
NASA-TM-112358 1 

Annual Research Briefs - 1996 

Center for Turbulence Research 

December 1996 

Ames Research Center Stanford University 



------

Annual Research Briefs - 1996 

Center for Turbulence Research 

December 1996 

Ames Research Center Stanford University 



CONTENTS 

Preface 

Simulation of jet impingement heat transfer with the k - c - v2 model. 
M. BEHNIA, S. PARNEIX and P. DURBIN 

A new methodology for turbulence modelers using DNS database 
analysis. S. PARNEIX and P. DURBIN 

A particle representation model for the deformation of homogeneous 
turbulence. S. C. KASSINOS and W. C. REYNOLDS 

Modeling of inhomogeneous compressible turbulence using a two-scale 
statistical theory. F. HAMBA 

Lewis number effects on partially premixed flames. G. R. RUETSCH 
and J. FERZIGER 

Conditional moment closure of mixing and reaction in turbulent non
premixed combustion. N. S. A. SMITH 

Dynamic models for LES of turbulent front propagation with a spec
tral method. H. G. 1M, T. S. LUND, and J. H. FERZIGER 

Jet noise using large eddy simulation. F. BASTIN 

Towards numerical simulations of trailing-edge aeroacoustics. 
M. WANG 

A model for the onset of vortex breakdown. K. MAHESH 

Compressing an elliptic vortex: transition to turbulence by tumble 
breakdown. F. S. GODEFERD, N. N. MANSOUR & C. CAMBON 

A new method for the adaptive control of vortex-wall interactions. 
P. KOUMOUTSAKOS 

Symmetries in turbulent boundary layer flows. M. OBERLACK 

Near-wall models in large eddy simulations of flow behind a backward
facing step. W. CABOT 

Assessment of the subgrid-scale models at low and high Reynolds 
numbers. K, HORIUTI 

Large-eddy simulations of flow around a NACA 4412 airfoil using 
unstructured grids. K. JANSEN 

Progress on LES of flow past a circular cylinder. R. MITTAL 

Experimental investigation of flow through an asymmetric plane dif
fuser. C. U. BUICE and J. K. EATON 

~J 3 ! 

67 -~ 

101-7 
115 ,-'j' 

133 -7 
143-/D 

151 -/ ) 

165-)2-

183 ""-13 

211-1 



Progress in the large-eddy simulation of an asymmetric plane diffuser. 
M. FATICA & R. MITTAL 

A numerical study of self-similarity in a turbulent plane wake using 
large-eddy simulation. S. GHOSAL and M. M. ROGERS 

On the generation of turbulent inflow conditions for boundary layer 
simulations. T. S. LUND, X. Wu, and K. D. SQUIRES 

A new class of finite difference schemes. K. MAHESH 

Appendix: Center for Turbulence Research 1996 Roster 

tv 

249(j~ 

257 ~J.o 

281r )( 

297,,1-

307 



Center for Turbulence Research 
A nnual Research Briefs 1996 

Preface 

1 

This report contains the 1996 annual progress reports of the research fellows and 
students supported by the Center for Turbulence Research. Last year, CTR hosted 
twelve resident Postdoctoral Fellows, three Research Associates, four Senior Re
search Fellows, and supported one doctoral student and ten short term visitors. 
The major portion of Stanford's doctoral research program in turbulence is spon
sored by other support from the United States Office of Naval Research and the 
Air Force Office of Scientific Research. Many students supported by these programs 
also conduct their research at the CTR, but their work is not included in this report. 

In addition to supporting the work reported in this volume, CTR sponsored 
its sixth summer program in 1996, its largest ever, with thirty-seven participants. 
A separate report documenting the findings from the sixth CTR Summer Pro
gram was published earlier this year. Both the Annual Research Briefs and Sum
mer Proceedings are available at CTR's site on the world wide web (http://www
fpc.stanford.edu/ CTR/welcome.html). 

The first group of reports in this volume is concerned with turbulence modeling. 
This is a very important component of the CTR program, owing to its potential 
impact on engineering applications. A notable study was the demonstration of 
the excellent prediction capabilities of the k - € - v2 model (developed earlier at 
CTR) for impingement cooling used for high-powered electronic chips. The 1996 
CTR Summer Program Report contains several other applications of this model to 
complex flows. The next group of reports is in turbulent combustion, which included 
an extension of the large eddy simulation methodology to premixed combustion. 
LES is making successful inroads into the prediction of turbulent combustion. The 
third group of reports is in the area of computational aC,9ustics and turbulence 
physics and control. The fundamental computational acoustics program at CTR 
is now being directed to applications in complex flows. These calculations are 
very time consuming, but are expected to provide insight into the mechanisms 
and control of flow generated noise. The final and the largest group of reports is 
concerned with large eddy simulation of turbulent flows. Recently; CTR's wor~ 
in this area has been concentrating on the application of dynamic model-based 
LES (developed earlier at CTR) to complex flows and the assessment of the effects 
of numerical errors and boundary conditions on the predictive capabilities of this 
method. Although LES has been shown to be successful in prediction of complex 
separated flows, it is still taxing the present computational resources, and more 
effort is being devoted towards making LES more efficient to use. 

The CTR's roster for 1996 is provided in the Appendix. Also listed are the 
members of the Advisory Committee, which meets annually to review the Center's 
program, and the Steering Committee, which acts on fellowship applications. 

In 1996, a new division called Flow Physics and Computation was formed as a 
joint activity of the Departments of Mechanical Engineering and Aeronautics and 
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Astronautics at Stanford. The Division consists of eight faculty members and nu
merous students who are interested in fluid mechanics and computational methods 
for a variety of flow prediction and control applications. It is expected that this new 
critical mass activity and the recent positive developments at NASA Ames will lead 
to enhancement and strengthening of research in fluid mechanics and turbulence. 
CTR, of course, will be a direct beneficiary of these developments. 

It is always a pleasure to use this opportunity to thank Mrs. Debra Spinks for 
her unrelenting efforts in the daily management of the Center and her compilation 
of this report. 

Parviz Moin 
William C. Reynolds 

N agi N. Mansour 
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Simulation of jet impingement heat 
transfer with the k-€-v2 model 

By M. Behnia, S. Parneix AND P. Durbin 

1. Motivation and objectives 
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Jet impingement heating and cooling is used in many engineering and industrial 
applications (e.g. materials processing, manufacturing, and cooling of computers 
and electronic equipment). In these applications, normally a turbulent jet of gas or 
liquid is directed to the target area of interest. The advantages of jet impingement 
heat transfer process are direct, localized heating or cooling, and increased heat 
fluxes. This technique is emerging as an attractive cost-effective method of cooling 
of computers (Nakayama 1995). There are a number of parameters to be considered 
in the design of such systems. For instance, for optimization of cooling or heating 
systems, accurate prediction of the local heat transfer coefficient is essential. To this 
end, the flow and thermal fields must be accurately and economically computed; 
hence the need for better turbulence models. 

Impinging jet flows have several complex features which make them a good test 
vehicle for evaluation of turbulence models. In the impingement region, the mean 
flow is perpendicular (or nearly perpendicular) to the surface. It then turns and 
follows the surface in a wall jet (see Fig. 1). In the stagnation region, the flow is 
almost irrotational and there is a large total strain along the stagnation streamline. 
Away from the core of the jet, due to expansion, diffusion, and entrainment, there 
is substantial curvature in the streamlines. Adjacent to the wall, there are thin 
stagnation point and wall jet boundary layers on the target plate. 

The problem of a normal impinging jet of air striking a flat plate has been consid
ered as a test case by ERCOFTAC. They have adopted the flow and heat transfer 
measurements of the experiments by Cooper et al. (1993) and Baughn and Shimizu 
(1989), respectively. There are also a number of more recent heat transfer mea
surements by others (e.g. Baughn et al. 1991, Yan 1993, and Lytle and Webb 
1994). The experimental data has been used by researchers to test their turbulence 
models for this demanding case. For instance, Craft et al. (1993) used the data of 
Cooper et al. (1993) and Baughn and Shimizu (1989) to examine the k - c and 
three second-moment closure models in an axisymmetric geometry. 

The objective of our work has been to compute the flow and thermal fields in 
an axisymmetric isothermal fully developed turbulent jet perpendicular to a flat 
uniform heat flux plate using the k - c - v2 model of Durbin (1995). To this end, 
the axisymmetric incompressible Navier-Stokes equations in conjunction with the 
standard k - c, the v2 transport, and the elliptic relaxation equations have been 
solved on a Cartesian grid. Several turbulent Prandtl numbers and realizability 
constants are examined. The results are compared with the experimental data 
of Baughn and Shimizu (1989), Lytle (1990), Baughn et al. (1991), Yan (1993), 
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Cooper et al. (1993), and Lytle and Webb (1994). For comparison, computations 
are also performed with the widely used standard k - c: model. The local heat 
transfer behavior of the jet for various jet to target distances is analyzed. 

2. Accomplishments 

2.1 The k - c: - v2 model 

The mean flow satisfies the Reynolds Average Navier-Stokes (RANS) equations, 
where the turbulent stresses are represented with an eddy-viscosity: 

The definition of the turbulent viscosity Vt needs the evaluation of one time scale, 
T, and one velocity scale. For the latter, the variable v2 has been introduced by 
Durbin (1993a) instead of the classical turbulent kinetic energy k used in the k - c: 
model, i.e. Vt = Cp.v2T. Physically, v2 might be regarded as the velocity fluctuation 
normal to the streamlines; note that it is not linked to the y-component of velocity. 
By arguing that the physical time scale cannot be smaller than the Kolmogorov time 
scale, Durbin (1991) derived the following expression which prevents liT becoming 
infinite at the wall: 

T' = min(~; 6( ~ )1/2) 
c: c: 

Moreover, Durbin (1996) recently studied the realizability constraint in the con
text of impinging flows, which is our motivation here, and fixed an upper bound for 
this time scale: 

( ,a k ) 
T = max T ----------= , 2V3 v2Cp.VS2 ' 

a ::; 1, S2 = SijSij 

a is a model parameter and comparison of our computations with experimental 
results have indicated an optimum value of 0.5 for the axisymmetric problem studied 
here. 

Three transport equations are used for computing the turbulent kinetic energy, 
k, the dissipation rate of turbulence, c:, and the new velocity scale, v2 : 

Vt 
Dtk = P - c: + V· ((v + -)Vk) 

Uk 
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P is the rate of production of turbulent kinetic energy, i.e. P = 2vt82. It should 
be noted that no damping functions are used in the model equations. The k and 
e equations are similar to the k .,... e model, except for the destruction term of e 
where e/k has been replaced by l/T. C~l has been chosen as a function of the 
distance to the closest boundary d in order to give suitable values of C;l for both 
turbulent boundary layer (C;l = 1.55) and plane mixing layer (C;l = 1.3), i.e. 

2 4 
C;l = 1.3+0.25/[1 + (d/2f) 1 . In the channel flow or boundary layer configuration, 
the term kh2 represents the redistribution of turbulent intensity (pressure-strain 
correlation) from the streamwise and spanwise components. For representing non
local effects, caused by the impermeability of solid boundaries, 122 is evaluated 
through an elliptic equation (Durbin 1991): 

Finally, by using the same approach as for the time scale (Kolmogorov length scale 
as a lower bound and realizability constraint for the upper bound), the following 
expression of the turbulent length scale can be derived: 

1 k3 / 2 

L = max(L', t7S y's2) 
y3v2 Cp. 8 2 

The constants of the model are (Durbin 1995): 

Ce2 = 1.9, Cp. = 0.19, C t = 1.4, C2 = 0.3, 

(lk = 1.0, (le = 1.3, CL = 0.3, CT! = 70.0 

2.2 Turbulent Prandtl number 

In the mean temperature equation, it is customary to substitute the eddy dif
fusivity of heat by defining a turbulent Prandtl number, which is the ratio of the 
momentum to heat eddy diffusivity. There is substantial experimental data available 
on the turbulent Prandtl number (Prt). These are primarily based on determin
ing the slope of T+ in the log-region of a flat plate boundary layer. For air, with 
a molecular Prandtl number of Pr = 0.71, the data ranges between Prt = 0.73 
and 0.92 (Kays 1994). The variation of the molecular Pr in the range of 0.7 to 64 
(i.e. gases and most liquids including oils and with the exception of liquid metals) 
does not strongly affect the turbulent Prandtl number, and according to Kays an 
approximate value of 0.85 is generally acceptable. 

There are also a number of analytically determined relationships for turbulent 
Prandtl number in the literature. Data from DNS of flow in ducts and external 
boundary layer flows have also been used to determine Prt. For instance, the DNS 
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results of Kim and Moin (1987) for fully developed flow of air in a duct indicate a 
Prt ~ 1.2 at the wall with a non-monotonic decrease to about 0.7 far from the wall. 
This behavior is in qualitative agreement with data based on experimental mea
surements in air, which according to Kays and Crawford (1993) can be represented 
with a relationship of the form 

1 
Prt =. 2 -5 165 

0.5882 + 0.228(vt/v) - 0.0441(vt/v) [1 - exp( (vt·lv) )] 

This formula yields a value of 1. 7 at the wall with a sharp decrease in its vicin
ity and an asymptotic value of 0.85 far from the wall. For the heated flat plate 
flow, computations of Durbin (1993b) adopting this formula and the widely used 
constant value of 0.9 have indicated a change of 10% in the Stanton number. In 
fact, these simulations have shown that the constant Prt value yields a marginally 
better agreement with experiments. 

Measurements of Prt in other geometries (e.g. jets) are rather rare. Chua and 
Antonia (1990) made measurements in a circular jet of air and showed a non
monotonic variation of Prt between 0.84 at the axis and 1.6 near the jet edge. 
They suggest a constant value of 0.81 in the region between the axis and the jet 
half-radius point. 

It is noted that there are a number of unresolved issues as far as the concept 
of turbulent Prandtl number is concerned (Kays 1994). Little work has been done 
on different geometries. Also, most of the available data is relevant to gases and 
there are very few measurements for higher Prandtl nlJ.mber liquids (e.g. dielectric 
liquids used for cooling of computers which have Prandtl numbers of the order of 
20). Perhaps DNS of these flows can be used in the future to provide the required 
data for modeling. 

We have examined the effect of Prt on the local heat tran;sfer coefficient. We 
have tested several widely used Prt values noted above: 0.73, 0.85, 0.92, and the 
Kays and Crawford formula. 

2.9 Available experimental data 

For the turbulent impinging jet, Cooper et al. (1993) have recently reported a set 
of flow measurements at two different Reynolds numbers (i.e. ReD = 23,000 and 
74,000); however, they did not make any heat transfer measurements. They note 
that the purpose of their experiments was to provide the hydrodynamic data for the 
heat transfer experiments of Baughn and Shimizu (1989) who measured the local 
heat transfer coefficient on a constant heat flux impingement plate. Baughn and 
Shimizu used a fully-developed jet striking a gold-coated plate which was painted 
by liquid crystals for temperature measurements and mappipg of the local heat 
transfer coefficient. They made their measurements for several jet-to-plate spacings 
(HID ~ 2). In a later study by Baughn et al. (1991), the same test rig was used to 
study the entrainment effects in a heated jet. They noted that their unheated jet 
results agreed with the earlier data of Baughn and Shimizu. 

Lytle (1990) also made heat transfer and flow measurements in an impinging air 
jet. He used an infrared thermal imaging system for temperature measurement 
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and the velocity was measured by an LDV system. The focus of this study was 
primarily on nozzle-to-plate spacings of less than one nozzle diameter. The results 
have been partly published in Lytle and Webb (1994). It is noted that the relative 
size of the impingement plate (compared to the jet diameter) in this study was 
smaller than that of Baughn's experiments. Yan (1993) developed a preheated-wall 
transient measurement method using liquid crystals. He made local heat transfer 
coefficient measurements on the impingement test rig used in previous Baughn's 
studies. Yan notes that there was good agreement between his measurements and 
those of Baughn using the steady state method. Lee et al. (1995) also used a 
test rig similar to Baughn's and made measurements at lower Reynolds numbers 
(ReD < 15,000). 

2.4 Simulation results and comparison with experiments 

A sketch of the problem and computational domain is shown in Fig. 1. All 
computations were performed using INS2D, a finite difference code in generalized 
co-ordinates developed at NASA Ames Research Center. The spatial discretization 
of convective terms was via the third order QUICK scheme. A fine, non-uniform 
Cartesian grid of 120 X 120 cells was used, with a high resolution near· the solid 
regions (i.e. the impingement and pipe walls). A mesh sensitivity was performed 
by doubling the grid; however, this changed the impingement region Nusselt number 
by less than 0.5%. Therefore, the 120 x 120 grid was considered adequate. For high 
aspect ratios (H / D ~ 10), a 160 by 160 grid was used. 

JET 
I 

D: 
• I .. 

H 

-r IMPINGEMENT SURFACE 

FIGURE 1. The geometry and computational domain. 

The computations were performed in two steps. First, a fully-developed pipe 
flow simulation was performed using 240 grid points in the radial direction. For 
this computation, the grid spacing was chosen such that there were 5 points located 
in the region of y+ ~ 5. This solution was then accurately interpolated and used as 
the inlet condition of the jet. For stability of the solution procedure and accuracy, it 
was necessary to include a sufficient length of pipe (of the order of 2 pipe diameters) 
in the computational domain; other investigators have made similar observations 



8 M. Behnia, S. Parneix & P. Durbin 

(e.g. Craft et al. 1993). This allows the upper computational boundary to be 
sufficiently distanced from the wall so that it does not affect the flow near the 
impingement surface. Also, the effect of the jet wall thickness on the flow can be 
properly modeled. A specified constant static pressure condition was used for the 
upper and right boundaries. We examined the effect of the right boundary location 
on the flow and thermal fields. It was noted that once this length was larger than 
(HI D+8), there was no noticeable effect on the flow field and local Nusselt number. 
For the thickness of the pipe-wall, we examined two values of 0.112D and 0.0313D 
corresponding to the experiments of Baughn and Shimizu (1989) and Cooper et al. 
(1993), respectively, and no noticeable difference was observed. As our main aim 
was comparison of the computed and measured Nusselt number, the former value 
was used for the computations. 

Simulations were performed for a fixed jet Reynolds number of Re D = 23,000 and 
various aspect ratios, 0.5 ~ HID ~ 14 using both the k - c and k - c - v 2 models. 
The k - c - v2 simulations required several hundred iterations for convergence (i.e. 
several minutes of CPU time on the NASA - Cray C90). In general, for the k - c 
simulations, the number of iterations had to be doubled. For the k - c model we 
used a damping function of the form Vt = 0.09kT[1- exp( -0.01 I k; I)], which yields 
similar behavior to the model of Launder and Sharma (1974). Craft et al. (1993) 
used the Launder and Sharma model for the same problem and our k - c predictions 
are similar to theirs. 

2.4.1 Preliminary computations 

The effect of the realizability constraint parameter a on the computational results 
was determined by using two different values (i.e. 0.5 and 1). For HID = 2, the 
computed local Nusselt number is compared with the measured data in Fig. 2a. It is 
noted that near the impingement region, a somewhat better agreement is obtained 
for a = 0.5, however, downstream of this region and for riD 2: 2, there is very 
little difference between the two predicted results. In this region, both values yield 
excellent agreement with the data. The experimental data indicate a dip in the 
N usselt number around riD = 1.5 with a second peak at around riD = 2. This 
behavior seems to be better represented by the simulation with a = 0.5, which is 
the value we chose to use for the computations. 

The effect of the turbulent Prandtl number, Prt, on the local Nusselt number for 
HID = 6 is shown in Fig. 2b. The results are not very sensitive to this parameter, 
in particular downstream of the impingement region. Considering the scatter in 
the experimental data, it is difficult to say which value of Prt more closely fits 
the data. In the stagnation region, both Prt = 0.92 and the Kays and Crawford 
formula are in excellent agreement with the measurements of Lytle and Webb but 
are slightly higher than the data of Baughn et al. Away from this region, as the 
flow becomes parallel to the plate and forms the wall jet region, the prediction with 
Prt = 0.73 follows the data of Baughn and Shimizu, Baughn et al., and Yan. In 
this region, all predictions are below the measurements of Lytle and Webb. One 
possible explanation for the higher values of Nusselt number measured by them, 
in particular in this region, can be their use of a shorter length plate because of 
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FIGURE 2. Effect of (a) the realizability constant and (b) Prt on the local Nusselt 
number; (a) HID = 2 and different realizability constants, a = 0.5 (--), a = 1.0 
(--- ); (b) HID = 6 and different Prt, Kays & Crawford (-- ), Prt = 0.73 
(--- ), Prt = 0.85 ( ........ ), Prt = 0.92 (---). Experimental data: x Baughn & 
Shimizu 89 (Re = 23750), CJ Baughn et al. 91 (Re = 23300), • Yan 93 (Re = 23340), 
&Lytle & Webb 94 (Re = 23000). 

their interest in smaller jet to plate spacings (HID). As the Kays and Crawford 
Prt formula yields a somewhat better agreement in the impingement region, we 
performed our simulations with this turbulent Prandtl number. 

2.4.2 Result~ for HID = 2 

The computed flow field for this case is shown by contours of the Stokes stream
lines in Fig. 3 (for clarity, only part of the domain is shown). At the nozzle exit, 
these are parallel to the jet axis, representing the potential core of the jet. Near 
the stagnation region, the flow decelerates in the axial direction and turns as ex
hibited by the sharp curvature in the streamlines. Past this region, and roughly for 
riD > 1.5, a radial wall jet parallel to the plate begins to form with a developing 
boundary layer. The ambient fluid outside the jet is entrained into the core with a 
developing shear layer separating the core and the ambient fluid. The entrainment 
is clearly evident by the curving of the streamlines outside the pipe towards the 
core of the jet. This leads to the formation of a recirculation region in the vicinity 
of the pipe-wall (a magnified view of this region is shown as an inset in Fig. 3). The 
features of the flow in this region are well captured by our computations, indicating 
a sufficient grid resolution around the exit of the nozzle and in the shear layer. 

Contours of the computed turbulent kinetic energy for both k - c - v2 and k - c 
models are shown in Fig. 4. The maximum value of k predicted by the k - c model 
is 80% higher than that of k - € - v2 • The location of this maximum, shown by 
the arrows on the figure, is in the stagnation region for the k - c, and at about 
r / D = 2 for the k - € - v2 • Further, the k - € - v2 model predicts that in the 
shear layer between the jet core and the outer entrainment region, there exists a 
region of high turbulent kinetic energy. The behavior predicted by the k - c - v 2 
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FIGURE 3. Streamlines for H / D = 2 computed with the k - c - v2 model (inset 
shows the magnified view of the flow near the pipe exit). 

model is qualitatively confirmed by the measurements of Lytle and Webb, who also 
noted an increase in the turbulent intensity away from the stagnation region. They 
attribute this to the interaction of the accelerating radial flow with the free-stream 
air. However, our computations suggest that it is due to increased production in 
the region of streamline convergence. 

k - c model k - c - v2 model 

= 

t t 
0.09 0.05 

FIGURE 4. Contours of turbulent kinetic energy for H / D = 2. 

For this aspect ratio, Craft et al. 1993 have made velocity measurements at vari
ous radial locations (this data was obtained from the ERCOFTAC 1996 database). 
A comparison of the measured velocity magnitude and our computations with the 
k - c and k - c - v2 models at four different radial locations are shown in Fig. 5. 
On the stagnation streamline (r / D = 0) there is very little difference between the 
two predictions, and quite good agreement with the experimental data is noted. At 
r / D = 0.5 the k - c model predicts lower velocities than the k - c - v2 , which yields 
a somewhat better agreement near the walL However, at this radia,llocation away 
from the wall, for x / D ~ 0.25, the k - c predictions are closer to the experimental 
value, whereas in the outer region, the k - c - v2 exactly follows the data. In the 
wall jet region, at r / D = 1, the k - c - v2 model correctly predicts the flow accel
eration, and there is excellent agreement with the data near the wall and a slight 
over-prediction in the outer region. At this radial location, the k - c model predicts 
low velocities in the wall region and high velocities in the outer region. Further 
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downstream, the How decelerates, and again the k - e - v2 model correctly predicts 
this behavior with a very good agreement with the experiment at r / D = 2.5. The 
k - e model does not correctly resolve the development of the boundary layer, lead
ing to an under-prediction of the velocity in the wall region and an over-prediction 
in the outer region. The failure of the k - e model to correctly resolve the behavior 
of the How is, perhaps, at least partly due to its prediction of high levels of turbulent 
kinetic energy in the stagnation region (see Fig. 4). 
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FIGURE 5. Profiles of the velocity magnitude at various radial locations [riD = 
o (0 ), 0.5 (0 ), 1 (0 ), 2.5 (6 )] for HID = 2, experimental data (Cooper et al., 
1993), --: k - e - v2 model, ---: k - c model. 

In the stagnation region, the spuriously high value of k predicted by the k - c 
model results in a significant over-prediction of the local N usselt number as seen in 
Fig. 6. In this model, the stagnation Nusselt number is about 200% higher than 
the measured value, whereas the k - e - v2 model prediction is only about 9% 
higher. Downstream of the stagnation region, the k - e N usselt number rapidly 
decreases and approaches the experimental and k - e - v 2 values. The experimental 
data indicate a dip in the local Nusselt number distribution around riD = 1.4 and 
a secondary maximum at around riD = 2. Some investigators (e.g. Lee et al. 
1995) have attributed the local maximum to transition from a laminar to turbulent 
boundary layer in the wall jet region. This is not supported by the measurements of 
Lytle and Webb, who note that there are relatively high levels of turbulence even in 
the stagnation region. It is believed that the increase in the turbulent kinetic energy 
away from the stagnation region (as observed by Lytle and Webb and predicted by 
the k - c - v2 model), where the shear layer of the jet directly interacts with the 
Hat plate, is responsible for this local increase of the Nusselt number. It appears 
that the data of Yan indicate a more pronounced local minimum of N usselt number 
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compared to the data of Baughn. Also, in the data of Yan, this point is shifted 
closer to the stagnation point with a somewhat lower lower value of the local Nusselt 
number in the region of rID < 1.5. The k - c - v2 model does not predict a local 
secondary maximum; however, it does show a deflection in the local Nusselt number 
distribution. It can be said that the agreement between the data and the k - c - v2 

computation is excellent in the regions of rID ~ 1 and rID ~ 1.8. 
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FIGURE 6. Distribution of local wall heat transfer coefficient for HID = 2, 
-- : k - c - v2 model, - - - : k - c model, experimental data (for symbol key 
see Fig. 2). 

2.4.9 Results for HID = 6 

The contours of the turbulent kinetic energy are shown in Fig. 7. The maximum 
value of k predicted by the k - c model is 66% higher than k - c - v2 • The location 
of this maximum, shown by the arrows on this figure, is in the stagnation region 
for the k - c, and at about rID = 1 for the k - c - v2 • 

A comparison of the predicted and measured local N usselt number is presented 
in Fig. 8. It is noted that in the impingement region there is a 25% scatter in 
the experimentally measured Nusselt number. The data of Lytle and Webb is 
consistently higher than measurements of others. The k - c model over-predicts the 
stagnation Nusselt number by about 150%, but the discrepancy gradually reduces, 
moving away from the impingement region. The k - c - v2 model prediction is in 
excellent agreement with the data of Lytle and Webb in the impingement region; 
however, in the wall jet region there is better agreement with the data of Yan. It is 
noted that unlike the lower aspect ratio results (HID = 2), there is no secondary 
maximum in the Nusselt number distribution. This is believed to be attributed to 
the fact that as the jet is moved further out from the impingement surface, the 
location of maximum k moves closer to the jet axis. This is supported by the 
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FIGURE 7. Contours of turbulent kinetic energy for HID = 6. 

computations with the k - c - v2 model, which predicts the location of this point 
at riD of 2 and 1 for aspect ratios of 2 and 6, respectively. 

2.4.4 Stagnation NU88elt number 

Simulations have been carried out for a constant Reynolds number (ReD = 
23,000) and a wide range of aspect ratios (0.5 ~ HID ~ 14) to determine the 
dependence of the stagnation N usselt number on HID. This dependence is cru
cial to many applications of impingement cooling. A comparison of the computed 
values with the experimental data is presented in Fig. 9. The k - c - v2 model 
predictions are in good agreement with the data. Also, experimental measurements 
(e.g. Baughn and Shimizu 1989, Yan 1993 and Lee et al. 1995) have indicated that 
for HID> 1, the stagnation Nusselt number exhibits a maximum value at around 
HID = 6. Our k - c - v2 computations confirm this finding and indicate that the 
maximum stagnation N usselt number is between HID of 6 and 7. This is attributed 
to the increase in the turbulent kinetic energy as the jet is moved away from the 
impingement surface. For instance, as previously discussed, the maximum of k at 
HID = 6 is higher than that of HID = 2. This is also supported by Kataoka et al. 
(1987), who show that turbulent intensity reaches a maximum at an aspect ratio of 
7. The measurements of Lytle and Webb also indicate that at lower spacing ratios, 
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FIGURE 8. Distribution of local wall heat transfer coefficient for HID = 6, 
-- : k - c; - v2 model, - - - : k - c; model, experimental data (for symbol key 
see Fig. 2). 

the stagnation Nusselt number goes through a local minimum at HID = 1, which 
is also correctly predicted by the k - c; - v2 model. 

The k-c; model substantially over-predicts the stagnation Nusselt number. It also 
indicates a behavior unlike the trend observed in the experiments and the k - c; - v2 

computations. Two local. maxima around HID of 3 and 5 with a local minimum 
around 4 are noted. At higher aspect ratios, the k-c; predictions gradually approach 
the measurements. 

3. Future plans 

The main aim of this research has been to accurately and economically predict the 
heat transfer rate in an impinging jet. The computations carried out to date have 
shown that the k - c; - v2 model predictions agree very well with the experiments, 
whereas the k - c; model, in general, does not properly resolve the flow features, 
highly over-predicts the rate of heat transfer, and yields physically unrealistic be
haviors. 

It is planned to perform additional two- and three-dimensional computations to 
cover a wider range of parameters, such as the geometry, Reynolds number, and 
Prandtl number. In particular, for electronic cooling applications, dielectric liquids 
in a confined jet geometry need to be explored. There are also some recently ob
tained experimental measurements of heat transfer from a heated pedestal being 
cooled by an impinging jet which will be used for comparison with future simula
tions. The understanding gained and the obtained results can be directly relevant. 
to the design and operation of a number of industrial and engineering applications. 
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By S. Parneix AND P. Durbin 

1. Motivation and objectives 

Many industrial applications in such fields as aeronautical, mechanical, thermal, 
and environmental engineering involve complex turbulent flows containing global 
separations and subsequent reattachment zones. Accurate prediction of this phe
nomena is very important because separations influence the whole fluid flow and 
may have an even bigger impact on surface heat transfer. In particular, reattaching 
flows are known to be responsible for large local variations of the local wall heat 
transfer coefficient as well as modifying the overall heat transfer. For incompress
ible, non-buoyant situations, the fluid mechanics have to be accurately predicted in 
order to have a good resolution of the temperature field. 

Much previous work on such phenomena has used the case of the backward facing 
step. The sudden expansion of a channel flow indeed gives rise to a simple geometry, 
but one that contains complex aerodynamic features such asseparation, a spreading 
shear layer, interaction of this shear layer with a wall, recirculation, and recovery 
of the reattached boundary layer. Moreover, a lot of databases are available from 
physical experiments to numerical simulations (DNS and LES): this makes for a 
good test case on which to validate turbulence models. 

In past years, various two-equation turbulence models have been tested and com
pared with the available experiments. The principal feature of models using wall 
functions is an underprediction of the recirculation length by about 15%. In fact, 
recent simulations or experiments show an important departure of the velocity pro
files from the law of the wall, not only in the recirculation, but also in the recovery 
region. A bad prediction of aerodynamics near the wall would have dramatic ef
fects on predictions of heat transfer. The low-Reynolds number cases show strong 
anisotropies, not only in the boundary layer, but also in the spreading shear layer 
and in the recirculation; any linear two-equation model would fail to reproduce this 
important feature of the flow. For this reason, and with the aim of future studies 
of flows involving buoyancy, curvature, or rotation, we decided to use a Second 
Moment Closure (SMC) approach, which intrinsically can take into account these 
phenomena. 

The closure of the Reynolds-stress equations consists partially in finding a model 
for the pressure-strain correlation which acts as a redistribution term between the 
Reynolds-stress components. Since the Launder, Reece and Rodi, 1915 (LRR) pa
per, a number of models have been proposed especially to take into account specific 
wall-behavior. However, all these models use a single-point closure and cannot actu
ally represent the well-known non-local effects of the pressure-reflection that occurs 
near solid boundaries. In order to model these latter effects and to avoid the use 
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of two-point correlations-which are not viable for non-homogeneous turbulence
Durbin (1993) applied an elliptic operator on the pressure-strain correlations. This 
approach has been tested on various simple flows and with successful results. More
over, it does not need the use of either wall functions, whose universality is more 
and more questionable, or damping functions, which often involve the "ill-behaved" 
distance to the wall and which can be highly non-linear and numerically stiff. 

The aim of this study is to study this modeling methodology by using a SMC
model calibrated in fully-turbulent channel flow to compute the low-Reynolds backward
facing step for which a complete Direct Numerical Simulation (DNS) database is 
now available (Le, Moin & Kim, 1993). We will see the performance and some 
discrepancies of the model. 

The present report also introduces a new a priori test: it consists in freezing 
some variables for which DNS statistical fields are used and solving differential 
equations for the others. We think that this technique will be very helpful to 
turbulence modelers because it is usually difficult to analyze the solution of the 
whole system of highly coupled equations. Since all the variables are non-linearly 
coupled, it is difficult, and maybe impossible, to find where problems come from 
by just looking at the solution of the full computation. At the same time, simple 
algebraic substitution of DNS data into formulas for pressure-strain, followed by 
comparison to the pressure-strain data, gives no information on the mathematical 
and computational properties of the turbulence model. The present approach is 
better suited to testing analytical closures. 

We will also present some ideas for improving the general model. 

2. Accomplishments 

2.1 Results of the basic model 

The flow was computed using a modified version of INS2D, a finite difference code 
in generalized coordinates written at NASA Ames Research Center. The modifi
cations involve subroutines to solve the turbulence model and the incorporation of 
Reynolds stress-gradients into the mean flow solver. 

A non-uniform grid of 120 x 120 cells, refined near the walls and around the 
corner of the step, was used to cover the region xlh = -3 to 35, x = 0 being 
the location of the sudden expansion and h being the step height. Our solution 
has been checked for grid-independence; a twice finer grid in both directions gave 
indistinguishable results. Inlet values for the mean velocities, Reynolds stresses, and 
dissipation were taken from the DNS database. The elliptic relaxation procedure 
of Durbin (1993) has been combined with the Speziale, Sarkar, Gatski (SSG 1991) 
pressure strain model in the 'neutral' formulation of Laurence et al. (1995). The 
resulting equations have been calibrated using DNS and experimental data for both 
channel flow and zero pressure gradient boundary layers. That model was directly 
applied to the backstep flow without further modification. All the equations and 
constants used for this computation can be found in the appendix of Parneix et al. 
(1996). 
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(a) (b) 

FIGURE 1. Streamlines: (a) Second moment closure; (b) DNS. 

Fig. 1 shows the predicted streamlines compared to the DNS data. One can 
observe that the reattachment length is very well predicted and a secondary bubble 
is found. The flow seems to have a correct behavior near the reattachment point: 
it does not show the anomalous streamline pattern that has been found in other 
computations (Hanjalic 1996). However, the size of this corner bubble is much 
smaller in the computation than in the data. This defect seems to be linked to an 
underprediction of the maximum friction coefficient in the backflow (cf Fig. 2a). 
By looking to the profiles of the streamwise mean velocity (cf Fig. 2b), one can 
observe that the overall features of the mean flow is reproduced, but the intensity 
of the backflow is missed by a factor of 2, which could be problematic for the 
prediction of near-wall heat transfer. Note that this specific problem seems to be 
common to every existing Second Moment Closure model, whatever near-wall model 
is used (low-Reynolds model or wall function). Note also that, as with all existing 
turbulence models including eddy viscosity models, the recovery after reattachment 
is too slow. The friction coefficient distribution shows similarities (too slow near-wall 
flow) both upstream and downstream the reattachment point, but we don't know 
yet if these two problems (too slow backflow and too slow recovery) are linked. 
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FIGURE 2. (a) Friction coefficient. --: full SMC; 0 : DNS (Le, Moin & 
Kim, 1993); .: experiment (Jovic & Driver, 1995). (b) U-profiles at locations 
x/h = 0.1 (0 ); 2 (0); 4 (0); 6 (t,); 8 (<1) and 10 (\7); symbols: DNS; lines: full 
SMC. 

Figures 3 to 5 present profiles of the computed normal component of the mean 
velocity V and statistics (Reynolds stresses UiUj, turbulent kinetic energy k, and 
dissipation of turbulence c:) compared to the DNS data. The V-profiles at x/h = 0 
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and 2 confirm the distribution of the friction coefficient: the intensity of the two 
bubbles is severely underestimated. By looking at the profiles before reattachment, 
one can observe that V is also underestimated in the shear layer by about 15%. 
In fact, all the problems can be linked together by noting that more entrainment 
in the shear layer would lead to a more intense main recirculation (and maybe 
also a more rapid recovery), leading to a bigger and more intense secondary bubble. 
However, a modification of the backflow would also change the pressure distribution 
and thereby influence the velocity distribution in the shear layer. 
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FIGURE 3. (a) V profiles (b) u 2 profiles (legends similar to Fig. 2b). 
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FIGURE 4. (a) v2 profiles (b) -uv profiles (legends similar to Fig. 2b). 

The statistics seem to be reasonably well represented by the model. However, 
u 2 shows a too slow recovery: the peak near the wall has not yet appeared at 
xjh = 10. Moreover, the model overestimates the gradients okjoy and ou2 joy at 
x j h = 2. The level of turbulence is too high at this important location, but k and 
u 2 do not enter directly into the momentum equations and should have a secondary 
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FIGURE 5. (a) k profiles (b) s profiles (legends similar to Fig. 2b). 

effect. Indeed, the main active terms in the turbulent force are (-Eruv / oy) for the 
U -equation and (-ov2 / oy) for the V -equation (cf. Figs. 10 and 11). Figure 4b 
shows an almost perfect distribution of uv, although a slight underestimation of 
the gradient (-fruv/oy) exists in the shear layer. The primary fault is that v 2 

is underestimated everywhere, especially in the shear layer where ov2 /oy is badly 
predicted. In fact, if one looks at the results of the following a priori tests (cf. 
Figs. 10 and 11), the conclusion will be exactly in the opposite direction (i.e. the 
problem comes from the uv-equation instead of the v2-equation). This is because, 
in the full computation, the gradients of mean flow are badly estimated in some 
regions, which alters the production term of uv and v 2 • So, without the method 
presented below for decoupling the model solution from the mean flow solutions, 
the problem cannot be tracked down. 

Finally, the dissipation, s, is very well simulated except in the near-wall region 
where one can notice an important underestimation, which is consistent with the 
fault found in the prediction of ok/oy. Nevertheless, similar comments may be 
made for s: a bad production term alters the overall analysis; the present a priori 
method is needed to truly assess the model differential equations. 

With all the equations coupled, it is difficult, maybe impossible, to know where 
the problem comes from by just looking to the solution of the full computation. 
The analysis of the full solution might suggest that one has to improve both the 
v 2 and s equations. However, the following study will prove that these equations 
behave sufficiently well, and that the uv-equation is the main problem. It should be 
pointed out that every other low-Reynolds SMC model or SMC computation with 
the logarithmic law of the wall underpredicts the backflow intensity. In order to 
obtain a precise understanding of this and to go further in the study of the DNS 
database, we generated a new technology for carefully testing each equation of the 
model. 

2.2 A new a priori technique for analyzing and improving turbulence models 

The standard way of analyzing a DNS database consists in using the full DNS 
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data to compute the distribution of some important variables like the turbulent 
Reynolds number Ret in order to understand the main physical features of the flow 
and to get some new ideas for modeling. Figure 6, showing Ret and the budget of 
the U-momentum equation in the middle of the recirculation (x / h = 4), presents an 
example of such a study. In their experiment, Jovic and Driver (1995) found that 
the minimum of C, follows a 'laminar-like' law: C, = -0.19(Reh)-0.5 -for Reynolds 
numbers between 5,000 and 50,000. However, Ret, which represents about ten times 
the ratio between the turbulent viscosity and the molecular viscosity (in the k - c 
model), is in the range 200 - 800 in the whole domain, including the bubble (of 
course, it goes down to 0 at the wall). If one is still not sure of the completely 
turbulent feature of this recirculation, it becomes obvious by looking at the U
momentum budget: at station x / h = 4, the Reynolds stress gradients predominate 
the viscous force in the whole bubble except very near the wall, far below the 
maximum of the reverse flow. 
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FIGURE 6. Direct analysis of the DNS database (a) Ret profiles at locations: 
x/h = 2 (0 ); 4 (0 ); 6 (¢ ); 8 (~ ); and 10 (x ). (b) U-momentum budget at 
station x/h = 4 (middle of the recirculation): 0 : convection; 0 : turbulent force; 
• : viscous force; ~ : pressure force. 

It is possible to go further in the investigation of a DNS database. Rodi & Man
sour (1993) directly used DNS data for testing turbulence models and looking for 
improvements. The idea was to introduce the DNS 'exact' data into the modeled 
equations and to analyze the differences with the corresponding 'exact' DNS terms. 
In particular, they showed that it was possible to find some efficient damping func
tions for improving the behavior of a k - c model near the wall. One important 
problem with such a technique is that, even if a 'perfect' equation is found for every 
term of the global budgets (which means that the modeled equation fits perfectly 
with the DNS data), the general convergence of the global system has not been 
included in the study, and the resulting model can be numerically unstable. More
over, such terms as dissipation or transport of Reynolds stresses are not well enough 
resolved, even by recent DNS, for an accurate and complete analysis term by term. 
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In order to avoid these problems, a new set of a priori tests has been generated. 
These consist in solving the full differential equations of each individual variable one 
by one, while the others are taken directly from the DNS database. This kind of 
computation allows a finer analysis of the true effects of terms like pressure-strain 
or transport models; it also permits more confidence in the numerical stability of 
eventual improved model terms. Moreover, an overall comparison between the full 
simulation and a priori tests explains why an analysis using only the full compu
tation may entail erroneous conclusions. For example, the results presented in the 
previous section could lead one to believe that the model has some problems in 
both v2 and c equations (c is often regarded as the weakest point of turbulence 
models), whereas the a priori tests show that discrepancies are mainly located in 
the uv-equation. To our knowledge, this idea was first applied by Hanjalic (1994) 
for I-D, fully developed channel flow. Although he did not discuss the method, his 
Fig. 13 was computed using the Reynolds stresses UiU j and the mean streamwise 
velocity U from the DNS of a channel flow, solving the c-equation. Hanjalic then 
tested different models. His tests were not extended to the other variables. The 
present report presents the first 2-D use of this technique. We have used the RANS 
code to obtain the solutions by this a priori technique. 

A first a priori test might concern the mean flow. As soon as the Reynolds stresses 
are interpolated from the DNS and are assumed to be exact, there is no longer any 
modelization in the momentum equations. A full RANS solution of the momentum 
and continuity equations would give 'perfect' mean flow profiles. Unfortunately, the 
DNS have been conducted with a too short channel (20 step heights downstream 
of the step) to allow our steady-state computations to converge. In fact, it is well 
known that, for the kind of outlet boundary conditions formerly used (constant 
pressure), a channel length of at least 30 step heights is needed to avoid reflections 
from the outlet boundary, making the computation unstable. However, the mean 
momentum equation demands that this particular computation will reproduce the 
DNS mean flow, so there is nothing to be learned from it. 

In order to describe in detail the methodology we used to test turbulence models, 
we will focus first on the k-equation: 

ok 
8t + U· \1k = P - c + \1. (v\1k) + DT (1) 

P is the rate of production of turbulent kinetic energy: P = -UiUjOjUi, DT is the 
transport term: DT = -Ok(kuk). All the other variables (i.e. U, V, c, and UiUj) 

are fixed by DNS data in the present test. Thus, (P - c) is a fixed source term 
for the k-equation. The solution of (1) basically will evaluate the efficiency of the 
model for the transport term DT (the only term which needs to be modeled). Two 
models are currently used in SMC computations: 
- the Daly-Harlow model (1970) with 0.20 ~ C;JH ~ 0.25: 

(2) 
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- the Hanjalic-Launder model (1972) with Ci!L = 0.11: 

HL 0 HL ok 0 (HL OUjUk 
DT = ~(CIL TUkUl~) + ~ GIL TUjUl-!}-) 

UXk UXI UXk UXI 

T being the time scale. 
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FIGURE 7. A priori test of the k-equation. (a) k-budget at x/h = 4 .• : pro
duction; x : dissipation; D : convection; t::. : transport; • : diffusion; --: a 
priori computation. (b) k-profiles. Legend similar to Fig. 2b; --: DH model 
(C~JH = 0.2); ---: DH model (C{!H = 0.25). 

In the full computation presented in the previous section, we used the DH model 
with C{!H = 0.20. We tested this model by the new a priori technique. The budgets 
(Fig. 7a) look perfect, but this does not mean that the model is accurate because 
(P - c) is fixed; convection is quite small, so at convergence any transport model 
would balance all the other terms and fall close to the DNS profiles. However, the 
resulting k-profiles, shown in Fig. 7b, could come out wrong. The figure emphasizes 
the effectiveness of the transport model. Surprisingly, the behavior of the DH model 
is excellent in this case (backstep at low Reynolds number), an increase of C{!H up 
to 0.25 giving even better results. In fact, the only discrepancy that has been found 
concerns the secondary recirculation (x/h = 0 and 2) where a severe overprediction 
has been obtained. This is not improved by modifying the C{!H constant. The 
more elaborated HL-type model improves the behavior in this region but performs 
poorly after reattachment (see profiles at x/h = 6 to 10, Fig. 9a). 

Another interesting a priori test that has been performed concerns the dissipa
tion c, which is usually considered as the weak point of any turbulence model. In 
fact, the generation of the e-equation relies mainly on intuition, so most of the 
shortcomings of turbulence models were thought to be in this equation - and most 
of the modifications of turbulence models were done to it. In this study, we used 
the 'primitive' equation, derived by Hanjalic & Launder (1972) with only two small 
modifications: e/k has been replaced by the inverse of the time scale l/T (Durbin 
1993), and an extra-production term was included into Cel for taking into account 
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FIGURE 8. A priori test of the e~equation (legend similar to Fig. 2b). 
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the wall effect (Parneix et al. 1996). We fixed all the other variables (i.e. U, V, k, 
UjUj) and solved this equation. Surprisingly, the results are very good, especially 
in the recirculation and recovery regions (Fig. 8). In these conditions, it is difficult 
to believe that only a modification of the e-equation will cure all the problems, and 
especially the underprediction of the backflow and the recovery. However, one could 
argue that the reattachment length is sensitive to the difference (Ge2 - Gel)' but 
this strong dependency seems to lie in the shear layer where the dependence of the 
growth of the shear layer on (G e2 - Gel) is well known. Concerning the behavior 
near the wall, the equation presented above seems to be more than sufficient for 
this case. 

Since we now think that e is no longer responsible for the backflow and recovery 
discrepancy, we come back to other modeled terms; first to the transport model. 
We saw that both DH and HL models perform very well in the shear layer but 
overpredict the turbulence in the near-wall region, which could affect either backflow 
or recovery. In these conditions, we tried to improve these predictions by generating 
a new model. One has then to revisit the third-moment equation: 

DtUjUjUk = - UjUjU101Uk - UiUkU101Uj - UkUjU101Ui 

+ UjUk01UjUI + UjUk01UjUI + UjUjl')IUkUl 

- OIUjUjUkUl 
(4) 

+ IIjjk + Djjk - ejjk 

The three last terms (pressure-deformation, viscous diffusion, and dissipation) are 
usually grouped together in a relaxation term, suggested by the corresponding Rotta 
approximation for the pressure-deformation in the second-moment equations: 

1 
IIj jk + Djjk - eijk = - GsTUjUjUk (5) 



26 s. Parneix. & P. Durbin 

By recourse to a Gaussianity assumption, the quadruple correlations are approxi
mated in terms of second order correlation: 

(6) 

By neglecting the convection and production terms, Hanjalic & Launder came up 
with their algebraic expression of triple correlations (see above). Daly & Harlow 
only retained the terms involving o/UjU j and approximated the other terms by 
modifying the constant. Note that their expression of triple moments itself is not 
invariant under permutation of the three indices, but the remaining transport model 
(cf. above) preserves the symmetry on two indices. If one no longer neglects the 
production terms (note that these latter show the proper slope at the wall, contrary 
to the DH and HL models), a linear system is then obtained that can be solved 
analytically. Unfortunately, the derived expression of triple correlations in terms 
of second moment and gradients of mean flow becomes messy and unfeasible for 
practical applications. When only OyU is retained (it has been checked to be the 
most important mean gradient everywhere in the domain), the correction D<;Jr (in 
addition to the HL model) in the k-equation is still too messy, but one main term 
can be emphasized: 

(7) 

with Sjj2 = 2Uju/O/UjUk + UkU/O/UjUj. By doing the same operation as Daly & 
Harlow (keeping the terms involving o/UjUj; i.e., O,UjUj for the k-equation), we 
derived the following expression for the correction of the DH transport model: 

DH 0 { 2 0Uk_OU jUj} (DT)ij = (DT )ij + ~ a(CsT) ~UnU/-!::I-
VXk VXn VXl 

(8) 

which becomes in the k-equation: 

(9) 

a = 0 leads to the classical DH model. Figure 9 presents the results we obtained 
with a = -0.8 and C s = 0.25. An important improvement in the prediction of k in 
the small bubble region (0 ::::; x/h ::::; 2) can be seen without significant modification 
of the profiles in the rest of the domain (see the difference between the classical DH 
model in Fig. 7b and the modified DH model in Fig. 9a). Unfortunately, when this 
new model was implemented in a computation, only 10% of the discrepancy con
cerning the friction coefficient minimum was found to have been cured (Fig. 9b). In 
fact, the flow field is really only improved around x/h = 2, where the improvement 
was also seen to be greatest during the a priori test. The backflow and the recovery 
do not show any specific modification. 

In conclusion, these results lead us to think that both k and c equations seem to 
represent quite well the physics of the problem (at least in this case!) and that the 
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FIGURE 9. A new transport model. (a) A priori k-profiles: legends similar to 
Fig. 2b for symbols; --: HL model; ---: modified DH model. (b) Friction 
coefficient: legends similar to Fig. 2aj ---- : full computation with modified DH 
model. 

backflow and recovery problems should come from other equations of the model, 
i.e. the Reynolds-stress equations. 

We repeated the same kind of a priori tests for each uiuj-equation, coupled to 
its associated elliptic operator for the pressure-strain correlation. We have already 
explained the interest of doing such tests: indeed the uv-profiles obtained through 
the full computation seem to be almost perfect whereas the a priori test (with u 2 , 

v2 , U, V, k, and £ fixed to their DNS value) shows an overprediction of -uv almost 
everywhere. We tried to be even more pragmatic by computing those a priori 
turbulent stresses that will directly effect the mean flow. So, u2 (resp. uv and 
v2 ) have been solved giving the a priori turbulent force -ou2 /ox (resp. -auv/ox, 
-auv/oy and -ov2 /oy). 
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FIGURE 11. A priori turbulent force acting in the V -momentum equation (legends 
similar to Fig. 10). (a) resolution of the uv-equation with u2 , v2 , k, £, U and V 
fixed, (b) resolution of the v2-equation with u2 , uv, k, £, U and V fixed. 
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FIGURE 10. A priori turbulent force acting in the U-momentum equation at 
locations: xlh = 0.1 (0 ); 2 (0); 4 (0 ); 6~; 8 (<1); and 10 (VLSymbols: DNS, 
--: a priori test. (a) resolution of the u2-equation with uv, v2 , k, e, U and V 
fixed, (b) resolution of the uv-equation with u2 , v2 , k, e, U and V fixed. 

We kept the same scaling in each figure (lOa, lOb, 11a, 11b) in order to be able 
to compare the effective action of each stress on the momentum budget. At every 
location (except maybe near the corner of the step), the streamwise gradients are 
negligible. The turbulent force mainly results in -auv lay in the U -equation and 
-av2 lay in the V-equation. One conclusion is that u2 has a secondary effect on the 
mean flow. By looking at the normal gradients (alay), one can notice a peculiar 
behavior at the corner of the step. The DNS trends are not at all reproduced in this 
region but this deficiency seems to stay local and to have little influence on the rest 
of the domain; the kink we can see at location xlh = 0.1 has not been transported 
further (xlh 2: 2). Nevertheless, a more careful study should definitely be done in 
the corner area. 

With the exception of this problem, v2 is accurately predicted (cf. Fig. 11b), 
the only discrepancy can be found near the wall beyond the reattachment point at 
x I h = 4 and 6 (slight underprediction of the gradient), but this should not affect 
directly the mean flow because, at this location, the flow is nearly parallel to the 
wall (V is basically equal to 0). However, locations xlh = 4, 6, and 8 of Fig. lOb 
show an overprediction of the turbulent force acting in the U -momentum by a factor 
of 2 around the reattachment point in the region where lies most of the backflow 
(Ylh ::; 0.15). In this area, U is negative and the turbulent force (which is one of the 
main terms in the U-momentum budget, see Fig. 6b) acts to slow down the flow, 
thus the overprediction by a factor of 2 should explain the severe underprediction 
of backflow we obtained with the full SMC computation. Let us note that the 
model seems also to be deficient in the recovery region (overprediction of -auv lay) 
but this defect appears in a thinner region; moreover, U is positive here and the 
turbulent stress is then acting as a positive force. In these conditions, a decrease 
of -auv lay should slow down the flow in a region where the flow itself has already 
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been too slow. The origin of the recovery problem still has to be found. 

3. Future plans 
A full second moment closure computation has been carried out for evaluating 

the turbulent flow over a backward-facing step at low Reynolds number (Re = 

5,100). The model, including elliptic relaxation of pressure-strain to take into 
account the non-local effects of pressure near to walls, has been calibrated solely 
with channel flow and zero pressure gradient turbulent boundary layer data at 
various Reynolds numbers; it has been directly applied to the backstep without any 
modification. The results show a very good prediction of the recirculation length 
but an underprediction of the backflow by a factor of 2. The recovery has been seen 
also to be too slow. 

An analysis of the corresponding DNS database proved that the main bubble is 
definitely turbulent even at this low Reynolds number. A new technique of a priori 
testing with DNS data has been developed; it consists, basically, in evaluating the 
accuracy of each equation of the model by solving one variable while fixing all the 
others to their DNS values. It came out that both Daly-Harlow transport model for 
k, and the c:-equation do surprisingly well, contrary to what is generally thought in 
the literature. 

Regarding the Reynolds stresses, UiUj, u2 has a secondary effect on the mean 
flow because the streamwise gradients occurring in the turbulent force (-ou 2 j ox 
and -fJUtj j ox) are negligible compared to the normal gradients (-fJUtj joy and 
-ov2 joy). In fact, the main problem seems to come from the uv-equation, which 
gives an overprediction of the turbulent force by a factor of 2 in the backflow region. 

In the future, we would like to focus on the uv-equation in order to find the model 
term that is deficient and to propose an improved model. 

Improving the model with the help of this new testing technique, and getting the 
right distribution of friction coefficient in the backflow region, will best prove the 
efficiency of this novel method for turbulence modelers. 

In the meantime, we plan to apply the idea of elliptic relaxation on other config
urations, including both 2D and 3D geometries. Moreover, at this time, the global 
numerical stability of Re-stress modeling is still an issue, and some improvements 
in this domain are still needed. 
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A particle representation model for the p'2."2. 
deformation of homogeneous turbulence 

By S. C. Kassinos AND W. C. Reynolds 

1. Motivation and objectives 

In simple flows, where the mean deformation rates are mild and the turbulence 
has time to come to equilibrium with the mean flow, the Reynolds stresses are 
determined by the applied strain rate. Hence in these flows, it is often adequate to 
use an eddy-viscosity representation. The modern family of k-€ models has been very 
useful in predicting near equilibrium turbulent flows, where the rms deformation 
rate S is small compared to the reciprocal time scale of the turbulence (€Ik). 

In modern engineering applications, turbulence models are quite often required 
to predict flows with very rapid deformations (large Sk/€). In these flows, the 
structure takes some time to respond and eddy viscosity models are inadequate. 
The response of turbulence to rapid deformations is given by rapid distortion theory 
(RDT). Under RDT the nonlinear effects due to turbulence-turbulence interactions 
are neglected in the governing equations, but even when linearized in this fashion, 
the governing equations are unclosed at the one-point level due to the non-locality 
of the pressure fluctuations. 

A good turbulence model should have a viscoelastic character, predicting turbu
lence stresses proportional to the mean strain rate (k-€ theory) for slow deformations 
and stresses determined by the amount of strain (RDT) for rapid deformations. Our 
goal has been the development of an engineering one-point model of turbulence that 
has this character. Our belief is that the greater modeling challenge is found in 
matching RDT when RDT applies. Hence our initial efforts were directed in con
structing a good one-point model for RDT (Kassinos and Reynolds 1994).t Given a 
successful RDT model, we believe its blending with k-€ theory should be relatively 
straightforward. The success of the extended particle representation model (PRM) 
that will be discussed shortly provides justification for this point of view. 

In a particle representation method, a number of key properties and their evo
lution equations are assigned to hypothetical particles. The idea is to follow an 
ensemble of "particles", determine the statistics of the ensemble, and use those as 
the representation for the one-point statistics of the corresponding field. 

The key innovation in the original PRM approach presented in KR lies in the 
recognition that the linearity of the RDT governing equations makes it possible to 
emulate exactly the RDT for homogeneous turbulence using a PRM without any 
modeling assumptions. The non-local pressure effects can be evaluated within the 
framework of the PRM itself with no modeling assumptions. The PRM can be used 

t Hereafter denoted by KR. 
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to evaluate all the one-point tensors needed in turbulence modeling, including the 
new structure tensors (see KR), but unlike spectral methods provides no two-point 
information. However, the PRM does provide information about the directional 
dependence of the real part of the spectrum of homogeneous turbulence. In that 
sense this method provides closure of RDT at minimum additional expense relative 
to a one-point approach. 

The PRM has been used as the basis for the development of a viscoelastic one
point structure-based model of turbulence. Initially, the PRM was restricted to 
rapid mean deformations because our goal was to use it in developing a one-point 
model for the RDT of homogeneous turbulence (see KR). The development of the 
rapid one-point structure-based model has been completed with success, and we 
have recently been working on the extensions of the model to weak deformation 
rates and inhomogeneous flows. Towards that goal, we have extended the particle 
representation model to account for the non-linear turbulence-turbulence interac
tions that are important when the mean deformation is slow. This preliminary 
report discusses this Interacting Particle Representation Method (IPRM). As will 
be shown, the IPRM provides surprisingly accurate predictions for the one-point 
statistics in homogeneous turbulence subjected to a wide range of mean deforma
tions. The IPRM is a viscoelastic structure-based model that bridges successfully 
RDT with k-e theory. The success of the IPRM provides support to the idea that it 
should be easy to make a good model of RDT match k-e theory when appropriate, 
and offers guidance in improving the slow extensions to the one-point structure
based model. 

2. Accomplishments 

In Sections 2.1 and 2.2 we introduce the basic RDT equations and the key ideas 
behind the PRM for the exact emulation of RDT. Then in Section 2.3, we present the 
formulation of the model for the non-linear particle-particle interactions (IPRM). 
In Section 2.4 we evaluate the IPRM for a wide range of mean deformations applied 
to homogeneous turbulence. 

2.1 The basic RD T equations 

The discussion is restricted to inviscid RDT because for the large eddies that con
tribute the most to the Reynolds stresses viscous effects are usually negligible, but 
this restriction can be removed. For the inviscid RDT of homogeneous turbulence, 
the fluctuating continuity and momentum equations are given by, 

(1) 

and 

aU~ u au~ G' 1, 
!:I.J. + i-a = - iiuJo - -Pi· 
uc Xj P , (2) 
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Here standard tensor notation is employed (subscripts after commas denote differ
entiation), Ui is the mean velocity, Gij = Ui,j is the mean velocity gradient tensor, 
and p' is the rapid part of the pressure fluctuations 

1 I G I -p mm = -2 mnun m • p , , (3) 

We introduce the turbulent stream function vector defined by 

I .T,I u· = €its'J.' t a s, w~· =0 a,a 
.T,I I 
'J.'i,nn = -Wi· (4) 

We require w~ to be divergence-free so that the last equality in (4) is valid. This 
choice is important for the physical meaning of the resulting structure tensors in
troduced by Kassinos and Reynolds (see KR). Here w~ denotes the components of 
the turbulent vorticity vector. Note that w~ satisfies a Poisson equation and hence 
like the fluctuation pressure carries non-local information. 

