TEM STUDY OF PRECIPITATION IN A NiAl-3Ti-0.5Hf SINGLE-CRYSTAL ALLOY

A. Garg, R. D. Noebe, J. M. Howe*, A. W. Wilson* and V. Levit**

NASA Lewis Research Center, Cleveland, OH 44135
* Dept. of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22903
** Dept. of Materials Science and Engineering, University of Florida, Gainesville, FL 32611

Three directionally solidified NiAl single-crystal alloys, NiAl-3Ti, NiAl-0.5Hf and NiAl-3Ti-0.5Hf (at.%), were grown by a Bridgeman technique using high purity alumina crucibles. The ingots were homogenized for 32h at 1644 K followed by aging for 6h at 1255 K and finally furnace cooled under an argon atmosphere. This heat treatment was found to be very effective in dissolving Hf-rich interdendritic particles that were present in the as-cast structure, and at the same time it produced fine second-phase precipitates in the alloy.

Samples for transmission electron microscopy (TEM) were prepared from 3 mm diameter cylinders electro-discharge machined from the heat-treated ingots. Slices sectioned from the cylinders were mechanically ground and electrochemically thinned in a twin-jet Tenupol-3 polisher. Microstructural and energy-dispersive X-ray spectroscopy (EDXS) studies were conducted in a Philips 400T TEM equipped with a double tilt goniometer and a KEVEX Si/Li X-ray detector.

TEM microstructures of the NiAl-3Ti and NiAl-0.5Hf samples were featureless except for the presence of some random dislocations. No homogeneous precipitation was observed in either of the two alloys suggesting that 3 at.% Ti in the first alloy and 0.5 at.% Hf in the second alloy were in solid solution in the NiAl matrix. The microstructure of the NiAl-3Ti-0.5Hf alloy was, however, very different and showed a high density of precipitates. A TEM bright-field image of the alloy close to a <001> NiAl zone-axis is presented in Fig. 1(a). It shows a high density of fine precipitates (size ~ 5-50nm) distributed uniformly throughout the foil, and some coarse precipitates (size ~ 100-700nm) nucleated preferentially on dislocations on {100} NiAl planes. The coarse precipitates were always associated with precipitate free zones. The fine precipitates, shown at a higher magnification in Fig. 1(b), clearly exhibited a plate-shape morphology with associated coherency strain. Using EDXS, electron diffraction (Fig. 1(c)) and trace analysis these fine precipitates were identified as Ni2AlTi Heusler phase (L21, a = 0.587nm) formed on the {100} NiAl planes with a cube-on-cube orientation relationship. Two types of coarse precipitates were found to nucleate on dislocations; edge-on plates (marked T, size ~ 100-250nm) and almost equiaxed precipitates (marked H, size ~ 200-700nm). These precipitates were also found to be Heusler phases; T: Ni2AlTi, H: Ni2AlHf (L21, a = 0.608 nm). Both of these phases are formed by further ordering of the B2 structure of NiAl (ordered BCC, a = 0.289nm) during cooling1,2. The lattice misfits of the Ni2AlTi and Ni2AlHf phases with the NiAl matrix are 1.5 % and 5.2 %, respectively. Due to large misfit of the Ni2AlHf phase, a square network of misfit dislocations of spacing ~ 5.6nm was often observed at the Ni2AlHf/NiAl interface, which made its presence unmistakable and unique.

Dislocation segments lying along the <110> NiAl directions were often unstable and found to sharply bend along the <100> NiAl directions, giving them a zigzag appearance (arrows in Fig. 1(a)). Preferred nucleation of the Ni2AlTi precipitates on such segments produced a saw-tooth appearance. In several regions of the foil, a dense precipitation of large Ni2AlTi plates and some Ni2AlHf
Precipitates were observed along the \(<110> \) directions in a \(<001>_{\text{NiAl}}\) zone-axis (Fig 2). This is believed to be due to preferential nucleation of the \(\text{Ni}_2\text{AlTi} \) precipitates possibly on prismatic dislocation loops.

A high density of fine precipitation as seen in Fig. 1(a) is expected to enhance the creep properties of NiAl single crystals significantly and is under investigation.

References

Fig. 1 (a) General microstructure of the NiAl-3Ti-0.5Hf single-crystal alloy in the as-heat treated condition. A higher magnification view of region F and its SADP are shown in (b,c), respectively.

Fig. 2 Preferential precipitation of large \(\text{Ni}_2\text{AlTi} \) plates and equiaxed \(\text{Ni}_2\text{AlHf} \) phase along a \(<110>\) direction in a \(<001>_{\text{NiAl}}\) zone-axis.