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AEISTRACT

A new technique ha*, been d,;;'clopcd to study two dimens.ion;d heat

transfer problems in gears. Thi_, technique consist_ of uansfomdng the

heat equation i_to a line integral equation u,ith the tl_¢ of Green's theo-

rem, The equation i.s then expressed in Icrms of eigcnfunction_ that sat-

isl_ the Helmholt.z equation, and their corresponding eit]envalues fo_- an

arbitra_51y !;haped region of intcrc_t. The cigenfunclion are obtained by

solving an intergral equation. One, the eigenfuncdon,, are found, the

temperature is expandcxl in terms of the etgenluncl.ion:, with ulxknown

time d_,pendent coefficients that can be solved by u_ing Runge-Kutta

methods. The timr: integration i5 P,xtremely efficient. Therefore. any

oh;rages in the lime depcnde, nl cnefficient_ or source terms in the bound-

ary condition_ ,do not itnpose a great computational burden on the u_er.

The rn_:thod i_ demonstrato:l by applying it to a sample gear tooth. Tem-

perature histories at represental_ve :;urface localons are given.

I NTRC)DU CTIIO N

The cooling of g,.'ar_, is all important problem that has been qtudied for

a number of ye,'us. An early model of oil cooling i:, given in DcWinter

and Block (1072). EI-'l{aycmmy ct al. (1989)e_pands on the model of

DeWinter and Block (1972) mainly by holing the impurtanec of the

Coriolis force on oil cooling of gcar_. El-Bayoumy el al. (1989) ;2dso

de_,'elop_; a fini,tt element model of the gem tooth. We now believe that

the fimte elem,_nt method has _,peed and accuracy limitations and have

abandoned this approach in rawer nf the Green's, function method

described hotel n.

In tile next ._ection. a new d)namic, accurate and efficient solution

rnellmd for t'_o. dimensional heat transfer proble ms in gears is described.

"l"be suit;don method consists of transforming the heat equation into a

Dine inlegrnl equmion with tLe use of Green's fimction_ with unknov, n

)Member ASME. **Member AIAA. ***Pellow ASMI-

time dependent coefficiettts. The transformed integral equation is used

t_ oblain the, dynamic equations for the time dependent coeffi,:icnts I()r

each ¢igenfunction. ]n order In obtain the eigenva_ues and COtTespond-

ingeigentunctinn:;, the I-{eImholtz equation for the ei_;en funution, i_ tram-

formt:d into a line inle£ral equation by the u_e of the two-dimensional

fi'¢e ,;pace Green's function. The integral equalima is discrctimd into a

set of hornogenoug simuhaneou_, equatinp.s. The discretizcd version of

the eigenfunctim_ can be obtained by solving a. set (ff homogenous

sinm'llant:ous eqt_mions.. The obtained dynamic equations, cart t_e inle-

grated extremely efficiently. Therefore, a_,y change _ in the boundary con-

dillon_ do nol bnpose a great computational burde'n. In the third se_ liOlt.

the computatqonal results and a di_cu,.,,ion is pre._t:med.

FORMULATION

In thi_ section, an accmate and efficient solutior_ method for suh'ing a

time de_ndt'nt two ,limcnsionnl heat problems in gc'ars is d,:veloped.

"llle temlmralure tield is ¢xp;mded in term,..of the eigenfi.mctions with

unknown time dependen_ dynam,c crK'fficien_. The dynamic equation

for the time depender=t coefficients of each ei_,enfi mclion is uh',ained b_,

the use of an integral equati(nL

Consider a gear tooth geometry shown in Fig 1. Tbu ttat_icnt heating

of th,: gear tooth is 4,. "¢ribed by

i)T _V"T--=

at
Ii)

whctc V 2 = _21,)x2 + 02/t_y 2 and ot is the thermal diffu,;ivity. The

botmdary condition for the Icfl side nod l,_p nf the gear is given by



where the equation rcpre_ntg the heat output to cooling oil. _ is the

vector coordinate on the boundary, K is the thermal conductivity, n is the

outwaxd pointh_g normal unit v¢ct_)r, h is the heat lrat_sfer coefficient

and "1"c ig the te_nperature of the cooling oil. Tht: boundary condition for

loaded side. {meshing surface) of the gear (right side in Fig. 1) deter-

mines the heat conduc6on into gear body and is given by

_n

where F o _s the hcat flux inlo the gear and the remainder of the

boundary Ig described by th.e vanishing natural derivali_e at the tem-

perature, cqW_n = 0.

