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AN ANALYSIS OF THE

FORCES AND ININJCED BY

THE VORTEX GERERATED BY

A SINGLE IMPINGING JET

By

Richard E Kuhn

INTROIECTI( 

When a jet or fan powered STOVL aircraft is hovering, or in

transition between hover and conventional flight, the lifting jet

streams induce suction pressures on the lower surface that cause a

lift loss and, generally, a nose up pitching moment. Sketches of

the flow fields involved are presented in figure I. These flow

fields and the forces and moments they induce have been studied in

many investigations, such as those summarized in references 1-6.

In hover out of ground effect (upper left in figure i), the

entrainment action of the downward directed jets induced suction

pressures on the lower surface causing a small lift loss. Close to

the ground, (upper right in figure i) the wall jets flowing

radially outward from the point at which the jets impinge greatly

increase the entrainment area and the resulting lift loss or

suckdown. A fountain flow is generated where the wall jets from

multiple jet configurations meet. This fountain flow partially

offsets the suckdown induced by the wall jets. Early methods for

estimating the net suckdown are presented in references 7 and 8.

These methods were extended to include estimation of the pitching

moments in reference 9.

In transition out of ground effect (lower left in figure i) the jet

streams are swept rearward by the interaction with the free stream

and roll up into vortex pairs. These vortices, and to a lesser

extent the blockage and viscous entrainment action of the jet(s)

induce suction pressures on the lower surface of the aircraft,

generally causing a loss in lift and a nose up pitching moment.

The path that the jets take and the pressures and forces induced

are summarized in references 2 - 4 and the development of empirical

methods for estimating the aerodynamic effects induced are

presented in references 6, 7, i0 and ii.
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In ground effect at transition speeds (STOL operation) all the

above flow phenomena are present, but modified by the proximity of

the ground. In addition a ground vortex is formed by the action of
the free stream in opposing the wall jet flowing forward from the

impingement point of the front jet (lower right in figure 1).

Studies of the ground vortex and methods for estimating its effects

are presented in references 5, 6, i0, 12 and 13.

Previous methods for estimating the effects of the Ground vortex

have relied on force data. Detailed data on the pressures induced

on the lower surface by the ground vortex on a delta wing model

with several jet arrangements are presented in reference 14. The

present study attempts to correlate the integration of these

pressures into a method for estimating the jet induced lift and

pitching moments experienced in ground effect.

A

Aj

 v,a t

_V,_ore

_r,p

a

cL.

Cp

d or D

de

Dp

e

fp

h

SYMBOLS

Aspect ratio of planform or element of

configuration under consideration

Aspect ratio of jet nozzle

Jet exit area, total area unless otherwise

noted

Planform area aft of the jet

Planform area between zero pressure line

and jet

Planform area forward of zero pressure

line

Exponent used in estimating wing-body

upwash (eq. 20)

Power off lift curve slope

Pressure coefficient Cp=AP/qj

Diameter of individual jet(s)

Equivalent diameter of total jet area

Equivalent diameter of planform area

Exponent used in estimating 'hover suck-

down' pressures (eq. 28)

Planform fineness ratio

Height of flat plate or body lower surface

above ground

sq. ft.

sq. ft.

sq. ft.

sq. ft.

ft.

ft.

ft.

ft.



Kgb

Ksj

Ktv

Ktgv

AL, c_

mac

AM, c_

NPR

AP

q

qj
S

Sref

T

V e

x

X

X!

,
|a¢

XC.G.

Xpos

Height of wing above ground ft.

Factor accounting for ground condition or

type of ground simulation (eq. 3)

Factor used in estimating 'hover suckdown'

increment (eq. 27)

Adjustment factor for effect of 'trapped

vortex' in hover (eq. 29 and 30)

Adjustment factor for effect of trapping

of the ground vortex at low heights (eq.

14 and 15)

Lift loss increment lb.

Mean Aerodynamic Chord ft.

Pitching moment increment ft. lb.

Nozzle Pressure Ratio

Increment of pressure induced by ground Ib./ft 2

proximity

Free stream dynamic pressure Ib./ft 2

Jet dynamic pressure at nozzle exit Ib./ft 2

Total planform area of configuration, or sq. ft.

part of configuration under consideration

Reference area used in calculation of sq. ft.

coefficients

Total jet thrust lb.

Effective velocity ratio. Ve=_7 _

Longitudinal distance ahead of jet station ft.

Effective arm at which jet induced lift ft.

increment acts.

Longitudinal distance of zero pressure ft.

point on model centerline ahead of jet

(see fig. 3) (eq. 3)

Zero pressure line longitudinal distance ft.

ahead of jet at lateral station of MAC

(eq. 16)

Station at which moment reference point ft.

is located

Station at which center of area of posi- ft.

tive pressure region forward of the zero

pressure line is located
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Xjet

XL.L

Yave

Y

Yma¢

Aa

Station at which jet is located

Station at which leading edge of MAC is

located. (see fig. 16 & 17)

Average width of planform ahead of jet
station

Lateral distance from centerline

Lateral distance of MAC from centerline

Angle of attack

Upwash angle induced by ground vortex.

(eq. 11, 12, 18, 19 and 21)

Jet deflection angle

ft.

ft.

ft.

deg.

deg.

deg.

SUBSCRIPTS

body

CoGo

data

fore

f

GV

hov

J

neg

p or pos

sj

tv

us

wake

wb

wing

Body of wing-body conf. or flap plate
conf.

