/N-27 02/376

# Estimation of Slow Crack Growth Parameters for Constant Stress-Rate Test Data of Advanced Ceramics and Glass by the Individual Data and Arithmetic Mean Methods

Sung R. Choi
Cleveland State University
Cleveland, Ohio

Jonathan A. Salem and Frederic A. Holland Lewis Research Center Cleveland, Ohio

February 1997



## ESTIMATION OF SLOW CRACK GROWTH PARAMETERS FOR CONSTANT STRESS RATE TEST DATA OF ADVANCED CERAMICS AND GLASS BY THE INDIVIDUAL DATA AND ARITHMETIC MEAN METHODS

Sung R. Choi,\*
Cleveland State University
Cleveland, Ohio 44115

Jonathan A. Salem and Frederic A. Holland National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

#### Summary

The two estimation methods, the individual data and the arithmetic mean, were used to determine the slow crack growth (SCG) parameters (n and D) of advanced ceramics and glass from a large number of room- and elevated-temperature constant stress-rate ('dynamic fatigue') test data. For ceramic materials with Weibull moduli  $\geq 10$ , the difference in the SCG parameters between the two estimation methods was negligible; whereas, for glass specimens exhibiting a Weibull modulus of about 3, the difference was amplified, resulting in a maximum difference of 16 and 13 percent, respectively, in n and D. Of the two SCG parameters, the parameter n was more sensitive to the estimation method than the other. The coefficient of variation in n was somewhat greater in the individual data method than in the arithmetic mean method.

#### **BACKGROUND**

Advanced ceramics are candidate materials for high-temperature structural applications in heat engines and heat recovery systems. One of the major limitations of ceramic materials in high-temperature applications is delayed failure, where slow crack growth of inherent flaws can occur until a critical size for instability is attained. Consequently, it is important to evaluate slow crack growth behavior accurately so that accurate lifetime prediction of the components is ensured.

For most ceramics and glass, slow crack growth rate (v) can be expressed by the empirical, power-law relation (ref. 1)

$$v = da/dt = A[K_{\rm I}/K_{\rm IC}]^{\rm n} \tag{1}$$

where a is the crack size, t is time, A and n are the slow crack growth parameters associated with material and environment,  $K_I$  is the mode I applied stress intensity factor, and  $K_{IC}$  is fracture toughness of the material under mode I loading. There are several ways of determining slow crack growth (SCG) of a ceramic material. Typically, the SCG of ceramics is determined by applying constant stress-rate (also called 'dynamic fatigue'), constant stress (also called 'static fatigue' or 'stress rupture') or cyclic loading ('cyclic fatigue') to smooth specimens or to precracked fracture mechanics specimens in which the crack velocity measurements are made. Of these testing methods, constant stress-rate testing has been widely used for decades to characterize SCG behavior of ceramic materials at both ambient and elevated temperatures. The advantage of constant stress-rate testing over other methods lies in its simplicity; Strengths are measured in a routine manner at three to four stress rates by applying the displacement-controlled mode (that is, using a constant crosshead speed) or the load-controlled mode (that is, using a constant

<sup>\*</sup>Adjunct Faculty and NASA Senior Resident Research Associate, Lewis Research Center, Cleveland, Ohio 44135 (All correspondence to this address).

loading rate). The SCG parameters A and n required for design are simply calculated from a relationship between strength and stress rate (ref. 2). These merits have prompted an effort to establish an ASTM standard for constant stress-rate testing (ref. 3).

In constant stress-rate testing which employs constant crosshead speeds or constant loading rates, the corresponding strength  $(\sigma_t)$  is expressed (ref. 4)

$$\sigma_{\rm f} = D[\dot{\sigma}]^{1/(n+1)} \tag{2}$$

where  $\dot{\sigma}$  is the applied stress rate and D is a parameter which depends on n, inert strength (strength with no slow crack growth), fracture toughness, and crack geometry factor. The parameter A in equation (1) can be obtained from D with the appropriate relation (ref. 2). Currently, several statistical methods are available in estimating the SCG parameters n and D. These include Weibull median, median deviation, individual (all) data, arithmetic mean, homologous stress, bivariant, and trivariant methods, and so on (refs. 5 to 7). In principle, most of these techniques utilize the least squares, best-fit regression analysis primarily based on equation (2). The maximum likelihood estimation method using either median or individual data has been used by Gross et al. (ref. 7). Each method possesses its own advantages and disadvantages over other methods. However, the parameters to be estimated should converge, independent of estimation method, if a sufficient number of test specimens ( $\geq$ 40 per stress rate) is used. It is also important to note that the estimation method should be simple and convenient to use. This is particularly important when a test method including SCG parameter estimation is to be standardized.

Of the estimation methods mentioned above, the individual data and the arithmetic mean methods are simple, convenient, and widely used. Taking the logarithm of both sides of equation (2) yields:

$$\log \sigma_{\rm f} = 1/(n+1)\log \dot{\sigma} + \log D \tag{3}$$

The least-squares, linear regression analysis of  $\log \sigma_f$  (dependent variable) versus  $\log \dot{\sigma}$  (independent variable) gives the slope  $\alpha = 1/(n+1)$ ) and the intercept  $(I = \log D)$  as follows [found in any statistical references]:

$$\alpha = \frac{J \sum (\log \dot{\sigma}(\log \sigma_f)) - (\sum \log \dot{\sigma})(\sum \log \sigma_f)}{J \sum (\log \dot{\sigma})^2 - (\sum \log \dot{\sigma})^2}$$
(4)

$$I = \frac{\left(\sum \log \sigma_{\rm f}\right) \left[\sum (\log \dot{\sigma})^2\right] - \sum \left[\left(\log \dot{\sigma}\right) (\log \sigma_{\rm f})\right] \left(\sum \log \dot{\sigma}\right)}{J \sum \left(\log \dot{\sigma}\right)^2 - \left(\sum \log \dot{\sigma}\right)^2}$$
(5)

where J is the total number of data points. From the slope  $\alpha$ , n can be determined. The individual data method (IDM) uses each individual strength value and the corresponding stress rate to determine n and I. In this case, J is the total number of data points. By contrast, the arithmetic mean method (AMM) utilizes the arithmetic mean value of the individual strengths obtained at a given (averaged) stress rate. Hence, J corresponds to the number of stress rates applied, typically three to four. Because of this, the arithmetic mean method is simpler than the individual data method in terms of computational procedure. It also gives the mean strength values directly in a plot of  $\log \sigma_f$  versus  $\log \dot{\sigma}$ .

The objective of this study is to estimate the statistical reproducibility of the SCG parameters for several ceramics and a glass by using both the individual strength data and the arithmetic mean strength values, in order to compare the two estimation methods. The previously published, ambient and elevated-temperature constant stress-rate ('dynamic fatigue') test data that were determined from eight ceramic materials and one soda-lime glass were utilized for this purpose.

#### CONSTANT STRESS-RATE ('DYNAMIC FATIGUE') TEST DATA

All of the test data determined from ceramic materials were obtained in uniaxial flexure via four-point configurations; whereas, the test data from soda-lime glass in room-temperature distilled water were obtained in biaxial flexure via ring-on-ring configurations. A total of eight ceramics and one soda-lime glass were used: Five silicon nitrides of NCX34 (1200 and 1300 °C) (ref. 8), GN10 (1300 °C) (ref. 9), NC132 (1100 °C) (ref. 10), SN251 (1371 °C) (ref. 11), and SNW1000 (1300 °C) (ref. 12); one SiC whisker reinforced (30 vol%) silicon nitride (GN10 Si<sub>3</sub>N<sub>4</sub>/SiC<sub>w</sub>) (1300 °C) (ref. 9); one silicon carbide of NC203 (1300 °C) (ref. 13); one 96 wt% alumina (room temperature and 1000 °C) (refs. 10 and 14); and soda-lime glass plates (ref. 6) and disks (ref. 15) (both in room-temperature distilled water). A ring-on-ring biaxial fixture with 22.5 mm loading- and 36 mm support-ring diameters was used for the glass disk specimens. The nominal dimensions of the glass disk specimens were 51 and 3 mm, respectively, in diameter and thickness.

