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I. Introduction

Under a NASA-Lewis Research Center grant (No. NAG3-658), for a

period of three months covering October 1, 1994 through December 31, 1994,

the research group at CSU has conducted theoretical and experimental

research on "Electrodeposition of CulnxGal_xSe 2 (CIGS) Thin Layers for

CdS/CIGS Solar Cell Applications." The main results are outlined below.

1. Background

The US. Department of Energy (DOE) and a segment of the

photovoltaic industry have targeted photovoltaic (PV) modules based on thin

films as likely candidates for low cost energy production [1-21]. Contributing

factors include:

the low materials cost for these thin films

potential scalability and automation of the fabrication processes, and

efficiencies that are competitive with the dominant single crystal Si-

based technology.

The present economics of PV thin films do not support an easy

transition to successful commercialization. This is because thin films have been

developed as a means of reducing the cost of PV to compete for large power

markets. However, the initial entry of thin films is at much higher prices that

cannot yet compete for these presumed large markets. The problem is that the

initial production of thin films occurs at:

O lower than expected efficiencies (due to relative immaturity of

manufacturing capability), and

at low volumes that fail to take advantage of economies-of-scales.

For certain space missions, such as a Lunar or a Mars base, there is a

need for low cost high specific power solar cell arrays with reasonably high

beginning-of-life efficiency, high stability, and high radiation resistance. Of

these requirements, any potentially viable technology must satisfy the

following three requirements right now, at the start, namely, low cost, high

stability and high radiation resistance. Performance improvements can then be



made in the near future, by doing the necessary research and development, so

as to satisfy the remaining requirements of reasonably high efficiency and high

specific power. Of the existing solar cell technologies, the polycrystalline thin

film solar cell technology already satisfies these three requirements at the

present time and, in addition, shows promise for satisfying the remaining two

requirements of high efficiency and high specific power in the near future.

Hence, it is our opinion that the polycrystalline thin film solar cell technology

has the highest potential and shows the greatest promise of satisfying all of the

above requirements for being a viable power technology for certain space

applications.

The two most mature polycrystalline thin film solar cell technologies at

the present time are the CdS/CdTe and CdS/CuInSe2 (CIS) solar cell

technologies. Of these, cells based on CuInSe2 (CIS) show a better promise

for reaching the goal than the CdTe-based cells. Polycrystalline thin film cells

.based on CIS have shown an efficiency of 15.4% at AM1.5, 25 C. A well-

known approach to improve the performance of CIS-based solar cells is to

replace some of the In with Ga (e.g. by alloying CuInSe2 with CuGaSe2 to

form CuInxGal_xSe 2 (CIGS)), thus increasing the bandgap so as to obtain a

better match to the sunlight spectrum. Recently, some excellent performance

results have been reported for ZnO/CdS/CuInxGal_xSe2 cells (15.9%, total

area, AM1.5, 25 C) [4], with the n-CdS layer grown from an aqueous solution

and the n - ZnO and p-CuInxGal_xSe 2 layers made by vacuum evaporation.

Recent efforts in polycrystalline thin film solar cell development have

concentrated on the fabrication of large area devices using simplified low-cost

processing techniques, while, at the same time, improving yield and

performance. Presently developed fabrication technologies of thin film layers

include epitaxy (MBE and MOCVD), elemental vacuum co-evaporation, close-

spaced sublimation, screen,printing, spray pyrolysis and electrodeposition and

electrodeless deposition from aqueous baths. In all of these technologies,

significant improvements in cost reduction and throughput are necessary for

them to become viable technologies for the low cost large scale production of

polycrystalline thin film solar cells.