2.1.1 One-point structure tensors 

The Reynolds stress tensor and the associated non-dimensional and anisotropy 
tensors are defined by 

R .. - U'U
' 

- €. € .• T,I .T,I 
I) - i j - apq )ts 'J.' q,p 'J.' s,t , - 1 {; rij = rij - '3Vij . (5) 

Here q2 = 2k = Rkk. Introducing the isotropic tensor identity (Mahoney 1985) 

€ipq€jts = 8ij8pt8qs + 8it8ps8qj + 8is8pj8qt - 8ij8ps8qt - 8it8pj8qs - 8is8pt8qj (6) 

and assuming homogeneity, one finds 

Rij + w~ i w~ j + w~ k wj k = 8ijq2 . 
~~ 

D/j F/j 

(7) 

The constitutive Eq. (7) shows that for a proper characterization of non-equilibrium 
turbulence the componentality information found in rij must be supplemented by 
structure information found in the one-point turbulent structure tensors Dij and 
Fij introduced by KR [see Eq. (7)]. In addition to the basic definitions of these 
tensors that appear in (7), one can use equivalent representations for homogeneous 
turbulence in terms of the velocity spectrum tensor Eij(k) and vorticity spectrum 
tensor Wij(k). These are as follows: 
• Structure dimensionality tensor 

(8) 

• Structure circulicity tensor 

(9) 
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Here Fij(k) = k2 q,iq,; is the circulicity spectrum tensor, which is related to the 

vorticity spectrum tensor Wij(k) = WiW; through the relation 

T .. (k) = Wij(k) 
.rl} k2 ' 

The familiar rapid pressure-strain-rate term is given by 

(10) 

where the fourth-rank tensor M is given by 

J kpkq 3 
Mijpq = VEiik) d k. (11) 

2.2 A particle representation of the RDT of homogeneous turbulence 

The key innovation in the PRM approach of Kassinos and Reynolds (see KR) 
lies in the recognition that the linearity of the ROT governing equations makes 
it possible to emulate exactly the ROT for homogeneous turbulence using a PRM 
without any modeling assumptions. The non-local pressure effects can be evaluated 
within the framework of the PRM thus providing closure. This is unlike traditional 
particle representation approaches employed by the combustion community. In 
these traditional particle representations, usually in the form of POFs, modeling 
assumptions are introduced at some level, usually to account for the effects of the 
fluctuating pressure gradient and molecular viscosity on the evolution of the particle 
velocity. One can take moments of the governing stochastic evolution equations to 
form equations for one-point statistics, like the Reynolds stresses. To each assumed 
stochastic model corresponds an equivalent one-point Reynolds Stress Transport 
(RST) model. Hence, it was common to assume a stochastic model that would 
produce one of the standard RST models, but in this way modeling was introduced 
where it was not needed, i.e. in matching ROT. 

Next, we present the basic ideas behind the PRM for the emulation the ROT 
of homogeneous turbulence. A more detailed discussion of the rapid PRM can be 
found in KR. 

2.2.1 Particle properties 

We start with a discussion of the properties assigned to each of the hypothetical 
particles and a geometrical interpretation of the "particles". The assigned properties 
are: 

• V velocity vector 
• W vorticity vector 
• S stream function vector 
• N gradient vector 
• P pressure. 
These hypothetical particles represent an idealized building block for the tur

bulence structure. As shown in Fig. la, each particle corresponds to a plane of 
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independence. The vector N, which is normal to the plane of independence, pro
vides a measure of gradients normal to the plane. The remaining vectors lie in the 
plane of independence. Thus, each particle represents a 1D-IC flow, similar to a 
vortex-sheet. 

2.2.2 Vector identities between properties 

We now turn to the vector identities that relate the basic properties assigned to 
each particle. These identities are motivated by the relationships that exist between 
the various vectors in a field of turbulence. In fact as it is next shown, a one-to-one 
correspondence exists between the field and PRM identities. 

The three vectors V, N, and W form an orthogonal triad. The stream function 
vector S is related to W through the algebraic equation 

(12) 

which is motivated by the Poisson Eq. (4). As a result of (12), we will often consider 
the vectors V, N, and S as the basic orthogonal vector triad (see Fig. la). 

In a turbulence field, the fluctuation velocity is the curl of the fluctuation stream 
function [see ( 4)1 j therefore the vector V is related to Sand N through the analogous 
algebraic equation 

(13) 

Equation (13) is a manifestation of the mutual orthogonality of the three vectors 
and can be used to show that 

(14) 

where N2 = NiNi, V2 = ViVi, and S2 = SiSi. Note that (14) is the PRM analog 
of the constitutive Eq. (7). 

The corresponding property unit vectors are denoted by lower case letters, that 
IS 

Vi 
Vi =-

V 
(15) 

Using (15), the constitutive Eq. (14) can be put into the form 

(16) 

This is a direct consequence of the orthogonality of the three unit vectors v, s, and 
D. Equation (16) forms the basis for a number of identities relating higher products 
of property components. 

2.2.9 Property evolution equations 

We now turn to the evolution equations for the properties of each particle. The 
evolutions of Wand N are governed by ordinary differential equations. The evo
lutions of V and S are determined through the algebraic Eqs. (12) and (13) that 
relate V and S to Wand N. 
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N 

"Particle" 

s 

(a) 

Particle Cluster 

(b) 

FIGURE 1. Particles used in the PRM: (a) The geometry associated with a 
hypothetical particle. (b) A cluster of particles forming ID-2C flow. 

A kinematic analysis of the motion of a plane of independence (vortex sheet) in a 
uniform mean deformation field (see KR) leads to the RDT evolution equation for 
N 

(17) 
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The RDT equation for W is based on the exact RDT equation for the evolution of 
the fluctuating vorticity in homogeneous turbulence, and is 

(18) 

The vector S is related to W through (12), which is analogous to the Poisson Eq. (4) 
connecting the turbulent vector stream function 'IIi to the fluctuation vorticity wi. 
Using the definition (12) and the evolution equations (17) and (18), one can derive 
the evolution equation for S 

(19) 

As a consequence of (13), (17), and (19), one finds that the RDT evolution 
equation for V is 

(20) 

The Poisson equation for the rapid pressure (3) is the basis for the analogous defi
nition 

VmNk 
P=-2GkmN2' 

which then allows (20) to be written as 

(21) 

(22) 

by analogy to the mean momentum equation. Note that the definition of a pressure 
in this context is optional and motivated by the desire to preserve the similarity of 
the basic PRM evolution equations to their field counterparts. 

Equations analogous to the continuity equation and divergence-free vorticity con
dition, 

(23) 

are satisfied because V and Ware perpendicular to N. 
Note that one can evolve V and N with differential equations independently of 

any of the remaining variables and that the equations for the particle properties 
have a one-to-one correspondence with the comparable equations for the fields. 
The equivalence between the particle representation and the RDT field equations is 
discussed in detail in KR, where it is shown that N corresponds to the wavenumber 
vector k. 

The evolution equations for the normalized gradient vector n will play an impor
tant role in the discussion that follows. This can be derived using the definition 
(15) along with (17) and is given by 

(24) 



38 s. C. K assinos & W. C. Reynolds 

2.2.4 Representation of one-point statistics 

In this section we introduce the representation for the one-point statistics of the 
turbulence field in the context of the PRM. The Reynolds stress Rjj = u~uj is 
represented as 

(25) 

where the angle brackets denote averaging over an ensemble of particles. The 
structure-dimensionality Dij = W~,iW~,j and structure circuli city Fij = W~,n wj,n 
tensors are represented as . 

Dij = (SnSnNiNj) = (V2njnj) Fij = (NnNnSjSj) = (V2SiSj). (26) 

Similar representations exist for higher-rank tensors. For example, the representa
tion for the fourth-rank tensor M [see (11)] appearing in the rapid pressure-strain
rate term is given by 

-Mijpq = (ViVjnpnq) = (V2ViVjnpnq). 

2.2.5 PRM implementation: cluster-averaged method 

(27) 

Unless the evaluation of higher vector moments is required, the cluster-averaged 
implementation of the PRM described here should be preferred because it offers a 
better computatioual efficiency (see KR). The idea in the cluster-averaged method 
is to do the averaging in two steps, the first step being done analytically. 

First, an averaging is done over particles that have the same net), followed by an 
averaging over all particles with different net). The one-point statistics resulting 
from the first (cluster) averaging are conditional moments, which will be denoted 
by 

The conditionally averaged stress evolution equation 
• In In In In In 

Rij = -GikRkj - GjkRki + 2Gkm(Rimnkn j + Rjmnkni) (29) 

is obtained by using the definition (28) along with (21) and (22). Note that (24) 

and (29) are closed for the conditional stress tensor R~j and ni. That is, they can 
be solved without reference to the other conditioned moments. Thus, to follow the 
evolution of Rij, instead of following a large number of particles that carry V and n 
with simple evolution equations (direct method), we can follow a smaller number of 
particle clusters that carry R ln 

andn with only slightly more complicated evolution 
equations. These particle clusters correspond to 1D-2C vortical flows (vortex sheets) 
as shown in Fig. lb. The conditioned stresses must satisfy R~;np = 0 and this 
property will be maintained by (24) and (29) if it is initially true. Note that it is 

unnecessary to evolve the conditioned F~; equation, since the constitutive Eq. (14) 
• In In 

can be used to obtam Fij (and hence Fij) from the evolved Rij and ni. 
Finally it is important to appreciate that the choice of n as the cluster vector 

to be evolved in the cluster-averaged method is important. Unlike the evolution 
equations for the ( In) conditioned moments, the equations for the ( Is) and ( Iv) 
moments are not closed and require modeling. 
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2.9. The interacting particle representation model (IPRM) 

When the time scale of the mean deformation is large compared to that of the 
turbulence, the nonlinear turbulence-turbulence interactions become important in 
the governing field equations. In the context of the IPRM, these nonlinear processes 
are represented by particle-particle interactions. As in the case of the one-point 
field equations, the nonlinear processes cannot be evaluated directly and modeling 
is required. Because some modeling must be introduced, the emulation of the 
field equations by the IPRM is no longer exact, which was the case for the PRM 
emulation of RDT. 

2.9.1 Formulation of the slow model 

Here we present· what we have termed the Interacting Particle Representation 
Method (IPRM). The basic idea behind the IPRM is simple. The overall effect 
of the background particle-particle interactions on any given particle is modeled 
in two parts. The first part, which we call the effective gradient model, assumes 
that the background particle-particle interactions provide a gradient acting on the 
particles in addition to the mean deformation rate. The assumption is that the 
effective deformation rate can be expressed in terms of the mean deformation rate 
and statistics based on the particle ensemble thus providing closure. 

The second part of the particle-particle interaction model accounts for rotational 
effects. Mean rotation acting on the particles tends to produce rotational random
ization of the V vectors around the n vectors (see KR). Effective rotation due to 
particle-particle interactions should also induce a similar randomization effect. We 
have found that best results are obtained when this slow rotational randomization 
effect is modeled explicitly. 

Different models for the effective eddy deformation tensor are possible, and we 
are still exploring some of these options. Here we report one such model that we 
have found to produce excellent results for irrotational mean strain and good results 
for homogeneous shear, and the elliptic streamline flows (Blaisdell & Shariff 1994). 
We are using this IPRM as a guide in extending the structure-based model to flows 
with weak mean deformation. 

Direct numerical simulations (see Kassinos & Reynolds 1995) show that under 
weak strain the structure dimensionality D remains considerably more isotropic 
than do the Reynolds stresses R. Hence we modify the basic equations (17) and 
(22) for the evolution of the particle properties to account for these effects: 

dNi = - GkiNk dt (30) 
"--" 

effective gradient 

dVi = - Gik Vk dt ---effective gradient 

+ P Ni dt - Cl Vi dt - C2 V fjpqdWpnq . 

The effective gradients are given by 

cn 
Gij = Gij + -nkdkj 

T 

, ! 
v 

slow rotational randomization 

(31) 

(32) 
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Here Gij = Ui,j is the mean gradient tensor, and T is the time scale of the turbulence, 
which as explained below is evaluated so that the dissipation rate ePRM in the 
IPRM [Eq. (39)] matches that obtained from a standard model equation for e. The 
constants CV and cn are taken to be en = 2.2Cv = 2.2. The different values 
for these two constants account for the different rates of return to isotropy of D 
and R. However, note that the same tensor rikdkj accounts for the effective eddy 
deformation rate seen by both Ni and Vi. 
The slow rotational randomization (SRR) model provides a random rotation of the 
V about the n vector such that the orthogonality of the two vectors is preserved. 
The "stochastic" character of this correction is introduced through the Wiener pro
cess dWi(t) (see Kassinos and Reynolds 1995, Durbin and Speziale 1994). The 
increments of the Wiener process are steps of the random walk and provide Gaus
sian white-noise forcing (Arnold 1974). The properties of these increments are 

(33) 

The second property in (33) shows that the Wiener process has magnitude dW = 
O(dt)1/2; therefore dWi/dt is not defined as dt _ O. Hence, in order to evaluate 
d(KVj)/dt, we first form the product 

d(ViVj) = (Vi + dVi)(Vj + dVj) - ViVj. (34) 

One can use (31), (33), and (34) to form the cluster-averaged equations (see Section 
2.2.5) 

(35) 

(36) 

We require the that rotational randomization model leaves the conditional energy 
unmodified. This requires that C1 = Ci, and hence using dimensional considera
tions we take 

0* = JOkOk (37) 

Note that the rotational randomization coefficient Cr is sensitized to the orientation 
of the n vector so that the effective rotational randomization vanishes whenever the 
large-scale circulation is confined in: the plane normal to n. This effect is similar to 
the material indifference to mean rotation condition, which requires the rotational 
randomization to vanish whenever Oknk = O. By definition Cr ~ 0 and this property 
is satisfied by Jpqnpnq > 0 because f;j is positive definite. 
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The pressure P is determined by the requirement that VkN k = 0 is maintained 
by (35) and (36). This determines the effects of the slow pressure strain-rate-term 
without the need for further modeling assumptions 

(38) 

The rate of dissipation of the turbulent kinetic energy k = ~q2 that is produced by 
the IPRM Eq. (36) is given by 

(39) 

To complete the IPRM we use the standard model equation for the dissipation rate 
( €) with a rotational modification to account for the suppression of € due to mean 
rotation, 

€ = _CO(€2/q2) - CsSpqrpq€ - Co vlOnOmdnm €. (40) 

Here OJ is the mean vorticity vector, and the constants are taken to be 

Co = _131 Cs =-3 and Co = 0.01. 

We choose the time scale T so that €PRM = €. This requires that 

(41) 

2.4 Evaluation of the IP RM 

In this section, the IPRM given by (35), (36), (40), and (41) is evaluated for 
five independent homogeneous flows. The evaluation of the IPRM for rapid mean 
deformation (large Sk/€) is reported in detail in KR, where it is shown that given 
enough particles, the IPRM reproduces the exact RDT results. Therefore, in this 
section, we report only on the performance of the IPRM for flows involving weak 
mean deformation (small Sk/€), where the nonlinear interactions are important. 

2.4.1 Homogeneous shear in a rotating frame 

We first consider the problem of homogeneous shear in a rotating frame. The 
mean velocity gradient tensor Gjj, the frame vorticity of, and frame rotation rate 
OJ are defined by 

(
0 S 0) 

Gij = 0 0 0 , 
000 

(40) 

We consider initially isotropic turbulence with 

k = ko, (41) 
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First, we consider the case of homogeneous shear in a stationary frame (Of = 
0) with an initial Sko/eo = 2.36. The IPRM predictions for the components of 
the normalized Reynolds stress tensor Tij are shown in Fig. 2. The symbols are 
from the direct numerical simulation (DNS) of Rogers and Moin (1986), which also 
had Sko/eo = 2.36. The agreement between the IPRM predictions and the DNS 
results is good, but the IPRM somewhat overpredicts TU and underpredicts T22. 

Figure 3 shows the evolution of the dimensionless parameters P / e and S k / e. Again, 
the IPRM predictions (lines) are in good agreement with DNS results (symbols), 
especially in the period 8 ;S St ;S 15 where the DNS was fully developed. The same 
equilibrium values are predicted for the two dimensionless parameters by both the 
DNS simulation and the IPRM. As shown in Table 1, the equilibrium state predicted 
by the model is also in reasonable agreement with the experiments of Tavoularis & 
Karnik (1989). 

0.8 r---~---'r--------r-------' 

0.6 

0.4
r ~ • 

• • • • 
V-f--~ __ !._ 

.......... -..!---~--!.--~-
0.2 ...... ~~~~~~~_! ____ • __ ~_. ____ II. ____ !_ 

0.0 1'. 

" -0.2 .-.----.---.---... --- ....... ---+---... -
o 5 10 15 

St 

FIGURE 2. Time evolution of the normalized Reynolds stress tensor Tij = Rij / Rkk 

in homogeneous shear flow (Sko/eo = 2.36). Comparison of the IPRM predictions 
(lines) with the direct numerical simulations (symbols) of Rogers and Moin (1986); 
11 component (- , • ), 22 component (---- , .),33 component (---- , A), 
12 component (_.- , .). 

The solution in the case of homogeneous shear in a rotating frame depends on 
the initial conditions only through the dimensionless parameter Sko/eo and on the 
frame vorticity through the dimensionless parameter Of / S (Speziale et al. 1991). 
The value of Of / S determines whether the flow is stable in which case k and e decay 
in time, or unstable in which case both k and e grow exponentially in time. 

The effect of the ratio Of / S on the time evolution of the normalized kinetic energy 
k/ko is shown in Fig. 4. In the absence of DNS or experimental data, we evaluate 
the model performance using the large-eddy simulations of Bardina et al. (1983). 
Note that the model captures the general trends correctly. For example, it correctly 
predicts that the highest rate of growth (for both k and e) occurs for oJ = 8/2, 
which RDT shows is the most unstable case. It also predicts a weak rate of decay 
for the case 0 1 = S and a decay (relaminarization) for Of = - S. The numerical 
agreement with the LES is reasonable, but the model tends to predict somewhat 
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FIGURE 3. Time evolution of the nondimensional parameters Skle (-- , • ) 
and Pie (----, _) in homogeneous shear flow. IPRM predictions (lines) are 
compared to the DNS (symbols) of Rogers and Moin (1986). 

lower rates of growth, particularly so in the case 0/ = 0.5S. This problem is also 
common to all the currently available second-order closures as noted by Speziale 
et al. (1989). However, a detailed comparison of numerical values is probably not 
meaningful in this case because the reported LES results came from the filtered 
field only. 

2.4.2 Irrotational axisymmetric strain 

Next, we consider the performance of the IPRM for two cases of axisymmetric 
contraction and two cases of axisymmetric expansion. The mean velocity gradient 
tensor is given by 

Sij=(~ -~/2 ~) 
o 0 -S/2 

(42) 

with S > 0 for contraction and S < 0 for expansion. We consider homogeneous tur
bulence with an initially isotropic state as specified in (41). The solution depends on 
the initial conditions through the non-dimensional parameter S ko I eo. Comparisons 
are made with the DNS of Lee & Reynolds (1985). 

The dimensionless strain parameter 

(43) 

will serve as the time coordinate for the comparison of the IPRM to the DNS results. 
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FIGURE 4. Time evolution of the turbulent kinetic energy in rotating shear flows. 
IPRM predictions (lines) are compared to the LES of Bardina et al. (symbols): 
0/ /S = 0 (---- , 0 ), 0/ /S = 0.5 (-, A), 0/ /S = 1.0 (_._, V'), and 
Of /S = -1.0 (---- , +). 
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FIGURE 5. Comparison of IPRM predictions (shown as lines) with the DNS of Lee 
& Reynolds (1985) for axisymmetric contraction case AXK (Sq5lfo = 1.1). Evolu
tion of the (a) Reynolds stress, (b) dimensionality, and (c) circulicityanisotropies: 
11 component (- , • ), 22 and 33 components (- - - - , 'f). (d) evolution of the 
normalized turbulent kinetic energy (- , • ) and dissipation rate (---- , 'f). 
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Equilibrium 
Values 

ru 
r22 

r33 

r12 

Sk/e 
Pje 

IPRM 

0.59 
0.16 
0.25 

-0.16 
5.97 
1.86 

Experiments 

0.51 ± 0.04 
0.22 ± 0.02 
0.27 ± 0.03 

-0.16 ± 0.01 
4.60 ± 0.50 
1.47 ± 0.14 

45 

TABLE 1. Equilibrium results for homogeneous shear: comparison with the exper
iments of Tavoularis & Karnik (1989). 
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FIGURE 6. Comparison of IPRM predictions with the DNS of Lee & Reynolds 
(1985) for axisymmetric contraction case AXL (Sq5jeo = 11.1). Evolution of (a) the 
Reynolds stress, (b) dimensionality, and (c) circuli city anisotropies. (d) Evolution of 
the normalized turbulent kinetic energy and dissipation rate. Symbols as in Fig. 5. 

Axisymmetric contraction flow 

The IPRM predictions for two cases of irrotational axisymmetric contraction 
are shown in Figs. 5 and 6. In both cases, the IPRM predictions (lines) for the 
evolution of the anisotropies r, d, and f are in good agreement with the DNS 
results (symbols). The IPRM predicts decay of the turbulent kinetic energy k and 
dissipation rate e for the weaker strain case [Sq;jeo = 1.1] and growth in the more 
rapid run [Sq;jeo = 11.1]. This is in agreement with the DNS results; however, the 
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FIGURE 7. Comparison of IPRM predictions (shown as lines) with the DNS of Lee 
& Reynolds (1985) for axisymmetric expansion case EXO (Sq5lEo = 0.82). Evolu
tion of the (a) Reynolds stress, (b) dimensionality, and (c) circulicity anisotropies: 
11 component (-, • ), 22 and 33 components (---- , .). (d) evolution of the 
normalized turbulent kinetic energy (-- , • ) and dissipation rate (---- , .). 

predicted rate of growth for E in this second case is too weak as compared to the 
DNS result (see Fig. 6d). This difference is related to the model Eq. (40) used for 
the dissipation rate and not directly to the IPRM equations. We believe that we 
can improve on this aspect of the IPRM, but feel this refinement should follow once 
we have investigated various alternative models for the effective eddy deformation 
rikdkj. 

Axisymmetric expansion flow 

The IPRM predictions for two cases of irrotational axisymmetric expansion are 
shown in Fig'. 7 for Sq; / Eo = 0.82 and Fig. 8 for Sq; / Eo = 8.2. Comparison is again 
made with the DNS of Lee & Reynolds. As was discussed in Kassinos & Reynolds 
(1995), the axisymmetric expansion flows exhibit a paradoxical behavior where a 
weaker mean deformation rate produces a stress anisotropy that exceeds the one 
produced under RDT. This effect is triggered by the different rates of return to 
isotropy in r and d equations, but it is dynamically controlled by the rapid terms. 
The net effect is a growth of r in expense of d, which is strongly suppressed. 

As shown in Fig. 7, the IPRM is able to capture these intriguing effects quite 
accurately despite the relatively simple model used for the particle-particle interac
tions. This success of the IPRM points to the fact that these unexpected effects, 
once triggered, are driven by the rapid terms: the IPRM representation of the rapid 
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FIGURE 8. Comparison of IPRM predictions with the DNS of Lee & Reynolds 
(1985) for axisymmetric expansion case EXP (Sq5!€o = 8.2). Evolution of (a) the 
Reynolds stress, (b) dimensionality, and (c) circuli city anisotropies. (d) Evolution of 
the normalized turbulent kinetic energy and dissipation rate. Symbols as in Fig. 7. 

terms is exact and this enables it to capture these intriguing effects. The IPRM 
predictions for the evolution of the turbulent kinetic energy k and dissipation rate 
€ are also quite accurate. 

Plane strain 

The performance of the IPRM in the case of the irrotational plane strain flows is 
shown in Fig. 9 for Sq;/€o = 1.0 and Fig. 10 for Sq; I€o = 8.0. The DNS of Lee & 
Reynolds (1985) is used for the comparison. The IPRM predictions for the evolution 
of the anisotropies r, d, and f are in very good agreement with the DNS results. 
Note that the value of the initial Sq; I €o has a strong effect on the distribution of 
the (iij components and the IPRM is able to capture these effects quite well. The 
evolution histories for the normalized turbulent kinetic energy and dissipation rate 
are shown in Figs. 9d and lOd. The predictions are in good agreement with the 
DNS results, displaying decay for Sq; I €o = 1.0 and growth for Sq~ I €o = 8.0 at the 
correct rates. 

2.4.9 Elliptic streamline flow 

The elliptic streamline flows combine the effects of mean rotation and plane strain 
and emulate the conditions encountered in the flow through various sections of 
turbomachinery. These relatively basic flows provide a challenging test case for 
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FIGURE 9. Comparison of IPRM predictions (shown as lines) with the DNS 
of Lee & Reynolds (1985) for plane strain case PXA (SqU€o = 1.0). Evolu
tion of the (a) Reynolds stress, (b) dimensionality, and (c) circulicity anisotropies: 
11 component (-- , • ),22 component (---- , .), and 33 component (---- , 
A). (d) evolution of the normalized turbulent kinetic energy (--, • ) and dissi
pation rate (---- , .). 

turbulence models. For example, direct numerical simulations show exponential 
growth of the turbulent kinetic energy in elliptic streamline flows, but standard k-€ 
models (as well as most Reynolds stress models) predict decay of the turbulence. 
The structure-based model (Reynolds & Kassinos 1995) does predict an exponential 
growth, but not yet at the correct rate. 

The elliptic streamline flow corresponds to a mean deformation tensor of the form 

with 0 < lei < 11'1. Note that the case e = 0 corresponds to pure rotation while 
the case lei = 11'1 corresponds to homogeneous shear. The elliptic streamlines in 
this flow have an aspect ratio given by E = vh + e)/(I' - e). As explained by 
Blaisdell and Shariff (1994), the important nondimensional parameters for the el
liptic streamline flow are (1) the aspect ratio E of the elliptic streamlines and (2) 
the ratio of the turbulent time scale to the time scale of the mean deformation. 
The turbulent Reynolds number is also an important parameter, but the IPRM 
model is based on a high Reynolds number assumption. The IPRM predictions 
are shown in Fig. 11 for three different cases, which are summarized in Table 2. 
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FIGURE 10. Comparison of IPRM predictions with the DNS of Lee & Reynolds 
(1985) for plane strain case PXD (SqUeO = 8.0). Evolution of (a) the Reynolds 
stress, (b) dimensionality, and (c) circuli city anisotropies. (d) Evolution of the 
normalized turbulent kinetic energy and dissipation rate. Symbols as in Fig. 9. 

The notation used here is identical to the one introduced by Blaisdell and Shariff 
(1994). For example, S: = ek/e represents the ratio of the.turbulent time scale to 
the mean flow time scale based on the mean strain. We have evaluated the IPRM 
predictions using preliminary results from the simulations of Blaisdell and found 
its performance to be very good. The IPRM predicts exponential growth for the 
turbulent kinetic energy and dissipation rate at the correct rates of growth. The 
IRPM predictions for the individual components of the Reynolds stress anisotropy 
tensor were also in very good agreement with the corresponding DNS predictions 
from those preliminary runs. Here we only report the predictions of the IPRM, and 
postpone any comparison to DNS till final results are available from the simulations 
of Blaisdell. . 

Case 

e3 
e4 
e2 

E 

1.5 
2.0 
1.25 

1.68691 
1.68691 
1.68691 

TABLE 2. Initial conditions for the elliptic streamline cases. 

3. Summary and future plans 
In· simple flows with mild mean deformation rates the turbulence has time to 
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FIGURE 11. IPRM predictions for the evolution of the Reynolds stress anisotropy 
components in elliptic streamline flow with (a) E=1.5 , (b) E=2.0, and (c) E=1.25: 
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nent, _.-. (d) Evolution of the normalized turbulent kinetic energy in elliptic 
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come to equilibrium with mean flow and the Reynolds stresses are determined by 
the strain rate. On the other hand, when the mean deformation is very rapid, 
the turbulent structure takes some time to respond and the Reynolds stresses are 
determined by the amount of total strain. 

A good turbulence model should exhibit this viscoelastic character of turbulence, 
matching the two limiting behaviors and providing a reasonable blend in between. 
Our goal has been the development of one-point model for engineering use with 
the proper viscoelastic character. We have shown that to achieve this goal one 
needs to include structure information in the tensorial base used in the model be
cause non-equilibrium turbulence is inadequately characterized by the turbulent 
stresses themselves. We have also argued that the greater challenge in achieving 
viscoelasticity in a turbulence model is posed by the matching of rapid distortion 
theory (RDT). Given a good RDT model, we believe its extension to flows with 
mild deformation rates should be relatively straightforward. 

The interacting particle representation model (IPRM) presented here provides 
strong support for this position. The IPRM is in essence a very good viscoelastic, 
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structure-based turbulence model. As it was shown here, with a relatively simple 
model for the nonlinear turbulence-turbulence interactions, the IPRM is able to 
handle quite successfully a surprising wide range of flows. Some of these flows involve 
paradoxical effects, and the fact that the IPRM is able to reproduce them suggests 
that perhaps the model captures a significant part of the underlying physics. 

We believe that the success of the IPRM is based on its firm core, that is its exact 
representation of RDT. We have used the rapid version of the IRPM in constructing 
a one-point structure-based model for RDT, now completed successfully. We are 
currently using the IPRM in extending the one-point model to flows with mild 
deformation rates. We are also investigating further extensions to the IPRM that 
might enable it to become a valua~le engineering tool on its own right. 
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pl'l Modeling of inhomogeneous compressible 
turbulence using a two-scale statistical theory 

By Fujihiro Hamba1 

1. Motivation and objectives 

Turbulence modeling plays an important role in the study of high-speed flows in 
engineering and aerodynamic problems;· they include flows in supersonic combustion 
engines and over hypersonic transport aircraft. The enhancement of the kinetic en
ergy dissipation by the dilatational terms is one of the typical compressibility effects. 
Zeman (1990) and Sarkar et al. (1991) proposed that the dilatation dissipation is 
proportional to the solenoidal dissipation and is a function of the turbulent Mach 
number. Sarkar (1992) also modeled the pressure-dilatation correlation using the 
turbulent Mach number. Zeman (1991) related the correlation to the rate of change 
of the pressure variance. 

Using a statistical theory Yoshizawa (1990) pointed out that compressibilityef
fects are tightly linked with density fluctuations. He proposed a three-equation 
model that consists of transport equations for the kinetic energy, its dissipation, 
and the density variance (Yoshizawa 1992). Taulbee & VanOsdol (1991) also mod
eled transport equations for the density variance and the mass flux. Fujiwara & 
Arakawa (1993) proposed another type of three-equation model involving the sum 
of the normalized compressible turbulent kinetic energy and the density variance. 

Yoshizawa (1990) used a statistical theory called the two-scale direct-interaction 
approximation (TSDIA) to derive compressible turbulence models. This method 
was originally developed for incompressible turbulence (Yoshizawa 1984). The TS
DIA consists of two main procedures. First, two-scale variables are introduced and 
the direct-interaction approximation (DIA) is applied to express statistical quan
tities in terms of two-time velocity correlations in wavenumber space. Second, by 
using inertial-range spectra, expressions are simplified to derive one-point closure 
models. However, the second procedure has not been carried out for compress
ible turbulence because detailed inertial-range spectra are not available. Instead, 

Yoshizawa (1992) applied dimensional analysis to results of the first procedure. He 
also proposed an alternative simplified approach that treats the governing equations 
in physical space (Yoshizawa 1995). Several model expressions were obtained, and 
an important effect of density fluctuations was clarified by these methods. Some 

. ambiguity still remains; since several non dimensional parameters are involved in 
compressible turbulence, statistical quantities cannot be uniquely modeled only by 
dimensional analysis. 

1 Institute of Industrial Science, University of Tokyo, Tokyo 106, Japan 
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The energy spectrum for compressible turbulence has been examined both the
oretically and numerically to some extent. Moiseev et al. (1981) theoreticallyob
tained a spectral form that depends on the turbulent Mach number. Kida & Orszag 
(1990) showed that the spectrum of the solenoidal component in their DNS is very 
close to that for incompressible flows whereas the spectrum of the compressible 
component depends strongly on the turbulent Machnumber. Bataille & Bertoglio 
(1993) used eddy-damped quasi-normal Markovian theory to examine inertial-range 
spectra of weakly compressible turbulence. Although more study needs to be done 
to understand inertial-range behavior, these findings help us to assume some spec
tral forms for compressible turbulence. . 

In this work, we introduce inertial-range spectra of density and velocity variances 
to simplify results of the first procedure of TSDIA. A deviation from the Kolmogorov 
spectrum is assumed for the spectrum of the compressible velocity variance. The 
dependence on nondimensional parameters is systematically obtained by the sim
plification. We apply the TSDIA to several correlations included in the mean-field 
equations to propose a three-equation model. We examine models for the dilatation 
dissipation using DNS of isotropic and homogeneous shear turbulence. 

2. Accomplishments 

2.1 Fundamental equations and K - e; - Kp model 

The motion of a viscous compressible fluid is described by the equations for the 
density p, the velocity Ui, and the internal energy e: 

(1) 

(2) 

a a OUj OUi a ( Of)) -(pe)+-(peUi)=-P-+/LSjj-+- >.- , 
Ot OXj OXi ax j OXi OXj 

(3) 

where /L is the viscosity, >. is the thermal conductivity, and f) is the temperature. 
The deviatoric part of the strain rate tensor, Sij, is given by 

OUj QUj 20Uk 
Sj' = - + - - - --6i·. 

J QXj OXj 3 QXk J 
(4) 

For perfect gas, the pressure P and the internal energy e are written as 

P = pRf) = (-y - l)pe, (5) 

where, = cp/cv • Here, R is the specific gas constant, and Cv and cp are the specific 
heats at constant volume and pressure, respectively. 

We divide a physical quantity I into the mean F and the fluctuation I': 

I = F + f' , F = (f), (6) 
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where f denotes p, Ui, e, p, Sij, and 9. Some mean quantities are denoted by an 
overbar as p. By taking the ensemble average of (1)-(3), we obtain the equations 
for the mean quantities p, Ui, and E. Those equations contain several correlations 
such as the mass flux (p'uD and the Reynolds stress (u~uj). The correlations need 
to be modeled to close the mean-field equations. 

Yoshizawa (1990) pointed out that compressibility effects are tightly linked with 
the density fluctuations; he proposed a three-equation model that consists of the 
equations for the turbulent kinetic energy K(= (u?)/2), its dissipation rate c, and 
the density variance Kp(= (p'2)). The equations for K and Kp can be written as 

DK ( 1 ') aUi 1 ( 1 au~) 1 a ( 12 ') 1 a ( 1 ') -- = - uiu, - - c + -= p - - -- ui U· - -=- P Ui 
Dt J aXj p aXi 2 aXj J p aXi 

(7) 
1 ( 1 ') aP + -2 P Ui -a ' p Xi 

DKp 2K aUi 2( 1 ') OJ) 2-( lau~) a ( 12 ') ('2aU~) (8) -- = - p- - P Ui - - P P - - - P Ui - P - . 
Dt aXi aXi aXi aXi aXi 

The correlations included in (7) and (8) as well as the c equation itself need to be 
modeled in terms of the mean quantities and the three variables. 

Model expressions shown later contain two nondimensional parameters: the tur
bulent Mach number Mt [= v'2K /e where e is the mean sound speed] and the 
normalized density variance p~ [= (Kp/p2)]. By adopting Kp as one of the basic 
quantities, we can use p~ as a parameter independent of M t • Modeling with the 
two parameters is expected to be more flexible than that with M t only. 

2.2 Two-scale statistical theory 

Here, we give a brief summary of the procedure of the TSDIA. Its mathematical 
details were given in Yoshizawa (1992). 

We first introduce two time and space variables using a small-scale parameter 8 
as 

~(::::: re), X(::::: 6re), T(::::: t), T(::::: 6t). (9) 

Here, the fast variables e and T describe the rapid variations of the fluctuating field 
whereas the slow variables X and T describe the slow variations of the mean field. 
A quantity f can be written as 

f = F(X, T) + f'(e, X, T, T). (10) 

Using the Fourier transform with respect to e, we express f' as 

!'(e,X,T,T) = J dkf(k,X,T,T)exp[-ik·(e-UT)]. (11) 
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This representation is equivalent to the viewpoint that the fluctuating motion con
sists of many small eddies moving with the mean velocity U. Hereafter, the depen
dence of f(k, X, r, T) on X and T is not written explicitly. 

Applying (9)-(11) to the equations for p', u~, and p' (or e'), we obtain a system of 
equations for the fluctuating field in wavenumber space. We expand the fluctuation 
f (k, r) in powers of 6: 

00 

f(k,r) = L 6nfn(k,r). (12) 
n=O 

Substituting (12) into the system of equations and equating quantities in each order 
of 6, we have an equation for each quantity fn(k, r). By introducing the Green's 
functions for Po, UOi, and Po we can formally solve the equations for fn (n ~ 1) in 
terms of the lower-order quantities. 

A correlation included in the mean-field equations can be written as 

(f'(~, t)g'(~, t») = J dk(f(k, r)g( -k, r»)j6(0) 

= J dk «(fOgo) + (flgO) + (fogl) + ... ) j6(0). 
(13) 

Here, 6(0) denotes the delta function 6(k) where the one-dimensional wavenumber 
k equals O. Substituting the formal solution for fn and gn (n ~ 1) and applying the 
DIA, we obtain a model expression for the correlation. It is written in terms of the 
mean field as well as the basic correlations and the Green's functions defined by 

where 

Qp(k, r, r') = (Po(k, r)po( -k, r'»)j6(O) = Qp(k, r, r'), 

Qij(k, r, r') = (uoi(k, r)uOj( -k, r'»)j6(0) 

= Dij(k)Qs(k, r, r') + IIij(k)Qc(k, r, r'), 

Gp(k,r,r') = (Gp(k,r,r'») = Gp(k,r,r'), 

k·k· 
D .. (k) - 6 .. - ~ 

l) - l) k2 ' 

For example, the expression for the eddy viscosity can be written as 

Ve '" J dk JT dr'Gs(k,r,r')Qs(k,r,r') +"', 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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The expression includes wavenumber and time integrals of two-time correlations and 
Green's functions. It is too complicated to be a practical model; some simplifications 
are necessary. 

Following the TSDIA for incompressible turbulence, we assume inertial-range 
forms for the fundamental statistical quantities as 

Qa(k,7,r') = O'a(k)exp[-wa(k)lr - r'I], a = (p,s,c), (21) 

Gb(k, r, r') = H( r - r') exp[-wb(k)( r - r')], b = (p, s, c, e), (22) 

where 

(23) 

(24) 

(25) 

(26) 

(27) 
- [C C' C C' C' ]M-1 1/3k(2/3)+{3k-{3 - wp, wp' we, we' we t em· 

Here, Ctra , Cwa , and C~b are model constants, H(k) and H(r) are the unit step 
functions, k m is the wavenumber of the energy-containing range, and e, ed, and 
M t are the dissipation, the dilatation dissipation, and the turbulent Mach number 
defined by 

_ / , au~) 
e = v \ Sji aXj , 

_ V2J{ _ (2PJ{) 1/2 M t - _ - , 
c ,P 

(28) 

respectively. For the solenoidal quantities O's, W s , and w~, the spectra are the same 
as those for incompressible turbulence. The compressible part of energy spectrum, 
O'c, is set proportional to cd. This is because the ratio of the compressible to 
solenoidal parts of turbulent kinetic energy is shown to be proportional to the ratio 
of the dilatational to solenoidal dissipations. The spectrum is steeper than the 
Kolmogorov one by a. Moiseev et al. (1981) showed that the deviation a is a 
function of M t . Here, we do not include such M t dependence, but consider a as 
an unknown numerical parameter. The deviation from the incompressible inertial
range form is also introduced into w( k ) for compressible quantities. We assume that 
time scales for compressible quantities are shorter than those for incompressible 
ones; the ratio is of the order of M t . 

For example, substituting the above spectral forms into (20), we obtain a one
point closure model for the eddy viscosity as a function of km and e. By converting 
km into J{ and e, we have a usual expression proportional to J{2 Ie. 
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2.:1 Dilatation dissipation 

We applied the procedure of the previous section to (p' p') to obtain an expression 
for the density variance; it is a function of the mean field p, Ui, and P as well as 
the quantities K, c, cd, and Mt . Since the transport equation for Kp is solved in 
the K - c - Kp model, the modeling of Kp itself is not necessary. Instead, the 
expression can be considered a model for cd. Expanding cd in terms of the other 
quantities we have 

p~ [ ( K OUi 1 K D P 1 K D P 3 D K 
cd = Cedl-c 1 + Ced7 Mt 2-- + --- - --- + ---

Ml c OXi 4cp Dt 4cP Dt 2c Dt 

_ K Dc K DKp)] 
c2 Dt + cKp Dt ' 

(29) 

where p~ is the normalized density variance defined by 

2 Kp 
Pn = p2' (30) 

and CedI and Ced7 are model constants. Hereafter, Can denotes a model constant 
where a represents a physical quantity and n is the number of the term. 

The factor before the square bracket in (29) shows that the ratio cd/c is propor
tional to p~/Mr Yoshizawa (1992) pointed out that this quantity is important in 
characterizing the compressibility effect and introduced a parameter X( = P~J M;). 
Yoshizawa (1995) paid attention to the importance of the parameter X and proposed 
the model: 

(31) 

where Cs = C - Cd and CedY is a model constant. This model is the same as (29) to 
first order. 

The modeling of Cd was originally investigated by Sarkar et al. (1991) and Zeman 
(1990). Sarkar et al. (1991) used asymptotic analysis and DNS to model Cd as 
follows 

(32) 

Zeman (1990) assumed the existence of shock-like structure in flow fields to derive 
the model 

(33) 

where KMt is the flatness factor of Mt and F(Mt, KMt) is a complicated integral. 
He also derived a simple algebraic expression for use in practice (Blaisdell & Zeman 
1992). 

Blaisdell et al. (1991) used DNS of decaying isotropic turbulence to examine the 
above two models. They carried out two simulations that had the same initial values 
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of M t but different initial ratios of compressible to solenoidal velocity variances. 
In spite of the same turbulent Mach number, the two simulations showed different 
values of ed/e. They concluded that the development of ed/e in isotropic turbulence 
depends more on its initial values than on the turbulent Mach number and that 
simulations of isotropic turbulence cannot be used to validate the proposed models. 
However, Yoshizawa's model as well as the present model show that ed/e depends 
not only on M t but also on p;. As was pointed out by Yoshizawa (1995), the 
difference in ed/e in the two simulations can be attributed to the difference in p;. 
The assumption that ed/e depends only on Mt seems too restrictive to capture the 
behavior of decaying isotropic turbulence. In the I< - e - I< p model, we use the 
two parameters Mt and Pn; the development of p; is obtained from the transport 
equation for I< p. 

2.4 Mass flux 

Since ensemble averaging is used in this work, the mean-velocity equation contains 
the mass flux; its modeling is necessary. Taulbee & VanOsdol (1991) examined the 
transport equation for the mass fluctuating velocity (p'ui) / p and modeled terms 
included in the equation. Instead of the transport equation we model the mass flux 
itself. It can be modeled as 

, ') I<2 op [p; (I< OUi 3 DI< 5 I< De)] (pu. =-Cu1Mt-- 1-2-+C u3 --+------
I P e OXi Ml p e OXi e Dt 4 e2 Dt 

_ 10 + 15a C ul p; I<2 [_ 17 op + (17 _~) P oP + ~ P oI< 
10 + 6a p M t e 8 OXi 8 2, P OXi 4 I< OXi 

3 P Oe 3 p OI<p] 
-2'e- OXi + 2' I<p OXi . (34) 

The term with the first square bracket depends on the gradient of mean density; 
it corresponds to the gradient-diffusion approximation. The eddy diffusivity is pro
portional to MtI<2/e. It is smaller than the eddy diffusivity in incompressible flows 
by a factor of M t . The eddy diffusivity for the mass flux includes nonequilibrium 
effects due to DK/Dt and De/Dt as well as compressibility effects due to p~/M; 
and oUi/oXi. 

On the other hand, the term with the second square bracket also depends on 
the gradients of mean quantities other than p; this effect is called cross diffusion. 
For example, when the gradients of p and P are small and the isentropic relations 
hold, the profile of P is proportional to that of p; the pressure gradient term simply 
represents the modification of the eddy diffusivity. However, when the temperature 
changes rapidly due to heat release, the profiles of density and pressure may be 
different; in such a case the cross diffusion effect due to the pressure gradient can 
be important in the mass flux model. 

Using the simplified approach Yoshizawa (1995) derived a model for the mass flux 
as follows 
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where VT = (2/3)Cu (K2/e) and Up, U e , and Cu are model constants. If we assume 
that P = C1- 1)pE and DUi/Dt = -(1/p)fJP/fJxi, we can see that the second 
and third terms on the right-hand side correspond to the cross-diffusion term due 
to the mean pressure in (34). The major difference between (34) and (35) lies 
in the dependence of the eddy-diffusivity on M t ; the diffusivity of the former is of 
O( M t ) whereas that of the latter is of O( 1). This difference stems from the different 
dependence of the time scale for density fluctuations on M t • 

2.5 Reynolds stress 

Yoshizawa (1995) pointed out that compressibility effects are not incorporated 
into the Reynolds stress up to the order of b; this order corresponds to the eddy
viscosity approximation. We calculated the Reynolds stress up to the order of b2 

to obtain 

-C K2 (fJUi fJUj)* [1 _ 2 p~ C (23 K fJUi ! DK _ ~ K De)] 
unl e fJx j + fJxi Ml + uu4 49 e fJxi + e Dt 12 e2 Dt 

+C uA K3 [62 (fJUi fJUj) * + ~ (fJUk fJUk) * + 34 (fJUi fJUk + fJUj fJUk)* 
u e2 105 fJxk fJxk 35 fJXj fJXj 105 fJxk fJXj fJxk fJXj 

7 D (fJUi fJUj)*] K3 [ fJ (1 fJP) fJ (1 fJP)]* + 15 Dt fJx j + fJXj + CuuloMt e2 fJXj ~ fJx j + fJx j ~ fJXj ,(36) 

where 

(37) 

Except for the isotropic part, (2/3)K bjj, the expression consists of three parts. The 
first part represents the modification of the eddy viscosity due to compressibility 
and nonequilibrium effects. The second part corresponds to nonlinear models that 
have already been investigated for incompressible flows (Speziale 1987). The third 
part represents the compressibility effect due to a mean pressure gradient. 

The modification of the eddy viscosity due to DK/ Dtand De/ Dt has already 
been proposed for incompressible flows (Yoshizawa & Nisizima 1993). Yoshizawa 
(1995) also mentioned its importance for compressible flows. Expression (36) sug
gests that we should take into account not only the nonequilibrium effect but also 
the compressibility effects due to the density variance and mean-velocity divergence. 
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Sarkar (1995) showed that the reduced growth rate of turbulence energy in homoge
neous shear flows is primarily due to the decrease in turbulence production. Since 
the production term includes the Reynolds stress, compressibility effects on the 
Reynolds stress need to be modeled appropriately. In the present model the direct 
effect of compressibility on the eddy viscosity is expressed by p!/Ml in (36) because 
the mean-velocity divergence vanishes for homogeneous shear flows. For inhomo
geneous turbulence the mean-velocity divergence can play an important role when 
the flow speed rapidly changes in the streamwise direction as in a shock wave. If 
the flow speed decreases and the divergence is negative, the eddy viscosity becomes 
smaller than the usual estimate, J{2 / €. 

Although the third part is smaller than the second part by a factor of M t , its 
expression is interesting in the sense that it does not include the mean velocity. 
Each term in the square bracket can be divided into the two terms: (l/p)[J2 P/8x~ 
and _(1/p2)(8p/8xi)(8P/8xi). A term similar to the latter can be seen in the 
K equation (7). The importance of this term in the K equation was discussed by 
Yoshizawa (1995). Similarly the transport equation for the Reynolds stress contains 
such a term. Therefore, the gradients of mean density and pressure can affect the 
Reynolds stress. 

2.6 Pressure-dilatation correlation 

The pressure-dilatation correlation has been investigated as a typical compress
ibilityeffect. In this work we obtained a model expression as 

(38) 

By assuming some relations for basic model constants such as Cwp and Cwe, we 
found that the constant Cpd1 vanishes. If the assumption does not hold exactly, the 
constant can have a small nonzero value. 

Using the simplified approach Yoshizawa (1995) proposed a model as 

I 18u~) C C ~ 8Ui ". 1 DE \p 8
X

i . = - pdYIP€X + pdY2pli X 8
X

i + CpdY3P!t X E Dt . (39) 

The third term on the right-hand side corresponds to the two terms that include 
D p / Dt and D P / Dt in the present model. Each term in (39) is proportional to X 
whereas terms in (38) show a different dependence on Pn and M t . Using the first and 
third terms in his model, Yoshizawa (1995) explained the property of the pressure
dilatation correlation whose value is positive for decaying isotropic turbulence and 
negative for homogeneous shear turbulence. The present model contains terms with 
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Dk/ Dt and De/ Dt. The terms can also explain the different sign of the correlation 
because of the difference in the development of energy in the two flows. 

Sarkar (1992) modeled the pressure dilatation in the form of a power series in M t 

as follows 

/ I au ~ ) C - (( I ') 2 ... c ) aUi C M2 -
\p aXi = pdS1Mtp UiUj - 3KUij aXj + pdS2 t pes 

2 _ ... aUi + CpdS3Mt pK -a . 
Xi 

(40) 

This model is different from the above two models in that it does not contain the 
density variance. The first term on the right-hand side has a similar factor to the 
production term in the K equation. Yoshizawa (1995) illustrated that such a term 
can overestimate the pressure-dilatation correlation in a turbulent channel flow in 
which the shear is strong but the correlation is very small. On the other hand, 
the present and Yoshizawa's models contain the density variance; it is expected to 
explain the small value of the correlation. 

2.7 Comparison to DNS data 

Blaisdell et al. (1991) performed DNS of decaying isotropic and homogeneous 
shear turbulence. Using the DNS data we compare models for the dilatation dis
sipation. Although the TSDIA assumes inertial-range spectra, the simulations are 
at low Reynolds numbers and do not show an inertial range. The DNS results 
must include some low Reynolds number effects. The values of model constants in 
this paper may change for higher Reynolds number flows. Nonetheless, we believe 
that by comparing the models to the DNS we can better understand compressible 
turbulence. 

We examined four simulations of isotropic turbulence and nine simulations of 
homogeneous shear flow. Here, we will show results of three simulations; their 
initial conditions are given in Table 1. The parameter Xc in Table I denotes the 
ratio of the compressible to total velocity variance (u~iU~i)/(ujuj). 

Case Flow M t Pn Xc 

idcl28 isotropic 0.3 0 0 
ie128 isotropic 0.3 0.15 0.25 

sha192 shear 0.4 0 0 

Table 1. Initial conditions for DNS of isotropic and homogeneous shear turbulence 
by Blaisdell et al. (1991). 

Figures 1 and 2 show the time history of the ratio ed/ e for cases idc128 and ie128. 
The initial values of M t are the same for the two cases whereas those of pn and Xc 
are different. The solid lines denote the DNS results, the dashed lines denote the 
values predicted by Sarkar's model (32), and the dotted lines denote those by the 
present model (29). The model constant in Sarkar's model is given by CedS = 1. 
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FIGURE 1. Time history of the ratio of dilatation dissipation to total dissipation 
for case idc128: -- , DNS; ---- , Sarkar's model; ........ ,present model. 
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FIGURE 3. Time history of the ratio of dilatation dissipation to total dissipation 
for case sha192: -- , DNS; ---- , Sarkar's model; ........ , present model. 

On the other hand, values of constants in the present model have not been obtained 
yet because the values of the basic constants, such as Cue and a, are not known. 
Here, to examine overall agreement with DNS data, the model constants are set at 
CedI = 1 and Ced7 = 0 in (29). In Figs. 1 and 2 the DNS results for the two cases 
are very different; the value of cd / C for ie128 in Fig. 2 is much greater than that 
for idc128 in Fig. 1. Since Sarkar's model contains only M t , the predicted values 
for the two cases are almost the same; they decrease in time monotonically. On 
the other hand, the present model contains M t and p~; it predicts different values 
of cd/c for the two cases. The value for idc128 increases in time like the DNS 
result. The model explains the effect of the initial condition in terms of the density 
variance. Similat: results were obtained for the other two simulations using a higher 
turbulent Mach number, M t = 0.7 (not shown). Fujiwara (1996) also illustrated 
the initial condition effects solving the K - c - F model where F is the sum of the 
nondimensional density variance and compressible kinetic energy. 

Contrary to isotropic turbulence the effect of initial conditions were shown to 
disappear for homogeneous shear turbulence. Time histories of cd/c for simulations 
with different initial conditions tend to overlap as time increases. Here, we show 
results of a case denoted sha192; in this case the largest number of grid points 
was used and its results are considered the most reliable. Figure 3 shows the time 
history of cd/c for case sha192. The difference between the present and Sarkar's 
models is smaller than that for isotropic turbulence. However, the D NS result shows 
almost a constant value after St = 10 whereas Sarkar's model predicts a continually 
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increasing value after St = 3. The present model shows the same tendency as 
the DNS although the value is smaller. Other simulations with Mt = 0.5 extend 
to St = 15 and show qualitatively similar profiles as in Fig. 3. Therefore, the 
parameter pn is concluded to be important for modeling the dilatation dissipation. 

3. Future plans 
Model expressions obtained in this work need to be examined further by compar

ing to DNS of homogeneous and inhomogeneous turbulence. Since the TSDIA is a 
method based on derivative expansions, expressions contain several terms including 
higher-order terms. Some terms should be selected so that model expressions are 
simple but contain essential compressibility effects. Model constants also should be 
estimated by DNS. 

We assumed inertial-range spectra of the density and velocity variances. The 
spectral forms are not as established as those for incompressible flows. If details of 
inertial-range spectra are obtained in other theories or experiments, we can include 
them into this analysis. The relationship to incompressible models in the limit of 
zero Mach number also needs to be considered to improve the models. 
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Lewis number effects on partially premixed flames 

By G. R. Ruetsch AND J. Ferziger -PIS 

1. Motivation and objectives 

Combustion is generally categorized as either premixed, where flames propagate 
into homogeneous mixtures of reactants, or as nonpremixed, where initially sep
arated reactants diffuse into the reaction zones. Although these approaches are 
applicable to many combustion devices, there are cases not in either of these two 
limiting regimes. Under such circumstances, one must consider partially premixed 
combustion. 

In partially premixed combustion, mechanisms from both premixed and non
premixed regimes coexist and, as a result, some interesting phenomena arise. One 
such phenomenon is flame stabilization in laminar mixing layers by triple flames. 
These flames were first observed by Phillips (1965) in a methane mixing layer. Ad
ditional studies of triple flames are contained in Kioni et al. (1993), Dold (1989), 
Dold et al. (1991), Hartley and Dold 1991, Miiller et al. (1994), and Ruetsch et 
al. (1995). 

Triple flames may be thought of as an approach to partially premixed combustion 
from the nonpremixed limit. We can also approach the regime of partially premixed 
combustion from the premixed limit, where we consider inhomogeneously premixed 
flames. This regime has been addressed in Ruetsch and Broadwell (1995), where 
premixed flames were subjected to weak perturbations in mixture fraction. 

One interesting feature of both triple and inhomogeneously premixed flames is 
the high curvature they possess. It is important to distinguish this type of curvature 
from that which arises from velocity fluctuations in the premixed case. Curvature of 
a flame due to velocity fluctuations is limited by various mechanisms which damp 
small wavenumber disturbances. In the partially premixed case, however, flame 
curvature is a consequence of the mixture fraction gradient which can be arbitrarily 
large. Aside from these geometrical aspects, this curvature plays a significant role 
in flame propagation. As an example, triple flames have propagation speeds that 
exceed the premixed flame speed by a factor of the square root of the density 
ratio. When the flames are confined laterally, as in the case of the inhomogeneously 
premixed flames, this mechanism for enhanced propagation speed due to heat release 
effects is greatly inhibited. 

Another aspect of flame speed dependence on curvature is through the Lewis 
number, the ratio of thermal to mass diffusivities. This dependence of flame speed 
on the Lewis number relates to the thermal-diffusive instability, which has been ex
tensively studied in the premixed case. Partially premixed combustion differs from 
the premixed case since the curvature in partially premixed cases can become very 
large and can be maintained by fixing the gradients in the approaching reactant 
field. This suggests that the partially premixed case provides a unique opportunity 
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to study Lewis number effects on flame speed. To this date, the topic of partially 
premixed combustion coupled with nonunity Lewis numbers has not been investi
gated. The present study addresses this issue. 

We begin by reviewing the thermal-diffusive instability in premixed combustion 
and then discuss the configuration for studying similar behavior in the partially 
premixed case. This is followed by results of the numerical solutions and then by 
a set of model equations developed to evaluate and analyze the processes occurring 
in the simulations. 

1.1 Thermal-diffusive instability 

The thermal-diffusive instability is well documented for premixed flames (Williams 
1986). Although we are considering partially premixed combustion, we expect and 
observe similarities with the premixed case. This thermal-diffusive mechanism relies 
on the strong influence of the temperature in the burnt gases on the reaction rate, 
and hence burning velocity. In turn, the temperature in the burnt gases increases 
with enhanced diffusion of reactant species into the flame and reduced diffusion of 
heat into the approaching flow. These diffusion rates are affected by the gradients 
in the species and temperature fields and by the values of the mass and thermal dif
fusivities. The ratio of the mass and thermal diffusivities is the Lewis number; the 
gradients in the profiles are modified by the differential diffusion of thermal energy 
and species. As a planar flame is perturbed slightly, the gradients of the reactant 
and temperature fields steepen or broaden. For unity Lewis number, the changes in 
mass and heat diffusion offset one another and the temperature in the burnt gases 
remains unchanged, as does the burning velocity. For Lewis numbers larger than 
unity, where the thermal diffusivity exceeds the mass diffusivity, the heat transfer 
out of the flame is dominant in the forward sections of the flame where the gra
dients are steeper. Likewise, the mass diffusion into the flame is dominant in the 
trough. This results in a stabilizing effect due to the temperature and burning ve
locity decreasing in the forward sections of the flame and increasing in the troughs. 
The opposite is true for Lewis numbers less than unity, where the flame becomes 
unstable to small perturbations. 

1.2 Numerical simulation and flow configuration 

We use direct numerical simulations to solve the fully compressible N avier-Stokes 
equations. The simulation uses a two-dimensional version of the code developed by 
Trouve (1991). This code uses the high-order compact finite difference scheme of 
Lele (1992) for spatial differentiation, the third order Runge-Kutta scheme of Wray 
for time advancement, and the Navier-Stokes characteristic boundary conditions of 
Poinsot and Lele (1992). Below we summarize some of the important features and 
assumptions of the code relevant to this work; for further details on the numerical 
method readers are referred to Lele (1992) and Poinsot and Lele (1992). 

The chemical scheme we consider is represented by a one-step global reaction 
between a fuel and oxidizer: 

F+O -+ P 
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where we have assumed unity stoichiometric coefficients for simplicity. The reaction 
rate follows the Arrhenius form: 

w = KpYFPYO exp ( _ T;c ) 

where p is the density, Tac is the activation temperature, K is the pre-exponential 
factor, and YF and Yo are the fuel and oxidizer mass fractions. Following Williams 
(1986), we write this reaction rate as 

. ( ,8(1 - 0) ) 
w = ApYFPYO exp -1 _ a(l _ 0) 

where the reduced pre-exponential factor (A), heat release parameter (a), Zel'dovich 
number (,8), and reduced temperature (0) are defined by: 

A = K exp( -,8fa); ,8 - aTac . 
- Tf ' 

o = _T_-_T._o 
Tf - To 

with Tf being the adiabatic flame temperature and To taken in the ambient flow. In 
this study we hold the Zel'dovich number constant at ,8 = 8 and use a heat release 
parameter of a = 0.75. 