Center of gravity or moment reference

point

Experimental data

Region between zero pressure line and jet
station

Front, or forward of jet center

Ground vortex contribution

'Hover suckdown' contribution

Jet

Negative pressure region

Positive pressure region

Single jet

Trapped vortex condition

Upper surface contribution

Jet wake contribution

Wing-body

Wing
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 TION OF MEI OD

ESTIMATION OF INDUCED LIFT

The method developed in this study is re-presented here for the

convenience of the user. The lift loss induced at forward speed in

ground effect can be expressed as;

AL

make

where the first term accounts for the ground vortex effect

(developed in this study), the second term accounts for the

'hover suckdown' effect (from ref. 9 or experimental data, if

available; modified here for the effects of cross flow), and the

third term accounts for the jet wake effect (from ref. II or

experimental data, if available; modified here for the effects

of ground proximity).

Ground Vortex Term

The ground vortex term is made up of 4 terms;

AL + (2)

The first two terms represent the effects of pressures induced on

the lower surface ahead of the jet. As depicted in figure 3

positive pressures are induced in the upwash region ahead of the

vortex and negative pressures are induced over the vortex. These

positive and negative pressure regions are divided by the zero

pressure line.

The method requires calculating the location of the zero pressure

line. The location of the zero pressure line on the model

centerline is given by;

-- . + _d K_ 6 Vg.4 .06v2" h ta/1(8 - 90) (3)

where for an aircraft moving over the ground, or a model

tested over a moving belt ground board;

K_b = .67

and for a model over a fixed ground board, or an aircraft

hovering in a crosswind;

Kgb = 1.0
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At spanwise stations off the centerline, the zero pressure point
moves aft as expected. The zero pressure line is parabolic in shape

and is given by;

(4)
y = 2¢_(_-x)

where x is the distance forward of the station of the jet.

The lift increment due to the pressures in the positive pressure

region is given by;

c5)

where Aov,p is the lower surface area forward of the zero

pressure line and Cp,Gv,p is the average pressure coefficient

in the positive pressure region and is given by;

.46 v. fp'_
(6)

The lift increment due to the negative pressures in the area

between the zero pressure line and the jet is given by;

('_)_,.ef. "= Cp, _'v"t°re A_" t_re2Aj (7)

and the average pressure is the less negative of the pressures

calculated by the two following expressions;

at the lower heights;

(8)

at the higher heights;

-.I fp.25 8 2 (9)
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In addition to the pressures induced on the lower surface the

presence of the ground vortex forces the free stream to flow up and

over itself putting the configuration in an upwash flow field (fig.

3b). This upwash induces lifting pressures on the upper surface.
The method assumes that the upper surface increment is equivalent

to the configuration operating at an increased angle of attack and

that, for a body or a flat plate configuration, the lift increment

is given by;

2Aj

and the induced upwash angle is given by;

for negative values of X"

.7-.7--_-.35 V, h/d
(8/9o)" (11)

A_ 2s

for positive values of X"

.7 -.7--_dI ÷ .16 Veh/d
(619o)2 (12)

A_ 2s

where X" is the distance from the assumed center of the ground

vortex to the wing leading edge, given by;

X_mc
_' --5-- - (X_ot-xL.,.) (13)

d d

and K_ accounts for the effects of the ground vortex being

'trapped' under the configuration at low heights (fig. 3c) and

below h = .S_7_Vo_,_

h

rc_,= .sq,_F_v.x_ _ (14)

and above

Ktav = 1.0 (15)



The distance from the jet station to the vortex center is calculat-

ed at the spanwise location of the MAC (Yu¢) and (accounting for
the parabolic shape of the zero pressure llne) is given by;

_,, =__ Y'.L (16)
4_

For a wing-body configuration the wing lift due to the induced

upwash is given by;

the induced upwash angle is a function of the distance of the

wing leading edge ahead of the jet and is given by;

for negative values of X"

#,A=,,,,=.,C('''?') +.o16 (h../d)"
(a/9o) 2 (ze)
A_ 2s

for positive values of X"

(19)

where the exponent, a, is given by;

a- i +.o6v. x;°c "'"
(2O)

If the wing lower surface is not co-planer with the body lower

surface the height of the wing h_ above the ground is used for h in

calculating the upwash (eq. 1Bind 19).

At some combinations of low velocity ratio, _, and low height, _

equation 48 will calculate increments of induced upwash angle o£

attack that would carry the wing beyond stall. For these condi-

tions it is suggested that;

if As > (=#_u,- a) then use /_a = ( " .=,,.u- a)
(21)
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• Hover Suckdown' Term

The 'hover suckdown' term is made up of three terms;

AL(VL_-'_'l_l "(_L.._ ("_'_-'/- _ _ ,_,,,I,0_,

w_°,.(V)._.*,e_*_*_o,*n,uoe,ou,-o_-,,oun,e*_.o*_,e_.,>
and is given by;

/AL_ (per/d) 1.se,_,'_'.°000___

The method assumes that the pressures induced in hover by the

impingement of the jet, estimated by the method of ref. 9, are not

altered by the cross flow but that their effects are constrained to

the region on the lower surface aft of the zero pressure line. The
'hover suckdown' term therefore is the sum of the lift loss induced

forward of the jet and that induced aft of the jet and for a body

or flat plate configuration is given by;

2Aj /body

Likewise the 'hover suckdown' experienced on the exposed wing of a

wing body configuration is given by;

2aj ),,_

The pressures induced in hover are given by (from ref. 9);

c,,,,,..=z+_2-z) _'_'
(26)

where

K,,j= -. 043 (NPR) -.I(fp) .I,
Sm,_IAj (27)

and

e = -2.3 (NPR) -.i(fp) ._3 (28)
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The term KL_ is introduced to correct for the effects of the trapped
vortex regxon where, above (h/d)_

K'_,,,= 1,0 (29)

and in the trapped vortex height range, below (h/d)_

I- (I h/d '_"'+"Ke,,-- (h-i-3_)

where the 'trapped vortex' condition occurs (ref. 9) at

heights below;

(30)

(31)

Jet Wake Term

The effect of the proximity of the ground in truncating the jet

wake is to reduce the suction pressures induced by the jet wake in

the region aft of the jet. For the present method the jet wake

increment in ground proximity is assumed to be given by;

AL(+):,""_ ++"---+I+(-+-)...,.,. (32)

(A_.) and(A_.)..+..,.,.,a=°°+ti..t°db, th°.°thodo_where _ -,_

reference 11. Only the body term is corrected for the effects of

ground proximity by;

"p. ov,a.t=-_ (33)

where

+.,+..,,._ .o+v.,,++(_o)_(-_)-_+ (34)
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ESTIMATION OF MOMENTS

The pitching moment, like the lift, can be expressed as;

A ÷ (35)

where the first term accounts for the ground vortex effect

(developed in this study), the second term accounts for the
'hover suckdown' effect (from ref. 9 modified here for the

effects of cross flow), and the third term accounts for the

jet wake effect (from ref. ii modified here for the effects

of ground proximity).