2. High Efficiency CIGS Solar Cells

Using physical vapor deposition methods small area CdS/CIGS cells

with AM 1.5, 25 oc efficiency as high as 16.9% (Jsc=35.8 mA/cm2; Voc =

641 mV; FF= 73.5%) have been demonstrated [2]. Although for several small



area cells some excellent performance results are seen, the manufacturability
issues humble the very promising CIGS large area large scale development. In
all of these technologies, significant improvements in cost reduction and
throughput are necessary for them to become viable technologies for the low
cost large scale production of polycrystalline thin film solar cells. To prove
this point it is sufficient to examine the complexity of the fabrication process
used for the above mentioned small area cell: soda-lime float glass substrate
(0.8 mm) / Mo {800 nm, Sheet Resistance: 0.2-0.3 f2/sq.; deposited by rf

argon sputtering} / Cu(In,Ga)Se 2 {3 _tm, co-evaporated from elemental

sources controlled by a quadruple mass-spectrometer feedback system} / CdS {

buffer layer; - 20 nm; deposited by solution growth using cadmium salt and

thiourea [6]} / ZnO {window layer; First layer (- 50 nm) high resistive ZnO

deposited by rf magnetron sputtering from ZnO in Ar:1% 02; Second layer

(300 nm): ZnO:AI was deposited by rf magnetron or diode sputtering} / Front

contacts: thin intermediate Ni layer and A1 (- 2 _tm) / AR coating: MgF2.

Annealing: 200 oc, for 2-10 min in air.

Note: A CIS cell structure (similar fabrication, except that the oxygen

concentration during the deposition of the first ZnO layer was 20%) have

yielded an efficiency of 15.4% (AM 1.5, 25 oc) (Jsc=41.2 mA/cm2;

Voc=515 mV; FF=72.6%).

Improvements in cost and throughput are necessary for large scale

production. Recent efforts in large-area CIS and CIGS cells development are

focusing on simplified, low-cost processing options with improved yield and

performance. It is our opinion that of the most promising options are

electrodeless and electodeposition solution growth of all active layers of the

cell.

3. Chemical Bath Deposition

The CdS chemical bath deposition (CBD) process was developed by

Chu et al., of Univ. of South Florida [7]. A cadmium salt, an ammonium salt,

ammonia, and thiourea were the reactants used in an aqueous solution. The

cadmium salt [ e.g. CdSO4 or Cd(NH3)42+] and thiourea [CS(NH3) 2] are the

source of Cd 2+ and S2- ions respectively, while ammonia (NH4OH) serves

as a buffer. The amount of ammonia and ammonium salt in the solution can be

adjusted to control the deposition rate of the CdS films. The solution



temperature also affects the deposition rate. Two groups of salts, the acetates

and chlorides, can be used in the temperature range of 70-90 oc.

For CdTe/CdS and Cu(In,Ga)Se 2 thin film solar cells, the highest

efficiencies for both these cell structures [2,7] have been achieved with CdS

films prepared by this deposition technique. For CdS/CdTe solar cells with the

CdS layer grown by the chemical bath deposition method and the CdTe layer

grown by close-spaced sublimation (CSS), a record high efficiency of 15.8%

(AM1.5, 25 C, 1.05cm 2 total area) has been achieved [5] with Voc =

843mV, Jsc = 25.1 mA/cm 2 and FF = 74.5 % (NREL data). The reason why

CBS grown CdS gives better photovoltaic performance as compared to, e.g.,

evaporated CdS remains unclear. It has been suggested that (i) a pinhole-free

conformal coverage, (ii) low temperature deposition, or (iii) the chemical

treatment of the surface during the CBD process are of importance, but clear

evidence has not been submitted.

Cadmium Free Buffer Layers for CIGS Cells

Several attempts have been made to replace the CBD grown CdS with

other materials in using either a chemical bath deposition (CBD) or

electrochemical process, but in all cases the standard CBD-CdS growth recipe

lead to superior solar cell characteristics, mainly due to better values of the fill

factor (FF) and the open circuit voltage (Voc).

Recently, however, a new chemical bath process has been reported for

the deposition of a buffer layer containing In, S and O [22], which has resulted

in CIGS solar cells with performances comparable (nearly 15 % efficiency) to

those using the CBD-CdS buffer layer.

The deposition was carried out in an aqueous InCl 3 and thioacetamide

(CH3CSNH2) solution at temperatures up to 70oc. The suggested reaction

paths during the deposition are shown in Figure 1.

Thioacetamide is known to decompose in aqueous solution at higher

temperatures to ammoniaacetate and H2S. For In3 + (aq) two reaction paths are

possible:

.

.