J_ nan_t_s f( Lr_T!'an., Li• nJ_HJL_t FJ._

Rather than solve the phy._ical equations direcdy, as in a finite Hement

method or liaitt: difference method. we develop her(, a Gtecffs funelion

method thz_ reduce,; the two-dimens.ion;d problem 1o a one-dime ngic_nat

line integral over the gear t¢yoth boundary. The lint: iz_tesral equaiion

yields the dynamic;a] equaiiong. Thig procedure yields a computational

advantage over the Frea,ious approaehe.,; where there is no redu,-tion in

the problem dimension:.dly ;rod *:he time and spa=:ial integrations are per-

fan:rind simultaneotlsly.

-0,5 -0.4 -0.3 -0,2 -0.1 0,0 0.1 0.2 0.3 0.4 0.5

Figaro 1.--$imul;_ed ge,ar tooth goomotry and all the

boundary conditionz.

We assume, the foUowing eigenfunctioas, Vn- and cigenv_Jueg, k. are

Laov. n and the eigenfunetinng ._atiqly the Helrnhohz ¢quatton,

(_7_'+ k_)vn :0 (4)

mstde the gear tuotlt with vanishing normal derivative, ;')¥n/i)n: 0. (The

mcd_od for obtaining the eigen_ alut'_ trod elgeafunctlons is _.ivcn in the

fotlowizg section.) II can I',e shown that these ¢igenfuncdons arc or-

thogoaal. The eigenfun(:tioos will be no(realized to unit) by

The heat equation is tra'asformed inlo a line integral equi_tioa by usi,ag

Gree_'s theorem, fWyld, 1972)

(5)

where ds is the surfaceelcment and dl is the line elernent. Substituting

P.q,;. ( I ) and (4) inlo the left hand side of Eq. (5) yicld_

I

._. J; 3T.
(6)

where the vet:tor_ _..and _ in the integration limits are shown in Fig. 1

(a driven gea¢). Not_ Ihat a considerable simplificatior hag been accom-

plished for the line integral on the. right hand side of Eq. (5). The only

contribution comes from Ihe L,oundat3' eonditiong dc._cribed by the non-

vanishing nozmal deri,_ativcs, Eq-'.. (2) and (3). Substitution of F..qs. 0,.)

and (3) and expansion of the temperature field in terms of the

eigenfuncfiOL, S a_

T(._.t)= _n.(t)vo(_l (7_

yield a dynamic equation.,, for lilt: lin'te dependent coefficients. Tin.

where

]
Ja'' _" ""

(gb)

The line inteL:ral._ are easily calculated ,_. the boundary conditions ate

chan_;ed. Therefore. the t:alct,lall,m burden tbr ct=aaging the boundary

conditions is mimmal. These coupled first order equation<, in Eq. (_,1 are

integrated efficb:nlly with Runge-Kutta method

gtg_mmlu•_art_Lg___n_zctI__o__
_e method for nblaining the eigenvalues and eigenfun,:tionx n.,;ed to

effee_ the simplification of the pn:vit,ns ,ruction is given below. These

fimction,, art: t_,¢, aliment, lanai anaiogs of the trigonometric fundinns

USed in Fourier methods.

The ei,qcnvaluc_, 1_,, and the corresponding eigenftm¢lions. Vn art:

obtained through the use of two dim¢nsional Free ._paee Green'_ func-

tion (Ko.,,higoe and Tubis 10P,9).



o(._1_')= ¼)l_o"(k.l_-rl) (!0)

where H0(t ) is t_e H.ank¢l function of t2_c first kind and the Greeza % lunc-

tiol) satisfies the inhomogeneous Ht;]mholtz equation.

(v_*14)_(__!_')::-_(_-.r) (ll)

_herc 8(£) is the delta function.

Again utilizing Green's theorem, one obtains

- .o.,

W_th the use of Eqs, 14; and ( 11 ) and vanishing normal derivative bound-

at')' condition for file eigenftmetirm_ the integral cqnatir, n is _implified

(13)

This integral equation yields th,." value of _itn at any location in.,.ide the

ge(_r tooth when the values of Yn on the gear tooth boundary are kno,vn

Now let x approach a I_fint. _ on the gear tooth bounda.'y, then [iq. (13)
btr.t:oll_s

(14)

where I)_, is the contribution -from the singularily in thr intcg,md

(Bnrl(m and Miller 197 I) and it, given by:

t_ = inside angle at the point _/2;t (15)

and P ,designates th_ Cauchy principal v',due integral. The eigenfunctimb,

V, i_ discredzed in F_.q. (1,_.) and yi,.'lds a set of ,¢imultaneous eq)mtit)n_.

