0 000E+00

0 000E+00 0

0 000E+00 0

0 000E+00 0

0.000E+00,0

0.000E+00,0

3.042E-01,3
3.712E-01,3.

3.123E-01,3.

2.891E-01,2.

2.741E-01,2.

0 000E+00

0 000E+00

0 000E+00

000E+00

000E+00

000E+00

000E+00

000E+00

847E-01

459E-01

126E-01
906E-01

678E-01

0 000E+00,0.
0 000E+00 0

0 000E+00 0

0 000E+00 0
0 000E+00 0

0 000E+00 0

0 000E+00 0

0 000E+00 0

4 361E-01 4

3 378E-01 3

3 007E-01 2
2 865E-01 2

2 659E-01 2

000E+00

000E+00

000E+00

000E+00
000E+00

000E+00

000E+00 0

000E+00 0

244E-01 4

319E-01 3

989E-01 2
825E-01 2

588E-01/

0 000E+00

0 000E+00

0 000E+00

0 000E+00
0 000E+00

0 000E+00

000E+00

000E+00

091E-01

195E-01

989E-01

827E-01

GM/CM2 COVER GLASS DAMAGE COEFFICIENTS

(pvoc (I)
.000E+00

.000E+00

•000E+00

•000E+00

•000E+00

•000E+00

.000E+00

.000E+00

•000E+00

•328E- 01

.896E-01

.804E-01
•748E-01

I=540,616)
0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00 0.

0.000E+00 0.

0.000E+00 0.
0.000E+00 0.

0.000E+00 0.

2.652E-01,3.

2.851E-01,2.

2.827E-01,2.

2.706E-01,2.

0.000E+00

0.000E+00

0.000E+00

0.000E+00
000E+00

000E+00 0.

000E+00 0.
000E+00 0.

000E+00 0.

028E-013.
827E-012.

835E-01,2.

664E-01,2.

0.000E+00,0.
0.000E+00 0.

0.000E+00 0.

0.000E+00 0.

0.000E+00 0.

000E+00 0.

000E+00 0.
000E+00 0.

000E+00 0.

005E-01.2.
832E-01.2.

793E-01.2.

654E-01 2.

000E+00

000E+00

000E+00

000E+00 0
000E+00 0

000E+00 0

000E+00 0

000E+00,0

000E+00,7
995E-01,2

840E-01,2

762E-01,2

593E-01/

0 000E+00

0 000E+00

0 000E+00

000E+00
000E+00

000E+00

000E+00
000E+00

178E-02
964E-01

830E-01

748E-01
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