The moment contributions are estimated by assuming the lift to be

acting at an effective arm. In most cases the distance from the

moment reference point to the center of the area for which the lift

was being estimated is used as the effective arm.

Ground Vortex Term

The ground vortex term is made up of 4 terms;

(36)

For the first term; the positive lift generated forward of the zero

pressure line, the moment increment is given by;

For the negative lift generated between the jet and the zero

pressure line the moment contribution is given by;

(_d er,,o:.= &L (38)

The upwash induced lift increments are generated in a curved flow

field (fig. 16) which produces a camber type loading. It is
therefore assumed that the lift is applied at the mid chord point

of the Mean Aerodynamic Chord of the planform or wing. For the
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present method the moment due to the upper surface lift increment

is given by;

= AL

and the moment due to the upwash induced lift on the exposed wing

is given by;

(4o)

'Hover Suckdown' Term

The pitching moment induced in hover is the difference between the
nose down moment generated by the suckdown ahead of the jet and the

nose up moment induced aft of the jet. At the higher heights, as
shown in reference 9, these moments are given by the lift loss
acting at the center of area. However below a height equal to the

distance from the jet to the center of area the moment arm, Xe,
reduces rapidly.

Forward of the jet (between the zero pressure line and the jet)

and above h =Xc._.-Xr= .

x.,,=.= (41)

below h = Xc._.-X_o:.

Xeotar.= (Xc._.-Xtar.)(l-(1-
(42)

Aft of the jet,

and above h- ]Xc._;.-X_f©I

(x¢.,.

below h = IXc.G.-XUt]

(43)

(44)
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And the moment due to the 'hover' suckdown effects is given by;

(45)

Jet Wake Term

The pitching moment due to the jet wake effects is given by;

m +__ . "
where _, and I-_ are estimated by the method of

l "_-aI - . bo_ I ZU l - , w'--_

reference ii,

and 1-_ is given by;
_, af_

(46)

( AM)m,,,,t= = AL . . -X_,at't)(_')_,,,tc (Xc'e d
(47)

/LNALYSIS RND DEVELOPM_T_ OF ME/_OD

The method for estimating the lift loss induced at forward speed in

ground effect can be expressed as;

AL

where the first term accounts for the ground vortex effect,

the second term accounts for the 'hover suckdown' effect,

and the third term accounts for the jet wake effect (the

effect of the free stream in generating the vortex pair in

the jet wake).

The method of reference 9 can be used to estimate the second term

for hovering flight (if experimental data is not available) but
either must be modified to account for the effects of forward

13



speed. Similarly the method of reference il can be used to estimate
the third term for transition out-of-ground-effect (if experimental
data are not available) but either must be modified to account for
the effects of ground proximity.

Unfortunately when operating at forward speed close to the ground
(as in STOL operation) the data contains the effects of all three
terms and there is no way to clearly identify and separate them.

Some assumptions must be made in developing expressions for each of
the terms. The data used and the assumptions made in developing
each of the three terms in equation 48 will be presented and
discussed in the following sections.

Ground Vortex E_fects - Flat Plate Configurations

As shown in figure 2 a horseshoe shaped ground vortex is formed

when the free stream, opposing the wall jet flowing forward from

the impingement point of the front jet, rolls the wall jet back on

itself. This ground vortex induces suction pressures on the ground

(as depicted in the lower part of figure 3a) and, if the configura-

tion is close to the ground, on the lower surface of the configura-

tion (upper part of figure 3a).

Smaller positive pressures are induced ahead of the ground vortex.
These positive pressures are generated by the blockage effect of
the ground vortex causing the free stream to flow up and over the

ground vortex. This up-flow puts the configuration at a positive
angle of attack inducing positive pressure on the lower surface and
negative pressures (not measured) on the upper surface.

Pressure Distribution Data

Detailed pressure distributions on a delta wing configuration with
a variety of jet locations were obtained in reference 14. Figure 4
shows the planform of the configuration; two of the jet locations
and the distribution of the pressure taps. The estimating method
developed here is based largely on the data from this investigation
and on the data and method developed in references 12 and 13.
Figures 5 and 6 show typical pressure distributions. The pressure
coefficients presented in reference 14, and as used here, are based

on the jet dynamic pressure as defined in;

AP AP

out of ground effect (upper left of figure 5a) only the pressures

induced by the jet/free-stream interaction are experienced. High

suction pressures are induced (particularly on the centerline aft

of the jet) by the roll up of the jet into a vortex pair (lower

left in fig. 1). With the exception of the positive pressure close

14



to the jet on the centerline (in the stagnation region ahead of the

jet) the positive pressures forward of the jet are negligible and
within the scatter of the data. As the height is lowered the

pressure distribution does not change significantly (essentially
out-of-ground-effect results persist) until the height is lowered
below about 8 diameters.