The transport coefficients in the simulations are temperature dependent. This 
temperature dependence is expressed through the molecular viscosity, IL, given by: 

with a = 0.76. The temperature dependence of the thermal conductivity, A, and 
the mass diffusivities, 'Dk , is obtained by requiring the Lewis, Prandtl, and Schmidt 
numbers to be constant: 

A 
L e k = --;:;::;---, 

pVkCp 

Pr = ILcp 

A ' 

where k = F, a refers to the fuel or oxidizer species. Although we are concerned 
with variations in the Lewis number, we do not want to consider differential diffu
sion in this study. Therefore, we allow the Lewis number to vary from simulation to 
simulation, but require that all species have equal Lewis numbers. We modify the 
Lewis number by changing the mass diffusivity, or Schmidt number, while main
taining a constant thermal diffusivity in the cold gases. We also maintain constant 
planar premixed laminar flame speed by modifying the pre-exponential factor A. 

We solve the compressible Navier-Stokes equations in the two-dimensional domain 
depicted in Fig. 1. At the boundaries in the horizontal direction we use an inflow 
boundary condition on the left and nearly-perfect reflective boundary conditions, 
required to avoid pressure drift, at the outflow. In the lateral direction, we use 
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Periodic B.C. 

o 0.5 1 Periodic B.C. 
Z 

FIGURE 1. Computational domain used in the simulations. The left boundary is 
the inlet where the flow is uniform and the mixture fraction variation is given on the 
left. The lateral boundaries are periodic and represent the effects of confinement 
on the flame. The streamlines and reaction rate are shown within the domain. The 
inlet velocity, although always uniform, is adjusted to stabilize the flame within the 
domain. 

periodic boundary conditions. This is in contrast to previous work on triple flames, 
which used nonreflecting boundary conditions in the lateral direction. 

Within this domain we initialize the flow as a planar premixed flame, in which 
the mixture fraction, defined as 

z = 1 + YF - Yo, 
2 

is everywhere equal to its stoichiometric value, Z ST = 0.5. The incoming flow is 
uniform and set equal to the premixed laminar flame speed, Si. Also associated 
with the flame is the premixed flame thickness, 8i. 

After the flow and flame are initialized, a sinusoidal perturbation is added to the 
uniform stoichiometric mixture fraction, specified by: . 

where Lt::.z is the height of the domain in Fig. 1. In all cases, we maintain stoi
chiometric conditions on average. It should be noted that we are not dealing with 
a stability problem; in which a small perturbation is either damped or amplified. 
Rather, we introduce a finite disturbance in one field which produces finite changes 
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Flame Flame 

Streamlines Streamlines 

FIGURE 2. Streamline patterns for unconfined (left) and confined (right) flames. 
A redirection of the velocity vectors is observed across the flame front due to heat 
release effects. This redirection occurs upstream of the flame in the unconfined case, 
causing a divergence of the streamlines thus decelerating the horizontal velocity 
before the flame. As a result the propagation or upstream speed increases in order 
to maintain the premixed flames speed locally. In the confined case, the redirection 
of velocity vectors occurs both in front of and behind the flame. The increase in 
flame speed is much smaller in the confined cases and may be negligible for small 
wavelengths of lateral perturbations. 

in the other fields. As this perturbation reaches the flame, the flame shape and 
propagation speed change, so the inlet velocity must be adjusted in order to achieve 
a steady-state solution. Because the variation in mixture fraction at the inlet has 
two stoichiometric points, two leading-edge flames occur. The range of mixture 
fraction is small enough, with !::l.Z = 0.2, that the diffusion flame is weak and is not 
apparent in the figure. In addition to the reaction rate, streamlines are also shown 
in the figure. Although we do observe streamline divergence in front of the flame, 
the propagation speed of the flame in Fig. 1, where Le = 1, remains equal to the 
planar premixed flame speed, 82. 

The use of periodic or confined rather than free lateral boundaries greatly affects 
the flame's propagation. For unconfined unity Lewis number flames, it has been 
shown that the ratio of the propagation speed relative to the plane laminar premixed 
flame varies with the square root of the density ratio across the flame. Depending 
on the wavelength of the mixture fraction perturbation in the confined case, this 
effect may be absent. A schematic representation of why this occurs presented in 
Fig. 2. In both cases, there is a redirection of velocity vectors across the flame front 
resulting from heat release effects. However, in the unconfined case this redirection 
occurs in front of the flame resulting in a strong divergence of streamlines in the 
unburnt region of the flow field. This divergence in streamlines results in a decrease 
in horizontal velocity prior to the flame. As a result, in order for the local flame 
speed to maintain a velocity equal to the premixed flame speed, the upstream or 
propagation speed must increase. In the confined case, the redirection of velocity 
vectors across the flame occurs both in front of and behind the flame, hence the 
increase in propagation speed is smaller than that of the unconfined case. 
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FIGURE 3. Reaction rate and streamlines for different Lewis number cases: Le = 
1.2 top left, Le = 1.0 top right, Le = O.S center left, Le = 0.6 center right, and 
Le = 0.4 bottom. Flame surface area increases as the Lewis number becomes 
smaller. For the Le = 0.4 case, the flame trough opens due to leakage of reactants, 
similar to the case of a Bunsen flame. 

2. Accomplishments 

In this section we present results from simulations of nonunity Lewis number 
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FIGURE 4. Flame speed as a function of Lewis number (left) and inverse Lewis 
number (right) Due to the strong confinement effects, the flame speed of the unity 
Lewis number case is that of the premixed flame speed. The flame speed increases 
with decreasing Lewis number, consistent with the thermal diffusive mechanism. 
Flame speeds are normalized by the planar premixed flame speed at stoichiometric 
conditions for the various Lewis numbers. 

flames, followed by a discussion of a set of model equations used to analyze the 
flame's behavior. We start by discussing how the thermal-diffusive instability, in 
the context of partially premixed flames, modifies the flame shape. 

The thermal-diffusive instability has been discussed thus far in terms of pre
mixed flames. We now apply these concepts to our partially premixed case. The 
fundamental ideas mentioned above hold for the partially premixed case. In par
tially premixed combustion, however, the reaction rate is not constant along the 
flame front as in the premixed case. It is this gradient in reaction rate along the 
flame front that creates the perturbation in flame shape: the sections of the flame 
with mixture fractions closest to stoichiometry burn the fastest. Thus, to some de
gree the flame shape is determined by the approaching mixture fraction field. The 
thermal-diffusive mechanism then modifies this basic shape. 

The modification of the basic flame shape due to the thermal diffusive mechanism 
is apparent from the flames in Fig. 3, where the reaction rate and streamlines are 
displayed for flames with Lewis numbers ranging from 0.4 to 1.2. Consistent with 
the thermal-diffusive mechanism, we observe that as the Lewis number decreases, 
the surface area of the flame increases. We should emphasize that the flame shapes 
in Fig. 3 are converged steady-state solutions. Although the thermal-diffusive in
stability accentuates the perturbation due to the variable mixture fraction field for 
Lewis numbers less than unity, the flame does reach a steady condition as nonlinear 
effects come into play (Williams 1996). 

In addition to the modification of flame shape with Lewis number, we also ob
serve an increase in flame speed, as shown in Fig. 4. The flame speed increases 
dramatically when the Lewis number drops below unity. We observe a flame speed 
more than twice the planar flame speed for Le = 0.4, which is larger than any flame 
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FIGURE 5. Flame surface (bold line), determined by maximum reaction rate on 
horizontal lines through the flame, and isocontours (thin line) of T and c for Le = 0.4 
flames. Isovalues are T and c are chosen from the values along the flame surface at 
the leading edge (LE) and trough (TR). Although both fields have isocontours that 
track the flame surface reasonable well, the variable c is more reliable and is used 
as the progress variable. 

speed observed in the unconfined configuration for Le = 1 flames (Ruetsch et al. 
1995). One must also keep in mind that the mixture fraction range is 0.4 < Z < 0.6 
at the inlet and decreases before the mixture reaches the flame. Since the uncon
fined case has a much larger range in mixture fraction, 0 < Z < 1, but produces a 
smaller increase in flame speed, it is evident that the Lewis number plays a strong 
role in the propagation characteristics of partially premixed flames. Also depicted 
in Fig. 4, we observe a good linear correlation of flame speed with the inverse of the 
Lewis number. 

2.1 Progress variable 

A necessary ingredient for further analysis of flame behavior is a definition of 
a progress variable which indicates the mixture's degree of reactednes$. Together 
with the mixture fraction, the progress variable replaces the fuel and oxidizer mass 
fractions as independent variables. In premixed combustion, the progress variable 
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X 

FIGURE 6. Flame surface (bold line) and various isovalue contours of the progress 
variable c. Before the premixed portion of the flame, the curvature of c and the 
flame surface are comparable. After the premixed flame, the radii of curvature of 
the c contours more closely resemble the thickness of the trailing diffusion flame. 

can either be the reactant species mass fraction or the temperature. In partially 
premixed combustion, the issue is more complicated. We would like an isopleth 
of the progress variable to coincide with the flame surface. In partially premixed 
combustion, we define the flame surface as the curve connecting the horizontal 
extrema of the reaction rate. This curve is plotted in Fig. 5 for the Le = 0.4 flame 
along with temperature contours and the variable c given by: 

c = 1- YF - Yo, 

which is also the product mass fraction. The values of T and c used to obtain the 
isocontours are chosen to coincide with the flame surface at both the leading edge 
and trough. 

From Fig. 5 we see that both quantities track the flame surface reasonably well. 
However, c follows the contour more closely, especially in the trough. We should 
point out that c reaches a value of unity only when neither fuel nor oxidizer are 
present. Therefore, in regions not at stoichiometric conditions, it is possible to burn 
one reactant completely and not have c = 1. In this respect, c does not have the 
traditional property of being unity when no further burning is possible. In spite of 

this shortcoming, we choose c as our progress variable for its ability to track the 
flame front and its linear dependence on the mass fractions of the reactant species. 

The characteristics of c change considerably as we cross the flame surface, as indi
cated in Fig. 6. Prior to reaching the flame, the radius of curvature of c isocontours 
scale with the lateral thickness, Lt::..z. After passing through the flame surface, the 
radius of curvature scales with the thickness of the trailing diffusion flame. This 
has a large effect on the flame stretch, K, defined as 
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FIGURE 7. Control volumes for the one dimensional equation formulation. The 
control volume is bounded laterally by streamlines and by isotherms in the flow 
direction. The areas AT and Ay are used to define leakage of heat and species 
through the streamtube. 

where V'T is the tangential gradient operator and Ii, = V'T . nT is the curvature. 
Profiles of flame stretch through the flame surface indicate that stretch is dominated 
by curvature effects as expected and that no reasonable value can be assigned to 
the stretch as the change in the curvature through the flame is quite dramatic. 

The inability to define a single value for curvature and thus flame stretch does not 
invalidate the use of c as a progress variable. One must remember that the concept 
of a progress variable strictly applies only to a premixed combustion. The fact that 
this quantity behaves differently in a region undergoing nonpremixed combustion 
does not invalidate its usefulness. 

Because of the inability to define flame stretch accurately, the analysis of these 
partially premixed flames must proceed along an alternative path, which we discuss 
in the next section. 

2.2 Mode! equations for partially premixed combustion 

We now discuss a set of one-dimensional equations for analyzing the behavior of 
curved partially premixed flames. This method is based on the work of Echekki 
(1992) and Echekki (1996) for premixed combustion, which was used in analysis 
of the laminar flame tip by Poinsot et al. (1992). This approach reduces the 
Navier-Stokes equations to a set of one-dimensional equations while maintaining 
aspects of the flame's multidimensional nature through terms representing various 
isopleth curvatures. This approach differs from conventional models that handle 
the geometrical aspects exactly, while the physical processes are approximated. 
In our case, the terms representing the' physical processes remain intact, and the 
geometrical aspects are approximated. 

We begin by examining the control volume of Fig. 7, which is bounded laterally 
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FIGURE 8. Fuel mass fraction (left), oxidizer mass fraction (center), and tem
perature (right) contour plots for Le = 1 case. For this partially premixed case, 
the need to account for a difference between the normals of the individual species 
and temperature fields is evident. The differences become stronger as one considers 
nonunity Lewis numbers and larger perturbations to the mixture fraction. 

by streamlines and by isotherms in the streamwise direction. We define normals 
pointing in the flow direction for the temperature and various scalar fields as: 

VT 
DT = IVTI; 

VYo 
Dyo = -IVYol; 

Vc 
Dc = IVel 

The distance between the two isotherms along the normal DT is lix. We use the area 
of the first isotherm A as the base area, and define three surfaces along the second 
isotherm: the streamtube area, As; the area between the intersection of the two 
isotherm normals emanating from the boundaries of A with the second isotherm 
surface, AT; and the area between the intersection of the two isoscalar normals, 
Dy;, emanating from the boundaries of A with the second isotherm surface, Ay. 
These latter two areas are used to account for the cross-stream diffusion of species 
and heat. The distance along Dy; between the two isotherm surfaces is given by: 

6x 
lixy DYj = DYj. 

DYj ·DT 

This control volume differs from the one used by Echekki (1992) in that the 
normals to the isotherms and isopleths are not colinear. This is a necessity for 
partially premixed combustion, as demonstrated in Fig. 8, where contours of the fuel' 
and oxidizer mass fractions, along with the temperature, are shown. It is desirable 
to use the progress variable e in place of the individual reactant species, and a 
transport equation for e is developed later in this paper. It suffices to mention here 
that Dc and DT are not necessarily colinear, even for unity Lewis number. Figure 9 
shows this clearly; Dc • DT deviates from unity in the flame trough. 

2.2.1 Area relations 

In this section we develop relations between the reference areas A and As, used 
in defining our control volume, and the auxiliary areas AT and AYj, used in our 
analysis to account for cross-stream diffusion. A useful relation in obtaining such 
relations is the identity from Chung and Law (1988) in their integral analysis of 
stretched premixed flames: 
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X 

FIGURE 9. Alignment of progress variable and temperature normals for Le = 0.4 
case. The reaction rate is shown in grey, and the dark contours show levels of 
1- llc' llT, thus departures from alignment. The greatest departure from alignment 
occurs in the trailing diffusion flame, but there are regions near the flame trough 
where the alignment of llc and llT is not preserved. 

where a is any vector from a point on Al to A2 and the gradient operator \7 T 

represents the divergence on the plane tangent to AI: 

\7T' a = \7. a - llTllT: \7a 

According to this relation we have: 

AT = All + 8x\7T' llT], 

Ay; = A [1+8X\7T' ( lly; )], 
lly; 'llT 

and we express the streamtube area as 

As = A+8A. 

The term \7 T' llT is the curvature of the isotherm. The similar term in the equation 
for A y; reduces to the isotherm curvature only if llT = llY;, in which case AT = Ay;. 
We also define the differences between these areas as 

8ATs == AT - As = A8x\7T . llT - 8A 

and 

( 
lly:. ) 8AYiS == Ay - As = A8x\7T' • - 8A 

lly; 'llT 
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Leakage through 
side boundaries 

A 

- - -streamline 

isotherm 
FIGURE 10. Lateral diffusion of heat through the streamtube. This leakage can be 
accounted for by measuring the flux through the expanded area in the downstream 
isotherm. (This diagram demonstrates the method used to account for thermal 
leakage, but the same concept applies to mass leakage through the streamtube.) 

where in the limit of small ox we obtain: 

and 

dArs dA 
--=AVr·nr--

dx dx 

dAy;s = AVr' ( ny; ) _ dA. 
dx nYj' nr dx 

These relations provide a crucial link between the basic governing equations and 
our model equations. Since we are developing a set of one-dimensional equations, 
we need to include information regarding the other spatial dimensions. It is the 
behavior of the normal terms in these area relations that provide the multidimen
sional information required for adequate representation of the geometrical aspects 
of the problem. 

2.2.2 G01Jerning equations 

With the area relations defined, we now consider conservation laws applied to the 
control volume. Since our control volume is bounded by streamlines, continuity is 
simply: 

o[m] =0 

where m is the mass flow rate in the streamtube. The difference between values at 
the outlet and inlet isotherms is denoted as o[] = []x+6x - []x. The species equation . 
1S: 
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where Mi = -pAVidYi/dx, Fi = -pVidYi/dx, and wy, are the diffusive flow rate, 
diffusive flux, and rate of production of species i. The term Fj6Ay,s represents 
the leakage of species i across the streamtube, which is equivalent to the heat that 
crosses the area 6Ay;s as indicated in Fig. 10. In the limit of small6x this becomes: 

dYi dMi [ (nY,) dA] . m-+--+ AVT' -- Fj=wY,A 
dx dx ny, . nT dx 

or by substituting for Mj and Fj: 

dYi d (A dYi) [ (ny;) dA] dYi . m--- p Vj- -pVj AVT' -- -=wy,.A 
dx dx dx ny, . nT dx dx • 

(1) 

The first and second terms in this equation represent the convection and diffu
sion processes across the isotherms. The term in square brackets, representing the 
leakage of reactants across the streamtube, contains information about the multi
dimensional nature of the flame. 

Equation (1) can be used for each species so that, although this study uses a sim
ple chemical scheme, the method can be applied to complex reaction mechanisms. 
In our case, we are more interested in the progress variable e and the mixture frac
tion Z than the mass fractions. We can obtain these equations by combining the 
equations for the individual species and substituting for e: 

de d ( de) dA dc 
m dx - dx pAV dx + pV dx dx 

+ pVA [VT' ( nYF ) dYF + VT' ( nyo ) dYo] = wcA 
nYF . nT dx nyo . nT dx 

where We = -(WYF +wYo)' To eliminate YF and Yo from the equations, we use the 
relations 

and obtain: 

C 
YF = Z --; 

2 
e 

Yo = 1- Z --
2 

de d ( A/f'\ de) /f'\ [dA de AdZ ~ (nYF nyo) m--- p v- +pv --+ -YT' ------"'-
dx dx dx dx dx dx nYF . nT nyo. nT (2) 

_ ~A dc VT . ( nYF + nyo )] = weA. . 
2 dx nYF . nT nyo' nT . 

In a similar fashion, we can develop an equation for Z: 

dZ d (A/f'\dZ) 1 /f'\ [2 dA dZ AdZ ~ (nYF nyo) m- - - p v- + -pv -- + -YT' + ----=:-
dx dx dx 2 dx dx dx nYF • nT nyo' nT ( 

3) 
_ ~A dc VT . ( nYF _ nyo )] = 0 

2 dx nYF . nT nyo' nT 
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.m •• m ••• ::: 

....... 
.......... '-., 

<= : 

x 
FIGURE 11. Alignment of progress variable and mixture fraction. Progress variable 
c (dark lines) and mixture fraction Z (grey scale) isopleths are shown for the Le = 
0.4 case. Along the line through the leading edge lle and llZ are orthogonal; however, 
this is not the case as one moves from this line of symmetry. 

Equation (2) clearly shows the effect of partial premixing on the evolution of 
the progress variable. To contrast Eq. (2) with the premixed case, we can write 
the evolution equation for c in premixed combustion for which nYF = llyo = llT, 
giving: 

de d ( de ) de [dA ]. m- - - pA'J)- + pV- - - AV'T' llT = weA, 
dx dx dx dx dx 

(4) 

which is identical to the species equation of Echekki (1992). Equation (2) shows an 
explicit dependence on mixture fraction through the dZ / dx term, which modifies 
the equation when the isopleths of the fuel and oxidizer differ. 

We have eliminated YF and Yo in Eqs. (2) and (3), except for their implicit 
occurrence in the normal vectors. We can replace these by forming the normal 
vectors from our transformation equations: 

IV'e - V'Z 
II 2 . 

YF = 1 , 
IzV'e - V'ZI 

tV'e+V'Z 

liV'e+ V'ZI 
(5) 

Substitution of these quantities into Eqs. (2) and (3), in general, leads to compli
cated expressions but there are cases where simplifying assumptions can be made. 
These cases occur when the gradients of the progress variable and mixture fraction 
are either colinear or orthogonal. 

In general, as demonstrated by Fig. 11, we cannot make assumptions about the 
alignment of lle and llZ. However, along the line through the leading edge we find 
that lle . llZ = O. It is not sufficient that these normal vectors are orthogonal along 
this line of symmetry. Due to the V'T operator, we must also require that these 
normal vectors remain orthogonal as we move laterally. In cases where a substantial 
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region with ne· nz rv 0 exists, the expressions in Eq. (5) simplify greatly. When ne 
and nT are collinear and nz and nT are orthogonal, we can write: 

nYF lVc- VZ _--=..:._= 2 • 
1't"7 ' nYF . nT 2' ve . nT 

Furthermore, along the leading edge streamtube Z = 0.5, thus dZ j dx = 0, which 
upon substitution in the conservation equation for e once again recovers the equation 
obtained for a premixed flame, which can be written as: 

(6) 

We can determine the local streamwise velocity by manipulation of Eq. 6 to obtain: 

m [ d (de) C;Jc] 
u rv pA = V dx In pV dx + K, + pVdejdx 

where K, = V T . nT is the local curvature. The fact that we have a local curvature 
in this equation is desirable due to its rapid rate of change. It is instructive to 
contrast this equation with the multidimensional equation used in calculating the 
propagation velocity (Ruetsch and Broadwe111995): 

1 8 ( 8C) 1. V = --- pV- + --We 
p IVel 8Xi 8Xi P IVel . 

The first term in the multidimensional equation corresponds to the first and second 
terms in the ID equation, where the multidimensional diffusion term is broken up 
into streamwise and lateral, through curvature, components. 

Through examination of Eq. (2) we have learned when partial premixing must 
be considered and under what circumstances the problem can be analyzed from 
a premixed standpoint: ne· nT = 1 and nc . nz = 0 in a neighborhood of the 
streamtube. Under weak gradients of the mixture fraction, the leading edges of 
partially premixed flames to some degree fall in this category. 

Up to this point, the issue of Lewis number effects has not been discussed in 
regards to the one-dimensional equations. In order for the Lewis number to come 
into play, we need to include both thermal and mass diffusion. Therefore, we look 
to energy conservation. The energy equation can be written in differential form as: 

where Q = -A)..dTjdx, q = -)..dTjdx, and Qc is the heat release from the chemical 
reaction per unit change in progress variable. The terms in brackets represent the 
flow of enthalpy across the isotherms due to convection and mass diffusion, as well 
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as heat conduction across the isotherms. The remaining terms represent the leakage 
of energy across the streamtube due to mass·,diffusion and heat conduction, along 
with heat release through chemical reactions. Defining h = L: Y;hi and assuming 
hi = h = cpT for all i we have, after taking the limit of small 8x: 

m dT _ Le.i.. (PVA dT) _ pVT "" dAy;s dY; _ LepVdATS dT = Qc wc A . (8) 
dx dx dx ~ dx dx dx dx cp , 

where we have represented all diffusion terms through the mass diffusion coefficient 
and use the Lewis number to effectively convert to the thermal diffusivity when 
required. After some manipulation, Eq. 8 becomes: 

m
dT 

-LeA [~(pvdT) +pV
dT 

Y'T.DT] 
dx dx dx dx 

-pVAT [dZ Y'T. ( DYF _ Dyo ) 
dx DYF . DT Dyo· DT 

(9) 

dcY' (DC 1 DYF 1 Dyo )] 
+ dx T· Dc· DT - 2" DYF . DT - 2" Dyo . DT 

The first line of Eq. 9 contains the convective and thermal diffusion terms. The 
last two lines represent the energy change via mass diffusion through the lateral 
boundaries and the chemical source. 

In the premixed limit, Eq. 9 reduces to: 

m
dT _LeA[~(pvdT)+pvdTY'T.nT] = QCwcA, 
dx dx dx dx cp 

which holds not only in the premixed limit but also for the streamtube passing 
through the leading edge under the conditions used to obtain Eq. 6. 

3. Future work 

Up to this point, efforts have been concentrated on the development of the ;model 
equations described above. Future work will concern applying these equations to 
simulation data in order to determine the significance of certain processes and to 
obtain scaling behavior regarding flame propagation. In particular, we would like 
to recover the linear relation of flame speed with the inverse of the Lewis number 
depicted in Fig. 4. 

One aspect of flame propagation that can be addressed using these equations is 
the process by which the flame trough is stabilized. The weak reaction rate and 
convergence of streamlines would suggest that the trough region doesn't stabilize, 
but simulations indicate that the flame does reach a steady state. Leakage of heat 
and species is evidently important in this region and can be analyzed using the 
model equations. 

This laminar study allows one to develop an understanding of how fluctuations 
in the reactant composition alone affects flame behavior. Once the behavior of 
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these flames is understood, data from partially premixed turbulent simulations can 
be analyzed, where contributions from both velocity and mixture fraction fields 
modify flame behavior. 
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Conditional moment closure of mixing and 
reaction in turbulent nonpremixed combustion 

By Nigel S. A. Smith1 

1. Motivation 

Nonpremixed combustion is the process whereby fuel and oxidizer species, which 
are each nonflammable in isolation, concurrently mix to form a flammable mixture, 
and chemically react in the flammable mixture. In cases of practical industrial inter
est, the bulk of nonpremixed combustion occurs in a turbulent mixing regime where 
enhanced mass transfer rates allow the maximum power density to be achieved in 
any given thermochemical device. 

Conventional moment closure techniques are inapplicable in modeling turbulent 
combustion because of the nonlinear dependence of chemical reactions upon small 
scale fluctuations in species concentrations and temperature. More sophisticated 
closures are required so as to model turbulent nonpremixed combustion systems of 
practical interest, such as in gas turbine combustors and diesel engines. 

A number of sophisticated models can be found in the literature, notably the 
laminar flamelet method (see Peters 1984), and the joint probability density function 
method (see Pope 1985). Some of the issues surrounding the latter method were 
investigated in a recent study at the Center for Turbulence Research (see Frolov et 
al. 1996), while others have investigated the former method (see Mell et al. 1994). 

Another model of substantial merit is the conditional moment closure (CMC) 
method, which was proposed independently by Klimenko (1990) and Bilger (1993). 
This method has been successfully compared with turbulent jet flame experiments 
(Smith et al. 1995, Smith 1994), isothermal reacting mixing layers in an atmospheric 
wind tunnel (Li & Bilger 1993),isothermal direct numerical simulations (Mell et al. 
1993), and in reacting DNS with heat release and complex chemistry (Smith 1995). 

The results of the most recent DNS study incorporating realistic chemistry in a 
direct numerical simulation indicated a sensitivity of the method to the choice of 
chemical mechanism used to describe the thermochemical system. The choice of 
mechanism was found to have an impact on the accuracy of the chemical closure 
itself. 

Work carried out at the CTR, in the six months following Smith (1995), has been 
aimed at improving the mixing submodel as well as understanding the deficiencies 
in the chemical closure for in a generic combusting chemical system. 

1 Present address: Aeronautical & Maritime Research Lab., Australia 
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1.1 Conditional moment closure method 

The classical difficulty faced in modeling turbulent nonpremixed combustion is 
that of closing the averaged equations for chemically reactive species. The instan
taneous equation for the evolution of the mass fraction Ya of a reactive species Ct is 
the following, 

(1) 

where wa is the net chemical production rate of the species Ct, and Da is the corre
sponding molecular diffusivity where a simplified Fickian approximation has been 
made to model molecular transport. Applying a traditional averaging scheme, such 
as density-weighted (Favre) unconditional ensemble averaging, yields the following, 

-o (_y;-) 0 (_ -Y) 0 (-D OYa) _ "l 
~t P a + ~ PUi a = ~ P a ~ + pWa· 
v VXi VXj VXj 

(2) 

In order to close the averaged species equation, a model must be provided for 
the averaged source term iba . First order closures that evaluate the instantaneous 
chemical rate expressions with averaged species concentrations and temperature, 

(3) 

are known to be highly inaccurate in combustion cases of practical interest. The 
chemical reactions encountered in combustion processes are highly nonlinear, and 
thus small perturbations in the input parameters can cause very large changes in 
the computed reaction rate. 

Under the Conditional Moment Closure (CM C) method, the level of perturbations 
from the modeled mean data is reduced by averaging the reactive species equations 
conditionally upon a conserved scalar mass fraction. 

At the expense of adding an additional computational dimension to the modeling 
problem, conditional averaging allows chemical closure to be effected in many cases 
of nonpremixed turbulent combustion. 

The average of a fluctuating turbulent quantity A, conditional upon the conserved 
scalar mixture fraction e(Xi, t) being equal to a sample value '1, is the following (see 
Klimenko (1990»: 

In the above definition, Pf/ is the probability density function of the conserved 
scalar at the location Xi and time t, and 6 denotes the Dirac delta function. In 
all that follows, the full conditional averaging operator ( ... I e(Xi, t) = '1) will be 
abbreviated to ( ... 1'1) for the sake of brevity. 
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The evolution of the conditional mean mass fraction QOI == (YOI I "') of a reactive 
species a is governed by the following, 

(p I ",)[J~OI + (pUi I",) ~~~ = ~(PX I",) {);~OI + (PWOI I",) + eq + ey (5) 

where the molecular diffusivities of all species are assumed uniform. The residual 
terms, eq and ey, contained unclosed expressions involving the conditional means 
and variations from the conditional means. These terms are presumed small in the 
cases studied here. 

The symbol X denotes the instantaneous scalar dissipation rate and is defined 
(below) in terms of the mixture fraction e. 

(6) 

In order to close the CMC scalar equation, means of determining (PX I "') and 
(wOII "') are required. The conditional mean scalar dissipation rate, (PX I "'), is 
determined from the conserved scalar PDF equation so as to ensure conservation of 
mass. The calculation of this quantity is discussed in a later section. 

1.2 Chemical source terms 

The net volumetric chemical formation rate (dimensions of mol/ (L 3 T)) of a reac
tive species is most commonly described as a linear combination of Arrhenius type 
expressions, as given below: 

N. N. 

WOI = I: cOI,p[J(p(T) IT Y.;'"Y·Pj. (7) 
P=1 1'=1 

The net production rate of the species a is equal to the weighted sum of the pro
duction by all chemical reactions ((3 = 1, ... , N r). The weighting factor for species 
Ot and reaction (3, cOI,p, is an integer in the case of elementary reactions and may be 
posi ti ve or negati ve or zero (no net effect). 

Each individual reaction is governed by the law of mass action, and a so-called 
reaction rate "constant," J(p, as given below: 

(8) 

Reaction rate constants are typically strongly nonlinear functions of temperature, 
T, and to a lesser extent pressure. The activation temperature is denoted by 8p, 
the reaction order by np, and the pre-exponential coefficient by >.p. 

A Taylor series expansion in terms of temperature and the participating reactants 
in each reaction can easily be derived. Neglecting terms third order and higher, an 
expression for the conditional mean source term for a species a can be written in 
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terms of conditional mean species mass fractions Q-y, as well as the first and second 
conditional moments of temperature and the reactant mass fractions. 

N r N. 

(tVa 111) ~ Lca,,8K,8«(T 1 11)r,8 II Q~-Y.~ (9) 
,8=1 -y=1 

The modifying function r,8 from the above equation is defined as follows for a 
bimolecular reaction with reactant species Yl and Y2 , 

(10) 

where, 

(11) 

and 
(12) 

In the majority of previous CMC modeling efforts, the function r,8 has been as
sumed to equal unity. It is, however, clear that in instances where the activation 
temperature 0,8, or the temperature exponent a,8 are large, chemical closure is sen
sitive to even small levels of conditional variance. 

2. Objectives 
The objective of the most recent work has been to evaluate the level of departure 

of the modifying function r,8 away from unity, over a range of reaction types within a 
turbulent nonpremixed combustion system. Of particular interest is the behavior of 
the modifying function for the rate controlling reaction for the thermal production 
of nitric oxide (NO) given below: 

N2+O~NO+N. 

The reaction above has a very high activation temperature and would seem sus
ceptible to errors which might arise from assuming a unit modifying function. This 
is of particular significance to existing comparisons between experiment and simple 
first-order closure CMC calculations (see Smith et al. 1995) in turbulent jet flames 
of hydrogen. In those cases, the model appears to consistently overpredict NO 
levels while more or less accurately predicting the major reaction products. 

In order to evaluate the advantage that might be gained by allowing for non-unity 
modifying functions, direct numerical simulations of weakly turbulent nonpremixed 
combustion of methane in air were performed. The chemical mechanism employed 
included NO formation through prompt and thermal reaction pathways, in addition 
to major species production. 

The simulation conditions were arranged as much as possible to make best use of 
the limited number of grid points in the domain in collecting a statistical sample. 
The simulation was organized such that a substantial portion of the domain could 
be treated as statistically similar. 
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y 

x 

FIGURE 1. Initial distribution of the conserved scalar. White regions denote ~ = 1 
while black regions denote ~ = o. Initial conserved scalar unmixedness n = 0.64. 

2.1 Simulation conditions 

The DNS code that was used is little changed from that described previously (see 
Smith 1995, Ruetsch & Broadwell 1995). The code features a the high-order com
pact finite differencing scheme, as described by Lele (1992), for spatial differencing, 
and the third order Runge-Kutta timestepping algorithm of Wray. The Navier
Stokes characteristic boundary conditions described by Poinsot and Lele (1992) are 
also included. 

All simulations performed to date have been two dimensional with sizes ranging 
up to 2572 • It is desirable to perform three dimensional simulations of the same na
ture, but. as yet computational resources have been insufficient to allow a reasonable 
Reynolds number in the calculation while carrying realistic chemistry. 

2.1.1 Chem.ical reaCtion mechanism 

A novel eight step reduced chemical mechanism for methane combustion (Frolov 
1996) has been devised which allows substantial savings in resolution requirements 
over more orthodox mechanisms, while purporting to provide reasonable agreement 
with experiment. The mechanism consists of global steps which do not make explicit 
use of any radical species, such as hydroxyl (OH), methyl (CH3 ), and so on, but 
instead employs tuning factors for the fuel oxidation and prompt NOx steps. These 
tuning factors are incorporated into the pre-exponential coefficients in the Arrhenius 
expressions and make allowance for variations in local equivalence ratio, fuel species, 
and pressure. The tuning constants were derived by Frolov (1996) from comparison 
of the reduced mechanism with full mechanism calculations in counterflow laminar 
premixed flames. 

CH4 + 1.502 ----* CO + 2H2 0 

CO +IfzO ----* CO2 + H2 

(I) 

(IIf) 
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CO2 + H2 -+ CO+H2O (lIb) 

2H2 + O2 -+ 2H2O (III) 

2CO +02 -+ 2C02 (IV) 

CH4 + 02 + N2 -+ CH4 +2NO (V) 

N2 +02 -+ 2NO (VI!) 

NO + NO -+ N2 + O2 (Vlb) 

The Arrhenius rate constants corresponding to the above reaction steps are given 
below where >"p, ap and Ep denote the pre-exponential factor, temperature index, 
and activation energy for reaction number /3, and p is the local pressure in bar. 

No. >..p( mol, L, s) ap Ei(kcal/mol) 

I Adp 0.0 50.0 
IIf 1.0 x 1012 /p 0.0 41.5 
lIb 3.1 x 1013 /p 0.0 49.1 
III 7.0 x 1013 jp2 0.0 21.0 
IV 8.5 x 1012 /p2 0.0 21.0 
V AS/p2 0.0 50.0 
VIf 1.7 x 1017 -0.5 136.0 
VIb 4.1 x lOIS -0.5 93.3 

The pre-exponential factors for reactions I and V are functions of the local equiv
alence ratio /3, Frolov (1996) determined the appropriate values of >"1 and >"s at 
a range of equivalence ratios from f3 = 0.67 up to f3 = 1.54. The pre-exponential 
factors vary nonlinearly over the range such that the lean limit values are orders 
of magnitude greater than the rich limit values. The values under stoichiometric 
conditions for each is >"1 = 2.57 X lOIS L/(mol. s) and >"s = 7.03 x 1013 L2 /(moI2s). 
At the suggestion of Frolov (1996), linear interpolation between the known values 
for >"1 and >"s was used to determine values for intermediate mixing states. 

2.1.2 Domain initialization 

The turbulent field was initialized using an incompressible phase scrambled ki
netic energy spectrum for the velocity components and a conserved scalar. The 
initialized conserved scalar field can be seen Fig. 1, where black regions denote 
pure oxidizer zones and white regions denote pure fuel zones. Scalar normalized 
unmixedness can be defined as: 

(13) 

which can be seen to be a normalized measure of the fluctuation level. Unmixedness 
varies between zero, where the scalar field is homogeneous, and unity where only 
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FIGURE 2. Adiabatic equilibrium species mass fraction profiles in mixture fraction 
space. Symbol key: + - O2 , X - CO, 0 - CO2 , 6. - H 20. 

pure fuel and pure oxidizer zones exist with no mixing at all. The initial conserved 
scalar fields used here had initial unmixednesses of n ~ 0.8 in all cases. 

Reactive species' mass fractions and internal energy were mapped onto the con
served scalar field using adiabatic chemical equilibrium relationships between mix
ture fraction (conserved scalar) and the reactive scalars. The adiabatic equilibrium 
reactive scalar mass fraction profiles are plotted versus conserved scalar mixture 
fraction in Fig. 2. 

Note that the chemical conditions in the richest permissible mixture corresponded 
to a state with an equivalence ratio of approximately three. This mixture fraction is 
beyond the rich flammability limit of methane-air mixtures at standard temperature 
and pressure. Of all the species present in the simulation, only nitric oxide (NO) 
was initialized as being zero at all mixture fractions. 

By initializing the simulation using the method described above, the flame zones 
were effectively ignited simultaneously, albeit artificially, prior to run time. This 
was done to avoid a potentially long transient period where (presumably) triple 
flames would propagate along the unburnt flammable ribbons between the fuel and 
oxidizer pockets away from the ignition points. 

In order to avoid the establishment of intense pressure waves as a result of map
ping flame zone temperatures onto an initial cold flow field, the local densities were 
adjusted everywhere to maintain a uniform initial pressure field. The existence 
of large density gradients after initialization caused a short period where the flow 
field reorganized to preserve continuity. It is difficult to draw a parallel in behavior 
between the decay of turbulent motions in the reacting case and the well known 
tre.nds in inert grid turbulence. The former case is subject to dilatation, variable 
viscosity, and baroclinic torque effects that are absent in the latter. 

Unfortunately, it was further found that it was not possible to perform simulations 
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FIGURE 3. Simulated and modeled mean pressure as a function of time. Symbol 
key: + - DNS, x - CMC model 

with a combination of periodic boundary conditions and the initialization technique 
described above. No satisfactory explanation for this restriction has been found. 
It was found, however, that the calculation could proceed without hindrance if the 
domain was instead bounded by adiabatic slip walls encompassing a small filter 
zone with initially damped wall-normal velocity. 

Under the simulation conditions described above, the flow and mixing fields on a 
central portion of the grid (2102 ) were found to be statistically homogeneous. All 
of these points were then used in each of the statistical samples taken periodically 
throughout the temporal evolution of the simulation. With the passage of time, tur
bulent motions caused parcels of fuel and oxidizer to be convected into close prox
imity while molecular diffusion fed the reaction zones present at the fuel/oxidizer 
interfaces. 

2.2 Modeling method 

Conditional moment closure model calculations were made for the same condi
tions as were present in the simulation. These calculations were made with unit 
chemical modifying functions rf3 (see Eq. 10). 

The spatially degenerate CMC and PDF equations corresponding to statistically 
isotropic conditions with uniform molecular diffusivities are given below, 

(p 11]) 8~a = ~(px 11]) 8;~a + (pwa 11]) (14) 

8 1 82 

8t((P 11])Pq ) = -"281]2 ((PX 1 ",)Pq ) (15) 

where the conditional averages are taken over the entire domain and residual terms 
have been neglected. 
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The CMC equation (Eq. 5) was solved with the conditional mean scalar dissipa
tion rate profile being given by the PDF equation in the following manner: 

(16) 

In this study it is possible to use PDF information from the simulation to determine 
the conditional mean scalar dissipation rate, but in practice this information will 
not typically be available to the modeler. 

The form of the density-weighted PDF, ((p I ry)Pq / (p)), was assumed to be a Beta 
function. This assumption reduces the number of degrees of freedom in the PDF 
to two, namely specification of the conserved scalar mean and variance. The condi
tional mean density-weighted scalar dissipation rate was calculated using the time 
history of conserved scalar density-weighted mean and variance from the simulation, 
and the Beta function assumed form. 

Beta functions have the useful characteristic of being able to change in gross 
shape, according to changes in variance. Thus where the variance is high, a beta 
function will have singularities at the fully mixed and fully unmixed states. Where 
the variance is low, the beta function form allows for the possibility of a singularity 
at only one of the end mixing states (depending on the value of the mean). For 
very low variance the beta function forms a mono-modal Gaussian-like distribution 
about the mean. 

The effectiveness of the Beta function as an assumed form PDF has been discussed 
by Girimaji (1991) in relation to passive scalar mixing in isothermal isotropic tur
bulence. 

3. Results 

Over the course of the simulation, the Favre averaged mixture fraction unmixed
ness (see Eq. 13) decreased from near 0.65 down to 0.093. In this same period the 
simulated mean pressure rose from an initial pressure of one atmosphere to a final 
value of nearly two atmospheres. Around 56% of the avail&ble CO and 42% of the 
available C H4 fuel species were consumed during the simulated burn. The total 
amount of CO2 mass present increased by 138%, while the total mass of H 2 0 in
creased by 155%. Slightly more than 60 ppm of NO (by mass) was produced from 
an initial zero level over the course of the burn. 

The effectiveness of the CMC model in predicting the mean simulated trends 
can be gauged from Figs. 3 & 4. It is evident that the CMC model consistently 
overpredicts the mean pressure during the course of the burn to the point where 
it is in excess by 10% at the end. The model also tends to overpredict NO mass 
fraction levels, but to a greater degree. The NO mass fraction discrepancy is on 
the order of 150% towards the end of the burn. 

Figure 5 is provides a comparison of the simulated and predicted conditional 
mean temperature profiles at two different stages of the burn. In the figure, the 
temperature has been normalized by the adiabatic equilibrium temperature of a 
stoichiometric mixture at one atmosphere (2216 K). At the earlier time, some 0.28 
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FIGURE 4. Simulated and modeled mean NO mass fraction as a function of time. 
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FIGURE 5. Simulated and modeled conditional mean (normalized) temperature 
as a function of mixture fraction for two different times. Symbol key: x - DNS at 
O.28ms, + - DNS at 2.0ms, 0 - CMC at O.28ms, 6. - CMC at 2.0ms. 

milliseconds into the burn, the location of the CMC predicted peak conditional mean 
temperature is clearly shifted towards the rich side compared to the corresponding 
simulated profile. At that time, the actual values of the predicted and simulated 
profiles agree quite closely. 

At the later time of 2 milliseconds, the rich shift in the predicted peak temperature 
location is much less pronounced, but still discernible. The overprediction of the 
peak temperature by the model at this time is consistent with the level of mean 
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FIGURE 6. Simulated and modeled conditional mean NO mass fraction (ppm) as 
a function of mixture fraction for two different times. Symbol key: X - DNS at 
1.2ms, + - DNS at 2.0ms, 0 - CMC at 1.2ms, 6 - CMC at 2.0ms. 

pressure discrepancy seen in Fig. 3. 
Simulated and predicted conditional mean NO mass fractions (in parts per mil

lion) are plotted for comparison in Fig. 6. The predicted profiles are substantially 
elevated over the corresponding simulated profiles at all times. The level of overpre
diction of the peak conditional mean NO mass fraction increases with time, both 
in relative and absolute terms. It is apparent that at the earlier time, the location 
of the model's peak mass fraction is shifted compared to the simulation's peak. At 
the later time, there is no significant shift in location between the modeled and 
simulated peak mass fractions. 

4. Discussion 

The results presented above serve to illustrate some of the current difficulties that 
can face CMC modelers when they seek to apply the model to problems of practical 
interest. 

4.1 Conditional mean scalar dissipation rate 

As was mentioned in section 2.2, the practical determination of conditional mean 
scalar dissipation rate currently relies on the assumption that the actual mixture 
fraction PDF conforms closely to a convenient assumed form. It is fairly clear that 
in the instance of isothermal mixing in isotropic turbulence, the usage of a beta 
function assumed form is most likely adequate (see Girimaji 1991). 

However, there is a question as to whether these assumed forms, which are used 
in isothermal cases, remain accurate when used to embody density-weighted PDFs 
in cases with variable density. 

The difference between the modeled and simulated conditional mean scalar dis
sipation rate profil~s can be determined from Fig. 7. It is clear that the modeled 
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FIGURE 7. Simulated' and modeled conditional mean scalar dissipation rate (X I TJ) 
as a function of mixture fraction for two different times. Symbol key: x - DNS at 
0.28ms, + - DNS at 2.0ms, 0 - CMC at 0.28ms, D,. - CMC at 2.0ms. 

profiles agree quite well in terms of general magnitude with the simulated profiles, 
at both time points. 

There are however, significant differences in shape between the modeled and 
predicted profiles that are particularly present at early times in the burn. The 
modeled profiles invariably tend to approximate inverted parabolas under the range 
of mixture fraction variance studied here. The simulated profiles tend to have a cleft 
at or near the location of maximum heat release. 

The existence of this departure from a simple parabolic form, is coincident with 
the type of unexpected lean shift seen in the simulated conditional mean tempera
ture profiles at early times in the burn (see Fig. 5). The presence of a low region in 
the conditional mean scalar dissipation rate profile on the lean side of the stoichio
metric mixture fraction (tv 0.367) would locally minimize the level of temperature 
depression below chemical equilibrium. The mixture on the rich side of stoichio
metric is subject to more intense local mixing and so would tend to exhibit greater 
temperature depression. 

A possible explanation for the asymmetric shape of the simulated conditional 
mean scalar dissipation rate profiles can be gleaned from a rearrangement of Eq. 15. 

(17) 

Bearing in mind that conditional mean scalar dissipation ra~e is obtained from 
this equation through the double integration of both sides, then it would appear 
that wherever the local change in conditional mean density is particularly rapid, it 
could have an unusual influence on the form of (PX I TJ). 
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FIGURE 8. Chemical modifier functions for thermal NO formation reaction (R
VIf) determined from DNS data, 2.0ms into the burn. Symbol key: + - T(J, 0 - B(J 

grouping, !:::. - A,a grouping. 

For cases where pressure is assumed to be uniform across all mixture fractions, 
the conditional mean density is linked inversely to the conditional mean specific 
thermal energy (( e I 1]}). An expression for the time rate of change of conditional 
mean density can be written as, 

(18) 

where (se 11]) is the conditional mean chemical energy production rate. Both the 
chemical source term and the entire time rate of change in conditional mean thermal 
energy are required in any case for the solution of the full set of CMC equations. 

It may be possible to employ some kind of assumed form for the unweighted 
mixture fraction PDF (P.,,), and use the above pair of equations to determine (PX I 
1]). This method is practically difficult since the energy derivative term requires 
(PX I 1]) in order to be evaluated in the first place, and thus would entail the 
iterative solution of an integro-differential equation. Furthermore, it is not clear that 
the unweighted PDF should conform to an easily parameterized assumed form such 
as the beta function. Such an approach risks inconsistency between the derivative 
of the arbitrary assumed form PDF and the computed conditional mean density 
derivative, which may lead to unphysical (PX 11]) profiles. 

4.2 Second order chemical closure 

It is evident that the CMC model prediction for the rate of nitric oxide for
mation greatly exceeds the simulated rate. In part, this is no doubt due to the 
overprediction of conditional mean temperature by the CMC model. An additional 
100 .....: 200K in peak conditional mean temperature in can double or triple the rate 
of NO formation via thermal reaction pathways. 
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It is instructive to also examine the chemical modifier functions rj3, A,8 and B,8 
(see Eqs. 10-12) for the thermal NO formation reaction (R-VIf) as determined from 
the simulation. 

The effect of neglecting second order terms in the conditional mean chemical 
closure can be determined from Fig. 8. The lower trace corresponds to the A,8 
grouping of terms, containing the conditional covariances between species and tem
perature. The upper trace corresponds to the B j3 grouping, containing covariances 
between the reactant species, and the variance of temperature. The middle trace 
corresponds to the modifier function r,8 and is equal to unity plus the sum of the 
other two traces. 

In the reactive section of mixture fraction space around stoichiometric, the mod
ifier function dips below the unit line by as much as '" 50%. This indicates that 
simple first order chemical closures, which assume a unit modifier function at all 
mixture fractions, will overpredict the thermal formation rate of NO by as much as 
100% even given the correct conditional mean species and temperature distributions 
to begin with. 

Fortunately, the bulk of the key reactions in typical combustion chemistry do not 
have as high activation energies as the thermal NO formation step and as such are 
not so difficult to model. 

The prognosis for improved NO prediction by the CMC model is not terribly 
good. Short of a full second order closure scheme involving the equations for all key 
species variances and covariances, there is little that can be done. A partial second 
order closure, tracking just temperature variance or species variances alone, would 
not succeed since it is clear that the true r,8 profile is the small difference between 
these two large quantities. 

5. Conclusions 

A study of the effectiveness of the conditional moment closure model in predicting 
turbulent nonpremixed combustion of methane in air has been undertaken. On the 
whole, the model has provided quite good agreement with the simulation for all 
unconditional mean species yields, with the exception of nitric oxide. 

Predicted conditional mean species mass fractions and temperature were found to 
differ more significantly froni the simulation due to small differences in the density-
weighted PDF and its temporal evolution. . 

Large discrepancies were found in the case of nitric oxide, where higher temper
atures in the model calculations and a natural tendency of the first order chemical 
closure to overpredict NO formation were cited as contributing factors. 

Wherever practicable, future CMC model applications that seek to accurately 
predict NO formation should include some form of partial second order chemical 
closure. This should involve temperature, and the nitrogen and oxygen bearing 
reactant species. This is particularly desirable in combusting systems where instan
taneous deviations from conditional means are expected to be large. 
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Dynamic models for LES of turbulent 
front propagation with a spectral method 

By H. G. Iml, T. S. Lund, AND J. H. Ferziger 

1. Motivation and objectives 
Direct numerical simulation of turbulent reacting flows places extreme demands 

on computational resources. At the present time, simulations can be performed 
only for greatly simplified reaction systems and for very low Reynolds numbers. 
Direct simulation of more realistic cases occurring at higher Reynolds number and 
including multiple species and numerous chemical reactions will exceed available 
computational resources far into the future. Because of this, there is a clear need to 
develop the technique of large eddy simulation for reacting flows. Unfortunately this 
task is complicated by the fact that combustion arises from chemical reactions that 
occur at the smallest scales of the flow. Capturing the large-scale behavior with
out resolving the small-scale details is extremely difficult in combustion problems. 
Thus LES modeling for turbulent combustion encounters difficulties not present in 
modeling momentum transport, in which the main effect of the small scales is to 
provide dissipation. The difficulty is more pronounced in premixed combustion, 
where detailed chemistry plays an essential role in determining the flame speed (or 
overall burning rate); in nonpremixed combustion infinite rate chemistry can be 
assumed, eliminating the small scale features to a first approximation. 

One of the practically relevant and better understood types of turbulent premixed 
combustion is the laminar flamelet regime, in which the characteristic chemical 
time is much shorter than the characteristic flow time (Lilian & Williams 1993). 
Under this condition, combustion can be represented in terms of the propagation of 
laminar flamelets corrugated by turbulent eddies. It has been suggested (Kerstein 
et al. 1988) that such a propagating front may be captured by defining the front as 
a level contour of a continuous function G, whose governing equation is 

(1) 

In this equation, all information about the flame structure is carried by the flame 
speed SL. This provides a convenient opening for large eddy simulation; the flame 
structure need not be modeled. Since the flame retains its laminar structure, explicit 
expressions for S L as a function of the flow variables may be taken from asymptotic 
studies ( e.g., Clavin 1985) or computations. 

In LES, only filtered flame fronts are resolved. These fronts can be viewed as 
flame brushes that propagate at a speed, 5, higher than the laminar flame speed. 

1 Present address: Sandia National Laboratories 
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The problem is closed if one can provide an explicit expression for B as a function of 
available quantities. Several previous studies have attempted to derive relationships 
between S and the turbulence intensity u' (Clavin & Williams 1979, Yakhot 1988a, 
Kerstein and Ashurst 1992, Pocheau 1992). However, the existing theoretical and 
empirical results for S(u') do not agree with one another, so the functional form of 
B( u') remains an open question. Even if the question is resolved, there will be a 
constant or function to be determined. 

In this study, we present an attempt at LES using a dynamic subgrid-scale model 
that has been successfully applied to a variety of turbulent flows (Germano et al. 
1991). The basic formulation was derived earlier'(lm 1995), but the model is mod
ified to incorporate the effect of subgrid transport. In contrast to previous LES 
approaches for the G-equation (Menon et al. 1993), the model constants are com
puted dynamically as a part of the calculation procedure rather than being pre
scribed. Dynamic modeling for turbulent flow has been shown to exhibit correct 
behavior, for example, in the near-wall region of boundary layers, without the need 
for additional modification. The LES models for the G-equation suggested in this 
study have these features, allowing the possibility of application to practical com
bustion systems. 

2. Accomplishments 

2.1 Some remarks on the G-equation 

Before we proceed with LES modeling, some numerical issues related to the G
equation should be pointed out. If one wishes to solve Eq. (1) in the Huygens' limit, 
i.e. SL = SL' numerical difficulties arise due to the formation of cusps as the front 
propagates. Cusps are a natural consequence of the Huygens' process in much the 
same way as shocks are a characteristic feature of Burger's equation. To overcome 
the numerical difficulty associated with cusps, previous studies introduced various 
types of diffusive terms (e.g. Kerstein et al. 1988). These terms are not entirely ad 
hoc, however; they can be shown to represent the effect of thermal relaxation under 
transverse heat diffusion in the preheat zone of a wrinkled front (Clavin 1985). 
Using the asymptotic relation for SL, Eq. (1) can be written as 

(2) 

where only the leading term has been kept; this is a reasonable approximation 
provided the flame thickness is sufficiently smaller than the hydrodynamic scale. 
In the above relation, 'D = SLC is the Markstein diffusivity, where the Markstein 
length, C, is typically normalized by the flame thickness iF. Since 

£F = a/SL = (l/SL)(v/Pr), 

we find 
'D = (vfPr)Ma 



Dynamic models for LES of turbulent front propagation 103 

where v is the molecular viscosity, Pr the Prandtl number, and Ma = Cj.eF the 
Markstein number, which is 0(1) in practical flames (Searby & Quinard 1990). 

We attempt to solve Eq. (2) with a given value of 1); the results depend on this 
parameter. Numerical realization of the Huygens' limit (i.e. 1) -+ 0) is extremely 
difficult, if not impossible. Our numerical simulations of the passive G-equation 
in isotropic turbulence revealed that the overall flame speed depends significantly 
on the size of the cl.iffusion term in the G-equation. This is not surprising; it 
demonstrates that one must be careful about choosing this term, especially when 
comparing the flame speed with experiments. Accurate estimation of the Markstein 
number is mandatory for such comparisons. 

Due to the lack of experimental results, in this study LES models are validated by 
comparing with DNS results based on Eq. (2) with 643 resolution. Most of the LES 
are performed in 323 resolution using the filtered DNS fields as initial conditions. 

2.2 Subgrid-scale models for the G-equation 

We now describe the dynamic subgrid-scale models for the passive G-equation. As 
in turbulence, we assume scale invariance of the G-equation in the inertial range of 
turbulence, which has been shown to exist by Yakhot (1988b) and Pocheau (1992). 
We define the grid filter 9 and the test filter Q respectively as 

f(x) = J f(x')9(x, x')dx', j(x) = J f(x')Q(x, x')dx', 

where the width of the test filter, .&, is larger than that of the grid filter, ~. 
Applying the grid filter to Eq. (2), we obtain 

8C 8 (-) 8 (- -) 0- 82C 
!:l + ~ UjG = -~ UjG - uG + SLIVGI + 1)!i2'". 
ut UX) , UX) UXj 

(3) 

Here both the subgrid scalar flux UjG - UjC and the filtered modulus term IVGI 
need to be modeled. In the previous study (1m 1995), these two terms were mod
eled by a single filtered propagation term, SIVCI. This model, however, suffered 
from numerical instability since no subgrid dissipation was provided. In this study, 
the subgrid flux term is modeled by an eddy diffusivity model analogous to the 
Smagorinsky model, i. e.: 

- - 8C 
'Yk = ukG - ukG = -at~, 

uXk 

where I:EI is the magnitude of the strain rate tensor: 

Similarly, at the test filter level, we obtain 

(4) 

(5) 

(6) 
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and a generalization of Germano's identity 

----===-- ,.. ~ 
:Fk = rk -"fk = ukG -ukG (7) 

can be used to determine the constant Co. Using Eqs. (4), (6), and (7) with the 
least-square contraction (Lilly 1992), we obtain 

where 

C 
A2 _ :F/Hi 

OU ----
'H/Hj' 

(8) 

(9) 

Next we consider the modeling of the propagation term, SLIVGI. This requires a 
special treatment as it contains a nonlinear modulus. We adopt the following model 

SLIVGI = BIVGI· (10) 

The effective flame speed, B, can be related to the laminar flame speed by requiring 
that the filtered equations maintain the correct overall burning rate. This con
straint gives rise to the notion of representing the "filtered propagation term" as 
"propagation of the filtered front at higher speed", and may be characterized by 
writing 

(11) 

where AL is the laminar flame area that would be computed in a direct simulation, 
and A is the area of the filtered flame front. For incompressible isotropic turbulence, 
the flame area can be readily computed as (Kerstein et al. 1988) 

AL = (IVG!), A = (IVG!), (12) 

where the bracket denotes the volume average. Furthermore, it is necessary to 
determine B as a function of turbulence intensity. Theoretical studies suggest the 
functional form 

B/S1 = 1 + Cs(q/S1Y (13) 

where q = [( Uj - Ui)( Uj - Ui)P/2 is the square-root of the subgrid kinetic energy in 
the filter volume. Previous studies (Clavin & Williams 1979, Pocheau 1992) show 
that quadratic (p = 2) and linear (p = 1) behaviors are expected in the weak and 
strong turbulence limits, respectively. In the next section, this functional relation 
will be examined using an a priori test based on DNS data. 

Given the value of p, the constant C s can be determined by a dynamic proce
dure. Combining (11), (12), (13) and applying the same model to the test-filtered 
quantities, we obtain 

B AL (IVGI) ( ( q )P) 
S1 = A = (IVGI) = 1 + Cs S'L ' (14) 
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s _ AL _ (IVGI) _ \1 C (!L)P) 
-~- ~ - +s , 

81 A (IVai) 81 
(15) 

where Q = [( Ui - ud( Ui - Ui)]1/2 is the square-root of the subgrid kinetic energy 
associated with the test filter. It is readily seen that there are two unknowns, 
(IVGI) and CS, and two equations, provided the subgrid kinetic energies, q and 
Q, are available. This requires an additional model for the subgrid kinetic energy 
as a function of the large-scale quantities. As will be seen later, unlike the case of 
Smagorinsky's model, the model for the subgrid kinetic energy is crucial to accurate 
prediction of the flame speed. We shall consider the following three models: 

1. q '" ~I:EI, deduced from dimensional reasoning similar to that used in Smagorin
sky's model. Since:E can be computed, this model is applicable with any numer
ical method. Unfortunately, this model overpredicts the turbulent flame speed 
when the turbulence is not in the inertial subrange, as will be shown later. 

2. Spectral curve fit, which can be used with spectral methods. The turbulence 
energy spectrum is described by an algebraic power relation 

(16) 

or an exponential 

E(k) = Ckexp(-mk). (17) 

The two unknowns Ck and m can be determined from E(k) and E(k). The 
subgrid kinetic energy can then be computed as 

q(k) = 100 

E(k)dk. (18) 

3. Since the spectral curve fit has limited application, we suggest another model 
similar to that of Bardina et al. (1983). We define a new filter with size Li, where 
~ < .6. < A. Then the subgrid kinetic energies are estimated by 

(19) 

and 

(20) 

where .6./ ~ = ~/ A = 1.4 ~ v'2 are used in the present calculation. 
In the following section, a priori tests are performed by applying these models 

(referred to as Models 1, 2, and 3) for the propagation term, combined with the 
Smagorinsky-type subgrid transport model. 
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FIGURE 1. Energy spectra obtained from the DNS, 3_6 large-eddy turnover times 
after the g-field was initialized. Turbulence energy: --; scalar energy (gI2/2) 
for u' /5'i = 0.5: ---- ; energy in 9 fluctuations for u' /5'i = 2: -'-. 

e.9 A priori tests of the models 

The subgrid models proposed in §2.2 are tested by post-processing DNS results. 
We performed DNS based on Eq. (2) with incompressible homogeneous isotropic 
turbulence. The turbulence is forced at the lowest wavenumbers in order to hold 
the total kinetic energy approximately constant. The numerical method is pseudo
spectral is space with second order Runge-Kutta time integration (Rogallo 1981). 
A developed flow field is used as the initial condition and the G-field is initialized 
as a linear function G = x. To make the G-field homogeneous, we define 9 = G - x 
and solve for g. Following initialization of the 9 field, the simulation is run for 
3.6 large-scale eddy turn over times, at which point the 9 field is fully-developed. 
The Reynolds number based on Taylor microscale is about 75 and M a/ Pr = 4, so 
'D = 4v. Two cases were computed; tt' / 51 = 0.5 and 2, which was accomplished by 
adjusting 51 for the same turbulence field. 