The ei_envalues, k n are determined by setting the det(,rminan( of d)e

simultaneous equalions In zero. Once Ihe ,'_ge_walocs are determined.

iI)e correwonii. 7 eigcnfuoctmns ran be obtained through lhe

sintult_euu5 equalion_. Tb¢ fl,rmulation dc,,eloped in th_s _ection can

no_ bc applied to the goal tooth geometry (_l)ow)) in Fig I) and the
caleulauon result discu._sed.

SAMPLE CAILCLILA'TION

The techrfique dt",eloped in Ihc prcviou_ reclion ._applied to Ihe gear

tooth geomctry shown in Fi 8. 1. Variou_ coordmate_ are labeled in F_g. I

in order to specify the key fi.'atures ('ff the gear (oofl_ geometry. The

cooardinate_ r)fthe._e points me siren in table 1. The physical constants

uged for the calculation are: the gear thermal di ffusivily, 0_= 0.452 fl2/hr;

the thermal c{)nduclivity, K = 25 Btu/hr/ft/F; 'd_c (_il ten_pc.rature, "fc =
2(X) F; the heat transfer coeffn:ient, h :-- 0.34 Blu/sec/ft2/F follows from

DeWinter and Block (1972) and El Baypourny et _d. (1989).

The heat flux, t-_), along the boundary from the location _ = _ ).o ?

(shown it) Fig. 1). i_ given a_ a function of the distance measured from

the point /_ (:;hown m Fig. 2). This is the heat gene rated in mesh for a 1-

inch wide gem:, with a pitch radius of 6 inches, rotating a 10,000 rpm ,rod

transmitting 500 hp. We are intere._ted in gear !_tcady-sl._te _:_mperalnre_

that take hundred._ of :_econd_ to reach. Hence, the detailed temper_ture

changes that oceuz as the gear _oes in and out of mesh cannot bc re-.

sol'_ed. "12,tu_.both the tating and the rooling have been averaged over a

e(_mpletc rcvoluti(m cycle

Table 1 .---Coordir)ate of

Doints in Figure 1

[ Figure 1
Iocali()n

x. inches _, inches

-O. 19") O.541 '

.073 .795

.274 .337 ]

.319, .184

.371 .11¢_

•362 .()l)[l

Tlae tenlperatnre c_qh-nlalJon wilx performed u',in_ 21 eigcnmodc_. (Tiff,.

was found Io ixovidc adequate cons ergence.)The re gull,, presented hereto

were Sere:rated on a 486 -PC with a total ruvninl..' lime, including thr

ct)_lly eigenfunction _ene_ alton, ot les_ th;m o_e hour
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Figuro 2.--'Time-averaged ho=_t input to gear.
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Figure &--Gear surface, ter_peratu re at select ecI locations.

The cigea,,alues and the ¢orresp<mding eige_.funt:tious aie obtained

through the use of,discreli;,cxi w'.r_irm of Eq. 1'14-1.The disuretit_ttion i_

can'ied out with 40 line .element', and on each ell met11, the second order

approximation is used to represent the geometry a_ well as the

eigenfunctions. The temperature calculation:; at three different Io,:ali(m_

on the gear tooth boundary. (0.0,0.397) represented by the solid line,

(-0.228,0.066) by the dashed lilac, and (0.174,0.194 )by the dotted line

are shn'wn in Fi_r. 3 as functions of time. The curv,e labeled "11 i._cz;nlered

on ".:helop uf the gear al location (0.0, 0.795.1. "1"2or, the cooled side of

the gem" in the re.glen cooled by the oil at (-0.22g, 0.464). "13, the highest

curve, i_ on the side heated durin_ mesh, _li_htly above tb.e pitch [.mint at

(0.174, 0.5.92). Because both the l_ating and cooling functions have h(:en

ave raged over a ¢oroplete gear revolution, these trmperantres can best be

interpreted as out-of-mesh t,=,nperatures.

