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Abstract

A numerical method based on b-spline polynomials was developed to study incom-

pressible flows in cylindrical geometries. A b-spline method has the advantages of

possessing spectral accuracy and the flexibility of standard finite element methods.

Using this method it was possible to ensure regularity of the solution near the origin,

i.e. smoothness and boundedness. Because b-splines have compact support, it is also

possible to remove b-splines near the center to alleviate the constraint placed on the

time step by an overly fine grid. Using the natural periodicity in the azimuthal direc-

tion and approximating the streamwise direction as periodic, so-called time evolving

flow, greatly reduced the cost and complexity of the computations.

A direct numerical simulation of pipe flow was carried out using the method

described above at a Reynolds number of 5600 based on diameter and bulk velocity.

General knowledge of pipe flow and the availability of experimental measurements

make pipe flow the ideal test case with which to validate the numerical method.

Results indicated that high flatness levels of the radial component of velocity in the

near wall region are physical; regions of high radial velocity were detected and appear

to be related to high speed streaks in the boundary layer. Budgets of Reynolds stress

transport equations showed close similarity with those of channel flow. However

contrary to channel flow, the log layer of pipe flow is not homogeneous for the present

Reynolds number. A topological method based on a classification of the invariants

of the velocity gradient tensor was used. Plotting iso-surfaces of the discriminant of

the invariants proved to be a good method for identifying vortical eddies in the flow

field.
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Chapter 1

Introduction

This chapter presents an overview of numerical investigations of flows in cylindrical

geometries, especially pipe flow. Some background is also included on the important

features of pipe flow. The objectives of the present study are laid out, and we conclude

with an outline of the present work.

1.1 Numerical method

1.1.1 Background

Since the early seventies, numerical simulations of fluid flows have become an in-

valuable tool in the study of turbulence. Direct numerical simulations (DNS), or the

simulation of fluid flows without the use of any model to resolve the smallest scales

of motion, are the tool of choice when the detailed physics of fully turbulent flows are

of primary importance.

The expertise and the computational resources have grown so much in the last

few years that numerical simulations do more than just supplement experiments,

but are now used as an independent means of exploring the physics of more and

more complex flows. Flows, most of them incompressible, with one inhomogeneous

direction are not uncommon; the homogeneous directions are assumed to be periodic

which greatly reduces the complexity of the computations. Both unbounded, or free
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shear, and bounded flows have been successfully computed using DNS; among more

recent work, Moser and Moin [25] conducted a DNS of a curved channel, Moin and

Kim [24] and Kim, Moin and Moser [17] a straight channel, and Rogers and Moser [38]

a fully turbulent self-similar mixing layer. O'Snllivan and Breuer [30, 31] studied the

growth of disturbances in pipe flow, and Sondergaard [42], studied the effect of initial

conditions on the growth of a plane wake. These are typical of what are essentially

two types of direct numerical simulations: the first is a transitional simulation where

special care is applied to the initial conditions and where transition to turbulence is

the ultimate goal of the study; the second, and more common, is a simulation of a

fully developed turbulent flow where only the end-state is desired, with little or no

attention paid to the transient state.

Yet, because of the cost involved in carrying DNS, practical engineering applica-

tions are still out of reach (and will be for decades). Because the smallest scales gets

smaller as the Reynolds number increases, only lower Reynolds number flows in sim-

ple geometries are attainable with present day computers. Still, this does not imply

that DNS do not have any practical use; as an example of usefulness of DNS, results

from such simulations are often used to "fine-tune" turbulence models used in other

types of simulations commonly used in day to day engineering (see for example Rodi

and Mansour [36] or Mansour Kim and Moin [22]), such as large eddy simulations

(LES) (e.g. Mansour, Ferziger and Reynolds [21]) and mostly, Reynolds averaged

Navier-Stokes (RANS) equations. A subgrid scale model is used to resolve the finer

scales of motion in the case of LES, and a turbulence model is used to resolve most

of the unsteadiness in the case of RANS.

1.1.2 Survey of numerical methods

Spectral methods are used to carry out DNS because of their high degree of accu-

racy, giving them the ability to faithfully capture all scales of motion; derivatives

of flow parameters, such as vorticity, are also represented very accurately. These

methods work especially well on smooth and continuous fields, typical of incompress-

ible turbulent flows. In the homogeneous directions periodic boundary conditions are
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applied and Fourier transforms are used to simplify the equations. In addition, the

use of fast Fourier transforms (FFT) which make the implementation very efficient.

However, when walls are present, or more generally when a direction is not periodic,

Fourier transforms are no longer applicable. One must then resort to other kinds of

expansions in the cross-stream or normal to the wall direction (e.g. Spalart et al.

[44]).

In order to be successful, a method used to solve the incompressible Navier-Stokes

equations in cylindrical geometries must address two principal problems: first, im-

posing the continuity equation accurately, and second, accounting for the coordinate

singularity which appears at the centerline (r = 0) when working in cylindrical coordi-

nates. As we shall see, resolving problems associated with the coordinate singularity

is the outstanding difficulty in the design of the numerical method. The problem

of imposing the continuity equation arises when solving the incompressible Navier-

Stokes equations, since the continuity equation appears as a kinematic constraint on

the velocity field. Problems linked to imposing continuity constraint have been well

documented, and the reader can consult Canuto et al. [7], Hughes [13] or Johnsson

[15] for more on the subject.

Several methods have been employed to study fully developed turbulent flows in

cylindrical geometries. All these methdos use Fourier transforms in both the stream-

wise and azimuthal directions, and some other form of expansion in the radial direc-

tion. It should be noted that periodicity of the azimuthal direction is natural and not

an approximation, contrary to the streamwise direction for which periodicity implies

a flow with infinite extent.

For their solution of transitional pipe flow, Leonard and Wray [20] (see also

Leonard [19]), used divergence-free expansion functions in the context of a (non-

Galerkin) weighted residual method. Using solenoidal, or divergence-free expansion

functions alleviates the need to explicitly solve the continuity equation; thus, only

two of the velocity components are independent. With the no-slip boundary condi-

tion built into the expansions and using integration by parts, the pressure term drops

out of the equations, and only two unknown velocity components remain. For the

radial direction they used shifted Jacobi polynomials. Treatment of the coordinate
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singularity was also built into the vector expansion functions using a priori knowl-

edge of the behavior of the solution near the origin. This approach guarantees the

solution to be regular*, i.e. values and derivatives are all bounded and smooth. In a

slight variation, Moser, Moin and Leonard [26] used Tchebyshev polynomials instead

of Jacobi polynomials to solve a fully turbulent curved channel flow. Numerically this

flow is somewhat simpler to solve than pipe flow, since the presence of an inner wall

eliminates the coordinate singularity.

In analyzing the growth of both linear and nonlinear disturbances in pipe flow,

O'Sullivan and Breuer [30, 31], and earlier, Orszag and Patera [29], used a collocation

method with scalar expansion functions instead of vector expansions, i.e. each velocity

component and the pressure were represented separately. Tchebyshev polynomials

were used to represent the radial direction. Time marching was achieved using the

splitting method of Orszag and Kells [28] where the pressure gradient and viscous

terms were integrated in a three-step process. The nonlinear term was integrated

using a second order Adams-Bashforth scheme. As was the case with the method of

Leonard and Wray, it a priori knowledge of the behavior of the velocity and pressure

near the origin was built into the expansions.

Zhang et al. [55] also used a spectral method for their simulation of fully devel-

oped pipe flow. Similarly to Leonard and Wray [20], they used Jacobi polynomials

as the expansion basis although not in the context of a divergence-free formulation.

Time marching was carried out using a fractional step method, with a mixed explicit-

implicit second order scheme. Their method also offers the possibility of resolving

inflow-outflow boundaries, or spatially evolving flows, although details on the treat-

ment of those boundary conditions were sketchy and no results using them published.

Eggels et al. [12] used a second order finite difference technique in the radial

direction to simulate a fully developed turbulent pipe flow. Even though finite differ-

ences are much simpler to implement than a spectral method, they induce numerical

diffusion and dispersion, especially at high wave number (small scales). For a given

"Certain authors prefer the terms analytic or holomorphic to regular,
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accuracy, many more grid points must be used compared to a spectral method. Ulti-

mately this reduces the highest Reynolds number that can be adequately simulated

due to memory constraints of the hardware. Eggels et al. [12] implemented a way to

alleviate the strong restriction on the time step produced by a concentration or clus-

tering of azimuthal modes at the centerline. They treated terms involving azimuthal

derivatives implicitly, and all other terms explicitly with a leap-frog scheme for the

advective terms, and a lagged forward Euler scheme on the viscous terms. The values

at the origin are evaluated using a first order extrapolation; they claim that first order

extrapolation does not degrade global accuracy because near the center, the velocity

and pressure fields are smooth. It should also be noted that in the context of finite

differences, ensuring that the velocity and pressure are bounded and regular near the

origin is trivial since only their values, and not derivatives, have to be accounted for.

Verzicco and Orlandi [49] also developed a second order finite difference scheme

for cylindrical geometries. They treated the coordinate singularity by introducing a

radial flux (rut) on a staggered grid, i.e. only the radial flux is evaluated at the origin.

The equations were then solved with a fractional-step and approximate-factorization

methods, yielding a second order method in both space and time. This method was

used by Orlandi and Fatica [27] in simulating fully developed turbulent flow in a

pipe with rotating wall, and by Verzicco and Orlandi [48] for a transitional round jet.

However, contrary to Eggels et al., no mention is made of any procedure to alleviate

the constraint on the time step introduced by the increased azimuthal resolution near

the origin.

1.2 Pipe Flow

Pipe flow is without a doubt the most studied flow, and the one with the broadest

engineering applications. Reynolds himself [34] developed his famous scaling param-

eter (c.f. the Reynolds number), by conducting experiments on pipe flow. As such,

pipe flow represents the ideal test case on which to apply a new numerical method:

the availability of ample experimental measurements should make validation simpler.

However, not all issues regarding pipe flow are resolved, and the present results should
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address those as well. The next few paragraphs give the salient features of pipe flow

and how it contrasts with another well studied flow: channel flow.

Pipe flow differs in many ways from channel flow (the flow between two flat plates).

The first difference was observed by Patel and Head [32] who found that in the

low Reynolds number range (Re), which for the purpose of the present study is the

relevant range, fully developed pipe flow fails to conform to the standard logarithmic

law. They found the Reynolds number had to reach a value of Re = 10000 (based on

the bulk velocity and pipe diameter) before the mean velocity profile would match

the log-law, versus a much lower Re = 3000 for channel flow (based on the distance

between the plates). However, a more recent study of pipe flow by Durst, Jovanovi6

and Sender [11] using a precision laser Doppler anemometry technique (LDA) found

that at a Reynolds number of 7442, fully developed turbulent pipe flow obeyed the

standard log law.

A second difference with channel flow lies in the transition from laminar to tur-

bulent flow. Patel and Head [32] observed that pipe flow is purely laminar up to

Re = 2000 after which it enters a transition regime usually triggered by disturbances

at the entrance. The transition is maintained up to Re _ 3000 after which the pipe

becomes fully turbulent rather suddenly. For channel flow, they observed that the

onset of transition appeared at Re = 1350 and the flow became fully turbulent for

Re > 1800. The transition regime for pipe flow was studied in detail by Wygnanski

and Champagne [52] and Wygnanski, Sokolov and Friedman [53] (see also Cantwell

[5]). They found that the transition regime was actually a very complex process where

two different intermittent flows were present: puffs and slugs. Puffs are present for

2000 < Re < 2700; they are induced by large amplitude perturbations at the pipe

inlet. Wygnanski et al. referred to the state of the flow in puffs as that of incomplete

relaminarization. Slugs however are present at Re > 3200 and are produced by small

perturbations in the boundary layer at the pipe inlet. The flow within a slug is similar

to fully developed turbulence and has a well defined leading and trailing edges, and

can extend over the entire length of the pipe. Leonard and Wray [20] and Leonard

[19] were able to simulate puffs at Re = 2200, showing that methods designed to

simulate time evolving flows (streamwise periodic) can capture flow features arising
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from perturbed entry conditions.

Lastly, pipe flow is said to be linearly stable to small disturbances. Several inves-

tigators have focused their research on trying to find unstable linear modes in pipe

flow (see for example Salwen et al. [40, 39], Orszag and Patera [29] and O'Sullivan

and Breuer [30]). To this day, no unstable linear modes have been found. Channel

flow however is linearly unstable to infinitesimal disturbances; it possesses a criti-

cal Reynolds number of 11544 above which the flow can be unstable. For pipe flow

the only process that sustains and enables growth of perturbations emanates from

nonlinear interactions.

1.3 Objectives

The objectives of this study are threefold:

• To develop a numerical method based on b-spline polynomials which would

have an accuracy comparable to standard spectral methods and the flexibility

of finite elements or finite difference methods.

• To study the fundamental behavior of wall-bounded turbulence in a cylindrical

geometry, such as pipe flow.

• To establish the benchmark in pipe flow simulation.

Also, in order to assess the present methodology, several comparisons will be made

with various experiments and other direct numerical simulations.

1.4 Outline

The present work is essentially divided in two parts: a detailed explanation of the

numerical method, and analysis of the results.

Chapter 2 introduces the numerical method, including some basic facts about b-

splines, the time marching method and the technique used to relax the resolution

near the origin; it concludes with some test cases used to validate the method.
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Chapter 3 presents the results from the pipe flow simulation; results include, mean

flow properties, spectra, turbulent intensities, budgets of Reynolds stress transport

equations and structure tensors.

Chapter 4 presents a study of flow structures using a topological method based

on a classification of the invariants of the velocity gradient tensor.

Chapter 5 concludes with some final observations and recommendations for future

work.

Appendix A gives a short summary of b-splines and their properties.

Appendix B exposes in great details the problem of the coordinate singularity and

the steps taken to ensure smoothness and boundedness of the velocity field near the

origin.

Appendix C shows how the method presented in chapter 2 and appendix B was

implemented. This appendix is especially useful if subsequent modifications should

be made to the computer code. This appendix outlines the entire structure of the

code.

Appendix D gives the exact solution to Stokes problem used to validate the

methodology and includes some background on linear stability. Those exact solu-

tions are used in the validation section of chapter 2.



Chapter 2

Methodology

In this chapter, the numerical method that was used to solve the incompressible

Navier-Stokes equations is introduced, including some coding strategies. Also in-

cluded are some of the test cases that were used to validate the method.

2.1 Approach

The numerical method was designed for any incompressible turbulent flows, that can

be prescribed in cylindrical coordinates (e.g. pipe flow, round jet). In other words,

the method should have the flexibility to resolve both solid and free shear boundaries.

Since no attempt is made at resolving inflow/outflow boundaries (spatially evolving),

the flow is assumed periodic in the streamwise direction, or so-called temporally

evolving flow (equivalent to a flow with infinite streamwise extent).

The present method is conceptually similar to the approaches of Leonard and

Wray [20] and Moser, Moin and Leonard [26], in that it makes use of divergence-

free vector expansion functions. The major difference between the present method

and all the ones described before, is the use of basis splines polynomials (b-splines) to

represent the radial direction, in place of Jacobi or Tchebyshev polynomials. B-splines

are discrete polynomials, i.e. with local support on a given interval, whereas Jacobi

and Tchebyshev polynomials have global support. Polynomials with local support

lead to sparse matrices that can be efficiently stored and solved. The local nature of
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b-splines enables effortless implementation of various boundary conditions, and the

possibility of adjusting the precision near the origin to avoid an overly restrictive time

step. Background on b-splines can be found in appendix A.

2.2 Governing Equations

The starting point for the simulations are the incompressible Navier-Stokes equations

in cylindrical coordinates

v.u = 0 (2.1)
0u 1

0--/+ u. Vu + Vp - RebV" Vu + fe,. (2.2)

where u is the velocity, p is the pressure, and f is a uniform body force (pressure

gradient) acting in the streamwise direction which drives the flow; it is constantly

adjusted such that the mass flow, rh = rcR_pUb, is kept constant. Because the density

p and the radius of the pipe R2 are constant, the constant mass flux condition implies

that the bulk velocity Ub

2 f0R_Ub = R--_ _z r dr (2.3)

must also be constant.

All quantities have been normalized using the radius of the domain R2 as the

lengthscale, and Ub as the velocity scale (see figure 2.1)

r ° Z o t ° lZO pO
,. z_ t- ,_j_ _ p

R2 R2 (R_/Ub) pU_(Yb

So, the Reynolds number in 2.2 is given by

UbR2
Reb =- (2.4)

/]

where u is the (constant) kinematic viscosity.
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Y

F0

R2

Ub

F_

Figure 2.1: Coordinate system and computational domain

Using the following identity

u- Vu = -u × w +

where the vorticity, oa, is defined as

V(u.u)

(2.5)

the nonlinear advective term in 2.2 can be rewritten to yield

0u 1--_-V- _Ju -t- fez
0----[+ _P = u × w + Reb

with
U'U

p-p+-
2

(2.6)

(2.7)
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2.3 Numerical Method

2.3.1 Weak Form

Before the Navier-Stokes equations can be solved, they must be transformed in a way

which is amenable to numerical procedures. Let v be the numerical approximation to

u, which will consist of a truncated expansion in terms of divergence-free vector func-

tions (i.e. _7 • v = 0), and let/5 be the numerical approximation to P. Furthermore,

let _ be any vector function representable by an additional finite set of divergence-free

vector functions (V - _ = 0). Spaces which encompass such functions can be written

as

12 = {v Jv 6 HI(G),V. v = 0 in G, v = 0 on FR2} (2.8)

)41= {_J_ E HI(G),V. _ = 0 in G, _= 0on Fn2} (2.9)

where Fn2 represent sthe surface r = R2 (see fig. 2.1) and H n is the Sobolev space of

degree n. A function, say f, is said to belong to H n if it possesses square-integrable

derivatives up to order n (Hughes [13]), i.e.

fo \Ox '_] dx <oo (2.10)

With v = 0 on FR2, the no-slip boundary condition, 1) is specific to pipe flow.