Figure 1 shows the DNS results for the turbulence and scalar energy (g'2) spectra 
for both values of u' / 5'i. The slope -5/3 is also shown. It is seen that the turbulence 
spectrum has a slope -5/3 over a limited range of k due to the low Reynolds number 
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FIGURE 2. Enhanced filtered flame speed SIS'L vs. normalized subgrid kinetic 
energy qIS'L. Cutoff filter: --; Gaussian filter: ---- ; u'IS'L = 0.5: [J; 
u'IS'L = 2: •. 

of the flow. 
Since the Smagorinsky-type transport model has been established in previous 

LES studies, the main emphasis in this work is on the modeling of the propagation 
term. We first examine the functional relation of S I S'L and ql S'L. These quantities 
are computed from the DNS spectrum by using 

q = 100 

2E(k)dk, (20) 

S I Sf = (IVGI) I (IvaI). (21) 

To obtain the filtered field a, we use (a) the cutoff filter in the Fourier space, and 
(b) the Gaussian filter Q(k) = exp(-k2~/24). Although the cutoff filter is more 
relevant with the spectral method, the Gaussian filter is Jnore practical with finite 
difference techniques. 

Figure 2 shows S I Sf as a function of q I Sf for various filter sizes; increased 
abscissa corresponds to increased filter size. It is seen that while the Gaussian filter 
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t=t+dt 

FIGURE 3. Schematic showing the mechanism of kinematic restoration by the 
flame propagation. 

gives approximately linear behavior at very small q/ S1, with the cutoff filter the 
increase in S / SL is much less significant and the curves exhibit quadratic behavior 
from the start. This observation is in contrast to an earlier result that showed linear 
behavior (Bourlioux et al. 1996). Incidentally, the quadratic behavior is consistent 
with a theoretical prediction of Clavin & Williams (1979) for weak turbulence. 

It is noted that the nonlinear behavior shown in Fig. 2 is more prominent in the 
stronger turbulence case, u' / Sf = 2. The reason can be found from Fig. 1; for 
stronger turbulence (u' / S'L = 2) the fluctuations in the G-function are controlled 
more by the turbulence than by the propagation and there is more scalar energy at 
low wavenumbers. Physically, as shown schematically in Fig. 3, propagation dimin- . 
ishes front corrugation, which is called "kinematic restoration" by Peters (1992), 
while small-scale wrinkles are formed at the trough, which will lead to cusp for
mation in the Huygens' limit. Therefore, one effect of propagation is to transfer 
energy from low to high wave-numbers. Consequently, the higher u' / S1, i.e. the 
less significant the propagation, the more the nonlinearity in Fig. 2, because less 
energy is present at high wavenumbers. Since the cutoff filter is used in the present 
spectral calculation, we choose p = 2 for most of our calculations. 

Next we use the DNS data to check the accuracy of the model for the effective 
propagation defined in section 2.2. To do this, the 643 DNS field is used to compute 
the actual flame speed, taken as the volume average of IVGI. Then the DNS field 
is filtered to 323 by truncating the high wavenumbers. This cutoff-filtered field is 
then used to compute the filtered flame speed, which is the target for the model. 
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FIGURE 4. A priori tests of the filtered flame speed S for various models; (a) 
u'/S'i = 0.5, (b).u'/S'i = 2. Direct DNS result: --; Modell: _._; Model 2 
with the power law: --- ; Model 2 with the exponential law: ---- ; Model 3: 
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FIGURE 5. Comparison of energy spectra obtained from DNS and various LES 
models for u' / S1 = 2 at 3.6 eddy turnover time after the g-field was initialized; 
DNS: -- ; LES with Modell: -'- ; LES with Model 2 with the exponential 
law: ---- . 

Using only the filtered information, Eqs. (14) and (15) are solved for S / SL, for each 
of the three models for the subgrid kinetic energy. In .order to test the validity of 
Eq. (15), a second "test filtering" of the DNS data is made by truncating to 163 

modes. Finally the procedure is repeated at each time step in the DNS from the 
initialization of the 9 field to the end of the run, 3.6 large-scale turnover times later. 

Figures 4( a) and (b) show S / S1 computed from various subgrid kinetic energy 
models at various times during the DNS, for u' / S1 = 0.5 and 2, respectively. A 
quadratic functional relation (p = 2) was assumed. In both cases, it is clear that 
Modell overpredicts the filtered flame speed. This may be due to the low Reynolds 
number of this flow. For u' / S1 = 0.5, both model 2 with the power law and model 
3 give good results. On the other hand, for u' / S'L = 2, for which less energy is 
contained in the subgrid scales, the actual S / S1 is much smaller than that predicted 
by Model 2 with the power law and Model 3, but Model 2 with the exponential 

. law gives better agreement. These results indicate that the prediction of turbulent 
flame speed using LES of the G-equation depends strongly on accurate estimation 
of subgrid turbulent kinetic energy. 
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FIGURE 6. Volume averaged turbulent flame speed as a function of time, for 
u'jS1 = 2; DNS: -- ; LES with Modell, p = 1: _ .. _; LES with Modell, 
p = 2: _._; LES with Model 2, exponential law and p = 2: ---- . Time is 
scaled by 0.4 large-scale eddy turnover times. 

2.4 Results of LES runs 

We now present. results of actual LES using the suggested dynamic models; this is 
sometimes called a posteriori testing. The initial flow field of the DNS is truncated 
to 323 resolution and used as the initial field for ii, and G = x initially. 

Figure 5 shows the turbulence and scalar energy spectra of DNS and various LES 
results at a time 3 large-scale eddy turnover times after initialization of the g field. 
Two subgrid kinetic energy models are tested: Modell (a poor model) and the 
exponential fit version of Model 2 (the best model). The LES energy spectrum is 
in fair agreement with the DNS, although it appears that the subgrid-scale model 
is slightly over-dissipative. The scalar energies of both LES cases agree fairly well 
with the DNS, while the energy of Modell is higher than the exponential spectral 
fit model, as might be expected from Fig. 4. 

Finally, the volume-averaged turbulent flame speed, represented by 8(1\701), is 
plotted as a function of time in Fig. 6. Results from the DNS are plotted as the solid 
line. To illustrate the effects of the improvements in the model, results for Model 1 
with p = 1 are also shown. This simple model may overpredict the turbulent front 
speed by as much as a factor of two; significant improvement is obtained by merely 
switching to the quadratic relation (p = 2). Model 2 with the exponential curve fit 
gives the best result in this case since the scalar spectrum falls more rapidly with 
wavenumber for stronger turbulence. 
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3. Conclusions and future work 

Dynamic models for LES of the G-equation of turbulent premixed combustion 
have been proposed and tested. Several such models were tested in forced homoge
neous isotropic turbulence. The results indicate that, unlike the case for Smagorin
sky's model applied to the momentum equation, the estimate of the subgrid kinetic 
energy is crucial to accurate prediction of turbulent flame speed. For the cases 
studied here, the extended Smagorinsky model overpredicts the flame speed. Fur
thermore, S /81 is not necessarily a linear function of q / 81; quadratic dependence 
seems to fit the results more accurately. 

From the differences between the cases with u' / 81 = .5 and 2, it appears that 
the inability to fit S /81 as a function of q/81 with a fixed value of p is mainly due 
to the non-similarity between the turbulence and scalar energy spectra in Fig. 1. 
A modification is proposed to improve the model; one can free the exponent p and 
use the dynamic procedure to determine it. This requires two levels of test-filters 
and complicates the numerical procedure. 

Finally, we remark that although in the present work G is treated as a passive 
scalar, the concept can be extended to include heat release. The challenge is a 
numerical issue of how to capture discontinuities across highly corrugated flames 
while resolving the small-scale turbulence. Methods designed to resolve this issue 
have been proposed (Klein 1995, Bourlioux et al. 1996), but further work is still 
needed. 
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2'1.. "" Jet noise using large eddy simulation 
flS 

By F. Bastin 

1. Motivation and objectives 

With the advent of high-supersonic transport aircraft, supersonic jet noise be
comes a major technological problem and there is a strong need for a reliable pre
diction approach. Our present interest is the mixing noise component induced by 
the turbulent flow itself. The physics of shock-associated noise is very different and 
must be treated in another context (see Tam 1995). 

Traditional jet mixing noise predictions are based on a steady statistical descrip
tion of the turbulent flow, which may be obtained using analytical models as in 
Ribner (1969) or more recently in Bechara et al. (1995) from a steady Reynolds 
averaged computation (RANS). Some interesting aspects of the problem can be 
predicted, such as the decrease of the acoustic emission for a coaxial jet, but this 
approach provides little insight about the nature of the acoustic sources and neces
sarily relies on strong modeling assumptions which limit its generality. 

A more difficult but promising method consists in directly using the history of the 
turbulent fluctuations obtained from a numerical simulation. The task is not trivial 
since the constraint of capturing the wide range of acoustic space and time scales 
adds to the already complex problem of a turbulent flow computation. Depending 
on the method chosen to obtain the acoustic radiation, it may be necessary to 
also represent a weak amplitude acoustic near-field very sensitive to dissipation and 
dispersion errors. This is why this difficult problem has been tackled progressively 
at both ends of the Reynolds number range. At Stanford a sequence of projects 
of increasing complexity led Mitchell, Lele & Moin (1995) to treat the case of an 
excited laminar axisymmetric jet by directly simulating Navier-Stokes equations 
(DNS). They compare different methods to derive the acoustic field, which is also 
directly represented in the simulation. At the other end, Bastin, Lafon & Candel 
(1995) considered unsteady RANS of high-Reynolds-number two-dimensional plane 
jets and obtained the radiated noise using exclusively Lighthill's (1952) aeroacoustic 
analogy. 

It is now time to ·take the next step and treat a real configuration where results 
could be compared to an experiment. This will provide the first opportunity to 
directly evaluate the suitability of the whole approach for prediction purposes. For 
this we selected the case of a supersonic circular jet at Mach number M = 1.37, for 
which both flow and acoustic measurements are available, respectively by Lau et al. 
(1979) and Tanna et al. (1976). The experiment was designed to produce a fully 
expanded jet near ambient temperature (TJ ITo = 0.94) so that the "acoustic" Mach 
number, defined as M a = U J / Co, is 1.33. The Reynolds number based on the jet 
diameter and exit velocity is 1.5 X 106 . For such a case, large eddy simulation (LES) 
seems the only technique that may provide a realistic description of the turbulent 
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FIGURE 1. Schematic section of the flow and computational domain. 

fluctuations contributing to the radiated noise. Therefore, the first objective of this 
project is to set up the large eddy simulation of a "real" (i.e. high-Reynolds-number 
and spatially developing) supersonic jet. The configuration of the computational 
problem is presented in Fig. 1. Note that a part of the nozzle is included in the 
computational domain: indeed it is intended not to provide any artificial excitation 
of the flow, which is a major difference with previous studies. We hope to obtain a 
natural flow by letting the intrinsic spatial instabilities develop on a well designed 
grid. The second part of the project consists in applying different known methods to 
obtain the acoustic field radiated by the computed flow, then analyzing the results 
in the light of the experimental data. The present brief describes the activity of the 
past year, which was entirely devoted to preparing the simulation of the flow. 

In the following, the length, velocity, and time scales are respectively the jet 
exit diameter D, the ambient speed of sound Co, and D/co. x, r, and ¢> are the 
coordinates of the cylindrical system associated with the jet, with the x origin at 
the nozzle exit. Xi refers to the cartesian coordinate system. 

2. Accomplishments 

2.1 Choice of the method - feasibility 

It was decided that the starting point for the simulation would be a finite element 
code solving the compressible Navier-Stokes equations, developed by various con
tributors in the group of Prof. T. Hughes at Stanford (see e.g. Shakib 1988, Johan 
et al. 1992 or Jansen et al. 1993), and which was recently used by Jansen (1995) 
to perform the large eddy simulation of the flow around an airfoil at high angle of 
attack (0: = 12°). Two issues were addressed before making this choice. First the 
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use of an unstructured grid allows an easy representation of a three-dimensional 
configuration while reducing the number of grid points by taking advantage of the 
inhomogeneous grid resolution requirements. However, finite element methods are 
more expensive per grid point than finite differences. Therefore, we had to verify 
that the savings in terms of grid points are enough to justify the use of finite ele
ments. Second, recent work by Beaudan & Moin (1994) has shown that numerical 
dissipation can easily overwhelm the effect of the subgrid-scale model, giving lit
tle reliability to any large eddy simulation. It was therefore useful to assess the 
dissipation of the present method. 

To obtain an estimate of the number of grid points necessary for this simulation, 
the resolution requirements were defined as follows. It seems from experimental 
observations that the internal boundary layer is laminarized by the favorable pres
sure gradient in the nozzle, so that the grid only needs to resolve the mean velocity 
gradient. Consequently the nozzle interior represents a negligible fraction of the 
whole grid. In the mixing layer region, previous LES studies of temporally evolving 
free shear flows by Ragab & Sheen (1993), Vreman et al. (1994), or Fatica et al. 
(1994) led us to opt for an isotropic grid with 5 points in the radial direction across 
each vorticity thickness 8w • Using the experimental growth rate of the jet, this 
defines a grid that is very fine at the tip of the nozzle and coarsens linearly with 
the streamwise distance: 

~Xi = 0.016 x. 

This must be modified at the nozzle exit (x = 0), where the relevant length 
scale is the internal boundary layer thickness. This parameter is not given in the 
experimental data, but it is expected to have a negligible influence on the further 
development of the shear layer. From similar experiments, the 99% thickness 8 was 
set at 4% of the jet diameter. 

Another constraint is to capture the acoustic sources in the jet. The acoustic 
near field must also be captured if a method such as Kirchhoff's formulation is to 
be used to obtain the acoustic radiation. This restriction implies 

A < 1 
uXi - M S ' nat 

where n is the number of points per wavelength, Ma the acoustic Mach number 
(here 1.33), and St the Strouhal number (based on the jet exit velocity and the jet 
diameter) of the highest frequency to be captured. The experimental data suggest 
St = 1, and it is interesting to see that with n = 8 this constraint takes over the 
previous condition at x ~ 6, meaning that the grid requirements are governed by 
the jet dynamics along the potential core (which is roughly 6 diameters long) and by 
the acoustic sources thereafter. In other words (and putting aside the complex and 
still controversial mechanisms of interaction between the nozzle and the acoustic 
field), the finer structures captured by the simulation during the first few diameters 
downstream from the nozzle are necessary to obtain a realistic further development 
of the jet, but they are negligible acoustic sources per se. 
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With these conditions the size of the grid can be estimated for both structured 
and unstructured grids. As a result the latter requires about 17 times less grid 
points than the former. The ratio varies somewhat when the parameters of the 
resolution requirements are varied, and it depends on whether the acoustic near 
field is represented or not, but it is never less than 15. The main reason for such 
a high ratio, which is enough to justify the choice of an unstructured grid method, 
lies in the azimuthal resolution which is very high at the nozzle lip. A structured 
grid is forced to carry this resolution everywhere. 

The second question to investigate is the dissipation properties of the numerical 
scheme. The present finite element method is based on a Galerkin formulation in 
space stabilized with the SUPG operator described by Hughes & Mallet (1986). 
This finite element formulation can be combined with any time-stepping scheme. 
In all this report, the second-order accurate trapezoidal rule in time was used. 
The spatial formulation is illustrated on the simple example of the one-dimensional 
advection equation: 

aU aU 
7ft + a ox = 0, 

where a is the advection velocity. In this case the weighted residual R is given by 

J 
aU JOWl J oW, aU aU 

R, = WI7ft + [WI aU] - ox aU + (a ox ) T (at + a ox ), 

where W, is a weighting function. The stabilizing dissipation error is entirely due 
to the last integral of the residual, where T is a controlled local parameter. This is 
precisely what makes the scheme very different from standard upwind spatial dif
ferences, where the dissipation is an intrinsic non-adjustable feature of the method. 
In the present work we use first-order elements, which makes the dissipation error 
fourth-order, and the finite element method can be made, at any point in space 
and time, arbitrarily close to the non-dissipative fourth-order accurate Pade scheme 
(obtained for T = 0). 

In the current version of the code, the dissipation of the method (i.e. T) is a 
function of the local eFL number, given by eFL = a At / Ax. This eFL number 
is local because in the general case the maximum characteristic velocity (here a) 
and the grid spacing Ax vary in space. The non-dimensional relevant parameter 
characterizing the dissipation is in fact f = aT/Ax and we have presently 

f = ~(1 + eFL -2)-1/2. 
2 

The expression extended for the system of Navier-Stokes equations in three dimen
sions can be found in Shakib (1988) and was never modified throughout the present 
work. This relation makes the dissipation error small when the local eFL number 

. is small, which is the case practically everywhere in our computational problem. 
Indeed, the time step is determined with a local eFL number of order 1 by the 
highest velocity and smallest mesh spacing that occur at the same place at the noz
zle lip. As the time step is constant in the whole computational domain, the local 
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FIGURE 2. Dispersion and dissipation of the present finite element method com
pared with reference finite difference schemes. Analysis on the pure advection equa
tion with the trapezoidal rule temporal scheme and eFL = 0.05. Dispersion is 
indicated by Cr , which tends to its exact value of 1 (no dispersion) in the limit of 
zero wavenumber (9 == 0). Dissipation over one period of the exact wave is given by 
1- exp(21l'Ci) and tends to 0 (no dissipation) in the same limit. -- Present FEM; 
---- fourth order central-differences; ...... fifth order upwind-differences. 

eFL number is much smaller everywhere else. To change the point of view, free 
shear flows, in contrast to boundary layers, have the property that the grid spacing 
is minimum precisely where the velocity is maximum, which defines the shortest 
time scale to be captured by the simulation. The relative time step (or the local 
eFL number) is therefore small in most of the computational domain. 

To complete this theoretical analysis, we consider the same advection equation 
with a = 1 and write classically the numerical solution U = exp[ik(x - ct») where 
k is a fixed real wavenumber and C = Cr + iCi the complex numerical propagation 
velocity. Ci represents the dissipation error while the difference of Cr to 1 accounts 
for the dispersion error. The spatial scheme is combined with the trapezoidal rule in 
time with eFL = 0.05, and we compare the dissipation and dispersion of the present 
finite element formulation to the central fourth-order and one point upwind-biased 
fifth-order differences. It is seen in Fig. 2 that the finite element method is already 
less dissipative than this high-order upwind scheme, especially with more than 4 
points per wavelength (9 < 1l'/2). Moreover, the dissipation of the finite element 
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formulation could be decreased at will if deemed necessary simply by modifying the 
expression for f. Finally, the dispersion error behavior is excellent, which results 
from the proximity to a Pade scheme. 

To confirm these analytical results, numerical tests were conducted, with the 
same three-dimensional code that is used later, on two cases that are relevant to 
the main simulation, namely the propagation of an acoustic wave in subsonic flow 
at M = 0.5 and the growth of temporal axisymmetric instabilities of a supersonic 
jet at M = 1.4 with 69 / R = 0.05. As everywhere else the trapezoidal rule is used in 
time. The eFL number and resolution are also matched to the main simulation. It 
was observed that with eFL = 0.02 and no more than 8 points per wavelength, an 
acoustic wave propagates with 0.3% amplitude attenuation per period and -0.2% 
phase error. Correspondingly, at CFL = 0.08 and with 32 points per wavelength, 
the error on the growth rate of the jet instability was -0.6% with 0.2% phase error. 
These numerical results are consistent with the one-dimensional theoretical analysis. 

2.2 Parallelization 

Finite element codes are naturally good candidates for data parallelism, since 
most of the time is spent performing local computations on elements. Parallel 
machines are also at the high-end of modern supercomputers: for example 64 pro
cessors of the IBM SP2 outperform a single processor of the CRAY e90 by an 
order of magnitude. Thus the initial code was ported by Johan et al. (1992) on 
the Connection Machine 512-nodes CM5, where the computational domain is par
titioned in physical space, so as to affect an equal number of elements to each 
processor. Parallelization on the CM5 was based on the use of a high-level language 
(CM-Fortran, similar to the emerging standard HPF), where the actual detection 
and organization of inter-processor communications is completely controlled by a 
"smart" compiler. This makes programming practically as easy as in the serial 
world, which is an important advantage. On the other hand, performance is gen
erally not optimal, portability is still mediocre, and in our specific case the future 
of the CM5 is uncertain. For these reasons we decided to move to the completely 
different approach of message passing with the interface standard MPI, which al
lows us to run on a variety of platforms, but specifically the IBM SP2. With this 
technique, a suitable strategy must be constructed to communicate data between 
processors, which requires a real programming effort, but gives full control on the 
actual parallelization. 

In the present finite element code, the bulk of the data that must be commu
nicated is the residual at the nodes shared by several processors, i.e. the nodes at 
the boundary of each piece of the domain partition among the processors. The 
main idea to optimize communications consists of renumbering the nodes before 
the computation so that the data that must be shared are stored contiguously in 
main memory, which avoids inefficient indirect addressing. To accomplish this, an 
elaborate preprocessing step was developed where, given the partition, nodes are 

. relabeled and the exact sequence of communications is determined to minimize 
waiting times. The partition itself is produced by the program Metis developed by 
Karypis & Kumar (1995). The preprocessing is done only once before the actual 
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simulation, during which communications then take place following the same fixed 
pattern. 

The performance and scalability of the new code justify the effort. The two 
tests presented in Table 1 show that the parallelization itself is cheap (as seen from 
the speedup between the serial version and 4 processors) and that scalability (here 
between 4 and 16 processors) is very good. Correspondingly the wall-clock time 
taken by communications is about 3% of the total CPU time. As a comparison the 
same ratio for the previous CM5 version is in the order of 15%. It is not easy to give 
exact figures for larger numbers of processors because the SP2 that we are using 
(at MHPCC, Maui) provides a mixture of processors of different performance, but 
it seems the communication time does not exceed 5% of the CPU time, with still a 
good scalability between 32 and 64 processors. 

20000 nodes 50000 nodes 
1 proc (serial): 1421. 4 proc: 493. 
4 proc: 366. 16 proc: 128. 
speedup: 97% speedup: 96% 

TABLE 1. Cpu time for test problems 

2.9 Dynamic model 

Since it was first formulated by Germano et al. (1991), it was often shown that the 
dynamic subgrid-scale model has very attractive properties, such as its robustness 
and the removal of any ad hoc tuning or damping near solid boundaries. For the 
present large eddy simulation we select the compressible version described by Moin 
et al. (1991). More precisely only the trace-free part of the subgrid-scale stress ten
sor Tij is represented with a Smagorinsky eddy viscosity model. The Smagorinsky 
coefficient is determined during the computation by the dynamic procedure. The 
trace of 7'ij, i.e. the subgrid-scale energy, is neglected (C I = 0 with the notations 
of Moin et al. 1991). Finally, the turbulent Prandtl number is set to 0.7 and is not 
determined dynamically. To implement the dynamic model in the finite element 
code, we followed the approach of Jansen (1994), who develops a top-hat test filter 
generalized for an unstructured grid. For the present jet case the dynamic coeffi
cient is averaged in the homogeneous azimuthal direction, which requires additional 
communications between processors. 

The present implementation was tested on the case of isotropic homogeneous 
turbulence decay. The simulation was run on a 323 periodic grid and aimed at 
reproducing the results of the experiment conducted by Comte-Bellot & Corrsin 
(1971). For a fair comparison the initial velocity field of the simulation must match 
the filtered spectrum given at the first experimental station, corresponding to t = 42 
with the conventions of the reference. The grid filter is assumed here to be a "box" 
filter of width equal to the computational mesh spacing ~x. Furthermore, the initial 
field must have realistic phase information, for which the skewness of the velocity 
gradient is a good indicator. To satisfy these requirements the initial field is adjusted 
by letting the simulation run for a few eddy turnover times and renormalizing the 
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spectrum. This procedure is iterated until convergence of the skewness. Once the 
initial field is determined and matches the experiment at t = 42, the actual decay 
is simulated and results are compared to the experimental data given at t = 98 and 
171. During this computation, the time step is constant with initially 45 time steps 
per eddy turnover time at the first experimental station (t = 42). Correspondingly, 
the initial CFL number based on the r.m.s. velocity is 0.03. 

Figure 3a shows the decay of the kinetic turbulent energy obtained with the dy
namic model, with the Smagorinsky coefficient fixed at Cs = 0.17, or when no 
subgrid-scale model is used. The relative position of the three curves was expected, 
but the variations observed are important since they show that the numerical dis
sipation does not take over the subgrid-scale model. Indeed the main argument of 
Beaudan & Moin (1994) to dismiss the fifth-order upwind-differences in space was 
the observation that it produced the same results regardless of the subgrid-scale 
model, or even when the model was switched off. It may also be noted that the 
decay obtained with the dynamic model is reasonable, while fixing the Smagorin
sky coefficient seems to provide even better results. However, the velocity spectra 
presented in Fig. 3b show that this would be a premature conclusion: if we focus 
for example on the slope of the velocity spectrum obtained at the last experimental 
station (t = 171), it is clear that the dynamic model nicely matches the experiment, 
while the fixed coefficient spectrum drops off at high wavenumber, indicating that 
the model provides excessive dissipation. The very good decay shown in Fig. 3a with 
fixed coefficient is the result of errors cancellation. Finally the spectrum obtained 
with no model is flatter, which indicates that the numerical dissipation inherent to 
the scheme is not dominant. 

2.4 Grid generation 

The object is to obtain a three-dimensional grid composed of tetrahedral elements 
which satisfy the highly inhomogeneous resolution requirements that were discussed 
in section 2.1. The grids produced by commercial software may be appropriate for 
steady computations, but they fail to provide the quality and smoothness desirable 
for large eddy simulations in non-trivial geometries. Hence, it was necessary to 
develop a grid generator specific to the present case. 

A triangular two-dimensional grid which maps an azimuthal section of the jet 
(cf> = 0) is first generated. This grid is shown in Fig. 4a and is itself designed in 
two steps. First the shear layer region is covered with a "pseudo-structured" grid 
which can be precisely controlled. Due to technical reasons it is not possible to 
extend this grid indefinitely away from the line r = 0.5 and therefore we use an 
advancing front method to map the rest of the two-dimensional section. A careful 
eye will detect the transition between these two approaches on the magnified view 
in Fig. 4b, where the nozzle lip is also clearly seen. The three-dimensional grid 
is then obtained schematically by rotating each triangle in the two-dimensional 
grid to create a three-faced toroid, then generating tetrahedral elements, complying 
to varying azimuthal resolution requirements for each toroid. The result can be 
observed on the streamwise section of Fig. 4c. The present grid was designed this 
way and has about 600,000 nodes and 3,500,000 elements. This multi-step grid 
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FIGURE 3. Test of the subgrid-scale model in a LES of decaying isotropic turbu
lence on a 323 grid, with comparison to filtered experimental data of Comte-Bellot & 
Corrsin (1971). (a) Decay of resolved kinetic turbulent energy; (b) filtered velocity 
spectra where the wavenumber ranges from 1 to 16 (normalization by 211'/ L, where 
L is the size of the computational box). -- Present dynamic model; ---- fixed 
coefficient Smagorinsky model (C 8 = 0.17); ...... no model. .," , • Experiment at 
t = 42, 98 and 171 respectively. 
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FIGURE 4. Sections of the present grid. (a) Generating two-dimensional grid, 
or azimuthal section (<p = 0), of the full three-dimensional grid. The jet is going 
from left to right, and the grid (including the sponge) is 41 diameters long and 15 
diameters in radius. The thick boundary indicates the limit of the sponge, starting 
25 diameters downstream and 8 diameters in radius. (b) Magnified view of the same 
azimuthal section. The portion presented here is 6 diameters long and 2 diameters 
in radius. The nozzle can be seen on the left. (c) Quarter streamwise section 
at x = 1 (one diameter downstream from the nozzle) with the same scale as (b). 
Apparent faces of the elements are shown up to r = 2.3. Note the clustering of 
elements in the shear layer (around r = 0.5). 

generator has been made robust and is now general in the sense that the only input 
is the resolution requirements as a function of space. Therefore, should resolution 
needs change, a new grid can be obtained very simply in a few minutes. 

2.5 Boundary and initial conditions 

The boundary conditions for a compressible jet with no co-flow involve some 
difficulties. The outflow (x = xmax) is subsonic, which means that one physical 
boundary condition must be specified. This condition should reflect as little as 
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possible of outgoing vortical structures. Moreover, the flow is unsteady so that the 
velocity on the edges of the jet may be temporarily negative, which is a potential 
source of numerical instability. There should be an entrainment associated with 
the jet, implying an "external inflow" (x = Xmin and r > D/2), parallel to the 
nozzle, as opposed to the main internal inflow through the nozzle (x = Xmin and 
r < D /2). The entrainment is unknown a priori and must develop naturally, which 
means that the corresponding boundary conditions must allow for a modification of 
the mean flow. Because there is no co-flow, the mean flow is weak (the entrainment 
typically peaks at one or two percent of the jet exit velocity) so there is again a risk 
of having a local outflow where an inflow is expected. The radial velocity on the 
lateral boundary (r = Tmax) naturally changes sign, with an inflow in early sections 
followed downstream by an outflow. In the rest of this section we present boundary 
conditions which bring a satisfactory solution to these problems. They have been 
obtained partly on the main turbulent simulation, and partly on a preliminary 
two-dimensional laminar simulation. 

Previous experience has shown that a "sponge" region, where the basic equations 
are modified in a suitable way, can be very helpful in making boundary condi
tions less critically sensitive. The sponge must also be smooth so as to minimize 
the impact on the physical part of the flow. A systematic investigati~n of sponge 
techniques has been carried out by Israeli & Orszag (1981), whQ propOie different 
solutions. An attractive one, referred to as "cooling" , can be implemented by adding 
to the evolution equation for the generic variable ~ a source term -A(x)[~-~o(x)l. 
In this expression, A(x) is the local amplitude of the sponge and ~o(x) a steady 
solution, which can be considered as the target. As the strength A of the sponge in
creases in space, ~ is driven to the target ~o. This technique has the advantage that 
the solution is known at the end of the sponge (it should be almost identical to ~o) 
so that any boundary conditions compatible with ~o can be applied. Furthermore, 
excellent results were obtained on the simple cases of the subsonic convection of a 
vortex, or the propagation of an acoustic wave in subsonic flow, with an error an 
order of magnitude lower than with characteristic-type boundary conditions alone. 
It turned out, however, that the necessity to prescribe the target solution is a major 
drawback in the case of the supersonic jet. Even with a long computational domain, 
the flow is still far from being at rest at the outflow boundary: consider that 40 
diameters downstream from the nozzle, the maximum Mach number is still 0.3. It 
is therefore not possible to set ~o to the ambient conditions, and unless the sponge 
was made so weak that it became useless, we observed a strong numerical instability 
of the jet in reaction to any "guessed" ~o, for example based on experimental data. 
The cooling sponge indeed violates the characteristic nature of the flow, and after 
these observations it seems undesirable to use this technique even if a suitable ~o 
could be found. Given the sensitivity of the simulation to the imposed target, it 
could be argued that the sponge indirectly enforces the flow upstream, which would 
be a flaw of a prediction approach. Therefore we came back to a more classical 
filtering sponge. This option, which was already used by Mitchell et al. (1995) or 
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Bastin et al. (1995), does not fully release the constraint to have low reflection out
flow boundary conditions, which are discussed in the next paragraph. In practice, 
if ~ is the solution at the end of a time step, a filtered solution 4 is obtained by 
convolution with the same top-hat generalized filter that is used for the dynamic 
model. The filter width is therefore equal to the mesh spacing. The solution ~ is 
then replaced by a weighted combination (1 - f3)~ + f3ib, where f3 is a coefficient 
that varies smoothly in space from zero outside the sponge (no filtering) to 1% at 
the boundary of the computational domain, where the sponge effect is maximum. 

The outflow boundary condition was chosen to be the characteristic-based form 
detailed by Poinsot & Lele (1992), where the amplitude of the incoming character
istic wave is replaced following the suggestion of Rudy & Strikwerda (1980) by a 
term conveying the influence of the ambient pressure. The principle of this condi
tion is simple, but it involves a precise modification of Navier-Stokes equations at 
boundary nodes, which fits poorly in the frame of the finite element method, where 
boundary conditions are naturally expressed in terms of boundary integrals. To 
implement this boundary condition efficiently, i.e. without inserting expensive tests 
everywhere in the standard volume treatment, it was necessary to develop a new 
data structure in the code, indicating the elements with boundary nodes where the 
residual must be altered. Once the regular residual is assembled, these elements are 
re-processed and the term to be modified is extracted and replaced. 

For the external inflow which was defined above, four conditions must be spec
ified. A first condition to prescribe is no swirl (u</> = 0). Two additional physical 
conditions coinpatible with a modification of the mean flow associated to entrain
ment are obtained by assuming that the flow is coming from an upstream reservoir 
with no entropy variations. From thermodynamical relations and the compressible 
Bernouilli equation, these two conditions are written as constant total temperature 
and pressure. They were implemented in the finite element code, where it is rela
tively simple to impose zeroth order conditions on variables at the boundary nodes. 
A fourth condition must be specified. The most physical condition would be to 
prescribe that no free-stream azimuthal vorticity comes into the domain. However, 
we were not able to implement this in a stable way. As there is no unique and 
obvious approach to impose this condition in the finite element formulation, it is 
hard at this stage to say if the problem is due to the implementation itself or comes 
from the compatibility with other boundary conditions. The boundary condition 
was therefore replaced by setting the radial velocity U r to zero. This assumption of 
parallel incoming streamlines is not strictly right, but the radial velocity is expected 
to be an order of magnitude lower than the streamwise entrainement velocity, so 
that the error is minimal. On the lateral boundary, no-slip conditions are imposed. 
This simple choice is again justified by steady k-€ computations which showed that 
the velocity on this boundary would be under 0.1 % of the jet exit velocity. 

On the nozzle itself, no-slip conditions and constant temperature are prescribed. 
The internal supersonic inflow is completely specified with steady conditions. Pres
sure and temperature are constant across the flow, while a laminar boundary layer 
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FIGURE 5. Instantaneous planar view of the jet (</> = 0) at t = 12.1. The scale 
can be inferred from the nozzle, which is drawn on the left. The present section is 
10 diameters long. (a) Streamwise velocity, with contours drawn from 0.1 to 1.3 in 
increments of 0.1; (b) azimuthal velocity, with contours drawn from -0.45 to 0.45 in 
increments of 0.1. Dotted contours indicate negative values. 

velocity profile is prescribed with the 99% thickness 8 equal to 4% of the jet diame
ter. It is an essential feature of the present simulation that the flow is not explicitly 
excited. The grid is finest at the tip of the nozzle to allow a natural "ignition" of 
the flow. 

Finally, the simulation is initialized with the result of a steady axisymmetric k-e 
computation of the same flow, obtained on a structured grid with a different code. 
The fact that no perturbations are superimposed on this initial field can again be 
emphasized. Although the initial field is rapidly changed by the LES equations, less 
realistic initializations led to numerical instabilities. 

2.6 Preliminary results 

Upon completion of the steps described in the previous sections, the final code 
was obtained. At the time of the present brief, the main turbulent simulation has 
just begun and the physical time was advanced by only 12.5 time units. It is useful 
to keep in mind that during one time unit (D / co) the shear layer primary (axisym
metric Kelvin-Helmholtz) instability propagates about 0.8 diameter downstream. 

An instantaneous azimuthal section of the jet at t = 12.1 is presented in Fig. 5. 
The first coherent structure, which in this convectively unstable flow originates 
from the tip of the nozzle, has barely reached the downstream boundary of this 
view (10 diameters downstream from the nozzle). At least qualitatively, the shear 
layer identified by the streamwise velocity contours (Fig. 5a) is reasonable. It is also 
clearly not axisymmetric, which is a desirable feature of a realistic turbulent jet. The 
fact that the· grid itself is not perfectly axisymmetric (as can be checked in Fig. 4c) 
is sufficient to induce the first three-dimensional disturbances to which the flow is 



128 F. Bastin 

1.4 

1.2 

1.0 

1\ 0.8 
:l v 

0.6 

0.4 

0.2 

0 

-1.5 -1.0 -0.5 0 0.5 1.0 1.5 

Y 

FIGURE 6. Mean radial profile of the streamwise velocity at x = 2. -- computed; 
• experiment. The profile is symmetrized for clarity. 

naturally unstable. The three-dimensionality of the flow can also be estimated from 
the azimuthal velocity shown in Fig. 5b. As expected there is no mean swirl motion 
of the jet, but the amplitude of the azimuthal velocity fluctuations peaks at more 
than 30% of the exit streamwise velocity, which represents strong three-dimensional 
structures. 

It is also interesting to note that significant levels of azimuthal velocity are not 
observed before one diameter downstream from the nozzle, which appears as the 
distance necessary for the initial symmetry to break down. The flow is also two
dimensional in the region where initial conditions are still being convected out, 
which corresponds to the downstream extremity of the present view. The numerical 
mechanism for onset of three-dimensionality is therefore clearly identified as an 
instability operating from the nozzle lip. 

It is still too early at this stage to obtain converged statistics of the flow anywhere 
but very close to the nozzle, where the local time scale is smallest. Thus only the 
radial profile of streamwise velocity two diameters downstream from the nozzle is 
presented and compared to experimental data (see Fig. 6). Although the spreading 
rate appears slightly too high, the agreement is reasonable for this location where 
the state of the internal boundary layer or the exact shape of the nozzle (which is 
unknown to us) may still have an influence. 

Finally it is interesting to look more into the detail of the transition to three
dimensionality in this computation, since this is one of the crucial aspects which 
will give confidence in the simulation. For this we consider the jet at some point in 
time and take three sections perpendicular to its axis. The first section is taken at 
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FIGURE 7. Spatial vortex breakdown at t = 9.7. (a-c) Streamwise vorticity W x ; 

(d-f) azimuthal vorticity wif>. (a,d) x = 1; (b,e) x = 1.5; (c,j) x = 2.5. Contours are 
drawn from -15 to 15 in increments of 2. Dotted contours indicate negative values. 

x = 1, which was seen in Fig. 5b to correspond to the beginning of an observable 
transition, and two more sections are taken at x = 1.5 and x = 2.5. Figure 7 shows 
the streamwise and azimuthal vorticities at these locations. At x = 1, Fig. 7d 
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shows a vortex ring with small azimuthal fluctuations, corresponding in Fig. 7a to 
low levels of streamwise vorticity. Only half a diameter downstream, the vortex 
ring now shows strong azimuthal oscillations (Fig. 7e). At this stag~ the streamwise 
vorticity has reached the intensity level of its azimuthal counterpart (Fig. 7b). One 
diameter further, the vortex ring has completely broken down (Fig. 7f) though it 
can still be noted that the azimuthal vorticity remains mostly positive. At the same 
time Fig. 7 c shows well-developed streamwise structures of smaller spatial scale and 
same or higher amplitude. 

It is difficult to make quantitative comparisons with the numerous studies on 
vortex breakdown available in the literature. These generally deal with an idealized 
configuration of one or a few incompressible vortex rings, a different situation from 
this supersonic spatially developing jet. Nevertheless, the process of small-scale 
streamwise structures progressively building up and taking over the initial axisym
metric motion has been analyzed e.g. by Shariff et al. (1994), who performed direct 
simulations of a single vortex ring, or visualized by Liepmann & Gharib (1992) 
in an incompressible round jet. The present simulation appears to reproduce this 
evolution very well. 

3. Future plans 

The advancement of this compressible turbulent jet is still subject to occasional 
numerical problems, but the main simulation is finally on its way. As progress is 
made and statistics are accumulated, it will be possible to extensively compare the 
computed flow to experimental data. 

Acoustic results are expected to be obtained in the near future. The numerical 
approach to derive the acoustic field via Lighthill's analogy has been designed, and 
the corresponding acoustic routines are essentially ready. To keep data storage re
quirements affordable, the contribution of turbulent fluctuations to acoustic sources 
is accumulated as the solution progresses. Because of their smaller time scale, the 
high-frequency components of the radiated noise should converge first. 

Several theoretical aspects of the noise radiation problem can also be worked 
upon, such as estimating the error associated to refraction effects, which are ne
glected by Lighthill's analogy. 
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Towards numerical simulations 
of trailing-edge aeroacoustics 

By Meng Wang 

1. Motivation and objectives 
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The aeroacoustics of flow-hydrofoil interactions exhibits distinct characteristics 
depending on the physical length scales involved. In the small-foil (relative to 
acoustic wavelength) limit characteristic of the noise generated by large-scale vortex 
shedding at low flow Mach number, the noise calculation is facilitated by the use 
of the Lighthill analogy (Lighthill 1952) in conjunction with a free-space Green's 
function, in the sense of Curle's formulation (Curle 1955). A methodology for 
computing the vortex-shedding noise using the Curle formulation, including both 
surface-induced dipole sources and volume quadrupole sources, has been developed. 
The completed work, emphasizing the importance of an adequate outflow boundary 
treatment for accurate volume source calculation, can be found in Wang (1995) and 
Wang, Lele & Moin (1996). 

A more fascinating aspect of the hydrofoil noise is the aeroacoustic scattering 
by the trailing edge, or the interaction of turbulent-boundary-Iayer eddies with the 
trailing edge. This occurs at the large-body limit, i.e., when the hydrofoil chord is . 
comparable with or exceeds the dominant acoustic wavelength, and is the source of 
intense, broad-band noise (Brooks & Hodgson 1981; Blake & Gershfeld 1988). Our 
ongoing research is focused on this flow regime. The presence of a sharp trailing 
edge enhances the acoustic-energy radiation to the far-field by altering the source 
characteristics; for instance, turbulent eddies, known as quadrupole sources in free 
space, behave in a non-multipole (sometimes termed "3/2-pole") fashion in the 
vicinity of a semi-infinite flat-plate edge (Ffowcs Williams & Hall 1970). Crighton 
& Leppington (1971) show that the non-multipole character of the radiated field 
is caused by the fact that the scattering surface is noncompact relative to the 
acoustic wavelength. To account for the surface reflection effect, a hard-wall Green's 
function, whose normal derivative vanishes on the surface, must be employed in an 
integral solution to the Lighthill equation. Howe (1978) gives an extensive review 
of the theoretical developments in trailing-edge noise prediction methods. 

In addition to the directly radiated aerodynamic noise, the fluctuating wall
pressure (pseudo-sound) field is of importance in practical applications since it 
tends to excite structural vibrations and low frequency noise (Blake 1986). The 
space-time characteristics of wall-pressure fluctuations are frequently required as 
a forcing-function input for various structural models. The rapid changes in sur
face pressure bear the trailing edge provides an efficient mechanism for generating 
the detrimental lower-frequency content of the wall-pressure wavenumber spectrum. 
The problem i~ often further complicated by the presence of adverse pressure gra
dient, boundary-layer separation, and vortex shedding in the trailing-edge region. 
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Blake (1975) and Blake & Gershfeld (1988) conducted a series of aeroacoustic ex
periments with lifting hydrofoils which have asymmetrically beveled trailing edges. 
The asymmetric edge shape produced a separated flow on the low-pressure side, and 
an attached boundary layer on the high-pressure side. Measurements were made 
of the turbulent velocity fields near the trailing edge, fluctuating surface pressures, 
and radiated noise signals. Correlation and cross-spectral analyses were conducted 
between the velocity and pressure signals in an attempt to determine the physical 
mechanisms for generating unsteady surface pressure and radiated noise. Brooks 
& Hodgson (1981) measured the scattered surface pressure fields near the trailing 
edges and the radiated fields, of flows past a NACA 0012 airfoil at several angles of 
attack and with varying degrees of edge bluntness. The cross-spectral analysis of 
the measured noise data pointed to the trailing edge region as the dominant noise 
source. In the case of a sharp edge, excellent agreement with theoretical predictions 
in terms of the U~-dependence (Uoo is the free-stream velocity) of sound intensity 
and the sin2(O/2) (0 is defined in Fig. 5) directivity was obtained. 

Well designed experiments are invaluable in validating theory and providing in
sight into the complex edge-noise phenomena. However, they are limited in terms 
of providing detailed, global information about the flow field, and frequently resort 
to a priori assumptions regarding acoustic source mechanisms in order to reduce 
the amount of data to be collected. There is a pressing need for developing nu
merical simulation capabilities and accurate numerical databases to facilitate the 
acoustic source analysis. As a preliminary attempt, Zawadzki et al. (1996) used 
the database of Na & Moin (1996) for a separated, flat-plate turbulent boundary 
layer to examine the acoustic forcing functions, arguing that the separated bound
ary layer has characteristics similar to those of the boundary layer incident to a 
hydrofoil trailing-edge on the suction side. There are, however, important aspects 
of the trailing edge flow, such as pressure scattering, that the flat-plate boundary 
layer does not include. 

The objectives of the present work are twofold. First, we aim to develop a com
putational method for the prediction of trailing-edge noise and wall-pressure fluc
tuations. The general approach consists of a large eddy simulation (LES) of the 
turbulent near-field (the boundary layers and the near wake), in combination with a 
suitable formulation of aeroacoustic theory for the evaluation of the acoustic source 
functions and the radiated field. The second goal is to study the physical mech
anisms for the generation of sound and pseudosound. Besides the edge scattering 
effect, we are also interested in the roles played by pressure gradients, boundary
layer separation, and the lifted shear-layer. 

2. Accomplishments 

2.1 LES of trailing-edge turbulence 

The flow configuration corresponds to one of Blake's experiments (Blake 1975). 
As shown in Fig. 1, where the contour lines denote the mean streamwise velocity 
from a Reynolds Averaged N avier-Stokes (RANS) calculation (to be discussed later), 
a two-dimensional hydrofoil with a beveled, 25-degree trailing edge is placed in a 
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FIGURE 1. Flow past a hydrofoil with a 25-deg beveled trailing edge (the contour 
lines represent streamwise velocity obtained from a RANS calculation). 

uniform stream at zero-degree angle of attack. The hydrofoil has a circular leading 
~dge and a chord/thickness ratio of 21.125. The chord-based free-stream Reynolds 
humber is 2.15 x 106 • A more detailed definition of the geometry and experimental 
conditions can be found in Blake (1975). 

Past experiences with airfoils at high Reynolds number (Jansen 1995, Kaltenbach 
& Choi 1995) indicate that a full-scale LES with the entire foil would be too costly 
and suffer from inadequate grid resolution. In particular, laminar separation near 
the nose and the ensuing transition to turbulence pose an extremely stringent reso
lution requirement. Since the major interest in the present study is the trailing-edge 
region, we opted for a simulation which includes only the aft section ('" 38% chord 
length) of the foil and the near wake. The computational grid for a preliminary 
simulation is depicted in Fig. 2. For clarity, only one in every four grid lines is 
plotted, and the domain has been truncated in the vertical direction. The actual 
domain size, in terms of maximum thickness of the hydrofoil, is approximately 
20 x 82 x 0.5 in the streamwise (xt), normal (X2), and spanwise (X3) directions, 
respectively. A total of 288 x 160 x 32 effective computational cells are employed, 
with mesh refinements near the surface and the trailing edge. 

The numerical method employed in the present study is described in Choi (1993) 
and Mittal (1996). Second-order central difference is used for spatial discretization 
on a staggered mesh in curvilinear coordinates in the X}-X2 plane, and Fourier col
location with dealiasing is used for discretization in the Cartesian X3 direction. The 
time-advancement is of the fractional step type, in combination with the Crank
Nicolson method for viscous terms and third order Runge-Kutta scheme for con
vective terms. The continuity constraint is imposed through a pressure Poisson 
equation, which is solved at each Runge-Kutta sub-step using a multi-grid itera
tive procedure. The subgrid-scale stress is modeled using the dynamic SGS model 
(Germano et al. 1991) in combination with least-square contraction (Lilly 1992), 
spanwise averaging, and a clipping operation to limit the total viscosity to positive 
values. 

The numerical code, originally written for the C -type mesh, has been modified to 
accommodate an inflow-outflow configuration with a splitting wedge, as shown in 
Fig. 2. The modified code has been validated under simpler laminar flow conditions, 
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FIGURE 2. Computational grid for LES of trailing-edge flow. For clarity only one 
in every four grid lines is plotted. 

including double (upper and lower surface) Blasius boundary layers, and linear 
amplifications of Tollmien-Schlichting waves. 

The inflow boundary conditions pose a particular problem not encountered in a 
full-scale airfoil simulation. The mean velocity profiles at the upper and lower inlets 
differ from those of a flat-plate boundary layer due to flow acceleration. They are 
also affected by the presence of a mean circulation associated with a lifting surface. 
Unfortunately, the experimental measurements made by Blake (1975) were limited 
to the upper-side of the foil, and even there the available data are insufficient for 
boundary condition specification. As a result, we resorted to an auxiliary RANS 
calculation, using the k-t-v2 turbulence model (Durbin 1995) in a large domain 
enclosing the full hydrofoil. The resulting mean velocity data are used in setting 
up the velocity boundary conditions outside the boundary layers. As demonstrated 
in Fig. 3, the mean streamwise velocities at the inlets on two sides of the edge 
indeed deviate significantly from each other and from the free-stream velocity of 
unity. Serious errors will arise if the uniform free-stream velocity is imposed at 
both inlets. 

The turbulent-boundary-layer inflow data are generated from two separate LES 
of flat-plate boundary layers with zero pressure gradient, on the basis that the 
pressure gradients from experiments and the RANS calculation are small at the 
given chord station. The inflow-generation procedure is described by Lund (1994). 
The inflow-generation LES employs an identical mesh resolution as the trailing-edge 
flow LES at the inlets and matches the local boundary layer properties, including the 
momentum thickness and Reynolds number, with those from the RANS simulation. 
A discrete time series of the three velocity components in an appropriate X2-X3 

plane are saved to be later fed into the inflow boundaries of the main simulation. 
A no-slip condition is applied to the surface of the foil. The top and bottom 
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FIGURE 3. Mean streamwise velocities at LES inlets as a function of vertical 
distance from the foil surface, obtained from a RANS calculation. -- lower 
inlet; ---- upper inlet. 

boundaries are placed far (41 foil thicknesses) away from the foil to minimize the 
impact of velocities imposed along these boundaries. We used the velocity distri
butions from the RANS calculation, which deviate from the free-stream velocity by 
less than two percent. At the downstream boundary the convective outflow condi
tion (Pauley, Moin & Reynolds 1988) is applied to allow the vortical disturbances 
in the wake to leave the computational domain smoothly. 

3.5.-------------------.----------------------, 

-2.5 +--------------------------' 
-8 8 

FIGURE 4. Contours of streamwise velocity Ul in a constant X3 plane, at t = 29.2. 
Contour levels from -0.1 to 1.3, increment 0.1. 

The trailing-edge LES is presently in progress. As of this date the numerical 
integration has advanced approximately 1.5 flow-through times based on the free
stream velocity. It is too early to collect meaningful statistics. An instantaneous 
streamwise velocity field in mid-span is plotted in Fig. 4. One notices that there is 
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no visible flow separation on the suction side of the edge. This could be caused either 
by the initial transients still present at this stage of simulation or by insufficient 
spatial resolution in this preliminary run. The grid spacing in wall units is estimated 
to be .6.xtmin ::::::: 2, .6.xj ::::::: 55, and .6.xt ::::::: 220 at inlets and 100 near the trailing 
edge. Thus, the resolution is quite poor compared with that of typical wall-bounded 
LES practices. 

2.2 Acoustic formulation 

A solution to the Lighthill equation in frequency domain can be expressed in terms 
of convolution integrals with an appropriate Green's function (Goldstein 1976), 

'" ( ) 2 J '" ) a2
G ( ) 3 Pa ~,w = M Tij(Y,W a a ~,y,w d Y 

V Yi Yj 

+M2 f njPij(y,W)aa
G (~,y,w)~y, Js Yi 

(1) 

where Pa denotes the density perturbation and the caret denotes temporal Fourier 
transform. Tij = pViVj + 8ij (p - p/M2

) - Tij is the Lighthill stress tensor defined 
in terms of the fluctuating velocity relative to the free-stream value (Vi = Ui - 8il), 
the entropy (second term), and the viscous stress tensor Tij. Pij = p8 j j - Tij is the 
compressive stress tensor, ~ and yare the coordinates of the observation point and 
the source point, respectively, and nj denotes the directional cosine of the outward 
normal (into the fluid) to the rigid surface S over which the surface integration 
takes place. The volume integral is taken over the entire unsteady flow region V 
external to the body. G is the Green's function which satisfies the modified wave 
(Helmholtz) equation 

(aX~~Xj +k
2

) G(~,y,w)::: -8(~,y) (2) 

and the appropriate boundary conditions. Equations (1) and (2) are written in a 
dimensionless form. The velocity, density, and pressure are noridimensionalized by 
the undisturbed free-stream values Ubo, p'oc" and p'oc,U:;', respectively. The spatial 
coordinates are normalized by the hydrofoil thickness h'. The frequency (w) is 
normalized by Ubo/h'. Re and M denote respectively the free-stream Reynolds 
number based on h' and the free-stream Mach number. 8ij is the Kronecker delta, 
and the usual summation convention applies for repeated subscripts. 

Except for the neglect of O(M) bulk convection effect, (1) is exact and may serve 
as the starting point for studying the aeroacoustics of arbitrary flow-body inter
actions. For instance, the Curle integral (Curle 1955) is obtained if the free-space 
Green's function is used. A hard-wall Green's function, which satisfies aG / an = 0, 
is required for the calculation of acoustic scattering phenomenon. In general, an 
analytical expression for Green's function tailored to the complex, acoustically non
compact geometry such as the hydrofoil is nonexistent. Under certain asymptotic 
limits, however, one may use a known Green's function for a simpler geometry as 
an approximation. 
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FIGURE 5. Coordinate system for calculating the radiated noise of flow past the 
trailing-edge of a semi-infinite flat plate. 

In the limit that the hydrofoil thickness is much smaller than the acoustic wave
length (h ~ Aa ), the foil is reasonably approximated by a half-plane with zero 
thickness, for which the far-field Green's function is known (Ffowcs Williams & 
Hall 1970; Goldstein 1976): 

G ~ ::; G <;; [ ';"dU) + ::;: (~+ ';,; [" ';"dU). (3) 

In the above equation, the wavenumber k = Mw, and the distances R = l:c - yl 
and R* = l:c - y* I, where y* = (Yl, -Y2, Y3). In the cylindrical coordinate system 
defined in Fig. 5, 

[ 2 2 2] 1 R= r +ro - 2rrocos(8-80)+(z-zo) 2, 

1 

R* = [r2 + r3 - 2rro cos(8 + 80 ) + (z - ZO)2P , 

a = (2kro sin <p)~ cos (
8 ~ 80 

) , 

* (k . "') 1 (8 + 80 ) . a = - 2 ro sIn,!, '2 cos -2- , 

• "I.. r 
SIn,!, = 1 • 

[r2 + (z _ zo)2] '2 

(4) 

(5) 

(6) 

(7) 

(8) 
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For high Reynolds number flows, the viscous stress, entropy, and hence the surface 
integral are frequently neglected. Substituting (3)-(8) into (1) and retaining only 
the lowest order terms in M and R-1 lead to 

The strongest far-field noise is generated by the fluctuating Reynolds stress compo
nents normal to the scattering edge in a cylindrical region of radius much smaller 
than the acoustic wavelength (TO ~ Aa). Within this region, ei ( kR+a

2
) ~ ei ( kR· +a·

2
) ~ 

eikR , and the simpler, more familiar form (Goldstein 1976) is recovered. Equa
tion (9) is more suitable for numerical evaluations in that it allows the volume in-
tegration to be carried out to larger TO values. Since the integrand decays as T~3/2, 
a large TO bound is beneficial in minimizing the spurious boundary noise caused by 
nonvanishing source terms at the computational boundary. As demonstrated by 
Wang et al. (1996), boundary errors can severely compromise the accuracy of an 
acoustic analogy based calculation. 

The thin-foil limit (h ~ Aa) discussed above covers the relatively low frequency 
(wavenumber) range of the radiated noise. Since Aa '" lei M, where Ie is the eddy 
size, the approximation is valid for lelh ~ M, a condition likely to be met by the 
range of eddies resolvable in the source-field LES, at typical Mach numbers in naval 
applications. 

On the other hand, if h ~ Aa, the trailing edge is approximately equivalent to 
a triangular wedge on the acoustic length scale. By using a conformal mapping 
technique, Crighton & Leppington (1971) showed that Pa '" M2+Q/p for a wedge of 
exterior angle (p / q)1I". 

3. Future plans 

First, we will continue the LES of the trailing edge flow, and at the same time 
improve the numerical scheme to achieve higher computational efficiency. Grid
refinement studies will be carried out. Once a reliable, statistically convergent 
near-field solution is established, the velocity and wall-pressure statistics will be 
calculated and compared with the experimental measurements of Blake (1975). 
Cross-correlation and spectral analyses will be conducted to investigate the wall
pressure generation and scattering mechanisms. 

The radiated far-field noise will be calculated following the framework outlined 
in Section 2.2. A remaining formulation issue to be addressed in the course of 
investigation is the treatment of the infinite, homogeneous spanwise direction in 
the source integral. 
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A model for the onset of vortex breakdown 

By K. Mahesh 

1. Motivation and objectives 

A large body of information exists on the breakdown of incompressible stream
wise vortices. Less is known about vortex breakdown at high speeds. An interesting 
example of supersonic vortex breakdown is the breakdown induced by the interac
tion of vortices with shock waves. The flow in supersonic engine inlets and over 
high-speed delta wings constitute technologically important examples of this phe
nomenon, which is termed 'shock-induced vortex breakdown'. 

In this report, we propose a model to predict the onset of shock-induced vortex 
breakdown. The proposed model has no adjustable constants, and is compared to 
both experiment and computation. The model is then extended to consider two 
other problems: the breakdown of a free compressible vortex, and free incompress
ible vortex breakdown. The same breakdown criterion is used in all three problems 
to predict the onset of breakdown. Finally, a new breakdown map is proposed that 
allows the simultaneous comparison of data from flows ranging from incompressible 
breakdown to breakdown induced by a shock wave. 

This work is described in detail by Mahesh (1996); only the prominent results 
are presented in this report. 

2. Accomplishments 

2.1 Shock-induced breakdown 

Figure 1 shows a schematic of the interaction between a streamwise vortex and 
a normal shock wave. The axial flow is from left to right. The variables x and 
r are used to denote the axial and radial coordinate respectively. The axial and 
swirl components of velocity are denoted by U and Ve respectively, and p, p, and 
T represent the pressure, density, and temperature. The subscripts '00' and 'c' 
correspond to values in the free-stream and the centerline of the vortex, and the 
states upstream and downstream of the shock wave are respectively denoted by the 
subscripts '1' and '2' (e.g., Poo2 denotes the free-stream pressure downstream of the 
shock wave). This report will occasionally refer to the variables, /, r, and Mool . 
/ denotes the ratio of specific heats and is taken as 1.4. r is the swirl number of 
the vortex and is defined as r = vern/Uoo where Vern denotes the maximum swirl 
velocity. Moo is the free-stream Mach number, defined as Moo = Uoo/coo . 

The model is obtained as follows. First, a simple criterion for breakdown of 
the upstream vortex is proposed. The properties of the upstream vortex are then 
substituted into the criterion. The resulting equation is then rearranged to obtain 
an expression for the critical swirl number above which the vortex would break 
down. 
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FIGURE 1. Schematic of the interaction between a streamwise vortex and a normal 
shock wave. 