At the I"xe._ent time d:,ecalculation mt.'thod i; hard wired t'br a tingle.

but representative, pr_hlem. Furthermore, we have not yet included doe

triangu]ar porti(_n of the geax exlending to the axis of rotadnn. Generali-

zation ef the method is planned now that it._ _pplicatien to a _pecific

problen_ ha:; beer) demonstrated. Appendix A "ghemJa] Analysis _f Si,ur

Ocarx'" provides the: getJmelric |ommlalion inpt_l.

CONCLU,<;ION

A new technique ha_ bec,_ d=vcloped to study Iwo-din:cnsioti;d heat-

int: nf gears. The eorrtputational ad_,;mtage of thi_, technique o','er

p_evious npproaches using the linli¢ ".,lemcnt method or the finite dif..

ference method results from two fean_re_: Fir.,,t, the problem is reduced

from two dimensions to one.."Second, the lime and spatial integrations

a_c separaled. "lherefor¢, when compared with olher nlethod:_, this _ew

lechmque can provide substantial improvements (one order of magni-

tude) in computational speed, llowe_'cr, the bc:=efit of the dimensional

reduction is manife_;tc:d nol oaly in the ct_mputation ._;peed but al_;n in

the ease of problem set-up since one is required to deal with the bound=

a_y nut th,: entbe two-.dimensional gear g¢:omet_y. The uther benefit of

this technique, ha,ed on the q:paration of time and spatial integration,

is accurat:y. This technique take.* the full advantage of the spectral

method th at h;l_ exponential solution convergence. This sh¢)uld be corn

pared to finite e!ernen= or difference _'nethod_ where only algebraic con-

v_.:rgenee is possible.

Since the new technique is extremely efficient, any changes in the

time dependent coefficients or source term.,, in the boundary condilJons

do not impose a great computational burden on the u.vet. Thi_ re,cult i,,

very inlpt_rtant when performing accurate Scoring Analysis in gearx.

This ;dlo',vs t "e bulk (or blank) temperature to be accur_ttely known.

Furth,.'ron)re, the gear out-of-mesh temperature is not a constant along

the tooth profile at steady state running condition._, ax is often assu mexl

by gear engineers. Tl, e m_:thod is also more adaptable for use in _n_aH,

lubricated, concentrated cont_._ct_, such as gear's, .,,iacr hiL:h re.solution

can be obtained without u_ing large numbers of elem_:nt_.

Currently. we are planning to cxtcnd thi_ tech._ique to a multiblocl-

application that includes tl't,_remainder of the gear _.ector and that further

optimize_ the comput;_:ion accuracy a;_d H_ced.
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APPENDIX A

THERMAL ANALYSIS GEOMETRY FOR S,PUR GEARS

by

Lee S. Akin * and Dennis V, "Ibwn_e, nd '*_

to the gem Icmperr_,rurc analysis problem. The above is a_.x'o3npl L,hed by

u_.ing special integration techniques newly developed to accommodate

the special conditions found in lubricaled concentrated sliding conlacts.

such _ts found in high performance aircraft gear drlvc_. This zJppendix

d_;scribes the inuicate ge_x geometry needed for thi._ analysis, mostly

available in the literature but certainly not all in one place This paper

h_:pc_ to fill that need.

ABSTRACT

The gear geomeUy needed to perform a complete Ihermat analy._is for

a gear set is vet'3" ¢omph:x and has, to Ihc atltht_r,_ knowledge, never been

published befo_e a_ oat; set of equations needed for the an',d_,sis. The

thcmaal an_ly._i_ of gears i_ .'t very impo_ant subject in that it can bc w;cd

to determine the ._cofing failure c'riteria whit:h include_ the blank t'butk)

temperature and the fla_l_ temperature a_ used in the Blok _,,cormg
formula.

1. T_-'---T_-_T_

The ,_eometry for tb.xs ana|y_;is must include the inw)lule genmelr'y.

the load variance whcrl the teeth cloth is m a sin.I,.Je or double ;ooth

contact r.oue, tooth load sharing due to varying deflection, long and

short addendums, up azld/or ro_t relief. Also included ;.ire the af_ecl of

heal pnrtitMnin_ due to vnD.'ing loofl_ contact sliding velo.cities over con-

stantly changing Hertzxan contact band widths, gc_u sol speed and iL_.

affect on tl_ It_brication regim,_ (film Ihicknes:i versus surface rough-

nC-_.K ).

This geomel_-y ana]y._is will he u_d as tt_ input porameters to com-

plete the analytical computation of rUnmng gear temperatures using

Green'* function.