In general, boundary conditions of any type (Dirichlet, Neumann or mixed) could

be built into ]2; boundary conditions built in 1/are said to be imposed strongly. As

long as Dirichlet boundary conditions are imposed strongly on functions in Y (slip

or no-slip), _'Y will always retain the form 2.9, i.e. with _ = 0 on Fn2. Functions

in _Y must be homogeneous at the boundary if the pressure is to drop out of the

formulation (more on this later).

To ensure that v and _ are truely divergence-free, a standard result from calculus

states that if the domain G is simply connected, then V • v = 0 in G if and only if

v = V x @, where _ is a vector stream function associated with v. So, if v is to
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be continuous (CO), then • must at least be C 1 *. This means that second order, or

quadratic b-splines are the lowest admissible order that can be used.

By substituting v for u in 2.1 and 2.6 and using the standard weighted residual

technique which consist in taking the scalar product of the equation with a weight

function and integrating over the domain, with _ as the weight functions, the weak

form of the Navier-Stokes equations is obtained t

1 (_,(V. Vv)) (2.11)

where w = V x v and the inner product (.,-) is defined as

(a,b) =/v a. bdY (2.12)

Since V- v = 0 by construction, the continuity equation (2.1) drops out from the

equation set. A further simplification is possible by eliminating the pressure from

2.11. First, by rearranging the pressure integral

/G ,_ . V [g dV = /G V . (D ,_) dV - /6 [g V . ,_ dV (2.13)

Then, applying the divergence theorem and using the fact that V. _ = 0 results in

fG6"" Vf'dV = fr _'" ndS (2.14)

where F = Fo tO FLz U FR2 and n is the unit normal vector. Using periodicity of all

variables in the streamwise direction, any surface integral on F0 tOFLz vanishes. With

only the integral on Fn2 remaining, n = er, and since _ 6 ]4;, 2.14 is identically zero.

Hence, the weak form reduces to

•More formally, with @ lying in some space, say P, one could write "P = {@ I @ 6 H2(G)}.
tNote that the body force term (fez) was dropped from 2.11. In the code, the mass flow is held

constant through a computational procedure described on page 130; the fe_ term is never actually
computed.
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By enforcing 2.15 for all _ E 14; making up a basis for the weight functions, a

coupled set of ordinary differential equations for the coefficients in the expansion for

v E 12 are obtained, which can be solved using standard time-advance techniques.

With the pressure eliminated and continuity satisfied, only two unknowns remain.

2.3.2 Velocity representation

Given the weak formulation 2.15, all that remains is to select the basis vectors to

represent v and _. Using periodicity in 0 and z, allows the following representation

to be adopted

N,

v(r,O,z,t) = E E E _Jmt(t)u'(r;k6, kz) ei(k°°+k"_) (2.16)
j rn l=l

_j,ra,l,(r, O, Z) = wl,(r; ]gO', kz') e-i(k°'6+k_'z) (2.17)

where ut are the basis expansion vectors and wl, the basis weight vectors which are

both function of r, ko and kz, aj,_l are the unknown (complex) expansion coefficients

and

2?rm

kz -
L_

-No�2 < ko = j <_ No�2- 1, -gz/2 _ m _ Nz/2 - 1

kz and ko (or j) are respectively the streamwise and azimuthal wave numbers, and

L_ is the period, or domain length, in the z direction.

Because v is a real valued quantity, only half of its Fourier coefficients need to be

computed since there exists a symmetry of the coefficients such that _r_j _m,t = v_,,_,l-

From the standpoint of using this symmetry property, the choice of azimuthal wave

numbers is purely arbitrary; instead, one could easily use symmetry of the axial wave

numbers. But for the purpose of applying the regularity conditions (see below), using

symmetry of the azimuthal wave numbers is the natural choice.

Substituting 2.16-2.17 in 2.15, the discrete form of the equations is obtained

A& = Bc_ + fnl (2.18)
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where A and B are respectively the Nr x IV_ mass and viscous matrices, defined as

f0A = {at,z} = wt,- u_ r dr (2.19)

B = { bt,l } = Re----_b we" "

where volume integrals were reduced to single integrals in r by the orthogonality

property f02_ eim%-i'_¢dff = 27r_mn. Clearly, the row index corresponds to the weight

vectors wt,, and the column index to the expansion vectors ut. Integrating the viscous

matrix by parts yields

Vw,,:Vu,rdr - Out ] (2.21)
B- Reb Or n_J

where a : b is the double contraction operator (= aljbij in tensor notation) and

is the Fourier transformed del operator, f_l is a vector of length N, accounting

for the nonlinear term. 2.18 is a linear set of ordinary differential equations for all

combinations of ko, k_ wave numbers.

Regularity conditions

10
Because of the coordinate singularity that appears in the V (= o er + ;_ e0 +

o ez) operator when written in cylindrical coordinates, special care must be taken to
az

ensure that any quantity evaluated at the origin be bounded and smooth. Regularity

conditions imply a set of requirements imposed on the velocity field; with the velocity

field being C _, upon a transformation from cylindrical to cartesian coordinates, the

origin of the cylindrical system should map smoothly as any other point would. The

origin is not a special point.

Those conditions are the subject of appendix B. It is shown that regularity of the

velocity field amounts to essentially two conditions: first, the radial and azimuthal

velocity components are constrained to each other. Second, each velocity component

must have a strictly defined behavior in r near the origin.
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Vector shape functions

Within the confine of the regularity conditions, there is a great deal of freedom in

constructing the expansion vectors. By choosing wz, to be the complex conjugate of

ul, a Galerkin method is obtained in 2.15. Galerkin's method has the advantages of

minimizing the error in the L2 norm and generating a positive definite mass matrix

(see for example Stanaway et a/.[45]).

With continuity satisfied and the pressure eliminated, only two degrees of freedom

are associated with each Fourier/b-spline mode. Following the notation of Leonard

and Wray [20], it is convenient to divide the expansion and weight vectors, ul and

w_,, into two distinct classes of vectors (uz + and u_-) and (wz, + and wt,-), with co-

efficients a+mz(t) and a-;mz(t ) respectively. The following vectors meet both regularity

conditions, provided that g_ satisfy the appropriate conditions at r = 0

0 = kz rg_' gi

-kzrg t
art)

u,+(T;k0,kz)= = V x
\uz +

0 gl'+ l-_keg_

(2.22)

(2.23)

A

where V x is the Fourier transformed curl operator, g_ =_ g_(r) are the b-splines

polynomials, and gz' = dg,/dr. The above representation is incomplete when kz = 0,

i.e. vr = ve = 0; in this case, the k_ factor is removed from 2.22 and 2.23 is left

unchanged.

Because b-splines are polynomials of any order, they generally do not have the

correct behavior in r near the origin. To remedy this, b-splines must be made to have

a behavior analogous to the requirements B.8-B.10. The procedure by which this is

achieved is the subject of appendix B. A summary of the expansion vectors is given

in table B.1.

Upon splitting the vectors in two classes, the velocity becomes 9j_l = a+mtut + +
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OL;mlUl- and 2.18 is composed of the following

A+& + + A+&- = B+a + + B+c_- + fnl +

A-ci-+A+& + = B_-c_-+B+_ ++f.1-

(2.24)

(2.25)

where

fo R= A+ fo R_A + = wt, + • ut + r dr = wv- • ut + r dr (2.26)

fo m fo R_A= = we- • ut- r dr A+ = wt, + • ut- r dr (2.27)

and similarly for the viscous matrices. Appendix C gives the complete details on how

the discrete system of equations is assembled and each matrix is defined.

2.3.3 Nonlinear Term

As it appears in 2.24 and 2.25, the nonlinear term is defined as

f'a J: {f_e}-1 j[oL_fo2'_fon2= 2_rLz wv e • (v x w) e -i(k°'°+k_'z) r dr dO dz
(2.28)

This term is computed in the standard way using the so-called pseudo spectral

approach, where the product wv + • (v x w) is computed in physical space by means

of fast Fourier transforms (FFT) and the final result given by the inverse transform

1 f:. f27r.., e-i(ko'O+kz'z)dO dz is the very definition of the inverse(the integral

Fourier transform). By using FFT, the pseudo spectral method has the advantage

of requirering fewer operations than the full spectral approach: typically, the pseudo

spectral approach requires -,_ N log 2 N operations, whereas the full spectral approach

requires --_ N 2 operations. Fourier transforms are done using the 3/2 rule to avoid

any aliasing errors. Problems related to aliasing errors have been well documented

and are not repeated here (see Rogallo [37], Canuto et al. [7] and Sondergaard [42] for

background). Numerical errors in the radial direction are alleviated by computing all

integrals to machine accuracy by using Gauss quadrature technique. Specific details

on how this procedure was implemented are given in appendix C.
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2.3.4 Time Advance

The time advancement method used to compute the time derivative in 2.18 is the

so-called SMR method (see Spalart et al. [44]), which is a mixed explicit-implicit

method; it uses a third order Runge-Kutta (RK) method for the explicit part and

a trapezoidal (second order), or Crank-Nicholson, method for the implicit part. An

equation to be time marched is split into a linear and a nonlinear part

0¢

0--t- = L(O)+ N(_) (2.29)

where L(¢) is the linear term which consists of the viscous term and N(¢) is the

nonlinear convective term. The method to advance Cn at time t to ¢,_+1 at time

t + At is given by

I)!

(I)"

(I)n+ 1

---- Cn + /k/[L(Ctl_Pn-t-filet)-t-71N(¢n)] (2.30)

= ¢'+At[L(a_¢'+92¢")+72N(¢')+C,N(¢,_)] (2.31)

= ¢" + At[L(az¢" + 530n+1)-}-"),3N(q5")-1- (2N(O')] (2.32)

where
29 3 i

37 5 1

91 - 16o' 9_= g/, 93=

8 5 3 17 5

7, = 1--5' 72 = ]--_, 7a=_, C,- 60' _2- 12

Even though this method requires two previous levels of storage, it can be made

to require only one previous level of storage (details are in given in section C.4).

Stability and Accuracy

The advantage of treating the viscous term with an A-stable implicit method is to

relieve the time constraint, since it is customary to ignore the implicit part of the
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equation when establishing that constraint. Consider the following linear model prob-

lem

-- + u- V¢ = 0 (2.33)
Ot

Assuming that ¢ is periodic in all three directions, 2.33 becomes

oo( u0k )O---t+ i u,kr + --r + uzkz ¢=0 (2.34)

For the third order Runge-Kutta scheme the CFL number is v/-3, and the stability

criterion is given as

with

At < _ (2.35)

].)tmax I ---- max

using the triangle inequality

< max

< max

urkr + uo k° + uzkz (2.36)r

+I ol +

where /COmax = No/2 -- 1 and kzmax. = _(N,/2- 1) and k,=_, -- R22--_"2v_,2_- _5_'a_with

Ar = R2/N_.

Since maximizing )_ guarantees stability, assuming periodicity of the radial di-

rection yields a conservative estimate. Figure 2.2 shows a plot of the modified (or

numerical) wave number versus the exact value. It is clear that the b-spline approxi-

mation, in the context of a Galerkin method, yields wave numbers always less than,

or equal to the exact value.

Having ensured the solution is well behaved at the origin (through the imposition

of the regularity conditions), a problem still remains near the origin. This problem

is best explained by considering a grid in physical space. In the example of figure

2.3, the mesh on the left shows a concentration of grid point as the radius decreases;

this would lead to a highly restrictive time step since the value of r A0 becomes very
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Figure 2.2: Modified wave number (k) versus wave number (k) normalized by kmax,

for splines of orders 1 through 4. The straight line is the spectral limit (exact) and

higher order are closer to spectral.

small near the origin. To alleviate this, grid points should be removed to keep the

value of r A0 approximately constant. Since no special feature (such as a boundary

layer) exists near the center, there is no need for the added resolution.

In the present context, i.e. using a Fourier representation for the azimuthal di-

rection, such a procedure would translate into letting the maximum azimuthal wave

number vary with the radial position, such that the ratio komax/r appearing in 2.38

be approximately constant. Because b-splines have local support, splines for larger

values of k0 can be removed near the center of the pipe, while leaving the ones on

the outer region. This procedure is termed modal reduction. In order for the ratio

kemax/r to be constant, k8 has to be made a function of r++;the following was adopted

]gSmax(T) : (]_$rnax -- b)_2 --_ b
for 0 < r _< R2 (2.39)

$Making k0 a function of r complicates the computation of the nonlinear term since Fourier
transforms must be done on fixed lengths. Even though this is not a problem in principle the

implementation of modal reduction in the context of FFT is not trivial. Details are given in section
C.2
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I

Figure 2.3: Mesh (left) with constant number of grid points on each radial location.

Mesh (right) with constant r A0 between grid points.

where k0max = No�2 - 1 and b is set to some small value (2 or 3). At r = 0 there is

only a single non-zero Fourier mode (ke = 0 for Uz and ko = 1 for u_ and uo). The

modal reduction algorithm can be written as

aj,_z_ = 0 j >_ k0max(ri) + 1 (2.40)

and li are splines with support on r _< ri. Finally, the CFL condition is given as

< ,/5 (2.41)

where all velocities are evaluated in physical space. The time step can be evaluated

while the nonlinear term is being computed since it too requires velocities in physical

space.

Running with the full CFL number was found to be both stable and accurate.

In addition to alleviating the CFL condition, modal reduction greatly reduces the

computations; typically, when modal reduction is active, the computations take 30%

less time than with the full, unreduced modes.
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2.4 Computer Code

The method described in this work was coded to run on the vector-parallel CRAY

C90 super computer. The computer used had 64 MW § of available memory and eight

processors. To save memory, the code was designed to take advantage of the solid-

state storage device (SSD), a very high speed ram disk. The code was written in

VECTORAL, a computer language designed by Wray [51] to ease implementation of

vector processing and facilitate the handling of large datasets. Two versions of the

code were written: one serial (single CPU) and one parallel (some subroutines of the

parallel version are written in C). Parallelization was straightforward in the context

of the numerical method and the shared memory architecture of the computer. Both

are highly optimized to take advantage of vectorization. The serial version runs at

600 MFlops and the parallel runs at roughly 500 MFlops/CPU, depending on system

load. Running a grid of 72 × 160 × 192 (Nr × No × Nz) with fourth order splines,

the serial code needed 16 MW of memory. For sake of comparison, the code runs

at 14 #sec/mode/RK sub-step when using cubic splines (without modal reduction),

whereas the mixing layer code of Spalart et al. [44] achieves 13 #sec/mode/RK sub-

step using Jacobi polynomials instead of b-splines.

The code is divided in two principal subroutines called passes: the first pass

consist in computing the nonlinear term; it accounts for 85% of the computations.

The second pass advances the solution to the next time step. The order of execution

is given as follows

• Pass 1

1. Unload the data from database (SSD).

2. Reorder the data and zero the oddball wave number (kz = -Nz/2) in

preparation for the fast Fourier transforms (FFT).

3. Compute Ai-Kt (see section C.2 for the definitions of those terms) and

transform (FFT) to physical space.

§MW = mega word, 1 word = 8 bytes.
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4. If first RK sub-step, compute the maximum eigenvalue and update the

time step (At).

5. Compute "),l+, fliT, T/;, "i'l, and _z, and FFT to Fourier space.

6. Obtain the result fnl + and fnlv.

7. Save the result to the database.

8. Proceed to pass 2.

• Pass 2

1. Unload the result from pass 1 and the previous step variable from the

database.

2. Impose the regularity and boundary conditions on the results of pass 1.

3. Compute the mass and viscous matrices (A and B).

4. Compute the effective mass and viscous matrices (A and 13).

5. Impose the regularity and boundary conditions.

6. If first RK sub-step, do some run-time diagnostics.

7. Time march (see section C.4 for the exact details).

8. Save the results to the database.

9. Proceed to pass 1.

2.5 Boundary and Initial Conditions

2.5.1 Boundary Conditions

The no-slip boundary conditions, where v = 0 on r = R2 (see 2.8) is used to simulate

pipe flow. Applying those conditions to the functions given in table B.1, constrains

the expansion coefficients which have support on r = R_. The resulting conditions

are given in table 2.1.
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Table 2.1: Expansion coefficients for the no-slip boundary conditions.

]¢z=0

G¢0

ke =0

_+ =0
N,.

aTq_= 0
a_ = 0

'_T-, = '_N, = 0

ko >0

- + = a+%. = 0aN,.-1

aN_-l = aK, = 0
o_ +N,--1 _-- °_+,. = 0

'_N_-I = '_, = 0

In all cases, the support rules given in section A.3 were used to derive the con-

ditions of table 2.1. A consequence of those boundary conditions is for 0_ = 0,
Or R2

which is required by continuity.