The breakdown criterion is based upon an approximation to the axial momentum 
equation at the centerline of the vortex. Consider the vortex impinging upon the 
shock wave. The vortex experiences an adverse streamwise pressure rise, which 
may be quantified by the pressure difference, P002 - Pel. The fluid in the vortex 
has a certain inertia in the streamwise direction, which may be quantified by the 
streamwise momentum flux, Pel U;l . Breakdown is assumed to occur if the axial 
pressure rise exceeds the upstream streamwise momentum flux, thereby stagnating 
the flow; i.e., if 

P002 - Pel 2 Pel U;l 

( 
f::.U )2 

2 PelU!,l 1 + U
ool 

(1) 

where f::.U denotes the upstream excess in axial velocity at the centerline. If the axial 
velocity is uniform, then f::.U = O. Using Pool, Pool and Tool to non-dimensionalize 
the pressure, density, and temperature respectively, Eq. 1 may be rewritten for 
uniform axial velocity as 

~ ~ ~ M2 
Poo2 - Pel = "fPel 001' (2) 

where the 'tilde' is used to denote non-dimensional variables. 
The Rankine vortex is used to approximate the swirl velocity in the upstream 

vortex. Two different idealizations of the thermodynamic field in the upstream vor
tex are considered: spatially uniform stagnation temperature and spatially uniform 
entropy. The radial momentum equation is then easily integrated to obtain the 
density and pressure at the centerline of the upstream vortex, i.e. Pel and Pel, are 
obtained in terms of rand Mool • The Rankine-Hugoniot equations for a normal 
shock express P002 in terms of the upstream Mach number, M ool . Substituting for 



Model for the onset of vortex breakdown 145 

0.8 

0.6 Breakdown 

.-:: .. 
<J 

J:...... 0.4 

0.2 

0 
1 2 3 4 5 6 7 8 9 10 

Mool 

FIGURE 2. Comparison of predicted critical swirl number to experiment and 
computation of shock-induced vortex breakdown. -- (Prediction: uniform stag
nation temperature), ---- (Prediction: uniform entropy), • (Computation), x (Ex
periment). 

Pel, Pel, and P002 into the above breakdown criterion will therefore yield an expres
sion for the critical swirl number r erit in terms of Mach number of the shock wave. 
This expression is given below. 

Uniform stagnation temperature vortex 

The critical swirl number is given by: 

1 
rerit= -M 

001 
2 { ( l' [ 2, 2 ] ) Ji=f } 

,_11- 1+,M~1 1+,+1(Mool -1) . 

Uniform entropy vortex 

The critical swirl number is given by the following implicit equation: 

(3) 

Results for the critical swirl number are presented for the case where the axial 
velocity is uniform. Figure 2 shows the predicted values of the critical swirl number 
as a function of the Mach number of the shock. The predicted values are compared 
to the experimental values reported by Delery et al. (1984) and the computations 
by Erlebacher et al. (1996). Good agreement is seen. The critical swirl number 
is predicted to decrease with increasing Mach number as observed. According to 
the proposed criterion, this decrease in r crit is due to a combination of two factors: 
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FIGURE 3. Predicted critical swirl number for shock-free vortex breakdown 
compared to the prediction for shock-induced breakdown. -- (Shock-free: uni-
form stagnation temperature), ---- (Shock-free: uniform entropy), ........ (Shock-
induced: uniform stagnation temperature), --- (Shock-induced: uniform en
tropy). 

increase in the adverse pressure rise (due to P002 increasing while Pel decreases) 
and decrease in streamwise momentum flux (due to pel decreasing) with increasing 
Mach number. 

The ability of the model to predict the onset of shock-induced breakdown was 
further evaluated (Mahesh 1996) by comparing to the experimental data of Metwally 
et al. (1989). The 'strong interactions' observed experimentally were seen to lie in 
the region where the model predicts breakdown, while the 'weak interaction' regions 
were seen to lie in the predicted region of non-breakdown. Also, the influence of 
an excess/deficit in the centerline axial velocity, and obliquity of the shock wave 
on the critical swirl number was considered (Mahesh 1996). Jet-like profiles of the 
axial velocity were observed to delay breakdown, while a wake-like profile made the 
vortex more susceptible to breakdown. For fixed upstream Mach number, rerit was 
predicted to increase as the shock became increasingly oblique. 

2.2 Shock-free breakdown of a compressible vortex 

The breakdown of a free axisymmetric vortex, i.e. breakdown in the absence of 
an externally imposed pressure gradient, is considered in this section. The argu
ments used are identical to those in breakdown induced by a shock. In the absence 
of the shock, the vortex discharges into the atmosphere. The difference between 
atmospheric pressure, (Pool), and the pressure at the vortex centerline, (Pel), pro
vides the adverse pressure rise that causes breakdown. Breakdown of the vortex is 
therefore assumed to occur when 

1 ~ ~ M2 - Pel = ,Pel 001 (5) 
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Scrit 

Quasi-cylindrical 1.41 

Axisymmetric N-S 1.35 

Bossel 1.12 

Squire 1.4 

Benjamin 1.4 

N urn. simulation 1.28 

Spall et al. 1.37 

Present 1.4 

TABLE 1. Prediction of critical swirl number for incompressible vortex breakdown 
compared to other approaches. All data other than the present reproduced from 
review article by Delery (1993). 

which is identical to the expression obtained when ]>002 is set equal to one in Eq. 2. 
The corresponding expressions for the critical swirl number are given below. 
Uniform stagnation temperature vortex 

1 
rcrit= -M 

001 

Uniform entropy vortex 

(6) 

1- [1- C! -1)r~ritM~ll~ = ,M~d1- (, -1)r~ritM~ll'"t:l. (7) 

Figure 3 shows the predicted values of the critical swirl number as a function of the 
free-stream Mach number. Also shown (for supersonic flow) are the values obtained 
for breakdown induced by a shock wave at the same Mach number. Compressibility 
is seen to make the vortex more susceptible to breakdown. A similar trend was 
noted by Keller (1994). This trend may be explained by noting that increasing 
the free-stream Mach number decreases the centerline pressure and density, thereby 
increasing the adverse pressure rise while decreasing the axial momentum flux. The 
predicted values of r crit in the absence of the shock are seen to be greater than those 
predicted for shock-induced breakdown. This trend can be explained by noting that 
the pressure rise across the shock wave produces a larger adverse pressure rise for 
the same upstream momentum flux. 

2.:1 Incompressible vortex breakdown 

Figure 3 shows that as Mool tends towards 0, rcrit tends towards 1. An incom
pressible vortex in the absence of externally imposed adverse pressure gradients is 
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FIGURE 4. Evaluation of the proposed breakdown map in predicting the onset 
of vortex breakdown. _ (Experiment: breakdown), 0 (Experiment: no breakdown), 
.. (Computations: breakdown), e. (Computations: no breakdown). 

therefore predicted to undergo breakdown at a critical swirl number of one. In a 
recent review article, Delery (1993) documents (section 3.4.5 of his paper) critical 
swirl numbers for incompressible vortex breakdown as predicted by different the
ories. He considers a Burger's vortex and defines a swirl parameter S, which is 
related to the swirl number r by, 

S = r 1 2 6 = 1.398 r. 1- e- . 5 
(8) 

Thus rerit = 1 corresponds to Scrit = 1.398 f'V 1.4. Table 1 reproduces from Del
ery's paper the critical swirl numbers obtained by different approaches. Our simple 
criterion is seen to agree well with the other data. 

2.4 A 'universal' breakdown map 

The preceding sections presented results for the onset of vortex breakdown by 
plotting the critical swirl number as a function of Mach number. The curve rcrit = 
rcrit(Mool) defined the boundary between the regimes of breakdown and non
breakdown. However, the critical swirl number is not universal (as also observed by 
Delery, 1993). Different curves were obtained for rCrit for the different problems. 
In this section, a breakdown map that allows a common breakdown boundary to be 
defined for all of the above mentioned problems is proposed. It is suggested that a 
plot of Poo2 - Pel against Pel U;l could be used to map the onset of vortex breakdown. 
The proposed map could even be used for incompressible vortex breakdown, and 
would be expected to adequately represent the onset of breakdown induced by pres
sure gradients acting over distances that are small as compared to a characteristic 
lengthscale of the vortex. The curve Poo2 - Pel = PelU;l (the 45° line) would act as 
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the boundary between the breakdown and non-breakdown regimes. The proposed 
map is illustrated in Fig. 4. Note that the pressure rise and momentum flux are 
non-dimensionalized by Pool U~l to allow incompressible data to be plotted. Exper
imental data on normal shock/vortex interaction from Metwally et al. (1989) is also 
shown. The breakdown and non-breakdown cases are seen to be appropriately de
lineated. Also plotted are data on oblique shock/vortex interaction from the recent 
computations by Nedungadi and Lewis (1996). Numerical solutions of the constant 
stagnation temperature Burger's vortex were used to obtain the centerline pressure 
and density since the vortices considered had a velocity deficit. With the exception 
of one point (run 8 in their paper), the proposed map appropriately delineates the 
'strong' and 'weak' interactions observed in the computations. 

3. Conclusions 

A simple inviscid model was proposed to predict the onset of breakdown in an 
axisymmetric vortex. Three problems were considered: shock-induced breakdown, 
free compressible breakdown, and free incompressible breakdown. A formula with 
no adjustable constants was derived for the critical swirl number in all three prob
lems. Comparison to experimental and computational data showed good agreement. 
Finally, a new breakdown map that allows a common breakdown boundary to be 
defined for a wide range of flows was proposed. 
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Compressing an elliptic vortex: transition f iJ 

to turbulence by tumble breakdown ,/., 

By Fabien S. Godeferdl, Nagi N. Mansour2 AND Claude Cambon1 

1. Motivations and objectives 

Stability of the elliptic vortex attracted interest in the past decade. Cambon 
(1982), and Cambon, Teissedre and Jeandel (1985) have studied the stability of such 
flows with spatially uniform velocity gradient, and have provided RDT solutions for 
a wide range of the parameter sin (where the strain rate S and the vorticity 20, 
define the velocity gradient matrix). The range studied included those of hyperbolic 
streamlines (strain dominated, sin> 1), linear streamlines (simple shear, sin = 
1), and elliptical streamlines (vorticity dominated, Sin < 1). The latter class has 
more recently attracted interest and several studies appeared (Pierrehumbert 1986, 
Bayly 1986, Craik and Criminale 1986). These studies will be collectively referred to 
as PBCC. Recent review of the subject of instability of elliptic flows and significant 
progress in this area can be found in Waleffe (1990). 

Background linear instability (in the elliptic core of actual eddies) was shown to 
be the active mechanism in several complex transitional and turbulent flows, includ
ing mixing layers, wakes, trailing vortices, etc. This was the primary motivation for 
the study of stability and transition to turbulence using Direct Numerical Simula
tions (DNS) by Blaisdell and Shariff (1994) and by Lundgren and Mansour (1996) 
for a confined elliptic vortex. Linear stability analysis of an unbounded elliptic 
vortex, stretched along its axis, was analytically performed by Le Dizes, Rossi and 
Moffat (1996, hereafter referred to as L-DRM). The case of a circular unbounded 
vortex, periodically compressed along its axis, was studied by Mansour & Lundgren 
(1990). This study showed that the flow displays a parametric instability due to the 
interaction between vorticity and periodic compression, in the absence of ellipticity, 
or additional weak planar strain. The present paper shares the motivations of these 
previous works regarding fundamental aspects of transition to turbulence, and is 
particularly connected to the latter three papers. Another specific motivation, how
ever, comes from the dynamics of turbulence in reciprocating engines, as presented 
hereafter. 

During the compression stroke, both swirl (axis parallel to the direction of com
pression) and tumble (axis perpendicular to the direction of compression) mean 
vortices are present. These vortices evolve in different ways. The swirling motion 
is stabilized by the compression (even if potential instabilities exist, as shown by 
Mansour & Lundgren 1990), whereas the tumble motion (created by the off-set 

1 LMFA UMR 5509 - Ecole Centrale de Lyon - France 

2 NASA Ames Research Center 
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(aJ 
piston 1 (bJ 

intake 

FIGURE 1. Sketch (a) of the generation of the tumble by injection in the experi
ment, (b) and the following compression of the tumble. 

from the symmetry axis of the intake-valve jet) is often observed to break down. 
Such a breakdown is desirable near the end of the compression stroke, since it could 
enhance turbulence and mixing at the beginning of the combustion stroke, This 
problem has motivated research projects which involve both an experimental study 
of a compressed tumble (Marc et al., 1996) and a related numerical approach using 
single-point closures (Leroy and Le Penven, 1996). A sketch of the experimental 
setup is shown in Fig. l. 

The three-dimensional character of the disturbances within a parametric insta
bility of the elliptical-type was not addressed in previous studies. 

2. Linear stability and RDT approach to the unbounded flow 

Rapid Distortion Theory (RDT) and linear stability analysis start from the same 
equations in the case of background (or mean) flow with uniform velocity gradient. 
The background (mean) velocity field is a solution of the Euler equations. The dis
turbance (or fluctuating) field can be sought under the form of time-dependent 
three-dimensional Fourier modes. On the one hand, considering a single-mode 
disturbance field, the solutions of the linearized equations are exact solutions (as 
pointed out by Craik and Criminale, 1986). On the other hand, RDT considers a 
sum over all of the Fourier modes, nonlinear coupling terms are neglected through 
the RDT assumption. This approach has the advantage that the computation of 
statistics is possible. Statistical homogeneity, in the sense of ensemble average, for 
the disturbance field is preserved by the space-uniform mean distortion, and, in turn, 
is consistent with the decoupling of the 'mean' flow (solution of Euler equations) in 
the absence of feedback from the Reynolds stress gradient. 

2.1 The background flow 

In three dimensions, we are concerned with the following mean velocity gradient 
matrix: 

( 

-S(t) 
Ui,j --+ !1(t) 

o 

-!1(t) 
o 
o 

(1) 
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where the mean velocity field Ui = Aij(t)Xj is a superposition of a pure compression 
flow of rate S(t) and a pure rotation flow of angular velocity O(t), or vorticity 20(t), 
where t is the time variable. The compression is chosen along the axis 1, and the 
vorticity vector is along the axis 3, in agreement with a 'tumble' flow pattern. The 
compression rate 5 is calculated given a uniform lengthscale variation law in the Xl 

direction 
L(t)/ L(O) = (1 + l/r) + (1 - l/r) cos(2wt) 

2 2 
(2) 

so that 
S(t) = -L/ Land O(t) = OoL(O)/ L(t), (3) 

where {} indicates the time derivative. The latter equation ensures that the mean 
velocity field is a solution of the Euler equations and reflects the conservation of 
angular momentum. The compression law (2), or equivalently the volumetric law, is 
roughly similar to the one in an actual engine, where r is the maximum volumetric 
ratio which is reached when 2wt = 7r (see also Mansour & Lundgren 1990). Hence 
the three parameters r, w, and 0 0 completely characterize the background flow. Of 
course, different L(t)-laws can be used in Eqs. (3) and (1) if necessary. 

Elliptic stream-functions corresponding to Eq. (1) are more classically formulated 
in a system where the axes are rotated (a: = 7r /4) around the Xa direction, so that 

-5/2-0 0) 
-5/2 0 

o 0 
(I') 

and the extra-diagonal part IS the same as the one considered by PBCC, but with 
time-dependent coefficients. Splitting the matrix into trace and deviator, one finds 

o 0) ( -5/6 
-5/3 0 + -5/2+0 

o -5/3 0 

-5/2-0 0) 
-5/6 0 

o 5/3 
(1") 

in which the trace-free (incompressible) part is similar to the one considered by 
L-DRM. 

2.2 Linear stability and RDT 

After splitting the velocity and pressure field into a background (capital letters) 
and a disturbance part (lower case letters), namely Ui + Ui and P + p, the linearized 
equations for the disturbances are solved using three-dimensional Fourier modes in 
the coordinate system that follows the background field. Note that this approach 
is Lagrangian with respect to the mean trajectories. With the method used by 
Cambon and coworkers since the early eighties (see Cambon et al., 1994, for an up
to-date presentation in English), the linear problem amounts to solving a system of 
two coupled differential equations for two solenoidal components of the disturbance 
velocity field, along trajectories in Fourier space. The numerical code (denoted 
MITHRA) is basically the same as the one used by Cambon (1982) and Cambon 
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et al. (1985) to study the effects of the elliptical flow instability on the turbulence 
statistics. 

The linear solutions are computed under the form of two matrices: 

- The first one is the Lagrangian displacement tensor Fij(t,O) = 8xi/8Xj which 
characterizes the background flow trajectories in physical and spectral space, or: 

(4) 

where space coordinates and wavevectors in capital letters stand for Lagrangian 
ones with respect to the mean. Similar formalism used in DNS is often referred 
to as 'Rogallo space' (Rogallo, 1981). 

- The second one, denoted gO/(3(kjk, t, 0), characterizes the linear inviscid response 
of the disturbance field. The number of components is minimal (rank-two matrix), 
when taking into account the solenoidal property. This is equivalent to the fact 
that the velocity Fourier amplitude vector lies in the plane normal to the wave 
vector. More details are summarized in the appendix. 

These two matrices completely characterize the inviscid linear stability problem. 
In addition, the viscous contribution can be obtained easily, as recently recovered 
by Landman and Saffman (1987) in the particular case of the elliptic flow. The 
statistics of homogeneous turbulence can be computed as well, given an initial form 
for the velocity statistical moments (e.g. isotropic), as has been done in classic RDT 
for over forty years (Batchelor and Proudman, 1954). 

Compared to previous linear stability and RDT studies, the case of the com
pressed tumble presents some original features as follows: 

- The background flow is compressible. An important parameter is the volumet
ric ratio J = det F, equal to L(t)j L(O) for a one-dimensional compression. This 
brings only a few changes since the disturbance field is solenoidal, meaning that we 
deal here with compressed, but not compressible turbulence. This type of approx
imation is justified at low Mach number, as discussed by Mansour & Lundgren 
(1990). Note that the spherical part of the mean velocity gradient matrix, as in 
Eq. (I"), could be removed from consideration by a rescaling of the disturbance 
field (Cambon et al., 1992). 

- The ellipticity and vorticity are continuously varying in a very different way from 
that in the study by L-DRM, even though axial stretching and the related increase 
of the axial vorticity were similar, looking at the incompressible part of (I"). In 
the compressed case addressed by Mansour & Lundgren, the axial vorticity was 
steady and there was no ellipticity. 

Typical results for stability analysis are presented as a function of the angular 
distribution of the matrix 9 in wave-space. Since, indeed, in the unbounded inviscid 
case, it depends only on the orientation of the wave vector and not on its modulus. 



Compression of an elliptic vortex 155 

1 

0.8 

0.6 
(:i 

0.4 

0.2 

0 
0 0.5 1 1.5 

() 

FIGURE 2. Elliptic vortex: Floquet parameter a as a function ofthe orientation () 
of the Fourier mode k. The peak value is located around () = 11'/3 with a maximum 
close to 9/16 (see e.g. Waleffe, 1990). 

o 0.5 1 1.5 

FIGURE 3. Same as Fig. 6 with no = 100. 

Figure 2 shows the case of the classic elliptic instability (the diagonal terms 
are not present in Eq. (I'» and Sand n are chosen constants. The maximum 
eigenvalue s of 9 is computed after a period T = 211'/ y'n2 - S2, which with respect 
to F corresponds to the time needed for closing elliptic trajectories. Under the form 
of a non-dimensional Floquet coefficient a defined from s = exp( aST), the classic 
distribution is recovered when the angle of K with the axis of the vortex (X3) varies 
from 0 to 11'/2 at Kl = O. Accordingly, a single peak of instability emerges around 
11'/3, with a maximum close to 9/16 (Waleffe, 1989, Cambon et al., 1994). 

Figures 3, 4, and 5 show the corresponding case for the compressed tumble at 
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o 0.5 1 1.5 

() 

Same as Fig. 6 with no = 500. 

0.5 1 1.5 

() 

FIGURE 5. Same as Fig. 6 with no = 1000. 

four different non-dimensional times (or crank angles) (2wt = 7r/4, 7r/2, 37r/2, 7r 
in Eq. (2)). The tumble is assumed to be circular at the initial time since S = 0, 
and to have the maximum aspect ratio r at the final time. A convenient 'realistic' 
choice of parameters in the context of reciprocating engines is r = 10, 2w = 528-1 , 

with different values for no = 100 (Fig. 3), no = 500 (Fig. 4), no = 1000 (Fig. 5). 
Compared to the case of the stationary elliptic vortex where a single instability 

peak is exhibited and to the elongated elliptic vortex (Le Dizes et at., 1996) where 
the instability growth is inhibited by a sufficiently rapid stretching rate, the present 
results are completely different and particularly important regarding a possible 'ex
plosive' instability. The case of pure compression (no = 0) is also shown in Fig. 6 
to contrast with the tumble case. The only case where a number of instability 
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FIGURE 6. Maximum eigenvalue s of the amplification matrix 9 for different 
orientations () of the Fourier mode k. This case with no vorticity no = 0, at 
different crank angles: -- , wt = 7r/4; ........ , wt = 7r/2; ---- , wt = 37r/4; 
---- , wt = 7r. 

bands were found is the periodically compressed swirl flow (Mansour & Lundgren 
1990), but our results display an unexpected number of unstable thin bands. The 
most general analytical results for the steady elliptical flow and the periodically 
compressed swirl flow, which are based on Hill's equations, are summarized in the 
appendix. 

Figure 7 shows that the kinetic energy history is weakly affected by the complex 
instability distribution. The growth of the turbulent kinetic energy reflects the 
scrambling effect of rotation, which diminishes the Reynolds stress anisotropy and, 
therefore, the energy production. As a result, the energy growth rate is reduced by 
the presence of rotation. 

3. Future plans 

Linear analysis has shown that tumble will play an important role in the evolution 
of turbulence which is subjected to compression. We plan to carry out a DNS of this 
flow. The DNS will follow the approach of Lundgren and Mansour (1996) where 
a confined elliptic flow was studied. The velocity field will be expanded in sine 
and cosine series in x- and y-directions and Fourier series in the z-direction. The 
y-coordinate will move in time following a one-dimensional compression. 

Appendix A. A short review ofthe analytical works using Hill's equations 

In this appendix we develop the linearized equations for a general uniform defor
mation tensor and summarize the various studies used to analyze the instability of 
flows under rotation and strain. 
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FIGURE 7. Evolution of the normalized kinetic energy for the compressed tumble 
vortex, as a function of the volumetric ratio J- 1 , with J- 1 = 10 at the end of the 
compression. --, no = 0; ........ ,no = 10; ---- , no = 100; ---- ,no = 500; 
-'-, no = 1000. 

A.1. Linear equations and generic solutions for disturbances 

In the presence of a background (or mean) velocity field Ui = Ui,j(t)Xj == Aij(t)Xj, 
possibly divergent (U", = A" = j / J), linearized equations for the amplitudes of 
velocity disturbances are 

(A.l) 

where velocity and pressure disturbances are expressed in terms of 3D Fourier 
modes, or 

and the wavevector k is considered as time-dependent, following the characteristic 
curves (second Eq. (4)), that are solutions of 

and ki(t = 0) = Ki. (A.2) 

The overdot {} denotes a time derivative at fixed K = k(t = 0), which is similar to 
the substantial derivative in physical space. Eq. (A.l) is valid for any unbounded 
solenoidal velocity disturbance field (ki'Ui = 0), in agreement with the closed ex-
pression 

(A.3) 
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for a term proportional to the Fourier transform of the pressure Laplacian. The 
background field is a particular solution of the Euler equations if"\ + ~2 is a sym
metric tensor, or equivalently if the mean vorticity obeys the Helmholtz equations. 
Without lack of generality, Eqs. (A.I) and (A.2) for the initial value problem have 
solutions of the form 

ki = Mij{t,O)Kj with M = F-1 and Mij(t = 0,0) = Fij(t = 0,0) = Oij 
(AA) 

and 
ui(k, t) = Gij(k/k, t, O)exp [-vVin(k/k, t, O)k/kn]uj(K, 0) 

with Gij(t = 0) = Oij - KiKj/K2 
(A.5) 

where the matrices F, as in Eq. (4) (or M), G, and V are deterministic and 
can be tabulated once for all for a given background velocity field. For the sake 
of simplicity, the exponential viscous factor will no longer be considered in the 
following. The two-time argument (t,O) reflects that we are concerned with linear 
transfer operators from an initial (t = 0) state to an instantaneous one, as for 
Green's functions. Of course F and G are the basis for the most general linear 
stability analysis. The main difficulty comes from the implicit time-dependence of 
the orientation of k in the linear system for G, or equivalently in inviscid Eq. (A.I). 
Optional subsequent prediction of statistics (e.g. < uiu j » is obtained in terms of 
initial statistics and products of G matrices. 

A final reduction of the number of dependent deterministic functions that gen
erate the linear solutions is to use a rank-2 matrix (the 9 matrix) rather than G, 
considering only the two nonzero components (cpOl, a: = 1,2) of Ui in a plane normal 
to k, in accordance with the solenoidal property. The linear combinations cp2 ± icpl 
are the amplitudes of the 'helical modes', useful in any problem involving rotation. 

In addition to analytical solutions discussed in previous works, the code MITHRA 
can numerically solve the linear problem in the most general way as follows. The 
input is the initial mean vorticity vector 2ni(t = 0) = €ijk).kj(t = 0), the time
dependent symmetric part ).ij(t)+).ji(t), and data about discretisation ofthe initial 
wavevector. In addition, one can introduce given initial statistical velocity moments. 
The actual time evolution for the eventually unsteady vortical part of the mean, 
in agreement with Helmholtz equation, is automatically ensured, and F, V and 
9 are numerically computed using a fourth-order Runge-Kutta method. Given a 
periodic history of F, hence a periodic wavevector motion as considered below, 
diagonalization of 9 after a time-period yields values and spectral distributions of 
the Floquet parameter, but this is only a very peculiar application of MITHRA. 

Hill's equations considered in subsequent subsections can be found starting from 
a special set of two components that generates Uj for the solenoidal velocity field. 
These two components are similar to the cpOl, a: = 1,2 addressed by Cambon and 
coworkers (used in MITHRA for computing g), and also proportional to the am
plitudes of the Laplacian of vertical velocity (\72U3 used in classic Orr-Sommerfeld 
equation) and vertical vorticity (W3 = €3ijUj,i used in classic Squires equation). 
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A.2. The basic elliptical flow 

The planar (a, j3 = 1,2) background flow is characterized by 

(A.6) 

Starting from Eqs. (A.I) and (A.2) a linear system for '113 and p' (Eq. (A.3)) is 
found, 

and 

By elimination of p' in the previous system, one finds a second order ODE: 

(A.7) 

which is valid for any case (hyperbolic 8 0 > no, pure shear 8 0 = no, and elliptic 
So < no) addressed by Cambon and coworkers. In the elliptical case (80 < no), 
the motion of k is periodic, in agreement with Fap = (86 - n~)FaP so that lei = 
(86 - n~)(ki - k3bi3)' In this case only, the above Eq. (A.7) is the specific Hill's 
equation addressed by Waleffe (1990), up to a slightly different choice (not Ki, 
i = 1,2,3 as in (4) and (A2) ) to initialize k. When the specific periodic motion 
of k is accounted for, the above equation is parameterized by the two angular
dependent (in terms of the orientation of K) parameters a and c below that define 
the configuration plane in which to plot isovalues of the Floquet parameter. This is 
used to have a complete and synoptic representation of the linear stability problem. 
Waleffe found 

(1 - acos(2</») Z + (c2 
- 4acos(2</») Z = 0 

with Z = k2U3, </> = v'n~ - 86(t - to), and he plotted the neutral curve in the 
( a, c)-plane. 

A.S. The periodically compressed circular (swirl) flow 

The compressing background flow is given by 

where the axial strain-rate 8 = Lf L is given by a periodic law, similar to (2) for L(t), 
and the vorticity is constant since the mean flow is compressible (no amplification 
by vortex stretching). In this case, the two relevant components used by Mansour & 
Lundgren are proportional to horizontal (or vertical) divergence (cp = k1 '11 1 + k2U2 = 
-k3U3) and vertical axial vorticity (w = k1 '112 - k2Ud. The corresponding Hill's 
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equation is finally found by eliminating '11, and working with e = L2(t)k2(t)iP, so 
that 

[1- asin(2t*) + O.51]asin2(2t*)] e = -a2e 
where t* = wt is the non-dimensional time and 1] = (r - 1)/(r + 1), as in (2). In 
terms of the two angular parameters that parameterize this Hill's equation, namely 
a = 2( no / w ) cos () and a = 21] sin2 

(), the relevant representation plane was found 
in which isovalues of the Floquet parameter were numerically plotted, not only 
the neutral curves. Different instability bands were shown in the (a,a)-plane that 
correspond to different instability bands in terms of (), as shown in the present 
Figures 2-6. In order to contrast the results in Fig. 1 (Mansour & Lundgren) and 
the results delivered by MITHRA, we have computed a typical RDT history of 9 
in the same conditions. 

For a compression ratio r = 8 and a swirl ratio no/w = 2, the parabolic dashed 
line, which gives in the (a, a)-plane the variation in () at fixed compression and 
swirl ratios (the Mansour-Lundgren Fig. 1), predicts three unstable angular bands. 
These bands are accurately recovered when looking at the angular () distribution of 
the maximum eigenvalue of 9 after a period (t = T = 7r/w). 

A.4. Relevance of the Floquet analysis to the compressed tumble case 

The mean flow gradient matrix corresponding to Eq. (1-3) yields a more complex 
problem than the two cases reported above. Even if it were possible to derive 
a unique second order ODE from the two-equations linear system (from A.l) in 
terms of either 

- (c.p1, c.p2) (Cambon and coworkers), 

- (ua,p') (Waleffe) or 

- (-kaU3, -iW3) (Mansour & Lundgren), 

the specific time dependence induced by the motion of k would remain analytically 
unknown in the coefficients of such a second order ODE. Even the solution (4) of 
Eq. (A.2) cannot be simply expressed. In fact kl and k2 are themselves governed 
by a Hill- type equation!). 

Regarding, now, the Floquet problem, which can always be numerically treated 
by computing the g-angular distribution after a period, we obtained the following 
preliminary information: 

- The angular distribution after a complete period depends on the initial phase or 
initial crank angle when using either (2) or the compression history of Mansour
Lundgren compression law. No instability is found, reflecting a complete re
versibility of the 9 history, when using (2) (where L = 0 initially), whereas a 
number of instability peaks is found when starting from an extremum of L, as 
Mansour-Lundgren did. 

- The distribution of instability peaks obtained at the end of the compression stroke 
(Figs. 2-5) has nothing to do with the distribution obtained after a complete 
period. 
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- Even if a non-periodic law is used for reaching the end of the compression stroke 
(e.g. a constant strain-rate and exponential decrease for L(t) were checked), a 
'forest' of instability peaks is still obtained, but its distribution is different from 
the one corresponding to (2). 

This refined numerical analysis illustrates that the results from a Floquet anal
ysis should be treated with caution since in general such an analysis is strongly 
dependent on the form of the compression law. 
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A new method for the adaptive 
control of vortex-wall interactions 
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By P. Koumoutsakos 

1. Motivation and objectives 

The control of vortical flows is gaining significance in the design of aeronautical 
and marine structures. While passive devices have been used effectively in the past, 
active control strategies have the potential of allowing a leap in the performance 
of future configurations. The efficiency of control schemes is strongly dependent 
on the development of accurate flow models that can be devised using information 
that is available not only from numerical solutions of the governing N avier-Stokes 
equations but also can be measured experimentally. In that context it is desirable 
to construct adaptive control schemes using information that can be measured at 
the wall. 

The objective of this study is to propose an efficient methodology for the adaptive 
control of vortical, wall bounded flows. The present scheme is based on sensing 
wall pressure and calculating the wall vorticity flux from this information. This 
information is used to determine the amount of unsteady, spatially varying mass 
transpiration needed as the actuating mechanism. The amount of suction and 
blowing is determined explicitly in order to achieve a desired vorticity flux at the 
wall. The closed form control law is obtained by formulating the physical mechanism 
of vorticity generation at a no-slip wall. 

The control scheme is tested on the model problem of a vortex dipole imping
ing on a wall. It is shown that by using information at the wall, we are able to 
reproduce efficiently the effects obtained by other control schemes that rely on off
wall information. The proposed methodology is based on explicit formulation of 
physical processes, and its simplicity allows its incorporation to flow control both 
computationally as well as in actual applications. 

The control scheme is discussed in more detail in Koumoutsakos (1996); only 
representative results are presented in this report. 

2. Accomplishments 

2.1 Wall-vorticity flux 

In wall bounded flows, the tangential velocity of fluid elements relative to the 
boundary establishes velocity gradients. With the definition of vorticity (w) as 
the curl of velocity (w = V x u), this may be equivalently described in terms of 
the vorticity that is acquired by the fluid elements near the wall. Lighthill (1963) 
envisioned the wall as a system of sources and sinks of vorticity. He drew an analogy 
between the way vorticity is produced at the wall and enters the flow and the way 
temperatures are established near a heat conducting boundary. 
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FIGURE 1. Definition sketch. 

Following Hornung (1990) we identify the diffusive vorticity flux tensor at the 
wall as: 

(1) 

where v is the kinematic viscosity of the fluid and the subscript w denotes quantities 
measured at the wall. 

The normal component of the diffusive vorticity flux tensor is defined as the wall 
vorticity flux (Panton 1984, Hornung 1990). 

(T = - (vn· V'w)w (2) 

where w is the vorticity and n is the outward normal at the wall. 
In the rest of this work we consider for simplicity a Cartesian coordinate system 

~nd flow over a flat wall identified with the xOz plane (Fig. 1) with a unit normal 
J. The vorticity flux is then expressed as 

(T = _ (vow) 
oy w 

(3) 

Hornung (1990) has presented a formula for the local vorticity flux for a general 
fluid material: 

-) [~l ~ dV w (V'p) 1 ~ ~ 1 ~ ax 
(T = - j x (-- + __ w - - j (j. (V' X T w )) + - j x a%zz 

dt pw pw pw 0 
(4) 

where Vw(t) is the local wall velocity, Tw is the shear stress tensor, and O'x, O'z are 
the components of the normal stress components along the wall. 

For an incompressible viscous flow over a stationary wall, the vorticity flux is 
directly proportional to the pressure gradients, as Eq. 4 reduces to: 

(5) 
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where p is the pressure and Wx and Wz are the streamwise and spanwise vorticity 
components (Fig. 1). The flux of the wall normal vorticity, W y , may be determined 
from the kinematic condition (V . w = 0) as: 

(owz) 
oz w 

(6) 

Thus one may obtain the wall flux of all three vorticity components as a function 
of time by measuring the instantaneous pressure at the wall and calculating its 
gradient. 

Wall pressure fluctuations measurements are often reported in the literature (see 
for example Johanson et al. 1987) and have revealed a strong coupling between 
the vortical structures near the wall and the pressure field on the wall. Similar 
observations have been made in flow fields obtained in direct numerical simulations 
of wall bounded flows (Moin and Kim, 1985). However, measurements of pressure 
gradients at a wall are not common. An exception is the work of Andreopoulos and 
Agui (1996) (referred to as AA from here on). They use high frequency response 
transducers to measure fluctuating wall pressure gradients and then compute the 
vorticity flux in a two-dimensional turbulent boundary layer. Their measurements 
demonstrated the significance of vorticity flux in describing near wall processes. 
They made an attempt to correlate vorticity flux signals with physical phenomena 
such as bursting-sweep processes in the boundary layer. They observed that fluid 
acquires or loses vorticity at the wall during rather violent events followed by periods 
of small fluctuations. During these events they observed a predominant orientation 
at 45° for the wall vorticity flux, implying an equal vorticity flux for the streamwise 
and the spanwise vorticity components. This may be linked with the observations 
of Orlandi and Jimenez (1994), who studied the role of spanwise vorticity in the 
redistribution of streamwise vortices and the formation of streaks of high and low 
skin friction in the boundary layer. 

AA demonstrated that the major contributions to the vorticity flux come from 
the uncorrelated part of the pressure signals at two adjacent locations which con
tain a wide range of vortical scales. As the degree of correlation is smaller be
tween the small scales, their contribution to the vorticity flux is more pronounced. 
This imposes a severe requirement on the spatial resolution of the pressure gra
dients/vorticity flux measurements. Practical applications would require actuators 
and sensors with sizes in the order of 50pm and actuator frequencies of 1MHz (Moin 
and Bewley, 1994). However, recent advances in micro pressure sensor fabrication 
technology (Ho and Yui 1996) give us an opportunity to overcome these difficul
ties. Lofdahl et al., (1996) presented measurements in a two-dimensional flat plate 
boundary layer with a resolution of eddies with wave numbers less than ten viscous 
units using microscopic silicon pressure transducers. It appears that by using this 
new technology one may be able to describe in detail physical processes in terms of 
the flow vorticity and the wall vorticity flux. 

The role ~f the vorticity flux from oscillating walls as a mechanism for the con
trol of unsteady separated flows was discussed by Wu, Wu and Wu (1993). They 
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concluded that wall oscillations can produce a mean vorticity flux that is partially 
responsible for phenomena of vortex flow control by waves. Gad-El-Hak has shown 
that the vorticity flux can be affected by wall transpiration as well as by wall-normal 
variation of the kinematic viscosity (lI) as a result of surface heating, film boiling, 
cavitation, sublimation, chemical reaction, wall injection of higher/lower viscosity 
fluid, or in the presence of shear thinning/thickening additive. 

However these works do not provide us with an explicit formulation for the ac
tuator strength necessary to induce a desired vorticity flux at the wall. In that 
direction, recently Lee, Kim, Babcock and Goodman (1996) used non-linear neural 
networks to obtain a simple expression for the wall blowing and suction needed to 
reduce the skin friction of turbulent channel flow. 

In this article we propose the use of vorticity flux for effective, adaptive control 
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mechanisms in wall bounded flows. For a general fluid material the wall vorticity 
flux may be affected by appropriately selecting the type, magnitude, and location 
of the controlling devices so as to modify the fluid stresses near the wall (Eq. 9). 
For the present scheme using a formulation based on Lighthill's (1963) conceptual 
model of vorticity generation at the wall, we obtain in closed form the magnitude 
of the blowing/suction necessary to manipulate the vorticity field. The present 
control scheme relies on information that can be obtained experimentally as well as 
computationally. It is applied to the model problem (Choi, Moin and Kim, 1994 and 
referred to as CMK from here on) of a vortex dipole interacting with a wall. It is 
shown that the present strategy, using wall only information, reproduces efficiently 
phenomena that have been obtained previously using off wall information. 

2.2 Vorticity flux induced by blowing and suction at the wall 

We proceed to describe our methodology by considering two-dimensional configu
rations. The present analysis and the results discussed herein are readily extendable 
to three-dimensional flows. 

Following Lighthill (1963) we consider the generation of vorticity at the wall as 
a fractional step algorithm. During the first substep an inviscid field is established, 
and it induces a spurious slip velocity (or equivalently a vortex sheet) at the bound
ary. The production of vorticity is materialized then at the following substep as 
the vortex sheet enters diffusiv~ly into the flow, eliminating the spurious velocity 
at the wall and enforcing the no-slip boundary condition. To illustrate this process 
consider the generation of vorticity over a wall segment due to the instantaneous 
blowing at one location (Fig. 2). According to Lighthill's model there is a slip veloc
ity at the wall for an instant. A simple calculation shows that over an elementary 
wall segment 8s we may calculate a circulation of 8r = US lip8s. The spurious slip 
velocity Uslip may be easily determined from inviscid flow theory, and at each lo
cation it is proportional to the inverse distance from the source. This spurious slip 
velocity is then nullified via the diffusive generation of vorticity at the wall so that 
the no-slip boundary condition is enforced. The amount of circulation that enters 
the flow over each time step 8t, over each segment, 1s then 8r and it is related to a 
vorticity flux as 8r = vow / oy 8t8s. Thus the instantaneous vorticity flux at each 
location over the wall due to the instantaneous blowing is expressed as: 

v (ow) = _ Uslip 
Oy w 6t 

(7) 

We consider now a system of sources/sinks at the wall of strength qj that are dis
tributed uniformly over a panel of size dj, centered at locations xj,j = 1,2,3, ... N. 
The induced tangential velocity at point Xi on the wall and the corresponding vor
ticity flux may be determined as: 

N jd'/2 ~qj J x-s 
= L...J - ----" ds 

j=l 271" -dj/2 (x - S)2 
(8) 
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where x = Xi - xj. Similar expressions relate the vorticity flux at a location on 
the wall with the tangential acceleration of wall elements. It is also clear that via 
the present formulation the velocity gradients at the wall induced by the actuators 
may be determined as well and, ultimately, they can be used to affect the wall shear 
stresses. 

For the purposes of our control scheme we consider a series of vorticity flux (or 
equivalently pressure gradient) sensors on the wall at locations Xi, i = 1,2,3, ... M. 
U sing the formulas described above we can explicitly determine the actuator strengths 
necessary to achieve a desired vorticity flux profile at the wall, at a time instant k, 
by solving the linear set of equations: 

(9) 

where Dk = (8~k (xt), 8:y
k 

(X2), .•• , 8~k (XM)) is an M x 1 vector of the de8ired vor-

fl h I · X (8W
k

-
1
() 8W

k
-

1
() 8W

k
-

1
( )) ticity ux at t e sensor ocatlOns, k-l = -8- Xl '-8- X2 , ••• , -8- xM 

is an M x 1 vector of the mea8ured vorticit~ flux at the sensor loc~tions and 
Uk = (qf(xD,q~(x~), ... ,q~(XN)) is an N x 1 vector of the source strengths at the 
actuator locations, B is an M x N matrix whose elements Bij are determined by 
evaluating the integrals in Eq. 8 as: 

(10) 

Matrix B is a sparse matrix, and when large numbers of sensors and actuators 
are employed one may use multipole expansions to reduce the computational cost. 
Furthermore if the relative locations of the sensors and actuators remain constant, 
matrix B need be inverted only once, thus minimizing the computational cost of the 
method. Note that the location of sensors and actuators may be selected in such a 
way that the matrix B is 8ymmetric, p08itive definite. By setting Dk = (1 +a)Xk' 
the solution of the above system of equations then implies the minimization of the 
functional 

(11) 

The present technique gives us flexibility over the specific constraints that we wish 
to impose on the actuator strengths. Practical considerations may impose that 
control is performed only by jet-like actuators, qj ~ 0, j = 1, ... , N or that the 
blowing and suction configuration should result in a net zero mass flux; 

N 

Lqj = 0 (12) 
j=l 

Such constraints may be easily incorporated in the above scheme by appropriately 
adjusting matrix B. A square matrix is always possible by modifying accordingly the 
number of sensors and actuators. In the present example the zero mass constraint 
was implemented so that BMj = 1, j = 1, ... , N. 
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Sensors and actuators are not in the same locations. The simplicity of the present 
scheme allows for a number of different placement of sensors and actuators and the 
active selection of the optimal locations by suitable optimization algorithms. Here 
we chose the locations of sensors and actuators to be collocated. Physically this 
may be understood as a favorable situation as the sensors are able to sense the 
vorticity field induced by the actuators, allowing for the control scheme to suitably 
compensate for it. 

2.3 Control of vortex dipole interactions with a wall 

To illustrate the effects of the present control strategy on vortex-wall interactions, 
we consider the idealized situation of a two-dimensional vortex dipole interacting 
with a wall. This model has been used in the past by CMK and it allows us to 
compare our scheme with previous well established control strategies and draw some 
conclusions as to its efficiency. 

We consider a Lamb's vortex dipole of radius R, traveling with velocity U. The 
Reynolds number of the initial vortex dipole is defined as Re = U R/ v and in all 
simulations discussed herein Re = 400, and the vortex is initially located at a 
distance of 2.5R above the wall. For the simulations presented herein we employ a 
fast high resolution viscous vortex method (Koumoutsakos and Leonard, 1995). No 
symmetry constraint is imposed on the evolution of the vorticity field, the time step 
is chosen as 8t = 0.01, and the size of the Lagrangian vortex particles is chosen 
as €2 = 0.0002. A maximum of 200,000 Lagrangian computational elements were 
used for these simulations. For more details on the implementation of fast viscous 
vortex methods and the selection of numerical parameters, the reader is referred to 
Koumoutsakos and Shiels (1996). 

The sensors and actuators have a finite size. In our computational experiments we 
found that the sensed vorticity flux is more accurately described when we calculate 
its average over a finite segment of the wall and that the finite size of the actuators 
allows for a more well conditioned description of the velocity field near the wall. 
The effect of different actuator and sensor arrangements is assessed by considering 
here the following four configurations: 

Configuration 1: Sensors of size 0.1 at ±(0.15 + OAi), i = 0, ... , 10 for a total of 
22 sensors and actuators at: ±(0.05 + OAi), i = 0, ... , 11 for a total of 24 'actuators. 

Configuration 2: Sensors of size 0.1 at ±(0.15 + 0.21), I = 0, ... , 19 or a total of 
40 sensors. Actuators, of size 0.1, at ±(0.05 + 0.21), I = 0, ... ,20 for a total of 42 
actuators. 

Note that in order to enforce the zero mass flux constraint one needs at least 
one more actuator than sensors. Because the present calculations are of a left
right symmetric flow, we enforce symmetry in the blowing/suction magnitude of 
the actuators. Hence the number of sensors and actuators in all configurations are 
related by N /2 = M /2 + l. 

Representative animations of the simulations discussed in the following section 
may be found at the www address: 
http://www.galcit.caltech.edu/~petros/RESEARCH/dipole.html. 
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FIGURE 3. Uncontrolled interactions of a vortex dipole with a wall. 
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2.4 Simulations of a vortex dipole interactions with a wall 

No Control: In Fig. 3 we present contour plots of the vorticity field of the un
controlled interaction of a vortex dipole with a wall. The vortex dipole propagates 
towards the wall generating vorticity of opposite sign on its surface. As the primary 
vortex approaches the wall, it interacts with this secondary vorticity generating two 
new dipoles that propagate outwards (T=O to 1.5). When the initial components of 
the dipole are far apart, the new dipolar structures are lifted from the wall (T=1.5 
to 2.0). The lifted secondary vorticity is weaker than the respective primary vortic
ity field. Thus, the preferential direction of the new dipoles results in an interaction 
between the original dipole components so that the vortical structures propagate 
again towards the wall (T=2 to 4). New secondary vorticity is generated and the 
process described before is repeated (T=4 to 5). However, due to the action of 
diffusion, the vorticity field is weakened (T= 5 to 6), resulting in a quasi-steady 
pattern that is eventually eroded. 

The results of the present simulations are in excellent agreement with the results 
of Orlandi (1990) to which the reader is referred for a thorough discussion and 
quantification of this dipole wall interaction. 
Control canceling the wall flux: In Fig. 4 we present contour plots of the 
vorticity field of the controlled interaction of a vortex dipole with a wall. In this 
type of control we eliminate the vorticity flux at the sensor locations (i.e. set 
Dk = 0). The vorticity flux is measured at each instant and at the following time 
step we appropriately adjust the strength of the actuators by solving 

(13) 

for Uk. 

As the vortex descends towards the wall, the cancellation of the vorticity flux in 
the sensor locations results in a pattern where sinks are distributed in the middle of 
the wall. Respective blowing is established in the outer actuators so that the zero 
net mass flux is enforced (see also Fig. 5). As the control scheme acts to eliminate 
the secondary vorticity generated at the wall the primary' vortex dipole 'sees' a 
permeable wall. At time T = 1.0 the primary vortex dipole has been drawn into 
the wall. 

We examine here the effect of actuator placement in this type of control by using 
the sets of sensors and actuators locations described in Configuration 1 above. The 
locations of sensors and actuators are collocated and adjacent to each other. This 
allows for the sensors to account for the vorticity field generated by the actuators. 
As the present control strategy requires the elimination of the vorticity flux at 
the sensor locations, the actuator strengths are adjusted so that blowing/suction 
compensates to eliminate even the vortical structures generated by the actuators. 
The effect of sensor and actuator placement is discussed further in Koumoutsakos 
(1996). 

The time invariance of the source/sink patterns at the wall suggests a weak time
correlation of the flow induced wall vorticity flux signals. The control scheme iden
tifies the oncoming vortical structures and takes appropriate action to can~~l the 
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FIGURE 5. Configuration 1. Source strengths at times: • 0.2, x 0.5, &1.0, T2.0, 
.3.0, .4.0, + 5.0,-- 6.0. 

vorticity flux so that the dynamics of the flow are eventually governed by the dy
namics of the actuators. 
Control enhancing the wall flux: In Fig. 6 we present contour plots of the 
vorticity field of another type of controlled interaction of a vortex dipole with a 
wall. In this case the desired vorticity flux is such that the secondary vorticity is 
enhanced and the lift-off, observed in the uncontrolled case, is prevented. To achieve 
this, we require that the actuator strengths are adjusted so as to maintain the sensed 
vorticity flux (or equivalently Dk = 2Xk-t) via the solution of the system: 

(14) 

Note that a simple sign change distinguishes Eq.13 and Eq.14. 
The vorticity flux induced by the actuators at each time step is enforced to be 

equal to the vorticity flux induced by the flow at the previous time step. Hence the 
control scheme tries to maintain a steady profile of wall vorticity flux. The sensor 
and actuator locations are adjacent and collocated. They occupy segments of the 
wall up to ±4.05, outside of which there are no sensors and actuators. 

As the vortex dipole approaches the wall, it interacts with secondary vorticity. 
In this case, the primary vortex components roll on the sheet of secondary vorticity 
that the actuators try to inaintain. Lift-off is prevented as the primary vortex com
ponents 'surf' the controlled portion of the wall. The vortical structures eventually 
lift off outside the controlled region, as the primary vortices have not lost enough 
of their strength by the act of diffusion. The lift-off process outside the controlled 
region is seemingly unaffected by the enhancement of the secondary vorticity. For 
example compare the last frame in Fig. 6 with the last frame in Fig. 3. 

In Fig. 7 we present the actuator strengths for a series of time instances. Initially 
the actuator strengths are such that they oppose the descend of the vortex dipole. 



t=O.O 

-10 -5 5 10 

t=O.2 ~, 
-10 -5 o 5 10 

y 

t=0.5 ..(,ff/IJ ((~~~:L 
-10 -5 0 5 10 

t=1.0 .A (~;:)5)) 
~~ .. -~,,-4'.. _ _ " ii'!bi ;;1' CQ 

-10 -5 o 5 10 

t=1.5 ... 10& ..... ,. ... , ~(~~\ =-
-10 -5 0 5 10 

x 

FIGURE 6. Configuration 2: Controlled wall-vortex interaction. 

t=2.0 ~ ...• .,~ 
~-"' ..... " so (lK) 

-10 -5 0 5 10 

t=3.0 

-10 

t=4.0 

-10 

P,,~ ... -. 
-5 

~ 

o 5 

,(i)) 
~G}J.) 

s···:"",·· .. ··· --? 

-5 o 5 

t=5.0 ... @)@ @tc) 
( j.' ... ,... . .... 

~ 
-10 -5 o 5 

t=6.0 (~.O @iJb 
-10 -5 o 5 

x 

10 

10 

10 

10 

.... 
~ en 

~ 

~ 
~ 

~ 
c 
~ ..... 
"" t::. 
?\'"' 
C 

"" 



Control of vortex-wall interaction8 177 

As the secondary vorticity is enhanced and the primary vortices roll over the layer 
of secondary vorticity, the actuator strength is diminished. 

Further studies of the effect of actuator and sensor placement is discussed in 
Koumoutsakos (1996). 

We make here a comparison of the present active control strategy and the 'v
control', discussed by CMK. In their simulations of control of a vortex dipole im
pinging at a wall, the flow velocity normal to the wall is sensed at a distance 
y+ = 10 off the wall. Bowing/suction is adjusted so as to oppose this velocity. As 
the primary vortex descends towards the wall, the blowing/suction counteracts this 
motion, enhancing the generation of secondary vorticity. This secondary vorticity 
in turn pairs off with the primary vortex, resulting in a vortex dipole propagating 
parallel to the wall. It appears that the center of the newly formed dipoles is near 
the y+ = 10 location. This may explain also why the control scheme is not as 
effective, at say y+ = 25, as then the sensed velocity field would not be that of the 
dipolar structure, but that of the primary vortex itself. 

In CMK's simulations sensors and actuators are distributed throughout the wall 
and the lift-off of the secondary vorticity field is completely prevented. The behavior 
of the vorticity field is strikingly similar to the vorticity field presented here (Figs. 9, 
10) over the controlled part of the wall. This strongly suggests that CMK's control 
strategy and the one discussed in the previous section are equivalent. Although they 
rely on two different descriptions of the same underlying physical mechanisms, they 
induce the same behavior to the vortical structures. 

The two schemes differ in the way in which they sense the vorticity field that is 
approaching and adjust the necessary blowing/suction at the wall. As the present 
adaptive control strategy relies on the sensing of the wall pressure and the calcula
tion of the vorticity flux, it appears more suitable to experimental applications and 
seems a more promising method for practical applications. The equivalence of the 
two schemes suggests that the successful results that have been obtained using the 
'v-control' scheme in more complex flows (CMK, Lee et al. 1996) can be obtained 
more efficiently by the present strategy. 

2.5 Formulation of adaptive control 

The proposed adaptive control methodology relies on measurements of the wall 
vorticity flux at one time step and the immediate adjustment of the actuator 
strengths at the following time step to achieve a desired vorticity flux. This process 
may be improved either by considering earlier time signals of the vorticity flux in 
a systematic way or by identifying the time correlation of the vorticity flux signals 
at the sensor locations. Such correlations can then be conceptually represented by 
a nonlinear mapping as follows: 

(15) 

where F(·) and Q(.) are the nonlinear maps of the vorticity flux and the control 
input respectively between the time instances t = k8t and t = (k + 1)8t. 
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FIGURE 7. Configuration 2. For symbol captions see Fig. 5. 

Taking advantage of the explicit relationship between the distributed mass sources 
and the vorticity flux (as was discussed in the previous sections) Eq. 15 may be 
expressed as: 

(16) 

Then if F(·) is known, stabilization of the system becomes trivial by appropriately 
choosing the location of sensors and actuators as well as the number of constraints 
on the strength of the actuators to obtain a square and invertible matrix B. For 
example, one can use the feedback control Uk = _B-1 F(Xk' k) + GXk where G is 
a n X n matrix with all its eigenvalues inside the unit disk in the complex plane. 
The closed-loop system then is simply Xk+1 = GXk which is asymptotically stable 
since all its eigenvalues have magnitude less than one. 

The problem is then reduced to the identification of F(·). In Fig. 8 we present 
the function F for the uncontrolled case and for the controlled case 2b at a sensor 
location. It appears that after an initial transient, corresponding to the time that 
the primary vortex dipole is away from the wall, the dynamics of the system are 
determined by the dynamics of the actuators as F tends asymptotically to zero (or 
F(Xk, k) ~ BUk). On a related study Faller et al. (1994) have observed no strong 
time correlation of wall pressure signals in unsteady separated flows. This suggests 
that the identification of F(·) is not necessary and that one could proceed with 
the strategy discussed in the previous sections. We believe, however, that in order 
to account for experimental uncertainties and numerical errors and to increase the 
applicability of our scheme, the approximation/identification of the nonlinear map 
F is necessary. 

There are two major approaches which can be used in order to achieve this. The 
first approach is based on approximating the nonlinear map at each instant by its 
first order, linear expansion according to F( X k, k) = A( k )X k + ... 

The second approach is based on identification of F(·) using a non-linear neural 
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network. Using past input and output data we can use neural network techniques 
to approximate the function F(·) adaptively. This approach is not as simple as the 
one in the linear approach, but it has the additional advantage of er.compassing 
problems which require shaping of the system response. 

Schreck et al. (1995) have demonstrated the ability of neural networks to capture 
and create simple models of the wall pressure field in unsteady separated flows 
of three dimensional airfoils. Moreover, they observed that the resulting model 
exhibits a strongly linear behavior. 

3. Conclusions and future work 
We have presented an active control technique that is based on the physical 

mechanism of vorticity generation at the wall. The wall vorticity flux may be used 
to describe the effects of several control devices such as (but not limited to) blowing 
and suction at the wall. 

In the present scheme the vorticity flux is sensed at the wall via the measurement 
of wall pressure. A simple control strategy is described that allows calculation of the 
strength of wall transpiration in closed form to achieve a desired wall vorticity flux. 
The efficiency of the control scheme is demonstrated in simulations of the model 
problem of vortex dipole interactions with a wall. Using information available at 
the wall, the present control scheme is able to reproduce phenomena that were 
previously obtained computationally using off-wall information. 

The implementation of the control scheme does not depend on a particular nu
merical method or flow configuration, making it suitable for practical applications. 
The simplicity of the technique and the explicit relationship between sensor and 
actuator outputs allows one to concentrate on issues such as devising strategies 
for optimal sensor and actuator placement. It may also be efficiently implemented 
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in control schemes employing large numbers of micro sensors and actuators as its 
computational cost is minimal. The present scheme may be easily applied to the 
control of a variety of wall bounded flows, and we believe that it could be effective 
in experimental control strategies. 

Work is underway to implement the proposed strategy in the control of turbulent 
channel flow and in the control of unsteady separated bluff body flows. 
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Symmetries in turbulent boundary layer flows P/6 

By M. Oberlack 

1. Motivation and objectives 

The motivation for the present analysis was the finding in Oberlack (1995) that 
the logarithmic mean profile is a self-similar solution of the two-point correlation 
equation. The latter can be achieved by introducing the similarity variable Ti = * 
in the correlation equation. As a result the coordinate X2 disappears in the two
point correlation equation which finally only depends on ri. This simple scaling 
may appear trivial. However, it is worth noticing that in the two-point correlation 
equation non-local terms like (Uk(:V + r) - Uk(:V)) aa~:j appear which makes guessing 
of other similarity solutions a non-trivial task. 

The objective is the development of a new theory which enables the algorithmic 
computation of all self-similar mean velocity profiles. The theory is based on Lie
group analysis and unifies a large set of self-similar solutions for the mean velocity 
of stationary parallel turbulent shear flows. The results include the logarithmic law 
of the wall, an algebraic law, the viscous sublayer, the linear region in the middle of 
a Couette flow and in the middle of a rotating channel flow, and a new exponential 
mean velocity profile not previously reported. Experimental results taken in the 
outer parts of a high Reynolds number flat-plate boundary layer, strongly support 
the exponential profile. From experimental as well as from DNS data of a turbulent 
channel flow the algebraic scaling law could be confirmed in both the center region 
and in the near wall region. In the case of the logarithmic law of the wall, the scaling 
with the wall distance arises as a result of the analysis and has not been assumed in 
the derivation. The crucial part of the derivation of all the different mean velocity 
profiles is to consider the invariance of the equation for the velocity fluctuations at 
the same time as the invariance of the equation for the velocity product equations. 
The latter is the dyad product of the velocity fluctuations with the equation for 
the velocity fluctuations. It has been proven that all the invariant solutions are 
also consistent with similarity of all velocity moment equations up to any arbitrary 
order. 

2. Governing equations 

The bases for the following analysis are the incompressible Navier-Stokes equa
tions in a rotating frame. Using the standard Reynolds decomposition, Ui = Ui + Ui 

and P = P + p, where the overbar denotes a time or ensemble average, the Reynolds 
averaged N avier-Stokes equations for a parallel flow are 

(1) 
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(2) 

(3) 

and the fluctuation equations are 

The corresponding continuity equation for Ui is 

(5) 

In (1)-(4) and subsequently the density has been absorbed with the pressure. In 
the case of a pressure driven flow in the Xl direction the mean pressure p has been 
replaced by -xlK + p(X2), where K is a constant. The only axis of rotation is 
normal to the mean shear in x3-direction, and hence we take n = n3. 

Equations (1)-(3) can be rewritten and unified with the equation for the fluctua
tion (4) by solving (1) and (2) for the gradient of the Reynolds stresses and using 
the result in (4), 

(6) 

The present analysis is restricted to stationary parallel shear flows 

(7) 

and hence UI and p are only functions of the remaining spatial coordinate X2. 
From a wide variety of different experiments it is well known that high Reynolds 

number turbulent flows are Reynolds number invariant. Cantwell (1981) has already 
investigated this from a group theoretical point of view. Using this, we impose an 
additional restriction on the viscosity dependence in the mean quantities. In the 
limit of large Reynolds numbers, the leading order UI and p are assumed to be 
independent of viscosity and hence 

~= ap =0. av av (8) 

The latter assumption does not restrict the number or the functional form of the 
self-similar solutions to be computed later. It only limits the appearing constants 
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in the self-similar solutions to be independent of viscosity. An explicit Reynolds 
number dependence in the scaling laws will be investigated in a future approach 
since the functional dependence can not be captured with the present analysis. 

The s'ystem of Eqs. (6) describes the fluctuation and mean of an arbitrary parallel 
turbulent shear flow. The set of equations is underdetermined. In the classical 
approach of finding turbulent scaling laws the latter difficulty has motivated the 
introduction of second moment equations. However, in the next section the above 
set of equations will be analyzed with regard to its symmetry properties, without any 
further introduction of higher correlation equations which contain more unclosed 
terms. 

