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ABISTRACT

A new technigue hasy been developed to study two dimensional heat
transfer problems 1n gears. This technique consists of transformung the
heat cquation hito a line integral equation with the use of Green's theo-
rem. The equation 1s then expressed in lerms of eigenfunctions that sat-
isfy the Hedmbnlz equation, and their corresponding eigenvalues for an
arbitrarily shaped region of interest. The cigenfunction are obtained by
solving an intergral equation. Once the eigenfunciions are found, the
temperatwe 15 expanded in terms of the elgenfunciions with unknown
tinnie dependent cozfficients that can be solved by using Runge-Kuita
methods, The time integration is extremely efficient. Therefore. any
chinges in the time dependent coefficients or source terros in the bound-
ary conditions do not impose a great computalional burden on the user.
The method is demonstrated by applying it to a sample gear tooth. Tem-
perature histories at representative surface locatons are given.

INTRODUCTION

The cuoling of grars is an irsportant problem that has heen studied for
a numbier of years. An early mode) of il cooling is given in DeWinter
and Block (J972). Fl-Bayoumy ct al. (1989) expands on the model of
DeWinter and Block (1972) mainly by noting the importance of the
Coriolis force on oil cooling of gears. El-Bayoumy et al. (1989) also
develops a finite element model of the gear tooth. We now believe that
the: fimte clement method has speed and accwracy [imilations and have
ahandoned this approach in favor of the Green's function method
described hicrein,

In the next section, 2 pew dynamic. accurare and efticient solution
method for two dimensional heat transfer problems in gears is deseribed.
The sulution method consists of transforming the heat equation iato a
linc integral equation with the use of Green's functions with unknown
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ume dependent coefticients. The transformed integral equation is used
toy obtain the dypamic equations for the time dependent cocfficients for
each eigenfunction. In grder to obtain the cigenvalues and coirespond-
ing eigentunctions, the Helmhokz equation for the eigenfunctions is trans-
formed into @ hine integral equation by the use of the two-dimensional
free space Green's function. The integral equation is discectized into a
set of homogenous simulancous equations. The discretized version of
the eigenfunction can be obtained by solving a sct of homogenous
simultanuous equations. The obiained dvnamic equations. can ve inte-
grated exremely efficiently. Therefore, anry changes in the oundary con-
ditions do not npose a great computational burden. In the third section.
the computational resulis and a discussion is presented.

FORMULATION

In thic section. an accurate and efficient solution: method for solving a
e depandent two dimensional heat problems in gears is developed.
The temperature field is expanded in tenic of the eigenfunclions with
unknown lime dependent dynamie cocfficienis. The dynamic equation
for the time dependent coefficients of cach eigenliniction is shained by
the use of an integral equation.

Consider a gear tooth geomctry shown in Fig 1. The uancicnt heating
of the gear toath is 4« cribed by

DT

()t =u¥'T (i)

where ¥2 = 9%0x? + 9%y and . is the thermal diffusivity. The
boundary condition for the Ieft side and top of the gear s given by

Ka” h(E)(1(8)-¢) (2
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where the cquation Tepresents the heat output o cooling oil. ¢ is the

vector coordinate on the boundury, K is the thermal conductivity. nis the
outward pointing normal unit vector, h is the heat transfer cocfficient
and T, is the temperature of the cooling oil. The boundary condition for
loaded side (meshiag surface) of the gear (right side in Fig. 1) deter-
mines the heat conduction ino gear body and is given by

AT (=
Ks-= Folg) 3

wheie Fj1s the heao flux into the gear and the remainder of ihe
boundary 15 described by the vamshing normal devivative of the tem-
perature, 9T4dn = 0.

Dypamicul Equations for Transient Heat Flow

Rather than solve the physical equations directly, as in a finite element
method or firite difference method. we develop here a Greea's funciion
mcthod that reduces the twe-dinsensionad problem to a one-dimensional
Jine integral over the gear woth boundary. The ling integral equation
yields the dynamical cquaiions. This procedure yields a computational
advantage over the previous approaches where there is no reduction in
the problem dinnensionally and the time and spatial integrations arc per-
formed simultaneously.
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Figure 1.-~Shimuliated gear tooth geometry and all the
boundary conditions.

