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Introduction

The main engines of the Space Shuttle use hydrogen and oxygen as the fuel and oxidant. The explosive and

fire hazards associated with these two components pose a serious danger to personnel and equipment. Therefore

prior to use the main engines under go extensive leak tests. Instead of using hazardous gases these tests utilize

helium as the tracer element. This results in a need to monitor helium in the ppm level continuously for hours. The

major challenge in developing such a low level gas monitor is the sample delivery system. This poster discuss a

system developed to meet the requirements while also being mobile. Also shown is the calibration technique,

stability, and accuracy results for the system.

Background

From the beginning of the Space Shuttle program mass spectrometers have been used to monitor for

cryogenic fuel leaks. However, there was not a dedicated system to look for leaks of the engines prior cryogenic

filling of the Space Shuttle. The major limitation with these systems was that only the cryogenic fuels could be

monitored (i.e., Hydrogen and Oxygen) unless the vacuum system was broken to replace the vacuum pump. This

limitation was due to the ion pumps that were used in the vacuum systems. Even with this limitation leaks were

found multiple times. However, as discovered in the summer 1989, these systems were of limited use when trouble

shooting the locate of the leaks.

Shuttle missions STS-35 and 38 were grounded during the summer of 1989 due to hydrogen leaks in the Aft

Fuselage and the 17" disconnect. These leaks grounded the shuttles all summer at a great cost in both money and

time. This was highlighted (Picture 1) when the Space Shuttle Columbia (mission STS-35) rolled back to the

Vehicle Assembly Building (VAB) to repair the leaks. Because the leaks were not detected until the Space Shuttles

were on the pad they had to be rolled back to the Vehicle Assembly Building. While the existing systems detected

the hydrogen leaks they were not able to adequately trouble shoot the problem. The ion pump systems of the older

mass spectrometers could not adequately handle the high helium loads. For this reason, a turbo pumped mass

spectrometer system was designed. This system, named Hydrogen Umbilical Mass Spectrometer (HUMS), was

successful in helping to resolve the leaks in the Orbiters.

These problems brought out the need for improved methods to look for leaks before and after installing the

main engines into the Orbiter. The requirements of the system included the ability to move the system to different

locations with minimal effort. The system was to be used for refurbishment of the engines prior to installation into

the Orbiter and to test the overall Space Shuttle once on the launch pad. The Portable Aft Mass Spectrometer

(PAMS) was developed to meet these requirements.

Experimental

The PAMS system (Pictur e 2)was composed ofthr_ ee sections, the sample defivery system, the mass
spectrometer, and the interface software. The sample delivery system (SDS), on the back of the earl, used a flow

controller and pressure transducer to control the inlet pressure of the mass spectrometer. The mass spectrometer,

on the bottom of the cart (Picture 2), was a fixed sector with a turbo molecular drag pump. The control software

was written in LabView and runs on a laptop personal computer (PC) located on a pull out shelf (Picture 2).



SampleDelivery System

The pneumatic schematic for the SDS is shown in Figure 1. The system has two inlet ports, three on board

calibration gases, a pressure transducer, and a flow controller. The heart of the system is the control loop which

keeps a constant pressure at the inlet of the mass spectrometer. This is accomplished by monitoring the pressure via

a pressure transducer (PT on Figure 1). The flow controller (FC on Figure 1) then adjusts the sample flow to

maintain a constant pressure at the inlet of the mass spectrometer. This control loop is constantly monitored while

the system is operating. To calibrate the mass spectrometer, two on board cah'bration gases (Span and Zero) and

one accuracy checking gas (Test) are incorporated into the system; they also are controlled to the same inlet

pressure as the sample. There are two inlets into the SDS. One inlet is for high flow rates (-8 L/min) while the

second is for low flow rates (-0.5 L/rain). A dual diaphragm pump is used to enable the two inlet flow rates.

Mass Spectrometer

The mass spectrometer used for the PAMS unit is the Alcatel 120 h helium leak detector. The unit is a

magnetic sector with dual Faraday cups to allow a wide dynamic range of the mass spectrometer. Sample

introduction was accomplished by passing the sample across a membrane into the mid body of the turbo molecular

drag pump. This technique of contra flow has been shown to allow lower limits of detection than introduction into

the base of the drag pump.

Control Software

The interface software, written in LabView 4.0.1, controlled and monitored the SDS and mass

spectrometer. The SDS line selection valves were controlled via Analog Devices solid state relays (OD60Q). The

Aicatel mass spectrometer was designed as a leak detector and therefore only supplies voltages corresponding to

leak rates. For this reason, the Faraday cups on the mass spectrometer were interfaced to the computer by Analog

Device's 6B 12 input modules. The pressure and flow were monitored by the MKS Control System Type 146. All

components (i.e., MKS, Analog Devices, Alcatel) communicated directly with the control lap top computer via

serial ports.