The hydrolysis to In(OH) 3 is forced by heating aqueous In 3 + solutions

in the presence of ammoniumacetate.

In3 + (aq) can react with H2S to form In2S 3.
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Figure 1. Schematic representation of the different possible reaction paths

leading to the formation of Inx(OH,S)y buffer layer compound.

4. Electrodeposition

The electrodeposition technique is currently favored for the deposition of

thin CdTe and Cu(In,Ga)Se2 films with respect to large area processing, low

cost, and high material yield. In addition, from the point of view of safety, in

comparison to other thin film deposition techniques, electrodeposition has the

major advantage of containing the component elements of the film in aqueous

solutions; this makes for easy containment and safe handling and disposal.

4.1. CdTe Solar Cells

Since Panicker et al. [24] laid the foundation for electroplating CdTe

thin films, various groups have worked on the technique to produce CdS/CdTe

solar cells.



CdS/CdTe cells with both CdS and CdTe layers fabricated by
electrodeposition have been proposed by Morris and Das from Univ. of
Queensland, Australia [8]. CdS was electrodeposited from a 90 oc stirred
solution in which the electrolyte was 0.2 M Cd2+, and 0.01 M $2032- with
the pH adjusted to 2 [20]. The deposition potential was + 40 mV from the
measured cadmium deposition potential, and the growing rate was - 50
nm/hour. CdTe films were electrodeposited on CdC12 treated and untreated
CdS films using an electrolyte based on 2.5 M Cd2+, 120 ppm HTeO2 + and
a pH of 1.7 [21]. The growth rate at 90 oc was -1 _tm/hour. The maximum
AM1 efficiency obtained for the first cells of 10.2% (Voc=753 mV; Jsc=20.6
mA/cm 2, and FF=66%) is very encouraging, when compared to similar cell
structures fabricated by more sophisticated techniques.

Using electrodeposited CdTe thin films, the BP group hasdemonstrated
large area (706 cm2 aperture area) CdTe/CdS module with an AM1.5 global
spectrum at 100 mW/cm 2 efficiency of 10.1% [20]. The CdS layer was grown

using the chemical bath deposition (CBD) process [7].

4.2. CIS (CIGS) Solar Cells

For CulnSe2 (CIS) cells, until yet, electrodeposition has given rather

poor results. To our knowledge, CulnSe2 films with electronic properties

suitable for solar cells were first electrodeposited recently by reducing copper

(II), selenium (IV) and indium (III) species in acidic solution at a potential

value of-0.7 V to -1.1 V/MSE [23]. The composition of this films was

controlled by the ratio between Cu (II) and Se (IV) fluxes at the electrode

surface (o_ = JSe/JCu, Figure 2). For a < 2 the film is cooper rich and for a

> 2 the film becomes indium rich in a large range of deposition potential.

Mo/CIS/CdS/ZnO solar cell structures with an electrodeposited CIS layer had

a maximum efficiency of 6.5%. The relatively low efficiency of these cells as

compared to evaporated cell structures is mainly related to losses at the

CIS/CdS interface rather than to bulk properties of the CIS film.

Surprisingly, the published literature shows no reported data on the

electrodeposition of CIGS thin film layers. Our preliminary study of the

precursors for such growth shows that in principle, these layers could be

grown by electrodeposition from non-aqueous solutions.
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Figure 2. Qualitative phase diagram of electrochemically deposited compounds

in the Cu-In-Se system.

II. Experimental Work

The objective of our experimental work was to develop a reproducible

process for the electrodeposition of CulnxGal_xSe 2 (CIGS), CdS and ZnO thin

film layers on silica or kapton substrates and to demonstrate the applicability of

this process for the low cost, high throughput fabrication of high efficiency

CdS/CIGS solar cells for space applications. The above was the overall

objective of a two to three year research project of which only the proof-of-

concept fabrication process development of solution grown (electrodeposited)

CdS/CIGS structures were attempted during the three month period of this

grant.