We assurnce, the following eigenfunctions, . and eigenvalues, k,, are
known and the cigenfunctions satisty the Helmbolz equation,

(72 +k2)w, =0 (4)

mside the gear tooth with vanishing norrnal detivative, dy, /dn=0.(The
method for obtaining the eigeny alues and eigenfunctions is given in the
following section) It can ke shown that these eigenfunctions are or-
thogonal. The eigenfunctioas will be normalized to unity by

”w,’,dwy =1,

‘The heat equation is transformed inio a line integral equation by using
CGireen’s theorem. (Wyld, 1972)

- ) al;l B]\
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where ds is the surface clement and dl is the line eleraent. Substituting
Egs. (1) and (4) into the left hand side of £q. (5) yiclds
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where the vectors z and ¢ in the integration limits are shown in Fig. 1
(a driven gear ). Nots that a considerable simplification has been accom-
plished for the line integral on the right band side of Eq. (5). The only
contribution comes from the boundary conditions described by the non-
vanishing normal derivatives, Eqe. (2) and (3). Substitation of Eqs. (2)
and (3) and expansion of the temperature field in terms of the
eigenfunctors as

T(.0)= Y 0, (0va() <7\

yield a dynamic equations for the ume dependent cocficients. 1.

.f
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where
Agey = J}(E)wm[i)w“[i)w (9a)
B, =T, J'} (&)wa(E)a (9b)
Cn =j: F(i (2;>‘Vn(g)d| (9¢)

The line integrals are easily calculated as the boundary conditions are
changed. Therefore, the calewlativn burden for changing the boundary
conditions is minimal. These coupled first order equations in Eq. (8) are
integrated efficiently with Runge-Kutta method.

Elgenvalues and eigentunctions

The method for oblaining the cigenvalues and eigenfunctions used to
cftee the simplification of the previvus section is given helow. These
funclions are two dimensional anaiogs of the tigonomelric functions
used in Fourier methods.

The cigenvalues, k, and the corresponding eigenfunclions. y, are
obtained through the use of 1wo dimensional free space CGreen's func-
tion (Koshigoe and Tubis 1089),



G(X,

%)= THO(k - %) 10y

where HO“ '35 the Hankel function of the first kind and the Green's func-
tion satisfies the inhomogencous Helmholiz equation.

(¥212) O (R} = -85 - T) an

where 8(X ) is the delea funciion.

Again utihzing Green's theorem, ong obtains

U(G(V'? X2y, -y (77 2]
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) on’ ¥a dan’

With the use of Egs. (4) and (11} and vanishing normal derivative bound-
ary condition for the eigenfunctions the integral equation is simplified

v fvaff) oo ay

This integral equation yields the value of v, at any location inside the
gear tooth when the values of y, on the geartooth boundary arc known

Now let X approach apoint. £ on the gear tooth houndary, then Eq. (13)
beromes

. -, 3G(EE
ﬁéur_(i)a-PJ \yn(é’}-—én—t;)-dl’ =0 (13)

where Bg is the contribution from the singularity in the integrand
{(Burton and Miller 1971) and is given by:

fi, = inside angle at the point &2 5y

and P designates the Cauchy principal value integral. The eigenfunction,
, is discretized in Eq. (14) and yiclds a set of simultaneous eguations.
The eigenvalues, k; arz deternmned by setting the determinant of the
simultaneous equalions tu zero. Once the ~igenvalues are determined,
the correspondi. 7 eigenfunctions can be obtained through the
simultasievus equations. The fermulation developed in this section can

now be applied 10 the gear tooth geonetry (shown in Fig 1) and the
calculation result discussed.

SAMPLE CALCULATION
The technique developed in the previous section ia applicd to the gear
tonth geametry shown in Fig. 1. Variou< coordinates are labeled in Fig. |

in order to specify tbe key features of the gear tooth geometry. The
cooardinates of these points are given in table 1. The physical constants
used for the calculation are: the gear thermal diffusivity, o = 0.452 12/r;
the thennal conductivity, K = 28 Buwhi/fUF; the oil temperatare, T, =
200 F; the heat ransfer cocfficient, h == 0.34 Br/sec/ft/F follows from
DeWinter and Block (1972) and E} Baypoumy et ad. (1989).