The effects of the ground vortex become apparent at the lower

heights (fig. 5b). Large negative pressures are induced on the
lower surface immediately over the ground vortex and positive

pressures are induced ahead of it (lower right in figure 5b). The

point at which the pressures change from negative to positive is
further aft for the more outboard stations (y=7 and y=9 for

example) reflecting the 'horseshoe shape' of the ground vortex. The

magnitude of the pressures due to the ground vortex reduce rapidly

with height and at a height of about 8 diameters the pressure

distribution regains the shape typical of out-of-ground-effect

conditions (very similar to figure 5a).

Close to the ground the ground vortex and the entrainment action of

the wall jet created in hover predominate in generating the induced

pressures. As the crossflow velocity is reduced the ground vortex
contribution reduces and goes to zero at zero crossflow (in the

hover mode). These effects of velocity ratio on the pressure

distributions in ground proximity are shown in figure 6.

At the lowest height (h/d=l.7, fig. 6a) the pressure distribution

in hover (Ve=0, lower right in fig. 6a) indicates that the hover
suckdown is being generated in a condition referred to in ref. 9 as

the 'trapped vortex' mode. That is, the lower surface is so close

to the ground that the thickness of the wall jet essentially fills
the space between the model and the ground. In this condition the
normal entrainment effects are altered and somewhat below this

height the methods for estimating the hover suckdown begin to

breakdown.

At a height of h/d=3.3 (fig. 6b) the model is essentially out of

the 'trapped vortex' mode and the more conventional pressure

distribution induced in hover (re=0, lower right in fig. 6b) is
obtained.

With a crossflow velocity (Ve=.06, lower left in fig. 6 a and b)
the effects of the ground vortex become apparent as an increase in

the negative pressures ahead of the jet and slight positive

pressures further forward. The magnitude of these increments

increase as the crossflow velocity increases (re=.1 and .2). Also
the point at which the pressures change from negative to positive

(the zero pressure point) moves aft as the velocity ratio increas-

es.

15



Positive and Neqative Pressure Reqions

The pressure distributions presented in figures 5 and 6 represent

only part of the data available for analysis. Unfortunately the
data contain simultaneously the hover suckdown, the jet wake

effects and the ground vortex effects. There is no direct way of

separating the increments due to each of these. The present method

was developed by dividing the planform into three areas (shown at
the top of fig. 3a) and integrating the pressure distribution in
each area to determine the lift and moment contribution of that
area. The three areas are, 1) the positive pressure region forward
of the zero pressure line, 2) the area between the zero pressure

line and the jet, and 3) the area aft of the jet.

The zero pressure line was determined by examining all the pressure
distributions (like fig. 5 and 6) to determine the station at which
the pressure changed from negative to positive on the model
centerline and at each spanwise station. The distance that the zero
pressure point is forward of the jet, on the centerline of the
model's lower surface (for the heights where it can be determined)

is presented in figure 7 and compared with the position of the
ground vortex on the ground (ref. 13 and 15) in figure 8. This
distance X', for the configuration of reference 14, is given by;

d Ve" (50)

Figure 8 shows that, at the lower heights and velocity ratios, the

zero pressure line is much further aft than the ground vortex

position predicted by references 13 and 15. The position of the

ground vortex on the ground was determined, in reference 13 from

pressures on the ground and in reference 15 from flow visualization
studies. Also at the higher velocity ratios and heights the zero

pressure line is further forward of the predicted ground vortex

position. These differences are probably due to the fact that the
data of references 13 and 15 were for isolated jet impingement.

The presence of the model affects the flow field and introduces the

'trapped vortex' condition at low heights (fig. 3c) which limits
the forward projection of the ground vortex at low heights and

velocities.

Subsequent development of the method and application to smaller
planforms and bodies suggested that the position of the zero
pressure line is a function of the planform area and that in the

more general case;

(Sl)
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At spanwise positions off the centerline the zero pressure point

moves aft as expected, (fig. 9). The line dividing the positive

pressures forward, from the negative pressures aft, is parabolic in

shape and is given by;

(52)
y = 24X'(X'-x)

where x is the distance forward from the jet station.

Neqative Lift Increuent

The net lift increment induced by the ground vortex (as defined

here) consists of the difference between the suckdown induced aft

of the line of zero pressure and the positive lift induced ahead of

that line plus the upper surface increment.

The highest negative pressures induced by the ground vortex are

felt at the lower heights in the region between the zero pressure

line and the jet. Figure 10 presents the average pressure measured

in this region and figure Ii presents the corresponding pressure

aft of the jet. (Note the difference in scale between fig. 10 and

fig. ii.) Separating out the contribution the ground vortex makes
to these pressures is not straightforward because both the hover

suckdown and the jet wake effects also induce suckdown pressures.

The jet wake effects predominate at the highest heights (fig. 11a)

and are felt primarily aft of the jet. The hover suckdown effects

are felt mostly at the lowest heights and are present both fore and

aft of the jet (fig. I0 and ii).

The increments of pressure induced by the ground vortex were

extracted from the data by subtracting the increments induced by

the impingement of the jet on the ground (the hover suckdown

pressures) and those induced by the jet wake. The method used, and
the assumptions made, in order to subtract these increments are

presented in the following section.

Removal of 'Hover' increment;

The hover suckdown pressures were estimated by the method of

reference 9. The average pressures induced in hover are compared

with the estimated hover suckdown pressures in figure 12.

The hover suckdown pressures (ref. 9) were corrected for the

effects of the 'trapped vortex' condition, that occurs at the

lowest heights, by the method developed here. The 'trapped vortex'
condition (ref. 9) occurs at heights below;

(53)
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Above this height the pressures induced in hover are given by (from
reference 9);

(54)

where

(sPR)--(fp)"-.o43 s/Aj
(55)

and

e - -2.3(NPR)-'I(fp) "13

and above (h/d)_

K_,-1.0

below (h/d)_, in the trapped vortex height range.

X_,--1-11- (h/_h/d_,11"66

(56)

(57)

(58)

Equation 54 was used to estimate the 'hover' increments that were
subtracted from the data.