The proposed cell structure is: molybdenum/cooper (back contact)

coated glass or kapton substrates/p-CuInxGal_xSe2(CIGS)/n-CdS(buffer

layer)/n-ZnO (window layer)/MgF 2 (AR coating) with Ni-A1 front grids. In

our approach, all active layers of the cell: p-CuInxGal_xSe2(absorber layer)/n-



CdS(buffer layer)/n-ZnO(window layer) are deposited using low temperature

wet chemical or electrochemical methods.

Electrodeposition

Much work has been done on electrodeposition of thin films metals on

semiconductor surfaces. In principal, the codeposition of two metals is the

same as the deposition of a single metal, whereby the passage of a high current

density in a bath of the mixed metallic salts will result in a deposit of two or

more metals (e.g., Cu, Ga and In). Unfortunately, deposits obtained under

high current density are loose, porous, nonadherent, and in most cases,

compositionally inhomogeneous.

To codeposit two metals effectively, conditions must be optimized for

depositing the less-noble metal without employing an excessive current

density. Codeposition can be produced using either potential or current

control. Under potential control, the composition of the deposit can be

controlled precisely, although deposition rates are quite low. Conversely,

current control promotes higher deposition rates, but deposition quality

(composition) can be difficult to control. Regardless of the control method

selected, however, a major limiting factor to deposition rate and overall

thickness is depletion of the boundary layer near the solution/film interface. To

overcome this, pulse plating techniques could be employed to improve

adherence, deposition rates and deposit quality.

To codeposit two metals effectively, conditions must be optimized for

depositing the less-noble metal without employing an excessive current

density. For this, we first started a preliminary experimental study on single

component metal electrodeposition on molybdenum coated silicon substrates.

All electrodepositions experiments were performed at room temperature

without stirring. Within our preliminary work the best deposits we obtained

using the solutions in Table 1:

For convenience, for these experiments we used 2" p-Si wafers, with A1

evaporated on the back surfaces. After sintering the A1 back contacts, Mo was

plated on the mirror-like front surfaces, at a current density of 3 to 10

mA/cm 2. Although not very uniform, the best deposit was obtained at a

current density of about 6 mA/cm 2. After Mo plating, the Si wafers were cut

into smaller size samples, which we used for plating Cu, In and Se.



Table 1. Composition of Solutions Used to Electrodeposit Single Component
Metals on Mo coated Si Substrates.

Metal

Molybdenum

Copper

Indium

Selenium

Solution

Components

MoO3

H2SO4

CuSO4

H2SO4

In2(SO4)3

H2SO4

H2SeO3

H2SO4

Grams/liter

10

5

8

16

17.5

4.5

12

15

Solvent

H20

H20

H20

H20

Copper electrodeposited at a current density of about 8 mA/cm 2 is

uniform, quite smooth and has good adhesion on Mo. However, In and Se

deposits are more rugged, and adhere poor to Mo. The adhesion and

uniformity of the In and Se layers has improved significantly when a thin Cu

film was first plated on Mo.

Codeposition of Cu-In-Se on Cu/Mo/Si was attempted using a mixture of

the plating solutions for Cu, In and Se in Table 1, in (1:1:1) ratio. The CIS

films had good adhesion to the Cu/Mo/Si substrate. Using qualitative EDAX

spectra of Cu-In-Se films deposited at current densities of 5 and 8 mA/cm 2, we

could not find significant differences, as expected, between the relative peak

intensities of Cu, In and Se.

A well-known approach to improve the performance of CIS-based solar

cells is to replace some of the In with Ga. By doing this the bandgap can be

increased so as to obtain a better match to the sunlight spectrum. No Ga

electrodeposition was attempted so far. In general, it is difficult to deposit

simultaneously In and Ga ions from aqueous solutions containing In and Ga

ions because of their different deposition potentials. However, is known that

the deposition potentials of In and Ga ions from a non-aqueous solution of

various halides are nearly equal, enabling the simultaneous deposition of In

and Ga. The slight difference in their deposition potentials allows control of

the In to Ga ratio in the deposit. A higher plating voltage should increase the

proportion of Ga in the deposit and therefore the bandgap.



A possible combination of halides are indium trichloride and ammonium
trichlorogallate, with ethylene glycol as a solvent. Since based on our first
experiments, ammonium chloride does not appear to deposit on Mo or Cu, it
can be used to increase the conductivity of the solution and, at the same time,
to act as a flux. However, by using non-aqueous solutions are used for
depositing In and Ga components, for the two other components of the CIGS
layer, namely the Cu and Se, non-aqueous soluiion components should be used
as well.

