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Figure 11. Definition of maneuver L/D performance index.
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Figure 12. Contour plot of performance index. Perfor-
mance index is maximized for LEF/7-EF = 24°/13 °.
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Figure 13. Cross plot of I_/D measurements and neural-

network model for flaps scheduled to maximize I_/D across

the angle-of-attack range from 0 ° to 20 °.
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Figure 10. Comparison of predicted and measured aerodynamic characteristics for LEF/'I-EF = 340/30 °. Training set

(fig. 9) does not contain this configuration.
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Figure 9. Error estimates for training set containing only 50% of the flap configurations which still accounts for nonlinear

aerodynamic behavior of the SHARC model.
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Figure 7. Comparison of predicted and measured aerodynamic characteristics for LEF/7"EF = 30°/20 °. Training set (fig. 6)

does not contain this configuration.
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Errors for LEF/TEF = 15°/10°: CLerr = 0.0020, CDerr = 0.0002, CMerr = 0.0003.

Errors for LEF/TEF = 30°/11.5°: CLerr = 0.0016, CDerr = 0.0007, CMerr = 0.0015.

Averaged rms errors for all geometries in training set: CLerr = 0.0013, CDerr = 0.0002, CMerr = 0.0003.

Figure 4. Summary of root-mean-square (rms) error from neural-network computation of aerodynamic coefficients.

Shaded boxes indicate which flap configurations were contained in the training data. Experimental rms errors are shown

as open bars in lower-left box.
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Better selections of the configurations contained in the

training set improve the accuracy of the model while still

reducing the number of configurations relative to the full

training set. Figure 8 shows one such selection and the

resulting rms errors. This training set contains 60% of the

flap configurations and predicts the aerodynamics of the

configurations that are not in the training set to within the

experimental error (unfilled rectangles in the lower-right
box of fig. 8). Figure 9 shows the rms errors for a training

set which contains only 50% of the flap configurations

and still maintains predictive accuracy that is better than

the experimental error. Figure 10 shows comparisons of
the computed and measured aerodynamic coefficients for

the 34°/30 ° flap configuration. The agreement is good in

spite of the fact that the network is actually extrapolating
outside of the range of the training set for both the

leading- and trailing-edge flap deflections. Although

risky, extrapolating slightly beyond the range of trained

inputs did not lead to large errors in this particular

example. The accuracy of the predictions obtained using

the training sets shown in figures 8 and 9 demonstrates

that neural-network techniques can be used to reduce the

amount of wind tunnel data required to obtain an accurate

representation of the aerodynamics of a given wind tunnel
model.

Analysis of wind tunnel data after, or even during, a test

is another area in which neural networks can significantly

accelerate the aircraft design processes. An example of

this use is in two different optimization procedures

performed on the SHARC model. One of the objectives

of the test was to examine the effect of vortex generators

mounted onto various parts of the wing on the L/D

behavior across a range of angles of attack appropriate for

sustained maneuvers. A performance index was defined

which, for a given combination of LEF/TEF, is given by:

0Performance index = (L/D)dC L

.3 LEF/TEF

-[I00.16 (L/D)dCL ;0o/0o

A graphical representation of the performance index is

shown in figure 11. Finding the flap geometry which
maximizes this performance index involved significant

data analysis by a test engineer. The neural-network

model, on the other hand, provided a very quick analysis

to determine the flap angles which maximize this

parameter and at the same time provided a more complete

picture of how flap deflections influence performance.

A contour plot of the performance index as a function

of leading- and trailing-edge flap deflections generated

using the neural model is shown in figure 12. The neural

network predicted that the performance index is
maximized when LEF/TEF = 24°/13 °.