2.5.2 Initial Conditions

As mentioned in the introduction, pipe flow is linearly stable to infinitesimal distur-

bances; the onset of turbulence can only be brought about by nonlinear interactions.

This implies the flow cannot be started with unstable modes in order to trigger tran-

sition and bring about the onset of turbulence as rapidly as possible. The flow was

started with a mean velocity profile, or (0,0) mode, given by 1 - r s, and with the

rest of the modes filled with noise with an amplitude of _ 10% of the mean. This

amplitude was found to be more than adequate to excite the nonlinear process.

2.6 Validation

Three different approaches were used to validate the code: representation tests using

known velocity fields, solution to Stokes' problem and the propagation of linear Orr-

Sommerfeld waves. Each approach serves a different purpose and is explained below.

2.6.1 Representation Tests

The objective of this first test is to ensure that the method was implemented correctly

(validation of the method proper is left for subsequent tests). The idea behind this
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test is quite simple: use an arbitrary function instead of b-splines representations

(El a_gj) in the expansion vectors (table B.1) to generate a benchmark result; then

check that solution against the one obtained by b-splines. The coefficients (ap)

used for the b-splines solution are generated using the projection procedure shown

in A.1-A.5. Those tests can be done to verify the mass and viscous matrices, and

the nonlinear term; they are repeated for all four families of expansion vectors. The

arbitrary function should satisfy the boundary condition and be regular (possess the

correct power of r). As an example, one could use

f(_; k0,k_)= _Jk0-,l(1_ _2)_ (2.42)

where it is assumed R2 = 1.

2.6.2 Stokes Flow

Once the implementation of the method is validated, we turn our attention to the

validation of the method itself. To validate the method, we make use of Stokes' prob-

lem for which there is an exact solution (see appendix D). The objective is to solve

numerically Stokes eigenvalues and eigenfunctions and compare them to the exact

solution. The relevance of solving Stokes eigenproblem was best explained by Hughes

[13] (p. 434): "The accuracy of the eigenvalues and eigenfunctions are measures of

the quality of both M and K _I, in other words, the entire spatial discretization."

Hughes [13] gives the following error estimates for eigenvalues and eigenfunctions

computed using Galerkin's method when solving an elliptic eigenvalue problem (of

degree one)

_L2s_s+I (2.43)_,-;L < ¢. As

IIvs- us Iio_<chS+'g s+')/2 (2.44)

where h is the mesh size parameter, c is a constant independent of h or As, ]l "II0 is the

L2 norm and 0 < A1 < t2 < ...; both A, and vs are the numerical approximations.

_i.e. A and B, the mass and viscous matrices
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Figure 2.4: Convergence plots for the Stokes eigenvalues (a) and eigenfunctions (b)

on an equispaced grid with Nk knots, for ke = 2, kz = 27r and s = 5. Plots are for

cubic ×, quartic o and quintic + b-splines.

Figure 2.4 gives relative errors for the fifth eigenvalue and eigenfunction for ke = 2

and k_ = 2_-; plots for other combination of wave numbers are included for complete-

ness and given on figure 2.7, page 30. As expected, errors for the eigenvalues are much

lower then their eigenfunctions equivalent since as shown in 2.43 and 2.44, eigenvalues

converge faster than eigenfunctions (exponent of h). Eigenvalue errors quickly reach

round-off levels for higher degree splines and moderate values of Nk (the number of

knots).

Slopes of each curve represent the convergence rates and are given in table 2.2.

Computed rates are always bounded from below by the estimates 2.43-2.44, and the

agreement between them is very good. Preserving the full rate of convergence gives
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Figure 2.5: Relative error in eigenvalue for Nr = 30, k8 = 0 and kz = 2_r. Symbols

are as figure 2.4

a strong indication that the computations are behaving as expected.

Table 2.2: Convergence rates for ko = 2, kz = 2_'.

S

3

4

5

Eigenvalues Eigenfunctions

computations (2.43) computations (2.44)

4.14 4 3.11 3

6.50 6 4.21 4

9.34 8 5.42 5

Because the expansion functions as defined in table B.1 involve derivatives of b-

splines, with a b-spline of degree S, the method will converge at the rate of a spline of

degree S- 1; this should not be surprising since the qth derivative of a b-spline a degree

S can be represented by a b-spline of degree S - q. This explains the discrepancy one

might observe between the estimates 2.43-2.44 and the values of table 2.2.

This behavior is best observed in the expansion functions for k_ = 0 and kz > 0:

the ul- vector involves a derivative of a b-spline whereas uz + does not. For this case,
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the plus and minus modes should converge at different rates. Figure 2.5 clearly shows

this behavior: the plus mode of the cubic spline converges at the same rate as the

minus mode of the quartic. Figures 2.7 (e) and (f) show that for the (0,0) modes,

convergence is much faster since these expansion functions involve no derivative of

b-splines. So, every derivative incurs a loss of an order of accuracy. Figure 2.5 also

shows an interesting consequence of the estimates 2.43-2.44. Because the eigenvalue

As appears on the right hand side of the estimates, when the eigenvalue becomes large

the error follows accordingly; with s large, the error becomes O(1).

2.6.3 Wave propagation

The last test consists in propagating Orr-Sommerfeld waves. The objectives are to

validate the time marching method, and the computation of the nonlinear term. It

also ensures that the code as a whole is working properly, such as access to the SSD

and other I/O.

The idea is to start the computations from a solution to the linearized Navier-

Stokes equations for an arbitrary wave number pair (ke, k_); such solution is known

as an Orr-Sommerfeld wave (see appendix D) and is given by D.19. This wave is then

propagated using the standard Navier-Stokes solver. If the amplitude of this wave is

small enough, it should behave linearly such that the solution at any given time is

fi(r, t;/co, kz) = eft(r,0; ke, kz)e -i_ (2.45)

where _ is a small number chosen to be 10 -6.

Figure 2.6 gives the error norms for the four different wave number pairs after

having propagated for fifty time steps. The linear growth of the error in time for

plots (a)-(c) is in agreement with the predicted error, which has a form

le(t,_)l = cAt2tn + O(At 3) (2.46)

where c is a constant independent of At, and tn = nat. 2.46 implies that if At is

small enough, so higher order terms become negligible, the error will grow linearly in
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Figure 2.6: Relative L2 error norm of the Orr-Sommerfeld wave for the four different

wave number pairs (ko,k_): (a) (1,1); (b) (1,0); (c) (0,1) and (d) (0,0). Parameters

are Reb = 9600, Nr = 35, S = 3, N0 = N_ = 12 for a CFL = 0.05.

a finite time. In absolute terms, the low error is also an indication that the nonlinear

term is behaving as expected by preserving linearity of the solution. Plot (d) is a

simple measure of how well the mean flow is preserved, since the nonlinear term has

zero contribution for the (0,0) mode; the error is no larger than round-off.

Lastly, it was possible to observe an additional wave or alias at (2ko,2k_) with

amplitude O(e 2) being generated by the nonlinear term. This is not unexpected since

the product v x w will generate a term with an exponential of the form e 2k°+2kz. This

is further evidence that the nonlinear term is behaving as it should. To make this

alias disappear, we could have selected a smaller initial amplitude such that e 2 would

be of the same order as round-off.
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Chapter 3

Pipe Flow

We present in this chapter results for the pipe flow simulation. The following results

were obtained using the method described in chapter 2. The pipe flow simulation

of Eggels et al. [12] (hereinafter referred to as EUW), the channel flow simulation

of Kim, Moin and Moser [17] (KMM), the PIV (Particle Image Velocimetry) and

LDA (Laser Doppler Anemometry) measurements in pipe flow of Westerweel et al.

[50] (WDV), and the high resolution LDA measurements (also in pipe flow) of Durst,

Jovanovi_ and Sender [11] (DJS); all were used to compare with the present results.

3.1 Test Case

In wanting to keep within the same Reynolds number range as the aforementioned

investigators, the Reynolds number based on the bulk velocity, Ub, and pipe diameter,

D, was set to Reb = UbD/u = 5600 (or a Reynolds number of Re_ = 380 based on

the wall shear velocity u_). This value matches KMM's value of 5600 based on the

mean velocity and channel width (or Re_ = 360)_ and is close to EUW's value of 5300

(Re_ = 360) based on Ub and D. The computations were carried out on a grid of

72 × 160 x 192 (Nr × Ne × Nz), for a total of 2.2 million Fourier/b-splines modes (less

if we account for modal reduction) with quartic b-splines. The length of the domain,

Lz, was chosen to be 5D, the same as EUW; the adequacy of the spatial resolution

and Lz will be assessed later by examining the velocity and vorticity spectra, and the

31
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streamwise two-point correlations. With this computational domain, grid spacings

are about R2A8 + _ 7.5 and Az + _ 9.9 wall units*. A non-uniform grid is used in

the radial direction based on an exponential function: close to the wall the radial

grid spacing is smaller, with the first point away from the wall located at r + _ 0.39;

spacing reaches its maximum near the center with Ar + _ 5.7. Very close to the

center, a finer radial grid is used in order to impose the regularity conditions; a finer

grid makes this process more local.

Those values compare well with EUW who used 96 × 128 x 256 grid points with

an equispaced mesh in the radial direction. The first point away from the wall was

located at r + = 0.94, with the rest spaced by Ar + _-, 1.88. Other grid spacings were

R2AI) + ,_, 8.84 (at the wall) and Az + _ 7. Since EUW do not remove azimuthal

modes as the radius decreases, the azimuthal resolution varies linearly with r and

reaches a minimum of 0.05 wall units near the centerline. Even though the total

number of grid points exceeds the one used for our present simulation, EUW's res-

olution must be considered at par if not inferior to the present one: since EUW's

computational procedure is based on second order finite differences, which possesses

a high diffusivity compared with the present technique, many more grid points must

be used to adequately represent the small scales. EUW's choice of a uniform grid in

the radial direction is certainly questionable.

KMM's computations used 192 x 129 x 160 modes in the streamwise, crosstream

and spanwise directions (y, y, z) respectively. KMM's grid spacings were Ax + _ 12

and Az + _ 7. The channel had a length of 27rD (versus 5D for the pipe) and a

spanwise length of _rD, where D is the channel width, or distance between walls. The

crosstream, or y direction, was discretized with a cosine grid (necessary for Tcheby-

shev approximation) with the first point away from the wall located at y+ _ 0.05,

reaching a maximum spacing of 4.4 at the center. Their near wall resolution is almost

an order of magnitude smaller than the value adopted for the present simulation.

There appears to be very little advantage in using such a fine resolution since the

*the + superscript refers to nondimensionalization with respect to wall variables, mainly the wall
2

shear velocity u_ = (r_/p) = -v afi_/arlR_; e.g. r+ = ru_/_,.
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viscous sublayer is usually of order y+ = 5 t. The only apparent reason for this, is an

attempt to resolve numerical artifacts produced near the boundary (so-called projec-

tion error; see Moser and Moin for background [25]). Because of the cost involved

and the lack of additional physical insight gained by such a fine grid, no attempt was

made to duplicate their resolution.

3.2 Turbulence Statistics

The results presented in this section are comprised of 46 different fields approxi-

mately equispaced in time, averaged over a period of 43 time units (based on the

non-dimensional time D/Ub). The results of EUW consist of 41 fields averaged over

a period of 59 time units. Although 40 time units might not be ideal to remove all

statistical errors, it is certainly adequate. Statistical steady-state is reached when

the total shear stress T_z = 1/RebOfiz/Or -- u_uz' ' becomes a linear function of r. If

r_z is normalized by To, then OT+/Or = 1. Defining the deviation from linearity as

I[r+ -- rllo/l[rllo , the deviation for the present simulation is 0.51%, and for the DNS

of EUW, 0.72%.

3.2.1 Mean flow

Table 3.1 compares several mean flow parameters reported by various investigators

to the results from the present computation. Of interest, is the friction coefficient

defined as

(3.1)

The computed value of 9.16 × 10 -z agrees within half a percent of Blasius' empirical

formula. Differences between the present simulation and EUW values for CI, the dis-

placement thickness 6, and the momentum thickness 0, are consistent with expected

dependence on Reynolds number (with the Reynolds number increasing, those val-

ues should decrease). Differences in geometry between the pipe and channel are also

tFor the pipe, y+ is defined as y+ = (R2 - r)u_/u.
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Table 3.1: Mean flow properties from several investigators. Repeated in modified

form from EUW.

[ b-splines

ReT

DNS (EUW) PIV (WDV) LDA (WDV) HWA (EUW) DNS (KMM)

Re¢" 7248 6950 7100 7200 7350 6600

Re_ 5600 5300 5450 5450 5600 5600

380 360 366 371 379 360

19.11 19.31 19.38 19.39 19.40 18.20

14.77 14.73 14.88 14.68 14.76 15.63

1.29 1.31 1.30 1.32 1.31 1.16

9.16 9.22 9.03 9.28 9.18 8.18

9.13 9.26 9.19 9.13 8.44 c

9.36 9.51 9.43 9.36 -

0.121 0.127 0.124 0.130 0.128 0.141

0.066 0.068 0.068 0.071 0.070 0.087

1.84 1.86 1.83 1.83 1.82 1.62

8.74 8.91 8.78 8.79 8.73 6.97

Uc/u_-

UolU 

CA×lO -3)
cjb,.(x 10-3)
cjb..(× 10-3)

OlRJ
H = 6/0

e 9

"All Reynolds numbers are based on D, the pipe diameter or channel width, and u.

bFriction coefficient based on Blasius' formula Clb,_ ----O.079Re_ °'25.

CBased on Dean's correlation C! = 0.073Re_ -°25 (from KMM).
dFriction coefficient based on Barenblatt's hypothesis (see page 38).

eThe displacement thickness _ is defined as 6(2R2 - 6) -- 2_: 2 (1 - ft_(r)/Uc) rdr (EUW).

fThe momentum thickness B is defined as B(2R2 - O) = 2 fo _ fi_(r)/U¢ (1 - fi_ (r)/Uc) r dr.
gG = Uc/ur((H - 1)/H).

apparent; for a similar Re_., the channel has a significantly lower friction coefficient,

with larger (_ and 0.

Figure 3.1 shows the mean velocity and vorticity profiles. Agreement with EUW

and the experiments of WDV is excellent. The slight bulge in the velocity profile for

0.3 < r < 0.8 compared to EUW is due to a slightly higher Reynolds number in our

case, which causes the velocity profile to be fuller. As expected, the mean vorticity

is maximum at the wall and drops to zero at the center, indicative of a vortex sheet

in the near-wall region.

Figure 3.2 (a,b) shows the mean velocity profile normalized by the wall shear stress

velocity compared to the experimental data of WDV, and the results from EUW and

KMM simulations. Figure 3.2 (a) reveals good agreement between the experiments
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Figure 3.1: Mean profiles: (a) streamwise velocity normalized by the centerline ve-

locity; (b) azimuthal vorticity normalized by the vorticity at the wall.
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and the two simulations. In the viscous sublayer (y+ < 5) the present simulation

and the law of the wall collapse to a single curve until y+ _ 4. This collapse is

even more apparent in figure 3.2 (b) where the pipe is compared to the channel; all

three curves are undistinguishable in the viscous sublayer. In the inertial sublayer

(log region), the expected discrepancy between pipe flow and the log law is apparent.

Patel and Head [32] observed this discrepancy for pipe flow up to Reb _ 10000 *. A

closer look at figure 3.2 (a) shows that in the inertial sublayer, the present simulation

is closer to the logarithmic profile than that of EUW, which is consistent with the

trend observed by Patel and Head for higher Reynolds numbers. For channel flow

however, they found that a lower value of Reb ,_ 3000 was sufficient to match the

logarithmic profile. Figure 3.2 (b) compares the velocity profiles for the pipe and

channel; following KMM, the additive constant is taken to be 5.5 to compensate

for low Reynolds number effect, instead of the more common 5.0 (see Tennekes and

Lumley [47] chap. 5). As expected by Patel and Head's [32] prediction, the channel

matches the logarithmic region.

Recently, Barenblatt [2] and Barenblatt and Prostokishin [3] introduced a power

law to describe the velocity profile in the inertial sublayer instead of the traditional

logarithmic profile. The novelty in Barenblatt's approach is the dependency of the

predicted profile on the Reynolds number. Whereas the log law is independent of the

Reynolds number (based on K£rmdn's constant x = 0.40 and an additive constant of

5.0), Barenblatt proposed the following

-+ (--_3 5) y+z/(21_n_)
u z = In Re + (3.2)

where the Reynolds number can either be based on the bulk or centerline velocity

(this was found to make little difference even in the low Reynolds number range).