Although for some materials a wide range of stress rates ranging from 0.033 to 3333 MPa/s were used in the actual testing, only the strength data corresponding to four stress rates, typically ranging from 0.033 MPa/s to 33.3 MPa/s, were chosen here for the purposes of consistency and comparison with the other available data. A summary of the resulting plots of  $\log \sigma_f$  versus  $\log \dot{\sigma}$ , based on equation (3), for all the test materials is shown in figure 1. The individual data points determined at each stress rate were plotted in the figures.

#### **RESULTS AND DISCUSSION**

The SCG parameters n and I of seven ceramic materials tested at elevated temperatures, estimated by both the individual data and the arithmetic mean methods, are summarized in table I. Table I is for the test conditions of three to four stress rates with three to five specimens per rate. A summary of the SCG parameters as a function of the number of test specimens for two ceramics and soda-lime glass biaxial plate and disk specimens is also shown in table II. The groups of test specimens in table II were taken in groups of five from the test sequence of the raw data (that is, from the testing order) until the total number of test specimens was reached. The tables (I and II) also include the ratios of the SCG parameters n and I estimated by the arithmetic mean method to those by the individual data method, which are designated, respectively, as  $r_n$  and  $r_I$ .

Figure 2 shows a summary of the SCG parameter n estimated by both the individual data and the arithmetic mean methods. As can be seen in the plots, little difference in n between the two estimation methods is found. A more detailed comparison of n between the two estimation methods was made using the ratio  $(r_n)$  of n estimated by the arithmetic mean method to that estimated by the individual data method, as shown in figure 3. The maximum difference in  $r_n$  between the two methods was 2 percent for SN251  $\mathrm{Si}_3\mathrm{N}_4$  (see also table I). Otherwise, the difference is less than 1.7 percent for other ceramic materials. This indicates that the SCG parameter n can be determined with a reasonably high accuracy either by the individual data method or by the arithmetic mean method for the typical data set of four stress rates with the 3 to 5 test specimens per stress rate. In other words, for a ceramic material with its Weibull modulus of about 10 (typical of most advanced ceramics) the difference in n between the two estimation methods is negligible for the set of data given in table I.

Figure 4 shows the SCG parameter n as a function of number of test specimens for NC203 SiC, 96 wt% alumina, and soda-lime glass biaxial plate and disk specimens. The SCG parameter n varies with the number of test specimens for all the materials. The  $r_n$  ratio is also depicted in figure 5. For the ceramic materials, the maximum difference in n between the two estimation methods is 5.8 and 0.6 percent, respectively, for NC203 SiC and 96 wt% alumina (see also table II). By contrast, the difference in n for the soda-lime glass biaxial specimens is appreciable with a maximum difference of 16 and 9 percent, respectively, for the plates and the disk specimens. The difference was reduced to 3.6 and 6 percent, respectively, for the plate and the disk specimens when the respective number of test specimens was increased to 30 and 25 per stress rate. Also, the difference for NC203 SiC was reduced to 2.2 percent when the number of test specimens was increased to 20 per stress rate. A somewhat larger difference for the glass specimens, compared with the ceramics specimens, is primarily due to the low Weibull modulus ( $\approx$ 3) of the material. The glass specimens were prepared such that an as-received, large plate glass was cut into square or circular specimens, annealed at 520 °C for 24 h and then etched in a 20%  $H_2SO_4$ -20% HF-60%  $H_2O$  solution for 2 min to remove spurious machining and handling damage. The glass specimens thus prepared exhibited a low Weibull modulus of about 2 to 5 (refs. 6 and 15).

The SCG parameter I estimated by the two methods for the seven ceramic materials tested at elevated temperatures is shown in figure 6. The resulting ratio  $(r_I)$  of I estimated by the arithmetic mean method to that by the individual data method is also shown in figure 7 (see also table I). The maximum difference in  $r_I$  between the two estimation methods was about 0.1 percent for SNW1000 Si<sub>3</sub>N<sub>4</sub>. This difference gives an actual difference of 0.7 percent in D. It is thus concluded that either the individual data or the arithmetic mean method can be utilized without virtual errors in estimating the SCG parameter I (or D) for the set of data given in this example.

The SCG parameter I of each material, estimated by the two methods, as a function of number of test specimens is depicted in figure 8. The effect of  $r_1$  the number of test specimens is also shown in figure 9, constructed from the data shown in table II. The effect is negligible for both NC203 SiC and 96 wt% alumina with the corresponding maximum difference of 0.2 and 0.01 percent, respectively. However, the difference is amplified for the soda-lime glass specimens, particularly for the plate specimens. The maximum difference is 2.3 and 0.9 percent, respectively, for the glass plate and the disk specimens. This gives an actual difference in D of about 12.6 and 4.1 percent, respectively. As in  $r_n$ , the difference generally decreases with increasing number of test specimens. The greater difference in I for the glass specimens, compared with the ceramics specimens, is again due to its low Weibull modulus ( $\approx$ 3). It is also noted that the difference between the two estimation methods is always lower in I than in n.

The fact that the difference between the two estimation methods for the constant stress-rate test data is more dominant in n than in l gives again an insight into the necessity of accurate estimation of n. Lifetime ( $t_f$ ) of a ceramic component for a given applied load is expressed as follows (ref. 2):

$$t_f = f(G)[\sigma]^{-n} \tag{6}$$

where  $\sigma$  is the applied stress and f(G) is the parameter associated with n, inert strength, fracture toughness and crack geometry factor. Because of this functional form, lifetime of a ceramic component is strongly dependent on n. Therefore, the accurate determination of n is of greater importance (than I) if accurate lifetime prediction of the component is to be ensured.

The statistical reproducibility of the SCG parameter n between the two estimation methods can be examined by determining the coefficients of variation in n, CV(n) = SD(n)/n with SD(n) being standard deviation of n. The resulting plot of CV(n) for the seven ceramic materials tested at elevated temperatures, estimated based on table I, is shown in figure 10. Except for SN251 Si<sub>3</sub>N<sub>4</sub>, CV(n) was found to be somewhat (about 0.05 on average) greater in the individual data method than in the arithmetic mean method. Figure 11 shows the coefficients of variation in n as a function of number of test specimens for NC203 SiC, 96 wt% alumina, and soda lime glass. This figure, like the results of figure 10, shows that overall CV(n), in general, is greater in the individual data method than in the arithmetic mean method. The difference in CV(n) between the two estimation methods is most dominant for the small number of test specimens (<10) for NC203 SiC and the soda-lime glass biaxial plates. The difference, however, becomes negligible with increasing number of test specimens ( $\geq 20$ ), resulting in improved statistical reproducibility.