The second optimization performed on the SHARC

model was to develop the schedule of leading- and

trailing-edge flap angles which maximized the L/D at

every angle of attack. This would normally be done by

cross plotting L/D data from several runs and finding

which leading- and trailing-edge flap-angle combination

generates the highest L/D at various angles of attack. An

example is shown in figure 13. The network model was

used to directly determine the flap-angle combinations

that maximize L/D at any desired angle of attack. The

network prediction for the optimized L/D versus angle of

attack is also shown in figure 13. The schedules for the

leading- and trailing-edge flap angles are shown in

figure 14 for the network model and from the traditional

method of cross plotting the wind tunnel data. It is noted
that there is little difference between the two flap

schedules.

Conclusions

Wind tunnel testing of new airplane designs accounts for

a significant part of the cost of the aerodynamic develop-

ment process. Methods of reducing the amount of data

acquired during a wind tunnel test would immediately
reduce the cost of testing. The ability of neural-network

models to fill in a design space for the flap deflections of

a large-scale generic fighter model from sparse data was
demonstrated. In the example shown, network models of

the lift, drag, and pitching-moment coefficients as well as

the lift-to-drag ratio produced accurate predictions when

trained using only 50% of the data contained in the basic

configuration test matrix. In addition, the resulting neural

model of the aerodynamics provides a simple way to

interrogate the entire design space allowing very flexible

examination of configuration alternatives. The optimiza-

tion of flap deflections using the network model to

maximize the lift-to-drag ratio was demonstrated

providing the same results as the traditional method of

cross plotting data from numerous configurations. It is

hoped that this technique will be employed during wind
tunnel tests to determine when sufficient data have been

acquired.



coefficientswasalsoreportedbyMcMillenetal.(ref.2).
A sketchofthenetworkarchitectureusedforthepresent
studyisshowninfigure3.Ingeneral,anincreaseinboth
thenumberofnodesinagivenhiddenlayerandinthe
numberofhiddenlayersinaneuralnetworkincreasesthe
accuracyofmodelingnonlinearsystems.Forthework
presentedhere,15nodesinasinglehiddenlayerproved
tobesufficient.

Thethreeindependentvariablesforthisstudywerethe
leading-andtrailing-edgeflapdeflectionangles(LEFand
TEF)andtheangleofattack(c_).Theoutputswerelift,
drag,andpitching-momentcoefficients(CL,CD,and
CM)andlift-to-dragratio(L/D),whichrequiredatotal
of fournetworks.It isnotstrictlynecessarytomodel
L/DsincetheinformationissimplytheratioofCLto
CD.SinceL/Dwasanimportantparameterforthewind
tunneltest,it wascomputeddirectlytoincreasethe
accuracy(errorsarecompoundedwhenL/Discomputed
fromCLandCD).

Therangesoftheinputparametersexaminedduringthe
windtunneltestwereasfollows:_ from-4°to30°in
varioussteps;LEFof0°, 10°, 20°,30°,and34°;andTEF
of0°, 10%20°,and30°.Thisgivesatotalof20flap
configurationsin thebasictestmatrix.Twoother
configurationsweretestedthatarenotshowninthe
matrix:LEF/TEF= 15°/10°andLEF/TEF=30°/11.5°.
Thesetwoconfigurationswerenotincludedinthe
trainingoftheneuralnetworksbutwereusedtoassess
theaccuracyofthenetworkpredictions.

Inordertodeterminetheamountofdatarequiredto
accuratelytrainthenetworks,severaldifferentsubsets
(trainingsets)of thedataweregeneratedthatincluded
limitednumbersoftheflapconfigurations.Eachtimea
flapconfigurationwastested,measurementsweremade
atseveralanglesofattackbutnotnecessarilyatthesame
angles.Thenumberofanglesofattackalsovariedfor
eachflapconfiguration.Ingeneral,modelchangestakeas
muchormoretimeinthewindtunnelthantheacquisition
oftheaerodynamicdata.Theneuralnetworkswerethere-
foretrainedusingdatasetswhichcontainedvarious
numbersofflapconfigurationsbutalloftheanglesof
attackforeachconfiguration.Theaccuracyofthenet-
workswasevaluatedbycomputingtheroot-mean-square
(rms)errorofeachaerodynamiccoefficient.Thedevia-
tionsfromthemeasureddatawerecomputedateach
angleofattackforagivenflapconfigurationfromwhich
thermserrorswerecomputed.Theerrorsshouldbelow
forconfigurationsincludedin thetrainingsets.Compari-
sonofthenetworkoutputsforconfigurationsonwhich
thenetworkswerenottrainedwithexperimentalresults
yieldsanindicationofthepredictivecapabilityofthe
networkmodel.