INTRODUCTION

"['ba_. is otae more in a serie_ of puper_ l_y Ibe authors on _.heir contim_d

study of the art:of the predicticm of the unit of scorin,_ or scuffing in

high pefformanc¢ gear drive mechanisms and our a_templ to make _t

more scientific. These _l,_di,._ have t'xamined a _erie:; of disciplines from

an interdisciplinary lubrication theory fief. 1). tt_, study of the effect of

winda_:'.e tm the lubricant flow into high speed gear teeth (Ref. 2) and a

model for lubrzcant flow in b_:tween l;ear teeth (Rcf_. 3, a, 6. 7. I(I

and 11, 13, 16),

In ncldition the_e stue._e _ have ¢valuatcd ,2,v a_ alytical and e×pcdmen-

tal spur gear tc.mp_:rature effects on opc(ating variahle_ (Ref. 5). gear

lubncatiun and ¢ot'_ling studies (Refs. "7 to 9. ar=d 12h irwestigation_ of

affect of tnmsient (time variant) thermal azzd lubric:anl houadary I_yt:r_

(Refs. 14 and 15).

Most of the abnve and all of the thermal w0_k was done using finile

element m_:tho,Js which prt)duce large matri_es cau,_ing x]o,,_ e¢,mputer

solution_ to provide _n¢i_fztclmy accuracy. This geometry analysis is

developed [or, "a computer progTam for tl_e t;ompu_ali,,n ufrunning _ear

tenlpe_alures u'dng C]ree..ns/'tlnChon" pmvidt:._ a mew and unique _,olulion

* Geare_carch A_,:sociates. '_* NASA-Lc'_i'_ Rc:_earch Center.

FORMULATION OF GEOI_ETRICAL EQUATIONS

The eqt*ations for the,' involute ctnwe in recta_llal coordinates i_ shown

in equation set 2 (_ec Fig. I ).

- Involu'le _urv_

p = R b

0

E

/ 13
. .......... ! .... :

• Base

circle

2, :_ ,-- (c_0 -_ 0sin0) R or x "-:.R .,.in0 see nomencallme

y -- (sin0 + 0co_0JR_ or y= RcosO

x .,_y --(14-'0 2
R_



The polar/v¢¢tor, d a_Lgle O, in Fig. 1 may be calculated from:

3.

0=:(x:+,.'- _/ k_ = R_,

-t_° ,[.(R= =.,,2_Rb j

wh,..,.: R=--_'-a an --:E_a R,, ---R¢°_-_
2P 2P

so that _e tres_.ure angle 4 in Fig. 1 is:

Rb R

tan_. The Janpo_lant radii ol curvature equation:,, some at critical loca-

liOllS, a_e showli below in equation :,et 5, and set,' Figs. 1 at_d 2:

5, I'b = Nsin 0 = £R b and for tile mating gear Pm :" Rii,ginI_ = I"mRhm

'lhe lowest point of contat:l for the mesh is p_ calculated from:

t _ 2_112

Pe = Csin _-IR_ + R_;)

and

Pcm=(Rom +R_.a,]' t 1'2

([ ,2 ]1/2

wh,.'.re C sin _ = L a the line of actiofh, and

[{Re,n= Csiae,--_,/RS,:41"-g,,, ):+R_m

is thu lr.,-wc:;_tpc,int on the mating gear. "llne radii (>f curva.ture at tlae low-

est and highest points of single tooth conzact may be colour,areal from:

p.-- c'si._-(R_., 2"'2-R_,) +Pb

".--(4-""g)":'

v, herc the base circle pitch is Pt, --_eo._¢ and the circular pitch

OG

\ !\." \ N

>, ",h
area-ca \'\ , \ \ /

/ / i

, / j/ /

FLOG-

_ Rbl N

\\ ,|_\ Ri'PC1

', \

_'.\ \--- RL_._TCt

"--\ \

\ \ \
\ \ \

'\ \ \

_[__:L_._j_ Pb = base ciroular pitch - -M_J'; ".

,,/ ,,_ Base_circular' pitch=Pb --_" t_ ,_x';-J"_

! I..---L,,no.:.o,,,ooo,,,o,.,,o,-....-..41
]*_. -- L_,ngth of line of ac_"m _"1

Figure 2,--Gear mesh line o_ action geom=._try,

,-tI)

is P-: _-. The distance of roll/slide S along the: involute curve

may be calculated by integrating _wer the roll angle ¢, from (w_gle,

R.ef. 17), set:. Fig. 1:

().