Figure 3.3 compares the velocity profiles for the log law and Barenblatt's power law

(we should point out that Barenblatt makes no claim as to the validity of his approach

/Although the recent experiments on pipe flow by Durst, Jovanovi_ and Sender [11] at Reb = 7442
revealed perfect match with the logarithmic profile, raising doubts as to what the exact threshold
should be.
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Figure 3.3: Comparison of velocity profiles in the inertial sublayer with the standard

log law and Barenblatt's power law.

in the low Reynolds number range). The power law underpredicts the velocity in most

of the range of y+. Because Barenblatt's power law is Reynolds number dependent,

it was possible to suggest a skin friction law given by

2

C/b",- ¢2/0+_,) (3.3)

where

e3/2(V"3 + 5_) 3 (3.4)
¢ = 2_(1 + ,_)(2+ _) and _ - 21nn_

Results are given in table 3.1. It is clear that the agreement is far from opti-

mal, with errors in the 2 to 3% range, although the error seems to diminish as the
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Reynolds number increases. This would be consistent with Barenblatt and Prostok-

ishin's [3] observations that for higher Reynolds numbers, the predicted values are

within experimental scatter (although they only used Nikuradse's rather dubious pipe

flow measurements; from figure 3.3 Nikuradse's measurements recover the logarith-

mic profile even though for this Reynolds number range, the actual profile should lie

above the log region). In summary, Barenblatt's power law approach does not pro-

duce better results than the standard logarithmic profile in the low Reynolds number

range, although the method yields close estimates of friction coefficients.

3.2.2 Spectra and two-point correlations

Assessing the resolution of the computational domain can be made through close

examination of the one-dimensional velocity and vorticity spectra. Figures 3.4-3.5

and 3.6-3.7 respectively show the velocity and vorticity spectra for several radial

locations: one in the viscous sublayer (y+ - 3.458), one in the buffer layer (y+ =

21.99), one in the inertial, or log region (y+ = 122) and one the wake region (y+ =

169.1). The one-dimensional velocity spectra are defined as

E¢¢(r; G) = _ Q_(r, 60)elk°6'dO '
(3.5)

where

1 [Lz oz}e az
E¢¢(r;k0) = _jo Q¢¢(r,C , ik._'. ,

(3.6)

Q4¢(r, 50) = _'_(r,O, z, t)fi'_(r, O + O', z, t ) (3.7)

Q¢((r, Sz) = _(r,O,z,t)_(r,O,z -t- z',t) (3.8)

are the two-point correlations for streamwise and azimuthal separations (no sum on

repeated Greek indices). The velocity spectra is simply the Fourier transform of the

two-point correlations and vice versa. Vorticity spectra (Flee) are similar to 3.5 and

3.6, with &_ replacing _.

Velocity spectra reveal that all small scales are adequately resolved since no sig-

nificant accumulation of energy is observed at high wave numbers. Away from the
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wall, smaller scales show at least four decades of reduction of energy compared to the

larger scales (low wave numbers). Near the wall, significant anisotropy is detected

with energy of the radial perturbations being almost three orders of magnitude less

than the streamwise perturbations at lower wave numbers; this is especially apparent

in the azimuthal spectra. Conversely, the wall has a sustaining effect on the stream-

wise perturbations by maintaining a higher energy level at low wave numbers. Large

radial perturbations are virtually non-existent near the wall. Figure 3.4 shows energy

spectra compared to the inertial range of the Kolmogorov spectrum, or k -s/3 law.

Away from the wall (typically in the log region), The energy follows the Kolmogorov
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spectrum rather closely at moderate wave numbers, indicating mostly turbulent dif-

fusion; closer to the wall viscosity becomes predominant and the energy decays faster.

The higher level of noise in the spectra near the center are caused by the small number

of azimuthal modes, which degrades spatial averaging.

Further evidence of the adequate resolution is seen in the vorticity spectra, since

vorticity is more sensitive to the resolution of the small scales. Vorticity spectra

show at least three decades of decay and no significant pile-up of energy at high

wavenumbers. A very small amount of pile-up is observed in the streamwise spectra

for y+ _ 22, but overall should have no consequence because of the large drop in

energy between low and high wave numbers. Near the wall, the higher energy level

of the azimuthal perturbations is a direct consequence of the streamwise velocity

perturbations also being large (see figure 3.16 and 3.18). The rather abrupt cut-off

observed at high wave numbers near the center is a consequence of modal reduction.

Figures 3.8 and 3.9 compare the present spectra with those from the experiments

of WDV and the DNS of EUW. The spectra were normalized as follows

E_(k_D) = E¢<(k_D)
(E.(O)/2+ l.._n=l E<< (_/¢))

(3.9)

where a = 2reD�L,. Figure 3.8 shows almost perfect agreement between the exper-

iments and the present results for k_D up to _ 40, after which the PIV results are

unreliable. Agreement between the two simulations is also good, but two important

differences appear: first, as expected, the higher wave numbers of the DNS of EUW

diffuse much more rapidly than the present results; this is consistent with the higher

diffusivity of their numerical scheme. Second, the near wall streamwise spectra of

EUW undershoots the one obtained by the b-splines over most of the spectrum (see

figure 3.8 for y+ = 18); this is probably due to the lack of near wall resolution com-

bined with the higher diffusivity of their method. This shows that most of the smaller

scales are not adequately resolved by EUW.

Figure 3.9 is similar to figure 3.8, but shows the higher resolution of LDA tech-

nique. The differences between the present simulation and the LDS measurements

are difficult to explain, in light of the almost perfect agreement of the PIV results. A
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possible explanation is the proximity of the wall (y+ _ 11) which makes the measure-

ments more difficult; an anomaly of the experimental data is clearly visible in figure

(b) at k_D _ 45.

Figures 3.10 and 3.12 give the two-point velocity correlations for streamwise and

azimuthal separations respectively; figures 3.11 and 3.13 give the equivalent two-point

vorticity correlations. Figure 3.10 for y+ _ 3.5, shows the velocity perturbations are

still slightly correlated for large streamwise separations which implies that the size

of computational domain (L_) might be marginal (too short), although not by much

since the values are quite small. For other radial positions, the zero correlation point

is still within statistical sampling error as indicated by the standard deviation; near

the center, the error becomes very large due to the fewer number of azimuthal modes.

EUW's results also show symptoms of a marginal domain length. However, their

results show that the correlation is maintained further away from the wall than in

the present computations; this is again due to their larger viscosity and numerical

damping.

The streamwise component of the streamwise velocity correlations are correlated

over longer distances, indicating the presence of coherent streamwise features, or so-

called streaks. The two-point vorticity correlation (fig. 3.11) also indicates that in the

near wall region, the values are correlated over the length of the domain. Note however

that near the center, the vorticity correlation gives a much clearer picture than the

velocity correlation did: there is no evidence of correlated values near the center, and

even down to y+ ,_ 22. In the viscous sublayer, the presence of long vortex-sheets are

apparent by the longer correlation length of the azimuthal component.

The extent of the two-point velocity correlations for azimuthal separations show

the circumferential size, or width of the streaks. The results show that the width

of the streaks is rather narrow as indicated by the zero-crossings of the streamwise

component at y+ _ 3.5; we obtain )_+ _ 55, where _+ is the average width of a

streak, for an average streak spacing of 2_ + _ 110; this is in agreement with Kline et

al. [18] who experimentally found a mean streak spacing of 2_ + _ 100 in boundary

layers, Moser and Moin [25] who also obtained 2)_+ _ 100 in curved channel flow, and

similarly for KMM and the straight channel. The large negative correlation in the
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radial component is produced by the impingement and ejection of fluid toward and

away from the wall; this was also observed in KMM and Moser and Moin [25]. Two-

point vorticity correlation for azimuthal separations are also shown on figure 3.13. A

large negative correlation is observed which indicates the presence of counter-rotating

radial vortices. Figure 3.14 shows contour plots of the streamwise and radial vorticity

and velocity perturbations for a single flow realization; it illustrates physically the

two-point correlations: the presence of a (short) streamwise vortex (3.14.a) entrains

fluid, with one side going toward the wall (impingement, u'_ > 0) and one side going

away from the wall (ejection, u'_ < 0) (3.14.b). The impinging fluid has a positive

radial vorticity and the ejecting fluid, negative radial vorticity (3.14.c); the motion of

the impiging and ejecting fluid is not strictly linear but helical. These two counter-

rotating radial vortices entrain fluid in the streamwise direction in the region between
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their respective cores (3.14.d), yielding a high speed streak. The positive streamwise

velocity perturbation is seen to extend behind the location of the streamwise eddy

indicating that the eddy is moving downstream in the pipe leaving behind it a high

speed streak.

3.2.3 Turbulent intensities

Figures 3.15 (a) shows the Reynolds shear stress for the present simulation, the exper-

iments of WDV and computations of EUW. The measurements, especially PIV, show

significant deviation from the computations; PIV is better suited to collect instan-

taneous fields than to gather statistics (see EUW). LDA results track the computed

value more closely, but lack resolution for r > 0.7. Both computations show close
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agreement, except for r > 0.8 where the differences are consistent with differences in

Reynolds number. The total shear stress (see page 33), is almost linear indicating

statistical steady state or fully developed turbulence. The exact value of r + = r is is

plotted for reference. The present results agree well except for a slight overshoot for

0.5 < r < 0.65, whereas EUW has a slight overshoot for r < 0.65. Figure 3.15 (b)

reveals almost perfect agreement between the pipe and channel. The slight overshoot

of the b-splines between 0.2 < r < 0.6 is probably caused by the number of samples

used to generate the average.

Figures 3.16 and 3.17 show the rms (root mean square) of the three velocity pertur-

bations. Figure 3.16 (a) reveals relatively good agreement with the experiments and

both simulations. For the radial and azimuthal components, the differences between

both computations are consistent with different Reynolds numbers, with the present

simulation being somewhat higher. The difference for the streamwise component is

rather surprising, with EUW simulation overshooting the present computation in the

region 0.6 < r < 0.9, a trend opposite to what is observed for the other two compo-

nents. The higher energy of the streamwise component is probably due to numerical

artifacts produced by EUW method, such as inadequate resolution in the near-wall

region. This is confirmed by figure 3.16 (b) where the same rms velocity fluctuations

are compared with KMM's channel simulation. Slight differences between all three

components are observed, with the pipe results being consistently above the chan-

nel's; values are closely matched near the wall, and somewhat higher intensity for the

pipe near the center, a trend similar to the mean flow.

DJS conducted a series of LDA measurements in the near-wall region of pipe flow

at different Reynolds number ranging from 7442 to 20 500. The results for Reb = 7442

are plotted in figure 3.17; the agreement between their measurements and the present

computations is excellent, especially for the streamwise and azimuthal components.

The added noise in the azimuthal component is not surprising since this is the most

delicate direction to measure (WDV did not even attempt to make measurements in

the azimuthal direction). In fact, most of the data showing the greatest deviation was

measured from the centerline to the upper wall, whereas the data measured from the

centerline to the lower wall agrees much more closely. Measurements for the radial
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component tend to fall between the present results and EUW's simulation; a possible

explanation for this lower than expected amplitude might stem from DJS' rejection

of high amplitude radial perturbations (see section 3.2.4). Farther from the wall,

Reynolds number effects are apparent with the measurements having higher values

(figure 16 of DJS shows this trend for different Reynolds numbers).

Figure 3.18 (a) shows the rms pressure § fluctuations normalized by pu_. The shape

of the profile is in good agreement with the results of EUW; the higher values for

the present simulation is a result of higher Reynolds number, which seems to support

KMM's assumption that pressure fluctuations are dependent on Reynolds number,

even when normalized by wall variables (see KMM section 4.2). The results are also

in qualitative agreement with KMM, where they obtained a maximum of 1.75 at

y+ _ 30 with a wall value of _ 1.5, versus a maximum greater than 2 at y+ _ 31

and a wall value of _ 1.65 for the present results. The centerline value is also higher

at ,_ 0.95 for the pipe versus _ 0.75 for the channel. Clearly, for a similar Reynolds

number the pipe possesses larger pressure fluctuations than the channel.

Figure 3.18 (b) shows the rms of vorticity fluctuations normalized by u_/y. These

results are in good qualitative agreement with KMM, Moser and Moin [25] and the

pipe flow simulation of Zhang et al. [55], the latter being a much lower Reynolds

number flow (Reb = 2500). Unfortunately, no experimental measurements could

be found for comparison. Comparing with KMM, the streamwise vorticity shows a

local minimum at y+ _ 5, with a maximum being reached at the wall. KMM have

attributed this to the presence of streamwise vortices close to the wall. Figure 3.19

shows a view in the polar plane of the streamwise vortex shown on figure 3.14. The

maximum in rms vorticity at the wall is explained by the presence of a mirror vortex

with vorticity inverse to that of the eddy. Between the mirror vortex and the eddy,

vorticity reaches zero; in the average sense however, this translates into vorticity

reaching a minimum.

For r < 0.75 all three vorticity fluctuations are virtually identical contrary to

velocity fluctuations which are quite different. This points to isotropy of the small

_Because pressure drops out of the equation set (see 2.3.1), a Poisson solver had to be written to

compute the pressure which can be determined solely from the velocity.
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respectively positive, zero and negative contours.

scales since vorticity fluctuations are by nature small scales phenomena whereas ve-

locity fluctuations tend to be produced by larger, more energetic scales.

3.2.4 Higher order statistics: Skewness and Flatness

Skewness and flatness (also referred as kurtosis) are shown in figures 3.20-3.23. They

are respectively defined as third and fourth moments of velocity perturbations

#4

s(u',)- u'--L F(u_)- !_, (3.10)
_/23/2 ' _--_2Ui

Each is related to the probability density: if the skewness is positive, then events with

large negative values of u_3 are not as frequent as events with large positive values

of u_; if the flatness is large, then isolated events with large velocity perturbations

are possible (see Tennekes and Lumley [47]). For a Gaussian distribution of u_, the

skewness and flatness are respectively 0 and 3.

Figure 3.20 compares the skewness obtained from the present computation, with

the experiments of WDV and the DNS of EUW. Results from the present simulation
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and PIV measurements show significant disagreement throughout the flow field, at-

tributable to the low precision of the PIV method. LDA results for the streamwise

component are in good agreement with both computations except near the wall where

the results are obscured by noise. The measurements of DJS (figure 3.21) shows good

agreement except for a slight underpredicting of the the streamwise component for

y+ < 5. In such a close proximity to the wall, accurate experimental measurements

are hard to achieve. Note that because of the normalization by u_ '_, skewness and

flatness results for y+ = 0 are excluded, since the numerical limit as the wall is

approached is undefined, even though an analytical limit might exist.

Clearly, the most interesting difference is observed between both simulations for

the radial component. The present results reveal two zero-crossings (r _ 0.8 and

r _ 0.97), whereas EUW obtained only one zero-crossing at r _ 0.75. On the other

hand, the present results are in agreement with the results of KMM (not shown)

who also obtained two crossings at approximately the same locations. This seems

to be confirmed by the LDA results of DJS (figure 3.2]) where the trend in the

data points to another crossing at y+ _ 3, although not decisively. The discrepancy

between the present results and EUW can only be caused by the coarser near-wall

resolution of EUW's computation. Scatter in the azimuthal component is attributable

to a poor statistical sample, since this component should be strictly zero by the

equal probability of positive and negative u_. Similar scatter can also be seen in the

streamwise component closer to the center.

A similar comparison of the flatness (figures 3.22 and 3.23) reveals good agreement

between the LDA measurements of WDV and DJS, the simulation of EUW and the

present simulation, except in the near-wall region. Typically, for y+ < 5 the experi-

mental measurements become obscured by noise and become unreliable. Coarseness

of EUW's grid probably explains the differences between both computations in the

near-wall region. For example, EUW computed a flatness of 5.5 at the wall for the

streamwise component, whereas the present simulation gives 4.5; this value compares

favorably with KMM who obtained 4.2.

The most important discrepancy is observed between the present simulation and
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DJS' measurements of the radial component. Whereas the computed flatness in-

creases monotonically reaching a maximum at the wall, DJS' measurements shows

a maximum at y+ _ 12 and then decreases towards a near-Gaussian behavior at

the wall. Comparing with KMM's data, which shows the same trend as the present

results, DJS speculated that the discrepancy might be caused by the near-wall reso-

lution of KMM's simulation, even referring to KMM's results as "strange". Another

explanation for the difference between the simulation and the measurements was given

by Westerweel (Private communication). He observed that large fluctuations could be

rejected by the filtering in the LDA processor. Xu et al. [54] conducted experiments

in pipe flow for the sole purpose of determining whether or not large flatness was

physical in nature. They were able to determine that events with large radial pertur-

bations are indeed present in the near-wall region (y+ < 5) by taking measurements

at very short intervals (1 kHz); they also showed that with DJS' slower sampling (100

Hz), events with large perturbations could be ignored (thus the filtering effect); in

addition, DJS interpreted as error and removed any measurement with peak larger

than seven times the rms velocity. Those large perturbations, or spikes, can exceed

lu'r/U rmsI-- 10, with rather short time scales (20 viscous time units based on u_lu),

which make the observations difficult. The present simulation tends to support Xu

et al. observations: the large radial velocity perturbation shown in figure 3.14 (b) is

equivalent to a ratio lu'r/u,,._sl = 7.71 at y+ = 5. Closer to the wall (y+ = 0.385, the

first grid point away from the wall) a ratio of 10.60 is obtained; this also points to the

relative sensitivity to grid spacing. Recall that with a coarser grid, EUW obtained a

smaller flatness (see figure 3.22).

Figure 3.24 (see also figure 8 of Xu et al.) shows the effect of filtering on flatness.

By removing values larger than a certain factor of the corresponding rms velocity, the

flatness can be reduced to match the data of DJS. By dropping all perturbations larger

in magnitude than five times the rms velocity, the results of DJS can be reproduced.