Results

As expected, when the aerodynamic data for all of the

20 flap configurations were used to train the network
models, the resulting accuracy was excellent for all of the

configurations. Figure 4 shows a summary of the errors in

the aerodynamic coefficients for all of the flap configura-

tions. The shaded squares in the figure show which

configurations were included in the training set (all 20 in

this case) and the bars show the rms errors for the three

aerodynamic coefficients. A bar as tall as a square corre-

sponds to an rms error of 0.0100. The experimental data

had uncertainties (standard deviation) of ACL = _+0.0035,

ACD = _+0.0015, and ACM = _+0.0025. The unshaded bars

in the lower-right corner of the figure show the uncer-
tainties for all of the wind tunnel data. The network errors

are well within the experimental uncertainty for all of the

configurations in the matrix. The network errors for the

two configurations not included in the full training set are

also quite small:

for LEF/TEF = 15°/10°:

CLerr = 0.0020, CDerr = 0.0002, CMerr = 0.0003

for LEF/TEF = 30°/11.5°:

CLerr = 0.0016, CDerr = 0.0007, CMerr = 0.0015

A comparison of the measured and predicted aero-

dynamic coefficients is shown in figures 5(a)-5(d) for
the 15°/10 ° configuration using the full training set of

figure 4. The lift coefficient was very well predicted for

angles of attack less than about 10° (fig. 5(a)), and the

corresponding drag and pitching-moment coefficients
are also accurately predicted (figs. 5(b) and 5(c), respec-

tively). The L/D is accurately captured by the network
model for lift coefficients below that for maximum L/D,

whereas beyond L/Dmax it is slightly overpredicted.

The values of L/D determined directly from the neural-

network model and from the network CL and CD values

are nearly identical.

Several other subsets of the measured aerodynamic data

were used to train the network. The training set shown in

figure 6 is one way to reduce the data requirements and

would be sufficient if the aerodynamics of this airplane

model changed in a linear fashion with flap deflections.

This training set contains 40% of the flap configurations

contained in the full training set. As is apparent from the
error bars, the network model in this case did a relatively

poor job of predicting the performance of flap configura-
tions for which it had not been trained. The predicted

and measured aerodynamic coefficients for the 300/20 °

configuration (not in the training set) are shown in

figure 7. The agreement is poor, as expected from the

rms errors shown in figure 6.



changesduringflight(e.g.,duetodamagetoanairplane
in flight)(ref.6).
Thecurrentstudywasundertakentodirectlyexamine
howmuchwindtunneldataarerequiredinordertotrain
aneuralnetworktopredicttheaerodynamicperformance
ofafighterconfigurationwithanaccuracycomparableto
theexperimentalaccuracy.Completedescriptionsofthe
operationofneuralnetworksareavailableinmanyrefer-
ences(seeref.7).Ingeneral,thetypeofnetworkweused
(multilayerperceptron)consistsofanumberofnodes
(oftenreferredtoasneurons)arrangedinlayers.A sketch
ofasimplenetworkisshownin figure1.Theinputnodes
passtheinputdatatothehiddenlayerofnodes,eachof
whichapplyanonlineartransferfunctiontotheweighted
sumoftheinputsandpassalongtheresulttotheoutput
layerwithitsownsetofweightingfactors.A networkcan
containanynumberofinput,hidden,andoutputnodes.
Theremayalsobemorethanonehiddenlayerofnodes.
Thisformofneuralnetworkiscapableofapproximating
anycontinuouslydifferentiablefunction(ref.7).