In order to do that, an equation is introduced, which can be directly derived 
from Eq. (6) without introducing further unclosed terms. It is the velocity product 
equation, which is the dyad product of Ni and U j 

(9) 

The set of Eqs. (5)-(9) to be analyzed result to three mayor differences between 
the present and the classical similarity approach using the Reynolds stress transport 
equations. Firstly, in the present approach only the Reynolds stresses appear as 
unclosed terms in the equations and no higher order correlations as the pressure
strain correlation, the dissipation or the triple correlation need to be considered. 
Hence, in the present approach only a finite number of variables are present in the 
system to be analyzed. 

Secondly, it is easy to see that any scaling law valid for the mean and the fluc
tuation velocities obtained from the velocity product Eqs. (9) still holds for the 
Reynolds stress equations. This fact is crucial for the present approach to obtain 

. scaling laws which are consistent with averaged quantities. The averaging procedure 
applied to the velocity product equations does not affect the scaling properties of 
the equation. 

Thirdly, is has been proven by Oberlack (1996a) that any scaling law for the 
velocity fluctuation and the second order velocity product Eqs. (9) is also a scaling 
law for all nth order velocity product equations. The nth order velocity product 
equations are defined as the nth order dyadic product of the velocity fluctuations 
with the equation for the velocity fluctuations. Since the averaging procedure does 
not change the scaling properties of the nth order velocity product equations, it is 
also consistent with all nth order correlation equations. In the classical approach 
using correlation functions, it may not be possible to show that all higher order 
velocity correlations are consistent with the scaling in the Reynolds stress equations. 
The Reynolds stress .equations is the first in a row of an infinite number of correlation 
equations which need to be considered in principle in the classical approach. 

3. Lie point symmetries in turbulent parallel shear flows 
A set of differential equations is said to admit a symmetry if a transformation to a 

new set of variables exists which leaves the equations unchanged. If the symmetries 
are computed all self-similar solutions can be obtained as will be pointed out below. 
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The set of variables considered in the subsequent transformation consist of 

(10) 

The purpose of the symmetry analysis is to find all those transformations 

y = f(YiC:) (11) 

which, under consideration of (7) and (8), satisfy 

(12) 

and the extended system also including (9) 

(13) 

Lie gave an infinitesimal form of the transformation (11) 

(14) 

where, instead of f, all the infinitesimal generators , need to be calculated, each 
element depending on y. 

It can be proven that the infinitesimal transformation (14) is fully equivalent to 
the global transformation (11) (see BIuman (1989)). The direct approach finding 
f only from (12) and (13) using the global transformation (11) would have been 
almost impossible. 

The calculation of, is fully algorithmic and results in more than a hundred linear 
overdetermined PDE's for C. Its derivation has been aided by SYMMGRP.MAX, 
a software package for MACSYMA (1993) written by Champagne (1991). The 
solution has been calculated by hand. The complete set of solutions is given in 
Oberlack (1996a). 

For the present approach, the global transformation (12) is not needed since only 
the self-similar solutions for the mean flow will be investigated. The equation for 
the self-similar solutions is the invariant surface condition (ISC). In the present case 
of parallel flow, the ISC for the mean flow is given by 

(15) 

where 

(16) 

are the infinitesimal generators. 
Four different solutions for different combinations of parameter al - a4 have to 

be distinguished. Each case has a specific meaning for the corresponding turbulent 
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flow in terms of an external time, length, or velocity scale which may break some 
of the scaling symmetries as has been point out by Jimenez (1996). 

A non-zero angular rotation rate will be considered only in the subsection (3.2). 
In this case the set of transformations to be obtained later contain a reduced number 
of parameters. The rotation rate will be considered as a branching parameter for 
the two different cases of n = 0 and n #- O. 

9.1 Turbulent 8hear fiOW8 with zero 8y8tem rotation 

Algebraic mean velocity profile: (al #- a4 #- 0 and a2 #- 0) 

The present case is the most general of all. No scaling symmetry is broken. As a 
result the mean velocity UI has the following form 

a a2 

Ul = Cl (X2 + a3)l-nr - ;;; . 
al 1 _ a4 

(17) 

al 

In the domain where the algebraic mean velocity profile is valid there can be no 
external length and velocity scale acting directly on the flow since non-zero and 
unequal parameters al and a4 are needed for its derivation. It will be pointed out 
in section (4) that the case of an algebraic scaling law applies both in the vicinity 
of the wall and in the center region of a channel flow. 

Barenblatt (1993) developed an algebraic scaling law based on the idea of incom
plete similarity with respect to the local Reynolds number. The proposed scaling 
law involves a special Reynolds number dependence of the power exponent and 
the multiplicative factor. It emerges that the familiar logarithmic law is closely 
related to the envelope of a family of power-type curves. George (1993) proposed 
an asymptotic invariance principle for zero pressure-gradient turbulent boundary 
layer flows. They found that the profiles in an overlap region between the inner 
and outer regions are power laws. Using the limit of infinite Reynolds number, the 
usual logarithmic law of the wall is recovered in the inner region. 

Logarithmic mean velocity profile: (al = a4 #- 0 and a2 #- 0) 

For the present combination of parameters we can see in the infinitesimals (16) 
that no scaling symmetry with respect to the velocity Ul exists and hence an external 
velocity scale is symmetry breaking. The mean velocity Ul can be integrated to 

(18) 

In case of the classical logarithmic law of the wall it is the friction velocity u r , 

which breaks the scaling symmetry for the velocities. The present case coincides 
with the usual derivation of the logarithmic law of the wall as first given by von 
Karman (1930) where the friction velocity U r is the only velocity scale in the near 
wall region. So far a logarithmic scaling law has only been found in the vicinity of 
the wall. The wall breaks the translational symmetry with respect to X2 and hence 
aa has to be zero. 
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Exponential mean velocity profile: (al = 0 and a4 ::j:. a2 ::j:. 0) 

Since al is zero in the present case there is an external length scale which breaks 
the symmetry in (16) with respect to the spatial coordinates. As a result the spatial 
coordinate is an invariants with only a constant added to the infinitesimal in (16) 
resulting from the frame invariance in the X2 direction. 

The mean velocity ill turns out to have the following form 

(19) 

It will be shown in section (4) that (19) applies to the flat plate high Reynolds 
number boundary layer flow. It appears that the boundary layer thickness is the 
external length scale which is symmetry breaking. 

Linear mean velocity profile: (al = a4 = 0 and bl ::j:. a3 ::j:. 0) 

In the present case there is an external velocity and length scale symmetry break
ing. Only the linear mean velocity profile is a self-similar solution 

(20) 

The latter profiles may apply in the viscous sublayer where v/ur and U r are the 
symmetry breaking length and velocity scales respectively. Another example is the 
center region of a turbulent Couette flow where the symmetry is broken due to the 
moving wall velocity and channel height (see Bech (1995) and Robertson (1970)). 

3.2 Turbulent shear flows with non-zero system rotation 

Here we consider the symmetries of the Eqs. (6)-(9) with n ::j:. O. The infinitesimal 
generators to be obtained are very similar to those in non-rotating case but with 
one important difference: a4 = 0 and hence the scaling symmetry with respect to 
the time has been lost. 

The rotation rate n scales with X2 and only the linear profile is a self-similar 
solution 

(21) 

The present case is distinguished from the previous linear mean velocity profiles 
since a scaling of the spatial coordinates still holds (al ::j:. 0). The present linear 
law applies in the center region of a rotating turbulent channel flow where the time 
scale is the inverse of the rotation rate n. 

4. Experimental and numerical verification of the scaling laws 

Some of the mean velocity profiles derived in the previous section have been 
already obtained by means of other methods and verified in several experiments 
and DNS data. The best known result is von Karman's (1930) logarithmic law of 
the wall which has been verified in a large number of experiments since its derivation. 
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Another well known mean velocity profile, derived in the previous section, is the 
linear mean velocity which can be found in the viscous sublayer of the universal 
law of the wall, and it is valid up to about y+ = 3. May be less well known is the 
linear mean velocity profile which covers a broad region in the center of a turbulent 
Couette flow. This has been shown by the experimental study of Robertson (1970) 
and in the DNS of Bech (1995) to name only two. In both of the latter two cases 
there is a length and a velocity scale dominating the flow and hence break two 
scaling symmetries. In the viscous sublayer the length and the velocity scale are 
v/ur and U r and in the turbulent Couette flow it is b and U w , the channel width 
and the wall velocity respectively. As a consequence, no scaling symmetry exists 
as has been already pointed out in the previous section and only the linear mean 
velocity profile is a self-similar solution. 

A third linear mean velocity profile, which from a similarity point of view is 
distinct from the previous two cases, can be found in the center region of a rotating 
channel flow. Here the external time scale 0-1 acts on the flow and hence it is 
symmetry breaking which results in a4 = o. However, in contrary to the previous 
case a scaling symmetry with respect to the spatial coordinates still exists. The 
linear mean velocity as given by Eq. (21) is well documented in the experimental 
data of Johnston (1972) and in the DNS results of Kristoffersen (1993). In both 
investigations they found the value Cs to be approximately 2. 

In order to avoid the duplication of well documented invariant solutions, we will 
focus on basically two cases. The first one is the verification of the exponential law, 
which has never been reported in the literature. This has been found to match a 
broad region in the outer part of a turbulent boundary layer flow. The second one 
is the algebraic law which fits about 80% of the core region of the turbulent channel 
flow. In addition the algebraic scaling law has also been identified in the vicinity of 
the wall in low Reynolds DNS data of a turbulent channel flow. 

Zero pressure-gradient turbulent boundary layer flow 

There is a considerable amount of data available for canonical boundary layer 
flows but the Reynolds number is usually low and some of the data contain too 
much scatter. For the present purpose the data need to be very smooth. 

Three sets of experimental data have been chosen for comparison with the ex
ponential velocity profile. These data are at medium to high Reynolds numbers, 
and we believe that they have been taken very carefully. The data of DeGraaff 
(1996) are very smooth and cover the Reynolds number range Re(J = 1500 - 20000, 
where (J = Jooo

(l - u/uco)u/uoody is the momentum thickness and Uco is the free 
stream velocity. The second set of data are from Fernholz (1995) with the highest 
Reynolds number of Re(J = 60000. The third data set of Saddoughi (1994) reaches 
the unchallenged Reynolds number of Reo = 370000. 

Figure 1 shows DeGraaff's data for the mean velocity profiles taken at six different 
Reynolds numbers, in the usual wall variables in semi-log scaling. The extension of 
the viscous subregion and the logarithmic region are visible, with extension depend
ing on the Reynolds number. In outer scaling the log-region extends approximately 
to y/ ~ = 0.025 where ~ = Jooo(u oo - u)/urdy is the Rotta-Clauser length scale and 



190 M. Oberlack 

30 6!-t:.+t:. t:.t:.t:. 

if 
x><z;x5cx xx 

25 o oOX>~~o 
ogr:! 

20 

+ 15 
1;:3 

10 

5 

0 

10 100 1000 104 

log(y+) 

FIGURE 1. Mean velocity of the zero-pressure gradient turbulent boundary layer 
in log-linear scaling from DeGraaff (1996): 0, Reo = 1500; 0, Reo = 2300; <>, Reo = 
3800; x, Ree = 8600; +, Reo = 15000; 6, Reo = 20000; -- , 2.4lln(y+) + 5.1. 

U r is the friction velocity. 
As has been pointed out above, it appears that the exponential law (19) matches 

the outer part of a high Reynolds number flat plate boundary layer flow. In order 
to match the theory and the data, the mean velocity profile in Eq. (19) will be 
re-written in outer scaling 

fico - fi = a exp (-f3JL) 
Ur ~ 

(22) 

where a and f3 are universal constants. 

In Fig. 2 the turbulent boundary layer data are plotted as log [fi"U~ fi] vs. !. If 
the data match the scaling law given by (22) a straight line is visible. In the scaling of 
Fig. 2 the log region is valid up to y / ~ ~ 0.025 and does not follow the exponential 
(22). For all Reynolds number cases, there is no Reynolds number dependence 
within the measurement accuracy, and all the data appear to converge to a straight 
line in the region y/ ~ ~ 0.025 - 0.15. The data of Saddoughi (1994) show an 
extended region for the exponential law up to about y / ~ ~ 0.23. With increasing 
Reynolds number the applicability of the exponential law appears to increase. For 
the medium Reynolds number cases, the applicability is approximately five times 
longer than the logarithmic law and for the high Reynolds number case it is about 
eight times longer. 

The outer part of the boundary layer does not match the exponential (22) and 
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FIGURE 2. Mean velocity of the zero-pressure gradient turbulent boundary layer 
in lin-log scaling of the defect law: 0, ReB = 370000 (Saddoughi (1994)); 0, and 0, 

ReB = 60000 (Fernholz (1995)); +, ReB = 15000 and x, ReB = 20000 (DeGraaff 
1996)); -- , 1O.34exp (-9.46y/ ~). 

it appears that a weak Reynolds number dependence exists. This seems to be in 
contradiction to Coles (1962) who found the wake parameter to be constant for 
ReB > 5000. However, several explanations can be given for this behavior. It 
is common to have a few percent of error in experimental data. Since the data 
are plotted in log coordinates, and the free stream velocity is subtracted, a few 
percent error in the free stream velocity has a large impact on the lower part of 
the curve. This is almost invisible in the upper part. In fact from y / ~ :::::: 0.3 the 
data for the medium Reynolds number flows exhibit no clear trend. This is due 
to the error accumulation coming from the difference of two almost equally large 
numerical values. 

y / ~ ~ 0.3 corresponds approximately to the boundary layer edge. It is also 
possible that the outer-region large-scale intermittency plays a dominant role for 
the scaling of the mean velocity. 

If the exponential velocity profile (22) were be valid over the entire boundary layer, 
an integration of (22) from zero to infinity would give a = /3. A least square fit 
of the presented data leads to approximately the latter equivalence with a = 10.34 
and /3 = 9.46. 

Even though the exponential (22) in Fig. 2 shows an excellent agreement with the 
experimental data, one may object that, unlike the channel flow, boundary layer 
flows are not strictly fully parallel flows. However, since the stream line curvature is 
usually very small, locally the flow can be considered as parallel. The dependence 
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on the streamwise position is hidden in the Rotta-Clauser length .6. and hence 
does not appear in the experimental results explicitly. Recently Oberlack (1996c) 
has derived the exponential mean velocity by a group analysis of the two-point 
correlation equation for a two-dimensional mean flow. It corresponds to a linear 
growth rate of the boundary layer thickness. 

The two dimensional turbulent channel flow 

Most data for the turbulent channel flow exhibits too much scatter and cannot 
be used for the present purpose. A fair comparison between data and algebraic law 
can only be made in double log plots. Here the experimental data of Niederschulte 
(1996), Wei (1989) and the low Reynolds number DNS data of Kim (1987) will be 
used for the investigation of the algebraic scaling law. 

Beside the classical wall based scaling laws, here we found another algebraic 
regime which scales on a wall normal coordinate with its origin in the center of the 
channel. The validity of an algebraic scaling law based on the center-line appears 
to be more clear than for the near wall region. The reason for that can be found in 
the infinitesimal generators (16). Since for the algebraic scaling law both constants 
al and a4 have to be non-zero and different from each other, the region where the 
algebraic scaling law applies has the highest degree of symmetry. The center region 
seems to be more suitable for that because in the near wall region U r is symmetry 
breaking which results to al = a4 and eventually leads to the log law. 

Regarding the algebraic law in the center of the channel we find the appropriate 
outer scaling for the channel is similar to the turbulent boundary layer flow 

uc-u (Y)'Y ---'1' -
U r - b ' (23) 

where '1' and 'Yare constants, Y originates on the channel center line, Uc is the center 
line velocity and b is the channel half width. 

In Fig. 3 the data of Wei (1989) and Niederschulte (1996) have been plotted in 
double log scaling for the Reynolds number range Rec = 18000 - 40000, where Rec 
is based on the center line velocity and channel half width. Even though the data 
exhibit some scatter, there is some obvious indication that the center region up to 
about y /b = 0.8 closely follows an algebraic scaling law given by (23). The unknown 
constants in (23) have been fitted to '1' = 5.83 and 'Y = 1.69 using Niederschulte's 
data. We believe Niederschulte's experiment has been done very carefully and the 
algebraic scaling law has a large extension towards the center line. 

An even more profound indication regarding the algebraic law can be obtained 
from the DNS data of Kim (1987). In Fig. 4 the data are plotted in double log 
scaling and an almost perfectly straight line is visible for both Rec = 3300 and 7900 
from the centerline up to about y/b =0.75. The scaling extends slightly further 
out for the Rec = 7900 case. Since both Reynolds numbers in the DNS are low, a 
weak Reynolds number dependence of both '1' and 'Y exists. 

At this point it may be instructive to refer to a recent result of Oberlack (1996b) 
who analyzed circular parallel turbulent shear flows with respect to the self-similarity 
using the present theory. For this case he also found the existence of an algebraic 
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scaling: 0, Rec = 40000; 0, Rec = 23000 Wei (1989); <>, Rec = 18000 Niederschulte 
(1996); --, 5.83 (y/b)1.69. 

scaling law. Oberlack analyzed the high Reynolds number data of Zagarola (1996) 
and here also he found an almost perfect fit, covering 80% of the center of the pipe. 

It has been mentioned earlier that in appendix of Oberlack (1996a) the two
point correlation equations have been analyzed with respect to its self-similarity 
of a parallel shear flow. The resulting equation for the mean flow derived there is 
fully equivalent to the Eqs. (15)/(16). Further more scaling laws for the two-point 
correlations could be obtained. 

Hunt (1987) have analyzed the two-point correlations with respect to self-similarity 
using the data of Kim (1987). They investigated the near wall region assuming the 
logarithmic law to hold. The surprising result here is that the self-similarity of R22 

has a much longer extension towards the centerline as could be expected from the 
fairly short log region in the mean flow. The result could be clarified using the fact 
that the near wall region does not follow a log, but rather an algebraic scaling law. 
Figure 5 shows the mean velocity of the channel flow data in double log coordinates. 
Up to about y+ = 3 the linear law of the viscous sublayer is valid. In the range 
50 < y+ < 250 for Rec = 7900 an almost perfectly straight line is visible and a 
least square fit of an algebraic law in this range results in a much higher correlation 
coefficient than a least square fit of a logarithmic function. Since the algebraic law 
extends much further than a logarithmic law, we can also expect the self-similarity 
of the two-point correlation R22 to hold much further. The only difference for R22 

regarding the two different scaling laws is that in case of the algebraic scaling law 
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FIGURE 4. Mean velocity of the turbulent channel flow in double-log defect law 
scaling from Kim, Moin & Moser (1987): -- , Rec = 7900; - - -, Rec = 330.0. 

R22 also scales with the wall distance, while for the log law this is not the case. 

5. Future plans 

In the near future the theory presented herein will be applied to turbulent flows 
with higher dimensions up to 3D time dependent ones. If possible, all self-similar 
flows will be empirically validated using experimental and DNS data. 

An important application of the present theory is in turbulence modeling. Com
mon statistical turbulence models may not be consistent with all the symmetries 
calculated in the present theory and hence can not capture the associated scal
ing laws. As an example, consider the standard k-€ model which, interesting 
enough, formally admits all the symmetries of the unaveraged Euler equations (see 
Pukhnachev (1972)). This is somewhat misleading since it has been shown in the 
previous sections that turbulence has different symmetry properties than the un
averaged Navier-Stokes equations. 

The standard k-€ model captures some non-trivial scaling laws like the exponen
tiallaw. However, it can be shown in the case of a turbulent channel flow that the 
symmetry groups of the k-€ are not consistent with the present finding. As a result, 
k-€ misses the correct exponent for the algebraic mean velocity profile in the center 
of the channel. 

The present theory can be used as an guide to develop new or improve existing 
turbulence models. It is proposed that turbulence models should have all of the 
symmetry properties computed in the present analysis. This is a necessary condition 
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FIGURE 5. Mean velocity of the turbulent channel flow in double log scaling from 
Kim, Moin & Moser (1987): --, Rec = 7900; ---- , Rec = 3300. 

in order to capture the turbulent scaling laws and the associated turbulent flows. 
The presented symmetry properties in turbulent flows can be considered as a new 
realizability concept. A more general theory on symmetries in turbulence models is 
now under investigation and will be published elsewhere. 
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Near-wall mo~els in large eddy s}mulations p 'l-

of flow behInd a backward-facIng step I, 

By W. Cabot 

1. Motivation & objectives 

Accurate large eddy simulation (LES) of a wall-bounded flow generally requires 
a near-wall resolution comparable to that in direct numerical simulation (DNS). As 
much as 50% of the total grid points - and· computational cost - are expended 
in the near-wall regions in a typical simulation. This limits LES to fairly low 
Reynolds numbers on current computers. To perform practical flow applications 
at realistically high Reynolds numbers, such as flow over an airfoil, it is desirable 
to replace very thin, near-wall regions in the LES with easily and inexpensively 
computed wall models to specify the near-wall boundary conditions. 

This approach is expected to be feasible in simple flows with well developed 
boundary layers where local equilibrium conditions are expected to hold and known, 
empiricallaw-of-the-wall scalings can be exploited. Cabot (1995) found that LES 
of channel flow, with wall stresses predicted by either an instantaneous log law 
or by integration of simple boundary layer equations, produced accurate low-order 
statistics. Piomelli et ai. (1989) used modified log law models for the wall stress in 
dlannel flow. Using the same models, Arnal & Friedrich (1993) obtained mean flow 
statistics in high Reynolds number flow over a backward-facing step in fair agree
ment with experimental measurements. Balaras et ai. (1996) used simple boundary 
layer equations to successfully simulate channel flow and flow in a square duct. 

In practical applications the flow is usually more complicated and can feature 
large adverse pressure gradients and extensive regions of separation, reattachment, 
and recovery. Such is the case in the flow over a backward-facing step. The objective 
of this work is to study the applicability of the simple near-wall models, similar 
to those used in channel flow, to the flow over a step, even though equilibrium 
conditions will not be valid in the reattachment region and turbulent models may 
be invalid in the separated region. If these wall models fail to give satisfactory 
results, different near-wall modeling schemes that can handle a wider range of flow 
conditions will need to be formulated and tested; the tests performed here may 
provide some insight into what physical ingredients these more general wall models 
need to incorporate. 

2. Accomplishments 

In this study of the flow over a backward-facing step, only the bottom wall behind 
the step was modeled, since this is where the most complex flow behavior occurs 
(Fig. 1). Differential boundary layer equations were used as the basis of the near
wall model in a thin "sublayer" region, in the hope that they would be flexible 
enough to treat local flow and pressure variations in a more accurate manner than 
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FIGURE 1. Sketch of the flow over a step (not to scale). The cross-hatched region 
along the lower wall behind the step is replaced by a near-wall model. 

algebraic relations. Results from LES with wall models were compared with results 
from LES with resolved walls at moderately high Reynolds numbers by Akselvoll & 
Moin (1995), referred to hereafter as "the full LES". The results were also compared 
with experimental measurements for nearly the same flow configuration by Adams 
et al. (1984) and Vogel & Eaton (1985). 

The flow has a Reynolds number Reh (based on the inlet centerline velocity 
Uc and step height h) of 28,000, and the outlet-to-inlet expansion ratio is 1.25. 
The flow is separated from x j h ~ 2-7 (where x is the streamwise location past the 
step). Reattachment occurs in the mean at Xr ~ 7h, beyond which the flow recovers 
(almost) to a standard boundary layer by the time it reaches the outlet at x ~ 20h. 

2.1 Near-wall momentum balance 

A preliminary look at the complexity of the flow behind the step is provided by 
calculating ~he balance of terms in the streamwise momentum equation in the near
wall region. The time- and span-averaged flow field from the full LES is used for 
this purpose. The streamwise component of the N avier-Stokes equation is integrated 
from the wall to a height y = 0.08h (corresponding to y+ ~ 60 in wall units near 
the outlet). This gives 

-·lY

(O(u 2 )jOx)dY - (uv) -lY

(OPj ox)dy 
, .. '~' v ' 

1 2 3 (1) 

+ ~voUj~y - Tw~ + l Y 

(v02 Ujox2 )dy ~ 0, 

4 

where (- .. ) denotes the average, and where U = (u) and P = (p). The streamwise 
wall stress, T w = voU j oy at y = 0, is the term that one is most interested in 
predicting from the wall model. The first term is dominated by the mean velocity 
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FIGURE 2. Streamwise momentum balance terms from Eqs. (1) and (2) in 
the region near the bottom ~all behind a step from Akselvoll & Moin's (1995) 
Reh = 28000 LES: _.- streamwise advection (term 1); -- wall-normal advec
tion (term 2); --- streamwise pressure gradient (term 3); - viscous stress 
(term 4). Term 2 is also decomposed into ........ mean momentum flux (term 2a) 
and ---- Reynolds stress (term 2b). 

component ((u 2 ) ~ U2 ) and the lattermost viscous term is completely negligible. 
Further, the wall-normal momentum flux (uv) can be decomposed into a mean 
part (UV, where V = (v) and a Reynolds stress part ((u'v'), which includes the 
contribution from the subgrid-scale model). This gives 

- r(oU2 /ox)dy-UV-(u'v')- r(oP/ox)dy+(vOU/OY-Tw)~O. (2) 
J 0 '-'" '-v-" J 0 

2a 2b 

These terms are shown in Fig. 2. It is seen that the viscous stress roughly balances 
the Reynolds stress only far downstream in outlet region (x / h ~ 20), where the flow 
begins to resemble a well developed, zero-pressure-gradient boundary layer. In the 
separated region (x/h ~ 2-7), however, the large advection and adverse pressure 
gradient terms are very important in the momentum balance. One might therefore 
suspect ab initio that wall models based simply on stress balance would not perform 
well in this flow. 

The presence of relatively large Reynolds stresses in the separated region seems to 
contradict the common notion that this is an inherently two-dimensional, laminar 
roller. Although it is possible that the Reynolds stress here is not a measure of 
turbulence so much as a measure of spanwise oscillations and streamwise movement 
of the unsteady roller structure, it is evident from the LES results of Le & Moin 
(1993) that a large amount of turbulence is transported to the reattachment and 
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separated regions from the overlying shear layer (also see the article by Parneix & 
Durbin in this volume). 

2.2 Large eddy 8imulations with near-wall boundary layer equations 
The boundary layer equations are derived from the N avier-Stokes equations under 

the assumption that, in the very thin wall region, the horizontal (x and z) length 
scales are much greater than the wall-normal (y) scales, and that y derivatives 
are much greater than x, z derivatives. For this reason viscous terms involving 
horizontal gradients are neglected, and the wall-normal pressure gradient is assumed 
to be negligible. These resulting equations for the horizontal velocity components, 
in which ~ denotes a space and/or time filter, are 

aUt a(UiU j) ap a2U( (3) -+ ---+v-- £=1,3; at aXj - axe ay2' 

the wall-normal velocity component v is found from the continuity equation, 

r (a~ a~) v = - Jo a: + a: dy. (4) 

The standard procedure is to integrate these equations on a fine wall-normal mesh 
with a fixed horizontal pressure gradient that is set at the base of the overlying inte
rior flow. The boundary conditions for the horizontal velocity components are that 
they vanish at the wall and match the corresponding interior velocity components 
at the top of the sublayer. The matching horizontal velocity and pressure gradient 
from the interior flow are filtered to the same resolution as sublayer calculation. 
Note that there is no pressure solution required in the sublayer, which simplifies the 
calculation considerably. The wall-normal derivatives of u( at the walls are com
puted from the sublayer solution to give the wall stress components, 7w ( = vauc/ay, 
which are used as boundary conditions by the interior flow solution. 

The term UiU j ~ust be modeled, just as in the filtered equations for LES or 
Reynolds-averaged Navier-Stokes (RANS) equations. For the sublayer, near-wall 
eddy viscosity models based on the law-of-the-wall have been generally used, similar 
to RANS models (cf. Menter, 1991): 

aUt 
u(v '" U(V - Vt ay' Vt = K,yu s D2, D = 1 - exp( -yud/vA) , (5) 

where K, is the von Karman constant (::::: 0.4), Us is a velocity scale, and D is an 
ad hoc damping function for the viscous layer, where Ud is another velocity scale 
and A = 19 is a damping constant. In a standard law-of-the-wall model, the model 
velocity scales are just the friction velocity, Us = Ud = U r == (7;'1 + 7;'3)1/4. In 
the Johnson-King model (Johnson & Coakley, 1990), Us and Ud are different melds 
of U r and the square root of the maximum Reynolds stress; this model gives good 
results in flows with mild adverse pressure gradients and separation (Menter, 1991). 
No models are used for the horizontal momentum flux in the sublayer, viz., 

(6) 
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FIGURE 3. Wall-normal grid behind the step in the full LES and the LES with 
the wall model sublayer (cross-hatched region) embedded in the lower half of the 
wall cell. 

adding the corresponding eddy viscosity models for these terms has not been found 
to give significantly different statistics. The boundary layer equations for the near
wall sublayer become 

OUi O(UiUj) op _ ~ [( + )OUi] 
A.I. + ~ + ~ - ~ v Vt ~ , 
v~ VXj VXi vy vy 

f = 1,3. (7) 

Because the Reynolds stress model is based on RANS models, which assume an 
ensemble average (or an equivalently broad filter in space and/or time), the sublayer 
is computed on a horizontal mesh that is twice as coarse as the interior mesh; the 
matching velocities and pressure gradients are further filtered in time with a running 
time average, which is exponentially damped with an e-folding time of h/Uc' 

Equation (7) is used all the way into the corner behind the step, although at some 
point the neglected streamwise gradients must become important. As will become 
evident, this improper treatment may lead to some aberrant flow behavior in the 
corner. 

The LES used in this study is identical to the Re = 28000 backstep simulation of 
Akselvoll & Moin (1995), except for the removal of grid points from the interior LES 
domain along the bottom wall behind the step. The wall-normal stretching in the 
original grid behind the lower half of the step was also removed to prevent numerical 
instability. The original and modified wall-normal meshes are compared in Fig. 3. 
The LES uses a second-order central finite difference scheme on a staggered grid 
with a compact, third-order Runge-Kutta time advancement and fractional step 
method for the pressure solution (Le & Moin, 1991). The original (x,y,z) grid 
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TABLE 1. Wall model cases 

case V·uu . (Vp)m K, Us, Ud 

LWO no no 0.4 U r 

LWOp no yes 0.4 Ui 

LW1A (yes)m yes 0.4 U r 

LW1 yes yes 0.4 U r 

DLW1 yes yes 0-0.2* U r 

JK1 yes yes 0.4 {ur,um} 

* "dynamic" 

behind the step used a 146 x 33 x 96 mesh on a 20h x h x 3h domain. The LES with 
the sublayer uses a 146 x 23 x 96 interior mesh on the same domain; the sublayer 
itself uses a 74 x 33 x 48 mesh between the wall up to the first off-wall nodes of the 
horizontal velocities at y ~ 0.04h. 

A number of different variations of boundary layer Eqs. (7), with continuity (4) 
and eddy viscosity model (5), were used in the LES, a sample of which are presented 
here (summarized in Table 1). The simplest law-of-the-wall, stress-balance model, 
LWO, neglects advection and pressure gradient terms of the left-hand side of (7) 
altogether, and, with Us = Ud = U r and K, = 0.4, gives a meld between the standard 
log law and viscous layer. Model LWOp includes only the pressure gradient fixed 
at the matching height, and LW1A included both advection and pressure gradient 
terms fixed at the matching height. Model LW1 includes all the terms on the left
hand side of (7), with the advection terms computed internally in the sublayer using 
the same integration scheme as the interior mesh. Model JK1 is the same as LW1 
but uses the inner Johnson-King model (Menter, 1991) to calculate Us and Ud; the 
maximal shear stress used to evaluate the velocity scales is found from the interior 
and sublayer flow field behind the step, which significantly increases the expense of 
the calculation. It was found that the JK1 model predicted eddy viscosity values 2-
3 times larger than the law-of-the-wall model. Because some of the Reynolds stress 
is retained in the advection terms on the left-hand side of (7) on the sublayer mesh, 
any RANS model for eddy viscosity is likely to overpredict the amount of Reynolds 
stress in the sublayer; thus another model, DLW1, was used in which the coefficient 
K, was estimated "dynamically" by matching the Reynolds stress (Ui) - uV') in the 
interior flow just above the sublayer to the law-of-the-wall model. As expected, this 
generally results in values of K, substantially lower than 0.4, as seen in Fig. 4. 

The LES results show that the flow behind the step is much more sensitive to the 
wall model than was the case in channel flow, especially in the separated region. 
The steady-state wall stress predicted by the different models is shown in Fig. 5 
and the pressure coefficient is shown in Fig. 6. Experimental results for a similar 
flow configuration are also shown for comparison. The LWO model underpredicts 
the magnitude of the wall stress in the recovery region (x/h ~ 7-15) as well as 
in the separated region (x/h ~ 2-7) compared with the full LES results. Note, 
however, that the experimental wall stress is also about half the magnitude of 
the full LES in the separated region. Similar results have been found in other 
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FIGURE 4. The near-wall eddy viscosity coefficient K, (averaged in z and over a 
short time) determined by a fit to the stress above the sublayer ( -- ) is used in 
the DLW1 case, and its standard RANS value, the von Karman constant ( ........ ) 
is used in the LW1 case. 

high Reynolds number experiments (Driver & Seegmiller, 1985); the LES results of 
Akselvoll & Moin (1995), in fact, resemble low Reynolds results (Le & Moin, 1993). 
The cause of this discrepancy is not known. But it obviously leads to confusion 
in attempting to gauge the performance of these wall model results. The JK1 
model clearly overpredicts the wall stress everywhere due to its excessively large 
eddy viscosity. The LW1 case does a reasonable job in the recovery and outflow 
region, but overpredicts the wall stress in the separat.ed region with excessively rapid 
backflow and low pressure (Fig. 6). There is little difference between DLW1 and 
LW1 cases, even though the eddy viscosity is more than halved (Fig. 4) in the former 
case; the magnitude of the wall stress is slightly less in the separated region, but the 
separated region spreads farther out from the step with reattachment moving from 
xr/h ~ 7.0-7.2. In fact, when the eddy viscosity is set to zero, there is little change 
in the results from the DLW1 case, indicating that the large pressure gradient and 
advection terms dominate the balances in the sublayer equations in these cases. 

The corner regions in LES using any of the wall models all compare poorly with 
the full LES (although the comparison is somewhat better with the experimental 
results). Instead of forming a well developed corner eddy, the flow rushes straight 
into the corner and up the step. Large fluctuations in pressure and velocities are 
often observed in the corner. It is likely that the haphazard treatment of the corner 
region in the near-wall model, both in terms of the governing equations and grid 
resolution, may lead to the ill behavior of the flow. Also unanswered at this time is 
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wall behind the step for the full LES ( -- ) and LES with wall models: cases 
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FIGURE 7. Mean streamwise velocity profile in the middle of the separated region 
for the full LES ( - ) and LES with wall models: cases --- LWO, -- LW1, 
and _.- JK1; compared with Adams et al.'s (1984) experimental data ( 0 0 0 ). 

whether the corner eddy fails to form because of the excessive speed of the backflow 
into the corner, or if it is the absence of the corner eddy (due to deficiencies in the 
wall model implementation) that allows the strong backflow to develop in the first 
place. 

Mean streamwise velocity profiles appear to be rather insensitive to the different 
wall stresses predicted by the models. In general, the agreement between LES with 
wall models and the full LES is quite good, which in turn are in good agreement 
with experiments (see Akselvoll & Moin, 1995). The largest difference occurs in 
the separated region, where the LW1 model gives a noticeably larger backflow at 
x/h = 4.5 than in the full LES (Fig. 7). (All of the LES results in fact show a 
substantially larger backflow than the experiment.) Surprisingly, the mean flows 
for LWO and JK1, which show the greatest deviation from the full LES in terms 
of wall stress, have the best overall agreement in term of mean streamwise velocity 
above the wall layer , even in the separated region. 

The mean reattachment point of xr/h ~ 7.0 is found for most of the wall model 
cases presented so far, in fair agreement with the full LES and experiments, due to 
a proper cancellation of (or in the case of LWO, a fortuitous absence of) terms in 
the sublayer. The simulation with a wall model that neglected the advection terms 
but retained the pressure gradient in (7) (case LWOp in Table 1) gave xr/h ~ 8.5, 
and another that fixed both the pressure gradient and advection terms from the 
overlying interior flow (case LW1A in Table 1) gave xr/h ~ 7.5; the wall stress 



208 

0.003 

0.002 

0.001 

c.S 0 

-0.001 

-0.002 

-0.003 
0 2 4 6 8 

Cabot 

10 
xlh 

12 14 

._.-e. 
~ ----

16 18 20 

FIGURE 8. The friction coefficient on the bottom wall behind the step for the 
full LES ( - ) and LES with wall models: cases --- LWO, ........ LWOp, 
_.- LW1A, and -- LW1; compared with Vogel & Eaton's (1985) experimental 
data ( 0 0 0 ). 

for these cases are shown in Fig. 8. These results suggests that the separation and 
reattachment regions are very sensitive to the near-wall balance between pressure 
gradients and advection terms in the sublayer. 

3. Future plans 

The cause of the sometimes poor results with the wall model behind the step needs 
to be ascertained. This is especially true of the separated and corner regions: Flows 
with boundary layer wall models develop overly rapid backflow (along with lower 
pressure) in the separated region than in the full LES, and they lack a well developed 
corner eddy. In broad terms, the culprit could be deficiencies in implementation of 
the wall model and/or in the equations representing the sublayer region. Many of 
these issues, outlined below, will be addressed in the future. 

Implementation issues. Sensitivity to the sublayer mesh grid - in both horizontal 
and wall-normal directions - should be established. In the wall-normal direction, 
a strategy of overlapping the sublayer and interior zones is being explored, which 
will allow more flexibility in matching the two solutions. It may be proven to .be 
more important to match things like the wall-normal momentum or stress than 
the streamwise velocity. The corner region requires special treatment, and it will 
need to be replaced with a different grid meshing and governing equations, or a 
different "corner" model (as yet undetermined). In principle, the wall model should 
be applied along all walls, including the corner, the face of the step, and around the 
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step's edge. A consistent treatment of the whole "near-step" problem will therefore 
be explored. A realistic cost appraisal of these methods will also then be possible. 
Wall models may also be implemented in an alternative flow, the diffuser, which 
features separation and adverse pressure gradients without the severe step geometry; 
both LES and experimental data exist for this flow as well. 

Modeling issues. Modifications need to be made to the governing equations for the 
near-wall sublayer since the boundary layer equations are known to be inappropriate 
for the reattachment region where wall-normal scales are comparable to horizon
tal scales. The eddy viscosity model for the unresolved sublayer stress, based on 
RANS models, needs improvement. It has been tuned for well developed turbulent 
boundary layers, but is inappropriate for the nonequilibrium conditions behind the 
step in the separated and reattachment regions where turbulence is largely trans
ported from high shear layers above. Alternative models that better describe this 
situation need to be formulated and tested; they can perhaps be merged smoothly 
to the standard stress model depending on flow conditions. The ability of the outer 
flow to communicate to the sublayer which type of flow to model may need to be 
developed in terms of global criteria rather than simple, local diagnostics. The ad 
hoc damping function in the law-of-the-wall eddy viscosity model (5) needs to be re
placed with a more physical near-wall condition, perhaps based on the wall-normal 
velocity. The eddy viscosity model of the Reynolds stress in the separated region 
will likely need to be augmented or replaced altogether. 

The discrepancy between the full LES and experimental results in the flow over 
the backward-facing step at high Reynolds numbers, particularly in the separated 
region, makes comparisons with LES with wall models rather ambiguous. For test
ing models that are intended to handle the separated region correctly, it may be 
better to use lower Reynolds number DNS and LES results (Le & Moin, 1993; 
Akselvoll & Moin, 1995), which agree very well with experiments. 
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Assessment of the subgrid-scale models 
at low and high Reynolds numbers 

By K. HoriutP 

1. Motivation and objectives 

2l>281Z-. 

pl'1 

Large-eddy simulation (LES) is a turbulence simulation method in which the large 
scale (grid-scale or GS) field is directly calculated, while the small scale (subgrid
scale or SGS) field is modeled. The velocity and pressure fields (I) are decomposed 
into GS component (J) and SGS component (i' = f -1) using a filtering procedure. 
A decomposition of the SGS stress tensor, Tij, which results from filtering the 
Navier-Stokes equations, consists of three terms (Bardina 1983): 

R 
-,-, 

ij = UiUj' 

(1) 

Lij is the Leonard term, Cij is the cross term, and Rij is the SGS Reynolds stress. 
The indices i = 1,2, and 3 correspond to the directions x, y, and z, respectively, 
where x is the streamwise direction, y is the wall-normal or cross-stream direction, 
and z is the spanwise direction. In the present study, we consider fields which 
are homogeneous in two directions (x and z). We apply the Gaussian filter in the 
homogeneous directions because scale-similarity models are used to approximate 
the SGS stress tensors. No filter was applied in the inhomogeneous direction, but 
the same numerical discretization method was used in the y-direction in both the 
direct numerical simulation (DNS) data generation and assessing the LES models. 
In the following, () denotes the average in the x - z plane. 

Our investigation is mostly focused on the SGS Reynolds stress Rij. The SGS 
models commonly used for LES to represent the effects of the SGS on the GS are 
divided into two groups; SGS eddy viscosity coefficient models (EVM) and scale
similarity models. 

Accurate SGS models must be capable of correctly representing the energy trans
fer between GS and SGS. Recent direct assessment of the energy transfer carried 
out using direct numerical simulation (DNS) data for wall-bounded flows (Piomelli 
et al. 1990, 1991) revealed that the energy exchange is not unidirectional. Although 
GS kinetic energy is transferred to the SGS (forward scatter (F-scatter) on average, 
SGS energy is also transferred to the GS. The latter energy exchange (backward 
scatter (B-scatter) is very significant, i.e., the local energy exchange can be back
ward nearly as often as forward and the local rate of B-scatter is considerably higher 
than the net rate of energy dissipation (Piomelli et al. 1991). Moreover, a mean 
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reverse flow of energy from sas to as fluctuating turbulent motions was observed 
in the buffer layer region of the channel (Horiuti 1989, Hartel et al.1994). In free 
shear flows, a greater degree of B-scatter was observed in the mixing layer (Horiuti 
1997) 

EVM relates the SGS stress to the GS velocity deformation via the eddy viscos
ity. All SGS EVMs are derived from the Smagorinsky model (Smagorinsky 1963). 
In general, an EVM is adequate for approximating the interaction between given 
turbulent scales and distinctly smaller scales, in which the main function of the 
sas is to remove energy from the GS, but it is inadequate for representing the 
B-scatter. A dynamic Smagorinsky model (Germano et al. 1991) can be used to 
model partial B-scatter in regions of reduced eddy viscosity, but strong B-scatter 
would require a negative eddy viscosity, which would lead to numerically unstable 
solutions, although a recent dynamic localization model (Ghosal et al. 1995a) may 
avoid this instability. 

An alternative SGS model for EVM is the scale-similarity model (Bardina 1983). 
A representative model if> the Bardina model in which the sas Reynolds stress term 
is approximated as (Bardina 1983, Horiuti 1993a): 

(2) 

Note that the model constant CB cannot be determined using only the Galilean 
invariance constraint (Speziale 1985), but needs to be optimized (Horiuti 1993a, 
1994, 1997). We have optimized CB using several DNS data for incompressible 
channel and mixing layer flows so that the root-mean-square' (rms) value of the 
modeled SGS Reynolds stress term approaches its value based on DNS data. Rep
resentative optimized values of C B were in the range between 2.0 and 9.0 (Horiuti 
1993a, 1993b, 1997). 

The Bardina model for the SGS Reynolds stress (Eq. 2) gave better agreement 
between the exact and modeled SGS Reynolds stresses than the Smagorinsky model 
(Bardina 1983, Horiuti 1989, 1993a). This model, in which the sas stress is no 
longer aligned with the GS strain rate, can exhibit B-scatter (Horiuti 1989, 1997). 

The drawback inherent in the Bardina model, however, is that the predicted 
magnitude of the B~scatter contribution is larger than the exact DNS value. To 
overcome this problem, the filtered Bardina (F-Bardina) model 

(3) 

was proposed (Horiuti 1997). This model was obtained by utilizing the elliptic 
relaxation model procedure (Durbin 1993) to incorporate the nonlocal effect in 
physical space into the Bardina model. A marked improvement was obtained using 
the F-Bardina model compared with the Bardina model. The sas Reynolds stress 
tensor approximated using the F-Bardina model was much closer to the exact DNS 
value than that obtained using the Bardina model. Also, the overestimation of 
the B-scatter obtained using the Bardina model was significantly reduced when the 
F -Bardina model was used. 



SGS model assessment 213 

High Re 
(i,j) Bardina F-Bardina 
(1,1 ) 0.63 0.81 
(1,2) 0.55 0.71 
(2,2) 0.53 0.71 
(3,3) 0.56 0.74 

TABLE I: Correlation coefficients between the exact SGS Reynolds stresses and 
the those obtained using the different models for the high Reynolds number channel 
flow. 

The testing of Horiuti (1997), however, was conducted using DNS data from a low 
Reynolds number channel and mixing layer flows. It was felt that further testing at 
higher Reynolds numbers was a necessary step needed to establish the validity of the 
new model. This is the primary motivation of the present study. The objective is to 
test the new model using DNS databases of high Reynolds number, fully developed 
turbulent channel and mixing layer flows. 

2. Accomplishments 

In the present study, we make use of direct numerical simulation flow fields avail
able at CTR to directly test the various approximations. To compute the large-eddy 

. flow fields, we filter the DNS fields by applying a two-dimensional Gaussian filter 
in the i = 1-,3-directions. 

The high Reynolds number DNS databases were for the fully developed incom
pressible channel and the time-developing mixing-layer flows. The channel flow DNS 
data was generated at Re r = 590 (Reynolds number based on the wall-friction ve
locity, Un and the half-channel height, 8) using 384 x 257 x 384 grid points in the 
x-xy-xz-directions (Mansour 1996). The incompressible mixing layer DNS data 
was at ReB = 2400 (the Reynolds number based on the momentum thickness, 8m , 

and the velocity difference, 6.U) using 512 x 180 x 192 grid points in the x-Xy-xz
directions (TBL case; Rogers & Moser 1994). The results are compared with the 
previous assessment for low Reynolds numbers (Re r = 180 for channel flow, and 
Re8 = 200 for mixing layer, Horiuti 1997). 

2.1 Model assessment Jor channel flow 

The high Reynolds number channel flow field was filtered to 64 x 257 x 64 grid 
points in the x-, y-, and z-directions, respectively. The low Reynolds number chan
nel flow field (with 128 x 129 x 128 grid points) was filtered to 32 x 129 x 32 grid 
points. These numbers of LES grid points were chosen so that the turbulent kinetic 
energy retained in the SGS components is large. This is necessary to make a fair 
assessment of the SGS models. 

Table I lists the correlation coefficients between the exact SGS Reynolds stress 
tensor and those obtained using the Bardina and F -Bardina models for the high Rer 

case. For comparison, the previous results obtained for the low Reynolds number are 
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LowRe 
( i,j) Bardina F-Bardina 
(1,1 ) 0.71 0.86 
(1,2) 0.66 0.77 
(2,2) 0.64 0.81 
(3,3) 0.65 0.81 

TABLE II: Correlation coefficients between the exact SGS Reynolds stresses and 
the those obtained using the different models for the low Reynolds number channel 
flow. 

listed in Table II. The results obtained using the F-Bardina model are remarkably 
improved compared with those obtained using the Bardina model. 

The GS and SGS fields interact via the SGS production term P due to the SGS 
Reynolds stress Rij, i.e., P = -uiuj(0ui/8xj + Ouj/8Xi)/2. The accuracy of the 
models is assessed by considering the prediction of the GS-SGS energy transfer. 
Figure 1 shows the v-distribution of the fraction of grid points in each x - z plane 
where the B-scatter occurs in the P term. The optimized C B values for the Bardina 
and F-Bardina models were, respectively, 3.5 and 4.3 for the low ReT case. For the 
high ReT case, the CBvalue was approximately 9.0 for both models. In Fig. 1, Rij 
is estimated from the exact SGS Reynolds stress. The results obtained by using the 
Bardina and F-Bardina models for the Rij term are also includ~d. 

Approximately 30% of the grid points experience the B-scatter in the region 
y+ > 50 for the low ReT case, but the fraction for the high ReT case is generally 
smaller than that for the low ReT case. A sharp decrease occurs at y+ ~ 10, where 
the maximum (net) SGS production ((P)) is the largest, for both ReT' This decrease 
is more considerable for the high ReT case. This decrease was not discernible in 
the results of Piomelli et al. (1991) in which a spectral cutoff filter was used instead 
of the Gaussian filter. Leslie and Quarini (1979) analytically found that when the 
Gaussian filter is used, the B-scatter contribution to the wave-number-dependent 
eddy viscosity is greatly reduced compared with that of the cutoff filter, which is 
consistent with the present results. 

Throughout the channel, the fraction predicted using the Bardina model is much 
larger than the DNS exact value for both Reynolds numbers. Marked improvement 
is obtained by using the F-Bardina model. 

The production term P is decomposed into the forward scatter part (defined as 
(P + 1P1)/2, denoted by P+) and the backward scatter part ((P - 1P1)/2, denoted 
by P_). In Fig. 2, we compare the v-distributions of the plane-averaged P+ and 
P _ values obtained using the models with the exact values obtained from the DNS 
data for the low ReT case. The Bardina model overestimates the B-scatter term, 
whereas the results obtained using the F-Bardina model are in good agreement with 
the exact DNS data. These results are consistent with those observed in the fraction 
profiles shown in Fig. 1. 
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The corresponding result for the high ReT case is shown in Fig. 3. The exact 
values show that the energy transfer is predominantly forward near the wall as was 
found in Fig. 1. An overestimate of the B-scatter term for the Bardina model is 
more pronounced than in the low ReT case, whereas the F-Bardina model does not 
yield the excessive prediction of the B-scatter observed in the Bardina model. The 
F-Bardina model gives a sufficient GS energy drain when CB is properly chosen, 
with an accurate prediction of the B-scatter being yielded concurrently (Horiuti 
1997) for both Reynolds numbers, which implies that this model may be used as an 
alternative to the SGS EVM. 

To determine the local rate of SGS production, we have examined the root-mean
square (rms) value of P (figure not shown). It was found that the local variance of . 
P was two to six times larger than the plane-averaged value as was pointed"out in 
Piomelli (1991). 

Figure 4 shows the plane-averaged profiles of the individual components of the 
SGS production term Pij = -(uiuIJ1Uj/OXk + uju',/1Uj /OXk), in which Rij is es
timated from the exact SGS Reynolds stress of the high ReT channel flow. These 
terms are decomposed into two-parts that contribute to F- (Pij > 0) and B
(Pij < 0) scatters. It is found that the shear production term, H2, is dominant in 
the region at y+ ~ 10. The energy transfer arising in this term is predominantly 
forward due to the presence of the large mean shear rate near the wall. Away from 
the wall, however, the P12 term becomes gradually small and instead the normal 
production term, particularly the Pn term, becomes dominant. It can be seen that 
the magnitudes of the F- and B- scatter terms in Pn are very close to each other, 
with the total sum of Pn being slightly positive, but the sum becomes negative 
in the region at y+ ~ 15. Correlations of the occurrence of this B-scatter event 
with the coherent vortical structure, which is oriented perpendicular to the wall, 
are discussed in Horiuti (1995). 

An almost equal occurrence of F - and B- scatter is found similarly in other com
ponents. We note that the individual components, Pij, were better approximated 
by using the F-Bardina model than by the Bardina model (figure not shown). Ad
ditionally, we found that the transfer between SGS and the fluctuating GS was 
predominantly backward as was previously pointed out by Horiuti (1997, figure not 
shown). Similar results were obtained for the low ReT channel flow. 

2.2 Model a88e88ment for mixing layer 

The high Reynolds number mixing layer field was filtered to 128 x 180 x 48 grid 
points in the X-, y- and z-directions. The low Reynolds number mixing layer flow 
field (with 192 x 129 x 128 grid points) was filtered to 96 x 129 x 64 grid points. 

Table III lists the correlation coefficients between the exact SGS Reynolds stress 
tensor and those obtained using the Bardina and F -Bardina models for the high ReI} 
case. Table IV lists the results for the low Reynolds number case. As in the channel 
flow, the results obtained using the F-Bardina model are significantly improved 
compared with those obtained using the Bardina model. We note, however, that 
the values of the correlation coefficients are generally lower for the high Reynolds 
number case than for the low Reynolds number case in both flows. 
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High Re 
(i,j) Bardina F-Bardina 
(1,1) 0.66 0.82 
(1,2) 0.55 0.68 
(2,2) 0.63 0.81 
(3,3) 0.63 0.80 

TABLE III: Correlation coefficients between the exact SGS Reynolds stresses and 
the those obtained using the different models for the high Reynolds number mixing 
layer. 

LowRe 
( i,j) Bardina F-Bardina 
(1,1 ) 0.87 0.93 
(1,2) 0.85 0.92 
(2,2) 0.87 0.94 
(3,3) 0.88 0.94 

TABLE IV: Correlation coefficients between the exact SGS Reynolds stresses and 
the those obtained using the different models for the low Reynolds number mixing 
layer. 

The optimized CB values in the Bardina and F-Bardina models were 5.0 and 7.0, 
respectively, for the high Ree case. For the low Reo case, the optimized CB values 
in the Bardina and F-Bardina models were 2.0 and 2.5, respectively. All of the 
optimized C B values are between 2.0 and 9.0, and are rather independent of the 
type of flow. 

Figure 5 shows the fraction of grid points at which the B-scatter occurs in P 
estimated from the exact SGS Reynolds stress for low and high Reynolds numbers. 
For the low Ree case, the fraction is over 40% throughout the vortical region of 
the mixing layer, and is generally larger than in the low Reynolds number channel 
flow (Fig. 1). The fraction, however, is significantly decreased for the high Ree case 
(approximately 30% throughout the vortical region). The fraction profiles implied 
by the Bardina and F -Bardina models for the Rij term in P are also included in 
Fig. 5. The overestimate of the fraction in the results obtained using the Bardina 
model is more pronounced for the high Reo case than for the low Reo case. 

Plane-averaged F- and B-scatter term values are shown in Figs. 6 and 7, respec
tively, for the low and high Reo cases. It can be seen that the magnitudes of these 
two terms are very close to each other for the low Ree case, indicating that F - and 
B-scatters occur almost evenly, with the total sum of P being slightly positive. For 
the high Ree case, the magnitude of the B-scatter contribution is decreased. This 
is consistent with the fraction profiles shown in Fig. 5. 



SGS model assessment 219 

0.55 

0.50 

0.35 

0.30 

0.25 -+-"""""'-'--'-"""""'''--'''--'--'-T"'"''T--r--r-'l'""'''T--.--r--r--r-+ 

-5 -3 -1 1 3 5 
y/O 

FIGURE 5. y-profiles of the fraction of grid points in each x - z plane where the 
SGS production term P < 0 from mixing layer. '" 0 ••• , Exact (low); ........ , 
Bardina (low); -- x --, F-Bardina (low); 0 , Exact (high); ---- , Bardina (high); 
--, F-Bardina (high). 

8.0 10-6 

6.0 10-6 

rn 
4.0 10-6 

~ 
Q) ... 
'"' 2.0 10-6 
Q) ... 
~ 

0.0 100 u 
00 

-2.0 10-6 

-4.0 10-6 

-20 -15 -10 -5 0 5 10 15 20 

Y 

FIGURE 6. Decomposition of the plane-averaged SGS production term P obtained 
from the DNS exact data and obtained using different models from low ReT channel 
flow. Symbols as in Fig. 2. 



220 K. Horiuti 

In the spatial distributions of P that were estimated from the low Re(J DNS data, 
it was found that a large SGS energy production occurs in the braid region of the 
mixing layer. At the time which the test was conducted, the roll-up of the Kelvin
Helmholtz (K-H) vortices was complete, and these two eddies started to merge. 
The predominantly streamwise vortices ("rib" vortices) resided in the braid region 
between the K-H rollers (Rogers & Moser 1994). The distribution of the production 
term was characterized by a very intermittent appearance of the strong F- and B
scatter regions that took place side by side with a quadruple-like structure (Horiuti 
1997). 

This quadruple structure was highly aligned with the rib vortices. The vorticity 
distribution in the cross section of the rib vortices was not exactly circular, but 
rather elliptic. The F -scatter event occurred in the 1st and 3rd quadrants of the 
rib vortices, and B-scatter was generated in the 2nd and 4th quadrants of the rib 
vortices. We consider that the presence of these rib vortices is the primary cause 
of the almost equal occurrence of F - and B- scatters in the low Re(J mixing layer. 
The present results indicate that the B-scatter events may occur in a deterministic 
manner rather than in a stochastic manner. 

The major axis of the elliptic vortex, the circulation of which was counterclock
wise, was making a positive angle with the cross-stream (y) axis. As a result, the 
area of 1st and 3rd quadrants was larger than that of the 2nd and 4th quadrants. 
Subsequently, the magnitude of F-scatter was larger than the B-scatter. Similarly, 
in the clockwise elliptic vortices, their major axis was making a negative angle with 
the y axis, the resultant net-scatter was also forward. , 

This finding may be a result of the low Reynolds number of the DNS. The dis
tributions of the SGS production term P for the high Re(J case also exhibited the 
quadruple-like structure, but the four quadrants were not as distinctive as for the 
low Re(J case, i.e., the 1st and 3rd quadrants of the F-scatter regions were dominant, 
taking over the 2nd and 4th quadrants. 

Figure 8 shows the plane-averaged profiles of the individual components of the 
SGS production term Pij, in which Rij is es.timated from the exact SGS Reynolds 
stress from the high Re(J mixing layer. These terms are decomposed into the F- and 
B- scatter contributions. 

In the low Re(J case, the quadruple structure of the SGS production term distri
bution primarily arose in the P22 term. In the high Re(J case, it can be seen that 
large contributions result from the normal production terms, P22 and P33 , but it 
was found that the correlation coefficient between the P 22 term and the P33 term 
was negative, thus they almost canceled each other out. Although, unlike the chan
nel flow (Fig. 4), the magnitude of the shear stress production terms of P23 and 
P12 is smaller than the normal production terms, F-scatter contributions are larger 
than the B-scatter contributions in the P23 and P12 terms. As a result, the total 
summation of the production term P became predominantly forward. 

Although the four quadrants of the quadruple-like structure in the total produc
tion term P distribution for the high Re(J case were not distinctive as in the low Re(J 
case, the distributions of the P22 and P33 terms exhibited distinctive quadruple-like 
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structures. This fact indicates that the rib vortices resides in the high Reynolds 
number mixing layer on average as in the low Reynolds number and that the gen
eration of a large SGS energy production occurs along the rib vortices. A negative 
correlation of the P22 term and the P33 term, however, was not depicted in the low 
Reo case. 

3. Future plans 

We have assessed the SGS models from the point of view of energy transfer 
between the grid scale (GS) and the subgrid-scale (SGS) via a correlation with the 
filtered DNS data ('a priori' test). 

The energy transfer was directly analyzed using DNS data for fully developed 
turbulent channel and mixing layer flows for both high and low Reynolds numbers. 
A significant reduction of the B-scatter effect was found for the high Reynolds 
number case compared with the low Reynolds number case. We note, however, that 
the occurrence of F - and B-scatters may depend on grid resolution. For example, 
the rib vortices formed in the low Reynolds number mixing layer were only coarsely 
resolved (approximately 6 grid points for a single rib vortex), thus the SGS was 
significantly affected by the large GS motions. When the rib vortices are more 
finely resolved, the contributions of the B-scatter will decrease. 

A capability of the scale-similarity models for the SGS Reynolds stress to rep
resent the transfer was further tested. It was shown that the Bardina model is, 
in general, an inaccurate model for the SGS Reynolds stress. Its inaccuracy was 
greater for the high Reynolds number case for both flows. In a new scale-similarity 
model (filtered-Bardina, F-Bardina, model), the correlation with the DNS data was 
shown to be substantially improved compared to that of the Bardina model, and 
an excessively high prediction of B-scatter in the Bardina model was substantially 
improved for both Reynolds numbers and both flows. 

The validity of the F-Bardina model was established for two different flows and 
low jhigh Reynolds numbers. Further development of the present work is directed 
in two ways. 

One is to investigate the correlation of the SGS energy production mechanism 
with the coherent vortica! structures that resides in the turbulence. Preliminary 
results are reported in Horiuti (1995), but that study was conducted at the low 
Reynolds numbers. More refined and detailed examination of the high Reynolds 
number DNS data is necessary. 