The hein flux, Fy,. along the boundary from the location £ = f 10 7

{shown in Fig. 1). is given as a function of the distance measured from
thepoint 4 (shown m Fig, 2). This is the heat generated inmesh fora 1-
inch wide gear, with a pitch radius of 6 inches, rotating 3 10,000 rpm and
transmitting 500 hp. We are interested in gear stcady-sfate temperatuses
that taxe hundreds of seconds to reach. Hence, the detailed terperature
changes that occur as the gear goes in and out of mesh cannot be re-
solved. Thus. both the b ating and the cooling have been averaged over o
complete revolution cycle.

Table 1.——-Coordinate of
Poirds ir_l Fi_gure 1

Figure 1 x.iaches |y, inches

location
i -0.197 0541
5 073 796 !
5 274 337
3 3 184 |
£ AN RS
f 362 060

The temperature caleulation was performed wsing 21 eigenmodes. { This
wiss found to provide adequate com ergence.) The resulis presented herein
were generated on a 486 -PC with a tota) runaing time, incuding the
costly cigenfunction generation. of less than oac hour

Heat flux, FO, Btu/sec/ft2

S S PO N W N WO
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Distance from the point b, In.

Figure 2.—Time-averaged hoat input to gear.
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Figure 3.—Gear surface temperature at selected locations.

The eigenvalues and the corresponding eigenfunctions are obtained
throegh the use of discretized version of Eq. (14). The discretization is
canicd out with 40 !ine €lement; and on each elument, the second order
approximation is used to represent the geometry as well as the
eigenfunctions. The temperature calculations at three different locations
on the gear tooth boundary, (0.0,0.397) represcnted by the solid dine,
(-0.228,0.066) by the dashed line, and (0.174,0.194) by the dotted lne
are shown in Fig. 3 as functions of tirne. The curve labeled T is centered
ot the {op of the gear at location (0.0, 0.795). T2 on the cooled sidc of
the gear in the region conied by the oil at (-0.228,0.464). T3, the nighest
curve, is on the side heated during mesh, slightly above the pitch point at
(0.174, 0.562). Because both the heating and cooling functions have been
averaged over a complete gear revolution, these temperanires can best be
interpreted as out-of-mesh temperatires.

Al the present time the calculation method is hard wired for a single,
but representative, problem. Furthermore, we have not yet included the
triangular portion of the gear extendiag to the axis of rotation. Generali-
zation of the method is planned now that its application to a specific
problen has been demonstrated. Appendix A “Thermal Analysis of Spur
Gears” provides the geometric formulation input.

CONCLUSGION
A new technique has been dzveloped to study two-dinensions! heat-
ing of gears. The computational advantage of this technique over

previous approaches using the hniic «lement method or the finite dif-
ference method results from two fearures: Firsy, the problem is reduced
from two dimensions to one. Second, the lime and spatial integrations
arc separated. Therefore, when compared wilh other methods, this new
tcchmque can provide substantial improvements (one order of magni-
tude) in computational speed. However, the benefit of the dimensional
reduction is manifested not oaly in the computation speed but also in
the ease of problem set-up since onc is required to deal with the bound-
ary not the entire two-dimensional gear geometry. The other benefit of
this technique, based on the eparation of time and spatial integration,
is accuracy. This technique takes the full advantage of the spectral
methaod that has exponential solution convergence. This should be com
pared to finite ¢lernent or difference methods where only algebraic con-
vergeace is possible.

Since the new technique is extremuly efficient, any changes in the
tirne dependent coefficients or source terivis in the boundary condilions
do not imposc a great computational burden on the user. This resnit ic
very importarit when performng accurate Scoring Analysis in pears.
This allows t-'c bulk (or blank) temperature to be accurately known.
Furthermore, the gear out-of-mesh temperatuie is not a constant along
the tooth prefile at stcady state running conditions. as is often assumed
by gear engineers. The method is also more adaptable for use in small,
lubricated, concentrated contircts, such as gears, since high resolution
can be obwined without using large numbers of elements.