"gl

and since, as can be noted frota Fig. 1, O = Rb¢' = Rb tariff anti g -- --._P•

2 _ Ra

thus SI_; --"_P2__7_-P_L over any atbitraw portion ,ol the profile with sob-
2RI,

,;cripts I and 2 and S, =o "" Pt2_-O_ v the wllo]e'profile horn the fir,,
- 2Rb o er

poi_lt atr mesh contact on the profile at 5:c to the }a_! pn,nl at out_ide

diarm:ter S,. For exalrq)lt.: hon'. Rt; to R I to R (at pitch pt_inl) to i:t h to

R n at the m:t_ide radm_. The arc len_lh along the ba_c circle 3". can he



calculated fret,, _were s_lbscripo, I and 2 arc at arbitrary location,; on the

tooth profile) a!; shown.

7. _,1 _ = Rb(t:2 - _1 ) = Rb (tan02 - tanOl'lg° that _-1-2 =

P._" Pt

the distance _ becomes k =: P2+OL aquantity i0sefui in Iherma] calcu-
2R b

lotions. "l-he tIansiuon t_me, as a function of radii of curvature and its

roldzg velocity between any two poi.nts along the tooth• can be expressed

i_a t_uzticm set g as:

v _,dp_=_d£_n _-r_, rod
dt dt sec

where:

__. _- dp sodc a_ a con, rant ,'nd since p = _:[;:b then d_ = c_xl; and t°dt = _,.
dl E p

O) {O(f_ --/t )

t,,,t p p'--<--Z(':-"):
/¢h"

92._7- P..Lin O_L
(('2 - tl ) = RbOi P l "_sthe lime it takes for tile gear to rotate from £1

to :'-'2" The critical dimensions a.loiii7 the lint: of a.cfioti are showfl ill fig-

ur¢ 2 and described below in equation 9:

9. Z =- -.4Rot 4- \/Re2 - R_,2 -C.,;ioO is the length Of the "line of

contact b- £' as a subs, at of the "line of action a - g"
Nov., we can cak:ulatc th,: r,,'id_.h of tl_. ttertz_ an band of mutual con-

tact at the Jnesh point frum equalioo |0 (Timoshenko R.ef.l 8,_

(16Wn(Ki "t'K2 )PIP2 -_lt2 -,
when::: KI _ l .- v i-

,0. j --;*.-7 ,,rid

l-v{ 2(1-v `_ "_
Kz--

"xE--_-and KI+K2-'_ k E J andsimc:l)l+P2a'I'a::C_in_

and W n --: Wt/ctv_ _ --- Wt¢.t:c _, _et, Fig. 3, and E I =IL 2 =: E

B= 3.19_ rcosOCsinWt[1- v2),DE (PIP')1/"

The rolling velocity for the gear',/; and it's _ating gear V 2 ave cak'u-

lated from equation set I I:

II. VI = nl--_P--I, ft/.,,uc nnd V2 =: r_3_0P--_ ft/,ee, so that the slidmg36O

veloctt2, V, = V t - V_ ,= .-_(nlp t -n2p _ ) fds_c _he,_'.: V t = V & _,'_ =

7111.

7o-w,
Figure &--Gear tooth profile showing normal load W_=.

"lllcrcfi)re the rolling velocity anywhere along the profile can be cal-

culated from: V 1 =- ---riP---L-"- fff._cc and Vm n_prn
l 14.59 -'- 1"1-_.5_ ft/sec for the me.l-

ing gt_ so *at the sliding ,. elociiy i,, calclflatcd from v, =np, + n mPm,
114.59

fi#sec wh_,'rc n ---_pced of _ear and n m --- the .';peed of the mating gear.
Anotiier value needed to calculate, die coefficicm of friction i_ the total

velocity from: Vt = no i + nmP:m
1 14.59 ft/scc.

Vqe olin ll,a'a, t'aleulalc the eoefl3cient of friction as:

• (3.|7x 106Wt se_'O'_

1"2.. f=00127,o,,0 t E<.7<,W',-1where F= to._rk f_ce width.

btcp-- visc:_stty in eeniSpoi_e and W t = tan_cntiai tooth load in Ibs. "1"has
we fiend ourcelves in a posilion to cah:ulalc the in'{tantaneou_ heat flux

qfP)l a£ a function of the radius of curvature at the in_;tantaneous po_i-

tioa "i" along ti;_. line of contact per equation Set 13.