Based on the above results, it can be stated that the difference in the SCG parameters between the two estimation methods depends mainly on Weibull modulus of the material, as the statistical reproducibility does (ref. 16). Either the individual data or the arithmetic mean method can be used with a little error (about 2 percent maximum) to estimate the SCG parameters n and I (or D) for a data set similar in this example, provided that the Weibull modulus is greater than about 10. This is applicable to most properly machined, advanced ceramics since, in general, they exhibit a Weibull modulus  $\geq 10$ . For a material exhibiting a high Weibull modulus  $\geq 20$ , no difference in either n or I is expected, as evidenced by the 96 wt% alumina specimens: the maximum difference was found to be 0.6 percent and less than 0.1 percent, respectively, for n and I (see tables I and II). By contrast, for a material such as the sodalime glass which exhibited a low weibull modulus of 3, special care should be taken in estimating the SCG parameters. The coefficient of variation in n, CV(n), is somewhat higher in the individual data method than in the arithmetic mean method. The difference in CV(n) between the two methods becomes insignificant with increasing number of test specimens ( $\geq 20$ ). Based on the applicability of a wide range of Weibull modulus, as well as the result of CV(n), the least-square, best-fit regression analysis using the individual data points, that is, the individual data method, is preferred in view of its unbiased nature.

#### **CONCLUSIONS**

The maximum differences in the SCG parameters n and I between the individual data and the arithmetic mean methods were 2 and 0.1 percent, respectively, for ceramic materials of Weibull modulus  $\ge 10$  (with a set of 4 stress rates and 4 to 5 specimens per stress rate). The difference was greater for the soda-lime glass specimens whose Weibull modulus is about 3: the difference in n and I were 13 and 4 percent, respectively. The difference, however, decreased with increasing number of test specimens. Also, the difference between the two estimation methods was more dominant in n than in I, emphasizing the importance of accurate estimation of the SCG parameter n. In general, the coefficient of variation in n was somewhat greater in the individual data method than in the arithmetic mean method, indicating that the arithmetic mean method tends to bias the SCG parameter n, as compared with the individual data method. The individual data method is generally recommended in view of this behavior.

#### **ACKNOWLEDGEMENTS**

This research was sponsored in part by the Ceramic Technology Project, DOE Office of Transportation Technologies, under contract DE AC05-84OR21400 with Martin Marietta Energy Systems, Inc. The authors are grateful to R. Pawlik at NASA Lewis Research Center for the experimental work.

#### REFERENCES

- 1. S.M. Wiederhorn, "Subcritical Crack Growth in Ceramics," Fracture Mechanics of Ceramics, vol. 2, R.C. Bradt, D.P.H. Hasselman, and F.F. Lange, eds., Plenum Press, New York, 1974, pp. 613-646.
- J.E. Ritter, "Engineering Design and Fatigue Failure of Brittle Materials," Fracture Mechanics of Ceramics, vol. 4, R.C. Bradt, D.P.H. Hasselman, and F.F. Lange, eds., Plenum Publishing Co., New York, 1978, pp. 667-686.
- S.R. Choi and J.A. Salem, "Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress-Rate Testing at Ambient Temperature," draft for committees ballots (on-going), C-28 (Advanced Ceramics), American Society for Testing and Materials, Philadelphia, 1996.
- 4. A.G. Evans, "Slow Crack Growth in Brittle Materials under Dynamic Loading Conditions," Int. J. Fracture, vol. 10, 1974, pp. 251–259.
- 5. K. Jakus, D.C. Coyne, and J.E. Ritter, "Analysis of Fatigue Data for Lifetime Prediction of Ceramic Materials," J. Mater. Sci., vol. 13, 1978, pp. 2071–2080.
- 6. N.N. Nemeth, L.M. Powers, L.A. Janosik, and J.P. Gyekenyesi, "Time Dependent Reliability Analysis of Monolithic Ceramic Components using the CARES/LIFE Integrated Design Program," Life Prediction Methodologies and Data for Ceramic Materials, ASTM STP 1201, C.R. Brinkman and S.F. Duffy, eds., American Society for Testing and Materials, Philadelphia, 1994, pp. 390–408.
- 7. B. Gross, L.M. Powers, O.M. Jadaan, and L.A. Janosik, "Fatigue Parameter Estimation Methodology for Power and Paris Crack Growth Laws in Monolithic Ceramic Materials," NASA TM-4699, Lewis Research Center, National Aeronautics and Space Administration, Cleveland, Ohio, 1996.
- S.R. Choi, J.A. Salem, and J.L. Palko, "Comparison of Tension and Flexure to Determine Fatigue Life Prediction Parameters at Elevated Temperatures," Life Prediction Methodologies and Data for Ceramic Materials, ASTM STP 1201, C.R. Brinkman and S.F. Duffy, eds., American Society for Testing and Materials, Philadelphia, 1994, pp. 98–112.
- S.R. Choi and J.A. Salem, "Comparison of Dynamic Fatigue Behavior Between SiC Whisker-Reinforced Composite and Monolithic Silicon Nitrides," NASA TM-103707, Lewis Research Center, National Aeronautics and Space Administration, Cleveland, Ohio (1991).
- 10. S.R. Choi and J.A. Salem, "Effect of Preloading on Fatigue Strength in Dynamic Fatigue Testing of Ceramic Materials at Elevated Temperatures," Ceram. Eng. Sic. Proc., vol. 16, no. 4, 1995, pp. 87–94.
- 11. S.R. Choi and J.A. Salem, "High Temperature Inert' Strength of Advanced Ceramic Materials," submitted to J. Am. Ceram. Soc., 1996.

- 12. S.R. Choi, N.N. Nemeth, J.A. Salem, L.M. Powers, and J.P. Gyekenyesi, "High Temperature Slow Crack Growth of Si<sub>3</sub>N<sub>4</sub> Specimens Subjected to Uniaxial and Biaxial Dynamic Fatigue Loading Conditions," Ceram. Eng. Sci. Proc., vol. 16, no. 4, 1995, pp. 509-517.
- 13. J.A. Salem and S.R. Choi, Bimonthly Progress Report, June July/1994, Ceramic Technology Project, Oak Ridge National Laboratory, Oak Ridge, TN, 1994.
- 14. S.R. Choi and J.A. Salem, "Free-Roller versus Fixed-Roller Fixtures in Flexure Testing of Advanced Ceramic Materials," Ceram. Eng. Sci. Proc., vol. 17, no. 3, 1996, pp. 69-77.
- 15. S.R. Choi and F. Holland, "Dynamic Fatigue Behavior of Soda-lime Glass Disk Specimens under Biaxial Loading," unpublished work, NASA Lewis Research Center, Cleveland, Ohio, 1994.
- 16. J.E. Ritter, N. Bandyopadhyay, and K. Jakus, "Statistical Reproducibility of the Dynamic and Static Fatigue Experiments," Am. Ceram. Soc. Bull., vol. 60, no. 8, 1981, pp. 798–806.

TABLE I.—SLOW CRACK GROWTH PARAMETERS n AND I ESTIMATED FROM CONSTANT STRESS-RATE TEST DATA BY THE INDIVIDUAL DATA AND THE ARITHMETIC MEAN METHODS