The main screen of the software, Figure 2, has four areas. The first section (top two data graphs) display the

data both graphically, as a trend, and numerically. The second section is on the lower left of the screen and consists

of the labeled areas Line Select, Sample Flow, Transport Flow, and System. This section allows the user to control,

monitor, and validate the SDS and mass spectrometer. The third section, labeled Pages, consists of the tests

performed to check out the Space Shuttle prior to launch. The fourth section is on the lower fight and has the labels

File Control and Time. This section lets the user select the data file and the delay between scans.

System Evaluation

Three tests were run to evaluate the overall performance of the PAMS. These tests were calibration,

accuracy, and long term drift. The calibration gases and experimental parameters are summarized in Table 1.

Calibration

The calibration of the unit was performed as explained below. Each of the calibration gases were monitored

for a set time, in the order zero, test, and span. This sequence was chosen to help reduce memory effects. The data

acquired during the last five minutes of each gas were then averaged together. The first five to ten minutes were

used to allow stabilization of the system. Linear regression was then performed on the zero and span gases. The

concentration of the test gas was then calculated using the slope and intercept. This calculated value was then

compared to the actual value of the test gas to check the calibration of the unit.

Accuracy

The same method to determine the test gas values in Calibration above were used to determine the accuracy

of the unit. Two gas concentrations, low (-11 ppm) and high (-103 ppm), were obtained from the Bureau oflVfines.



Thesevalueswerechosenbecausethey were close to the lower and upper range of the instrument during normal

operation (i.e., low range on the Alcatel).

Long Term Drift

To test the extent that the unit driRs two gases were monitored for 90 min each. The two gases were the 50

ppm test gas and the 0 ppm zero gas. These two gases were chosen because the low level drift is of a major concern

during operation of the unit. Furthermore the base line drift was able to be observed using the zero gas.

Table 1. Experimental Parameters

Gases (all are He in N2 background)"

Calibration:

Span" 100 ppm

Test: 50 ppm

Zero: 0 ppm

Accuracy Study:

Low range: 11.2 +_0.015 ppm

High range: 103.95 _+0.55

Long term drift Study:

50 ppm

Inlet Pressure: 700 Tort

Sample Flow Rate: 0.5 L/rain

Results and Discussion

Calibration:

The voltages acquired for calibration are shown in Figure 3. Table 2 fists the averages and standard

deviation of the last five minutes for each of the calibration gases (Average and Std Deviation), the linear regression

data (Slope and intercept), the calculated concentration of the test gas (Calc ppm), the deviation of the calculated

test gas concentration from the actual (Delta from actual), and the percent error (% Error) of the Delta from actual.

To graphically demonstrate this calibration technique the span and test gas data were plotted (Figure 4). The solid

black line in the figure is the linear regression line used for calibration. The blue dotted line shows the check of the

calibration line by using the calibration voltage to calculate the test gas concentration. As these data show the

calibration routines are very accurate and the response of the system is very linear with small standard deviations.

Table 2. Calibration results for PAMS

Average

Std Deviation

0 ppm

-0.00615

50 ppm

-2.308

100 ppm

-4.626

0.18

% Error 0.37

Calculated ppm
Delta from actual

50.18

Intercept
Test Gas Results"

4.1x10-5 2.57x10-3 1.12x10-2

Linear

Regression:

Slope -21.64

'0.131 .......



Accuracy
As can be seen in Table 3 the accuracy of the system is extremely good. The 11.2 ppm calculated average

was equal to the actual value of the gas. The standard deviation also was found to be less the 1% of the

concentration. Although the 103.95 ppm gas measured a value of 98.5 ppm the percent error was still less then 10%

and adequately meets the systems needs. This error can be attributed to the fact that this concentration is at the high

end for the low-range Faraday cup on the mass spectrometer. Therefore larger errors will be seen above 100 ppm

unless the system is calibrated with the high range Faraday cup. This is acceptable, as low level accuracy is of

extreme importance.

Table 3. PAMS Accuracy Results.

Actual (ppm) Calc (ppm)
11.2 :t: 0.015 11.2

103.95 _+0.55 98.2

Std Dev Delta. (ppm)
0.0

% Error

0.02 0.42

0.15 -5.8 5.5

Long Term Drift

The results for monitoring zero and test gases for 90 min (Figure 5) shows a very stable response. The

standard deviation in both cases were extremely small and the drift was less then 0.5 ppm. The small rise in the 50

ppm signal during the first 40 min of the run can be atm'buted to stabiIization of the SDS and mass spectrometer

systems.

Conclusion

A portable mass spectrometer system has been successfully developed and used to monitor helium levels in

the Space Shuttle prior to launch. The system showed exceptional linearity, accuracy, and long term stability. The

system has been successfully used on a number of launches. Although the current system was limited to monitoring

helium, the addition of a scanning mass spectrometer would make this system applicable for many long term process

monitoring applications. The size of the sample delivery system would enable the unit to be permanently installed

into small areas. The control of the system could be automated (i.e., when to calibrate or cycle valves). This

automation would make the system suitable for autonomous operation.
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Picture 1. Columbia Rolling Back to the VAB



Picture 2. PAMS System
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