Chemical Bath Deposited CdS Films

As an aqueous solution method, the chemical bath deposited CdS films

[7] presents many advantages, including: low-cost, low deposition temperature

(< 90oc), relatively safe to use and large-area deposition. Using 2M ammonia

(NH4OH), 5 mM cadmium acetate dehydrate {Cd(CH3COOH) 2 . 2H20 } and

0.2M thiourea {CS(NH3)2}, in proportions of (1:1:1) we were able to grow 30

to 60 nm (4 to 10 minutes growth time) of CdS films initially on Si substrates,

and then on CIS layers grown by electrodeposition. The growth temperature

was from 50oc to 90oc. Using mirror-like Si surfaces, the best morphology

of the CdS surface films was obtained when a deposition temperature of 60 to

70oc was used.

Conclusions

There is now growing interest in exploring the possibility of using thin

film non-crystalline material, (e.g. CulnSe2 polycrystalline thin film,

amorphous_ Si, etc.) solar cells in space. Such cells, if they can be made to

have beginning-of-life (BOL) 1 AMO, 25°C efficiency exceeding about 15%,

have several advantages over the cells made from crystalline materials:

1) The thin film solar cells are comparatively very light weight and

can be deposited on large plastic sheets or rolls. Such very light weight, large

area rolls of solar cells are easy to stow during launch and recovery of the

space satellite and also easy to deploy after launch of the satellite in space.

2) The thin film solar cells are comparatively much less expensive on

the basis of dollars/peak watt.



3) In laboratory radiation damage experiments, both the a-Si and

CulnSe2 solar cellshave shown a very high degree of radiation tolerance to

1MeV electrons and protons of various energies in comparison to crystalline

semiconductor solar cells. Thus, if these noncrystalline material solar cells

have the same high radiation tolerance in space as they do in the laboratory, a

space satellite powered by these solar cells would have a much longer useful

life in a high radiation environment such as the geosynchronous earth orbit

(GEO).

Electrodeposition is potentially a low cost, high throughput method for

the large scale manufacture of solar cells and solar electric panels because it is

a well developed commonly used industrial process with a high yield.

Our proposed cell structure is: molybdenum/cooper (back contact)

coated glass or kapton substrates/p-CuInxGal_xSe2(CIGS)/n-CdS(buffer

layer)/n-ZnO (window layer)/MgF 2 (AR coating) with Ni-A1 front grids.

In our approach, the main requirements of an effective thin film

polycrystalline solar cell, namely: large area processing, low cost, and high

material yield are assured since:

• all active layers of the cell: p-CuInxGal_xSe2(absorber layer)/n-

CdS(buffer layer)/n-ZnO(window layer) are deposited using low

temperature wet chemical or electrochemical methods, which insures

large area processing and low cost of the cell. If the silica or kapton

substrates are coated with a thin conductive layer, electroplated Cu/Mo

back contacts can be a good option for further reducing the cost.

• using known in-situ purification techniques (e.g. membranes), technical

grade instead of semiconductor grade precursors can be used. These

purification techniques can also be used for recycling used solutions

(e.g. for separation of In and Ga), which ensures high material yield.

Additionally, from the point of view of safety, in comparison to other

thin film deposition techniques, electrodeposition has the major advantage of

containing the component elements of the film in aqueous solutions; this makes

for easy containment and safe handling and disposal.



Requirements for low cost, high specific power solar cell arrays for
space applications such as Lunar or Mars base might become even more
demanding in the near future. Polycrystalline thin film solar cell technology
offer the best hope for obtaining PV devices with low price and reasonable

efficiency, stability and radiation resistance. For terrestrial, as well as for
space applications the most promising thin film heterojunction cell structure for
achieving the DOE efficiency goal set for these modules of 15% is
CdS/CulnxGal_xSe 2 (CIGS). Cells based on electrodeposited CIGS absorber
and solution grown CdS buffer layer show a very good chance for reaching
this goal.
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