Note however that DJS use a filter seven times the rms perturbation, but a filter

of five is found to give the best agreement. This is probably due to the additional

filtering originating from the slower sampling in DJS' measurements.
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Xu et al. attributed the success of DNS in calculating accurate flatness to the na-

ture of the averaging process: for DNS, at each radial location averages are computed

on cylindrical surfaces, such as the one shown in figure 3.14, whereas for experiments

they are measured on lines, which greatly reduces statistical accuracy.

3.2.5 Budgets of turbulence transport equations

The transport equations for the Reynolds stresses were derived for cylindrical coor-

dinates in Moser and Moin [25]; in tensor form they are given by (e.g. see Mansour

et al. [22, 23])
b __

--_u_u'j = Pij + Tij + Olj + IIij - eij (3.11)

where D/Dt = O/Ot + UkO/Oxk, Uk is the mean velocity and the terms on the right

hand side of 3.11 are given by

p_ = __(_r, + , ,t i kUj, k lZjUkUi,k]

"_ I./ I I¢ij "-_ z Ul,kUj, k

Tij - -- (UiUjUk),h

n,j = - + ,,;p:,)/p

Production

Dissipation

Turbulent transport

Viscous diffusion

Velocity pressure-gradient
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where indices after the comma refer to covariant derivatives. A transport equation

for the turbulent kinetic energy, defined as k = _'l_iUil- t_ t = 7',arurl(:-:,. t + UoUo,,+ .-:va-r_.,UzUz) (sum

on repeated roman indices), can be obtained by taking the trace of 3.11. It is also

customary to split the velocity pressure-gradient term into a pressure-strain (IISij)

and a pressure-diffusion term (IIDo) , where

IISij = 2p'slj, (3.12)

s;j = 1/2(u_,j + u},;) and liD 0 = IIij - IIS;j. In this form, the pressure-strain term

redistributes energy among the different components.

Figure 3.25 (a)-(d) give the budgets of the four non-zero stresses. The equations

are nondimensionalized by u, and v. One is struck by the close similarity between the

pipe and channel results of Mansour, Kim and Moin [22, 23]. Some differences can be

seen in the budgets of u_u_'' and uouo' ' but those were found to be very sensitive to the

statistical sampling. Many more samples would have to be collected to attribute the

differences to geometry. In this low Reynolds number range, nondimensionalization

with respect to u_ and v will not completely remove Reynolds number effects which

probably accounts for most of the discrepancies.

The budget for the u_u'z component is dominated by production and dissipation.

Production reaches a maximum at y+ _ 12 and is balanced by dissipation, turbulent

transport and viscous diffusion; the minima in turbulent transport and viscous diffu-

sion occur on each side of the peak in production, or respectively y+ _ 14 and y+ _ 9,

indicating transport away from the point of peak production. At the wall, production,

turbulent transport and the velocity pressure-gradient terms are zero by the no-slip

condition and viscous diffusion balances dissipation. The velocity pressure-gradient

term is negative throughout the pipe indicating a transfer of energy from u'_u'_ to

the other components; for the streamwise and azimuthal components, the velocity

pressure-gradient and pressure-strain terms are identical. In the budgets of u'_u_ and

u_ouJo, the velocity pressure-gradient term is the major source of production; with only

OUz/Or non-zero, production is identically zero for these two components. Figure 3.26

shows the pressure-strain terms for the normal stresses plotted together. The transfer
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Figure 3.25: See caption page 69.
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of energy from the streamwise to the cross-stream components is evident. However,

near the wall (y+ < 12) there is a transfer of energy from the radial component to

the other two components. This was also observed by Moin and Kim [24] and Moser

and Moin [25] in channel flows. Moin and Kim attributed this to the impingement of

fluid coming from the center, hitting the wall, and transferring energy to the other

components.

Other terms of the budgets for the , t and ' 'u,u_ uou o components are balanced by

dissipation, with the remaining terms playing little role, expect in the case of the

azimuthal component where viscous diffusion balances dissipation at the wall. The

uJ, u_ budget is almost completely dominated by production and the velocity pressure-

gradient terms balancing each other; for y+ > 15, the other terms are virtually zero

except for a small residual part coming from the turbulent transport term.
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Figure 3.27 give the budgets for the turbulent kinetic energy (a) and dissipa-

tion equation (b) (k and c budgets). Again, similarity with the channel budgets of

Mansour, Kim and Moin [22, 23] is evident; differences are most probably caused

by Reynolds number effects. The k budget closely resembles the u '° ' budget sinceZ_£Z

this term dominates u,.ur' ' and UoUo.' ' In the k budget however, the velocity pressure

gradient reduces to the pressure-diffusion term, i.e. Ilii - IIDij, since the trace of

the pressure-strain term is identically zero.

If one defines the dissipation of turbulent kinetic energy, c = cll/2, a transport

equation for the dissipation is given by

D

D___7¢= p_ + p/+ p_ +/o4 + T_ 4- II_ + De- T (3.13)

where

Re: b' ' _/ c___ _ Ui,j(Zk,j,3ik

p,2 = _VU_,kU_,rnSkm

p_ ' ,--" wl.tZlk Ui,rn Ui,k m

P2 I I l--IJUi,k Ui,rn Uk,rn

II, = -(u/p) k,m]k

D, = (u/2)e,kk

Mixed production

Production by mean velocity gradient

Gradient production

Turbulent production

Turbulent transport

Pressure transport

Viscous diffusion

Dissipation

where S;j = 1/2(U_,j + Uj,i) is the mean strain rate tensor.

The e budget also shows great similarity with the channel. Beyond the buffer

layer, dissipation balances turbulent production; closer to the wall, most terms have

positive contribution to the c balance with the dissipation term contributing for the

losses. It should be noted that the dissipation term T is computed by summing all

the terms in the ¢ equation and not by direct computations (this term involves third

order tensors which makes its computation non-trivial). Away from the wall (y+ > 30)
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turbulent production (p4) and dissipation (T) dominate the balance. However closer

to the wall, both P] and P[ are of the same order as P2. All terms become zero at

the wall except for viscous diffusion which balances dissipation, p a, II_ + T_ and D_

play virtually no role in the balance, except for D_ which reaches a maximum at the

wall to balance T.

3.2.6 New structure tensors

Kassinos, Reynolds and Rogers [16] (hereinafter referred to as KRR) (see also Reynolds

[35]) introduced a new family of one-point tensors to provide information about the

structure, or dimensionality of turbulence. Standard turbulence models based on the

Reynolds stress transport equation (see above) provide information about the corn-

' 0) but none about itsponentality of turbulence (e.g. R_r = R_o = Rzz = 0 if u r =

dimensionality.

KRR defined a family of new tensors based on the turbulent stream function; let

I I ! ! I
= ¢i,kk --_iui _;YkCk,j, with ¢_,i 0, which implies = (3.14)

where eljk is the permutation tensor. Because ¢i (dropping the primes for conve-

nience) satisfies a Poisson equation, it carries non-local information about the velocity

field (like pressure). Using 3.14, KRR defines

Rij + Dij + Fij + Cij + Vii = (_ijq2 (3.15)

where (_ij is the Kronecker delta, q2

Rij = uiuj = eipqejtsCq,pCs,t

Dij = Ck,i¢k,j

F_j = ¢_,kCj,k

C_j = @,kCk,j

= Rii and

Reynolds stress tensor

Structure dimensionality tensor

Structure circulicity tensor

Structure inhomogeneity tensor

All of the above tensors are symmetric, except for Cij. Although 3.15 involves a
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tensor given by Cij + Cji which is itself symmetric.

To compute the stream function ¢i, instead of solving directly the Poisson equa-

tions shown in 3.14, use is made of the stream functions defined in talbe B.1. How-

ever, if the definitions shown above are to hold, the stream functions have to be made

solenoidal; let

_bl = kO_+ ¢,_ (3.16)

where _i are the stream functions from table B.1 and ¢,i represents the gradient

of an arbitrary scalar potential. Because cijk_,kj = 0 (_7 × V¢ = 0), the velocity

"is identically given by ui = eijk¢k,j = e_jk_k,j. Taking the divergence of 3.16, and

assuming ¢i is constant at the wall, the following Poisson equation and associated

boundary condition are obtained

0¢ I = 1 fon_ _¢,i; = -_i,i with -_r n2 /_2 _r r dr (3.17)

Thus, solving for • requires the solution of only one Poisson equation instead of three

for _b.

Figure 3.28 give the normalized structure circulicity and dimensionality tensors.

The circulicity tensor provides information about the vorticity field (for homogeneous

turbulence, KRR show that F_j is directly related to the vorticity spectrum fllj). As

its name imply, D_j reveals information about the dimensionality of the flow. As

shown in figure 3.28 (b), the streamwise (d_) value reaches a minimum at y+ _ 10

indicating that the streamwise motion is nearly 2D, aligned with the z axis; circulicity

(f_) is also relatively small indicating very little circulation along the axis. This, and

the peak in the streamwise component of the normalized Reynolds stress (figure 3.29

(b)) are consistent with the presence of wall streaks; KRR also noted this behavior

for the channel. They refer to this type of motion as jetal, or jet-like behavior. Also,

drr reaches a maximum and dee a minimum at the same location, indicating that

the structures vary more rapidly in the radial than in the azimuthal direction, which

means the streaks have a larger spanwise than radial extent. As seen in figure 3.29

(a), the wall is also the zone of greatest inhomogeneity, with the normal components
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of the symmetrized inhomogeneity tensor reaching their maxima at the wall.

Close to the center, the flow is more 3D with dzz begin somewhat lower than dr_

and dso; the structure circulicity tensor also exhibits a similar behavior. The flow is

still jet-like but less so than near the wall. KRR noted the same behavior of dij and

flj for the channel. However an important difference is seen in the inhomogeneity

tensor: KRR observed that the flow was nearly homogeneous near the center (or at

least in the log region) which is not the case for the pipe. Both Crr and co6 show

significant inhomogeneity throughout the pipe.





Chapter 4

Flow Topology

This chapter presents a brief description of a topological method used to analyze flow

structures. This method is then applied to flow fields of the fully developed pipe

simulation presented in chapter 3.

4.1 Topological Approach

One of the fundamental difficulties in analyzing the structure of turbulent flows com-

puted via numerical simulations is the large amount of information produced by the

simulations and the apparent lack of coherence of the flow field. DNS typically contain

several million grid points (2.2 million for the present work), on which three velocity

components and pressure are computed. To analyze the structure of turbulent flows,

Perry and Chong [33] introduced a method based on critical point theory. Their ap-

proach was later extended by Chong, Perry and Cantwell [9] who introduced a general

classification of flow fields by analyzing the invariants of the velocity gradient tensor.

This method reduces complex three-dimensional, incompressible flow fields to two-

dimensional plots of joint probability density functions (PDF) of the invariants of the

velocity gradient tensor. The information provided by the PDF is essentially qualita-

tive in nature, revealing general, overall trends rather than in depth, or detailed flow

features.

79
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4.1.1 Description

A complete description of critical point theory was given in Chong et al. [33] and is

not repeated here; for the present purpose, a short summary is included for complete-

ness, and closely follows Sondergaard [42] and Blackburn, Mansour and Cantwell [4]

(hereinafter referred to as BMC). Define

A_j = ui,j (4.1)

to be the velocity gradient tensor; again, indices after the comma refer to covariant

derivative. Aij can be split into a symmetric and skew-symmetric parts

Aij = S_j + W_j (4.2)

where
1

is the symmetric strain-rate tensor and

(4.3)

1

w_j = 7 (u_,j- uj,_) (4.4)

is the skew-symmetric rotation-rate tensor. The eigenvalues of Aij satisfy the char-

acteristic equation given by

A3 + PA 2 + QA + R = 0 (4.5)

where P, Q and R are the invariants of Aij and are given by

1

Q = -i tp_- s<js_-w_wj,)
/ \

1 /

R = 5 t-P3 + 3PQ - S,jSjkSk,- 3W, yWjkSk_)
\

i

(4._)

(4.7)

(4.8)
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where P, Q and R are respectively the trace, the sum of the determinants of the

cofactors, and the determinant of A. For incompressible flow, the first invariant is

identically zero by continuity,

P=0 (4.9)

and only Q and R determine the eigenvalues of A; the discriminant of 4.5 becomes

D = 27R2 + & (4.10)
4

D > 0 yields one real and two complex conjugate eigenvalues; D < 0 yields three

real eigenvalues, and D = 0 gives three real eigenvalues, of which two are repeated.

For this last case the invariants lie on the lines R = +(2v'_/9)(-Q) 3/2.

Figure 4.1 shows the flow topology as a function of Q, R and the discriminant D.

Each of the four region can be characterized as follows:

• Stable focus/stretching (R < 0, D > 0): for this topology, the flow spirals in

toward the origin and flows out along an axis perpendicular to the spiraling

plane (analogous to vortex stretching).

• Unstable focus/compressing (R > 0, D > 0): here the flow approaches the origin

from one direction and spirals out in a plane perpendicular to the approaching

direction.

• Stable node/saddle/saddle (R < 0, D < 0): the flow approaches the origin

from two directions and flows out from the third one (analogous to a stagnation

point).

• Unstable node/saddle-saddle (R > 0, D < 0): the flow approaches the origin

from one direction and flows out from the other two.

Other quantities of interest are the invariants of the strain-rate tensor Sij:

1SijSji (4.11)Q" - 2

1 Sij Sjk Ski (4.12)
Rs - 3
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Q

Figure 4.1: Invariant space for incompressible flow. The streamlines give the

flow classification: upper left, stable focus/stretching; upper right, unstable

focus/compressing; lower left, stable node/saddle/saddle; lower right, unstable

node/saddle/saddle.

Because Sij is symmetric, all eigenvalues fall below the line D = 0 in figure 4.1.

Blackburn et al. showed that joint PDF plots in Qs, Rs space provide information

about the principal direction of strains. Using scaling arguments proposed by Chen

et al. [8], they suggest that fine scale motion should lie far from the origin in Qs, Rs

space. Also, one should note that Qs is proportional to the mechanical dissipation

of kinetic energy ¢ = 2uS_jSji = -4uQs, so that regions of large dissipation are

identified by regions of large negative values of Qs.

Also, plots of Q_ versus the second invariant of Wij, Q_,

1

Q _ = - -_Wij Wji (4.13)
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reveal relative importance of straining versus rotation. Since Q_o is proportional to

the enstrophy (colco,.), it provides information about the rotation of the flow.

4.1.2 Results

The method of using invariants of the velocity gradient and other associated tensors

was used by Soria et al. [43] to study the topology of incompressible mixing layers,

Chen et al. [8] for compressible and incompressible mixing layers, Sondergaard [42]

for transitional wakes, and BMC for fully developed turbulent channel flow.

Figure 4.2 (a)-(d) give the joint PDF in (Q,R) space for a single realization at

four radial locations, each in a different region of the flow: viscous, buffer, logarithmic

and wake region. For all regions, except close to the wall, the distribution in (Q, R)

space shows a preference for the second and fourth quadrant, while close to the wall

the distribution is almost circular with no preference for any quadrant. Cantwell

[6] showed that under certain assumptions (one of them being inviscid flow), the

preference of the invariants to line-up in the second and fourth quadrants in a "skewed

teardrop" shape is an actual solution to the Navier-Stokes equations. These results are

in agreement with the findings of BMC in channel flow. The high level of noise near

the center is again due to the fewer number of modes which degrades sampling (c.f.

figure 3.10). The behavior near the center is consistent with the topology observed

in free shear flows, i.e. stable focus/stretching and unstable node/saddle/saddle.

Figure 4.3 (a)-(d) show plots of the second and third invariants of the strain-rate

tensor, for the same four radial locations. Since the strain-rate tensor is symmetric, all

the eigenvalues are real and lie in the region of negative discriminant (D < 0). Away

from the wall there is a clear preference for the unstable node/saddle/saddle topol-

ogy. As the wall is approached, the preference for the unstable node/saddle/saddle

topology is no longer observed, and very close to the wall the probability tends to

cluster close to the Rs = 0 line. This is in agreement with BMC's findings for channel

flow; they also showed that at the wall Rs = 0. The R_ = 0 line corresponds to the

case of purely two-dimensional strain; if one orders the eigenvalues of Sij such that

11 > )_2 > )_3, then for Rs = 0, correspond _2 = 0. As with the structure tensors



84 CHAPTER 4. FLOW TOPOLOGY

Q

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

(a) y* = 169.1 r/D = 0.055

, , , , , i ' i l i i

I

I I I f I I I I I I

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
R

1.5

1

0.5

Q 0

-O.,L

--1.

(b) y" = 122 r/D = 0.1789

I I I

. ° P ,6"

=,-

-0.6

I I I

_2- .

%a

. -_ o .

4.4 -0.2 0 0.2 0.4 0.6

R

Figure 4.2: See caption page 85.



4.1. TOPOLOGICAL APPROACH 85

Q

8

6

4

2

0

-2

-4

-6

-8
-6

(c) y* = 21.99

i I

. ,{

I I

-4 -2

r/D = 0.4421

o,

0

R

I 1

2 4 6

1

Q 0

-1

-2

-3

-4
-3

(d) r = 3.458

I I

-2 -1

r/D = 0.4909

I I

0 1 2 3

R
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(0.5).