|        |                                                |          |           | AKITHMI               | AKITHMETIC MEAN METHODS    | ETHODS          |                                                                 |                |                                              |                           |
|--------|------------------------------------------------|----------|-----------|-----------------------|----------------------------|-----------------|-----------------------------------------------------------------|----------------|----------------------------------------------|---------------------------|
| Number | Material                                       | Weibull  | Number    | Number of             |                            | SCG parameter n | u                                                               | SCG            | SCG parameter $I (= log D)$                  | 0g D)                     |
|        |                                                | modulus, | of stress | specimens<br>per rate |                            |                 |                                                                 |                |                                              |                           |
|        |                                                |          |           |                       | By individual By mean data | By mean data    | Ratio of                                                        | By individual  | By mean data                                 | Ratio of                  |
| ··     |                                                |          |           |                       | data                       |                 | mean/individual<br>(≡ r n)                                      | data           |                                              | mean/individual<br>(≡ rJ) |
| -      | NCX34 Si <sub>3</sub> N <sub>4</sub> ;1200 °C  | 10       | 4         | 4 to 5                | 15.98(2.12)                | 15.82(1.30)     | 0.9899(0.0499) 2.6830(0.0084) 2.6845(0.0052)                    | 2.6830(0.0084) | 2.6845(0.0052)                               | 1.0006(0.0012)            |
|        | (ref. 8)                                       |          |           |                       |                            |                 |                                                                 |                |                                              |                           |
| 2      | NCX34 Si <sub>3</sub> N <sub>4</sub> ;1300 °C  | 10       | 4         | 4                     | 15.01(1.98)                | 15.28(1.51)     | 1.0174(0.0340) 2.5751(0.0086) 2.5763(0.0064)                    | 2.5751(0.0086) | 2.5763(0.0064)                               | 1.0005(0.0009)            |
|        | (ref. 8)                                       |          |           |                       |                            |                 |                                                                 |                |                                              |                           |
| 3      | GN10 Si 3N4/SiCw;1300 oC                       | 10       | 3         | 3 to 4                | 19.78(5.84)                | 20.08(2.04)     | 1.0155(0.1969) 2.6672(0.0141) 2.6685(0.0044)                    | 2.6672(0.0141) | 2.6685(0.0044)                               | 1.0005(0.0036)            |
|        | (ref. 9)                                       |          |           |                       |                            |                 |                                                                 |                |                                              |                           |
| 4      | GN10 Si 3N4;1300 oC                            | 10       | 4         | 4                     | 40.00(15.03)               | 40.44(13.62)    | 1.0110(0.0395) 2.7422(0.0100) 2.7436(0.0089)                    | 2.7422(0.0100) | 2.7436(0.0089)                               | 1.0005(0.0004)            |
|        | (ref. 9)                                       |          |           |                       |                            |                 |                                                                 |                |                                              |                           |
| 5      | NC132 Si 3N4;1100 °C                           | 18       | 4         | 4 to 5                | 22.90(2.33)                | 22.79(2.48)     | 0.9955(0.0070)                                                  | 2.7373(0.0045) | 0.9955(0.0070) 2.7373(0.0045) 2.7375(0.0049) | 1.0001(0.0002)            |
|        | (ref. 9)                                       |          |           |                       |                            |                 |                                                                 |                |                                              |                           |
| 9      | 96 wt% Al <sub>2</sub> O <sub>3</sub> ;1000 °C | 20       | 4         | 5                     | 7.26(0.30)                 | 7.27(0.40)      | 1.0015(0.0133) 2.1100(0.0049) 2.1104(0.0065)                    | 2.1100(0.0049) | 2.1104(0.0065)                               | 1.0002(0.0008)            |
|        | (ref. 14)                                      |          |           |                       |                            |                 |                                                                 |                |                                              |                           |
| 7      | SN251 Si <sub>3</sub> N <sub>4</sub> ;1371 °C  | 13       | 3         | 3 to 4                | 41.58(4.86)                | 40.75(11.14)    | 40.75(11.14)   0.9801(0.1534)   2.6410(0.0074)   2.6395(0.0184) | 2.6410(0.0074) | 2.6395(0.0184)                               | 0.9994(0.0042)            |
|        | (ref. 11)                                      |          |           |                       |                            |                 |                                                                 |                |                                              |                           |
| œ      | SNW1000 Si3N4:1300 oC                          | 10       | 3         | 11 to 13              | 31.64(6.96)                | 31.91(5.36)     | 1.0084(0.0524) 2.7118(0.0078) 2.7147(0.0061)                    | 2.7118(0.0078) | 2.7147(0.0061)                               | 1.0011(0.0006)            |
|        | (ref. 12)                                      |          |           | ļ                     |                            |                 |                                                                 |                |                                              |                           |

<sup>a</sup>The numbers in the parentheses indicate ± one standard deviation.

TABLE II.—A SUMMARY OF SLOW CRACK GROWTH PARAMETERS n AND I AS A FUNCTION OF THE NUMBER OF TEST SPECIMENS IN CONSTANT

| Material         Weibull modulus, of stress specim modulus, of stress specim approximately rate per rate per rate (ref. 13)           NC203 SiC;1300 °C         7 to 15         4         5           (ref. 13)         4         10         4         15           96 wt% Al <sub>2</sub> O <sub>3</sub> ;RT         20         4         5         4         10           96 wt% Al <sub>2</sub> O <sub>3</sub> ;RT         20         4         5         4         10           Soda-lime glass plates (biaxial);         2 to 3         4         5         4         10           RT H <sub>2</sub> O (ref. 6)         4         15         4         10         4         15           20         4         4         15         4         15         25 |                                        | STR                      | STRESS-RATE TESTING |                 |                |                           |                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------|---------------------|-----------------|----------------|---------------------------|---------------------|
| SiC;1300 °C 7 to 15 4 4 4 A <sub>2</sub> O <sub>3</sub> :RT 20 4 4 E. 14) be glass plates 2 to 3 4 i. (ref. 6) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | r Number of<br>s specimens<br>per rate | i.                       | SCG parameter n     |                 | SC             | SCG parameter I (= log D) | ( <i>Q</i> 8        |
| iC;1300 °C 7 to 15 4 4 4 A <sub>2</sub> O <sub>3</sub> :RT 20 4 6: 14) 6 glass plates 2 to 3 4 7 (ref. 6) 7 to 15 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | By individual            | By mean data        | Ratio of        | By individual  | By mean data              | Ratio of            |
| siC;1300 °C 7 to 15 4 4 4 A <sub>2</sub> O <sub>3</sub> :RT 20 4 6 4 7 1. 14) 6 glass plates 2 to 3 4 7 1. (ref. 6) 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | data                     | •                   | mean/individual |                |                           | mean/individual     |
| SiC;1300 °C 7 to 15 4 4 4 Al <sub>2</sub> O <sub>3</sub> :RT 20 4 6: 14) 10 glass plates 2 to 3 4 11; 11 4 12 4 14 4 14 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                          |                     | (≡ r n)         |                |                           | (l <sub>1</sub> = ) |
| Al <sub>2</sub> O <sub>3</sub> :RT 20 4  Al <sub>2</sub> O <sub>3</sub> :RT 20 4  E. 14)  to glass plates 2 to 3 4  i; (ref. 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                      | <sup>a</sup> 20.84(4.20) | 21.76(9.49)         | 1.0441(0.2449)  | 2.5058(0.0098) | 2.5051(0.0021)            | 0.9997(0.0031)      |
| Al <sub>2</sub> O <sub>3</sub> :RT 20 4  f. 14)  te glass plates 2 to 3 4  i. (ref. 6)  4  4  4  4  4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                     | 23.06(3.88)              | 24.31(8.63)         | 1.0542(0.1969)  | 2.5383(0.0075) | 2.5386(0.0015)            | 1.0001(0.0024)      |
| 20 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15                                     | 24.40(3.80)              | 25.82(7.59)         | 1.0582(0.1463)  | 2.5604(0.0066) | 2.5614(0.0012)            | 1.0004(0.0021)      |
| 20 4 4 2 10 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50                                     | 27.95(5.14)              | 28.55(5.67)         | 1.0215(0.0150)  | 2.5823(0.0069) | 2.5863(0.0073)            | 1.0016(0.0002)      |
| 2 to 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                                      | 46.66(8.44)              | 46.51(7.29)         | 0.9968(0.0241)  | 2.3510(0.0042) | 2.3513(0.0036)            | 1.0001(0.0002)      |
| 2 to 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) <u></u>                              | 52.73(7.47)              | 52.41(4.70)         | 0.9939(0.0517)  | 2.3483(0.0029) | 2.3486(0.0018)            | 1.0001(0.0005)      |
| 2 to 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | ,                        |                     |                 |                |                           |                     |
| 4444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                      | 20.09(22.43)             | 23.34(6.98)         | 1.1618(0.9497)  | 2.2277(0.0571) | 2.2792(0.0134)            | 1.0231(0.0202)      |
| 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                     | 11.97(5.72)              | 12.58(5.33)         | 1.0510(0.0569)  | 2.2920(0.0386) | 2.3411(0.0328)            | 1.0214(0.0029)      |
| 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15                                     | 12.54(4.63)              | 14.59(3.37)         | 1.1635(0.1608)  | 2.2826(0.0287) | 2.3306(0.0158)            | 1.0211(0.0059)      |
| 4 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                     | 12.42(3.69)              | 13.19(3.76)         | 1.0620(0.0128)  | 2.2893(0.0233) | 2.3283(0.0212)            | 1.0170(0.0011)      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25                                     | 11.53(2.75)              | 11.95(3.44)         | 1.0364(0.0512)  | 2.2892(0.0199) | 2.3258(0.0229)            | 1.0160(0.0012)      |
| 4 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                     | 11.23(2.27)              | 11.63(2.19)         | 1.0356(0.0143)  | 2.3046(0.0172) | 2.3379(0.0156)            | 1.0145(0.0008)      |
| Soda-lime glass disks 4 to 6 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                      | 21.70(7.18)              | 21.72(4.69)         | 1.0009(0.1151)  | 1.9218(0.0237) | 1.9291(0.0155)            | 1.0038(0.0043)      |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                     | 18.06(4.36)              | 16.39(1.15)         | 0.9075(0.1554)  | 1.9517(0.0204) | 1.9677(0.0064)            | 1.0082(0.0073)      |
| ref. 15) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15                                     | 14.31(2.20)              | 13.64(0.80)         | 0.9532(0.0906)  | 1.9662(0.0160) | 1.9796(0.0063)            | 1.0068(0.0050)      |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                     | 16.39(2.80)              | 15.15(1.30)         | 0.9243(0.0786)  | 1.9608(0.0158) | 1.9784(0.0085)            | 1.0089(0.0038)      |
| 3 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25                                     | 16.41(2.56)              | 15.47(2.47)         | 0.9427(0.0035)  | 1.9760(0.0143) | 1.9928(0.0155)            | 1.0085(0.0005)      |