Another direction is to develop the SGS models based on the filtered-Bardina 
model. We must note that, although the F-Bardina model yielded very high corre
lation with the exact DNS data, its high correlation is decreased as the Reynolds 
number is increased as can be seen in Tables I-IV. 

In fact, as the Reynolds number is increased, it is expected that the interscale 
interaction of GS with the distinctively smaller SGS will become significant as well 
as the interaction of GS with the larger SGS. An SGS model, which can be used 
to represent these two GS-SGS interactions, i.e., the local interaction between ad
jacent wave number bands and the nonlocal interaction between GS and very small 
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SGS, is desirable. The former interaction can be adequately represented using the 
F-Bardina model. In order to adequately represent the latter interaction, it is neces
sary to add the SGS EVM part to the model. That is, a mixed model of F-Bardina 
and Smagorinsky models is. considered to be a more desirable and general model. 
A new dynamic two-parameter mixed model in which the two model parameters 
contained in the model were determined consistently with the dynamic SGS proce
dure (Germano et al. 1991) was proposed as an extension of theF-Bardina model 
(Horiuti 1996). Further refinement of the proposed model is currently underway. 

Acknowledgments 

I am grateful to the Center for Turbulence Research for its hospitality. Drs. N. 
N. Mansour and M. M. Rogers provided me with the DNS database. I am also 
grateful to Profs. P. Moin, and J. H. Ferziger for valuable discussions. This work 
was partially supported by the overseas research program, Ministry of Education, 
Science and Culture. 

REFERENCES 

BARDINA, J. 1983 Improved turbulence models based on large eddy simulation 
of homogeneous, incompressible turbulent flows. Ph.D. dissertation. Stanford 
University, Stanford, . California. 

DURBIN, P. A. 1993 A Reynolds stress model for near-wall turbulence. J. Fluid 
Mech. 249,465: 

GERMANO, M., PIOMELLI, U., MOIN, P.& CABOT, W. H. 1991 A dynamic 
subgrid-scale eddy viscosity model. Phys. Fluids. A3, 1760. 

GHOSAL, S., LUND, T. S., MOIN, P. & AKSELVOLL, K. 1995 A dynamic local
ization model for large-eddy simulation of turbulent flows. J. Fluid M echo 286, 
229. 

GHOSAL, S. & MOIN, P. 1995 The basic equations for the large eddy simulation 
of turbulent flow in complex geometry. J. Compo Physics: 118, 24. 

HARTEL, C., KLEISER, L., FRIEDEMANN, V., & FRIEDRICH, R. 1994 Subgrid
scale energy transfer in the near-wall region of turbulent flows. Phys. Fluids. 6, 
3130. 

HORIUTI, K. 1989 The role of the Bardina model in large eddy simulation of 
turbulent channel flow. Phys. Fluids. A1, 426. 

HORIUTI K. 1993a A proper velocity scale for modeling subgrid-scale eddy viscos
ity in large eddy simulation. Phys. Fluids. A5, 146. 

HORIUTI, K., MANSOUR, N. N., & KIM, J. 1993b A normal stress subgrid-scale 
eddy viscosity model in large eddy simulation. Annual Research Briefs 1992 
Center for Turbulence Research, NASA Ames/Stanford Univ., 61-71. 

HORIUTI, K. 1994 Assessment of the generalized normal stress and the Bardina 
Reynolds stress subgrid-scale models in large eddy simulation. Direct and Large 



224 K. Horiuti 

Eddy Simulation I, Ed. by P. R. Yoke, L. Kleiser and J.-P. Chollet, Kluwer 
Acad. Pub., 85. 

HORIUTI, K. 1995 Subgrid-scale energy production mechanism in large eddy sim
ulation. Proe. of the International Symposium on Mathematical Modeling of 
Turbulent Flows, Tokyo. 164. 

HORIUTI K. 1996 A new dynamic two-parameter mixed model for large-eddy sim
ulation. Submitted to Phys. Fluids. 

HORIUTI, K. 1997 Backward scatter of subgrid-scale energy in wall-bounded and 
free shear turbulence. J. Phys. Soc. Japan. 66 (1). 

LESLIE, D. C. & QUARINI, G. L. 1979 The application of turbulence theory to 
the formulation of subgrid modeling procedures. J. Fluid Meeh. 91,65. 

MANSOUR, N. N. 1996 Unpublished data. 

ROGERS, M. M. & MOSER, R. D. 1994 Direct simulation of a self-similar turbu
lent mixing layer. Phys. Fluids. 6, 903. 

PIOMELLI, U., ZANG, T. A., SPEZIALE, C. G., & M. Y. HUSSAINI 1990 On 
the large-eddy simulation of transitional wall-bounded flows. Phys. Fluids. A2, 
257. 

PIOMELLI, U., CABOT, W. H., MOIN, P. & LEE, S. 1991 Subgrid-scalebackscat
ter in turbulent and transitional flows. Phys. Fluids. A3, 1766. 

SMAGORINSKY, J. 1963 General circulation experiments with the primitive equa
tions. I. The basic experiment. Monthly Weather Review. 91, 99. 

SPEZIALE, C. G. 1985 Galilean invariance of subgrid-scale stress in large eddy 
simulation. J. Fluid Meeh. 156,55. 



Center for Turbulence Research 
Annual Research Briefs 1996 

Large-eddy simulation of flow around a 
NACA 4412 airfoil using unstructured grids 

By Kenneth Jansen l 26 2B I) 

1. Motivation and objectives 

Large-eddy simulation (LES) has matured to the point where application to com
plex flows is desirable. The extension to higher Reynolds numbers leads to an im
practical number of grid points with existing structured-grid methods. Furthermore, 
most real world flows are rather difficult to represent geometrically with structured 
grids. Unstructured-grid methods offer a release from both of these constraints. 
However, just as it took many years for structured-grid methods to be well un
derstood and reliable tools for LES, unstructured-grid methods must be carefully 
studied before we can expect them to attain their full potential. 

In the past three years, important building blocks have been put into place, mak
ing possible a careful study of LES on unstructured grids. The first building block 
was an efficient mesh generator which allowed the placement of points according to 
smooth variation of physical length scales. This variation of length scales is in all 
three directions independently, which allows a large reduction in points when com
pared to structured-grid methods, which can only vary length scales in one direction 
at a time. The second building block was the development of a dynamic model ap
propriate for unstructured grids. The principle obstacle was the development of 
an unstructured-grid filtering operator. New filtering operators were developed in 
Jansen (1994). In the past year, some of these filters have been implemented into 
a highly parallelized finite element code based on the Galerkin/least-squares finite 
element method (see Jansen et al. 1993 and Johan et al. 1992). 

We have chosen the NACA 4412 airfoil at maximum lift as the first simulation 
for a variety of reasons. First, it is a problem of significant interest since it would 
be the first LES of an aircraft component. Second, this flow has been the subject of 
three experimental studies (Coles and Wadcock 1979, Hasting and Williams 1987, 
and Wadcock 1987). The first study found the maximum lift angle to be 13.87°. 
The later studies found the angle to be 12°. Wadcock reports in the later study 
that the early data agree very well with his new data at 120

, suggesting that the 
early experiment suffered from a non-parallel mean flow in the Caltech wind tunnel. 
It should be pointed out that the Reynolds-averaged simulations are usually run 
at 13.87° and do not agree with the data when run at 12° as was shown in Jansen 
(1995). It is hoped that LES can clarify this controversy. The third reason for 
considering this flow is the variety of flow features which provide an important test 
of the dynamic model. Starting from the nose where the flow stagnates, thin laminar 

1 Present address: Renssalear Polytechnic Institute, Troy, NY 
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FIGURE 1. A transition strip is modeled geometrically by applying a no-slip 
boundary condition to the nodes which form a surface of height, shape, and position 
equivalent to Wadcock's serrated tape which was applied to the airfoil surface. 

boundary layers are formed in a very favorable pressure gradient. This pressure 
gradient soon turns adverse, driving the flow toward a leading edge separation. 
Only the onset of turbulence can cause the flow to remain attached or to reattach 
if it did separate. The persistent adverse pressure gradient eventually drives the 
turbulent flow to separate in the last 20 percent of chord. The separation bubble is 
closed near the trailing edge as the retarded upper surface boundary layer interacts 
with the very thin lower surface boundary layer. The large difference in boundary 
layers creates a challenging wake to simulate. Only the dynamic model can be 
expected to perform satisfactorily in this variety of situations: from the laminar 
regions where it must not modify the flow at all to the turbulent boundary layers 
and wake where it must represent a wide variety of subgrid-scale structures. 

The flow configuration we have chosen is that of Wadcock (1987) at Reynolds 
number based on chord Rec = uooc/v = 1.64 X 106 , Mach number M = 0.2, and 
12° angle of attack. 
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2. Accomplishments 

2.1 Effect of wind tunnel walls and transition strip 

In Jansen (1995) a grid independent solution was obtained which did not agree 
well with the experiments in the separated region. This was not completely sur
prising since two important effects of the experiment were not accounted for in the 
simulation: the wind tunnel walls and the transition strip. 

Wadcock used a strip of tape with serrations cut into the edge on the upstream 
side. The serrated tape has been modeled in a coarse fashion by our current simu
lation as can be seen in Fig. 1. The tape is effectively a forward facing step (with 
serrations) of height 699 /4, followed by a backward facing step. 

The blockage effect of the wind tunnel walls has also been included in the recent 
calculations. Note that the boundary layers on the walls are not simulated; rather, 
slip boundary conditions are applied on the wind tunnel walls as can be seen in 
Fig. 2. 

These two effects were studied separately for a short period of time (not sufficient 
for converged statistics in the trailing edge region) and agreement with experiments 
was seen to improve in both cases. The effect of the walls was somewhat greater 
than that of the transition strip. This discussion is left qualitative because the 
enormous cost of these calculations led us to abandon the individual effect studies 
in favor of using our limited resources on converging the combined effect simulation. 
The res.ults of this simulation can be seen in Fig. 3 where the velocity profiles of 
the new simulation (with wind tunnel walls and transition strip) are compared to 
the original simulation. Note the large increase in the degree of separation. 

Though the new simulation is in better agreement with the experiment, new 
problems were created. As can be seen in Fig. 4, there is a reduction in the three
dimensionality of the turbulence in the separated region. A similar story is told 
by the two-point correlation in this region, which shows very little decay. While 
some reduction is to be expected, concern developed as to whether the periodic 
boundary condition, which is applied in the spanwise direction, was promoting 
spanwise coherent vortices due to insufficient spanwise extent. From Fig. 3 it is 
apparent that the boundary layer is significantly thicker in the new simulation. 
With a spanwise domain width, W of 2.5% of chord the spanwise domain becomes 
less than a boundary layer height at about two-thirds of the chord length. 

2.2 Wider domain simulation 

The most obvious choice of doubling the domain while maintaining the current 
resolution was postponed in lieu of a doubling of the domain by doubling the span
wise size of each element. The rational for this decision was that the refinement 
studies of Jansen (1995) showed only a small change from the current grid to the 
twice coarser grid. The new simulation would also not engender an increased cost 
since the number of nodes remained the same. It was assumed that changes in 
the first half of the airfoil would suggest inadequate resolution while changes in the 
trailing edge region would address the domain width question. 
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FIGURE 2. The cross sectional plane of an unstructured mesh which accounts for 
the inviscid effects of the wind tunnel walls. 
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FIGURE 3. Profiles of tangential velocity component at various positions along the 
airfoil surface (x/c = 0.59,0.66,0.78,0.82,0.95). Solutions correspond to: without 
wind tunnel walls or transition strip -- , with wind tunnel walls and transition 
strip ---- , Wadcock 0, Hastings and Williams 0 . 

The times-series from the new simulation are presented in Fig. 5 where the three
dimensionality can be seen to return to the separated region. The amount of sep
aration is reduced, causing some departure from the experimental data as can be 
seen in Fig. 6. This is to be expected because the presence of three-dimensional 
vortical structures in the separated region pump high momentum fluid down to the 
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FIGURE 4. Time series of the spanwise velocity fluctuation at various positions 
along the chord length, approximately half a boundary layer height off of the wall. 
From the bottom up (x/c = 0.1,0.3,0.529,0.66,0.815,0.95). Note that the top 
curve (x/c = 0.95) indicates a loss of three-dimensionality in the separated region. 

wall, reducing the magnitude of the separation. Fig. 6 also illustrates that the first 
half of the airfoil is nearly grid independent. 

3. Future plans 

3.1 Morespanwise domain studies 

Based on the findings in the previous section more attention will be given to 
the spanwise domain effects. Since the resolution changed at the same time as the 
expansion of the domain, it is difficult to isolate the two effects. For this reason the 
first study will maintain the 5% chord domain width and improve the resolution in 
the second half of the airfoil where the solution has shown some change. A grid has 
already been generated to accomplish this task, and a simulation has just begun. 
The number of nodes has gone up by 70%, making this simulation significantly more 
expensive than the others described in this report. 
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FIGURE 5. Time series of the spanwise velocity fluctuation as described in Fig. 4. 
Note that the top curve (x/c = 0.95) has a strong signal indicating a return of 
three-dimensionality in the separated region with the increased domain width. 

9.2 Higher order methods 

Given the number of points that are required to obtain a grid-independent solu
tion, it seems clear that higher order methods should be explored. This is straight
forward, but non-trivial, to do with the finite element method. There are two 
benefits to higher order methods besides the obvious one of higher accuracy. First, 
the higher order methods will have a more complete representation of the residual 
error of the discrete approximation and, therefore, the scheme will be less dissipa
tive. Second, alternative filters, described in Jansen (1994), can be implemented and 
tested. It is difficult to predict at this time if the method will lose computational 
efficiency when extended to higher order. 

9.9 Computational platform change 

In the past year the code has been ported to the IBM SP2 (see Bastin 1996 for 
details). This port involved the use of MPI, a communication standard that is more 
widely used than that of the original code, which should make the port to other 
platforms reasonably simple. In the coming year more effort will be applied in this 
area to try to take advantage of the changing computational resources available for 
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FIGURE 6. Profiles of tangential velocity component at various positions along the 
airfoil surface (x/c = 0.59,0.066,0.78,0.82,0.95). Solutions correspond to: without 
wind tunnel walls or transition strip -- , with wind tunnel walls and transition 
strip (W/c = 0.025) ---- ,with wind tunnel walls and transition strip (W/c = 0.05) 
-'-, Wadcock 0, Hastings and Williams 0 . 

this type of simulation, thereby expediting its progress. 
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Progress on LES of flow past a clrcular cylinder 

By R. MittaP 

1. Motivation and objectives 

The objective of the present research is to assess the usefulness of large-eddy 
simulation (LES) methodology for flows in complex geometries. Flow past a circular 
cylinder has been calculated using a central-difference based solver, and the results 
have been compared to those obtained by a solver that employs higher-order upwind 
biased schemes (Beaudan & Moin, 1994). This comparison allows us to assess the 
suitability of these schemes for LES in complex geometry flows. 

2. Accomplishments 

2.1 Numerical method 

The solver used in the current work is based on the method developed by Choi et 
al. (1992). Previous simulations (Mittal, 1995) had shown that due to the relatively 
low accuracy of the second-order central difference scheme, the flow in the near wake 
of the circular cylinder was under-resolved in the spanwise directions, and as a result 
of this the downstream development of the flow was not simulated accurately. In 
order to increase the resolution in the spanwise direction, a Fourier discretization 
method was introduced, and this was found to be a cost effective alternative to 
increasing the number of grid points. The spanwise velocity is collocated at the 
pressure node, and dealiasing is performed using the (2/3td rule in order to stabilize 
the computations. Other significant changes to the code include a new line-zebra 
scheme for the iterative pressure Poisson solver, which incorporates full co:upling 
across the branch cut resulting in significant acceleration of convergence. When 
used in conjunction with a multigrid scheme, acceptable reduction in residual can 
be achieved with less than 10 iterations for each spanwise wavenumber. 

2.2 Flow past a circular cylinder 

A C-mesh is used for the present simulation. The inflow, outflow, and far field 
boundaries are located at 19V, 17V, and 25V respectively (V is the cylinder diame
ter). Uniform freestream velocity is prescribed at the inflow and far field boundaries, 
and a convective boundary condition is employed at the outflow boundary in order 
to smoothly convect the disturbances out of the computational domain. Previous 
simulations were carried out on domains that only extended to about lOV from the 
cylinder in the vertical direction, and this resulted in significant streamwise accel
eration of the flow at the edge of the wake region. In the current simulation the far 
field boundary is extended to about 25V, and this reduces the confinement effect of 

1 Present address: University of Florida, Dept. of Mechanical Engr., Gainesville, FL 
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the boundaries to an acceptable level. The spanwise domain size of 7r'D is chosen, 
which was found to be adequate for this flow by Beaudan & Moin. The simula
tion has been carried out on a 401x120x48 mesh with 140 points on the cylinder 
surface, 129 streamwise points along the wake centerline, 120 points in the wall nor
mal direction, and 48 points along the spanwise direction. A non-dimensional time 
step size (Uoo6.tj'D) of about 0.007 was used, which corresponds to a maximum 
CFL number of about 1.5. The solver takes about 70 seconds per time step on the 
CRAY C-90, and simulating one shedding cycle requires about 13 CPU hours. All 
the statistics for the current simulations have been averaged over about 12 shedding 
cycles. Furthermore, all of the results of Beaudan & Moin used here are from the 
simulation that employed the 5t,h-order upwind biased scheme. 

Some of the key wall and near wake statistics are summarized in Table 1 where 
Cpb , CD, 9s , and St are the mean base pressure coefficient, mean drag coefficient, 
mean separation angle, and Strouhal number respectively. It can be seen that the 
wall statistics obtained from the current simulation are in good agreement with 
experiments and with the simulations of Beaudan & Moin (1994). Since the drag 
and base pressure coefficients depend strongly on the accurate prediction of near 
wake features like vortex rollup and formation of streamwise vortical structures, 
good prediction of these quantities implies that the development and evolution of 
the vortical structures in the near wake is being simulated reasonably accurately. 

C Pb 

CD 
9s 
St 

mean bubble length 

Central Diff. 
-0.93 

1.0 
86.9° 
0.207 
1.41) 

Upwind Biased Experiments 

-0.95 -0.9±0.05* 
1.0 0.98±O.05* 

85.8° 85°±2°t 
0.203 0.215±0.005:1: 
1.36'D 1.33'D ± 0.3'D:I: 

Table 1. Wall Statistics. * Norberg, 1987; t Son and Hanratty, 1969; :I: Cardell, 
1993. 

Figure 1a shows the mean streamwise velocity profiles at four different streamwise 
stations in the near wake. In this and subsequent figures, profiles obtained from 
simulations of Beaudan & Moin (1994) and experiments are also plotted whenever 
available. Furthermore, the profiles have been suitably shifted along the y-axis to 
fit multiple profiles in one plot. It is found that the streamwise velocity profiles 
obtained from the current simulations are in reasonable agreement with the experi
ments. Furthermore, the profiles are found to match closely with Beaudan & Moin 
(1994). Figure 1b shows the mean vertical velocity profiles at three streamwise loca
tions in the recovery region. It is found that the agreement with the experiments at 
the first two locations is in general not good, and both simulations over-predict the 
peak vertical velocity. However, there is a good match with the profiles of of Beau
dan & Moin (1994). Also at x/'D = 3.0, both simulations match the experimental 
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FIGURE 1. Mean velocity profiles in the near wake region. -- Current 
simulation, ---- Beaudan & Moin,. Lourenco & Shih,'" Ong & Wallace. (a) 
Streamwis~ velocity (b) Vertical velocity. 

profiles of Ong & Wallace (1993) quite well. Beaudan & Moin (1994) noted signif
icant symmetry errors in the vertical velocity profiles of Lourenco & Shih (1993), 
and this could possibly account for the disagreement between the simulations and 
their experiment. 

From the above comparison of mean velocity profiles, we find that the current 
simulation produces results which compare reasonably well in the near wake region 
with the experiments and with the simulations of Beaudan & Moin (1994). The 
bubble length seems to be better predicted by the simulations of Beaudan & Moin 
(1994). This is probably due to the fact that for the current simulation, the stream
wise grid spacing in this region is roughly the same as that used by Beaudan & 
Moin (1992), which results in a relatively lower resolution due to the lower order 
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method used here. However, the mean velocity profiles from the two simulations are 
in reasonable agreement with each other, and we therefore expect that differences 
in the downstream evolution of the flow in the two simulations will be solely due to 
differences in the in-plane resolution, and thus comparison of the statistics in the 
downstream portion of the wake should allow us to compare the performance of the 
different schemes. 

A comparison shows that the streamwise grid spacing in the current simulation is 
20 - 30% better between x/V = 4 and 7 than the simulations of Beaudan & Moin. 
However, at x/V = 10.0 both simulations have roughly the same streamwise grid 
spacing. The difference in the streamwise grid spacing cannot be avoided since the 
grid cannot be stretched in the streamwise direction as fast in the central difference 
simulation as was done in the upwind-biased simulations (Mittal, 1995). It should 
be pointed out that a comparison of the modified wavenumber (Beaudan & Moin, 
1994) for the schemes suggests that roughly twice the number of grid points are 
needed for a second-order central difference scheme to match the resolution of these 
higher-order upwind biased schemes at low-wavenumbers. Thus, the smaller grid 
spacing is required in the current simulations in order to adequately resolve the 
energy containing scales in the wake. 

In Fig. 2 we have plotted the one-dimensional frequency spectra, En, at three 
locations in the downstream region of the wake. Spectra from both simulations 
and experiment (Ong & Wallace, 1996) are plotted together for comparison. The 
streamwise grid spacing limits the highest frequency that can be locally resolved in 
the simulation, and this corresponds to the implicit "grid-filter". The vertical lines 
in the plots indicate the grid cutoffs for the two simulations. The experimental spec
tra shows about half a decade of inertial range extending from about w/wst = 2 to 
7. Figure 2a clearly shows that the spectra from the current simulation matches the 
experimental spectra much better than the simulation of Beaudan & Moin (1994). 
A closer look at the spectra at the three locations obtained from the upwind-biased 
simulation of Beaudan & Moin (1994) shows that only the energy in the lower 20-
25% of the resolved wavenumbers matches with the experiment. On the other hand, 
in the current simulation the damping at the higher wavenumbers is not as severe, 
and spectra in the lower 40-50% of the resolved wavenumber range matches well 
with the experiment. The marginal performance of the upwind-biased schemes in 
the downstream wake region was attributed to the dominance of numerical dissipa
tion. Thus, given the fact that the spectra for the current simulation shows better 
agreement with the experiment than Beaudan & Moin, it is reasonable to expect 
that the turbulence statistics obtained from current simulation will also be better 
predicted in the current simulation. 

Figure 3 shows velocity profiles at three selected locations in this region. We 
observe that the streamwise and vertical velocity profiles obtained from both sim
ulations agree reasonably well with the experiment. Figure 4 shows the Reynolds 
stress profiles at these locations. The comparison in Fig. 4a indicates enhanced level 
of streamwise normal stress at the first two streamwise locations. The simulation of 
Beaudan & Moin (1994) predicts the peak streamwise normal stress at x/V = 4.0 
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FIGURE 2. One dimensional spectra Ell along the wake centerline. -- Ong & 
Wallace, ---- Current simulation,. Beaudan &:Moin. Grid cutoffs are shown by 
vertical lines: -- Current simulation, --- Beaudan & Moin. (a) x/V = 5.00 
(b)x/V = 7.00 (c) x/V = 10.00. 

quite well and the current simulation over-predicts the peak streamwise normal 
stress. At x/V = 7.0 the simulation of Beaudan & Moin (1994) under-predicts the 
peak streamwise normal stress significantly, whereas the current simulation shows 
better agreement in both the magnitude of the peak stress and shape of the stress 
profile. At x/V = 10.0 streamwise stress profiles from both the simulations match 
quite well and both under-predict the experimental stress level significantly. Since 
streamwise Reynolds stress at the wake centerline is directly related to the area 
underneath the curves shown in Fig. 4, it is somewhat surprising that the current 
simulation does not predict a streamwise stress level which is significantly higher 
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FIGURE 3. Mean velocity profiles downstream of the recovery region. -- Cur-
rent simulation, ---- Beaudan & Moin,. Ong & Wallace. (a) Mean streamwise 
velocity (b) Mean vertical velocity. 

than the si~ulation of Beaudan & Moin. However, this can be explained by noting 
that for this flow most of the contribution to the Reynolds stress come from fluc
tuations in a narrow frequency band extending from about 0.5wst to 3.0wst, and 
in this frequency band the energy in both the simulations is comparable. Thus, 
even though the simulations of Beaudan & Moin exhibit significant damping of 
the higher frequencies, this does not have a significant impact on the low-order 
turbulence statistics. 

Figure 4b shows the vertical normal stress profiles at these three locations. Again, 
a slightly enhanced level of stress is observed at x /'D = 4.0; however, overall the 
predictions from the two simulations at the first two locations are quite similar. At 
x/V = 10.0 the two simulations predict roughly the same peak stress level; however, 
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FIGURE 4. Reynolds stress profiles downstream of the recovery region. -- Cur
rent simulation, ---- Beaudan & Moin, " Ong & Wallace. (a) Streamwise 
Reynolds normal stress (b) Vertical Reynolds normal stress. (c) Reynolds shear 
stress. 
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the shape of the experimental profile matches the profile of Beaudan & Moin (1994) 
better than it does for the current simulation. Figure 4c shows the Reynolds shear 
stress profiles at these three locations. It is observed that the current simulation 
shows better agreement with the experiments than Beaudan & Moin (1994) at 
x/V = 4.0. At the two other downstream locations, predictions from both the 
simulation are comparable and in reasonable agreement with the experiments. 

Thus, it is found that in the downstream portion of the wake where the grid is rel
atively coarse, the numerical dissipation inherent in the higher-order upwind-biased 
scheme removes energy from roughly three-quarters of the resolved wavenumber 
range. In the central-difference simulation, since there is no numerical dissipation, 
the smaller scales are more energetic, and we find that the spectra agrees well with 
the experiment up to about half of the resolved wavenumber range. However, the 
enhanced energy in the small scales has no significant effect on the low order statis
tics, and mean velocity and Reynolds stress profiles in this region obtained from 
the two simulations are comparable. This is due to the fact that most of the stress 
contribution comes from fluctuations whose frequency is centered in a narrow band 
around the shedding frequency, and change in the energy of the small scales does 
have any significant effect on the magnitude of the Reynolds stresses. It should be 
pointed out that in applications such as flow generated noise and reactive flows, 
small scales play a crucial role, and it is therefore critical to retain the energy in 
these scales.. In such applications energy conservative schemes would be clearly 
preferable over upwind schemes. 

In addition, we find that with about a 20-30% smaller grid spacing, the second
order central difference scheme gives results that are comparable to those obtained 
by the high-order upwind biased schemes. The higher-order upwind based solver is 
more expensive on a per-point basis than the second-order central difference solver, 
and this partially offsets the additional cost of the increased resolution required by 
the second-order method. A drawback of the second-order central scheme is that 
the simulations are sensitive to numerical aspects such as grid discontinuities and 
outflow boundary conditions, and thus grids and boundary conditions have to be 
designed with extreme care. 

In future work we plan to use kinetic energy conserving central difference schemes 
whenever possible. Work is continuing on the development of higher order central 
difference schemes with the expectation that these will allow for accurate simulation 
results on meshes coarser than currently required for the second order scheme. 
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Experimental investigation of flow 
through an asymmetric plane diffuserUZ81b 

By Carl U. Buice AND John K. Eaton1 P 6 

1. Motivation and objectives 

There is a need for experimental measurements in complex turbulent flows that 
originate from very well-defined initial conditions. Testing of large-eddy simulations 
and other higher-order computation schemes requires inlet boundary condition data 
that are not normally measured. The use of fully developed upstream conditions 
offers a solution to this dilemma in that the upstream conditions can be adequately 
computed at any level of sophistication. Unfortunately, experimenters have only 
recently been sensitized to this issue and there are relatively few appropriate data 
sets. 

The plane diffuser experiment by Obi et al. (1993) has received a lot of at
tention because it has fully-developed inlet conditions and it includes separation 
from a smooth wall, subsequent reattachment, and redevelopment of the down
stream boundary layer. Each of these features offers challenges for modern turbu
lence models. In particular, Durbin, Kaltenbach, and Mittal of CTR have devoted 
considerable effort in developing several different computations of the flow. Un
fortunately, they found that the experiment had several deficiencies as they began 
careful comparison to the data. The most glaring problem is the fact that the data 
set does not appear to satisfy mass conservation, a problem that is most likely due 
to three-dimensional effects in the diffuser. 

The objective of this study is to provide careful qualification and detailed mea
surements in a re-creation of the Obi experiment. The work will include extensive 
documentation of the flow two-dimensionali ty and detailed measurements required 
for testing of flow computations. Also important to this study is the close inter
action of the experimental and computational groups to improve the utility of the 
data obtained and the accuracy of computation. 

2. Accomplishments 

The diffuser geometry as specified by Obi et al. is shown in Fig. 1. The expected 
flow includes flow separation approximately one third of the way along the diffuser 
followed by reattachment in the tailpipe. The problem with this flow is that sepa
ration is likely to occur on the end-walls, causing an acceleration of the mid-plane 
flow. Our approach has been to modify an existing blower wind-tunnel to accommo
date a very high aspect ratio version of the diffuser in hopes of minimizing end-wall 
effects. Unfortunately, the separated regions on the end-wall can be quite large and 

1 Mechanical Engineering Department, Stanford University 



244 Carl U. Buice & John K. Eaton 

-HH[:Jrl------IIIIIII&;;; ___ ;;;;;;;:::::::=-___ ~Recirculation I 
~--------21H--------·'-~~ Zone ~H 

FIGURE 1. Plane diffuser. 

+ 
~ 

20 

15 

10 

5 

o L-____ ~~~~~ __ ~ __ ~~~~~ ____ ~~~~~ 

1 10 100 1000 

y+ 
FIGURE 2. Mean-velocity profiles: 0 , current experiment; --- ,DNS from Kim 
et al.; ---- , law of the wall with constant = 5.0; -'- , law of the wall with 
constant = 5.5. 

have a significant effect on the mid-plane flow. After construction, the majority of 
our efforts have been in controlling the end-wall boundary layer separation. 

The experimental facility is described in last year's CTR briefs (Buice and Eaton 
1995). '=I'he facility has an upstream channel width (H = 28) of 1.5cm. The experi
ment is beii'ig conducted at a channel Reynolds number (UclHjV) of 20,000. 

2.1 Tunnel qualification 

Our basic approach for qualification of this experiment was to first verify that 
the inlet conditions corresponded to those of a known fully developed turbulent 
channel flow. In Fig. 2, the inlet velocity profile for this experiment is compared to 
the turbulent channel profile produced by the DNS calculation performed by Kim 
et al. The primary difference between these two profiles is the additive constant 
in the log law. While our profile follows the log law with the traditional additive 
constant of 5.0, the DNS follows the log law with a value of 5.5. According to Kim 
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FIGURE 3. Mean-velocity profiles at x/fJ = 59: 0 , centerline; A , near end-wall; 
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et al. the higher constant is a low Reynolds number effect, ReT = 180, for the DNS 
compared with ReT = 490 for our experiment. 

The second step in the tunnel qualification process was to verify that mean veloc
ity profiles taken near the end-walls closely matched the centerline profile. Figure 
3 shows three similar mean velocity profiles taken just downstream of the reat
tachment point at the centerline and two stations approximately 1/6 of the span 
away from the two end-walls. The final qualification step is the integration of the 
mean velocity profiles to verify that the conservation of mass holds throughout the 
measurement region. Although this step is not complete because we lack the final 
pulsed-wire data in the recirculation region, the preliminary results look very good. 
The profiles before and after the separation integrate to within 3% of the initial 
mass flow at the inlet of the diffuser. The primary difficulty with the results of Obi 
et al. was the 15% increase in mass-flow along the core section of the diffuser down
stream of x = 408, see Kaltenbach (1995), which was most likely due to secondary 
flow produced by end-wall separation. 

2.2 Preliminary results 

We have completed single-wire and cross-wire surveys outside of the separation 
region throughout the measurement domain, from 12H upstream of the beginning . 
of the diffuser to 77 H downstream of the inlet. We have also taken frequency 
spectra at a number of locations in the recovery region along 'l(ll'ith the associated 
time records. The thermal tuft was used to determine the separation location and 
will be used in the near future to determine the reattachment location. The pressure 
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Mean velocity U /Ucl,in: 0 , current experiment. Where U /Ucl,in = 

distribution along the upper and lower walls has been measured. 

2. 2.1 Mean flow data 

Figure 4 shows the mean velocity profiles taken using a single-wire anemometer 
compared to the results from a calculation performed using Durbin's k - € - v 2 

model. They compare favorably until the region after reattachment where the 
computed recovery lags the measured recovery. The mean velocity profiles from 
the redevelopment section of the experiment are shown in Fig. 5 and on a different 
scale than the previous figure. Near the end of the measurement region, the flow 
has almost returned to fully developed turbulent channel flow. 

Using the thermal tuft, the mean separation point was found to be 6H down
stream of the beginning of the diffuser, which corresponds well to the 7 H found in 
the Durbin calculation and differs significantly from the experiment performed by 
Obi et al., which found that the flow separated at llH. End-wall separation would 
be expected to relieve the adverse pressure gradient and delay separation. 
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2.2.2 Turbulence statistics 

We have measured Reynolds stresses and triple products in the region of the 
flow outside of the recirculating region. The pulsed-wire is currently being used to 
measure the mean and fluctuating components of the streamwise velocity. We have 
calculated the frequency spectra using velocity measurements recorded by a single 
wire at two locations in the boundary layer, y+ = 30 and y+ = 300, at various 
stations in the recovery region downstream of the diffuser. Figure 6 shows the 
frequency spectra at two stations, x/fJ = 93.2 and x/fJ = 133.9. Also plotted are two 
lines with the -5/3 slope given by Kolmogorov's law for the inertial subrange. The 
decay in turbulent kinetic energy as the flow recovers from separation is apparent. 

3. Future work 

We are now in the final stages of the experiment. The pulsed-wire data is nearly 
complete and preliminary spatial correlation measurements have been made. The 
tunnel will require some minor modification to get the final spatial correlations 
with the two-point correlation probe and the skin-friction data using the pulsed
wall probe. 
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The flow through a plane asymmetric diffuser is a good test case for assessing the 
capability of LES since it contains features such as large scale unsteady separation 
and strong intermittency which are difficult to capture using conventional model
ing approaches. Previous attempts to simulate this flow (Kaltenbach, 1994) have 
significantly underpredicted the extent of separation. 

The objective of the present research is to understand why the previous simu
lations did not predict the flow separation correctly. This study focuses on mesh 
refinement and matching of the inlet velocity profile. In order to perform this study, 
the flow solver of Kaltenbach (1994) was modified to increase its accuracy and ef
ficiency. The improved algorithm allows for better resolution at affordable CPU 
cost. The present results are compared with those of Kaltenbach (1994) and the 
experimental data of Obi et al. (1993). 

2. Accomplishments 

2.1 Numerical method 

Although previous simulations used a fully implicit method (Kaltenbach 1994, 
Choi et al. 1992), the time-step in this flow is limited mainly by the turbulence 
time-scale in the inlet and not by numerical stability considerations. This fact im
plies that much of the potential benefit of using the implicit scheme is not fully 
realized in this case. In the current study, the semi-implicit solver used for the sim
ulations of flow past the circular cylinder (see Mittal, this volume) has been been 
modified for solving flow through the diffuser. The direct inversion of the momen
tum equations coupled with the fast iterative pressure Poisson solver results in an 
extremely efficient algorithm. The Fourier discretization method provides better 
spanwise resolution, and it was found to be a cost effective alternative to increasing 
the number of grid points, The spanwise velocity is collocated at the pressure node, 
and dealiasing is performed using the (2/3td rule in order to guarantee kinetic 
energy conservation. The increased efficiency allows us to use a finer mesh and to 
accumulate statistics over a longer period than has been possible before. 

2.2 LES of flow in an a8ymmetric planar diffu8er 

The flow configuration consists of a asymmetric planar diffuser with a 10° angle 
and expansion ratio of 4.7. The turbulent inflow corresponds to a fully developed 

1 Present address: University of Florida, Dept. of Mechanical Engr., Gainesville, FL 
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FIGURE 1. Mean velocity profiles x + IOU /Ub in the exit section of the diffuser. 
Effect of spanwise resolution. -- Run A ; ---- Kaltenbach (1994); 0 Experi
mental data by Obi et al. (1993). 

channel flow with a bulk Reynolds number Reb = 9000. The bulk Reynolds number 
is defined as Reb = hUb/V where h, Ub, and v are the inlet half-channel height, inlet 
bulk velocity, and kinematic viscosity, respectively. The spanwise domain size is 4h. 

The disparity in the length and time-scales in the inlet and exit sections of the 
diffuser imposes significant demands on the computational resources. The sensitiv
ity of the flow to inflow/outflow conditions also causes difficulties for experimental 
measurements, and a parallel experimental effort is currently underway (Buice & 
Eaton, 1995) to provide reliable data for validation purposes. . 

Previous LES studies (Kaltenbach, 1994) have under-predicted the extent of sep
aration, and our objective is to investigate the reason for this discrepancy. Possible 
causes include mismatch of upstream and/or downstream conditions, low stream
wise/spanwise resolution, and small spanwise domain size. 

2.3 Results 

To investigate the effect of spanwise resolution, one simulation of this flow has 
been carried out on the same 163 x 65 x 64 (streamwise x vertical x spanwise) grid 
that was used by Kaltenbach (1994), but with the better resolution in the spanwise 
direction provided by the spectral discretization (this simulation will be hereafter 
referred as Run A). 

Kaltenbach realized that the simulation was under-resolved on this mesh, but 
could not afford better resolution with his less efficient, fully implicit code. He could 
afford better resolution in the separate channel flow simulation used to produce 
the inflow data, however, and consequently he used 128 points in the span for 
this purpose. The increased accuracy associated with the 128 points for the inflow 
generation can not be sustained on the 64 point diffuser mesh, and thus the solution 
is assumed to degrade with increasing distance downstream from the inlet. Inflow 
data for our run A was generated with Fourier collocation in the spanwise direction 
using 64 points. The statistics from this simulation were found to be nearly identical 
to Kaltenbach's full finite difference· calculation done on 128 points. The main 
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FIGURE 3. Mean velocity profiles x + 5U /Ub in the inlet section of the diffuser. 
Effect of streamwise resolution. -- Run B ; ---- Kaltenbach (1994); 0 Ex
perimental data by Obi et al. (1993). 

difference is that Fourier collocation was also used in the diffuser simulation, which 
means the quality of the inflow data should.be preserved throughout the domain. 

The statistics from Run A have been accumulated over a period of about 1200Ub/ h, 
which corresponds to about 50 exit inertial times scales. Mean streamwise velocity 
profiles in the downstream section of the diffuser are shown in Fig.!. The results 
of Run A are nearly identical to those of Kaltenbach at the first station in Fig. 1. 
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FIGURE 4. Mean velocity profiles x + lOU jUb in the exit section of the diffuser. 
Effect of streamwise resolution. -- Run B ; ---- Kaltenbach (1994); 0 Ex
perimental data by Obi et al. (1993). 

(a) 

x =-1 
x=3. 

(c) 

FIGURE 5. Variances x + 150uujUl (a), x + 500vvjUl (b) and 
x + 750uvjUl (c) in the first half of diffuser. -- Run B ---
(1994); 0 Obi et al. (1993). 

x = 18.4 

shear stress 
Kaltenbach 
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--------

FIGURE 6. Contour line of negative streamwise velocity averaged in the spanwise 
direction. Time increment among frames is approximately 30Ub/h. 
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Small differences can been observed over the next three stations with Run A pro
ducing a slightly larger separated region. Overall the differences are slight, however, 
and Run A is still in considerable disagreement with the experimental data. 

The current mismatch with the experimental data appears to be related to the 
streamwise resolution. Both Kaltenbach's and the Run A simulation are under
resolved in the streamwise direction which results in mean velocity profiles upstream 
of the diffuser that are noticeably fuller near the wall as compared with the exper
imental data. As shown in Fig. 2, doubling the number of streamwise mesh points 
in the inflow generation (b.xt = 50 compared to the previous b.xt = 100) has 
shown to lead to profiles that agree well with the experimental data. 

A new simulation with improved streamwise resolution has been started. This 
simulation, referred to as Run B, has a streamwise mesh spacing of b.xt = 50 at 
the inlet and contains 273 x 65 x 64 points. Although the statistics have not yet 
converged, some preliminary results will be presented below. Due the disparity in 
the time-scales in the inlet and outlet section, the statistics converge more slowly in 
the outlet section. Thus the results near the inlet are probably trustworthy while 
those near the outlet may change as the simulation is run further in time. The 
figures shown are obtained using statistics accumulated over a period of about 400 
inlet inertial time scales (Ubi h). Measured in terms of exit inertial time scales, 
however, the averaging time is only about 18 units. 

It can now be observed in Figs. 3 and 4 that there is good agreement between the 
LES computation and the experimental data in all the stations except the last one. 
This can be an effect of insufficient average time. In Fig. 5 velocity fluctuations are 
plotted in the first half of the diffuser. Also, for these quantities, better agreement 
with the experiment is found. 

Using LES, not only statistical quantities can be obtained, but also instantaneous 
information. We are interested in understanding the dynamics of the separation: 
that there is in this flow a very unsteady and intermittent process as can be noticed 
from Fig. 6. A computer animation is being generated to visualize the process. 

3. Future plans 

From the result of the fine simulation (Run B), it seems pretty clear that the pre
vious disagreement between LES and experiments was due to inadequate streamwise 
resolution. The current simulation will be continued until the statistics are fully 
converged. A detailed comparison of the results will be made with both the data 
of Obi et al. (1993) and that of Buice and Eaton (1996). 
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A numerical study of self-similarity in a f'Let 

turbulent plane wake using large-eddy simulation 

By Sandip GhosaF AND Michael M. Rogers2 

1. Motivation and objectives 

Turbulent wakes are known to develop self-similarly sufficiently far downstream 
from obstacles that generate them. It has long been assumed that the spreading 
rate of the wake in the self-similar regime is independent of the details of the body 
generating the wake, being dependent only on the total drag (or momentum deficit). 
This assumption seems to be in contradiction with some recent experiments. In 
this study we attempt to complement these experimental investigations through a 
numerical study of a time-developing wake. A numerical study has the advantage 
of eliminating many of the uncontrolled factors present in experiments and allowing 
precise control of initial conditions. Large-eddy simulations employing the recently 
developed dynamic localization model are used to extend previous results from 
direct numerical simulations. The large-eddy simulation results are compared to 
the direct numerical simulation database, wherever such comparisons are feasible, 
as a check of the method. Like the experiments, the large-eddy simulations suggest 
that non-unique self-similar states, characterized by different spreading rates and 
turbulent statistics, are possible and that they can be maintained for significant 
time periods. The study also demonstrates the predictive capability of the dynamic 
localization subgrid model. 

2. Introduction 

A turbulent flow is said to be self-similar when some or all of its statistical prop
erties depend only on certain combinations of the independent variables rather than 
on each independent variable individually. The consequence of this is that the num
ber of independent variables in the problem is reduced, thus greatly facilitating its 
solution. Geometrically, a self-similar flow possesses a certain symmetry; for exam
ple the flow pattern on any two cross sections perpendicUlar to a given axis may be 
identical except for a scale factor. The property of self similarity has been used on 
many occasions in fluid dynamics to derive elegant solutions to otherwise very diffi
cult problems (such as the structure of turbulent boundary layers, jets, and wakes). 
Recently, George (1989) presented a critical analysis of the self-similarity argument 
in the context of certain apparent discrepancies of self-similar solutions with exper
imental results on jets and wakes. He argued that in the traditional analysis, in 

1 Present address: LMFN-INSA Rouen URA-CNRS 230-CORIA, Mont-St-Aignan 76821, France 

2 Nasa Ames Research Center 
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addition to the assumption of self-similarity, one often invokes additional restrictions 
inspired by the dictum "turbulence forgets its initial conditions". For example, in 
the case of the turbulent plane wake, one requires that the growth rate sufficiently 
far from the source can depend only on the momentum deficit of the wake (which is 
proportional to the drag on the obstacle producing the wake). Dimensional analysis 
then implies "universal" solutions that do not depend on the nature of the obstacle 
or the details of the initial conditions. George argued that when such additional 
restrictions are removed, one obtains a wider class of self-similar solutions that are 
no longer "universal". Thus, for a plane wake, these solutions will depend on the 
nature of the obstacle and not just on the total drag. These conclusions seem to 
be in agreement with the experiments of Wygnanski et al. (1986) and Marasli et 
al. (1992). However, conditions in experiments are difficult to control precisely and 
some doubt remains about whether the results indicate the existence of multiple 
self-similar states or if this is an artifact of experimental uncertainties. 

To address this issue further, direct numerical simulations (DNS) of plane wakes 
have been generated by Moser and Rogers (1994) and Moser, Rogers, and Ew
ing (1996). Such numerical simulations are free from various uncontrollable extra
neous factors that complicate the interpretation of experiments and should comple
ment the experimental results already available (see Wygnanski 1986, Marasli 1992, 
and references therein). However, such simulations are very costly since all scales of 
turbulent motion must· be accurately resolved. In practice this limits the Reynolds 
numbers and the extent of flow evolution that can be simulated. This suggests 
that large-eddy simulation (LES) might be a better tool than direct numerical sim
ulation to study high-Reynolds-number fully developed wake turbulence over long 
evolution times, particularly if small-scale information is not desired. In LES one 
explicitly solves a coarse-grained version of the Navier-Stokes equations. The col
lective effect of the small scales on the large scales is taken into account through 
a "subgrid model". Although LES can be computationally much less expensive, it 
has the disadvantage that it leaves open the possibility of significant errors resulting 
from the approximation of the unknown subgrid stress by a model. 

In order to achieve the longest possible simulation of a high-Reynolds-number 
self-similar plane wake, we have resorted to LES of the temporally evolving flow, 
as was done in the DNS. First, the LES methodology is validated by comparison 
to existing DNS for cases that are less computationally intensive. The limitations 
of the DNS can then in turn be addressed by the use of new LES results in larger 
computational domains. This complementary use of both LES and DNS bolsters 
confidence in the simulation results and facilitates better understanding of the self
similar behavior of the plane wake. 

Three DNS of temporally evolving plane wakes have been documented in Moser, 
Rogers, and Ewing (1996). These wakes differ from each other in the level of ini
tial two-dimensional turbulent fluctuations. The "unforced" case is initiated from 
two realizations of a fully developed turbulent boundary layer with no added dis
turbances. In the other "weakly forced" and "strongly forced" cases, additional 
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two-dimensional fluctuation energy has been added to the boundary layer turbu
lence. This is achieved by multiplying the streamwise and cross-stream velocity 
components associated with the two-dimensional Fourier modes in the computation 
by factors of 5 and 20, respectively. The resulting evolution of the unforced and 
weakly forced cases shows convincing evidence of self-similar evolution, although the 
growth rates and Reynolds stress levels for the two cases are different. The strongly 
forced case, on the other hand, shows irregularities in the shapes of mean velocity 
and Reynolds stress profiles and exhibits at most a short period of approximate 
self-similar evolution (with a very high growth rate and large levels of Reynolds 
stress). 

The flow structure in this strongly forced case has an underlying pattern of a few 
large-scale motions, and it was speculated in Moser, Rogers, and Ewing (1996) that 
the poor self-similarity resulted from an inadequate sample of large-scale turbulent 
eddies in the computational domain. In order to confirm this, an LES of nominally 
the same flow in a domain that is twice as large in the streamwise direction and 
four times as large in the spanwise direction has been generated and compared to 
both DNS and LES of the small-domain case. Of primary interest is whether a 
self-similar state does indeed exist in this strongly forced flow and what the growth 
rate and Reynolds stress levels are if such a period exists. This allows us to better 
address the issue of whether or not multiple initial-condition-dependent self-similar 
states exist for the turbulent plane wake. 

The LES is performed using a fully spectral code and a recently developed subgrid 
model known as the "dynamic localization model" (DLM). In a previous paper 
(Ghosal 1995), the theoretical development leading to the dynamic localization 
model for large-eddy simulation was presented. The method has been successfully 
applied to isotropic turbulence (Ghosal 1995, Carati et al. 1995), channel flow 
(Cabot 1993), and the flow over a backward-facing step (Akselvoll1993a, Akselvoll 
1993b). Two attractive features of this model are: 

(1) The magnitude of the eddy viscosity does not need to be prescribed in an ad 
hoc manner but the algorithm itself chooses an optimum value based on a certain 
well-defined optimization procedure. 

(2) The subgrid model parameter ("Smagorinsky coefficient") is a function of space 
and time and automatically adjusts itself to the intensity of the turbulence. In 
particular, it goes to zero near walls and vanishes in those regions of space and time 
where the flow is laminar. 

The present study, in addition to investigating the issue of self-similarity in plane 
wakes, also provides another test of the predictive capability of the dynamic lo
calization model. This includes both the ability to predict turbulent statistics as 
well as flow structure. In Moser, Rogers, and Ewing (1996), forcing was found to 
significantly affect both statistics and flow structure in the plane wake, with forcing 
increasing the level of organized large-scale motions in the flow. Since it seems 
that these differences in flow structure are linked to the differences in turbulent 
statistics it may be essential that the subgrid model preserve the character of the 
filtered vorticity field for accurate prediction of the statistics. The local character 
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of the subgrid model employed in this work would seem to offer a greater likelihood 
of achieving this. The level of correspondence between the vortex structures in the 
LES and the DNS is also of interest for flow control and understanding mechanisms 
of turbulent mixing. 

In Section 3 certain general properties of plane wakes are reviewed and the prob
lem to be solved numerically is defined. In Section 4 the computational methods 
used, including the subgrid model, are briefly discussed. The LES results for the 

, unforced wake are presented and compared with the DNS database in Section 5. 
LES computations of the forced case in two different domain sizes (the smaller 
for comparison to the DNS, the larger to address limitations of the DNS and to 
study the long-time evolution of the forced case) are considered in Section 6. In the 
conclusion (Section 7), the results and their significance are discussed. 

3. Formulation of the problem 

In a temporally developing wake the flow is statistically homogeneous in the 
streamwise (x) and spanwise (z) directions and inhomogeneous in the cross-stream 
(y) direction. The governing equations are the incompressible Navier-Stokes equa
tions with periodic boundary conditions in x and z. In the y direction the domain is 
infinite and the velocity field is assumed to asymptotically approach the free-stream 
velocity, which can be taken as zero in a suitably chosen reference frame. This flow 
becomes equivalent to the physically more relevant spatially developing wake in the 
limit of a small wake deficit. If one imagines a "box" being advected downstream 
at the "free-stream" velocity in a spatially developing wake, then the motion of 
the fluid in the imaginary box approximates a temporally developing wake. The 
integrated mass flux deficit 

/

+00 

J.t = - -00 8U(y)dy (1) 

is conserved in a temporally developing wake, as opposed to the mome~tum flux 
deficit 

/

+00 

J.t* = - -00 (Uoo +8U(y))8U(y)dy, (2) 

which is conserved for a spatially developing wake. Clearly, if the mean velocity 
deficit 8U is small compared to the free stream velocity Uoo , then J.t* ~ UooJ.t. 
A suitable scale for the velocity is the initial centerplane velocity deficit 8Uo = 
-(8U(O))t=o and a suitable length scale is J.t/8Uo. The associated time scale is 
J-t/(8UO)2. Most ofthe results given below are quoted in these units. 

4. Computational methods 

The numerical method used is a spectral method in vorticity variables. Both the 
velocity and vorticity are periodic in the x and z directions and can, therefore, be 
expanded in a basis of trigonometric functions for these variables. The y direction 
is somewhat more difficult to deal with since the domain is infinite in y. One 
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method is to choose a basis of functions that have an infinite support (such as 
the Jacobi polynomials coupled with a mapping to the infinite interval) for the Y 
direction (Spalart et al. 1991). However, here we use an artifice that results in a 
simpler numerical code. We take advantage of the fact that in a wake the vorticity 
field is much more confined in the y direction than the velocity field. One then 
expands the vorticity in a trigonometric series in y defined over (Ymin, Ymax) with 
periodic boundary conditions. This is permissible provided that the vorticity is 
narrowly confined around Y = 0 and effectively decays to zero at the boundaries 
Ymin and Ymax. The velocity field is not so confined and cannot be represented in 
terms of these trigonometric functions. But once the vorticity field is determined, 
the correct velocity field may be obtained by adding a potential "correction" to the 
periodic velocity field so as to match the boundary conditions at Y = ±oo. Further 
details of the computational method may be found in Corral and Jimenez (1995). 

We use the "dynamic method" for computing the coefficient C(x, t) in the gen
eralization of Smagorinsky's subgrid model 

(3) 

where Tij is the subgrid stress, Sij is the resolved rate of strain, ISI2 = 2SijSij, and 
~ is the LES filter-width (taken equal to the grid spacing). We will consider two 
variants of the dynamic method for determining C. The first, the Dynamic Model 
(DM), can be considered as a special case of the more general DLM discussed below 
for flows that are homogeneous in one or more directions. For the wake flow the 
coefficient C is considered a function of Y and t only in DM and is given by 

C(y, t) = (mijLij)xz. 
(mklmkl)xz 

(4) 

where the angular brackets denote averaging over the homogeneous x - z planes. ----- .-...-.. 
Here Lij = tf;iij - fiJij is the Leonard term and mij ,;", ~21SISij - ,,6.2ISISij, where 
Ui is the filtered velocity and the .-.. denotes the "test filtering" operation: 

j(x) = J G(x,y)f(y)dy. (5) 

The "test-level" filter-width is Li (Li > ~), and G (x, y) is the test filter kernel. 
The second method, DLM, is applicable to arbitrary homogeneous flows but im

poses the constraint C 2: o. It is the more general of the two but requires more 
computation. The constraint C 2: 0 can be relaxed. This is done either by intro- . 
ducing an additional equation for the subgrid energy, k (Ghosal1995) or by adding 
a "stochastic backscatter" term (Carati et al. 1995). In DLM one obtains C(x, t) 
as a function of position at each time-step by solving an integral equation 

C(x) = [f(X) + J K(X,Y)C(Y)dY] + (6) 
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FIGURE 1. The square of the wake-width as a function of time using DLM --; 
DM - - -; No model· ..... ; filtered DNS •. 

where the suffix "+" indicates the positive part and 

(7) 

Y"( ) _ ICA(x,y) + ICA(y,X) -ICs(x,y) 
~ X,y - () () , 

G:kl X G:kl x 
(8) 

ICA(X, y) = G:ij(X),Bij(y)G(x, y) , (9) 

and 

ICs(x,y) = ,Bij(X),Bij(Y) J G(z,x)G(z,y)dz. (10) 

~ ~ 

In these expressions G(x, y) is the "test filter", G:ij = -2~2ISrSij, ,Bij = _2~2ISISij, 
and Lij is the Leonard term. The method of numerically solving the integral 
equation to determine the coefficient C has been described elsewhere (Ghosal et 
al. 1995). The test filter width in these computations was taken to be twice the 
grid-filter width, IS. = 2~, and a "top-hat" filter was used with a Simpson's rule 
quadrature. 

5. Validation of the LES for the unforced wake 
In this section we attempt to establish confidence in the predictive capability 

of the subgrid model by reproducing, using LES, the results for the "unforced" 
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FIGURE 2. The product of the wake-width and the maximum velocity deficit as a 
function of time using DLM --j DM - - -j No model······j filtered DNS •. 

plane wake generated by DNS in Moser and Rogers (1994) and Moser, Rogers, and 
Ewing (1996). The initial conditions for the DNS were generated by taking two 
realizations of "turbulence over a fiat plate" from DNS data generated by Spalart 
(1988) and "fusing" them together to produce a wake. Physically this corresponds 
to a situation in which two independent boundary layers exist on either side of 
a rigid plate and the plate is instantaneously "dissolved" without disturbing the 
surrounding fluid. 

This initial DNS data field was then interpolated onto the coarser LES grid to 
generate the initial conditions for the LES. All the parameters in the LES described 
in this section were chosen to correspond to those used in the DNS. 

The LES reported here were performed on a grid of size Nx = 64, Ny = 48, and 
N z = 16. By contrast the DNS required up to Nx = 512, Ny = 195, and Nz = 128 
modes. The half-size of the y-domain was set to Yo = 16. To compare the LES 
results to the DNS, all DNS data must first be "filtered" to the same resolution as 
the LES. This is done by truncating the DNS data in Fourier space to the same 
number of modes retained in the LES for the x and z directions. For the y direction, 
the DNS data is interpolated onto the coarser LES grid. This filtering procedure is 
applied to the initial conditions as well as to all DNS data with which we wish to 
compare the LES results. The "filtered DNS" represents the theoretical best that 
can be achieved by any LES. Since the mean velocity is given by the kx = kz = 0 
Fourier-mode, the mean profile is unaffected by filtering in x-z planes. Also, since 
the mean profile varies very little over a single grid-length, filtering in the y direction 
does not have any observable effect on the mean velocity. This, however, is not the 
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case for second-order statistics of velocity and vorticity, and there explicit filtering 
must be applied to the DNS data for comparison with the LES. The LES with 
DM took about 11 minutes of CPU time for the entire simulation to be completed. 
For the DLM the CPU time depended on the level of convergence required for the 
solution of the integral equation. We measured the degree of convergence by the 
rms error in satisfying the integral equation normalized by the maximum value of 
(C), where () denote averaging over x-z planes. When it was required that the error 
as defined above should not exceed 10-4 , the DLM used about 18 minutes of CPU 
time. To test if this level of convergence was adequate, the simulation was rerun 
with the convergence criterion set at 10-9 • There were no observable differences 
in any of the computed statistics. For comparison, the high resolution DNS of the 
same flow over the same physical time interval by Moser and Rogers (1994) required 
about 200 CPU hours. All computations were performed on a CRAY C90. 

The gross features of the wake are characterized by the maximum wake deficit 
SUm of the mean velocity profile and the wake half-width b. The half-width is 
defined here as the distance between the two points at which the mean velocity 
deficit is half its maximum value. Fig. 1 shows b2 plotted as a function of the 
dimensionless time T = t (SUo)2 / p for the LES using both the DM and DLM models, 
the filtered DNS, and LES with the subgrid model turned off. The width grows as 
b f'J ..,fi in the self-similar region (T ~ 50 - 100) as expected. Fig. 2 shows the 
product b(SUm) as a function of T. All curves exhibit plateaus during the self
similar periods. Note that the Reynolds number Reb = bSUm/v is constant and 
just under 2000 in the self-similar period because p/v = 2000. The results of all 
the LES computations agree reasonably well with the filtered DNS. A somewhat 
surprising result is that even the LES with zero eddy viscosity gives a reasonable 
prediction for the spreading rate despite the simulation being grossly underresolved. 
Flow visualization of the instantaneous flow field and plots of energy spectra show 
large accumulations of small-scale fluctuations at the smallest resolved scales for this 
"no-model" case, as is expected in an underresolved simulation. However, even this 
gross error does not affect the growth rate much except to make it more "wiggly". 
This is in sharp contrast to past experience in isotropic turbulence. In that flow, 
the absence of an eddy-viscosity would prevent energy decay of free turbulence and 
make a steady state impossible in forced turbulence, rendering comparisons with 
experiments impossible. 

Fig. 3 shows the mean velocity profile plotted in self-similar coordinates SU* = 
SU / flU m and Y* = Y / b for T ~ 50 - 100. In all cases very good self-similar collapse 
is observed (even with the subgrid model turned off!). Thus, like the growth rate, 
the mean velocity profile is quite insensitive to the subgrid model. 

The second-order velocity statistics (u 2 ), (v 2 ), (w 2 ), and (uv) normalized by 
(flUm)2 are shown in Fig. 4. Here u, v, and ware the velocities in the x, y, and 
z directions, respectively, with the mean velocity subtracted out. The angular 
brackets denote averaging over x - z planes. In all cases it is observed that both the 
DM and the DLM predict the filtered second-order statistics well. Except for the 
(uv) profile, the quality of the predictions deteriorates if the model is turned off. 
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FIGURE 3. The mean wake velocity deficit in self-similar coordinates using 
DLM --j DM - - -j No model· .... 'j filtered DNS •. 

The better agreement for the (uv) profile is expected since it is directly linked to the 
mean velocity profile 8U(y) through the x-component of the momentum equation, 
and it has already been seen that 8U(y) is insensitive to the subgrid model. 