88 CHAPTER 4. FLOW TOPOLOGY

2

1.8

1.6

(a) y_= 169.1 r/D = 0.055

i i ; i f i 1 I i

°

I

1.8

3.5

(b) y_ = 122 r/D = 0.1789

I I I i I I

2.5

2

1.5

0.5

0
0

I [

0.5 1 1.5 2 2.5 3.5

Figure 4.4: See caption page 89.
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Figure 4.4: Contour plot of joint PDF (loglo) of SqSji and -W_jWjl. Contour levels

are from the outside in: (a) 0.5-1.5, (b) 0.5-2 and (c) 0.5-2.5 by half decade increments

(0.5). Levels for (d) collapse onto a single 45 ° line.
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(section 3.2.6), the invariants provide information about the dimensionality of the

flow field.

Plots of SijSij versus -WijWIj are shown in figures 4.4 (a)-(d). Very close to

the wall, the results collapse onto a single 45 ° line, indicating that dissipation and

enstrophy are identical. This type of topology is analogous to a vortex sheet. In

the buffer layer, the results still maintain a 45°-like behavior but much more losely,

whereas further out in the flow, the results look like that of free shear flows (e.g.

Sondergaard [42]). Plots (a) and (b) also show an interesting feature: the contours

never reach a value of zero strain, but can reach zero rotation. This implies that

although pure strain is possible, no point in the flow is in solid-body rotation.

4.2 Vortices

One of the more interesting features in pipe flow and wall-bounded flows in general,

are streamwise vortices. There lies a great difficulty in identifying vortices in turbulent

flows, since there is no universally adopted definition of a vortex. For example, if one

relies solely on vorticity magnitude, the region near the wall possesses the largest

vorticity but yet has no vortex, hence the difference between vortex-sheet and tube-

like vortices or vortical eddies (see for example Chong et al. or Jeong and Hussain

[14]).

A topological method, such as the one used in section 4.1, can be used to identify

the regions of the flow where tube-like vortices are present. Figure 4.1 shows that

regions with positive discriminant have streamlines spiraling around the principal

axis. So regions of the flow with D > 0, i.e. where the eigenvalues of Aij are complex,

should correspond to regions of (tubular) vorticity. However, Jeong and Hussain [14]

suggested that this criterion (D :> 0) was too general indicating that streamlines can

spiral without being a vortex. They proposed an alternate approach based on the

eigenvalues of the symmetric tensor

Tij - SikSkj + WikWkj (4.14)
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which represents the nonlinear source term of the transport equation for Sij. They

define a vortex as a region with two negative eigenvalues of Tij; ordering the eigen-

values such that _1 >_ _2 _> )_3, the definition is equivalent to requiring )_2 < 0. The

potential problem with Jeong and Hussain's definition lies in the arbitrariness of the

definition of T_j. A comparison of both approaches (1) D > 0 and (2) t2 < 0 is in

order.

Figures 4.5 (a) to (c) respectively show iso-surface plots of D, A2 and streamwise

vorticity COz. The direction of the flow is from left to right. Contours levels were

adjusted to get the best possible agreement with the vorticity plot. Clearly, the two

approaches give similar results when comparing with the vorticity. Most of the dom-

inant features are captured by both methods. As Jeong and Hussain point out, when

compared with the plot of D, the eigenvalue plot does leave out some information

since it was designed to be more restrictive than the discriminant. Both topological

approaches do not include the region of high vorticity at the wall (vortex sheet), such

that all features revealed by figures 4.5 (a) and (b) are away from the wall, as de-

sired. The vorticity plot show tube-like structure oriented with the flow, which tend

to extend in the flow away from the wall. This behavior is also captured by both

topological approaches.

So, both approaches seem to paint a good overall picture of the organized struc-

tures of the flow, although they both require some adjustment of the contour levels

in order to get a good match. Within the adopted contour levels, the discriminant

method gives marginally better results, matching the actual vorticity contours more

closely, than Jeong and Hussain's method.

Wall vortex

In section 3.2.2 (see figure 3.14), a short, high intensity wall vortex was shown to

produce a high speed streak as it moved downstream in the pipe. A plot of the

discriminant for this feature in given in figure 4.7 (a). The discriminant reaches a

maximum at the location where the vortex is known to reside (see above). Chacin

and Cantwell (private communication) observed by studying the turbulent structure

in boundary layer, that the discriminant tends to peak where turbulent production
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(a) Discriminant

CONTOUR

(b) A2

C) 0_' z

Figure 4.5: Iso-surface plots of: (a) the discriminant D, (b) the intermediate eigen-

value A2, and (c) the streamwise vorticity _oz.
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Figure 4.6: Maximum value of the discriminant versus y+ for the region containing

the wall vortex of figure 3.14.

(Pk) also reaches a maximum. Figure 4.7 (b) shows a discriminant plot for y+ _ 12.5,

where turbulent production is maximum (see figure 3.27), and the overall trend of

the maximum value of the discriminant is shown on figure 4.6, clearly showing the

peak at y+ _ 12.5. The maximum value is taken from the region containing the wall

vortex. The results are consistent with Chacin and Cantwell's observations, with a

maximum discriminant an order of magnitude larger than that observed at y+ _ 5.
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(a) y+ _ 5

(b) y+ ,_ 12

Figure 4.7: Contour plots of the discriminant for the vortex shown on figure 3.14: (a)

contour levels range from -2500 to 4500 by steps of 500; (b) levels range from 0 to

90000 by steps of 10000.



Chapter 5

Conclusions

This chapter concludes the present work with an overview of the development of the

numerical method and the results of the pipe flow simulation. Some recommendations

for future work are also made.

5.1 Numerical Method

A new numerical method for the computation of incompressible flows in cylindri-

cal geometries was developed. The method is based on a vector Galerkin weighted

residual method, using divergence-free expansion and weight vectors. With conti-

nuity satisfied a priori and pressure dropping out of the formulation, this approach

reduces the number of unknowns from four to two, making memory management

straightforward. The method makes use of b-splines polynomials to represent the

radial direction and of Fourier transforms for the other two directions. This approach

was found to possess spectral-like accuracy while providing a flexibility unavailable

in standard spectral methods. In fact, comparing with results obtained from a finite

difference simulation demonstrated the superiority of the present approach. The flex-

ibility of the method was used to guarantee that the expansions were regular near

the origin by satisfying a set of conditions. Also_ a procedure was implemented to

alleviate the restriction put on the time step by removing unnecessary b-splines near

the origin.
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5.2 Pipe Flow Simulation

A direct numerical simulation of incompressible pipe flow was successfully carried out

using the method described above. The simulation was run at a Reynolds number of

5600 based on the diameter and bulk velocity, in line with several experiments and

other simulations of both pipe and channel flows. The most important observation

is that pipe flow and channel flow have very similar turbulent statistics. Differences

between both flows are nevertheless apparent in the mean profiles with pipe flow not

obeying the log-law (in this low Reynolds number range). The spectra and two-point

correlations revealed that the flow was well resolved, although the pipe length is a

little too short. However this does not seem to have played significantly as all results

agree very well with experiments.

Turbulent intensities and higher order moments agreed generally well with ex-

periments and other simulations. For higher order moments however, the present

simulation with its high resolution and accuracy revealed some shortcomings of near

wall measurements. Furthermore, it was shown that flatness levels predicted with the

b-splines approach are more reliable than the ones experimentally measured or com-

puted by finite differences; high levels of flatness in the near wall region are physical.

A possible explanation for the formation of high speed streaks in the near wall region

was provided by the presence of short streamwise eddies (Iz _ 65 wall units) inducing

positive streamwise velocity perturbations in its wake. Budgets of turbulence trans-

port equations were again very similar to the channel's, which means that standard

turbulence models should perform reasonably well in pipe flow, having proven their

adequacy in channel flow. New structure tensors were computed and revealed that

contrary to channel flow, the logarithmic region of pipe flow is not homogeneous (for

this Reynolds number).

A topological method consisting in a classification of the second and third invari-

ants of the velocity gradient tensor revealed that the flow (away from the wall) tends

to adopt a preference for the stable focus/stretching and unstable node/saddle/saddle

topologies, similar to that of free shear flows. Closer to the wall, the flow was found

to have no preference. It was also shown that iso-surface plots of determinant proved
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very useful in visualizing flow structures, mainly vortical eddies.

5.3 Recommendations for Future Work

Building on the present work, several avenues could be taken in the future:

Study the time evolution of turbulent structures in pipe flow. Such work

would clarify the relationship (causality) between streamwise vorticity and wall

streaks, while enlarging the statistical sampling of the simulation, thus resolving

some of the observed irregularities of the present simulation.

Increase the Reynolds number of the pipe. This would provide for an inter-

esting comparison between two different Reynolds numbers, and should be less

sensitive to the present pipe length.

Explore several classes of free shear flows, mainly jet flow. By implementing a

set of free shear boundary conditions and using the pipe flow simulation as a

starting point, it will be possible to study the development of a fully turbulent

round jet. Free shear flows should also not be affected by the short domain size,

since streamwise coherence should not by preserved in the absence of the wall.

Some work could also be performed on the computer code itself, such as improving

the performance of the parallel version.





Appendix A

Few Facts About B-splines

This appendix introduces some of the basic properties of b-splines. The information

provided here should be sufficient to understand most of the issues relevant to this

work. For more information on the subject, the reader is invited to consult de Boor

[10] (primarily) and also Shariff and Moser [41].

A.1 Background

Although similar in concept to standard finite element polynomials, b-splines offer

spectral-like accuracy and are C s-1 continuous, where S is the order (or degree)

of spline being used; this means that derivatives of velocity, such as vorticity, are

smoothly and accurately represented. The higher the order, the greater the accuracy,

storage requirements and computational cost. A trade-off must be reached between

reasonable accuracy and fast computations. The spectral accuracy of b-splines is

shown on figure A.1, where both eigenvalues of first and second order derivative op-

erator are shown. For higher degree splines (third or fourth) over two third of the

spectrum of the first order derivative operator (or modified wave number), and vir-

tually the entire spectrum of the second order operator are reproduced accurately by

the b-splincs. Standard second order finite difference results are shown for reference.

By construction, a b-spline is required to have zero value and zero first S - 1

derivatives at the edges of the intervals where it has support (see figure A.2); as such,
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Figure A.I: Spectral accuracy of b-splines of degrees 1 through 4: (a) Modified wave

number, or eigenvalue of the first order derivative operator; (b) eigenvalue of the

second order derivative operator. The straight line is the exact or spectral limit and

higher degree are closer to exact. The dashed line is the second order finite difference.

b-splines are the smoothest type of splines. As their name imply, b-splines form a

basis, such that any smooth function f can be represented as a linear combination of

b-splines; defining at to be the expansion coeMcients and g_ the b-splines polynomials,

we write the linear combination

N_

f(r) = __, exzg,(r) (A.1)
1=1

where N, is the number of b-splines and it is implied that the b-spline basis is built

such that
N.

_g,(r) = 1 (A.2)
/=1

The at coefficients can then be determined by using an L2 projection

a = A-lb (A.3)
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Figure A.2: Quadratic b-splines on an equispaced grid. The x symbols represent the

knots which delimit the intervals over which b-splines have support.

where A is the Nr × N, mass matrix

A = {,,_,_}= 9,,(,.)g,(,')r d;

/0b = {bz,} = ge(r)f(r) rdr

and a = {al, a2,..., aN,}.

(A.4)

(A.S)

A.2 B-splines Construction

Traditionally, splines are constructed by solving a linear set of equations. However,

in the methodology established by de Boor [10], constructing b-splines is done by

solving a simple recurrence relationship. First, defining

1 , _l _<_y < _/+1 (A.6)gt;o(r) = 0 , otherwise

where ghn is the Ith b-spline of degree n and rh is the knot coordinate. Knots are used

to delimit the intervals over which b-splines have support. It should be noted that

A.6 is a direct consequence of A.2. The recurrence relation becomes (see de Boor
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page 131)

9t;n+l(r) - r - 771 . rlt+n-i - r
r/z_;-_z gz;_(r) + -g,+,,_(r) (A.7)

T]l+n--1 -- ?]/+1

To construct b-splines near the boundaries, de Boor introduced the concept of

degenerate or multiple knots. At the boundaries fewer continuity constraints have to

be met; multiple knots are used in the context of the recurrence relation A.6 and A.7

to cancel the high degree of continuity of b-splines. Figure A.3 shows the multiple

knots at the boundaries; for a b-spline of degree S, there are S multiple knots at the
boundaries.

ql,_2,q3 q4 q5 _6
q7 q8 q9 qlO qll'q12,q13

r

Figure A.3: Knots used in constructing the basis of figure A.2. Note the degenerateknots at the boundaries.

In order to delineate the procedure, let us construct the first two b-splines shown

in figure A.2. In order to prevent divisions by zero, the first step consists in letting

gl;0 = g2;o -- 0 (A.S)

gm = 0 (A.9)

The zeroth order or constant b-splines are shown in figure A.4 (a), with the num-

bering starting at l = 3 and the splines given by A.6. The first order b-splines are

constructed from the zeroth order one using A.6 and A.7. They are given by

r_4-.__._y_r
g_;l(r) = v4-.3 , r]3 _< r < z/4

0 , otherwise (A.IO)

rt4--r_3 , 713 _ _" < T]4

,7_-,_4 , r/4 < r < r/5

0 , otherwise
(A.11)
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(c) Quadratic b-splines

Figure A.4: Constructing quadratic b-splines by recurrence.
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Figure A.4 (b) shows the first linear b-splines. It is interesting to note that lin-

ear b-splines are identical to standard linear finite element polynomials. Lastly, the

quadratic b-splines are obtained from the linear b-splines; the functions are given by:

61;2(7") : ('4--_3)2 ' - (A.12)

0 , otherwise

(.4-,3) 2 + (,_-,3)(._-,3) , r/3 _< r < 774

g_;2(r) = ('_-Q_ (A.13)(,s-_3)(n_-,_) , 774_ r < r/s

0 , otherwise

with the functions shown in figure A.4 (c).

A.3 Support Rules

Because b-splines have local support, the bandwidth of the mass matrix, or any other

matrix which results from an inner product operation, will depend on the degree of

b-splines used. Figure A.2 shows quadratic b-splines: each b-spline has support on

three intervals, which are delimited by knots. For example, b-spline 6 has support on

intervals shared by splines 4, 5, 7 and 8. This implies that the inner product computed

in A.4 will have a bandwidth of 5. In general, a b-spline of degree S will have support

on S + 1 intervals (except near the boundaries where b-splines have support on fewer

intervals since there are fewer continuity constraints to be met) translating in the

inner product having a bandwidth of 2S + 1; the total number of non-degenerate (or

single) knots, Nk, is then Nk = 1¥_ - S + 1, where Nr is the number of b-splines.

The behavior of the b-splines near the boundaries of the domain is extremely im-

portant in understanding how to manipulate the expansion coefficients to implement

the boundary conditions. A general formula for the b-spline support at r = 0 is given

by,

g}q)(0)=0 for l>q+l and q=0,1,2,...,S (A.14)

where the superscript q refers to the qth derivative. Similarly, at the other boundary,
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r=l

glq)(1)=0 for l>N_+q and q=0,1,2,...,S (A.15)

Both A.14 and A.15 can be tabulated to yield:

Table A.I: Support rule for b-splines at r = 0. For r = 1 the table is identical except

that the index i in g!q) is replaced by Nr - (i - 1). The "x" represents non-zero values.

0 X 0 "'"

1 x x 0 ....

2 x x x 0

." ".o

S X X X X x x 0

Using A.2, A.14 and A.15 two important special cases can be derived; first

g,(0) = 9N,(1)= 1

and taking the derivative of A.2 to yield tv,E,=_ g_(r) = O, we get

gl(0) ---_--g2(0)

gNr(1) -- --gNr-l(1)

A.16)

(A.17)

(A.18)





Appendix B

Regularity Conditions

In section 2.3.2 of chapter 2 we introduced the concept that any vector field written in

cylindrical coordinates must meet a certain number of conditions in order to be regular

near the origin. The purpose of this appendix is to examine in greater details how

these conditions come into play when the vector expansion functions are constructed.

An example is also included to delineate the whole procedure.

B.1 Regularity Conditions

Shariff (private communication) derived the regularity conditions presented in this

appendix. For completeness, we include the derivation of the conditions for u_; the

conditions for the other two components can be obtained in a similar manner. Let u

be any vector field in cylindrical coordinates:

uz = /t_(r;ke,k_)¢ i(k°e+k_) (B.1)

u, = /tr(r;k0, k_)e i(kee+k_z) (B.2)

ue = /to(r; ke,k_)e _(k°e+kz_) (B.3)

Shariff's method consists in starting from a vector field in cylindrical coordinates and

transforming it to cartesian coordinates by paying attention to the behavior at the
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origin. Define

fiz = arP (B.4)

where a is a complex constant which depends on p, ko and kz. In the complex

plane, the transformation between cartesian and cylindrical coordinates is given by

x = r cos 0 and i y = i r sin 0 such that e ik°s can be rewritten as

eik°° = _- (B.5)
r

where _ = x + iy and r = I_+1= _. fiz becomes

_z _ a £k°Fp-k°eikzz (B.6)

Clearly, _ko is regular for ko >_ 0 and r p-k° is regular only for p - ko = 0, 2, 4, 6,...

since derivatives of odd powers of r can involve terms in r -1/2 which are not regular

at r = 0. So, we get

p = ko + 2n where n = 0, 1,2,... (B.7)

and the regularity condition for +hz follows

az( ;k0,kz)=a(ko, ko>_o (B.8)

where Pz(r2; ko, kz) is a polynomial in r 2. Regularity conditions for the other compo-

nents are given by

fir(r;k0, k_) = b(ks, kz) rk°-lpr(r2; ko,kz), ko >_ 1

fto(r;ko,kz) = ib(ko,k_) rk°-lPs(r2;ko, kz), ko >_ 1

and when ko = O,

5_(r;0, k_) = b(O,k,) rP_(r2;0, kz) (B.11)

fio(r;0, k,) = c(k,) rPe(r2;O,k,) (B.12)
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where a, b and c are constants that can depend on the wave numbers, Pi(r2; ko, kz)

are polynomials in r 2, and Pi(0; ko, kz) = 1. Conditions B.8 through B.12 do not

account for negative azimuthal wave numbers, since these are obtained by symmetry

and not by direct computations.