\*The numbers in the parentheses indicate ± one standard deviation.

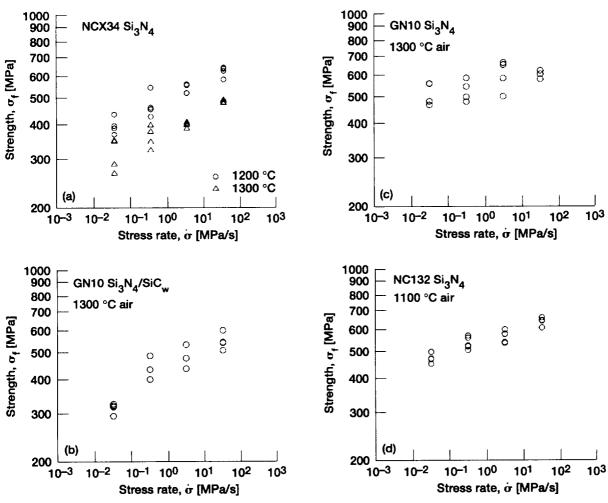



Figure 1.—A summary of constant stress-rate testing results from various ceramics and glass: (a) NCX34 silicon nitride (1200 and 1300 °C) [8]; (b) GN10 SiC whisker-reinforced (30 vol%) silicon nitride (1300 °C) [9]; (c) GN10 silicon nitride (1300 °C) [9]; (d) NC132 silicon nitride (1100 °C) [10]; (e) 96 wt% alumina (1000 °C) [10]; (f) SN251 silicon nitride (1371 °C) [11]; (g) SNW1000 silicon nitride (1300 °C) [12]; (h) NC203 silicon carbide (1300 °C) [13]; (i) 96 wt % alumina (room-temperature water) [14]; (j) soda-lime glass biaxial plates (room-temperature water) [6]; (k) soda-lime glass biaxial disks (room-temperature water) [15].

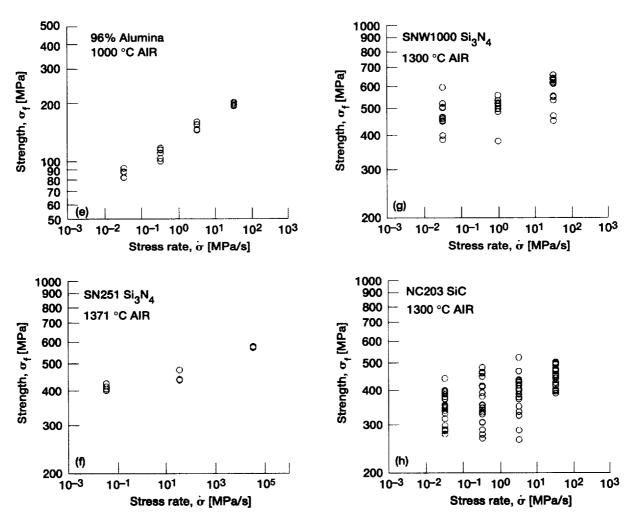



Figure 1.—Continued. Figure 1.—(e) 96 wt% alumina (1000 °C) [10]; (f) SN251 silicon nitride (1371 °C) [11]; (g) SNW1000 silicon nitride (1300 °C) [12]; (h) NC203 silicon carbide (1300 °C) [13].

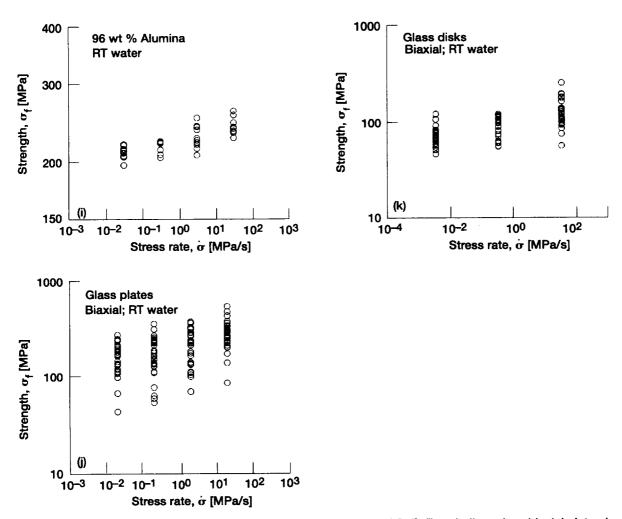



Figure 1.—Concluded. (i) 96 wt % alumina (room-temperature water) [14]; (j) soda-lime glass biaxial plates (room-temperature water) [6]; (k) soda-lime glass biaxial disks (room-temperature water) [15].

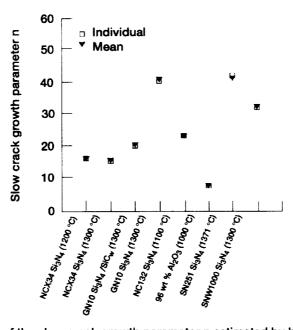



Figure 2.—A summary of the slow crack growth parameter n estimated by both the individual data and the arithmetic mean methods for seven ceramic materials tested at elevated temperatures.