Removal of Jet wake increment;

The jet wake effects induced out of ground effect are estimated by
the method of reference ii. Reference 6 suggested that these jet

wake effects are reduced by the effects of ground proximity in

truncating the wake. However part of the reduction is probably due

to the upper surface increment (discussed below) which could not be

separately identified by the analysis of reference 6.

For the present analysis the averaged pressures induced at the

higher heights, fore and aft of the jet, were used as the jet wake

increment, Cp,_, and subtracted from the data throughout the

height range.

18



Resulting ground vortex increment;

The ground vortex effect was obtained by subtracting the pressure
increments due to hover suckdown and jet wake effects from the

data;

(59)

Figure 13 presents the increment of pressure induced by the ground
vortex in the region forward of the jet and aft of the zero

pressure line. As expected this increment decreases rapidly with

height and increases with velocity ratio. There is also a signifi-
cant effect of jet position, probably because the pressure

distribution tends to be peaked on the centerline and near the jet.

Also the induced pressures are reduced as the area forward of the

jet is reduced. Other force data suggest that, for bodies, the
fineness ratio of the configuration becomes a factor.

At the higher heights there is considerable scatter but the data
indicates that the average pressure is inversely proportional to

the square of the height. At the lower heights, where the ground
vortex tends to fill the space between the lower surface and the

ground, the slope is greatly reduced. The ground vortex increment

induced forward of the jet is given by:

at the lower heights;

-zov.

at the higher heights;

(-,
The net negative lift increment induced by the ground vortex
is given by;

A'w'_'--'_'e (62)

Most of the effects of the ground vortex are felt forward of the

jet. Figure 14 presents the effect of ground proximity on the

pressures aft of the jet. Because the average pressure increments
induced aft of the jet are small there is considerable scatter in

the data. But they are also positive! These increments are

positive because they are obtained by subtracting the out-of-ground
effect jet wake increment from the data throughout the height

range, and at the lower heights the jet wake increment decreases as

the jet wake is truncated by the ground proximity.
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The average pressure shown in figure 14 therefore represents the

reduction in the jet wake induced pressures rather than positive

pressures induced by the ground vortex. This increment is given by;

.05 v.'h_ "l"s (63)

The corresponding lift

_r s

_p,_V,aft--_j

increment is given by;

(64)

Positive Lift Increment

Determination of the positive lift increment assumes that the

positive pressures forward of the zero pressure line are produced
by the ground vortex. The positive lift increment induced by the

ground vortex is given by;

Tler, p T = Cp'm"P 2Aj

where A_,p is the lower surface area forward of the zero pressure

line and _,_v,p is the average pressure coefficient in the positive

pressure region. This pressure coefficient was determined by

smuming all the positive pressure increments forward of the zero

pressure line and dividing by the product of the jet dynamic

pressure and the area forward of the zero pressure line. The
correlation of the average pressure coefficients thus obtained is

presented in figure 15. The pressure coefficient is inversely

proportional to the height, and to the .4 power of the ratio of the
area forward of the jet to the jet area. Subsequent application of

the correlation shown in figure 15 to the bodies of wing/body

configurations showed that these positive pressures are also a

function of the fineness ratio of the planform. The pressure

coefficient is given by;

.46 v.
I (66)
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Induced Upwash Lift

In addition to the pressures induced on the lower surface by the

ground vortex there are apparently related, but unmeasured,

pressures induced on the upper surface. As depicted in figure 16
the free stream is forced to flow up and over the ground vortex

putting the configuration in an upwash.

This upwash produces the positive lifting pressures induced forward

of the zero pressure line on the lower surface as discussed above.
In addition it apparently induces lifting pressures on the upper
surface that were not measured. This upper surface lift shows up

(in the data of reference 14) as a difference between the balance

data and that obtained by integrating the lower surface pressures.

The increment of lift carried on the upper surface was obtained by

subtracting the lift determined by integrating the lower surface

pressures from the balance lift;

AL _ _I____, _=t. (67

For estimating purposes it is assumed that the upper surface

increment is equivalent to the configuration operating at an

increased angle of attack and that the lift increment is given by;

(68)

and the induced upwash angle was obtained from;

AL

,,.
s v;

(69)

An example of the calculated induced upwash angle (for the config-

uration of reference 14 with a lift curve slope of CLom-.034,) is

shown in figure 17. These data, and the other data at lower

velocity ratios, indicate that the induced angle of attack is

inversely proportional to the height, except at the lowest heights
where the induced up wash angle appears to level off. This

leveling off occurs because at the lower heights the ground vortex
becomes flattened (top of figure 17) when it is trapped under the

configuration. The height at which the effects of 'trapping' the

ground vortex becomes significant is a function of the velocity

ratio V e.
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At the lower heights the effective upwash angle is adjusted for the
calculatedeffect of this flattening by dividing the upwash angle

by equation 69 by the factor _. It is assumed that;

Below h - .5 _ V.._mc

h
Kl:_"

.s/gra]
(70)

and above

£_,v" 1.0

h-.5 4 7" v. z ..c
(71)

The adjusted induced upwash angles experienced by the configuration
of reference 14 are presented in figure 18. With the jet at station
20 an upwash is shown for all heights. However with the jet moved
forward to station 12 the upwash is reduced and some downwash
(negative lift increments) is experienced at the lower velocity
ratios.