Thevaluesfortheindividualweightingfactorsare
determinedbymeansofatrainingprocedureinwhich
manysetsofinputswithknownoutputsarefedtothe
inputlayer.Theweightingfactorsareadjustediteratively
tominimizetheerrorsintheoutputs(differencebetween
thecomputedandknownvalues).Manyalgorithmsare
availabletoadjusttheweightingfactors.Oncetrained,the
networkcanthencomputeoutputstosetsofinputsthatit
hasnotbeentrainedon.If thetrainingissuccessful,the
outputsaccuratelypredictthebehaviorofthesystemfor
anyinputs.

Theworkdescribedin thispaperwasundertakenwith
thegoalofminimizingtheamountofdatarequiredfrom
windtunneltests.Theideaisthatwhileatestisin
progress,aneuralnetworkistrainedusingtheaero-
dynamicdataastheyareobtained.Thenetworkthen
predictstheresultsofthenextrunwithdifferent
geometryortestconditionsbasedonthe"knowledge"
thatit hasobtaineduptothatpoint.Tobeeffective,the
networkmustgainsufficientknowledgeaboutthemodel
sothatthepredictionsmatchthemeasuredresultsto
withintheaccuracyofthemeasuredwindtunneldata
beforetheentiretestmatrixhasbeenrun.Withthis
trainednetwork,theaerodynamicsofthemodelcanbe
computedforbothtestedanduntestedconditions.
Therearenumerousotherusesofaneuralnetworktrained
tocomputeaerodynamics.Forexample,trainedneural
networkswouldprovideaverysimplewaytointerrogate
anexperimentaldatabase.Thisabilityeliminatestheneed
tointerpolatethedataacrossnumerousvariables.The
networkcomputationscanbedoneusingadesktopPC
withoutusingtheaerodynamicdatabaseatall.Onlythe

weightingfactorsneedtobestoredbythecomputeralong
withtheinformationconcerningthearchitectureofthe
trainednetwork.Thetrainednetworkmodelcanbe
programmed(e.g.,inC)andlinkedtoanydesired
analysisoroptimizationcode.Suchacapabilityhas
obviousbenefitsforsharingdatabetweenvariousgroups
andwhenrapidcomputationofaerodynamicforcesand
momentsarerequiredforflight-simulationtasks.

Neural-networkmodelingcanalsoidentifybador
unexpecteddataduringawindtunnelorotherkindof
test.Asmeasurementsarecomparedwithneural-network
predictions,anomaliesbecomereadilyapparentand
testparameterscanbemodifiedtocheckwhetherthe
measurementsareinerrororthenetworkneedsadditional
training.Themodelingcapabilitycanalsofacilitate
tailoringthetestmatrixtoincreasethedensityofthetest
matrixwhererequired.Areasofhighgradientsmaybe
mademoreapparentduringatestbyuseoftheneural
networkthanbyotheranalysesofthedata.

Thispaperdescribestheapplicationofaparticularneural-
networkmethodologytomodelingtheaerodynamicsofa
large-scalewindtunnelmodel.TheSubsonicHigh-Alpha
ResearchConcept(SHARC)programwasconducted
jointlybytheU.S.AirForceWrightAeronautical
LaboratoryandNASAinthe40-by80-FootWind
TunnelatNASAAmesResearchCenter.Theprogram
testedboth10%and55%scalemodelsofageneric
advancedfighteraircraft(fig.2)(refs.8and9).Thetest
programincludedthedeterminationoftheflapscheduling
(leadingandtrailingedge)thatgavethehighestlift-to-
dragratiooverthemaneuverangle-of-attackrange.In
ordertoaccomplishsuchatask,alargenumberofflap-
deflectioncombinationshadtobetested.Thislargesetof
aerodynamicdataprovidedanexcellentopportunityto
examinethecapabilitiesoftheneural-networkmethods,
particularlyregardingtheabilitytoobtainveryhigh
levelsofmodelingaccuracywithlimitedtrainingdata.
Theworkpresentedhereisforthe55%scalemodel
results.