_3. q(o,) = w, ,,e_(,_i,.-(,,p,-.=n,,.)
170 33(1 Bl'U/min

ihi_, equation can also be written in a[orm more v_sef,II wring the

piruo_ speed onJy:

'l(Pl)= "_(-_3_"t'O _'P'-n_P_i) B'lU/min, where nlg----_p the

gear ratio At time_ it i_ more convenient to cakulate the hear flux from

the radiur, vector at the instantane_Ju,; ¢*mlact point_ where:

qR i - Wtkc¢(_)npl/CsexO(i ' ( 2 It., 2 kl#2
17033(i - llrJ-tRl' It;l,<--R_,j

t

+rtigti',pi Rf,LeC-Rp.,,) l B'ft't/min

CLOSURE

This appendix dcvclop_ the geometry analysis for ._he input for

the c_mputcr solution of the thermal analysis of ,,;put gears using

Circe n s flinctior= to .rolve for gear blank _,ur face temperatures. This
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8eametry analysis p_ovidcs thc gear tooth geometry input, the

gear tooth sliding distance panmtcters, the rolling and ._iiding

velocity inputs _md the equations for the frictional heating

de,,'eloped dtuing the gear 1o0111 meshing, as a function of the

location on th,_ gear tooth.

Using these inputs Ihe i_ro_ra_ll call IIK;n dc, lermine the tv, msient

and steady state wmperaturcs of the gear teeth.
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NOMENCLATURE FOR APPENDIX A

width of the band of mutual contact at the memh point

center distance for tuatmg pair

Young'-,, modulu_ of ela,._tieity

face width

coefficient of friction

gear ratio Ng/N o

nutnb,,:t of leech in gear arid N mnurnber of t:eet.ll in

the mating ,gear

n pinion speed, rpm.. ,., for matin.,? gear and n_,

tar pinion

P diamet_al pitch of file teetb

cir<:ulai pitch ofgear a,d its, mating gear

qR I he_! flux calculated usin_ thc i_'_taman¢ou,; radius
_,'ectnr

q(_'_l ) heal flux due to _liding fi'iction at instantaneous p()tnt

of contact using the radius of cur_,ature as a

parameter

R radius vector to the pilc-h point and R m for tile mate
at the contact [_3int

R h base ra(lius of the involute ctlrve (its t_igin) and Rbm

fat mating gear

Rc radius vector to lowest pout of cant.act front center

of gear anti Re, _ for maling gear

R_b & R.I,b base radius of gent and pinion re,,txcti,.ely

Rgi & RpI inslantaneous r_tdiu:, og gear and pinion ¢cH',cctively

Rg o & Rpo Oulside radius of gear anti p,inion re,T, cctivcty

RLPC2&RLPCI lowest point of con,;act for gear and pinion

respectively

R o

RI & R h

V

V

V I

W I & W n

x&y

_11,2

_N

0

.ttcp

P

{3¢

Pl &Oh

ouv.ide radms of the gear and end of the involute

curve and Ram for mating gear

radiu_ vector to lowest and highest points of singJc

tooth contact

velocity nlon_, the cura,e (involute)

the sliding ,,e'tocity a! nn instantaneous point v I -- v 2
in the mesh

the tot v3.v¢ Iocity at an in._tantannou_ point in the t:nesh

_"14- v 2

rolling _,c)ocity of the gear and its mating _,ear

tangential and normal (perpendicular) load.

respec'!ively

Carte.,;ian coordinates of the invohtte carve from its

origin nt t_te ba,_e circle

Icng_.h of the line of c,omact as a subs(re on the hnc

of acdon

tile time il takes to rotate from _1 to t;2

virtual number of teeth expansion or reductto'n fo_r

Icing amd r.horl addendums

[oll angle on tooth

involute polar angle = invO = cane - _b= g 0 (rad_

oil vb.co_,t),, in cp

radiu.,, of ctlrvablr,.." tr,'m'_ the base circle and p._ for

the m atmL_ gear at contaG pom_

rodin:, of cur';attare tit Iowe_,t or inilial point of

contact from base cite.It a_d 0¢ m for mating g(:ar at

contact point

radiu,: of curvature txt lowest and highest poit_ts of

single tooth contact

p_'es_nre angle of -mesh
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