Downwash angles are to be expected if the ground vortex moves
sufficiently forward. As sketched in figure 16 upwash angles are
induced forward, and downwash angles aft, of the center of the
vortex. Examination of the pressure data shows that the maximum

negative pressure (which should occur at the vortex center) falls
approximately midway between the jet and the zero pressure line.
The distance X" is introduced to account for the location of the
vortex center with respect to the configuration and is given by;

g' " 12 - (72)

where the distance from the jet station to the vortex center is

calculated at the spanwise location of the MAC (Yn_) and (account-

ing for the parabolic shape of the ground vortex_'is given by;

A reasonable collapse of the upwash data for the model of reference

14 (fig. 19) was obtained by assuming that the upwash angle is

inversely proportional to both the height, h/d, and velocity ratio,

_ This correlation shows that if the wing leading edge is aheadthe apparent center of the ground vortex (negative values of X")

the upwash induced on this configuration can be calculated by;

K_
Am_= .7 -.7__ -.35

v. hid

(74)
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If the wing leading edge is aft of the apparent center of the

ground vortex (positive values of X") the induced flow changes to

downwash and;

[Aa,s-- .7 -.7-_ *.16 grin, (75)
v. h/d

Net Lift increment induced by the Ground Vortex

The net lift increment induced by the ground vortex on a flat plate

configuration is the sum of the lift loss induced between the zero

pressure line and the jet and the positive lift increments induced

ahead of the zero pressure line and on the upper surface;

AL

Moment Contribution of Ground Vortex

The moment contributions are estimated by assuming the lift to be

acting at an effective arm. In general it was found that the
distance from the moment reference point to the center of the area

for which the lift was being estimated could be used as the

effective arm. Thus for the positive lift generated forward of the

zero pressure line, the moment increment is given by;

For the negative lift generated between the jet and the

pressure line the moment contribution is given by;

zero

(78)

The upper surface lift increment is generated in a curved flow

field (fig. 16) with upwash ahead of the jet and a smaller downwash

aft of the jet. This curved flow field produces a camber type

loading with the lift applied at the mid chord point of the Mean

Aerodynamic Chord of the planform. For the present method the
moment due to the upper surface lift increment is given by;

AH),= AL.
(79)
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The total moment increment due to the ground vortex is given by;

__ .

Jet Wake Effects

As indicated above in the section on estimating the ground vortex
effect of the suckdown fore and aft of the jet, the jet wake effect

is reduced by the effect of the ground in reducing the suction

pressures aft of the jet.

For the present analysis the jet wake increment in ground proximity
is assumed to be given by;

(el)

AL
where ..(-_-}. is estimated by the

method of reference II and

The pitching moment due to the jet wake effects, like the lift loss

reduces with height, and is given by;

(82)

where (_d. is estimated by

(_._ is given by;

the method of reference 11 and

(83)

'HoveK' Suckdown Effects

The method used above in estimating the ground vortex increments
assumes that the pressures induced in hover by the impingement of
the jet are not altered by the cross flow but that their effects
are constrained to the region aft of the zero pressure line on the
lower surface of the configuration. The average suckdown pressure

24



was subtracted from the measured average pressure to get the

average pressure attributed to the ground vortex. The 'hover'

suckdown effects are therefore estimated by applying the average

suckdown pressure estimated from the method of reference 9 to the

appropriate areas.

The hover suckdown term therefore is the sum of the lift loss

induced forward of the jet and that induced aft of the jet and is

given by;

The hover suckdown pressures, estimated by the method of reference

9, were corrected for the effects of the 'trapped vortex' condition
that occurs at the lowest heights, by the method developed here.

The 'trapped vortex' condition occurs (ref. 9) at heights below;

(85)

Above this height the pressures induced in hover are given by (from

ref. 9);

(86)

where

-.043 (8'7)

and

e " -2.3 (.A_PR) ,.1 (fp) .L._ (88)

and above (h/d)_

K_" 1.0 (89)

25



In the trapped vortex height range, below (h/d)_

h d 1.** (90)

The pitching moment induced in hover is the difference between the
nose down moment generated by the suckdown ahead of the jet and the
nose up moment induced aft of the jet. At the higher heights, as
shown in reference 9, these moments are given by the lift loss
acting at the center of area. However below a height equal to the

distance from the jet to the center of area the moment arm, X e,
reduces rapidl y.

Forward of the jet (between the zero pressure line and the jet)

and above h = Xc.e.-Xtore

x.,,.,.,- (xc.e.-x,_...). (91)

be low h - Xc.o.-Xtore

(92)

Aft of the jet,

and above h -IXc._.-X_tl

_,,,=" (Xc.,. -x,,_)

below h" Ixc.,.-x.,=l

:_..))')

(93)

(94)

And the moment due to the 'hover' suckdown effects is given by;

(95)

26



Comparison with Experiment

The ability of the method to estimate the data from which it was

developed is presented in figures 20 to 22. The data are for two

flat plate models of reference 14.

Figure 20 shows the comparison for Ve = 0 (hover) where the ground
vortex and wake effects are not present. This comparison is

included for completeness and is the same comparison shown in
reference 9 except that the effects of the trapped vortex condi-

tion, which occurs at the lowest heights, are included here.

Figures 21 and 22 show the effect of forward speed (for the jets

located at stations 20 and 12 respectively) and also include the

relative magnitude of the 'hover suckdown' term, the 'jet wake'
term and the breakdown of the vortex term. The agreement is

relatively good except for the moments estimates for the case of

the jet at station 12. The problem appears to be with the jet wake

effect at high heights. There ks probably an error in the out-of-

ground-effect force data. These force data were not even presented
in reference ii (the method for estimating theinduced effects out-

of-ground effect) because these force data were totally inconsis-
tent with all the other data available.

Figure 23 presents comparisons of the estimates made by the present
method and by the methods of reference 6 and 13 with the data for

two flat plate models of reference 6.

Wina-BodT ConfiQurations

The above analysis applies to delta wing, flap plate and body

configurations where the lower surface is of uniform planform and

in one plane. Data on the effects of the ground vortex on wing-

body configurations are available from references 6 and 13. The
ground vortex induced upwash on three of the models of reference 13

and the one circular jet model from reference 6 are presented in

figure 24. These data were obtained by subtracting the estimated
contribution of the ground vortex to the body lift from the ground

vortex induced wing-body lift data to calculate the induced upwash

angles. Thus these data contain the effects of the pressures
induced on both the upper and lower surface of the wing. The lift

increments (and therefore the associated effective upwash angles)

are therefore larger (at a given height) than those for the upper
surface lift increment for the delta wing configuration of

reference 14.