B.2 Regularity of the velocity vectors

After dividing the expansions into plus and minus modes, the following vectors were

adopted

and

UI+(T;k0,G) = V x @+(r;ko,kz) (B.13)

(0)= V x 0 (B.14)

-k_rg_

ul-(r; ke, kz) = _ x _7(_;ke,kz) (B.15)

= V x g, (B.16)

0

and because the above vectors are incomplete when kz = 0 "

ul+ff; k0,O) = V x O+(r;ko,O) (B.17)

(0)= V x 0 (B.18)

*Since kz = 0 causes completeness problems, one might question the need for k_ to be present in

B.14 in the first place. With k, present in B.14, and later in B.21, the mass and viscous matrices are
independent of the sign of k_ (they depend on some powers of k_), which reduces the computations

since both matrices only have to be computed for half of the k_ spectrum. It should be noted that

the exact solution to the Stokes problem is also independent of the sign of k_, a fact which must be

reflected in the numerical approximation.
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and ul- unchanged.

In order for the velocities ut + and ul- to be regular, the vector stream functions

@+ and @T must also be regular, since taking the curl will not affect regularity

of the vectors either favorably or unfavorably. It is clear that the first condition

which requires the radial and azimuthal components to be constrained to each other

is satisfied (B.9 and B.10). The second condition which requires a certain behavior

in r near the origin is generally not satisfied by the b-splines (g_). To alleviate this,

the expansion coefficients a_:mt are constrained such that the linear combination of

b-splines does have the correct behavior in r. For the vectors B.14, B.16 and B.18

this constraint can be written as

N_

Ce_mlg,(r ) _ r k°-' P(r 2) (B.19)
l----I

To ease implementation of the constraint in the computer code, special care was

taken when designing the expansion vectors so the constraint would be identical for

both the plus and minus modes. B.19 implies that not only the values of the splines

must be constrained, but also a certain number of derivatives. If S is the order of

b-splines being used, knowing that there are S - 1 continuous derivatives at any given

point, B.19 can be generalized as follows

= O_}krnlgl(O) = OL_m 1

4- t 4- t= -j ,gl(O) +

4- (S-l) 4- (S-a)tn,
= a_mlg a (0) + -.. + ajmsg s (u)

where A.14 was used to simplify the left hand side

rke-l p(r2) _=o

_r (Fko-1 P(r2)) ,-=o

d x-_ he-1 2
d--_zr_,(r P(r )).=o

(B.20)

When the right hand side of B.20 is nonzero the a_:ml coefficients are unconstrained,

otherwise the sum is set to zero. From B.20, when ke _ S + l, the first S coefficients

are automatically zero. The constraints are implemented by modifying the necessary

lines of the mass and viscous matrices in 2.18 (at most the first S lines), such that

the modified mass and viscous matrices reflect the constraint in B.20.
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For the cases when ko = 0, the constraints in B.20 cannot be applied to B.14,

B.16 and B.18 since they involve terms in r -1. Two additional vectors must be used

for this case

(°/ul + = kzgl

0

(B.21)

with ut- still unchanged. When k_ = 0 the vectors are again incomplete and another

set of vectors is used

(0)Ul + = and Ul- = 0 (B.22)

For these last cases (ke = 0), the expansion coefficients a0_ml are constrained

by using rP(r 2) as the right hand side in B.20 instead of rk°-lP(r2). Again, the

constraints are identical for both the plus and minus modes.

With the expansion vectors given in table B. 1 and the constraints B.20, we observe

that constraining the first S - 1 derivatives also results in constraining the first S - 1

derivatives of ur and uo, but only the first S - 2 derivatives of uz, since u_ already

involves a derivative of g_. Even though uo also involves a derivative of g_, it is

multiplied by r, such that at the origin this term vanishes.

Mode Redundancy

A problem exists with the expansion vectors shown in table B.1 for ko > 0: there

are four coefficients which have support at the boundary, but only three velocity

components. This was found to cause conditioning problems with the mass matrix

rendering it singular (uninvertable). To alleviate this problem, we simply set

aYmN_ = 0 for leo > 0 (B.23)

A possible explanation for this problem comes from the presence of derivatives of

b-splines in both vectors. Recall the expression for the number of knots in section A

Nk = N. - S + 1 (B.24)
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Table B.I: Summary of expansion vectors and associated stream functions

II

ko =0

(0 _ (0)
ul+=1 91 ,ut-=l 0

r

• +, _- undetermined"

t-- g_£

.%.

_g 1t _ igt _ ( - igt
_? = I o , ,r7 = gz

I
_0) O)

ko >0

( -ikog,o ) ( 0
ul+= (rg,)' , ul-= 0

i, _,g, + [L=kel,,r "_'! )

(o) (:o:)• ? = o , ,_;-=
-rgt

( -ikog_ _ ( -ik_g_

u,+=kzi (,g,)' , u,-= k_g,
k 0 j k g/+ -(!:_a

( 0 "_ ( -igl

*,+=i 0 i, _r=l _,
k-k_rgt ) _ 0 )

"The stream functions are only known up to a constant.

Since the number of knots is constant, with derivatives of b-splines of degree S exactly

representable by b-splines of degree S - 1, in order to keep the number of knots

constant, only Nr - 1 b-splines of degree S- 1 are necessary, hence the extra b-spline.

B.3 Regularity of the weight vectors

Because a Galerkin method is used, the weight vectors wv are the complex conjugate

of the velocity vectors ul given in table B.1; this means that regularity of the weight

vectors must also be ensured. Here again, the idea is to take a linear combination of
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weight vectors, similar to B.19, such that the linear combination be regular

N_

where _'l' is the regular weight vector. With the weight vectors obtained from the

velocity vectors, B.25 is equivalent to B.19 and B.20 such that

N_

/3_vg_ (r) _ r k°-lP(r _) (B.26)

except when ko = 0 where the right hand side of B.26 becomes rP(r2). By expanding

B.26 as in B.20, a system of the form 1313 = 0 is obtained, where /3 is a matrix

whose columns are the null vectors of 13, the matrix of constraints. Each component

of the null vectors are the /3 coefficients in B.26. Because the null space of G is

non unique, the following choices are made depending on the azimuthal wave number

and the degree of b-splines being used (those/3 coefficients are computed once at the

beginning of the code).

• ko and S odd:

[g_ g; 0 0 0 ...g_". g;" g;".., g' 0 ....
\gi') g?)9? )

0

0

g_P.21

1 0 0

/311 0 0

01"''0/312 /321 0

0 0 0

/31d /32(a-x) ... 0

0 0 1

= 0 (B.27)

where p = S - 2, d = (S - 1)/2 and all the splines are evaluated at the origin, i.e.

g('q - d_g'k/ r=0" With this particular form of null space, B.25 is written asi -- dr n

+_ w,,+ + _ , + l' l'= /3(___)(_)wn _< S and odd (B.28)
n=l'+l

n even
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oko odd and S even:

9', g; o o o ... o

gyl ill ..

g_" _._ _:" o .. o

_,gi") _?) g(:) g_) 9__) ... _(,,)

1

)o
0

/3ld

0

0

1

0

0

0

0

0

1

3d_

where p = S - 1 and d = S/2. In this case, _ is written as in B.28.

= 0 (B.29)

*ko even and S odd:

0 0

1 0

/311 0

0 1

0 0

_ld _2(d-l)

0

0

0

0

0

1

_dl

where p = S - 1 and d = (S - 1)/2 and B.25 is given by

S

_,_=w,._+ _ _,,,,,,+__.,w_
n=/'+l
n odd

l' _< S and l' even

= 0 (B.30)

(B.31)
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oke and S even:

gl 0 0 0 0 ... 0 O_:Jg',' 9;' g_' o o ... o
• *.o "

\gip) (p)
• • • g(s-1)

0 0 0

1 0 0

_11 0 0

0 1 ... 0

/312 /321 0

/31d _2(d-1) "'" 0

0 0 1

where p = S - 2 and d = (S - 2)/2 and the weigth vectors

S-2

=0

(B.32)

_,_ = wt, + + _ /3(_)(_)w_ l' _< S- 2 and l' even (B.33)
n=l_-I-1
n odd

So, for a given b-spline of degree S, there are two families of fl coefficients: one

for even and one for odd azimuthal wave numbers.

B.4 Example

The best way to illustrate how to implement the above conditions is through an

example. Suppose we wish to solve for

Aa = b (B.34)

Typically, this problem can arise when solving the Poisson equation for the pressure.

Consider S = 3 (cubic b-splines) and ko = 1; B.27 reduces to

(g', g_ o) /311

0

=o (B.35)
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Solving yields /_ll = -g_/g_. Consider now the upper portion of the original system

B.34; writing the matrix A with a bandwidth 2S + 1,

all a12 a13 a14 )

a21 a22 a23 a24 a25

a31 a32 a33 a34.., a35 a36

(B.36)

The first step is to make wl, regular by taking a linear combination; using B.28

@1 = wl +_11w2 (B.37)

_/3 _ W3

which means that only the first line of B.34 will be modified, since the index of the

weight functions (l') corresponds to the line number of the matrices or the vectors.

/ 11 12  3 14 15a21 a22 a23 a24 a25 02 =

a31 a32 a33 a34 a35 a36 _3

.o•

/b2

b3
(B.38)

where following B.37, 51j = alj + _lla2j and bl = b_ + _1162.

The second step is to ensure regularity of the expansion functions by constraining

the al coefficients. Using B.20 the only relevant constraint, i.e. for which the right

hand side of B.20 is zero, is

! I

algl + a2g2 = 0 (B.39)

and building that constraint into the system of equations yields

511 512 513 514 515

el g; o o o

a31 a32 a33 a34.-. a35

a36 )(i1)a2 = 0

3 b3
(B.40)

which is the system that will ensure that the expansion possesses the correct behavior
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at the origin.

We conclude this section with two important comments. First, from this example

it is clear that with this particular form of null space, no information was lost by

imposing the regularity conditions, i.e. the expansion is still complete. Even though

B.39 was imposed by removing the second line of the matrix, the information that

was contained was absorbed before hand in the first line of the matrix with B.37.

Second, the conditioning of the matrix can be adversely affected by the regularity

conditions. This is especially true if splines of high degree are used, since as can

be seen from B.20, with higher degree splines it is possible to impose constraints of

higher order. With derivatives being approximated by

g_q)(O) ,,_ O(Ar -q) (B.41)

it is easy to see that when Ar is small, higher order derivatives can quickly become

very large _. The consequence of this is to limit the highest degree of b-splines to

about four or five. In order to preserve accuracy of the solution, double precision

must be used throughout the computations; the standard approach on the CRAY

super computer which consists in truncating variables to single precision when stored

on disk must be avoided (see Moser and Moin [25]).

tThis problem is made more difficult by the fact that even when the regularity conditions are not

applied, the conditioning of the matrices is degraded when Ar is made smaller. This is a standard
result in finite element analysis which is also observed here (see Strang and Fix [46], section 5.2).





Appendix C

Implementation

In this appendix, we present the full definition of the mass and viscous matrices

and complete the details on how the nonlinear term is computed. Extensive use of

Mathematica, a symbolic manipulation package, greatly reduced the effort in deriving

what follows.

C.1 Mass and Viscous Matrices

The mass and viscous matrices are constructed from the following elemental matrices

which are computed (to machine accuracy) once at the beginning of the code using

Gauss quadratures. The complete mass and viscous matrices have to be reassembled

at every time step, since it would require too much memory to store them. The

following expressions are obtained by substituting the vector expansion functions

(see table B.1) in 2.19 and 2.21; noting that g, - g,(r), the following are defined:

= jR2 _ dr
ml Jo r

fom3 = gzgl, r dr

g R2

ms =_ g_tg_,
r 2 dr

_0 R2 p pm2 = gz g_, r dr

m4 g_ g_, r 3 dr + R_gt(R2)g,,(R2 )

=[mgzgt,_ r 2 drm6
Jo

119
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_ [m g,_E_- ,m , ,, , =l g_gV dr
m7 -Jo r3 dr-g_ (O)g_, (0) ms Jo

m9-Jo-fmg' "g,," rdr - R2g,"(R2)gv'(R2) ml0= g, "g,, "r 3 dr-

3 "R ' R 2 "R(n2g, ( 2)9,,(n2)+

jfo R2 tm11= gl gv dr

fom13: g_"ge' r2 dr - R_g,"'R "2)ge(R2)

fOR2
dr

m12= g_ge

m ' "r _ R 2-'+R " "R "m14= g_ ge dr- 2Yl t 2)gz, t 2)

furthermore, the following boundary terms are also defined (matrices which only

have non-zero elements on the last line, i.e. l' - N_, by virtue of A.14)

btl =g,(R2)ge(R2), 'Rbt2 = n2g, (2)ge(n2), bt3 = gz(R2)g"(R2)
n_

bt4 g,'(R2)g_,(R2) + g, _ 2)g_,t 2), bts== "R " "R " g,'(R2)gj,(R2) g,(R2)g,,(R2)
R2 R2 R_

Note that the boundary term in rn7 was obtained by applying L'H6pital rule to

boundary terms containing a 1/r n factor. Other boundary terms at r = 0 cancel

either because they are absorbed by the imposition of the regularity conditions, or

contain an r _ factor.

C.1.1 Mass Matrices

The mass matrix is assembled from the following matrices (see 2.24 and 2.25).

• k_ :p O, ke -_ O:

A+: {a+m}:k_2f(ko2-1)m3+m4 ]

A- = {a_-m} = [2k_2m3 + (k_ - 1)2m, + m2 + (1 - ko)bt,]

A += {a+l,t}=k_2[(ks+l)m3+ms]
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A+ = (a+vt} = kz2[(ke + 1)m3 + m6]

ek_ =0, ke #0:

A++= [/ko_-ltm_+m,]

A- = [/ko- _Tm,+m_+ I1- ko/bt,]

A +_ = A+ = 0

• G # 0, k6 = 0:

A +=A +=A+=kz2m3

A- = [2kz2m3 + ml + m2 + btl]

• G = 0, ko = 0:

A + = m3

A_- _ m 1

A +_ = A. 7. = 0

In order to minimize storage, the mass matrix is stored in banded form, following

the structure shown on figure C.1. Each element of the matrix takes its value from

the four sub-matrices defined above. The elements denoted by an "X" appear after

the imposition of the regularity conditions. As seen in the example of section B.4,

imposing those conditions will locally increase the bandwidth of the matrix. Because

of this unusual feature, special banded matrix solver and matrix-vector multiply

routines were written to account for these extra terms. With the mass and viscous

matrices constructed in such a way, the _ and f,,1 vectors in 2.18 have to be ordered

with the + and - modes alternating, i.e. _ = {a+,a-[,a+,...}.
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4S+I
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Figure C.I: Mass matrix as defined in 2.18. It is assumed that a second degree spline

has been used, but the dimensions are shown for a spline of degree S.

C.1.2 Viscous Matrices

In a similar way to the mass matrix, the viscous matrix is assembled from the follow-

ing:

•k__ O, ke _ O:

S++ k_2[k_2((k_2-" 1)m3+ m4)q-(ke 2- 1)2ml 4-(2ke 2 4- 1)m2 + mlo q-
Re

(1 - k02)btl -(2 + k02)bt2]

B- 1 [2k4m 3 + (-3 + 4ko + 2ke 2 - 4ke 3 + ko4)m_ +
Re

3kz2((ke - 1)2ml + m2) + (3 - 4k_ + 2ke2)ms + ms +

kz_((1 - ke)btl - 2bt2) + (-2 + 3k6 - ke3)bt3 +

(ks- 1)(bt4 - (ks - 1)bts)]
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B+_

B+

]¢z 2

Re [k_2((k° + 1)m3 + ms) + (ko - 1)2((ke + 1)ma + m11) +

(ko + 2)m2 + ma3 - (2 + ko)bt2]

kz 2
[k_2((ko + 1)m3 + m6) + (ko - 1)2((ko + 1)ml + ma2) +

Re

(ko + 2)m2 + m,4 - (1 + ko)bt2]

• kz = 0, ke _ 0:

B++

B-

1 [(ko 2 _ 1)2m ' + (2ko 2 + 1)m2 + m,o + (1 - ko2)btl -(2 + ko2)bt2]
Re

1

Re [(-3 + 4ko + 2ko 2 - 4ko 3 + ko4)m7 + (3 - 4ko + 2ko2)ms + m9 +

(-2 + 3ko - ko3)bt3 + (ko - 1)(bt4 - (ks - 1)bts)]

B +_ = B+ = 0

• k_ _ O, ko = O:

n¢ = n +_ = B7 - ' z2[ z2m3+mi+ bt ]
Re

B__Z
1

[2k_4m3 - 3(mr - ms) + 3kz2(m, + m2) + m9 +
Re

k_(btl - 2bt2) - 2bt3 - bt4 - bts]

• k_ = O, ko = 0:

n++

B-

B+

1 bt2]Re [ml + m2 -

1 bt3]Re [ms - mr - bts -

= B+=0
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C.2 Nonlinear Term

Computing the nonlinear term is by far the most computationally intensive operation

of the code; typically it requires over 85% of the computing time. This is due mostly

to the radial direction which is a "slow" direction (requiring N_ operations), whereas

the azimuthal and streamwise directions are "fast".