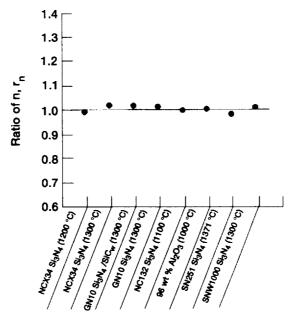



Figure 3.—The ratio  $(r_n)$  of n estimated by the arithmetic mean method to that by the individual data method for seven ceramic materials tested at elevated temperature.

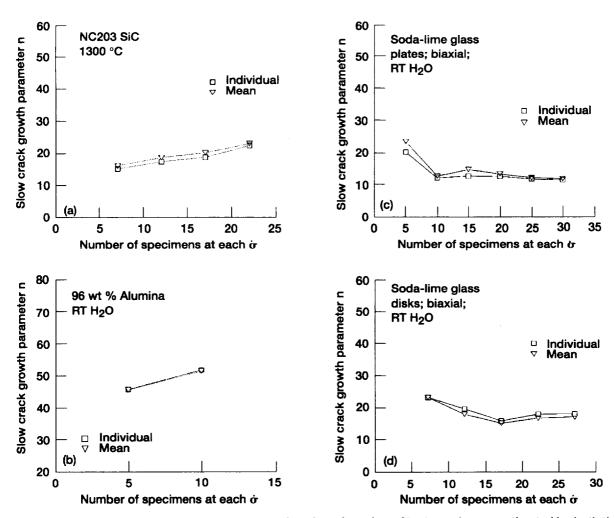



Figure 4.—The slow crack growth parameter n as a function of number of test specimens, estimated by both the individual data method and the arithmetic mean method: (a) NC203 SiC (1300 °C) [13]; (b) 96 wt % alumina (room-temperature water) [14]; (c) soda-lime glass biaxial plates (room-temperature water) [6]; (d) soda-lime glass biaxial disks (room-temperature water) [15].

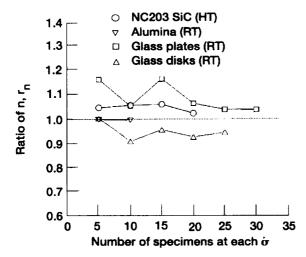



Figure 5.—The ratio (r<sub>n</sub>) of n estimated by the arithmetic mean method to that estimated by the individual data method for four test materials, as a function of number of test specimens.

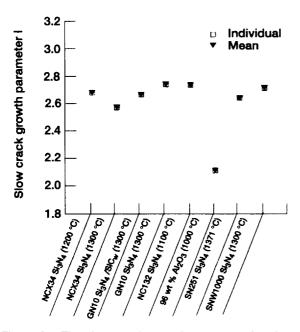



Figure 6.—The slow crack growth parameter I estimated by both the individual data and the arithmetic mean methods for seven ceramic materials tested at elevated temperatures.

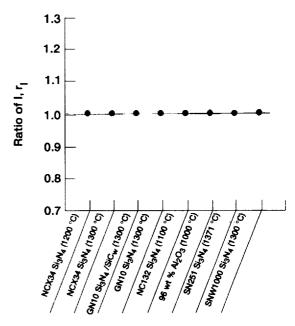



Figure 7.—The ratio (r<sub>I</sub>) of I estimated by the arithmetic mean method to that estimated by the individual data method for seven ceramic materials tested at elevated temperatures.

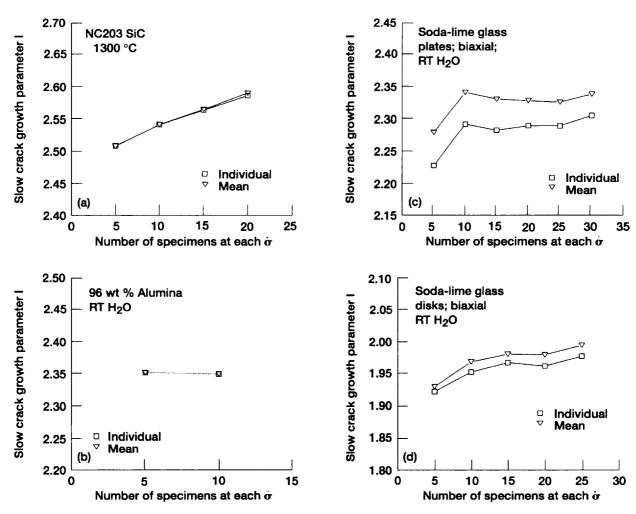



Figure 8.—The slow crack growth parameter I as a function of number of test specimens, estimated by both the individual data and the arithmetic mean methods: (a) NC203 SiC (1300 °C) [13]; (b) 96 wt % alumina (room-temperature water) [14]; (c) soda-lime glass biaxial plates (room-temperature water) [6]; (d) soda-lime glass biaxial disks (room-temperature water) [15].

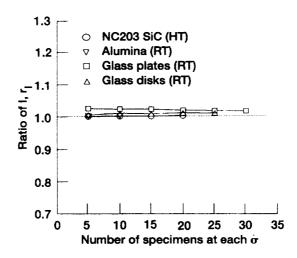



Figure 9.—The ratio (r<sub>i</sub>) of I estimated by the arithmetic mean method to that by the individual data method for four test materials, as a function of number of test specimens.

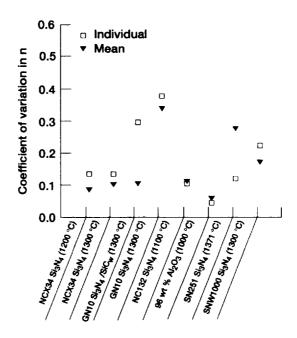



Figure 10.—A summary of the coefficient of variation in n, CV (n), estimated by both the individual data and the arithmetic mean methods for seven ceramic materials tested at elevated temperatures.

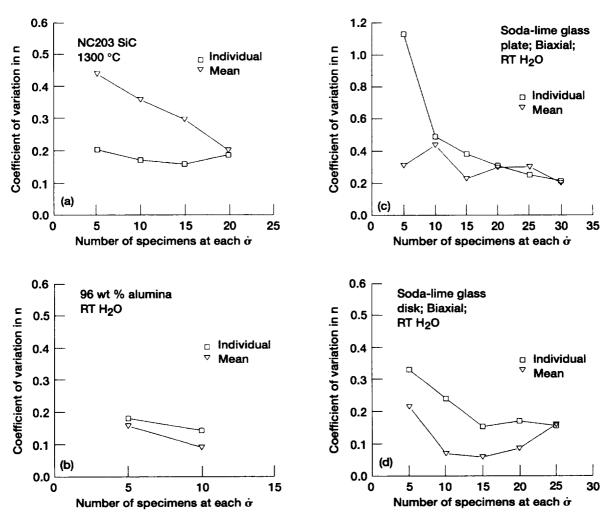



Figure 11.—The coefficient of variation in n CV(n), as a function of number of test specimens, estimated by both the individual data and the arithmetic mean methods: (a) NC203 SiC (1300 °C) [13]; (b) 96 wt% alumina (room-temperature water) [14]; (c) soda-lime glass biaxial plates (room-temperature water) [6]; (d) soda-lime glass biaxial disks (room-temperature water) [15].

### REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

| 1. AGENCY USE ONLY (Leave blank)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2. REPORT DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3. REPORT TYPE AND DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S COVERED                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | February 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Technica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | l Memorandum                                                                                                                                                                                                       |
| 4. TITLE AND SUBTITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5. FUI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DING NUMBERS                                                                                                                                                                                                       |
| Estimation of Slow Crack G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rowth Parameters for Constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stress-Rate Test Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                    |
| of Advanced Ceramics and G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Glass by the Individual Data an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d Arithmetic Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                    |
| Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | II 505 (2 1M                                                                                                                                                                                                       |
| 6. AUTHOR(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U-505-63-1M                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                    |
| Sung R. Choi, Jonathan A. S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Salem, and Frederic A. Holland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                    |
| 7. PERFORMING ORGANIZATION NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AME(S) AND ADDRESS(ES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RFORMING ORGANIZATION PORT NUMBER                                                                                                                                                                                  |
| National Aeronautics and Sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sace Administration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                    |
| Lewis Research Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | race Administration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -10537                                                                                                                                                                                                             |
| Cleveland, Ohio 44135–31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -10337                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                    |
| 9. SPONSORING/MONITORING AGEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NCY NAME(S) AND ADDRESS(ES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10. SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ONSORING/MONITORING                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ENCY REPORT NUMBER                                                                                                                                                                                                 |
| National Aeronautics and Sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pace Administration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                    |
| Washington, DC 20546-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ASA TM-107369                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                    |
| 11. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ate University, Cleveland, Ohio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44115, Ionathan A. Salam and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fraderic A. Holland NASA                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of Transportation Technologies,                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sible person, Jonathan A. Salem,                                                                                                                                                                                   |
| organization code 5920, (21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ellergy bystems, me. Respon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | siole person, somaniar 71. Salein,                                                                                                                                                                                 |
| organization code 3>20; (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                    |
| 124 DISTRIBUTION/AVAILABILITY S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TATEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 112h D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ISTRIBITION CODE                                                                                                                                                                                                   |
| 12a. DISTRIBUTION/AVAILABILITY S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TATEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12b. D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ISTRIBUTION CODE                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TATEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12b. D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ISTRIBUTION CODE                                                                                                                                                                                                   |
| Unclassified - Unlimited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TATEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12b. D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ISTRIBUTION CODE                                                                                                                                                                                                   |
| Unclassified - Unlimited<br>Subject Category 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ISTRIBUTION CODE                                                                                                                                                                                                   |
| Unclassified - Unlimited<br>Subject Category 27<br>This publication is available from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n the NASA Center for AeroSpace In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ISTRIBUTION CODE                                                                                                                                                                                                   |
| Unclassified - Unlimited<br>Subject Category 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n the NASA Center for AeroSpace In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ISTRIBUTION CODE                                                                                                                                                                                                   |
| Unclassified - Unlimited Subject Category 27  This publication is available from  13. ABSTRACT (Maximum 200 words  The two estimation methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n the NASA Center for AeroSpace In  5) 5, individual data and arithmetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | formation, (301) 621–0390.  mean methods, were used to c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | letermine the slow crack growth                                                                                                                                                                                    |
| Unclassified - Unlimited Subject Category 27  This publication is available from  13. ABSTRACT (Maximum 200 words  The two estimation methods (SCG) parameters (n and D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the NASA Center for AeroSpace In  s, individual data and arithmetic of advanced ceramics and glas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | formation, (301) 621–0390.  The mean methods, were used to come from a large number of room                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | letermine the slow crack growth - and elevated-temperature                                                                                                                                                         |
| Unclassified - Unlimited Subject Category 27  This publication is available from  13. ABSTRACT (Maximum 200 words  The two estimation methods (SCG) parameters (n and D) constant stress-rate ('dynam)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the NASA Center for AeroSpace In<br>s, individual data and arithmetic<br>of advanced ceramics and glastic fatigue') test data. For ceramics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | formation, (301) 621–0390.  The mean methods, were used to come a large number of room in materials with Weibull modern.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | letermine the slow crack growth - and elevated-temperature lulus ≥ 10, the difference in the                                                                                                                       |
| Unclassified - Unlimited Subject Category 27  This publication is available from  13. ABSTRACT (Maximum 200 words  The two estimation methods (SCG) parameters (n and D) constant stress-rate ('dynam SCG parameters between th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the NASA Center for AeroSpace In s, individual data and arithmetic of advanced ceramics and glastic fatigue') test data. For cerame two estimation methods was a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | formation, (301) 621–0390.  The mean methods, were used to compare the second of the s | letermine the slow crack growth - and elevated-temperature sulus ≥ 10, the difference in the pecimens exhibiting Weibull                                                                                           |
| Unclassified - Unlimited Subject Category 27  This publication is available from  13. ABSTRACT (Maximum 200 words  The two estimation methods (SCG) parameters (n and D) constant stress-rate ('dynam SCG parameters between th modulus of about 3, the difference of the subject of | the NASA Center for AeroSpace In  in the Nasa Center for In  in the Nasa Center for AeroSpace In  in the Nasa Center for In  in the Nas | formation, (301) 621–0390.  The mean methods, were used to compare the second of the s | letermine the slow crack growth - and elevated-temperature lulus ≥ 10, the difference in the pecimens exhibiting Weibull 5 and 13 %, respectively, in n                                                            |
| Unclassified - Unlimited Subject Category 27  This publication is available from  13. ABSTRACT (Maximum 200 words  The two estimation methods (SCG) parameters (n and D) constant stress-rate ('dynam SCG parameters between th modulus of about 3, the different differen | the NASA Center for AeroSpace In (s) s, individual data and arithmetic of advanced ceramics and glastic fatigue') test data. For cerame two estimation methods was reference was amplified, resulting ameters, the parameter n was methods was methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | formation, (301) 621–0390.  The mean methods, were used to construct the strong a large number of roominic materials with Weibull module enegligible; whereas, for glass spin a maximum difference of 10 to ore sensitive to the estimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | letermine the slow crack growth - and elevated-temperature dulus ≥ 10, the difference in the pecimens exhibiting Weibull 5 and 13 %, respectively, in n method than the other. The                                 |