The induced upwash is seen to be a function of the position of the

wing relative to the jet. More specifically the analysis shows that
the effective induced upwash angle depends on the location of the
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wing leading edge relative to the center of the ground vortex. The
correlation presented in figure 25 indicates that the induced

upwash is given by;

for negative values of X"

(96)

for positive values of X"

(97)

.where the exponent, a, is

1
given by;

(98)

and where X" is the distance fron the assuled center of the ground

vortex to the wing leading edge, given by;

There are little data available on the effect of wing height on
mid- and high-wing configurations. Most of the data available for

this study were for configurations with the wing and body lower
surface in the same plane as the jet exit. It is suggested that in
using this _ethod, the ground vortex characteristics and their
effect on the pressures induced on the body should be based on the
height of the jet exit (assmeing the jet is issuing from the lower
surface of the body). If the wing lower surface is not co-planer
with the body lower surface the height of the wing above the ground

_ is used in calculating the upwash (eq. 96 and 97).

At some colbinations of low velocity ratio, V_, and low height, _
equation 48 will calculate increments of induced upwash angle of

attack that would carry the wing beyond stall. For these condi-
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tions it is _ted that; if£$ > (alm_u- ql) then use £a - (ms_u- $)

Comparisons of the estimates with the data for the body alone, for

three wing-body configurations of reference 13 and one wing-body

configuration from reference 6 are presented in figures 26 and 27.

The estimated increase in lift (decrease in lift loss) due to

raising the wing from the low to the high position for the model of
reference 6 is in good agreement with the data for the lowest

velocity ratio (fig. 27 a) but the comparison is poor at the higher
velocity ratios. Part of the problem is in the less than satisfac-

tory agreement out of ground effect.

Jet Deflection and Jet Shape

The energy of the wall jet flowing outward from the impingement

point of a vertically impinging circular jet is the same in all
directions. However if the jet is deflected fore or aft, or is

non-circuclar in shape, the radial distribution of the energy in

the wall jet is no longer uniform and, in the presence of a

crossflow, the position and strength of the ground vortex and

therefore the pressures induced are changed.

In hover, deflection of the jet fore or aft significantly reduces

the suckdown pressures and associated lift loss. Reference 6

showed that the lift loss in hover is a function of the square of

the sine of the deflection angle. For the present method it is

assumed that the suckdown pressures induced in hover are given by;

(loo)

At forward speeds deflection of the jet forward or aft of the
vertical moves the ground vortex for or aft and will move the zero

pressure line, and change the size of the negative and positive

pressure regions as well. Unfortunately there are no data available
on the effect of jet deflection on the location of the zero

pressure line. The method developed here was arrived at by

reviewing previous methods for estimating the effects of jet

deflection (ref. 6 and 13) and by cut and try applications of
various possible approaches to the limited data available (ref. 6).

Two effects determine the distance the ground vortex is moved by

deflection of the jet. The projected impingement point of the jet

moved a distance of --hAtan(8 - 90). In addition when the jetis

impinges on the ground at an angle more of the jet flow is directed
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in the direction the jet is deflected and less is directed in the
other direction. (That is, if the jet is deflected aft less than

half of the jet flow is directed forward to oppose the free stream
flow and the ground vortex is moved further aft than would be
computed from the projected impingement point.) However this second
effect appears to have little effect on the effective position of
the zero pressure line and for the present method the expression
for estimating the forward projection of the zero pressure line,
including the effects of jet deflection, is;

. _h tan(6 -so) * .6 v:"
d d

(lol)

Although the dividing of the impinging flow appears to have little
effect of the location of the zero pressure line it apparently does

affect the pressures induced on the lower surface. It was found
that a good estimate of the effect of jet deflection on the net
lift and moment could he obtained by multiplying these pressures,

well as the induced upwash angles, by (_. In addition it wasas
q_F

found that the effects of the jet shape, on most terms, could be

accounted for by dividing by the 1/4 power of the nozzle aspect
ratio.

Thus the pressure in the positive pressure region is given by;

(102)

The effect on the negative pressures between the zero pressure line

and the jet is given by;

at the lower heights;

-IOVo a ' (lo3)

at the higher heights;

-.1 £p. ;_s (lo4)
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The effect of nozzle aspect ratio on the wake term was found to be

opposite that on most other terms, in that the incremental

pressures induced by the ground vortex aft of the jet appeared to
be increased by increasing the nozzle aspect ratio. The average

pressure in the wake region is given by;

(.I'
The upwash induced on a flat plate, with the leading edge forward

of the apparent center of the ground vortex (negative values of

X"), is given by;

If the wing leading edge is aft of the
ground vortex (positive values of X") the
downwash and;

apparent center of the
induced flow changes to

(lO7)

where X" is given by;

x" - _j,_, 12 - F_._-x=...) (lO8)

Similarly the induced upwash angle on the wing of a wing body
configuration is given by;

for negative values of X"

v._(hd_"
(819o)" (lO9)

S

for positive values of X"

(a/9o) a (11o)
AZ"

where the exponent, a, is given by;

(111)
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and where X" is the distance from the assumed center
vortex to the wing leading edge, given by;

m B

d d r

of the ground

(112)

In addition the 'hover suckdown' term is modified by the nozzle

aspect ratio and jet deflection and is given by;

(113)

Estimates for the configurations of reference 6 with the jets
deflected fore and aft of the vertical are compared with the data

in figure 28.

Similarly estimates for the configurations of reference 6 with

rectangular jets are compared with the data in figure 29.