Approach

Previous publications present details of the neural method
used here to model aerodynamics (see ref. 10). In sum-

mary, individual 3-input, 1-output networks were used to
model each of the desired aerodynamic coefficients. A

Levenberg-Marquardt training scheme was used because

it provided better accuracy than the more prevalent back-

propagation training method. The single output networks
for each of the aerodynamic coefficients provided more

accurate modeling than multiple-output networks. The
need for individual networks for modeling aerodynamic
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Summary

The use of neural networks to minimize the amount of

data required to completely define the aerodynamic

performance of a wind tunnel model is examined. The

accuracy requirements for commercial wind tunnel test

data are very severe and are difficult to reproduce using

neural networks. For the current work, multiple input,

single output networks were trained using a Levenberg-

Marquardt algorithm for each of the aerodynamic coef-
ficients. When applied to the aerodynamics of a 55%

scale model of a U.S. Air Force/NASA generic fighter
configuration, this scheme provided accurate models of

the lift, drag, and pitching-moment coefficients. Using

only 50% of the data acquired during the wind tunnel test,

the trained neural network had a predictive accuracy

equal to or better than the accuracy of the experimental
measurements.
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Nomenclature

wing reference chord length

drag coefficient, D/(qS)

section lift coefficient, L/(qS)

pitching-moment coefficient, M/(qSc)

drag force

lift force

lift-to-drag ratio, CL/C D

leading-edge flap deflection angle

pitching moment

dynamic pressure, (pV2)/2

wing reference area

Trailing-edge flap deflection angle

velocity

root-mean-square (rms) error

maximum
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Introduction

Wind tunnel testing is an integral part of the design of all

airplanes (as well as most automobiles and trucks). Since

the aerodynamic performance of an airplane is nonlinear
due to the effects of viscosity, there is a need to test a

large number of conditions and geometries. Test param-
eters typically include such things as control-surface

and/or high-lift system deflections, variation in the angles
of attack and sideslip, and velocity (Mach number)

variations. The result is a long and expensive test program

with a large amount of data to sort through and interpret.

Subsequent analysis of the data is time consuming,

typically consisting of a large number of cross plots to

develop an understanding of how all of the geometric

variations change the aerodynamic forces and moments as

a function of angles of attack and sideslip. The resulting

aerodynamic database is used to analyze the airplane'g

performance throughout its operating envelope as well as

in-flight simulations to assess handling qualities before

the airplane is built. Because of the large expense

associated with wind tunnel testing and the subsequent

analysis of the aerodynamic data, technologies which

reduce these costs (without sacrificing accuracy) can

significantly increase the proftability of a new airplane.

Simply stated, the problem that we addressed is how to

reduce the amount of wind tunnel data required to com-

pletely define the aerodynamic performance of a given

model to the desired accuracy. The ability of neural

networks to accurately learn highly nonlinear, multiple

input/output relationships makes this a promising

technique for modeling of aerodynamic test data. This

sort of curve (or surface) fitting offers the most likely

path to minimizing data requirements.

There has been considerable interest recently in aero-

nautical applications of neural networks. In an early

study, Schreck and Failer (ref. I) successfully trained a

neural network to predict the unsteady pressure variations

on a pitching wing. This work demonstrated the net-
work's capability to learn the behavior of a highly

nonlinear aerodynamic system. Other applications have

since been reported for characterizing flight-test data
(refs. 2 and 3). Neural networks have also been applied to

flight controls for defining control laws (refs. 4 and 5)

and for updating control laws when aircraft performance