The first step is

vectors in table B.1,

.._(_.e.z.t)

_e(_,e,z,t)

to compute the vorticity and velocity components. Using the

g,(_) g,'(_)
= Azgz(r)+ Btrg,'(r)+C,--_+ Dz r

= Etg,(r)+ F, "(g,'(r) g_r)'_ +Gtg,"(r)
r r 2 ]

%

wz(r,O,z,t) = Ht g'(r-----_+ (It + 2Jt)g,'(r) + Jtrg,"(r) (C.3)

%]

r

(C.1)

(C.2)

v,(r,O,z,t) = Ktg,(r) (C.4)

vo(,-,O,z,t) = J_,'9,'(,')+/_g,(r) (c.5)

_z(,',O,z,t) = -a,g,'(,')- F, 9,(") (C.6)
T

where, the summation convention was used for repeated indices (atbt = _Nr albz), and

the following were defined

At(O,z,t) = Y_-ik_(o_ + + a_-)e _(k°°+k'_)
ko kz

dropping the summation signs and the exponential

8,(O,z,t) = !-ik_+
[ 0 , ko =0

Ct(o, z, t)

O_(O,z, t)

Et(O, z, t)

= -iko(ko- 1)a_-

= ikoc_[

= kz2(ko_+ + _;)
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F,(e,z,t) = (ke - 1)aT

f
Gt(O,z,t) = {

( 0 , ke = kz = 0

/ k_(1 - ke)((1 + Ice)a + + aT)
Hl(O,z,t) I (1- ko_),_t , kz= o

{k,(o + + ,_;)Iz(O,z,t) = a+ , kz = O

J,(e,z,0
{ k=a + ,kzT_Oandke7 _0

= a + ,k==Oandke7 _0

0 , ke =0

K,(e,z,_)
{ -ik_(k0_++ _7)

= -ikea + , k, = 0 and ke 7_ 0

0 , k_ = ke = 0

Once all those terms have been computed, they are transformed to physical space

where the second step consists in computing the product wl, + • (v x w). Defining the

following three-dimensional (nonlinear) matrices

fl = rjomgj, gJ g= dr

m ' ' drt"4 ---- g,, g, g..

m ' 'drfr = ge g,g_

fot"10 '"dr= gt'& g=

f2 = fomgeg_'g=dr

f R2
fs =J0 geg, g_ dr

fR_ ,
fs =jo g" g' ' g='dr

f R2

fll p VtdT,= h gl' gig,.
Jo

fa = fomge'g_g,, dr

f R2

f_ t vdT
=Jo gl'g_ g,,,

f n2 ,,

t"9 =J0 geg, g,,, dr

then, we also define:

(EmFI + Hml,) fl + (EmGI + HmJl) rf2 +

+



126 APPENDIX C. IMPLEMENTATION

Gm(Ftf9 + G, rflo) + Jm(Izr2f9 + Jtr3f_o)

_
,3[; = (AmI_ - EmKt) fl + (C,.nlt + FmKt) -_ + Am Jr rf,_ + C_Jt f2 +

r

DmJt f6- GmKl f9 + B_(Itrfs + Jl r2f6)+ (D_I,- F_I'(,) fs
r

Tfi = (AmFt + HmKt) t'1 -t- A_G_r f2 + Cm Ft _ + G_ + B_Gt r2f¢ +

(B_Fz + ImKt + 2JmK_)rfs + D'_ (Ft_ + Gtf6) + J'_Ktr2f°r

"_'_, = (AmFt+ HmKt)rf3+ A,.,Gtr2f4+ Cm (Ft _+r Gt f4) -k- B_Gt rafs+

(B_Ft + Ir,-,Kt + 2dmKt) r2f7 + D_ (Ft fr + Gt rfs) + J,.,,gt r3fn

_t, = (Amlz - E,,r, Kl) rf3 + (Cmll + FmKt) f3 + C_Jz f4 -4-A_J_ r2f4 +
7"

(D_It - F,.,.,Kt)t"7 +Bm (It r2fr + Jt r3fs) + DmJt rfs - G_Kt rfll

where all the products fi r n are done under the integral sign, and the m and l indices

have been summed; for example

N_ N_ R2

_'_ f t ! 7,2
BmG, r2f6 = _ __, g,,g, g,,, d,- (C.7)

m l

This means there are in fact twenty four different integrals, which are also pre-

computed at the beginning of the code (some of them can be simply obtained by

symmetry). Once %+, /3[7, T_7, Tt, and _l, are computed, they are transformed to

Fourier space ( -y+ _ _'+ (ko, kz),...) where the final answer is obtained:

fn_l'

[ Lz 2r

= I+(iko7 + - T_7) - J+Tt,

× w) e-;(k°'°+k''_) r dr dO dz

(c.s)

f_t' - 2¢rL_ wt,- • (v x w) e -i(k°'°+k,'z) r dr dO dz
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= i-(/7,,+ - T7) + F-3;: - a-,5,, (C.9)

where

kz

i+ = _ k_ J+= 1 ,k_=Oandke_O

( 1 ,k_=O ' 0 ,ke=O

F-=ko-1 ,
G-={ 10 ,ko=k_=O

C.3 FFT's and Modal Reduction

In section 2.3.4, the concept of modal reduction was introduced to alleviate the con-

centration of modes near the origin. Implementing this procedure in the context of

the computation of the nonlinear term requires special attention. Consider figure C.2,

which consists of an equispaced grid with 18 b-splines.

N o

N 2

N 1"

i'":

...:

:...-:

:....:

( _:. "( X X X X

1234567

2S+I

r---:

r ....
E

f..-:

"." ;'. "A X 3( '( >( ": >( X "( --

8 9 l0 Ii 18 r

Figure C.2: Modal reduction and Fourier transform size; the ordinate represents the

number of Fourier modes.

Azimuthal modes which fall below the staircase shaped dotted line represent the
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only non-zero modes. Computing the product C.7 requires all the terms to be trans-

formed on a physical grid with an equal number of points. It is clear that transforming

all 18 modes on a grid containing N2 points, would result in a large waste of com-

putations, since roughly half the values to be transformed are zero. To reduce the

length of the FFT's, radial positions are defined where the lengths of the transforms

are cutoff: for example, in figure C.2 the radial position equivalent to spline 11 is the

cutoff value. Any mode lower than 11 would be computed on a grid of N1, and from

11 onward, on a grid of N2.

Even though this approach is simple in principle, special care must be taken when

approaching the overlapping region near the cutoff position. As seen in section A all

integrals of the form shown in C.7 have support on 2S + 1 intervals, which means that

computing the nonlinear term for l' = 8 requires information from 5 < l' < 11. This

can be a problem since modes 5-10 lie on a different grid than l l. The trick is then

to FFT modes 5-10 to Fourier space with N1 modes and back to physical space again

but on a grid of size N2. Only when this is done can modes 8 and up be computed.

For l' < 7, all the computations are performed on a grid of N1.

In practice, the code allows for up to six different cutoff levels; more than six

shows no significant gain due to the extra work required by the remapping near the

overlapping regions.

C.4 Time Advance

When the time advance method given in 2.30-2.32 is applied to 2.18, it becomes

X2cx" = B2_'-F At ['y2fnl(oz') -¢- C,f_l(_,_)] (C.11)

A3o%+1 = B3cz + At [73fnl(c_") + (2f_l(c_')] (C.12)

where Ai and l_i are respectively the effective mass and viscous matrices defined as

A_ = A -/3;AtB and B_ = A + a;AtB (C.13)
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To minimize storage, the above method is implemented in the following way: defin-

ing aold and ¢_act to be two storage variables the following algorithm is implemented

• From the previous time step, set aa._t = aold = a,_-

• First RK sub-step:

1. Compute the new At

2. = fnl( act)

3. O_old = BlO¢old

4. a_¢t = aola + 71AtO_act

5. O_old _--- "ylAt

6. Enforce the boundary conditions (BC) on aact

7. O_act m- Allaact

8. Sold ----B2aact q- _'lA/aold

9. Enforce BC on C_old

• Second RK sub-step:

1. a.ct= f.l(a.¢t)

2. _act = Gtoid + 72AtOtact

Ot._,-or o,d (= fnl(_'))3. Ogold : "y2At

4. Enforce BC on c_act

5. O_ac t = X210_act

6. aotd = B3o_act "J- GAtao,a

7. Enforce BC on aold

• Third RK sub-step:

1. aa_t = f.,(a_t)

2. O_act : O%ld + "Y3/kt_act
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3. Enforce BC on aact

4. c_act = A_ 1

O. O_old = (:l_ac t

(:l_act (= Cgn+l )

(= C_n+l)

• Proceed to next time step

Constant mass flow

In order for the mass flow to be constant, a pressure gradient must be applied in

tlae streamwise direction on the mean flow, i.e the (0,0) mode. Let us symbolically

rewrite any of the steps in C.10- C.12 as

f-.vz,,+a = RHS + (w/,-(r;0,0),fez) (c.14)

where RHS refers to any right hand side, fez is the streamwise pressure gradient

and vz -- 5z(r, t; 0,0). Since this pressure gradient is not explicitely known, Moser

(Private communication) suggests the following: split the solution step such that

17,_,,÷1 = RHS (C.15)

_--_)Zn.t. 1 = (wv-(r;O,O),e.) (C.16)

where the e.. on the right hand side of C.16 refers to a unit pressure gradient. Once

_)_.+1 and _5_.+_ have been computed, the actual v_,+l can be obtained by

All that remains to be computed is $; defining

_0 R2C" = v_ r dr (C.18)

which is no more than the integral in 2.3 that has to be made constant V t, and

= t3_.+, rdr and m = Vz.+_ rdr (C.19)
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then,
C*-m

_ , (c.20)
D2

Finally, note that splitting the solution in two steps does not require more memory:

since the imaginary part of the (0,0) mode is zero, we can use that memory location

to solve for C.16.





Appendix D

Benchmark Solutions

In this appendix we present benchmark problems which were used to validate the

computational procedure: Stokes problem and linear stability theory.

D.1 Solution to Stokes Problem

Stokes flow represents the low Reynolds number limit of the Navier-Stokes equations.

Since diffusion dominates convection, it is possible to neglect the nonlinear convective

term from the equations rendering them linear. Defining )_s to be the eigenvalues

(assuming the solution obeys u ,,- e_'tus such that ¢O/Ot =_ _s) and us and ps the

eigenfunctions of the Stokes equations,

V.us = 0 (D.1)

1
_us + Vps - V. Vus (D.2)

Reb

withus=0onr=R2= 1.

D.I.1 Exact Solution

This problem was solved by Salwen and Grosch [40] by means of vector and scalar

potentials. Their solution was restricted for kz ?_ 0 but was extended to include all

wave numbers.

133
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• Ik.I > 0

The eigenvalues are
1

As - Reb(kz2 + fl_) (D.3)

where the fl_ are the roots of the following transcendental equation

(G(Z)_ (J_0(9) G(kz) ) k0_(k/+ Y)fl Jk-_(-_/\flJ_e(fl)+ kzIko(k_) kz2fl2 =0 (D.4)

and Jko are Bessel functions and lko are modified Bessel functions both of the first

kind (see Abramowitz and Stegun [1] chapter 9). Also, it is implied in D.4 and what

follows, that k_ _ Ik_l since the equations do not depend on the sign of kz. Since the

eigenvalues A_ represent the decay rate of the eigenfunctions, they are all real and

negative. The eigenfunctions were obtained using Mathematica and are given by

r_,(r; k0,k_)= kdio(kzr)+ a&o+l(9,_)- bJko-l(3,_) (D.5)

fio,(r;ko,kz) = ko Ik°(k_r) aJko+,(fl, r) - bdko__(fl, r) (D.6)
r

and

G,(r; k0,G)
a [ 1)Jko+l(3sr) , ]= kzl,_o(k_,-)+ _ (ko+ ,- + ,_,J_o+,(3,,')+

b [ &o-_(_) ,
k--_-[(/c°-- 1) r flsJ_°-l(flsr)

(D.7)

where

kolko( kz)
- - _"°'k_" (D.8)

If ( _

a = 2&o+,(_,)

_,_ koG(kz)+ kzI;o(k_)
2Jko-l(fls)

(D.9)

When ko = 0, D.6 yields a trivial solution (rio, = 0); for this case the following

form is used

(D.IO)

where 32 = jl,s and jn,, is the s th zero of the Bessel function of the first kind of degree



D.I. SOLUTION TO STOKES PROBLEM 135

n (i.e. J,_(jn,_) = 0, s -- 1,2,...).

ekz = 0

The eigenvalues and eigenfunctions are

"2

)_ = _3k0+1,, (D.11)
Reb

fir,(r; ko, O) = kor (k°-l) - ko
&o(Jko+l,_)
r&o(jko+,,_)

(O.12)

_ko,(r; ko,0) = ]cor(kO-1)- jko+l,sJ_O(jko+l,sr)
&o(Jko+l,_)

(D.13)

When k_ = 0 the streamwise component decouples from the other two components,

(D.14)

with the eigenvalue _ = -j],o,_/Reb.

D.1.2 Numerical Solution

The numerical approximation to this problem is identical to what was developed in

2.18-2.20. With the mass and viscous matrices computed and assembled as shown in

appendix C, a generalized eigenvalue problem is obtained by replacing & by )_cz; 2.18

becomes

tAa = B_ (D.15)

where _x is the eigenvector and )_ the eigenvalue. The eigenvectors are in fact b-

splines coefficients that can be summed following 2.16 to yield the corresponding

eigenfunetion. D.15 was solved using MATLAB which implements the EISPACK

libraries.



136 APPENDIX D. BENCHMARK SOLUTIONS

D.2 Linear Stability

Linear stability theory concerns itself with equilibrium solutions to the Navier-Stokes

equations and examines the effect of growth or decay of perturbations (see Canuto

[7]). Let u and p be solutions to the Navier-Stokes equations; define U and P as

the equilibrium solutions and u and p as the perturbations such that the velocity

and pressure are given by U + u' and P + p'. By substituting these definitions in

the Navier-Stokes equations (2.1-2.2) and neglecting quadratic terms, the linearized

Navier-Stokes equations are obtained

V-u = 0 (D.16)

0u 1

0----[+U'Vu+u'VU+Vp - RebV'Vu (D.17)

In studying stability of pipe flow, it is customary (see for example Salwen et al.

[40, 39]) to adopt

U = (1 - r2)e,. (D.18)

with a forcing term as defined in 2.2 given by f = 4/Reb, i.e. this value of f ensures

that the mean flow D.18 is preserved. By assuming that perturbations have a solution

of the form

u = fa(r)e i(k°°+kzz)-i_t (D.19)

D.17 can be written in a form similar to Stokes' problem

1
.... V.Vu (D.20))_u+U Vu+u VU+Vp-Reb

where )_ = -i0v. Perturbations are said to be stable if Im(w) < 0. Equations D.20 is

now a generalized eigenvalue problem that is solved similarly to D.15

)_Ao_ = (B - O)o_ (D.21)



D.2. LINEAR STABILITY 137

with the added matrix O defined as

_0 R2O = wl, ± • (U • _Tul + + uz + • VU) r dr (D.22)

As for Stokes flow, the eigenvectors (_ are b-splines coefficients that can be summed

following C.4-C.6 to yield the so-called Orr-Sommerfeld waves.

Because D.22 represent a term which must be added to the computer code in order

to solve D.21, it must also be validated. Leonard and Wray [20] computed A with

their fully spectral code for Reb = 9600, ko = kz = 1; by ordering the eigenvalues such

that Re(A1) _ Re(12) > ..., they obtained A1 = -0.023170795764 - i 0.950481396668

with Nr = 37 Jacobi polynomials. This value compares well with Salwen et al. [39]

who obtained A1 = -0.02317 - i 0.95048 by solving D.16 and D.20 using expansions

in terms of Stokes eigenfunctions.

Table D.1 gives the difference between the b-splines and the Jacobi polynomials,

using the same number of functions (albeit on an equispaced grid for the splines). It

is interesting to note that for S = 7, the fully spectral Jacobi polynomial code and

the b-splines method give virtually the same answer.

Table D.I: Relative difference between b-splines of different degrees and Jacobi poly-

nomials (Nr = 37).

Is
3

4

5

6

7

-Re(A,) --Im(il) IX,- _Xll/l_hI

1.51 × 10 -60.023169 0.9504816

0.0231708 0.95048142 2.06 × 10 -s

0.0231707960 0.9504813968 3.35 x 10 -1°

0.023170795752 0.950481396672 1.31 x 10 -11

0.023170795766 0.950481396674 6.75 x 10 -12
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