Fixed re. NoVina Ground

Nost of the data on the effects of the ground vortex (including
that from ref. 14, the primary reference used in developing the

pre_ent method) were obtained in a wind tunnel over a £ixed ground
board. A £ixedgroundboard simulates the con£iguration hovering in
a cross wind (with an arbitrary boundary layer) but, as shown in

figure 30, does not adequately simulate the flow field generated
when the con£iguration is moving over the ground.

Two factors are involved. First, the boundary layer between the
£ree stream flow and the fixed ground board is absent when the
model is moving over the ground, Second when the con£iguration is
moving over the ground (or tested over a moving belt), as shown in
£igure 30, the ground (or belt) tends to erode the forward flowing
wall jet. (The layer o£ air on the ground (or belt) is pulled aft
with the ground or belt.) Both effects, the boundary layer and the
absence o£ scrubbing action allow the wall jet (and therefore the
ground vortex) to project £urther forward over the fixed ground
than would he the case with the moving model.

The results o£ several investigations of the effect o£ moving model
and moving ground (belt) on the ground vortex position (re£. 13,
15, 16 and 17) are compared in figure 31. (The results from re£.
16 and 17 are presented in the 'fairing of moving model data (fig.

D4 o£ ref. 13).) First it should be noted, as pointed out in
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references 15 and 18, that the ground vortex is very unsteady
making it difficult to accurately determine the average penetration
of the vortex. This results in considerable scatter in the data.

The two methods for estimating the forward penetration of the

ground vortex are in reasonable agreement with the data for the
fixed model over the fixed ground. The most scatter is for the

belt/moving-model data, particularly at the lower velocity ratios,

(h/gher values of 1/Ve). Never the less the data suggest that with
the belt, or with a moving model, the forward projection is only

about 2/3 that observed with a fixed model over a fixed ground.
Reference 19 also shows less forward projection of the ground

vortex over the 'rolling road' (as they refer to a belt ground

board) but the ratio is closer to 3/4 than to 2/3 as shown in

figure 31.

For the present method it is assumed that the position of the zero
pressure line will also be further aft for the moving model case
and that the expression (eq. 50) for calculating the position of

the zero pressure line will be changed to;

(114)

where for a model tested over a moving belt ground board or an

aircraft moving over the ground; _k= .67
and for a model over a fixed ground_oard or an aircraft hovering

in a crosswind; Kgb = 1.0

Figure 32 shows the effect of the change in the position of the

zero pressure line due to the moving ground (applying only eq. 68).

Moving the zero pressure line aft increases the positive pressure

area forward of the zero pressure line and also increases the

upwash angle, resulting in an increase in induced lift. However

the experimental increment due to the belt shows a lift loss at the

higher velocity ratios.

This lift loss induced by the belt (moving ground) is probably
associated with a reduction in the ground vortex strength. As

sketched in figure 30 (and discussed above) the effect of the
ground surface moving aft under the wall jet is to erode the
forward projected wall jet and reduce its energy.

There have been no direct measurements of the ground vortex

strength, therefore the meethod presented here was arrived at by cut
and try applications of logical approaches. Reducing the pressures
induced by the ground vortex in direct proportion to the forward
projection of the zero pressure line worked well for the flat
plate configurations. Thus the average pressure in the positive
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pressure region is given by;

_.w.," _ (-_°)2 .66 v. _;s (n5)

The effect on the negative pressures between the zero pressure line
and the jet is given by;

at the lower heights;

(n6)

at the higher heights;

-.1 fl = a: (nv)

The average pressure in the wake region is given by;

(ms)

The data from the wing/body models of reference 13 showed that the
e££ect of the moving ground on the induced upwash depends on the
location of the wing leading edge with respect to the jet. It was
found that reasonable agreement could be obtained by multiplying

the induced upwash angle by _ ' d ,

£or negative values o£ X"

". OG---a - td,/j

for positive values o£ X"

(8/so)2 (no)
A_ 2s
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where the exponent, a, is given by;

(121)

Similarly the upwash angle induced on a flat plate,

configuration is given by;

for negative values of X"

v.

or body,

for positive values of X"

(6/90} 2 (122)

(8/90) 2 (123)

Comparisons of estimates of the effects of testing over fixed and
moving ground with the corresponding experimental increments for
several configurations of ref. 13 are presented in figures 33.

Problems had been encountered during the development of the method,
at low heights and velocity ratios where equation 122 and 123
predicted excessively large induced upwash angles; upwash angles
that would carry the wing beyond stall. For these conditions it was

suggested above that; if d_ >(_mr_u- a) r_rel:luBe d.s = (am_- s)

A limiting upwash angle of da = 10 deg. was assumed in making the
estimates presented in figure 33. The effect of this limiting

angle of attack is shown in figure 34 in the leveling off of the
wing contribution at the lower velocity ratios and heights.
However, for some configurations at low heights and velocity ratios
(see fig. 33 c and 33 f) the method tends to over predict the
reduction in lift loss. Never the less, as shown in figure 35,
the general trends of the difference between lift increment induced
over fixed and moving ground tends to be generally well predicted.

Vogler, in one of the first investigations of the effect of the
ground on jet induced lift (ref. 20) had shown little or no
difference between fixed and moving ground. The model was a high

wing configuration with a relatively small total planform area to
jet area ratio, and as shown in figure 36 the present method is in
general agreement with his conclusions in that the predicted
increments due to moving ground are of the same order of magnitude

as the experimental scatter.
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CONCLUDING

The method developed here is based on detailed pressure distribu-
tion data and thereby gives some insight into the origin of the
lift and moments induced hy the ground vortex.

The methodincludes the effects of configuration variables, height

and operating conditions as well as the effects of the location,
deflection and shape of the jet. However it ks limited to single
jet configurations at subcritical nozzle pressure ratios.

An ana lFsis of the effects of moving over the ground vs. tests at
forward speeds over a fixed ground hoard is included.
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Ground Vortex

Figure 2.- Formation of the ground vortex
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