Cuwrent}y, we are planning to exlend this technique to a multiblock
application that includes the remainder of the gear sector and that further
optimizes the computation accuracy and speed.
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APPENDIX A
THERMAL ANALYSIS GEOMETRY FOR SPUR GEARS
by

Lee 8. Akin * and Dennis P. Townsend **

ABSTRACT

The gear geometry needed to perform a complete thermal analysis for
a gear set is very complex and has, o the authors knowledge. never been
published before as one set of equations needed for the analysis. The
thermal analysis of gears is a very important subgect in thit it can be uscd
to determine the scoring failure eritena which includes the blank (bulk)
temperature and the flash temperature as used in the Blok scoring
formula.

i. T! ::Tf"'Th

The geometry for this analysis must include the involute geometry,
the load variance when the teeth nesh is 1w a single or double tooth
contact zone, tooth load sharing due 10 varying deflection, long and
short addendums, tip and/or root relicl. Alco included are the affect of
heat partitioning due to varying tooth contact sliding velocites over con-
stantly changing Hertzian contact band widths. gewr set speed and its
affect on the lubrication regime (film thickness versus surface rough-
ness ).

‘This geometry analysis will be used as the input parameters to com-
plete the analytical computation of runrung gear temperaturcs using
Green's function.

INTRODUCTION

‘This is one more in a series of papers hy the authors on their coatinied
study of the art of the prediction of the opset of scoring or scuffing in
high performance gear dnve mechanisms and our atiempt to make «
more scientific. These studies hive examined a series of disciplines from
aninterdisciplinary lubrication theory (vef. 1), 10 a study of the eftect of
windage on the lubricant flow into high speed gear teeth (Ref. 2) and a
model for fubnicant flow in between gear teeth (Refs. 3, 4, 6. 7. 10
and 11, 13, 16).

in addition these stucses have evaluated dhe analytical and experimen-
tal spur gear temperature cffects oa operaling variables (Ref. 5). gear
lubncation and cooling studies (Refs. 7 to 9, and 12), investigations of
affect of transicat (time variant) thermal and lubricant boundary layers
(Refs. 14 and 15).

Most of the abovs and akl of the thermal work was done using finite
clement muthods which produce large matrixes causing slow computer
solutions ¢y provide satisfactary nccuracy. ‘This geometry analysis is
developed for, "a computer progyam for the computation of running gear
temperatures using Greens function” provides a mew and unitjue solution

* Geacesearch Associates. ** NASA-Lewit Research Center.

to the gear temperzture analysis problem. The above is accamplished by
using special integrration techniques newly develaped to accommodate
the special conditions found in lubricated concentrated sliding contacts,
such as found in high performance aircraft gear drives. This appendix
describes the nuicate gear geometry needed for this analysis, mostly
available wn the titerature hut certainly not all in one place  This paper
hopes to fill that need.

FORMULATION OF GEOMETRICAL EQUATIONS
The equations for the involute cwrve in rectangulas coordinates is shown
in equation st 2 (sec Fig. 1).

Y - Involute curvs

- p=Rpe
Fpe-sine

pom————
0o '
’
)
1)
¥
1
1
1)
'
[l ' '
-/ Hy " i
7\\‘ E Rp : COS €
! P /&. °
ol T e |
‘T .. 4 |
] dl : /,_
N
] /:
; :
x-1 / : X
G- wl——-»ﬂ"Rbt‘CO*SE'—”"i '
Rsin®
-~———- Rp sin ¢ —— 4»‘ © Base
circle

Y
Figure 1.--Involute curve geometry.

2. x = {cosh + 8swb) R or x = R «inQ see pomencallne

y =(sin04-BcosB)R,,  or  y=RcosO

2 2 2,172 1
vt =(i+B —
y©={ ) ™




The polar/vector. 4l angle 8, in Fig. 1 may be calculated from:

2 1?2
vzt (R7-Ry
83‘(X2+'\'2—R£} -—r:( ___...___,._)__
Rb Rl\
12
3 | (R*-R{) A
—@an | ~———— |z tanp-$=invod
b
where: R=£-&RU r\+2&RI,_-Rcmq\
2P
so that the pressure angle ¢ m Fig. 1is
112
(RZ+R2) R .
4 B=tan T iz cos ™ =B and the roll anglr is £ = 0 b =
Ry, R

tan$. The unportant radii ol curvature cquation:, some at criticil loca-
tions, axe shown below in cquation set 5, and sec Figs. [ and 2:

5. p = Rsin® = ¢Ry, and for the mating gear p = R sinp = &£ R,

The Jowest point of contact for the mush is p_ caleulated from:

3

p. =Csin ¢-(R:‘; '+Rg?;)

and

S’cm‘(F *Rum)”z

( 2 12
R, = [k«:sm— RIaE )« Rg]
where C sin ¢ = L, the line of actior, and
e, 1/2
Rem =[(C sin¢'-\’R§m—'rI\f\u, } + Rim]

is the lowest point on the mating gear. The radii of curvature at the low-
est and highest points of single tooth contact may be calculated from:

p=(R2-13)"" R (el -rY)"
Pn = (‘Si"‘b“(Rim "tham)u +Py

Ry = (P "Rb)“ i

. _— 2n . .
where the base circle pitchis Py 3};0"5‘1’ and the circular pitch
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/ / i Op ’ “\ \\ "\
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/ ot Bass circular pitch = Pb A J ‘\
Ry Py - | N
./ ) P \
-~ DTC -4 —-- Single tocin contact -~——>!DT(; --
-« -———— Lenghs of line of contact —— —»
oy —— - Length of line of ac~ "W ———-- ———¥,

Figure 2,~-Gear mesh line of actiors geomaetry.

F140) ,
is p-= N The distance of roli/slide S along the: involute curve

may be calculated by integrating aver the roll angle €, from (vogle,
Ref. 17). see Fig. 1

6. S= R,,cda —-h-(z' =- (e%cf)
3]
and since, as can be noted frora Fig. 1, p= Rpe= Ry ting anle= 2
>
thus §y_; ,.__,Ql_ aver any arbitrary portion of the profile with sub-
Re

seripis | and 2 and Si-o E}ﬁ.&. over the whole profile from the firet

point af mesh contact an the profile at §, lo the Jast point at outside
diometer 8. For example: from R to R, to R (at pitch poinl) 0 Ry, to
R, at the outside radws. ‘The arc Jength along the busc circle T can be



cafculaied fron. \were subscripts 1 and 2 arc at arbitrary Incations on the
tooth profile) as shown.

7. Zy 5 = Rylgy - &) = Ry, (2o, ~ tanoy)so that ¥, , =

g Pi . .
1R, TR, 17 P27 Prand thus the ratio between the distance S and
> °
the distance 3, becomes k = %%ﬂ- a quantly wseful ip thermal caleu-
b

lations. The transition time, as a function of radii of curvature and its

retiing velocity between any two peints along the tooth, can be expressed
in equation sct 8 as:

dp dr rad
I = Row—o
8. dt dt > cec
where:
de
== =0} 4 conutant oad since p = st then de = wdt and gdl = i‘z .80
dt € )
P: d \ ) m{fs — 2
that j LA 2 . ““‘_"(‘L‘ —1|):. -TL:___')_ and Aty 4 =
2 [ o] €6y 2 (pz _..pl)
b

P2 n LA o
= o) s the time i lakes for the gear torotate from ¢
0 £,. The crivcal dimensions aloiig; the line of action are shown in fig-
ure: 2 and described below inequation 9:

9. Z= VI;Z?,I -RE, + \lez - qu ~Csing is the Iength of the “hine of
contact b - 25 a cubge:t of the "line of actiona - g”

Now we can calculaie the vidth of the Hertzian band of mutual con-
tact at the mesh point from equation 10 (Timoshenko Ref.18)

1/2
16W, (K, +K ) , vi
10. B= __(__1____2_)0_1{_2_ where: Ky ~-—l:—'—' and
Fpi+p} i
af 2
1-vi 1-v
X, :-;El‘ and K+ Ky -;\“‘C" and siree: g + py = L = Csing

and W = W /cosd =

B= 3‘9’ W-(-)—"--—)"(Ppy)
\ FcosoCsinoE "'

Wseed, see Fig, 3, ond By = 1, = E

12

The rolling velocity for the gear', and it's mating gear V, are caleu-
lated from equation set [ 1:

NPy V. 12502 :
V, = -1 =
. v 360 fusce and vy 160 fUsec. so that the sliding

%
velocty Vy=Vi-V, =q—(5(n.p. ~n301]) fifsec whete: Vi=V&vV,=

Vm.