| Unclassified - Unlimited Subject Category 27  This publication is available from  13. ABSTRACT (Maximum 200 words  The two estimation methods (SCG) parameters (n and D) constant stress-rate ('dynam SCG parameters between th modulus of about 3, the difference of the two SCG parameters of the two SCG para | the NASA Center for AeroSpace In  in the Nasa Center for In  in the Nasa Center for AeroSpace In  in the Nasa Center for In  in the Nas | formation, (301) 621–0390.  The mean methods, were used to construct the strong a large number of roominic materials with Weibull module enegligible; whereas, for glass spin a maximum difference of 10 to ore sensitive to the estimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | letermine the slow crack growth - and elevated-temperature dulus ≥ 10, the difference in the pecimens exhibiting Weibull 5 and 13 %, respectively, in n method than the other. The                                 |
| Unclassified - Unlimited Subject Category 27  This publication is available from  13. ABSTRACT (Maximum 200 words  The two estimation methods (SCG) parameters (n and D) constant stress-rate ('dynam SCG parameters between th modulus of about 3, the different differen | the NASA Center for AeroSpace In (s) s, individual data and arithmetic of advanced ceramics and glastic fatigue') test data. For cerame two estimation methods was reference was amplified, resulting ameters, the parameter n was methods was methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | formation, (301) 621–0390.  The mean methods, were used to construct the strong a large number of roominic materials with Weibull module enegligible; whereas, for glass spin a maximum difference of 10 to ore sensitive to the estimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | letermine the slow crack growth - and elevated-temperature dulus ≥ 10, the difference in the pecimens exhibiting Weibull 5 and 13 %, respectively, in n method than the other. The                                 |
| Unclassified - Unlimited Subject Category 27  This publication is available from  13. ABSTRACT (Maximum 200 words  The two estimation methods (SCG) parameters (n and D) constant stress-rate ('dynam SCG parameters between th modulus of about 3, the difference of the two SCG parameters of the two SCG para | the NASA Center for AeroSpace In (s) s, individual data and arithmetic of advanced ceramics and glastic fatigue') test data. For cerame two estimation methods was reference was amplified, resulting ameters, the parameter n was methods was methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | formation, (301) 621–0390.  The mean methods, were used to construct the strong a large number of roominic materials with Weibull module enegligible; whereas, for glass spin a maximum difference of 10 to ore sensitive to the estimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | letermine the slow crack growth - and elevated-temperature dulus ≥ 10, the difference in the pecimens exhibiting Weibull 5 and 13 %, respectively, in n method than the other. The                                 |
| Unclassified - Unlimited Subject Category 27  This publication is available from  13. ABSTRACT (Maximum 200 words  The two estimation methods (SCG) parameters (n and D) constant stress-rate ('dynam SCG parameters between th modulus of about 3, the difference of the two SCG parameters of the two SCG para | the NASA Center for AeroSpace In (s) s, individual data and arithmetic of advanced ceramics and glastic fatigue') test data. For cerame two estimation methods was reference was amplified, resulting ameters, the parameter n was methods was methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | formation, (301) 621–0390.  The mean methods, were used to construct the strong a large number of roominic materials with Weibull module enegligible; whereas, for glass spin a maximum difference of 10 to ore sensitive to the estimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | letermine the slow crack growth - and elevated-temperature dulus ≥ 10, the difference in the pecimens exhibiting Weibull 5 and 13 %, respectively, in n method than the other. The                                 |
| Unclassified - Unlimited Subject Category 27  This publication is available from  13. ABSTRACT (Maximum 200 words  The two estimation methods (SCG) parameters (n and D) constant stress-rate ('dynam SCG parameters between th modulus of about 3, the difference of the two SCG parameters of the two SCG para | the NASA Center for AeroSpace In (s) s, individual data and arithmetic of advanced ceramics and glastic fatigue') test data. For cerame two estimation methods was reference was amplified, resulting ameters, the parameter n was methods was methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | formation, (301) 621–0390.  The mean methods, were used to construct the strong a large number of roominic materials with Weibull module enegligible; whereas, for glass spin a maximum difference of 10 to ore sensitive to the estimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | letermine the slow crack growth - and elevated-temperature dulus ≥ 10, the difference in the pecimens exhibiting Weibull 5 and 13 %, respectively, in n method than the other. The                                 |
| Unclassified - Unlimited Subject Category 27  This publication is available from  13. ABSTRACT (Maximum 200 words  The two estimation methods (SCG) parameters (n and D) constant stress-rate ('dynam SCG parameters between th modulus of about 3, the difference of the two SCG parameters of the two SCG para | the NASA Center for AeroSpace In (s) s, individual data and arithmetic of advanced ceramics and glastic fatigue') test data. For cerame two estimation methods was reference was amplified, resulting ameters, the parameter n was methods was methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | formation, (301) 621–0390.  The mean methods, were used to construct the strong a large number of roominic materials with Weibull module enegligible; whereas, for glass spin a maximum difference of 10 to ore sensitive to the estimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | letermine the slow crack growth - and elevated-temperature dulus ≥ 10, the difference in the pecimens exhibiting Weibull 5 and 13 %, respectively, in n method than the other. The                                 |
| Unclassified - Unlimited Subject Category 27  This publication is available from  13. ABSTRACT (Maximum 200 words  The two estimation methods (SCG) parameters (n and D) constant stress-rate ('dynam SCG parameters between th modulus of about 3, the difference of the two SCG parameters of the two SCG para | the NASA Center for AeroSpace In (s) s, individual data and arithmetic of advanced ceramics and glastic fatigue') test data. For cerame two estimation methods was reference was amplified, resulting ameters, the parameter n was methods was methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | formation, (301) 621–0390.  The mean methods, were used to construct the strong a large number of roominic materials with Weibull module enegligible; whereas, for glass spin a maximum difference of 10 to ore sensitive to the estimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | letermine the slow crack growth - and elevated-temperature dulus ≥ 10, the difference in the pecimens exhibiting Weibull 5 and 13 %, respectively, in n method than the other. The                                 |
| Unclassified - Unlimited Subject Category 27  This publication is available from 13. ABSTRACT (Maximum 200 words  The two estimation methods (SCG) parameters (n and D) constant stress-rate ('dynam SCG parameters between th modulus of about 3, the different and D. Of the two SCG parameters of variation in n method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the NASA Center for AeroSpace In (s) s, individual data and arithmetic of advanced ceramics and glastic fatigue') test data. For cerame two estimation methods was reference was amplified, resulting ameters, the parameter n was methods was methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | formation, (301) 621–0390.  The mean methods, were used to construct the strong a large number of roominic materials with Weibull module enegligible; whereas, for glass spin a maximum difference of 10 to ore sensitive to the estimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | letermine the slow crack growth - and elevated-temperature fulus ≥ 10, the difference in the pecimens exhibiting Weibull of and 13 %, respectively, in n method than the other. The od than in the arithmetic mean |
| Unclassified - Unlimited Subject Category 27  This publication is available from 13. ABSTRACT (Maximum 200 words (SCG) parameters (n and D) constant stress-rate ('dynam SCG parameters between the modulus of about 3, the different and D. Of the two SCG parameters of variation in not method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the NASA Center for AeroSpace In (a), individual data and arithmetic of advanced ceramics and glastic fatigue') test data. For cerame two estimation methods was reference was amplified, resulting ameters, the parameter n was mass found to be somewhat great                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | formation, (301) 621–0390.  The mean methods, were used to consider a large number of rooming materials with Weibull modes are gligible; whereas, for glass so in a maximum difference of 10 notes sensitive to the estimation after in the individual data method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | letermine the slow crack growth - and elevated-temperature fulus ≥ 10, the difference in the pecimens exhibiting Weibull of and 13 %, respectively, in n method than the other. The od than in the arithmetic mean |
| Unclassified - Unlimited Subject Category 27  This publication is available from 13. ABSTRACT (Maximum 200 words (SCG) parameters (n and D) constant stress-rate ('dynam SCG parameters between the modulus of about 3, the different and D. Of the two SCG parameters of variation in not method.  14. SUBJECT TERMS  Constant stress-rate ('dynam SCG) C | the NASA Center for AeroSpace In (a), individual data and arithmetic (b) of advanced ceramics and glastic fatigue') test data. For cerame two estimation methods was reference was amplified, resulting ameters, the parameter n was maken was found to be somewhat great maken and the companion of th | formation, (301) 621–0390.  The mean methods, were used to consider a large number of rooming materials with Weibull modes are gligible; whereas, for glass so in a maximum difference of 10 notes sensitive to the estimation after in the individual data method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | letermine the slow crack growth - and elevated-temperature fulus ≥ 10, the difference in the pecimens exhibiting Weibull of and 13 %, respectively, in n method than the other. The od than in the arithmetic mean |
| Unclassified - Unlimited Subject Category 27  This publication is available from 13. ABSTRACT (Maximum 200 words (SCG) parameters (n and D) constant stress-rate ('dynam SCG parameters between the modulus of about 3, the different and D. Of the two SCG parameters of variation in not method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the NASA Center for AeroSpace In (a), individual data and arithmetic (b) of advanced ceramics and glastic fatigue') test data. For cerame two estimation methods was reference was amplified, resulting ameters, the parameter n was maken was found to be somewhat great maken and the companion of th | formation, (301) 621–0390.  The mean methods, were used to consider a large number of rooming materials with Weibull modes are gligible; whereas, for glass so in a maximum difference of 10 notes sensitive to the estimation after in the individual data method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | letermine the slow crack growth - and elevated-temperature lulus ≥ 10, the difference in the pecimens exhibiting Weibull 5 and 13 %, respectively, in n method than the other. The od than in the arithmetic mean  |

Unclassified

Unclassified

Unclassified