The second-order vorticity statistics (wi), (w~), (w;), and (wxw y ) normalized by 
Reb 8Um 

2 are shown in Figure 5. Here W x , W y, and Wz are the vorticities in the x, 
y, and z directions, respectively, with the mean vorticity subtracted out. As before, 
the angular brackets denote averaging over x - z planes. The agreement of both 
the DM and the DLM predictions with the filtered DNS is seen to be good. The 
quality of the predictions is significantly degraded when the model is turned off, in 
which case the magnitudes of the enstrophy components are about four or five times 
the corresponding filtered DNS levels. Vorticity statistics are a sensitive measure 
of the scales close to the threshold of the resolution of the LES. The fact that 
even vorticity statistics are captured by the LES suggests that all of the resolved 
scales, and not just the lowest wavenumber modes, are faithfully represented in the 
simulation. Thus, we use vorticity statistics as a "quality indicator" of the LES 
rather than as a quantity of practical importance (note that much of the vorticity 
resides at subgrid scales and the levels found in the LES or filtered DNS are much 
less than those observed in the DNS). 

In Figs. 4 and 5 it is apparent that the self-similar collapse is not perfect but 
that there is a systematic variation between the curves at different times in the 
simulation, even when scaled in self-similar variables. This is the case not only for 
the LES, but also for the filtered DNS. This is an artifact of the filtering procedure 
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itself and can be understood in the following way. The flow evolves self-similarly at 
constant Reynolds number Reb = b(8Um )/v (see Fig. 2) in the self-similar region but 
the length scales increase in time. Thus, as the flow evolves, the energy spectrum 
shifts to the left. Since the grid size is held fixed, this implies that more and more 
of the energy becomes "resolved" as the spectrum shifts to lower wavenumbers past 
k = 21l' / ~. Therefore, the resolved part of the second-order statistics increases 
with time. This is precisely what is observed in the LES and filtered DNS data 
and is responsible for the systematic increasing trend during the self-similar period. 
The problem here could be remedied by adding the subgrid part of the stress, that 
is by plotting (uv) + r12 instead of (uv). This cannot be done, however, for the 
turbulent intensities (u2), (v2), and (w2) because the diagonal components of the 
subgrid stress ru, r22, and r33 are absorbed into the pressure and not modeled in 
the present LES. They could be obtained in a more elaborate model such as the 
DLM with the k-equation (Ghosal et al. 1995), but in this study we have used the 
simpler version of the DLM that models only the deviatoric part of the stress. 

In addition to obtaining quantitative predictions, one also hopes to gain some 
qualitative understanding of the large-scale flow structures from an LES. Thus, it 
is of interest to see if the model is able to generate structures that look realistic. As 
an example, typical contour plots of the u-velocity at a time during the self-similar 
period are presented in Fig. 6 over an x - y plane. It is seen that Fig. 6( c) and 
Fig. 6( d) (LES with model) bear an overall resemblance to Fig. 6(b) (filtered DNS) 
in the sense that they have a similar number of "eddies" of approximately similar 
size and shape. However, Fig. 6(e) (LES without model) looks qualitatively different 
from Fig. 6(b) in that it has a profusion of poorly resolved small-scale structures. 
A similar statement can be made about the other flow variables. 

In summary, mean normalized velocity profiles plotted in self-similar coordinates 
are insensitive to the choice of subgrid models. The prediction of the self-similar 
growth of the wake width is improved by the subgrid model, but the results with 
no model are nevertheless good. Second-order velocity and vorticity statistics are 
predicted well by both the DM and DLM, but the predictions of these statistics 
without a model are poor. The flow structures in the LES have a strong visual 
resemblance to those of the corresponding filtered DNS, but this is not the case if 
the LES is performed with no subgrid model. The LES results in a very significant 
savings in CPU time over the corresponding DNS. The results presented here sug
gest that LES can provide accurate predictions for turbulent free shear flows when 
information related to small-scale structures is not required. 

6 •. An alternate self-similar state resulting from forcing 

In this section we investigate the time evolution of a "forced" wake that has the 
same mass flux deficit as the "unforced" wake in the previous section. Using LES, 
we first attempt to reproduce the DNS results for the "strongly forced" wake of 
Moser and Rogers (1994) and Moser, Rogers, and Ewing (1996). Next we attempt 
to extend the DNS results in time with a new LES simulation in a larger com
putational domain in an effort to observe a definitive self-similar regime. In the 
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FIGURE 6. Contour plots of streamwise velocity fluctuation u for (a) DNS, (b) 
filtered DNS, (c) DLM LES, (d) DM LES, and (e) no model LES at T = 71.7. Tick 
marks are at 2jJ/8Uo, solid contours are negative, dotted contours are positive, and 
the contour level is O.038Uo. 
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DNS no sustained self-similar period was achieved for the strongly forced wake, 
although there was a fairly brief period of approximate self-similarity that was used 
to generate time-averaged similarity profiles. 

The initial conditions used in the DNS of the "forced" wake were generated 
from the same two turbulent boundary layer realizations used for the unforced 
flow, but with additional two-dimensional disturbance energy added to them. In 
order to maintain a t 1/ 2 spreading rate, all of the two-dimensional Fourier modes 
in the computation were amplified instead of just a few particular wavelengths. 
For the forced case considered here, both the streamwise and cross-stream velocity 
fluctuations (u' and v') of the two-dimensional Fourier modes were multiplied by a 
factor of 20 at T = O. This amplification is large, increasing the initial disturbance 
energy by an order of magnitude. The initial conditions for the corresponding LES 
computation were generated by filtering the evolved DNS field at T = 9.56. This 
field was chosen rather than that at T = 0.0 to allow the initial cusped mean profile 
to smooth out somewhat before trying to resolve it on the LES grid. The subgrid 
model used is DLM. Although this is computationally more expensive than the DM, 
it is preferred because of its wider applicability. 

6.1 Reproducing the DNS results 

The square of the wake width as a function of time in the DLM LES is shown by 
the dashed line in Fig. 7a. The size of the LES is N x = 64, Ny = 64 or 96, N z = 16, 
and Yo ranges from 14.0 initially to 64.0 at the end of the simulation, where N x , Ny, 
and N z are the number of modes in the x, y, and z directions, respectively, and Yo 
is the half-width of the y-domain. (The DNS uses up to N x = 600, Ny = 260, and 
N z = 160.) The LES results agree well with the DNS up to the point where both 
computations become constrained by the computational domain size. After T ~ 65 
both the DNS and the LES computed in the same domain size exhibit decreasing 
wake widths instead of reaching the expected sustained self-similar growth. The 
LES is also no longer as good at predicting the wake width after this point, with 
the LES width decreasing somewhat more rapidly than that of the DNS. 

As with the unforced case, contours of u velocity show good a,greement between 
the LES (Fig. 8c) and the filtered DNS (Fig. 8b). When no subgrid scale model 
is used, the computation has an excessive level of small-scale structure owing to 
inadequate energy dissipation (Fig. 8d). Note that at the time shown (T = 26.3), 
the sample of large-scale eddies in the computational domain is becoming somewhat 
limited. As the wake continues to spread, it is thus quite probable that the compu
tational domain size will become inadequate and the simulation will no longer be a 
good representation of an unbounded turbulent flow. 

In order to demonstrate that the turbulence in these two computations is con
strained by the computational domain size (rather than simply being in a transient 
non-self-similar state), another LES computation in a domain with twice the stream
wise extent and four times the spanwise extent of the computations described above 
was performed. It should be noted that performing a DNS in this expanded domain 
size is infeasible with the computational capabilities currently available. 
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of the forced wake extended to the larger domain (long curve), and --LES of the 
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FIGURE 8. Contour plots of spanwise vorticity W z for (a) DNS, (b) filtered DNS, 
(c) DLM LES, and (d) no model LES for the forced wake in the smaller domain at 
T = 26.3. Tick marks are at 2J1,j8Uo, solid contours are positive, dotted contours 
are negative, and the contour level is O.108Uo. 
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FIGURE 9. The mean wake velocity deficit in self-similar coordinates for --the 
forced (large-domain) LES at various times during the period 73 < T < 300 and for 
• the unforced flow at T = 62, 72, and 86. 

6.2 Extending the DNS results to a larger flow domain 

Generating the initial conditions for the expanded-domain computation requires 
some care. Ideally we would like to be simulating the same flow, but simply repli
cating the periodic flow field used previously will not change the flow evolution 
at all since the initial periodic symmetry will be maintained by the N avier-Stokes 
equations. It is thus necessary to break this symmetry in the periodically extended 
initial conditions. Considering the streamwise direction, if the initial computational 
wavenumbers are scaled to be integers, then the periodic doubling of. the stream
wise direction will introduce new wavenumbers that are odd multiples of one half; 
these wavenumbers have zero energy. To break the initial periodic symmetry, these 
Fourier modes must be seeded with some energy. While adding energy to any single 
one of the wavenumbers would break the symmetry, the time required for nonlinear 
interactions to transfer energy to the rest of them would be long, and the size of the 
large-scale motions would approach the size of the computational domain before the 
spectra smoothed out. In order to minimize this transient development time, we 
have chosen to initialize energy in nearly all of the newly generated wavenumbers. 
This has been accomplished by simply taking the disturbance energy in wavenum
ber kx and putting the same energy (randomizing the phase of the disturbance) 
in the new wavenumber kx +~. The only exception is the kx = ~ wavenumber, 
which does not initially receive any energy from the kx = 0 mode. After this, the 
entire field is rescaled to have the same disturbance energy density as the original 
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computation. The same procedure is used in the spanwise direction, although since 
the domain is four times as large, the content of kz is propagated to kz + i, kz +~, 
and kz + ~ (again with randomized phase for each new mode). 

The initial flow field generated by the above procedure is thus unphysical, unlike 
the initial field used for the original computations, which were generated from DNS 
of a turbulent boundary layer. However, it is hoped that this flow will be similar 
to the previous computation since the initial energy spectra, mean profiles, relative 
importance of two-dimensional disturbances, and other features are the same be
tween the two flows (the mean velocity profiles are identical). The correspondence 
between the results from this new simulation and the previous forced simulations 
up to T ~ 35 provides some evidence that this is indeed the case (see, for example, 
Fig. 7a). 

As with the original forced LES calculation, the initial field for the large-domain 
LES computation was generated (using the above procedure) from the DNS field 
at T = 9.56. The large-domain LES was begun with N x = 128, Ny = 64, N z = 64, 
and Yo = 14. The y-domain is periodically remeshed, increasing both Yo and Ny in 
such a way as to keep the y-resolution approximately constant. The choice of Yo at 
each remesh is such that it is large enough to contain all the vorticity in the flow 
but not so large that CPU time is wasted computing regions of little activity. 

The evolution of the square of the wake width for the LES in the extended domain 
is shown in Fig. 7a. It shows significant deviation from the previous computation 
beyond T ~ 35 and achieves a sustained period of linear growth, unlike the forced 
case in the small domain. It is interesting to note that the growth rate during 
this apparently self-similar period in the large-domain case is about the same as 
that during the brief approximately self-similar period of the original LES and 
DNS computations, although the "virtual origins" of the flows are different (i.e the 
width curves are parallel but shifted vertically relative to each other in Fig. 7a). 
This difference in virtual origins of the flows is presumably a consequence of the 
initialization procedure. Because the large-domain computation does achieve a 
sustained linear growth period of the squared wake width, it is likely that the 
previous computations were indeed constrained by the size of the computational 
domain by T ~ 65 if not sooner. 

The product of the wake width and centerline velocity deficit for the large-domain 
LES is plotted along with the previous LES and DNS results in Fig. 7b. The 
product is quite constant beyond T ~ 50, consistent with self-similar evolution. In 
the original LES and the DNS, the product is not as constant. 

It should be noted that although the large-domain forced LES and the unforced 
LES both exhibit sustained periods of apparent self-similar evolution, these self
similar periods are characterized by markedly different growth rates. The com
putations are thus indeed supportive of the idea that alternative initial condition
dependent, self-similar states are possible as suggested by the analysis of George 
(1989) and the experiments of Wygnanski et al. (1986) and Marasli et al. (1992). 
Two-dimensional forcing is seen to result in a sustained significant increase in wake 
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growth rate. The linear region in Fig. 7a is well approximated by 

b
2 (8~O)2 = a (8UO)2 (t _ to) 

J1. J1. 
(11) 

where a = 0.26, to = 3.1 in the unforced case but a = 1.02 and to = -5.9 in 
the forced case. The dimensionless growth rate f3 used in Moser, Rogers, and 
Ewing (1996) can be calculated from a by 

a J1. 
f3 = "2 b (8Um ) , 

(12) 

resulting in f3 = 0.13 and f3 = 0.54 for the unforced and forced cases, respectively. 
Note that the value of 0.54 for the forced case is close to the value of 0.58 calcu
lated from the approximate self-similar period in the DNS of Moser, Rogers, and 
Ewing (1996), and significantly larger than the value of 0.21 quoted for the "weakly 
forced" case of that work. 

The mean velocity profiles plotted in self-similar coordinates for both the large
domain forced LES and the unforced LES are plotted in Fig. 9. For the forced flow 
the profiles are obtained from a sequence of approximately equispaced times during 
the period 73 < T < 300. The circles for the unforced case are taken from three 
times during the self-similar period. It is seen that the velocity profiles at different 
times for the forced case collapse onto a single curve as they do for the unforced flow 
examined previously. Furthermore, even though the forced wake has a significantly 
different growth rate, the mean velocity profile (when plotted in self-similar coordi
nates) has the same form as the corresponding profile from the unforced case. There 
is, however, a small lateral shift in the forced mean profile relative to the unforced 
case that results from a shift present in the initial conditions (and maintained by 
the N avier-Stokes equations). This comes about as a result of the initialization 
procedure used, which involves large amplification of particular modes and their 
propagation to nearby uninitialized Fourier modes. This universality of the mean 
velocity profile shape is consistent with the experiments (Wygnanski et al. 1986, 
Marasli et al. 1992) and the arguments by George (1989), as discussed in Section 
2. 

The linear growth of the squared wake width in Fig. 7a appears to begin at 
T ~ 75 and continue until T ~ 220, after which the growth rate appears to increase 
further. The collapse of the scaled mean velocity profiles is good throughout this 
period, and it thus appears that the flow may be evolving self-similarly during this 
period. Reynolds stress profiles at times varying from t = 73 to T = 300 in the 
large-domain forced LES computation are shown in Fig. 10. The different curves 
correspond to the same times used in Fig. 9. Although the collapse of the curves 
is greatly improved by using the self-similar scalings, the (u 2 ), (v 2 ), and lower half 
of the (uv) profiles show a systematic decrease in magnitude until about T ~ 220, 
when the growth rate appears to be changing. This suggests that the flow is not yet 
completely self-similar. Presumably it takes a while for the high levels of (u 2 ) and 
(v2 ) present in the initial conditions to come into complete equilibrium with the 
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FIGURE 11. Normalized Reynolds shear stress in self-similar coordinates for the 
LES using DLMj --: forced wake, • j unforced wake. 

rest of the flow. For the cross-stream resolution used in this forced flow, the subgrid 
contribution to (uv) is negligible and the collapse of the resolved component of (uv) 
is good. In the unforced simulation described in Section 5 the subgrid contribution 
to (uv) decreased from 17% of the resolved amount at T = 24.9 to 3.5% at T = 125.0. 

The scaled Reynolds stress profiles are not identical in the forced and unforced 
cases as is evident by comparing Fig. 10 and Fig. 4. First, there is a large difference 
in magnitude, with the levels in the forced case being up to an order of magnitude 
larger than those in the unforced flow. Second, the form of the curves is different. 
The discrepancy cannot be removed by a simple scaling factor, as can be seen from 
the fact that the (u 2

) and (w 2 ) profiles are not "double-peaked" in the forced case. 
This is in agreement with the arguments of George (1989) and contrary to what is 
expected in the classical theory (Tennekes and Lumley1972). It is also in agreement 
with the experimental results of (Wygnanski et al. 1986, Marasli et al. 1992). 

Since the Reynolds shear stress profile is related to the mean velocity profile, 
it can be shown (Moser and Rogers 1994, Moser, Rogers, and Ewing 1996) that 
the (uv) profile should be identical for all (inviscid) wakes when scaled with the 
quantity (a 8Um 2)(fl/b8Um ) instead of with (8Um )2. In Fig. 11 the Reynolds shear 
stress (uv) has been plotted with this new scaling. The collapse of the profiles for 
the two flows is quite good once the high levels of (uv) on the. lower side of the 
layer stop decreasing at T ~ 160. The curves for the unforced case increase in time, 
partly owing to the decreasing fraction of (uv) that is associated with the "sub
grid" scales. By comparing Fig. 10 and Fig. 4, it is seen that the ratio (uv) /8U m 

2 
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is about four times larger in the forced wake than in the unforced flow, so including 
the layer growth rate in the scaling, as in Fig. 11, does remarkably well in bringing 
the profiles into agreement. 

7. Discussion 

Large-eddy simulations of temporally evolving wakes were performed using the 
"dynamic localization" sub grid model. Comparison of growth rates, profiles of first
and second-order statistics, and flow structures show good agreement with the DNS 
results. This, together with previous tests of the subgrid model on other flows, 
gives us confidence in the method as an accurate and efficient tool for simulations 
of unbounded turbulent flows. 

LES was performed for both unforced and forced wakes and the hypothesis of 
universal self-similarity was examined in the light of the data from the simulations. 
It was found that although flow statistics from each simulated wake exhibited self
similar behavior, the wake spreading rates depended on the initial conditions. This 
is in contrast to the classical picture (Tennekes and Lumley 1972), which assumes 
that all wakes with the same momentum deficit asymptotically approach the same 
self-similar state. The results of this investigation support the theoretical argu
ments of George (1989) for the existence of "multiple self-similar states" and the 
experimental results (Wygnanski et al. 1986, Marasli et al. 1992), and others. The 
numerical and experimental work complement each other well since the inherent 
strengths and weaknesses of the two approaches are different. An agreement be
tween the two approaches provides a strong indication that the observed effect is 
indeed real. 

Strictly speaking, asymptotic results are exact only after the flow has evolved for 
an infinitely long time. Numerical simulations can only be run for a limited time 
period and this makes statements about asymptotic states based on simulation 
results somewhat tentative; we ca.n really only speculate on the the plausibility of 
different proposed asymptotic states. There is no guarantee that if the flow evolved 
long enough it would not reach the "classical self-similar state". However, even if 
this were the case, the present results show that there exists at least a significant 
intermediate period during which there is self-similar evolution with growth rates 
depending on initial conditions, as predicted by the analysis of George (1989). 
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1. Motivation and objectives 
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Turbulent flows that exhibit inhomogeneities in the streamwise direction pose a 
particular challenge to numerical simulation approaches due to the need to prescribe 
time-dependent turbulent inflow conditions. In most cases the flow downstream 
is more or less "driven" by the conditions at the inlet, making it necessary to 
specify realistic turbulent fluctuations that are in equilibrium with the assumed 
mean flow. This requirement often dictates that the inflow data should satisfy 
the Navier-Stokes equations, which in turn implies that an independent simulation 
be used to generate them. Detailed simulations for the purpose of creating inflow 
conditions can be costly and thus certain levels of approximation are desirable. 
In this paper we shall focus on an approximate yet accurate method for generating 
inflow conditions for spatially-developing boundary layer simulations. The proposed 
method is essentially a simplification of the method of Spalart and Leonard (1985), 
who devised an ingenious transformation that allows for the calculation of spatially
evolving boundary layers in conjunction with periodic boundary conditions applied 
in the streamwise direction. While this method is elegant and highly accurate, it 
is more complicated than is necessary for the purpose of generating inflow data. 
A few key approximations are used in this work to arrive at a "modified Spalart 
method" that is very easy to implement and efficient to use. The new method is 
shown to yield results that compare well with the computations of Spalart (1988). 
When used as a means of generating inflow data, the modified Spalart method is 
shown to be superior to existing approaches. 

2. Accomplishments 

2.1 Review of Spalart '8 original method 

The basic idea behind the method of Spalart and Leonard (1985) is to define a set 
of coordinate lines along which the streamwise inhomogeneity associated with the 
boundary layer growth is minimized. When the N avier-Stokes equations are trans
formed into this coordinate system, the velocity field is approximately homogeneous 
in the streamwise direction and is thus amenable to periodic boundary conditions. 
The periodic boundary condition allow for a "self-contained" simulation that does 
not require external inputs for the upstream and downstream boundaries. In ad
dition, periodic boundary conditions allow for the use of a highly-accurate Fourier 

1 University of Vermont, Mechanical Engineering Department, Burlington, VT 05405 
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representation of the velocity field in the streamwise direction. While the advan
tages of periodic boundary conditions are apparent, they come at the expense of a 
more complicated set of equations to solve. The coordinate transformation intro
duces new terms to the Navier-Stokes equations that account for the inhomogeneity 
in the streamwise direction. These so-called "growth terms" are both numerous and 
complicated in form. Spalart was able to show that a few of the terms are of higher 
order and therefore could be neglected. Several terms still remain, however, and 
these involve streamwise gradients of the mean flow variables, which must be sup
plied externally. In his 1988 work, Spalart advocates deducing these quantities from 
two or more simulations performed at different Reynolds numbers. 

2.2 Proposed modification to Spalart's method 

The main disadvantage of Spalart's method is the need evaluate the growth terms. 
The presence of these terms require a special flow solver along with possibility of 
having to perform multiple simulations in order to estimate streamwise gradients 
of the mean flow quantities. In this section we propose a modification of Spalart's 
method that effectively eliminates the need to deal with the growth terms. This 
is achieved by electing to transform only the boundary conditions as opposed to 
the entire solution domain. In effect, the proposed method computes a spatially
evolving boundary layer in a Cartesian coordinate system but makes use of the 
ideas of Spalart and Leonard to create a quasi-periodic boundary condition in the 
streamwise direction. This approach has the advantage that an existing Cartesian 
inflow-outflow simulation code can be adapted for the purpose of inflow generation 
by straightforward modifications to the streamwise boundary conditions. Further
more, the spatial development of the boundary layer is computed directly and only 
a single empirical relation is required to relate the wall shear at the inlet boundary 
to the solution downstream. 

Our simplifications come at the expense of the loss of strict periodic boundary 
conditions in the streamwise direction and therefore the inability to use a Fourier 
representation. This is not a concern in the context of inflow generation, however, 
since the recipient spatially-evolving simulation will invariably use discrete oper
ators. There is little to be gained from generating inflow data with a numerical 
method that is significantly more accurate than what is to be used in the main 
simulation. In fact, our experience has been that non-physical transients often arise 
near the inlet boundary when inflow data generated with a high fidelity method are 
subjected to the increased numerical errors associated with the use of lower-order 
approximations in the inflow-outflow simulation. 

The heart of our method is a means of estimating the velocity at the inlet plane 
based on the solution downstream. This is accomplished through the use of classi
cal scaling laws for an equilibrium turbulent boundary layer. The procedure is to 
extract the velocity from a plane near the domain exit, rescale it, and then reintro
duce it as a boundary condition at the inlet. Following Spalart & Leonard (1985), 
we first decompose the velocity into a mean and fluctuating part and then apply 
the appropriate scaling laws to each component separately. 

The decomposition is achieved by defining the mean (denoted by upper case) as 
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an average in the spanwise direction and in time. The velocity fluctuation is then 
defined as 

u~(x,y,z,t) = Ui(X,y,z,t) - Ui(X,y). (1) 

In an effort to simplify the notation, the overline denoting the LES filter is omitted 
on Ui throughout this section. 

The mean flow is rescaled according to the law of the wall in the inner region and 
the defect law in the outer region. The law of the wall reads 

(2) 

where U r = v'v(8u/8y)waJl is the friction velocity,y+ = (ury)/v is the wall coor
dinate, and II is a universal function to be determined. The defect law is 

(3) 

where 'r/ = y / 6 is the outer coordinate (6 is the boundary layer thickness), U 00 is the 
free-stream velocity, and h is a second universal function to be determined. Let 
Ureey and Uinlt denote the mean velocity at the downstream station to be recycled, 
and at the inlet respectively. The law of the wall, (2), and the defect law, (3), 
dictate that Ureey and Uinlt are related in the inner and outer regions via 

and 

where 

u,inner - U (+) inlt -, reey Yinlt 

( 
ur'inlt) ,= -- . 
Ur,reey 

(4) 

(5) 

(6) 

The independent variables in (4) and (5), yi!:lt and 'r/inlt, are the inner and outer 
coordinates of the grid nodes at the inlet station. Thus, UreeY(Y~lt) is the mean 
velocity at the recycle station, expressed as a function of y+, and evaluated at the 
inner coordinate of the mesh at the inlet. This evaluation requires an interpolation 
since the inner coordinates for the grid nodes at the recycle and inlet stations will, 
in general, be different. A linear interpolation was found to be sufficiently accurate 
for this purpose. A similar interpolation is required for the outer coordinate. 

The mean vertical velocity in the inner and outer regions is assumed to scale as 

(7) 

and 
(8) 

where f3 and h are assumed to be universal functions. Applied between the recycle 
and inlet stations, the above scaling laws lead to 

v;inner V. (+) inlt = reey Yinlt , (9) 
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and 
v;outer V. ( ) inlt = recy 'l]inlt . (10) 

The spanwise velocity should be zero in the mean and thus no scaling relations are 
required. 

The velocity fluctuations in the inner and outer regions are decomposed further 
to give 

( I )inner ( ) ( + t) Ui = Ur X gi x, Y ,z, , (11) 

and 
(12) 

The purpose of this decomposition is to isolate the streamwise inhomogeneity through 
the explicit dependence on ur . The functions gi and hi are then approximately 
homogeneous in the streamwise direction and are therefore amenable to periodic 
boundary conditions. In Spalart & Leonard (1985) and Spalart (1988), periodic 
boundary conditions are assumed at this stage. The procedure here is different 
since we have elected to retain an inflow-outflow structure. The fundamental differ
ence in the present approach is that the "periodic" condition provides only one-way 
coupling between the recycle station and the inlet. The velocity fluctuations at 
the downstream station will be related to those at the inlet using (11) and (12), 
but there is no downstream transfer of information from the inlet via boundary 
conditions. A convective outflow condition applied at the domain exit provides the 
necessary downstream boundary condition. 

Assuming the functions gi and hi to be "periodic" the velocity fluctuations at the 
inlet are related to those at the recycle station via 

( 
I )inner (') (+ ) Ui inlt =, Ui recy Yinlt' Z, t , (13) 

and 
( I )OU ter (') ( ) Ui inlt =, Ui recy 'l]inlt,z,t . (14) 

Equations (4), (5), (6), (9), (10), (13), and (14) provide a means of rescaling the 
mean and fluctuating velocity for both the inner and outer regions of the bound
ary layer. A composite profile that is approximately valid over the entire layer is 
obtained by forming a weighted average of the inner and outer profiles: 

(Ui)inlt = [(Ui)i~uer + (uD::~er] [1 - W ('I]inlt)] + [(Ui)i~~er + (uD~n~:er] W ('I]inlt). 

(15) 
The weighting function W ( '1]) is defined as 

W( ) = ~ 1 tan (1-2b)71H 

{ 

h [ a(71- b) ]} 

'I] 2 + tanh(a) , (16) 

where a = 4 and b = 0.2. The weighting function is zero at 'I] = 0, 0.5 at 'I] = b, 
and unity at 'I] = 1. The parameter a controls the width of the region over which 
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the function transitions from 0 to 1. For a -+ 00 the distribution becomes a step 
function centered at 1] = b. As a -+ 0 the transition is spread across the entire 
boundary layer. The values of a and b quoted above were determined through 
analysis of an independent spatially-evolving boundary layer simulation. 

The rescaling operation requires the scaling parameters U r and 6 both at the 
recycle station and at the inlet. These quantities can be determined from the mean 
velocity profile at the rescale station, but must be specified at the inlet. It turns out 
that the problem is over determined if both U r and 6 are fixed independently at the 
inlet, and thus an additional relation is needed to connect one of these parameters 
at the inlet to the solution on the interior. While several suitable relations exist, 
we have obtained the best results by fixing 6 at the inlet and computing U r via 

(0 ) 
1/[2(n-l)) 

resc 
Ur,inlt = ur,resc -0. ; 

mlt 
n = 5, (17) 

where 0 is the momentum thickness. The above relation is similar to the Ludwig
Tillmann (1949) correlation and can be derived from the standard power-law ap
proximations C, '" R;l/n, O/x '" R;l/n. In many cases it is more advantageous 
to control the inlet momentum thickness than the inlet boundary layer thickness. 
This can be done with a little extra effort by iteratively adjusting the inlet boundary 
layer thickness until the target inlet momentum thickness is achieved. 

2.3 Numerical method 

A second order finite difference method on a staggered mesh is used to discretize 
the incompressible Navier-Stokes equations (see Harlow & Welch, 1965). The frac
tional step method (e.g., see Chorin 1967, Kim & Moin 1985) is used to enforce 
the incompressibility constraint through the solution of a Poisson equation for the 
pressure. The discrete system is time advanced in a semi-implicit fashion where all 
terms with gradients in the wall-normal direction are treated implicitly with the 
Crank-Nicholson method while the remaining terms are treated explicitly with a 
third-order Runge-Kutta scheme. 

The boundary conditions on the top surface of the computational domain are 

d6* 
v = Uoo dx ' 

Ow -0 ay - , (18) 

where 6* is the boundary layer displacement thickness. The derivative d6* / dx is 
evaluated from the mean velocity field. At the exit plane a convective boundary 
condition of the form aui/ at + caui/ ax = 0 is applied (c is the local bulk velocity, 
Han et al. 1983). 

The dynamic Smagorinsky model is use to model the effect of the unresolved 
motions. The equations for the model coefficient are averaged in the spanwise 
direction, and test filtering is performed in planes parallel to the wall (see Ghosal 
et al., 1995 for more details). 
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FIGURE 1. Arrangement of the computational domains. The solid lines represent 
the boundaries of the (inflow-outflow) boundary layer simulation while the dashed 
lines represent the inflow calculation using the modified Spalart method. The dotted 
line denotes the location of the recycle station in the inflow calculation. 

2.4 Results 

The methodology described above was used to simulate a zero pressure gradient 
turbulent boundary layer over a momentum thickness Reynolds number range of 
Re=1400-1640. As an example of use of this method for inflow generation, a time 
series of veloci ty data was extracted from the mid plane of the simulation and used 
as an inflow condition for an inflow-outflow simulation of a zero pressure gradient 
boundary layer. The latter simulation extends from Re=1530 to 2150. Due to the 
fact that the inflow data is extracted from the central plane of inflow generation 
simulation, the two domains overlap as depicted in Fig. 1. This feature provides a 
critical test for the inflow generation technique; the results should be nearly identical 
in the region of overlap, and no changes in the streamwise evolution of boundary 
layer statistics should occur as the flow develops further downstream. 

In order to fully evaluate the inflow condition obtained using the modified Spalart 
method, calculations were also performed using inflow obtained from two simpler 
methods. The first of these is achieved by extracting velocity information from a 
parallel-flow boundary layer simulation. This simulation is similar to the modified 
Spalart method, except that strict periodic boundary conditions are applied in the 
streamwise direction. In addition, a no-stress condition is applied at the upper 
boundary along with the condition that the (instantaneous) vertical velocity van
ish there. These boundary conditions are very easy to implement but result in a 
boundary layer that is void of spatial growth. This method has been used by Lund 
and Moin (1996) to generate inflow data for a boundary layer over a curved surface. 

The second alternative set of inflow data was fabricated through the use of a 
random number generator. In this approach, both the mean and second order 
velocity statistics were constrained to match the profiles obtained from the modified 
Spalart method calculation. The random fluctuations are decorrelated in space and 
thus the synthetic velocity field lacks turbulent structure. A similar method has 
been used by Le and Moin (1994) and Akselvoll and Moin (1995) to produce inflow 
conditions for simulations of a backward-facing step. 

The computational domains for the inflow generation and the recipient spatially
evolving simulation have dimensions 1080 x 380 x (7r /2)80 and 2480 x 380 x (7r /2)80 in 
the streamwise, wall-normal, and spanwise directions, respectively, where 80 is the 
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FIGURE 2. Evolution ofthe momentum thickness in the inflow-outflow simulations. 
--, inflow generated with the modified Spalart method; ---- , inflow generated 
with the parallel-flow boundary layer method; ........ , inflow generated with the 
random fluctuation inflow method; ... -..... , momentum thickness from the inflow 
calculation using the modified Spalart method; + , momentum integral estimate. 

99% boundary layer thickness at the inlet of the main simulation. The two meshes 
contains 100 x 45 x 64 and 240 x 45 x 64points in the streamwise, wall-normal, and 
spanwise directions. The mesh spacings are the same for the two grids and have 
the following dimensions in wall units: ~x+ ~ 64, ~Y~al1 ~ 1.2, and ~z+ ~ 15. 
The mesh is uniform in the streamwise and spanwise directions while a hyperbolic 
tangent stretching is used in the normal direction to cluster points near the wall. 

Once the modified Spalart and parallel-flow boundary layer simulations had 
reached a statistically stationary state, a time sequence of two-dimensional velocity 
fields was extracted from the central x - z (streamwise-spanwise) plane and written 
to disk. The inflow-outflow calculations were then performed by reading one plane 
of inflow data per time step. The inflow-outflow simulations were run for an initial 
period of 70 inertial time units (Uoo/f>o), or equivalently 2.9 flow through times 
(Uoo/XL), to eliminate starting transients. Statistics were then accumulated over 
a period of 1400 inertial time units. 

Figure 2 shows the evolution of the momentum thickness for the three inflow
outflow simulations as well as the modified Spalart method calculation. For ref
erence, the predictions of a momentum integral estimate (White, 1974) are also 
included. The first thing to notice is that the results from the modified Spalart 
method calculation and its corresponding inflow-outflow simulation agree quite well 
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FIGURE 3. Evolution of the shape factor in the inflow-outflow simulations. -- , 
inflow generated with the modified Spalart method; ---- , inflow generated with 
the parallel-flow boundary layer method; .; ...... , inflow generated with the random 
fluctuation inflow method; ...... --e, shape factor from the inflow calculation using 
the modified Spalart method; + , momentum integral estimate. 

in region of overlap (x/bo = 0 - 5). The small deviation near the downstream end 
of the inflow calculation (x/bo ~ 5) is due to errors produced by the exit boundary 
condition. A similar decrease in slope is noted near the end of the main simulation. 
Aside from this small deviation, the momentum thickness evolution shows no sign 
of readjustment with downstream distance and agrees well with the momentum 
integral estimate. The parallel-flow method yields a momentum thickness distribu
tion that is reasonable although there is a noticeable transient near the inlet. The 
agreement with the momentum integral analysis is also not as good as compared 
with the case using the modified Spalart inflow data. 

While the modified Spalart method and the parallel-flow method produce reason
able results, the random fluctuation method is seen to lead to a very pronounced 
transient where the initial growth rate is almost a factor of four too small. This 
feature is due to the fact that the pseudo-turbulence produced by the random fluc
tuations is not a solution to the N avier-Stokes equations. The fluctuations decay 
under the influence of viscosity until physical instabilities organize the disturbances 
into realistic turbulence. This process results in a transition of sorts that is re
sponsible for the change in slope of the momentum thickness at x / bo ~ 20. Once 
this transition is past, the growth rate is greatly improved and is comparable to 
the results of the other simulations. Note that the computational domain for the 
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FIGURE 4. Evolution of the skin friction in the inflow-outflow simulations. -- , 
inflow generated with the modified Spalart method; ---- , inflow. generated with 
the parallel-flow boundary layer method; ........ ,inflow generated with the random 
fluctuation inflow method; ..... - ..... , skin friction from the inflow calculation using 
the modified Spalart method; + , momentum integral estimate. 

random fluctuation inflow case extends more than twice as far downstream as the 
other two cases (X/Do = 50 as opposed to X/Do = 50). This was done in order to 
compensate for the initial slow growth in the momentum thickness so that all three 
simulations cover roughly the same momentum thickness Reynolds number range. 

The shape factor (ratio of displacement to momentum thickness) evolution is 
shown in Fig. 3. As in the case of the momentum thickness, the modified Spalart 
calculation and its corresponding inflow-outflow simulation are in good agreement 
within the overlap region. The results are also in very good agreement with the 
momentum integral estimate. When the parallel-flow method is used, the shape 
factor is a few percent low at the inlet but this error diminishes with increasing 
streamwise distance. The results from the random fluctuation method are again 
poor. The shape factor increases initially toward the laminar value of 2.6, then 
following "transition" relaxes back toward more reasonable values for a turbulent 
boundary layer. Note however that the 50 boundary layer thicknesses of spatial 
evolution are not sufficient to produce a canonical turbulent boundary layer when 
this method is used. 

Figure 4 shows the computed skin friction. Once again the results from the 
modified Spalart simulation and its inflow-outflow counterpart are seen to be in 
good agreement within the region of overlap. They are also in reasonable agreement 
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with the momentum integral estimate. The parallel-flow method produces a small 
initial transient, followed by an acceptable skin friction evolution. The random 
fluctuation method exhibits an initial sharp drop in skin friction followed by an 
increase once the flow develops realistic turbulent structure. 

Mean velocity profiles for three streamwise locations are shown in Fig. 5. The 
simulation with inflow obtained using the modified Spalart method (Fig. 5a) yields 
canonical mean profiles as the flow evolves downstream. In particular, the viscous 
sublayer and logarithmic region collapse very well when plotted in wall units, while 
the expected Reynolds number dependence is displayed in the wake region. The 
results also agree well with the computations of Spalart (1988), except at the be
ginning of the logarithmic region where the mean velocity is overpredicted slightly. 
This defect is a common feature of simulations using finite-difference methods on 
relatively coarse meshes and is not related to the rescaling approach used in the 
inflow generation process. In support of this claim, we include the results of Rai & 
Moin (1993) which display a very similar discrepancy in the same region of the 
profile. 

The simulation with the parallel-flow method (Fig. 5b) is seen to produce a small 
transient where the initial profile shape changes in the logarithmic and wake re
gions. The parallel-flow method produces a profile that has a larger deviation in 
the logarithmic region. This discrepancy diminishes with increasing streamwise dis
tance and the profiles at the last two stations collapse in the logarithmic region. 
These latter two profiles are also nearly identical to the corresponding pair in the 
case with the modified Spalart method inflow (Fig. 5a). 

The random fluctuation method (Fig. 5c) leads to rather anomalous behavior 
where the profile experiences a large transient as it evolves downstream. At the 
second plotting station, the mean velocity is underpredicted in the logarithmic 
region and an unusually large wake develops. The profile then starts to relax back 
to the expected shape with an increase of the velocity in the logarithmic region and 
a reduction in the wake. The apparent agreement with the standard logarithmic 
law (between y+ = 30 and 60) for the third plotting station is fortuitous; profiles 
further downstream show an overprediction in this region similar to that in the 
other two simulations. Consistent with this observation is the fact that the profiles 
do not reach a self-similar state by the domain exit, although it is roughly 50 initial 
boundary layer thicknesses downstream of the inlet. 

Figure 6 shows velocity fluctuation and shear stress profiles for three streamwise 
locations. When inflow from the modified Spalart method is used (Fig. 6a), the 
profiles collapse reasonably well for the three Reynolds numbers and the results are 
in good agreement with the computations of Spalart (1988). 

Simulations performed using the parallel-flow inflow (Fig. 6b) also results in pro
files that yield an acceptable degree of collapse. The largest discrepancy occurs in 
the outer region of the streamwise and spanwise profiles where the values from the 
first station are too large. This is a side effect of the boundary conditions used 
in the inflow generation simulation. When the parallel-flow method is used, the 
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FIGURE 5. Mean velocity profiles in the inflow-outflow simulations. (a), inflow 
generated with the modified Spalart method; (b), inflow generated with the parallel
flow boundary layer method; (c), inflow generated with the random fluctuation 
method. --, Re = 1530; ---- , Re = 1850; ........ , Re = 2050; • , Spalart 
(1988), Re = 1410; x, Rai & Moin (1993), Re = 1350. 
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boundary layer edge is rigidly defined as the position where the no stress, zero nor
mal velocity boundary conditions are applied. This condition forces v'to vanish at 
the boundary layer edge and results in a redistribution of the wall-normal fluctu
ation energy into u' and w'. Another side effect of this approach is that there are 
no naturally occurring fluctuations in the region between the boundary layer edge 
and the upper boundary of the computational domain at the inflow plane. In an 
attempt to remedy this, random fluctuations were superimposed on the free-stream 
velocity in this region. The scaling of these disturbances is rather arbitrary, and 
in this case, the isotropic distribution u~ = O.lUoo exp[-2(y/8 - 1)] was used. The 
high-frequency random disturbances decay rapidly, and after a few boundary layer 
thicknesses of spatial evolution, roughly the correct level of free-stream fluctuations 
are obtained. Aside from the problems near the boundary layer edge, the remainder 
of the profiles collapse reasonably well and are in acceptable agreement with Spalart 
(1988). 

As in the case of the mean velocity profile, the results from the simulation using 
the random fluctuation method (Fig. 6c) are poor. The velocity fluctuations in 
the outer region of the profile are seen to decay initially and then rebuild as the 
streamwise distance is increased. The transient process is seen to be slow with 
the fluctuations not returning to equilibrium by the third plotting station which is 
roughly 35 initial boundary layer thicknesses downstream of the inlet. 

3. Conclusions and future work 

The proposed simplification to Spalart's method is seen to produce an accurate 
description a turbulent boundary layer. When used as a means of generating tur
bulent inflow data for inflow-outflow simulations of spatially-developing boundary 
layers, the method proves to be very effective at producing simulation results that 
are free of transients near the inlet boundary. A comparison of this method with 
the simpler parallel-flow or random fluctuation methods shows that it is superior 
to both of these techniques. The differences between the modified Spalart method 
and the parallel flow method are not so great, however, and the latter method may 
be acceptable in certain cases. The random fluctuation method, on the other hand, 
appears to be a very rough procedure when compared to the other two methods. 
Although the inflow data can be generated with minimal computational effort when 
this scheme is used, the resulting velocity field lacks turbulent structure. This fact 
implies that the inflow data must be allowed to evolve for a substantial streamwise 
distance before it can be subjected to an inhomogeneity. When the random fluc
tuation method has been used in the past, the inlet of the computational domain 
was displaced 10 to 20 boundary layer thickness upstream of the region of interest 
(Le and Moin, 1994; Akselvoll and Moin, 1995). The need to extend the mesh for 
the inflow-outflow simulation increases the overall cost, which obscures any savings 
in the generation of the inflow data. In fact, the incremental cost of enlarging the 
main simulation domain will probably exceed the cost to generate more accurate 
inflow in most cases. 

In the future, the modified Spalart method will be generalized to allow for in
clusion of a streamwise pressure gradient. This feature is useful for inflow-outflow 
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FIGURE 6. Velocity fluctuation and shear stress profiles in the inflow-outflow 
simulations. (a), inflow generated with the modified Spalart method; (b), inflow 
generated with the parallel-flow boundary layer method; (c), inflow generated with 
the random fluctuation method. --, Re = 1530; ---- , Re = 1850; ........ , 
Re = 2050. Filled symbols are data from the simulations of Spalart at Re = 1410. 
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simulations where the inflow boundary is located in a region of significant pressure 
gradient. One relevant example is in the computation of the aft section of an airfoil. 
Previous attempts to simulate this flow (Kaltenbach and Choi, 1995; Jansen 1995) 
have shown that the computations are both costly and very sensitive to the details 
of the laminar-turbulent transition that takes place near the leading edge. Both of 
these problems can be minimized by electing to simulate only the aft section of the 
airfoil, since it is flow separation in this region that is of primary interest. Such a 
strategy has been adopted by Wang (this volume). In Wang's case the airfoil is at 
zero angle of attack and thus the pressure gradients are mild at the position where 
the inflow data are prescribed. At high angles of attack, however, the pressure gra
dients will be large at the inflow plane and it is desirable to have this effect captured 
in the inflow computation. 

Preliminary study indicates that the modified Spalart method can be extended 
to account for a restricted class of equilibrium boundary layers that develop under 
power-law pressure gradients. Under these circumstances the same scaling laws 
described in this work continue to apply, and the required changes involve only 
a modification of the friction velocity computation at the inlet and the vertical 
velocity distribution at the upper boundary. These modifications will be made and 
the generalized method will be validated in one or more test cases before being used 
to generate inflow data for the truncated airfoil simulation. 
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A new class of finite difference schemes 

By K. Mahesh 

1. Motivation and objectives 

(Ilv.st:;-
UUIJ 
flo 

Fluid flows in the transitional and turbulent regimes possess a wide range of 
length and time scales. The numerical computation of these flows therefore re
quires numerical methods that can accurately represent the entire, or at least a 
significant portion, of this range of scales. The inaccurate representation of small 
scales is inherent to non-spectral schemes. This can be detrimental to computations 
where the energy in the small scales is comparable to that in the larger scales, e.g. 
large-eddy simulations of high Reynolds number turbulence. The inaccurat~ nu
merical representation of the small scales in these large-eddy simulations can restllt 
in the numerical error overwhelming the contribution of the subgrid-scale modeJ 
(Kravchenko & Moin 1996). \ 

Recently, Lele (1992) introduced a family of implicit (also called compact) fi
nite difference schemes for the spatial derivatives. The implicit schemes equate 
a weighted sum of the nodal derivatives to a weighted sum of the function, e.g., 
1/-1 +411+ 11+1= 3(fi+1-li-1)/h, and 11'-1 +101:' + 11+1 = 12(fi+1 -21i+ li-1 )/h2. 
Throughout this paper, Ii and H denote the values of the function and its kth 

derivative respectively, at the node x = Xi, and h denotes the uniform mesh spac
ing. These schemes have better small scale accuracy than explicit schemes with the 
same stencil width. The most popular of the implicit schemes (also called Pade 
schemes due to their earlier derivation from Pade approximants) appear to be the 
symmetric fourth and sixth order versions. There have been several recent compu
tations of compressible flows that have used the Pade schemes. The flows computed, 
include transitional boundary layers, turbulent flows and flow-generated noise. The 
Pade schemes have been less popular in incompressible computations, presumably 
due to the Poisson equation generating sparse matrices when there is more than 
one inhomogeneous direction. 

This report presents a related family of finite difference schemes for the spa~ 
tial derivatives. The proposed schemes are more accurate than the standard Pade 
schemes, while incurring essentially the same computational cost. The objective of 
this report is to present these schemes as an attractive alternative to the standard 
Pade schemes. 

This work is discussed in detail by Mahesh (1996); this report only summarizes 
the more prominent results. 

2. Accomplishments 

For the same stencil width, the standard Pade schemes are two orders higher in 
accuracy and have better spectral representation than the corresponding symmet
ric, explicit schemes. For example, 11-1 + 41/ + 1/+1 = 3(fi+1 -1i-1 )/h is fourth 
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order accurate, while fi = (fi+1 - fi-d/2h is only second order accurate. The 
implicit relation between the derivatives in the Pade schemes yields additional de
grees of freedom that allow higher accuracy to be achieved. It is therefore to be 
expected, that including the second derivatives in the implicit expression would fur
ther increase the degrees of freedom, and thereby the accuracy that can be obtained. 
Additional motivation to solve for the first and second derivatives simultaneously, 
is provided by the N avier-Stokes equations requiring both derivatives of most vari
ables. This suggests a numerical scheme of the form t : 

at!i-1 + aof: + azi:+1 + h(b1 f:'-1 + bof:' + b2f:~1) = ~(Ct!i-2 + Czii-1 

+ COfi + c3fi+1 + c4fi+2). (1) 

Hermitian expressions involving functions and their first, and higher derivatives 
have been suggested in the literature (see Mahesh, 1996 for references). However, 
the development was not completed to a point where the resulting schemes could 
be used for solving partial differential equations. The objective of this paper is to 
develop this family of schemes, and assess their potential for computations of the 
Navier-Stokes equations. The schemes will be referred to as the 'coupled-derivative', 
or 'C-D' schemes to distinguish them from the standard Pade schemes. 

2.1 The interior scheme 

Simultaneous solving for fi and fi' , implies that the number of unknowns is equal 
to 2N. A total of 2N equations are therefore needed to close the system. Equation 
1 may be used to derive two linearly independent equations at each node. This 
is done as follows. Both sides of Eq. 1 are first expanded in a Taylor series. The 
resulting coefficients are then matched, such that Eq. 1 maintains a certain order 
of accuracy. Note that Eq. 1 has eleven coefficients, of which one is arbitrary, i.e., 
Eq. 1 may be divided through by one of the constants, without loss of generality. A 
convenient choice of the normalizing constant, is either of ao or bo. It will be seen 
that the equation obtained by setting ao equal to 1, is linearly independent of the 
equation obtained when bo is set equal to 1. The two equations may therefore be 
applied at each node, and the resulting system of 2N equations solved for the nodal 
values of the first and second derivative. 

The details of this process are discussed by Mahesh (1996) and are not repeated 
here. Expressions ranging from second through eighth order may be obtained, 
depending upon the choice of coefficients. The sixth order C-D scheme has the 
same stencil width as the fourth order Pade scheme, while the eighth order scheme 
has the same stencil width as the sixth order Pade scheme. The sixth, and eighth 
order C-D schemes are summarized below. Note that the schemes are restricted to 
be symmetric. The standard Pade schemes are also presented, for completeness. 

t The schemes are developed on uniform me~hes. It is assumed that computations with non

uniform grids can define analytical mappings between the non-uniform grid and a corresponding 

uniform grid. The metrics of the mapping may then be used to relate the derivatives on the 

uniform grid to those on the non-uniform grid. 
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Sixth order CoD scheme (Cl = C4 = 0) 

Eighth order CoD scheme 

, " (" I") 107(1 ) IH2 - li-2 ( ) 5lfi-l + 10S/i + 51/Hl + 9h li-l - HI = h i+l - li-l - h . 3a 

13S(f! - f! ) - h(lSj!' - lOSt' + 1St' ) = _ IH2 + li-2 
,+1 1-1 1-1 I . 1+1 h 

352 702 
+ hUH1 +Ii-l) - hk (3b) 

Standard fourth order Pade 

/:-1 + 41: + 1:+1 = ~UHl - Ii-I)' (4a) 

(4b) 

Standard sixth order Pade 

f ' 3f' f' 7 (f f) IH2 - 1i-2 
i-I + i + i+l = 3h HI - i-I + 12h . (5a) 

(5b) 

Fourier analysis and the concept of the 'modified wavenumber' shows that the 
CoD schemes are noticeably more accurate than the standard Pade schemes. Ex
pressions for the modified wavenumber are given by Mahesh (1996). The modified 
wavenumbers for the first derivative are shown in Fig. 1. The CoD schemes are seen 
to follow the exact solution more closely than the standard Pade schemes. Recall 
that the sixth order CoD scheme has the same stencil width as the fourth order 
Pade, while the eighth order CoD scheme has the same stencil width as the sixth 
order Pade. In spite of its smaller stencil, the sixth order CoD scheme is seen to have 
lower error than the sixth order Pade. Of the different compact schemes considered 
by Lele (1992), the only scheme that outperforms the eighth order CoD scheme is 
the pentadiagonal tenth order scheme (designated 'i' by Lele). The pentadiagonal 
scheme, however, has a stencil of five points on the left hand side, and seven on the 
right. 
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FIGURE 1. The modified wavenumber for the first derivative. The C-D schemes 
are compared to the standard Pade schemes. -- (Exact), ---- (C-D: eighth 
order), ........ (C-D: sixth order), --- ( Pade: sixth order), -.- (Pade: fourth 
order). 

N=4 N=8 

Pade 4 4.51 % 2.3 x 10-1 % 

Pade 6 0.97 % 1.2 x 10-2 % 

C-D 6 0.36 % 3.1 x 10-3 % 

C-D 8 0.06 % 1.1 x 10-4 % 

TABI,E 1. The percentage error in the first derivative, as a function of the number 
of points per wave (N). The C-D schemes are compared to the standard Pade 
schemes. 

The modified wavenumber may be used to determine the error as a function of 
the resolution. Consider the case where k = 1; i.e., we have one wave of wavelength 
.A = 27r. The mesh spacing, h is given by h = 27r/N = .A/N. kh is therefore equal to 
.A/N, the reciprocal of the number of points per wavelength. Table 1 documents the 
percentage error in the first derivative, for resolutions of 4 and 8 points per wave. 
The C-D schemes are seen to represent even four delta waves with an accuracy of 
0.4% and 0.06%, respectively. 

Modified wavenumbers for the second derivative are shown in Fig. 2. The C
D schemes are seen to be noticeably more accurate at the higher wavenumbers. 
Interestingly, kl/ 2 h2 for the C-D schemes is greater than the exact solution for 
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FIGURE 2. The modified wavenumber for the second derivative. The C-D schemes 
are compared to the standard Pade schemes. -- (Exact), ---- (C-D: eighth 
order), ........ (C-D: sixth order), --- (Pade: sixth order ), _.- ( Pade: fourth 
order). 

N=4 N=8 

Pade 4 2.73 % 1.6 x 10-1 % 

Pade 6 0.52 % 7.41 x 10-3 % 

C-D 6 0.44 % 6.16 x 10-3 % 

C-D 8 0.09 % 2.84 x 10-4 % 

TABLE 2. The percentage error in the second derivative, as a function of the 
number of points per wave (N). The C-D schemes are compared to the standard 
Pade schemes. 

certain wavenumbers. This is in contrast to the standard Pade schemes, whose 
modified wavenumber is always less than the exact solution. Table 2 shows the 
percentage error in the second derivative, as a function of the resolution. As was 
observed for the first derivative, the sixth and eighth order C-D schemes represent 
even four-delta waves, to an accuracy of about 0.4% and 0.1 % respectively. 

2.2 The boundary schemes 

Consider a spatial domain that is discretized by using N points (including those 
at the boundaries). Equations 2 and 3 show that the sixth order C-D scheme can be 



302 K. Mahesh 

applied from j = 2 to N -1, while the eighth order scheme can be applied from j = 3 
to N - 2. For problems with periodic boundary conditions, the periodicity of the 
solution may be used to apply the same equations at the boundary nodes. However, 
for non-periodic problems, additional expressions are needed at the boundary nodes 
to close the system. These expressions are derived below. 

Consider j = 1. The following general expression may be written for !f and !t: 

ao!~ + ad~ + h(bo!~' + bd~') = l(Cd1 + c2h + c3h + C4/4). (6) 

The corresponding equation at j = N would be given by: 

ao!~ +ad~_l - h(bo!'k + bd'k-l) = -l(CdN + C2!N-l +C3!N-2 +C4!N-3). (7) 

The width of the stencil on the left hand side of the above equation is restricted 
to two. This ensures that the number of bands in the left-hand side matrix is still 
seven. As was done for the interior scheme, the constants in Eq. 6 may be obtained 
by expanding the terms in a Taylor's series, and matching expressions of the same 
order. Recall that we need two independent equations at each node. For the interior 
schemes, we saw that bo was equal to 0 if ao was equal to 1, and vice-versa. This 
yielded the two independent equations. This relationship between ao and bo for 
the interior schemes is a natural consequence of their symmetry. However for the 
boundary schemes, it turns out that setting ao to 1 does not imply that bo is zero. 
The equation obtained when ao = 1, is the same as that obtained when bo = 1. The 
following procedure is therefore used to obtain two independent equations. When 
matching the terms in the Taylor table, (ao, bo) is first explicitly set equal to (1,0). 
This yields the first equation. Next, (ao, bo) is set equal to (0, 1), and the terms in 
the Taylor table are matched. This yields the second equation. 

Expressions of order ranging from three to five were derived, and are outlined by 
Mahesh (1996). The boundary expressions were then combined with the interior 
scheme, and hyperbolic stability of the complete differencing scheme was examined. 
Numerical solutions of the one-dimensional wave equation, and eigenvalue analysis 
were used for this purpose. The higher order boundary closures were found to 
yield asymptotically unstable schemes. The following boundary closures were found 
to yield stable schemes, when combined with both sixth and eight order interior 
schemes. Note that the following equations are applied at j = 1. Equation 7 may 
be used to obtain the corresponding expressions at j = N. Also, recall that the 
sixth order interior scheme may be applied from j = 2 to N - 1, while the eighth 
order interior scheme may be applied from j = 3 to N - 2. In this report, the sixth 
order scheme is used at j = 2 and N - 1 if the eighth order scheme is used in the 
interior. The stable boundary closures are as follows: 

(3,4) boundary closure 

The third order expression for the first derivative is combined with a fourth order 
expression for the second derivative. 

!~ + 2!~ - ~!~' = ~(f2 - It) (Sa) 
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5, h( II 171") 1(34 83 f 7 ) -"2/2 + 11 + 2 2 = h 3 h -""4 2 + 1013 - 1214 (8b) 

(3,3) boundary clo8ure 

The third order expression for the first derivative is combined with a third order 
expression for the second derivative. 

I~ + 21~ - %I~' = ~(h - Id (9a) 

-61~ + hU~' + 51~') = ~(3h - 412 + h) (9b) 

(3,2) boundary clo8ure 

The third order expression for the first derivative is combined with a second order 
expression for the second derivative. 

, , h II 3 (f f ) 11 + 212 - 2" 12 = h 2 - 1 (lOa) 

-61~ + hU{' + 21~') = ~(h - h) (lOb) 

2.3 C08t compari8on 

The computational cost of the C-D schemes is compared to that of the standard 
Pade schemes, in this section. The standard Pade schemes and the C-D schemes 
are both of the form, 

Af=Bf (11) 

where f = [ ... Ii-I, li,Ji+l, ... ]T, and A and B are constant ,.:natrices that depend 
on the scheme. For the standard Pade schemes, the vector f is of length N, and 
is either equal to [ ... Ii-I' Ii, II+! .. . jT, or [ .. . 1/'-1' Ii', II~1 .. . ]T.~ Also, the matrix 
A is tridiagonal with a band-length of N. For the C-D schemes, f is of length 2N, 
and is equal to [ ... II -1 , 1:'-1 , Ii, Ii' , 1:+ 1 , II~ 1 , ... ] T. The matrix A now has seven 
bands, each of length equal to 2N. 

At first glance, it might appear as if the C-D schemes would be significantly 
more expensive. However, this is not the case. When the cost of computing both 
derivatives is estimated, the C-D schemes are seen to incur essentially the same cost 
as the standard Pade schemes. This is illustrated below. 

In using schemes of the form given by Eq. 11, the common practice is to perform 
LU decomposition of the matrix A only once, and store the Land U matrices. 
Computation of the derivatives therefore involves computing the right-hand side 
(B f), followed by forward and back substitution. The operation count associated 
with computing the right-hand side, and solving the resulting system of equations 
is tabulated in Table 3. When the cost of computing both derivatives is estimated, 
the C-D schemes are seen to involve the same number of divides, and add/subtracts 
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RHS LU solve Total 

Pade 4: pt der. 1+1+0=2 2+2+1=5 3+3+1=7 

Pade 4: 2nd der. 2+2+0=4 2+2+1=5 4+4+1=9 

Pade 6: 1st der. 2+3+0=5 2+2+1=5 4 + 5 + 1 = 10 

Pade 6: 2nd der. 4+5+0=9 2+2+1=5 6 + 7 + 1 = 14 

Pade 4: both ders. 3+3+0=6 4+4+ 2 = 10 7 + 7 + 2 = 16 

Pade 6: both ders. 6 + 8 + 0 = 14 4+4+2=10 10 + 12 + 2 = 24 

C-D 6 3+3+0=6 12 + 4 + 2 = 18 15 + 7 + 2 = 24 

C-D 8 3 + 7 + 0 = 10 12 + 4 + 2 = 18 15 + 11 + 2 = 28 

TABLE 3. The operation count per node to compute the first and second derivative. 
The entries are of the form, 'number of multiplies + adds/subtracts + divides = 
total'. The overall cost is obtained by multiplying the entries by the total number 
of points, N. 

as the standard Pade schemes with the same stencil width. The only increase in the 
number of operations involves the number of multiplies: the eighth order scheme 
has 1.5 times the number of multiplies as the sixth order Pade, while the sixth order 
scheme has twice the number of multiplies as the fourth order Pade. A numerical 
evaluation of the derivatives (Mahesh, 1996) shows this increase in the number of 
multiplies is not very significant. 

3. Conclusions 

A new class of finite difference schemes for the first and second derivatives of 
smooth functions was proposed. The schemes are Hermitian, symmetric, and solve 
for the first and second derivatives simultaneously. They are two orders higher in 
accuracy than the standard Pade schemes with the same stencil width, and have 
noticeably better spectral representation. The computational cost of computing 
both derivatives is essentially the same as the Pade schemes. The proposed schemes 
are attractive alternatives to the Pade schemes, for N avier-Stokes computations. 
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