Wy \/[\Y‘vﬁ Wy =Wcos &
S~
| B A >, Wr=Witand
W,

Figure 3.—Gear taoth profile showing nommal load W,,.

Theretore the rolling velocity anywhere along the profile car be cal-

npPm
culaicd from: V) = ;—]-4&5-—)- ft/scc and Vm = T]Tpgl; ft/sec for the mat-

np lllp!ﬂl
. . . . . .

ing gedr sothat the shiding velocity is calewlated fram V| = —T—:{S()
fifsee where o= speed of gear and n, = the speed of the mating gear.
Anotiier value necded to calculate the coefficient of friction is the total

n
veloeity from: Vp = ———————— fi/scc.
We can auw caleulate the coefficient of friction as:

Gy
(2. f=00127 103_10(3 130 Biserd
{

Fp V.V
Hep = viseasily in centipoise and Wl = tangential tooth load inIbs. Thus
we find ourselves in a position to calculaic the instantancous heat flux
q(p), as a function of the radius of curvature at the instantaneous posi-
tion “i” along Ui line of contact per cquation Sct 13,

] where ¥ = toath face width,

W, :;cc(tb)f(llp, 'nmpxm)
176 330

13. q(p, )= BTU/min

This equation can also be written in a form neore uscful using the
pituon speed only:

wisec(dIn,f N,
)=z (P~ apu) BTUMmin, where ™ =5 e

gearratio At times it 1s more convenicat to calculate the hear Mux from
the radius vector at the instantancous contact points where:

W, ke (m)n
—AF()B() {Cscw( n\!) sx

.
R 2 172
! R o “Kps

5 \1/2
+m, (Rp, Ryvrc Rph} B IU/ min

CLOSURE

This appendix develops the geometry analysis for she input for
the computer solution of the thernial analysis of spur gears wsing
Green s function to solve for gear blank surface temperatures, This




geometry analysis provides the gear tooth geometry input, the
gear tooth sliding distance parameters, the relling and sliding
velocily inputs and the equations for the frictional heating
developed during the gear tooth meshing, as a function of the
location on the gear tooth,

Usimg these inputs the program can then defermine the transient
and steady state temperaturcs of the gear teeth.
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NOMENCLATURE FOR APPENDIX A

B

C

gR

qipy)

R,

Rep & Ry,

Ry &R,

- po

Ry pey & Rypey

width of the band of mutual contact at the mesh point
center distance for mating pair

Young's madulus of clasticity

face width

cocfficient of friction

gearratio N /N,

nuraber of (ceth in gear and N nurnber of teeth in
the mating gear

pinion speed. vpm. p
for pinion

for mating gear and n,

diamctral pitch of the teeth
circular pitch of gear and it mating gear

heat flux calculated using the instantancous radius
vector

heat flux due to sliding friction at instantancons pownt
of contact using the radius of curvatare as a

parameter

radius vector to the pitch point and R for the nate
al the contact point

hase radins of the involute curve (its origin) and Ry,
for mating gear

radius vector to lowest point of contact from center
of gear and R . for maling gear

base radius of gear and pinion respectively
fnstantaneous radius og geas and pinion cespeatively
outside radius of gear and pinion respectively

lowest point of contact for gear and pinion
respectively

R, &R,

\I

Hep

e

py &py,

outside radius of the gear and end of the involute
curve and R, for mating gear

radius vector to Jowest and highest points of single
tooth contact

velacity along the curve (involute)

the sliding, velocity at an instantancous point vy - vy
in the mesh

the total velocity at an insiantancous point in the mesh
\'] + \’2

rolling velocity of the gear and 118 mating gear

tangential and normal {perpendicular) load.
respectively

Cartesian coordinates of the involute curve from its
origin at the base circle

length of she line of contact as a subset on the e
of action

the tirne it takes to rotate from g4 to €,

virtual number of teeth expansion or reduction for
long and vhori addendums

oll angle an tooth
involute polar angle = invo =tandp -d=¢ ¢ (rad
ol Viscossty. in cp

radiue of curvature from the base cuwrcle and p, for
the mating gear at contac: poin

rading of curvature ot lowest or initial point of
contit from base circle aad p, for mating gear at

contact point

rudins of curvature at lowest apd highest points of
single tooth contact

pressure angle of mesh
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